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Introductory Chapter 

 

In the modelling of macroeconomic and financial data, high persistence over 

sufficiently long periods of time and dependence structure across time play an 

important role. Such data (series) is reported to be characterised by distinct, but non 

periodic, cyclical patterns and behaves such that current values are not only 

influenced by immediate past values but values from pervious time periods. 

Increasing interest has been shown in capturing such phenomenon referred to as ‘long 

memory’. A long memory property can be expressed in many ways (discussed in 

chapter 1). It can be defined by the series autocovariances with a hyperbolic (slow) 

decay and hence not summable, unlike in the short memory time series where 

autocovariances decay exponentially (rapidly); or by a spectral density that is 

unbounded and characterised by a pole at the origin, whereas in the short memory 

series the spectral density is bounded and very smooth. Moreover, long memory time 

series include both stationary and nonstationary where in the latter the dependence 

falls off even more slowly over time. The first attempt in economics to parameterise 

the long memory feature, represented in a memory parameter � that govern the long 

run dynamics of the series, was developed by Granger (1980) and Granger and Joyeux 

(1980) where the concept of long memory in a time series was coupled with 

‘fractional integration’ to provide a theoretical explanation for the hyperbolic (slow) 

decay of sample correlograms in certain empirical contexts.  

 

The term fractional came up to refer to a generalised operation of a non integer order, 

where the conventional and usual order of the operation has to be an integer. For 

instance, some series levels in macroeconomics change with time in a smooth way, 

such smooth movements were explained either by assuming the series to be stationary �(0) around a deterministic trend or by the means of stochastic unit roots �(1)  

models. At the beginning, the interest in long memory feature was through the focus 

on the unit root �(1)  models as a special case of a more general case of nonstationary 

fractional series where the memory parameter is greater and equal to half. Despite the 

simplicity and usefulness of the unit root �(1)  models by assuming a known degree 

of memory which can be reduced by differencing to a stationary and invertible short 

memory time series, the relaxation of such assumption to a more flexible and 
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fractional memory measure that is unknown and estimable from the data would lead 

to a valid statistical inference, even in large samples. Such fractional models can also 

form a convenient bridge from short memory stationary to nonstationary models. 

Although the immense interest was in the fractional non stationary models, the main 

development and focus in literature was on estimating the memory parameter in the 

stationary case where the memory parameter is between zero and half. 

 

Consider a stochastic process, �� is written in a simple generalization of a random 

walk,  �� = (1 − �)����, 

and the process �� ∈ �(0), i.e. an i.i.d. zero mean and finite variance time series. 

For � = 0, �� = �� and thus �� is weakly autocorrelated. When � > 0, �� is strongly 

dependent and referred to as persistent, because of the strong association between 

observations widely separated in time, while when � < 0, �� is negatively dependent 

and referred to as anti-persistent. The term  (1 − �)�� can be defined by the binomial 

expansion and only exists for  −�� < � < �� , (1 − �)� = ∑ �(� �)�(�)�(� !)"�#$ �� , 

where  Γ(�) = & '(�!"$ )���' is the gamma function and � (��� = ���!) is the lag 

operator. The autocorrelation function (ACF) of  �� is expressed using Stirling’s 

formula, �*~,-.��! as  - → ∞ 

where , is a strictly positive constant. Table 1 shows a summary of time series 

characteristics related to the long memory parameter �. 

 

Table 1: Long memory characteristics 

 Series Memory ACF 

� ∈ (−0.5, 0) stationary fractional anti-persistent hyperbolic 

� = 0 stationary short memory exponential 

� ∈ (0, 0.5) stationary fractional long memory hyperbolic 

� ∈ [0.5, 1) non-stationary fractional long memory hyperbolic 

� = 1 unit root infinite memory linear 
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If two or more time series exhibit long memory, then cointegrating relationships 

among them, if existed, may also exhibit long memory, implying relatively slow 

adjustments to re-establish equilibrium, hence the term fractional cointegration was 

developed. Engle and Granger (1987) defined the fractional cointegration along with 

the standard cointegration. A collection of two or more time series is fractionally 

cointegrated if their linear combination exists and less persistent (measured in terms 

of the memory parameters) than any of the individual series. In standard cointegration 

analysis, all variables are either �(1) and the linear combinations are �(0) process or 

alternatively they are �(0). In other words, standard cointegration allows only integer 

values for the memory parameter and the equilibrium errors to be a �(0) process 

which are rather restrictive. However, there is no integer constraint and no assumption 

on the memory parameters of the individual series or their linear combination in the 

fractional cointegration analysis. In this dissertation, a selective survey of the 

literature on representation and estimation in fractional cointegration is presented in 

chapters 2 and 3 for the stationary case and in chapter 4 for the nonstationary case. 

 

The dissertation considers an indirect approach for the estimation of the cointegrating 

parameters, in the sense that the estimators are jointly constructed along with 

estimating other nuisance parameters. This approach was proposed by Robinson 

(2008) where a bivariate local Whittle estimator was developed to jointly estimate a 

cointegrating parameter along with the memory parameters and the phase parameters 

(discussed in chapter 2). The main contributions of this dissertation is to establish, 

similar to Robinson (2008), a joint estimation of the memory, cointegrating and phase 

parameters in stationary and nonstationary fractionally cointegrated models in a 

multivariate framework. In order to accomplish such task, a general shape of the 

spectral density matrix, first noted in Davidson and Hashimzade (2008), is utilised to 

cover multivariate jointly dependent stationary long memory time series allowing 

more than one cointegrating relation (discussed in chapter 3). Consequently, the 

notion of the extended discrete Fourier transform is adopted based on the work of 

Phillips (1999) to allow for the multivariate estimation to cover the non stationary 

region (explained in chapter 4). Overall, the estimation methods adopted in this 

dissertation follows the semiparametric approach, in that the spectral density is only 

specified in a neighbourhood of zero frequency.  
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The dissertation is organised in four self-contained chapters that are connected to each 

other, in additional to this introductory chapter: 

• Chapter 1 discusses the univariate long memory time series analysis covering 

different definitions, models and estimation methods. Consequently, 

parametric and semiparametric estimation methods were applied to a 

univariate series of the daily Egyptian stock returns to examine the presence of 

long memory properties. The results show strong and significant evidence of 

long memory in the Egyptian stock market which refutes the hypothesis of 

market efficiency. 

• Chapter 2 expands the analysis in the first chapter using a bivariate framework 

first introduced by Robinson (2008) for long memory time series in stationary 

system. The bivariate model presents four unknown parameters, including two 

memory parameters, a phase parameter and a cointegration parameter, which 

are jointly estimated. The estimation analysis is applied to a bivariate 

framework includes the US and Canada inflation rates where a linear 

combination between the US and Canada inflation rates that has a long 

memory less than the two individual series has been detected. 

• Chapter 3 introduces a semiparametric local Whittle (LW) estimator for a 

general multivariate stationary fractional cointegration using a general shape 

of the spectral density matrix first introduced by Davidson and Hashimzade 

(2008). The proposed estimator is used to jointly estimate the memory 

parameters along with the cointegrating and phase parameters. The 

consistency and asymptotic normality of the proposed estimator is proved. In 

addition, a Monte Carlo study is conducted to examine the performance of the 

new proposed estimator for different sample sizes. The multivariate local 

whittle estimation analysis is applied to three different relevant examples to 

examine the presence of fractional cointegration relationships.  

• In the first three chapters, the estimation procedures focused on the stationary 

case where the memory parameter is between zero and half. On the other hand, 

the analysis in chapter 4, which is a natural progress to that in chapter 3, 

adjusts the estimation procedures in order to cover the non-stationary values of 

the memory parameters. Chapter 4 expands the analysis in chapter 3 using the 



13 

 

extended discrete Fourier transform and periodogram to extend the local 

Whittle estimation to non stationary multivariate systems. As a result, the new 

extended local Whittle (XLW) estimator can be applied throughout the 

stationary and non stationary zones. The XLW estimator is identical to the LW 

estimator in the stationary region, introduced in chapter 3. Application to a 

trivariate series of US money aggregates is employed. 
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CHAPTER 1 

 

LONG MEMORY  

IN THE EGYPTIAN STOCK MARKET RETURNS  
 
 
 

AMR ALGARHI
∗ 

UNIVERSITY OF EXETER 
 
 
 
 

 
 
 

Abstract 
This chapter examines the presence of long memory in the daily returns of the 
Egyptian stock market, using parametric and semiparametric methods. Both 
techniques have their merits and demerits. Accordingly, the Exact Maximum 
Likelihood (EML) estimation is employed to estimate the ARFIMA model in the time 
domain; while two main semiparametric techniques, log periodogram (LP) and local 
Whittle (LW), were applied to estimate the memory parameter in the frequency 
domain. Unlike the findings for developed equity markets, the results show strong and 
significant evidence of long memory in the Egyptian stock returns, which refutes the 
hypothesis of market efficiency. As a result the Egyptian stock returns can be 
predicted using historical information. The findings of this paper are helpful to 
regulators, financial managers and investors dealing in the Egyptian stock market. 
 
JEL Classification: C14, C22. 
 
Keywords: ARFIMA; Egyptian stock market; Exact maximum likelihood; Local 
Whittle estimation; Log-periodogram regression; Long memory; Semiparametric 
estimation. 
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1.1 Introduction 

 
This chapter uses parametric and semiparametric methods to estimate the long 

memory parameter for the Egyptian stock market returns. A time series has a long 

memory, whenever the dependence between apart events diminishes very slowly as 

the number of lags increases. The presence of long memory properties in asset returns 

has important implications for asset pricing models. Such features can be used to 

construct a profitable trading strategy. In another words, long memory entails that 

perfect arbitrage is impossible and contradicts standard derivative pricing models 

based on Brownian and martingale assumptions (Mandelbrot, 1963). 

 

In the last two decades, it has been of great importance, theoretically and empirically, 

to study the properties of long memory in financial asset returns which is used as a 

proxy for analysing market efficiency. The stock market returns are said to exhibit 

long memory properties, if there is a significant autocorrelation (dependence) between 

observations widely separate in time. This dependence between apart observations can 

be utilised to predict future returns, leading to the possibility of consistent speculative 

profits. Consequently, the existence of long memory in the return series refutes the 

weak form of the market efficiency hypothesis. The price of an asset determined in an 

efficient market should follow a martingale process in which each price change is 

unaffected by its predecessor and has no memory. Therefore, if the returns series 

display significant autocorrelation between distant observations then past returns can 

help to predict future returns, thus violating the market efficiency hypothesis which 

states that, asset prices incorporate all relevant information, where future asset returns 

are unpredictable, conditioning on past returns.  

 

The development of statistical long memory processes was inspired by Hurst (1951) 

who was the first to introduce a method for the quantifying of the long memory called 

rescaled range analysis (R/S). This method involves parameter estimation to capture 

the scaling behaviour of the range of partial sums of the variable under consideration. 

Using the rescaled range analysis, Mandelbrot (1971) has found evidence of long 

memory in the stock returns. However, Lo (1991) pointed out the lack of robustness 

of the statistical R/S test in the presence of short term memory and heteroskedasticity. 

Lo (1991) suggested a modified R/S test and tested for long memory in daily US 
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stock market indices and found no evidence of long range dependence. Mills (1993) 

found weak evidence of long memory in a sample of monthly UK stock returns. 

Cheung and Lai (1995) provided little evidence of long memory in the Morgan 

Stanley Capital International stock index data. Ding and Granger (1996) reported 

evidence of long memory for S&P 500 returns, while Lobato and Savin (1997) saw no 

evidence of long memory in daily S&P 500 returns over the period July 1962 to 

December 1994. The majority of the above studies have employed either parametric 

or semiparametric methods to test and estimate the long memory property. For the 

parametric method, a complete parametric model to express the autocovariance 

function as a parametric function of the parameters, �, is built, such as ARFIMA 

model. In contrast, the semiparametric method is only interested in the memory 

parameter � and does not require the modelling of a complete set of the 

autocovariances. In the main, both parametric and semiparametric techniques have 

their merits and demerits. Estimation of fully parametric long memory models is 

computationally expensive and is subject to misspecification; hence the correct choice 

of the model is important. On the other hand, the semiparametric estimation considers � as the main parameter of interest. The SPE derives robust estimators since it avoids 

difficulties over the specification of the short run ARMA parameters; however, the 

idea of explaining the entire autocorrelation structure by a single parameter � is 

highly restrictive. This study employs parametric and semiparametric methods to 

estimate the long range dependence. 

 

Compared to the world’s well-developed financial markets (the U.S. markets), the 

presence of long memory in emerging capital markets in developing economies has 

received little attention. Nevertheless, there are various conditions and reasons that 

contribute to a different dynamics regarding returns in emerging stock markets. 

Emerging markets are typically much smaller, less liquid, and more volatile than well 

known world financial markets. Emerging markets may be less informationally 

efficient. This could be due to several factors such as poor-quality (low precision) 

information, high trading costs, and less competition due to international investment 

barriers. Furthermore, the industrial organization found in emerging economies is 

often quite different from that in developed economies. As a result, it is very 

important to study the emerging securities markets and the complete characterization 
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of the dynamic behaviour underlying stock returns in these developing economies, in 

order to attract investors and investment funds seeking to diversify their assets. 

 

The objective of this chapter is to examine the presence of long memory in the 

Egyptian stock returns using parametric and semiparametric methods. The Daily 

EGX30 price index is considered as a proxy for the Egyptian stock market. There has 

been very limited research on the behaviour of stocks traded on the Egyptian stock 

exchange, although the capital market in Egypt is apt to exhibit different 

characteristics from those observed in developed capital markets. Biases due to 

market thinness and nonsynchronous, trading should be expected to be more severe in 

the case of the Egyptian stock market. The Egyptian stock market is not expected to 

be highly efficient in terms of the speed of information reaching traders compared to 

the developed capital markets. Furthermore, traders and investors in the Egyptian 

stock market tend to react slowly and gradually to new information. The existence of 

long memory will have significant implications in the Egyptian stock market, where 

future returns can be predicted from past returns, thus violating the market efficiency 

hypothesis. 

 

This chapter is organised as follows. The next section provides an overview of the 

theoretical and relevant literature review of long memory. Section 1.3 covers the 

parametric and semiparametrics methods used to estimate the long memory 

parameter. Section 1.4 describes the data and reports the results of the empirical 

application to the daily Egyptian stock market and finally section 1.5 offers some 

concluding remarks. 

 

1.2 Literature Review 

 
1.2.1 Background 

 

Long memory, or LM, processes were initially documented in non-economic 

literature, with interest starting from the empirical examination of data in physical 

science since at least 1950s. The famous British hydrologist Harold Edwin Hurst 

(1951), during the engineering of the high Aswan dam, developed an analysis to 

determine if the yearly flows and inflows into reservoirs of the Nile were random or 

clustered from year to year using long reliable historical data for the years 622- 1281 
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recorded at the Roda gauge in Cairo. He determined they were not random and found 

evidence of dependence over long intervals of time, with stretches when floods are 

high tending to be above the mean and others when they are low tending to be below 

the mean. As a result, the data was found to show several cycles; however, these 

cycles did not exhibit periodicity. Mandelbrot and Wallis (1968) called this behaviour 

the Joseph effect
1 in reference to the biblical seven good years of abundance and 

seven bad years of famine2. Hurst (1951, 1956 and 1957) also examined 900 records 

of other natural phenomena (for example, annual river levels, rainfall, temperature 

and pressure records, tree rings, and sunspot activity) finding non-random positive 

correlations in most of them (Baillie, 1996). 

 

Since then, LM processes have been investigated by many researchers from very 

different fields; and because of the diversity of its applications, its literature is 

generally spread over a large number of journals including Agronomy, Astronomy, 

Chemistry, Climatology, Engineering3, Geo-science, Hydrology, Mathematics, 

Physics and Statistics. Examples of these are presented in, inter alia, Hurst (1951, 

1956 and 1957), Lawrance and Kottegoda (1977) and Painter (1998) in geophysical 

data, Mandelbrot and Wallis (1968), Mandelbrot (1972), Hipel and McLeod (1978a, 

1978b and 1978c), Bloomfield (1992), Seater (1993) and Kirk-Davidoff and Varotsos 

(2006) in climatology. 

 

As the data in natural sciences demonstrate a preference towards LM and the source 

of uncertainty in Economics can be considered as natural phenomena, then we can 

expect LM to be found in economic data. The importance of LM in economic data 

was recognised in Mandelbrot (1963), Adelman (1965) and particularly, in Granger 

(1966), who noticed that for economic time series, the typical shape of the spectral 

density is a function with a pole at the origin that then decays monotonically at high 

frequencies. It was not until 1980 that LM models were used by Econometricians and 

                                                           
1
 The Joseph effect involves long stretches of time when the process tends to be above the mean, and 

long stretches of time when the process tends to be below the mean. 
2
 In the Bible (Genesis 41, 29-30): “Seven years of great abundance are coming throughout the land of 

Egypt, but seven years of famine will follow them”, and the same phenomenon was also mentioned in 
the Koran (Joseph 12, 47-48):  “He [Joseph] said, What you cultivate during the next seven years, when 
the time of harvest comes, leave the grains in their spikes, except for what you eat. After that, seven 
years of drought will come; this will consume most of what you stored for them”. However, there are 
no records of the water level of the Nile from those times. 
3
 In signal and image processing. 
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by Financial Researchers circa 1995. Granger and Joyeux (1980) propose the use of 

the fractional differencing to model LM which is related to earlier work by 

Mandelbrot and Van Ness (1968) describing fractional Brownian motion. 

 

There is substantial evidence that LM models can be successfully applied to time 

series data in both Macroeconomics and Financial Economics data; for example, real 

national output measures, inflation rates, exchange rates, interest rate differentials, 

stock prices, commodity prices, market indices and forward premiums. These time 

series show evidence of being neither �(0) nor �(1). When first differenced, those 

series appear as being over-differenced. This feature is typical of long memory 

processes. LM processes has also been used in modelling the volatility of asset prices 

and power transformations of returns. Investigations for LM in real output measures 

were first studied in Diebold and Rudebusch (1989) and Haubrich and Lo (1989). 

Baillie, Chung, and Tieslau (1992) and Hassler and Wolters (1995) apply fractionally 

integrated 2342, or 235�42, models to describe the fluctuations of the inflation 

rates. They provided empirical evidence in favour of LM models. Baillie et al. (1992) 

examined the relationship between the mean and the variability of inflation rates by 

means of 235�42 − 623,7 models for 10 countries using monthly observations 

from 1948 to 1990. Baillie, Bollerslev and Mikkelson (1996) find LM in the volatility 

of the Deutsche Mark- U.S. Dollar (DM-USD) exchange rate. Long range 

dependence, in asset price series, was reviewed by Brock and De Lima (1996); yet, 

LM seems much more likely in asset volatility than in asset returns themselves. LM 

was found in the Deutshcer Aktien IndeX (DAX, the German stock index) by Lux 

(1996). In addition, some research demonstrates the existence of LM in smaller and 

less developed markets. Tolvi (2003) examined the Finnish stock market; 

Madhusoodanan (1998) provides evidence on the individual stocks in the Indian 

Stock Exchange. Barkoulas and Baum (2000) give similar evidence on the Greek 

financial market; while Cavalcante et al (2002) demonstrate LM in Brazil stock 

market. 

 

Finally, the monographs by Beran (1994), Robinson (2003), Palma (2007) and 

Samorodnitsky (2007) provide an excellent introduction to LM processes. 

Additionally, several survey-type articles on LM have been written, for example 
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Taqqu (1986), Hampel (1987), Beran (1992), Robinson (1994), Baillie (1996), 

Guégan (2005) and Banerjee and Urga (2005). Recently, research on LM is growing 

significantly leaving some of these surveys very out-of-date. 

 

1.2.2 Defining Long Memory 

 

The terms long memory, long-range dependence, strong dependence or persistence 

can be used interchangeably.  LM can be defined in several ways. Traditionally, LM 

has been specified in the time domain in terms of long lag autocovariance, or in the 

frequency domain in terms of explosion of low frequency spectra.  Given a stationary 

time series process {9�} with an autocovariance function ;(<) = ,=>(9�, 9� �) at lag < 

that does not depend on ', then the process has LM if, ;(<)~?@<.��! , as  < → ∞ 

for 0 < � < !. , where � is the memory (differencing) parameter, or the fractional 

difference parameter. The constant ?@ is finite positive (0 < ?A < ∞), and the 

notation “~” means that the ratio of the left and right sides tend to one for large <. The 

intuition interpretation for this definition is that the dependence between apart events 

diminishes very slowly as the number of lags increases (tends to infinity) often called 

a hyperbolic decay. On the contrary, short-range dependence is characterised by 

quickly decaying correlations at an exponential rate to zero (e.g. 2342 and Markov 

processes). The asymptotic behaviour in (1.2.2.1) indicates that the autocovariance 

decreases very slowly with long lags, or in other words the autocovariances are not 

summable so that,  limE→" ∑ ;(<) = ∞E�#�E  

On the other hand, LM can be described in the frequency domain using the spectral 

density structure. It is interesting to see how long-range dependence, or LRD, 

translates from the time domain to the frequency domain. Suppose that  {9�}  has 

absolutely continuous spectral density function, then it has a spectral density F(G) that 

is 

F(G) = !.H ∑ ;(<))��I�"�#�"  ,  −J ≤ G ≤ π 

(1.2.2.1) 

(1.2.2.2) 

(1.2.2.3) 
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where F(G) is a non-negative, even function, periodic of period 2π when extended 

beyond the Nyqvist4 range N– J, πP. LM in the time domain is expected to be 

translated into the behaviour of the spectral density around the origin because low 

frequencies (frequencies around the origin) account for big lags in the time domain. A 

process with spectral density F is defined to exhibit long memory if, F(G)~?Q|G|−2� , as G → 0 

Both definitions, in the time and frequency domain, are not equivalent but connected 

(Beran, 1994a and Taqqu, 1986). The spectral density in (1.2.2.4) implies that the 

spectral density will be unbounded at low frequencies. Hence long range dependence 

corresponds to the blow-up of the spectral density F(G) at the origin so that it has a 

pole at frequency zero,     

F(0) = !.H ∑ ;(<)"�#�" = ∞ 

Thus if ;(<) behaves like a power function at infinity, so does F(G) at zero and the 

relation can be remembered by the “add one, change sign” rule, where the 

exponent 2� − 1, is the asymptotic behaviour of  ;(<). 

 

1.2.3 Long Memory Models 

 

During the World War II, a massive momentum in time series research has evolved as 

a result of advances in many engineering applications, including spectral analysis and 

radio signals. Afterwards, a flexible group of models, known as 2342, also called 

short-range dependent models involving correlation functions that decrease 

exponentially fast over time, was developed in the time domain. Although short-

memory models were used widely, by economists, these models had a number of 

shortcomings and could not be applied to all fields. Some data seemed to require 

models, whose correlation functions would decay much less quickly. 

  

Kolmogorov (1940) discovered the fractional Brownian motion, or FST, which was 

used along with its increments by Mandelbrot to generate long-range dependence. The 

characteristic of LRD in economic and financial data is lately described by a number 

of models. This includes the fractional differencing model, the autoregressive 

fractionally integrated moving average models (235�42) and fractional 

                                                           
4
  Nyqvist range is named after the Swedish-American Engineer Harry Nyqvist (1889-1976). 

(1.2.2.4) 

(1.2.2.5) 



22 

 

cointegration models. Among these models, the focus would be on the 235�42(U, �, V) models introduced by Granger and Joyeux (1980). 

 

In 1971, Box and Jenkins introduced the 23�42(U, �, V) model,  

Φ(�)(1 − �)�9� = Ψ(�)��  

where � is an integer,  Φ(�) and Ψ(�) are the polynomials Φ(�) = 1 − ∑ X���Y�#!  

and Ψ(�) = 1 + ∑ [���\�#!  involving autoregressive and moving average coefficients 

of order U and V respectively and �� is a white noise process. To ensure the 

stationarity and inverstibility conditions, the roots of Φ(�) and Ψ(�) must lie outside 

the unit circle. Granger and Joyeux (1980) managed to extend the set of 23�42 

models by considering instead fractional � ∈ (−0.5, 0.5) in (1.2.3.1) which 

introduces a fractional autoregressive integrated moving average model orders  U, � 

and  V, or 235�42(U, �, V) or 523�42(U, �, V). It has spectral density, 

F(G) = ]�
.H ^1 − )�I^�.� _`(abc)d(abc)_.

 ,  −J ≤ G ≤ π 

A fractional white noise process is a particular case which is equivalent to an 235�42(0, �, 0) process. 235�42 processes are covariance stationary for −0.5 <� < 0.5, mean reverting for � < 1 and weakly correlated for � = 0. For � > 0.5  

these processes have infinite variance. For � ≥ 0.5  the processes have infinite 

variance but in the literature it is more usual to impose initial value conditions so that 9� has changing, but finite, variance. Granger and Joyeux (1980) and Hosking (1981) 

considered 235�42(0, �, 0)  and 235�42(1, �, 0) respectively, which based on 

Adenstedt’s (1974) model. Further information on 235�42(U, �, V) models was give 

by Sowell (1992), Chung (1994) and others. 

 

1.2.4 Estimation Methods 

 

One of the main interests in the literature of long memory is to estimate the unknown 

parameter � that describes the long memory properties or the low frequency 

behaviour of the spectral density function F(G). There are two main groups of 

estimation methods used to test for LM: the parametric estimation (fg) and the semi-

parametric estimation (hfg). For the parametric estimation, a complete parametric 

model that expresses ;(<) for all <, or the spectral density function F(G) for all G, as a 

parameteric function of the parameters, � and unknown scale factors, is built, such 

(1.2.3.1) 

(1.2.3.2) 



23 

 

as  235�42 model. In contrast, the semi-parametric estimation is only interested in 

the memory parameter � and do not require the modelling of a complete set of the 

autocovariances. 

 

In the main, each method has its merits and demerits. Estimation of fully parametric 

long memory models is computationally expensive, especially in the time domain. 

Additionally, parametric methods are subject to misspecification. Under- or over-

specification of the autoregressive and moving average orders U and V, which 

describes the short range dependent component of 9�, can lead to invalidation of the 

statistical properties and can dangerously bias the estimation of �. On the other hand, ijk  considers � as the main parameter of interest. SPE derives robust estimators 

since it avoids difficulties over the specification of the short run ARMA parameters; 

however, the idea of explaining the entire autocorrelation structure by a single 

parameter �  is highly restrictive. 

 

 1.2.4.1 Parametric Estimation 

 

Several joint estimation methods of the unknown parameters in the 235�42(U, �, V) 

model in equation (1.2.3.1) were considered. If 9� is assumed Gaussian process, then 

the log-likelihood function is,  

ℒ(m) = − E. log(2J) − !. log|Ω| − !. 9′Ω�!9 

The Gaussian maximum likelihood estimate, or MLE, is obtained by maximising ℒ(m) and might be expected to have optimal asymptotic statistical properties. The log 

likelihood function requires the calculation of the determinant and the inverse of the 

variance-covariance matrix Ω. These calculations can be done by means of several 

procedures, for example, Cholesky decomposition method, Durbin-Levinson 

algorithm and state space techniques. Furthermore, Sowell (1990, 1992) derives the 

exact MLE of the 235�42 process with unconditional normally distributed error 

terms. Sowell’s estimator performs poorly if the model is misspecified, like all 

maximum likelihood. Baillie and Chung (1993) developed a conditional sum of 

squares estimator in the time domain and show that it performs similarly to Sowell’s 

estimator for the 235�42(0, �, 0) model. Computer programs for the exact MLE 

were developed by Doornik and Ooms (2003, 2004), who showed, by building on the 

work by Sowell (1992), that the exact MLE can be efficiently estimated with storage 

(1.2.4.1.1) 
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of order r and computation of order r.. Their ML approach is applied in the Arfima 

package and therefore also in PcGive (See, Doornik and Hendry (2001)).  

 

The calculation of the exact MLE is complicated and computationally demanding. As 

a result, alternative procedures have been considered to replace the exact MLE. The 

use of approximations to Gaussian ML was developed to speed up the calculation of 

parameter estimates, without affecting the first order limit distributional behaviour. 

Estimates maximising such approximations are called Whittle estimates due to 

Whittle (1951) described in detail in Beran (1994a). Whittle estimates are all 

√r −consistent and have the same limit normal distribution as the Gaussian MLE. 

One type of Whittle estimates is the discrete form described in the frequency domain. 

Suppose the parametric spectral density is F(G; m, u.), where m is an v −dimensional 

unknown parameter vector and u. is a scalar. Under 235�42(U, �, U) specification, 

the vector m is an estimate of the autoregressive, moving average and long memory 

coefficients. Under a fractional white noise specification, m  reduces to the long 

memory parameter �. Now suppose the periodogram,  

�(G) = !.HE ^∑ 9�)��IE�#! ^.
 

where G� = .H�E   are the Fourier frequencies. The discrete frequency Whittle estimate, 

mentioned in Hannan (1973), minimised the Whittle objective function, 

ℒw(m) = ∑ xlog F(G�; m) + y(I)Q(Iz;{)|E�!�#!  

This form of Whittle estimation has many advantages. One of these is that it is based 

on the rapid calculation of the periodogram by means of the fast Fourier transform 

(FFT), even when r is large. Another advantage of Whittle estimate is that their limit 

distribution is unchanged by many departures from Gaussianity, which means that the 

same rules of statistical inference can be used without worrying about Gaussianity. 

Thus the same relatively convenient rules of statistical inference can be used without 

worrying too much about the question of Gausiannity.  

 

Alternative parametric methods are available but they are less efficient than Whittle 

estimation when 9� is Gaussian. For example; generalised method of moments, or 

GMM, has been used to estimate LM models, in both time and frequency domains. 

However, GMM estimates are not only less efficient in the Gaussian case than the 

(1.2.4.1.2) 

(1.2.4.1.3) 
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Whittle estimates, but GMM is also computationally less attractive than the Whittle 

estimation in (1.2.4.1.3). Beran (1994b) proposed M-estimators for Gaussian long-

memory models, while Pai and Ravishanker (1998) use Bayesian analysis to detect 

changing parameters in 23�42 processes. Hauser (1998) has compared the various 

maximum likelihood estimators on samples of size 100 using Monte Carlo methods. 

He concludes that the Whittle estimator with tapered data is most reliable. Hauser, 

Pötscher and Reschenhofer (1999) are critical of 235�42 models for estimating 

persistence in aggregate output. They show that over-parameterisation of an 2342 

model may bias the estimates of persistence downwards. In general all the above 

methods were applied on the stationary LM models, the case 0 < � < 0.5. 

 1.2.4.2 Semiparametric Estimation, or SPE 

 

Semiparametric estimation methods were developed to overcome some of the 

difficulties found in the parametric methods. These methods include the log-

periodogram (LP) regression and the local Whittle (LW) estimation, also known as 

the Gaussian semiparametric estimation. The LP regression is longer established and 

was the most widely used, but it is less efficient than the LW estimate. The 

semiparametric estimators of the LM parameter assume the spectral density model, F(G)~|G|−2�}(ℎ), as G → 0 

where }(∙) is an even function on the Nyqvist range N– J, πP that determines the short 

run dynamics of the stationary process 9� and satisfying 0 < }(0) < ∞.  

 

LP regression estimator was first proposed by Geweke and Porter-Hudak (1983) and 

also known as GPH estimator. It is considered the first semiparametric estimation of 

the LM parameter,  � in the frequency domain. GPH is based on the characteristic 

pattern of the periodogram around zero frequencies, which is first estimated from the 

series, and its logarithm is regressed on the logarithm of a trigonometric function of 

frequency. This method of estimation has been used comprehensively in 

macroeconomic and financial time series application because it is easy to implement 

even before development of any satisfactory theoretical analysis of its asymptotic 

distributional properties. The performance of this estimator, however, has several 

drawbacks; one of which concerns the number of values of the periodogram to be 

used in the regression. Geweke and Porter-Hudak (1983) proposed a heuristic based 

on the length of the time series. Agiakloglou, Newbold and Wohar (1992) shows that 

(1.2.4.2.1) 
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6j7 is biased in the presence of strongly autoregressive short memory and in 

addition does not possess satisfactory asymptotic properties.  

 

Robinson (1995a) has further refined the 6j7 log-periodogram regression. Using the 

same notation as 6j7, the estimator is based on the least-square regression using 

spectral ordinates G!, G., …, G� from the periodogram of 9�, ���G��, and < =
1, 2, … , T, where T, a bandwidth or smoothing number, is less than r but is regarded 

as increasing slowly with r  in asymptotic theory. 

logN���G��P = � + �log�G�� + �� 

where �� is assumed to be �. �. �. The least square estimator ��, which gives �� = − !. ��, 

is asymptotically normal and the corresponding theoretical standard error is 

J(24T)���. This version is easier to use for actual computation. The value of the 

estimator �� depends on the choice of truncation parameter T. Diebold and Inoue 

(2001) showed that the choice of a large value for T would result in reducing standard 

error at the expense of biasness in the estimator, as the relationship that the 6j7 

regression is based on holds only at low frequencies. On the other hand, consistency 

requires that T grows with sample size, but at a slower rate. They adapt the rule of 

thumb of  T = √�, where � is the number of observations. Additionally, Wright 

(2000) develops log-periodogram estimators with conditional heavy tails, while Henry 

(2001) introduced a periodogram spectral estimation for the case of long memory 

conditional heteroscedasticity. 

 

There are a plethora of new SPEs of the long memory parameter that are more 

efficient and robust, for example, Kunsch (1987), Robinson (1994b), Lobato and 

Robinson (1996), Moulines and Soulier (1999), Phillips and Shimotsu (2006) and 

Phillips (2007). Nevertheless, the most widely used and preferred ijk is the local 

Whittle estimation proposed by Robinson (1995b), and was further investigated by 

Dalla, Giraitis, and Hidalgo (2004) and Phillips and Shimotsu (2006), where the 

objective function is a discrete form of an approximate frequency domain Gaussian 

likelihood, averaged over a neighbourhood of zero frequency, 

�(�, ,) = ∑ xlog�,G��.�� + y(Iz)�Iz���|��#!  

(1.2.4.2.2) 

(1.2.4.2.3) 
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where T is a bandwidth (see, Kunsch (1987)). The argument requires T to be of 

smaller order than r. It is inadvisable to choose T too large as bias can then result. 

However the longer the series length r, the larger we can choose T, so that in very 

long series the extra robustness gained by the semiparameteric approach may be 

worthwhile. LW estimator is shown to be asymptotically normal and more efficient 

than previous estimators.  ijk also includes data differing and data tapering methods. 

Phillips and Shimotsu (2004) propose variant of the local Whittle estimation 

procedure that does not rely on differencing or tapering and they further extend the 

range where the estimator of � has standard asymptotic. 

 

1.3 Methodology 

 
This section introduces the methodology used to estimate the long memory parameter 

using parametric and semiparametric methods. The parametric estimation, analysed in 

the time domain, is based on the likelihood function as mentioned before in section 

1.2.4. The parametric estimation used in this paper is the Exact Maximum Likelihood 

(EML) estimation method developed by Sowell (1992). On the other hand, the 

semiparametric estimation for the memory parameter is based on frequency domain. 

Two semiparametric estimators will be considered in this section, the GPH log-

periodogram regression and the local Whittle estimator. 

 

1.3.1 The Exact Maximum Likelihood (EML) 

 

Consider the following 235�42(U, �, V) process, Φ(�)(1 − �)�9� = Ψ(�)�� 

where Φ(�) and Ψ(�) are the polynomials 

Φ(�) = 1 − � X���Y
�#!  

and 

Ψ(�) = 1 + � [���\
�#!  

involving autoregressive and moving average coefficients of order U and V 

respectively and �� is a white noise process. Now assume � = (�!, … , ��)′ follows a 

normal distribution with �~�(0, Σ). The EML procedure allows for simultaneous 
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estimation of both the long memory parameter and ARMA parameters. The maximum 

likelihood objective function is expressed as, 

��(Φ, Ψ, �; �) = − �. log|Σ| − !. �′Σ�!�  

As a result, the EML estimator of � can be derived as, 

����� = arg max �− �. log|Σ| − !. �′Σ�!�� 

This estimator can be inconsistent if the AR and MA orders of the ARFIMA model 

are misspecified, like all maximum likelihood. The ARFIMA model’s EML estimate 

in the OxMetrics 6 package was used to estimate the long memory parameter (see 

Doornik and Ooms, 2003). 

 

1.3.2 GPH Log-periodogram Regression 

 

This and the next subsections investigate the main semiparametric methods applied to 

the Egyptian stock market to estimate the long memory parameter � in the frequency 

domain. The semiparametric estimation used in this paper is carried out in the Time 

Series Modelling (TSM) 4.32. These methods are not a recommended substitute for 

maximum likelihood estimation of an 235�42(U, �, V) model if there is confidence 

that the ARMA components are correctly specified, but they impose fewer 

assumptions about the short-run. The assumption is that the spectrum of the process 

takes the form 

F(G) = ^1 − )��I^�.�F∗(G) 

where F∗ represents the spectral density of an 2342(U, V); and hence, the short-

range component of the dependence. This is assumed smooth in the neighbourhood of 

the origin, with F∗(0)� = 0. Note the alternative representation F(G) = G�.�}(G) 

where } is likewise assumed smooth at the origin with }(0)� = 0. 

 

Equation (1.3.2.1) is a semiparametric model, where the long memory parameter, �, is 

parametrically specified in the frequency domain; on the other hand, the short 

memory component represented in F∗(G) is not required to obey any parametric 

model. The two semiparametric estimators discussed in this chapter are the GPH and 

LW estimators. The log-periodogram estimator (i.e. GPH) minimise some distance 

between the periodogram and the spectral density function at low frequencies 

(1.3.1.2) 

(1.3.2.2) 

(1.3.2.1) 

(1.3.1.1) 
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represented by the first T Fourier frequencies, G� = ��z  , < = 1, … , T ≪ [ �]. Estimation 

is usually between a set frequency band (0,T] to capture the long run component F(G) = G�.�}(G) whilst the remainder of the frequencies capture the local variations. 

 

This method is based on the periodogram of the time series defined by 

�(G) = !.H� ^∑ )��I(9� − 9£)��#! ^.
 

A series with long memory has a spectral density proportional to G�.� close to the 

origin (2.2.4). Assuming the fact that the spectral density of a stationary process can 

be formulated as F(G) = F$(G)4 sin.(I.) we may consider a regression of the 

logarithm should give a coefficient of −2�. The GPH estimator is based on the log 

linearization of the periodogram as follows, 

log¦�(G�)§ = , − � log ¨4 sin. ©Iz. ª« + �  

The memory parameter is estimated 

��¬­® = − ∑ (�z��£)z̄°� ±²³{y(Iz)}. ∑ (�z��£)z̄°�  

We consider only harmonic frequencies G� = ��z  , < ∈ (�, T], where � is a trimming 

parameter discarding the lowest frequencies and T is a bandwidth parameter. A 

necessary condition for consistency which depends on the bandwidth is that  ̄ → 0 

as � → ∞. 

 

1.3.3 Local Whittle Estimation 

 

Kunsch (1987) proposed a local Whittle (LW) estimator and then developed by 

Robinson (1995). This estimator represents approximately a MLE in the frequency 

domain, since for larger � 

��G��~)Q(Iz)��
  

As a result, the likelihood function is, 

�¦��G��, … , �(G�), m§ = ∏ !Qµ(Iz) )�y(Iz)Q(Iz)����#!  

 

where m = (,, �) is the parameter vector. The log-likelihood function becomes, 

�(m) = ∑ x− log F{(G�) − y(Iz)Qµ(Iz)|��#!  

In the neighbourhood of zero frequency we obtain, 

(1.3.2.3) 

(1.3.3.3) 

(1.3.2.5) 

(1.3.2.4) 

(1.3.3.2) 

(1.3.3.1) 
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�(�, ,) = ∑ xlog , − 2� log(G�) + y(Iz)�Iz���|��#!  

¶·(�,�)¶� = ∑ x!� + y(Iz)��Iz���|��#!  

yielding 

,� = T�! ∑ xy(Iz)Iz���|��#!   

Inserting ,� for , in (1.3.3.4) and by minimisation, the local Whittle estimator can be 

written as, 

���w = arg min ¸log xT�! ∑ xy(Iz)Iz���|��#! | − 2�T�! ∑ log�G����#! ¹ 

Robinson (1995) showed the LW estimator is consistent for � ∈ (−0.5, 0.5). 

However, its consistency depends on the bandwidth T, which satisfy �̄   ̄ → 0 as 

� → ∞. The LW estimator is more attractive due to its nice asymptotic properties, the 

mild assumptions underlying it and the likelihood interpretation. Robinson (1995) 

also showed that 

√T(���w − �) → �(0, !º) 

 

1.4 Data and Empirical Results 

 
To analyse the Egyptian stock market, the daily EGX30 stock index traded on Cairo 

Stock Exchange has been used in this chapter. The data covers the period from the 

first transaction, 01 January 1998 to 09 May 2010 for a total of 3,050 observations. 

The EGX30 Price Index includes the top 30 companies in terms of liquidity and 

activity in Egypt. It is weighted by market capitalisation adjusted by the free float. 

This stock index can be considered as a proxy for the Egyptian stock market. The 

period under analysis is of major importance because it starts with the revival of the 

stock market after major changes in political and economic reforms in 1990s and 

before the January Revolution in 2011. All subsequent analysis is done on the daily 

return series (see Figure 4 for the daily stock returns) by taking the natural logarithmic 

first-difference on EGX30 price index (see Figure 1), 

v� = ln ¸ j�j��!¹ = ln j� − ln j��! 

where j� denotes the stock index in day '. 

 

(1.3.3.5) 

(1.3.3.4) 

(1.3.3.6) 

(1.3.3.7) 
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Figure 1: The EGX30 daily stock index 

 
 
 
 
 

Figure 2: The periodogram of the daily EGX30 index 
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Figure 3: The correlogram of the daily EGX30 index 

 
 
 
 
 

Figure 4: The EGX30 daily returns 
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Figure 5: The periodogram of the daily EGX30 returns series 

 
 

 
 
 

Figure 6: The correlogram of the daily EGX30 returns series 
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Figure 1 displays plots of the original EGX30 price index series where a 

nonstationary appearance can be observed. This can be also confirmed through its 

corresponding periodogram where large values (a large peak) are observed around the 

zero frequency and also across the correlogram with values decaying very slowly. 

Plots of the EGX30 daily return series data, with its corresponding periodogram and 

correlogram are displayed in Figures 4, 5 and 6. The return series may now be 

stationary (see figure 4). Based on the shapes of the corresponding periodogram and 

correlogram, the series may be over-differenced suggesting a presence of long 

memory. Dominant peak areas occurs around low frequencies (figure 5) and the 

correlogram declines steadily but very slowly and remains positive for many lags, 

indicating the presence of stationary long memory component (figure 6). 

 

Table 2: Descriptive Statistics of EGX30 daily returns (1 Jan. 1989- 9 May 2010) 
Obs. Mean S.D. Skewness Kurtosis 
3049 0.0006 0.0179 -0.248 12.337 
Min. Max. Jarque-Bera ADF KPSS 

-0.179 0.183 11107 -21.25 0.3845 
Note: The critical values of ADF unit root tests are -2.54, -1.95, -1.61 at 1%, 5%, 10% levels of significance. 

 

Table 2 displays the descriptive statistics for the EGY30 daily returns over the full 

sample. The sample mean return is positive and very close to zero. There are 

significant departures from normality as the returns series is negatively skewed 

possibly due to the large negative returns associated with the financial crisis of 2007- 

2009. The unconditional distribution is peaked with fat tails. The data also display a 

high degree of kurtosis. Such skewness and kurtosis are common features in asset 

return distributions, which are repeatedly found to be leptokurtic. The data also fail to 

satisfy the null hypothesis of normality of the Bera-Jarque at the 1% level. Table 2 

also includes the implementation of ADF and the KPSS tests. The ADF test shows 

evidence of non-stationary. The results of the ADF unit root test indicate that the 

return series are stationary by rejecting the null hypothesis of �(1) at 1% level. For the 

KPSS test, the critical values are 0.739, 0.463 and 0.347 corresponding to the 1%, 5% 

and 10% level respectively. The null hypothesis of �(0) against long memory 

alternatives is rejected (KPSS = 0.38) at the 10% level suggesting that the long 

memory process can be appropriate representation for the return series.  

 

 



35 

 

 

Figure 7: The distribution of the daily EGX30 returns series 

 
 
 

 
 

Figure 8: The QQ plot of the daily EGX30 returns series 
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Table 3: ML estimation of ARFIMA models using EXG30 returns U V �� S.E. AIC 
0 1 0.035 0.019 -5.232 
1 0 0.031 0.023 -5.231 
1 1 0.055 0.023 -5.232 
0 2 0.061 0.026 -5.233 
1 2 0.058 0.027 -5.232 
2 0 0.068 0.028 -5.232 
2 1 0.070 0.029 -5.231 
2 2 0.063 00.30 -5.231 
3 0 0.051 0.032 -5.232 
3 1 0.046 0.034 -5.231 
3 2 0.275** 0.109 -5.232 
0 3 0.056 0.030 -5.232 
1 3 0.049 0.035 -5.231 
2 3 0.259** 0.107 -5.232 
3 3 0.031 0.032 -5.235 
0 4 0.043 0.033 -5.231 
1 4 0.255** 0.108 -5.232 
2 4 0.032 0.029 -5.235 
3 4 0.174** 0.078 -5.232 
4 0 0.044 0.035 -5.231 
4 1 0.258** 0.123 -5.234 
4 2 0.054 0.027 -5.231 
4 3 0.186 0.081 -5.232 
4 4 0.416* 0.062 -5.236 

Note: * and ** indicate statistical significance at the 1% and 5% levels respectively. 
 
 
 
 

Table 4: ML estimation of ARFIMA(4, �, 4) model 
 Coefficient S.E. t-value p-value »̂ 0.0003 0.035 0.09 0.925 �� 0.461 0.062 6.67 0.000 X�! 0.721 0.055 9.76 0.000 X�. 0.168 0.061 3.10 0.002 X�½ -0.933 0.058 -15.9 0.000 X�º 0.616 0.068 9.65 0.000 [�! -0.965 0.070 -15.3 0.000 [�. -0.159 0.063 -2.92 0.004 [�½ 0.101 0.051 16.2 0.000 [�º -0.785 0.046 -15.6 0.000 

Note: All estimators are statistically significant at the 1% level. 
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The parametric estimation for the returns series were derived by means of the Exact 

MLE of the OxMetrics 6 ARFIMA package, while the TSM modelling was used to 

obtain the long memory estimates via semiparametric methods. The ARFIMA 

model’s Exact MLE (Maximum Likelihood Estimate) in the OxMetrics 6 package 

was used (see Doornik and Ooms, 2003). The models with different orders are 

estimated for ARFIMA (U, �, V). Table 3 show the results from various ARFIMA 

models with different specifications where U +  V equals and less than 4. The model 

is selected based on the Akaike’s information criterion (AIC) and log likelihood 

values. The selected ARFIMA model is ARFIMA(4, �, 4)5. The estimated results 

show that the memory parameter is 0.41. The evidence of long memory property can 

be found in the model estimation where the long memory parameter is statistically 

significant at 1% level (see table 4). Hence, the EGX30 returns series exhibit long 

memory features. ARFIMA (4, 0.41, 4) model is fitted to the data to capture the long 

memory characteristics of the returns series as in Figure 9.  

 

Figure 9: The fitted ARFIMA(4, 0.41, 4) model 

 
 

 

                                                           
5
 If the lag polynomials for AR and MA have common roots, a more economical ARMA (U − 1, V − 1) 

model suffices and hence written as a lower-order process. Unique roots were found and are either real 
or in complex conjugate pairs. The X 's roots are outside the unit circle, while the ['s roots are inside 
the unit circle. So, it is an ARMA (4, 4). Alternatively, a purely autoregressive process can be 
considered which may typically require a higher number of parameters. 
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Moreover, the presence of the long memory properties in the Egyptian stock market 

suggests that ARFIMA models can improve forecasting performance by providing 

very reliable out-of-sample forecasts for both the long memory and the short run 

dynamic properties of the return series. The Egyptian stock returns series is forecast 

by using the ARFIMA model fitted to the EGX30 returns series according to the AIC. 

This forecast should significantly outperform any others using standard linear models. 

The period 9 April 2010 to 9 May 2010 is used for out of-sample forecasting. Table 5 

reports the ex-ant forecasting performance for the EGX30 returns series (see figure 

10). 

 

Table 5: Out-of-sample Forecasting Performance for the daily EGX30 Returns 

Forecasting 
Horizon 

1 5 10 15 30 

RMSE 0.0622 0.1145 0.1899 0.2536 0.4019 

MAD 0.0597 0.0871 0.1540 0.2321 0.3358 

Note: The out-of-sample period is from 9 April 2010 to 9 May 2010. The forecasting horizon is reported in k-steps 
ahead. The RMSE stands for the root mean square error, while the MAD is the mean absolute deviation. 

 

 

Figure 10: The ARFIMA(4, 0.41, 4) model forecast 
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Table 6: Semiparametric estimates of � for returns 
 Bandwidth 
 T = r$.º¾ T = r$.¾ T = r$.¾¾ T = r$.¿ 
     ��¬­® 0.2644 0.1981 0.1979 0.1838 
 (0.1212) (0.0954) (0.0787) (0.0631) 

     ���w 0.2536 0.1758 0.1346 0.1290 
 (0.0833) (0.0680) (0.0559) (0.0458) 

     
Note: The standard errors are provided in parentheses. 

 

Table 6 reports the semiparametric estimates of the long memory parameter � for the 

two estimators GPH and LW. The conventional setting of the bandwidth to be equal 

to the square root of the same size (T =  r$.¾) was adopted. Moreover, � estimates 

were reported for different bandwidths T =  r$.º¾, r$.¾¾ and r$.¿ in order to evaluate 

the sensitivity of the results to the choice of the bandwidth. The results are not too 

sensitive to the bandwidth. Looking at the returns series, both estimators present 

similar results which show the existence of long memory features. The estimated � 

values range between 0.1 and 0.3, which is the property of stationary long memory 

processes. All the estimates of � are significantly positive at the 1% level. This result, 

due to semiparametric techniques, confirms the presence of long memory in the 

Egyptian stock returns as that of the parametric method. 

 

1.5 Concluding Remarks 

 
This chapter applied the parameter and semiparametric techniques to examine the 

long memory property in the daily Egyptian stock market returns. The exact 

maximum likelihood estimation was employed as a parametric method in the time 

domain to estimate the ARFIMA model, while two semiparametric methods were 

used to estimate the memory parameter in the frequency domain. The results from the 

ARFIMA model show evidence of long memory in the EGX30 returns. The results 

were also confirmed using the semiparametric methods. Both techniques provide 

strong evidence of long range dependence in the EGX30 returns. This implies that 

price movements in the Egyptian stock market appear to be related and affected by 

past and remote observations. The paper’s findings suggest that long memory plays an 

important role in the structure and the dynamic behaviour of the Egyptian stock 
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market returns and hence, influence the investment strategies involving multinational 

equities portfolios. Moreover, the presence of long memory in the Egyptian stock 

market may suggest constructing nonlinear econometric models, such as ARFIMA, 

for improved and more efficient price forecasting performance.  

 

Furthermore, long memory in returns is not consistent with market efficiency. This 

market inefficiency in the Egyptian stock market can be attributed to the high 

persistence of risk factors in the market or due to the lack of liquidity. Accordingly, 

investors can exploit such inefficiency to earn excess returns. In addition, regulators 

should analyse the sources of the persistence in the Egyptian stock market that takes 

the form of long memory in order to improve its efficiency. 
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Abstract 
This chapter uses the bivariate framework introduced by Robinson (2008) to analyse 
the long run relationship between the monthly inflation rates in the US and Canada. 
For two stationary long memory time series driven by a common stochastic trend, 
there may exist a linear combination of the two series with smaller memory 
parameter. The bivariate model introduces four unknown parameters (two memory 
parameters, a phase parameter and a cointegration parameter) to be jointly estimated 
by optimising a local Whittle function. The results indicate the existence of a linear 
combination between the US and Canada inflation rates that has a long memory less 
than the two individual series. 
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2.1 Introduction 

 
In the analysis of a multivariate framework of long memory time series, two main 

features emerge: the possibility of cointegration and a phase shift that does not need to 

be zero. This chapter concerns with the joint estimation of the memory parameters 

along with the cointegrating and phase parameters in the bivariate framework 

developed by Robinson (2008). This procedure is applied to monthly US and Canada 

inflation rates to examine the long-run equilibrium relationship which consequently 

has its implications on the interdependence of their monetary policies. The local 

Whittle estimation is employed where four unknown parameters (two memory 

parameters, a phase parameter and a cointegration parameter) are introduced. 

Robinson (2008) introduces an additional parameter to model the phase (;) between 

the linear combination between the two series 9� and ��, (9� − À��), and �� flexibly. 

Moreover, Robinson (2008) derived the consistency and established the joint 

asymptotic normality of the estimates under the assumption that the memory 

parameters lie between zero and �� and indicated how his results to be applied in 

statistical inference. 

 
Stationarity of time series was usually associated with the Box-Jenkins modelling 

methodology with inherent short-memory properties of a series; while lack of 

statistical evidence for existence of long memory in economic time series made 

research restricted to the intuitively conventional �(1)/�(0) case. However, recent 

research in long memory time series modelling has provided enough tools to explore 

the idea of fractional cointegration empirically. In addition, the term long memory 

time series includes both stationary and nonstationary series. Since 1990, the 

mainstream econometric time series literature shows considerable interest in long 

memory by focusing on unit roots time series. Unit roots series can be perceived as 

special cases of nonstationary fractional series. The analysis in this chapter only 

covers stationary long memory series. Stationary long memory time series displays a 

statistically significant dependence between distant observations. This dependence 

can be formalised by assuming that the autocorrelations decay very slowly, 

hyperbolically, to zero as a function of the time lag or spectral density displaying a 

pole at zero frequency. In addition, this dependence structure across time played a 

vital role in the modelling of macroeconomic and financial data. 
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As in economic literature, relationships between variables comes in pairs; and hence it 

is a natural starting point to focus on analysing bivariate relations between stationary 

long memory time series. One of the first estimation methods in the bivariate 

framework was the semiparameter narrow-band ordinary least squares (NBLS) 

regression in the frequency domain, developed in a series of papers by Robinson 

(1994) and Robinson and Marinucci (2001). The NBLS estimator is an OLS estimator 

in a spectral regression with a degenerating frequency band around the origin. 

Robinson (1994) proved the consistency of this estimator in the stationary case. The 

NBLS estimator reduces the bias in comparison to the OLS estimator, by reducing the 

effect of correlation between cointegration errors, while the convergence rate of the 

NBLS estimator depends on the values of the long memory and the bandwidth used in 

estimation. On the other hand, Lobato (1999) derived a semiparametric two-step 

estimator of parameters that characterise long memory for a time series vector in the 

frequency domain. Asymptotic normality of his estimator was established, but did not 

include Gaussianity condition. The two main methods described above were 

combined by Marinucci and Robinson (2001) and Christensen and Nielsen (2004), 

who suggested conducting a fractional cointegration analysis in several steps. First, 

the memory parameters of the original series are seperately estimated by local Whittle 

QMLE. Secondly, the narrow band FDLS estimator for the cointegrating vector is 

calculated, and finally the persistence of the residuals is estimated assuming that the 

approach is equally valid for residuals. In addition, Velasco (2003) and Hassler et al. 

(2006) sought to estimate the memory parameter of the equilibrium error by applying 

semiparametric estimators to the residuals from cointegrating regressions. Nielsen 

(2007) considered joint estimation of the memory parameters and the cointegrating 

vector for stationary long memory series in a multivariate framework, but derived its 

asymptotic distribution only under the long-run exogeneity between the stochastic 

trend and equilibrium error. Nielsen and Frederiksen (2008) considered a fully 

modified narrowband least squares estimator that corrects the endogeneity bias of the 

NBLS, and analysed the estimation of the memory parameters from modified NBLS 

regression. Shimotsu (2007) also developed a semiparametric estimator for the 

multivariate stationary framework. He used a more general local form of the spectral 

density. In general, a joint estimation method for the memory parameters and the 

cointegrating vector is more preferable. The estimators for the cointegrating parameter 
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considered above are mostly direct in the sense that they do not require estimation of 

memory parameters. An alternative approach, first introduced by Robinson (2008) in 

a context of stationary bivariate system, jointly estimate the cointegrating parameters 

along with the memory parameters or other nuisance parameters which is adopted in 

this chapter. 

 

Many previous empirical studies in economic literature have examined the 

characteristics of aggregate US and Canada inflation rates. Klein (1976) and Nelson 

and Schwert (1977) imposed a unit root on the inflation process; while Ball and 

Cecchetti (1990) and Kim (1993) modelled inflation as a transitory and a permanent 

component, which is represented as a random walk. On the other hand, Barsky (1987) 

and Brunner and Hess (1993) argued that inflation was covariance stationary. Hassler 

and Wolters (1995) found evidence in favour of long memory properties. 

Furthermore, Doornik and Ooms (2004) used ARFIMA models with different 

estimation methods in order to model and forecast the long memory characteristics in 

inflation. This question, regarding the examination and modelling the long memory 

features in inflation rate series, should take on a new investigation of whether 

inflation rates are related across countries. Examining such relation has very 

important implications on the interdependence of domestic monetary policies and the 

validity of purchasing power parity. As a result, the purpose of this chapter is to 

examine and investigate the interdependence between the inflation rates in US and 

Canada by studying their long memory properties in a bivariate framework which 

avoids mathematical complexity of any general multivariate structure. However, 

unlike the conventional classical approaches discussed in literature, this model allows 

for the possibility of cointegration and phase shifts. 

 

The rest of the chapter is structured as follows. The next section describes the 

methodology used by presenting Robinson’s (2008) bivariate system and 

demonstrates the local Whittle (or Narrow-Band) estimation. Section 2.3 reports some 

simulation results. Section 2.4 offers an empirical application to analyse the long run 

equilibrium between the inflation rates in the US and Canada, and finally section 2.5 

concludes. 
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2.2 Methodology 

 
Suppose a bivariate jointly covariance stationary process Â� = (Â!�, Â.�)′ has a 

spectral density matrix, 

FÃ(G)~ xG��� 00 G���)�@Ä³Å(I)| �Æ!! Æ!.Æ.! Æ..� xG��� 00 G���)��@ÄÇ³Å(I)| as G → 0 

 

For simplicity, this can be written as, FÃ(G)~Λ�!ΩΛÉ�! as G → 0  

The parameters �!, �. and ; are unknown real valued and will be collected in 

vector Ê = (�!, �., ;)′, where �! and �. are the memory parameters and lay in the 

interval [0, ��) and ; is the phase parameter between Â!� and Â.� at zero frequency and 

lies in the interval ; ∈ (−J, J]. The term sign(G) = 1 if G ≥ 0. The symbol “~” 

means that for each element, the ratio of real/imaginary parts of the left and right sides 

tend to 1. In (2.2.2), the over bar denotes the complex conjugate and the parameters 

and Ω is a 2 × 2 positive definite matrix. 

 

The spectral density matrix in (2.2.1) can be written as, 

FÃ(G)~ Ì Æ!!|G|�.�� Æ!.G������)��@ÄÇ³Å(I)Æ.!G������)�@ÄÇ³Å(I) Æ..|G|�.�� Í . 

From the main diagonal element, it can be deduced that the bivariate series has the 

memory parameter �! and �. respectively. On the other hand, the off diagonal 

elements represent the cross spectrum between the bivariate series. It takes a real 

value only if Æ!., Æ.! and/or  ; = 0. 

 

For any two time series to be cointegrated and shape a long run equilibrium 

relationship, they need to share a common stochastic trend with a specific memory 

parameter. The long run equilibrium relationship is represented in the linear 

combination that becomes less persistent. Intuitively, most studies focused on the 

conventional �(1)/�(0) where persistence is reduced from 1 to zero. However, this 

model is developed where persistence takes values between 0 and 
!.. Now consider the 

model that includes the bivariate series (9�, ��)′, 
�1 −À0 1 � �9���� = �Â!�Â.�� . (2.2.4) 

(2.2.1) 

(2.2.3) 

(2.2.2) 
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When �! ≠ �. and À = 0, then 9� and �� have unequal memories �! and �. 

respectively. When �! < �. and À ≠ 0, the bivariate series are said to be cointegrated 

and the unobservable linear combination  Â!� = 9� − À�� has a memory of �! which 

is less than the memory for the bivariate series. Robinson’s (2008) local Whittle (or 

narrow-band) estimate m = (�!, �., ;, À)′ is considered in this paper where 0 ≤ �! <�. < �� and À ≠ 0. 

 

A local Whittle estimation is considered which employs Fourier frequencies in the 

neighbourhood of the origin. To begin with, the discrete Fourier transform (dFt) and 

the periodogram of a time series Ï� are defined and evaluated at frequency G as 

Ð�(G) = !√.HE ∑ Ï�)���IzE�#!  

�Ñ(G) = Ð�(G)Ð�∗(G) = r�!(∑ Ï�)���IE�#! )(∑ Ï�)���IE�#! )′ 
where Ð�∗(G) is the conjugate transpose of Ð�(G). The Whittle function, Ò(m, Ó), is 

approximated to the (negative) log-likelihood function is 

Ò(m, Ó) =  !� ∑ (log|Λ�!ΩΛÉ�!|��#! + 'v[Ω�!3)�Λ��G��ΛÉ�]) 

To find the local Whittle estimator, function (2.2.7) is minimised with respect to the 

unknown parameters m and Ó. The first step is to concentrate (2.2.7) with respect to 

the parameter Ó solving the resulting first order condition for Ó and then substituting 

the result back into (2.2.7). The solution of the first order condition with respect to Ó 

gives 

Ó�(m) = !� ∑ Ô�3)(��G��Ô�̅��#!   

By substituting Ó�(m) into Ò(m, Ó), this yields the concentrated likelihood function 3(m) in terms of the four parameters, 

3(m) = log det ¦Ó�(m)§ − 2(∑ �Ù.Ù#! ) !� ∑ log��#! ^G�^ 
The local Whittle estimator of the parameter of interest, m, can then be defined in 

terms of the concentrated likelihood m� = arg min{∈Ú 3(m) 

The space of the true parameter m is the compact set Θ ∈ ℝº. The consistency and 

asymptotic properties of the local Whittle estimator m� was also established in 

Robinson (2008). 

 

(2.2.7) 

(2.2.6) 

(2.2.9) 

(2.2.5) 

(2.2.8) 
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2.3 Finite sample simulations 

 
In this section, the finite sample behaviour of LW estimator is investigated by 

conducting a Monte Carlo study. The following four generating mechanisms for Â!� 

and Â.� are considered.  

Model A: Â!� = (1 − �)����!� Â.� = (1 − �)����.� 

Model B: Â!� = (1 − �)���Ý!� Â.� = (1 − �)����.� Ý!� = 0.5Ý!,��! + �!�  

Model C: Â!� = (1 − �)����!� Â.� = (1 − �)���Ý.� Ý.� = 0.5Ý.,��! + �.�  

Model D:  

���}{(1 − �)�� , (1 − �)��}(1 − 0.5�)Â� = √3�� 

where �� = (�!�, �.�)′ is bivariate independently and identically distributed with mean 

zero and unit variance, � is the correlation between �!� and �.�, and 

3 = x 1 2�2� 4 |. 

 

Based on the above generating mechanisms, the process 9� in (2.2.4) is generated 

with À = 1. The data is generated (for all simulations) with two sets of memory 

parameters. Firstly the memory parameters used are (�!, �.) = (0.05, 0.4) which is 

close to many practical situations and supported by the empirical application reported 

in the next section, and then (�!, �.) = (0.2, 0.3) which indicates a weaker form of 

fractional cointegration where the two memory parameters are very close. Model A 

has no short-run dynamics, unlike Models B and C where short-run dynamics are 

introduced to Â!� and Â.� respectively. Model D satisfies the spectral density function 

adopted in this chapter in (2.2.1) to (2.2.3). The elements of the main diagonal for 3 

are 1 and 4, while the off-diagonal elements is 2�, thus the phase parameter is set as 

; = (�. − �!) H.. For the Monte Carlo study, 10000 replications for sample sizes r are 

used where r = 128 and r = 512 are chosen. The former sample size is chosen to be 

close to the application in the next section. The bandwidth parameters chosen 
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are T = r$.¾ and T = r$.º to examine the robustness of the LW estimator due to 

changes in the bandwidth. The Monte Carlo bias and root mean squared error (RMSE) 

results of the local Whittle estimator for all above models are reported in Tables 7 and 

8. Simulations are performed using Ox 6.0 and TSM 4.35. 
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Table 7: Simulation Results for bias and RMSE where � = 0 
  Model A Model B Model C Model D 

  Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

  �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À 

�! = 0.05, �. = 0.4                        

        r = 128       

 T = r$.º 0.19 0.13 0.22 0.26 0.23 0.31 0.34 0.27 0.43 0.39 0.35 0.44 0.15 0.12 0.17 0.14 0.11 0.16 0.06 0.04 0.09 0.18 0.12 0.15 

 T = r$.¾ 0.14 0.09 0.17 0.24 0.18 0.25 0.26 0.24 0.31 0.28 0.31 0.42 0.11 0.10 0.14 0.16 0.10 0.10 0.03 0.02 0.07 0.09 0.07 0.12 

       r = 512       

 T = r$.º 0.16 0.11 0.18 0.14 0.11 0.25 0.28 0.21 0.33 0.36 0.35 0.38 0.10 0.09 0.12 0.11 0.09 0.12 0.04 0.03 0.05 0.13 0.09 0.08 

 T = r$.¾ 0.12 0.08 0.15 0.15 0.14 0.21 0.25 0.20 0.27 0.32 0.25 0.34 0.08 0.08 0.10 0.07 0.06 0.09 0.00 0.00 0.02 0.06 0.05 0.03 

�! = 0.2, �. = 0.3                        

       r = 128       

 T = r$.º 0.65 0.42 0.35 0.74 0.55 0.49 0.86 0.81 0.76 0.84 0.78 0.59 0.44 0.35 0.40 0.33 0.25 0.31 0.18 0.15 0.23 0.31 0.27 0.29 

 T = r$.¾ 0.61 0.43 0.31 0.67 0.50 0.45 0.83 0.84 0.73 0.79 0.77 0.54 0.41 0.30 0.36 0.32 0.27 0.35 0.16 0.13 0.25 0.28 0.25 0.20 

       r = 512       

 T = r$.º 0.53 0.36 0.27 0.63 0.51 046 0.77 0.69 0.71 0.80 0.73 0.52 0.39 0.32 0.37 0.35 0.24 0.25 0.17 0.16 0.19 0.25 0.21 0.25 

 T = r$.¾ 0.49 0.33 0.24 0.61 0.42 0.40 0.70 0.67 0.65 0.73 0.76 0.48 0.46 0.34 0.39 0.28 0.20 0.22 0.10 0.11 0.21 0.24 0.19 0.15 
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Table 8: Simulation Results for bias and RMSE where � = 0.5 
  Model A Model B Model C Model D 

  Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

  �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À 

�! = 0.05, �. = 0.4                        

        r = 128       

 T = r$.º -0.25 -0.19 0.27 0.34 0.26 0.33 -056 -034 0.46 0.43 0.38 0.46 0.20 0.15 0.21 0.16 0.17 0.24 0.14 0.06 0.15 0.21 0.15 0.16 

 T = r$.¾ -0.17 -0.12 0.24 0.28 0.16 0.29 -0.43 -0.31 0.37 0.35 0.37 0.43 0.15 0.10 0.15 0.22 0.13 0.18 0.09 0.05 0.09 0.14 0.09 0.11 

       r = 512       

 T = r$.º -0.21 -0.17 0.25 0.18 0.17 0.29 -0.35 -0.26 0.37 0.41 0.32 0.34 0.16 0.11 0.19 0.15 0.14 0.16 0.06 0.04 0.11 0.15 0.07 0.09 

 T = r$.¾ -0.17 -0.13 0.19 0.18 0.20 0.28 -0.29 -0.29 0.32 0.36 0.27 0.32 0.16 0.13 0.15 0.11 0.08 0.12 0.02 0.01 0.05 0.08 0.09 0.08 

�! = 0.2, �. = 0.3                        

       r = 128       

 T = r$.º 
-0.60 -0.46 0.42 0.68 0.57 0.54 -0.74 0.78 0.81 0.81 0.80 0.68 0.36 0.43 0.41 0.54 0.46 0.38 0.31 0.26 0.20 0.25 0.26 0.32 

 T = r$.¾ -0.44 -0.51 0.37 0.62 0.52 0.47 -0.65 0.73 0.76 0.84 0.75 0.65 0.44 0.25 0.28 0.41 0.43 0.42 0.27 0.17 0.21 0.15 0.29 0.24 

       r = 512       

 T = r$.º -0.47 -0.52 0.31 0.57 0.46 0.47 -0.68 0.75 0.74 0.76 0.75 0.67 0.42 0.35 0.35 0.45 0.40 0.35 0.19 0.15 0.14 0.18 0.16 0.21 

 T = r$.¾ -0.56 -0.45 0.29 0.55 0.45 0.48 -0.59 0.66 0.66 0.70 0.71 0.70 0.39 0.29 0.22 0.38 0.36 0.39 0.15 0.16 0.15 0.21 0.16 0.23 
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Table 9: Simulation Results for median bias and MAD where � = 0 
  Model A Model B Model C Model D 

  Bias MAD Bias MAD Bias MAD Bias MAD 

  �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À 

�! = 0.05, �. = 0.4                        

        r = 128       

 T = r$.º 0.048 0.046 0.050 0.05 0.046 0.06 0.067 0.054 0.07 0.061 0.051 0.08 0.042 0.043 0.03 0.041 0.044 0.04 0.029 0.032 0.03 0.045 0.044 0.04 

 T = r$.¾ 0.041 0.027 0.041 0.06 0.037 0.05 0.053 0.049 0.07 0.049 0.054 0.07 0.036 0.041 0.05 0.045 0.038 0.04 0.024 0.034 0.03 0.048 0.036 0.03 

       r = 512       

 T = r$.º 0.045 0.042 0.043 0.04 0.045 0.05 0.057 0.049 0.06 0.066 0.061 0.06 0.042 0.029 0.04 0.042 0.036 0.04 0.034 0.061 0.03 0.049 0.028 0.03 

 T = r$.¾ 0.040 0.037 0.045 0.04 0.043 0.04 0.055 0.051 0.05 0.064 0,057 0.06 0.037 0.031 0.04 0.035 0.035 0.03 0.026 0.019 0.02 0.034 0.024 0.04 

�! = 0.2, �. = 0.3                        

       r = 128       

 T = r$.º 0.092 0.074 0.065 0.10 0.083 0.07 0.102 0.103 0.09 0.107 0.103 0.08 0.073 0.068 0.07 0.065 0.053 0.06 0.046 0.041 0.03 0.062 0.058 0.06 

 T = r$.¾ 0.090 0.076 0.060 0.09 0.081 0.08 0.105 0.102 0.09 0.093 0.112 0.09 0.072 0.064 0.07 0.063 0.052 0.07 0.049 0.047 0.05 0.055 0.057 0.05 

       r = 512       

 T = r$.º 0.086 0.065 0.054 0.09 0.073 0.07 0.095 0.086 0.09 0.109 0.094 0.07 0.069 0.057 0.06 0.064 0.051 0.04 0.038 0.045 0.03 0.056 0.051 0.06 

 T = r$.¾ 0.082 0.062 0.047 0.09 0.075 0.08 0.094 0.095 0.08 0.098 0.097 0.06 0.075 0.066 0.07 0.054 0.054 0.05 0.041 0.042 0.05 0.054 0.047 0.04 
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Table 10: Simulation Results for median bias and MAD where � = 0.5 
  Model A Model B Model C Model D 

  Bias MAD Bias MAD Bias MAD Bias MAD 

  �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À �! �. À 

�! = 0.05, �. = 0.4                        

        r = 128       

 T = r$.º -0.051 -0.04 0.057 0.06 0.056 0.06 -0.08 -0.065 0.07 0.064 0.071 0.07 0.053 0.042 0.05 0.045 0.048 0.05 0.045 0.003 0.04 0.055 0.042 0.04 

 T = r$.¾ -0.046 -0.04 0.054 0.05 0.048 0.05 -0.07 -0.063 0.05 0.075 0.068 0.07 0.042 0.041 0.04 0.051 0.045 0.05 0.038 0.008 0.04 0.043 0.038 0.03 

       r = 512       

 T = r$.º -0.053 -0.03 0.057 0.04 0.046 0.05 -0.07 -0.26 0.06 0.071 0.062 0.06 0.047 0.040 0.05 0.045 0.044 0.04 0.037 0.012 0.05 0.063 0.046 0.03 

 T = r$.¾ -0.046 -0.04 0.048 0.04 0.052 0.05 -0.06 -0.29 0.06 0.067 0.052 0.07 0.049 0.038 0.04 0.041 0.037 0.04 0.032 0.004 0.08 0.019 0.014 0.02 

�! = 0.2, �. = 0.3                        

       r = 128       

 T = r$.º 
-0.093 0.07 0.074 0.09 0.086 0.08 -0.09 0.101 0.08 0.121 0.095 0.08 0.064 0.074 0.07 0.085 0.073 0.06 0.061 0.055 0.05 0.054 0.046 0.06 

 T = r$.¾ -0.075 0.07 0.066 0.09 0.083 0.07 -0.08 0.098 0.09 0.104 0.099 0.08 0.072 0.053 0.05 0.082 0.075 0.07 0.059 0.049 0.04 0.052 0.052 0.05 

       r = 512       

 T = r$.º -0.078 -0.08 0.063 0.08 0.074 0.08 -0.06 0.093 0.09 0.091 0.097 0.09 0.073 0.063 0.06 0.078 0.073 0.07 0.048 0.045 0.04 0.046 0.047 0.05 

 T = r$.¾ -0.087 -0.09 0.057 0.08 0.075 0.06 -0.07 0.089 0.11 0.090 0.092 0.09 0.068 0.059 0.06 0.079 0.065 0.07 0.043 0.042 0.05 0.042 0.050 0.05 
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For Model A, the values of the bias are high for almost all the specifications. The 

RMSE decreases for all the parameters for a larger bandwidth. The bias and RMSE of �! are higher than those of �.. In Model B, the biases and RMSE are found to be 

larger when there is no short run dynamics. However, both bias and RMSE decreases 

for larger bandwidth and sample size chosen. For Model C, the LW estimator appears 

to perform better than Model A, as the bias and RMSE are lower. Finally, the 

simulation for Model D works very well and produces unbiased estimates with very 

low bias and RMSE compared to the other models. In general, for all models, when 

the memory parameters are closer (�!, �.) = (0.2, 0.3), even for larger r, the bias is 

more severe; however matters improve for larger bandwidth. On the other hand, 

for (�!, �.) = (0.05, 0.4) the sizes of bias and RMSE are better on average. In tables 

7 and 8, the values of the mean bias are very high, which might indicate that the first 

moment of the estimator does not exist. As a result, the median bias and the median 

absolute deviation (MAD) are reported in tables 9 and 10 instead of the mean bias and 

the root mean square error (RMSE). The median bias for Model A is very low. In 

Model B, the biases and RMSE are found to be larger when there is no short run 

dynamics. In addition, the LW estimator appears to perform better in Model C than in 

Model A, as the median bias and MAD are lower over the different bandwidths. 

Finally, the simulation for Model D works very well and produces unbiased estimates 

with very low bias and RMSE compared to the other models. In general, both median 

bias and MAD decreases for all the parameters as the bandwidth increases. The 

median bias and MAD of �! are higher than those of �.. Overall, it seems difficult to 

draw exact conclusions about the effect of �, as it only causes the bias to change sign 

but does not change the size of bias or RMSE and it has no significant effect on the 

performance of the LW estimator. On the other hand, relatively larger bandwidth 

appears to be preferable as the LWE works best. 

 

2.4 Application to the US and Canada inflation rates 

 
Consumer price indices of the United States and Canada are originally examined. 

Monthly inflation rates (116 observations) are calculated based on the CPI measure of 

the US and Canada. This data measures the inflation rate for each month as the 

percentage increase from the same month of the previous year. The empirical analysis  
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Figure 11: The inflation rate, the correlogram (ACF) and the periodogram of USA 
and Canada respectively 

 
 

Table 11: Descriptive Statistics and Unit Root Tests 
USA      

 Obs. Mean S.D. Min. Max. 
 116 0.024371 0.014422 -0.021 0.056 
      
 Skewness Kurtosis J.B. ADF KPSS 
 -0.76105 4.0196 16.223* -3.817 0.483 
      

Canada      
 Obs. Mean S.D. Min. Max. 
 116 0.020147 0.010036 -0.009 0.047 
      
 Skewness Kurtosis J.B. ADF KPSS 
 0.23046 4.1825 7.7850** -5.912 0.365 
      

Note: * and ** denote statistical significance of J.B. at the 1% and 5% levels respectively. The critical values of 
ADF unit root tests are -2.54, -1.94, -1.61 at 1%, 5%, 10% levels of significance. The critical values for KPSS test 

are 0.784, 0.521 and 0.437 at 1%, 5%, 10% levels of significance. 
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has been carried out using the monthly US and Canada inflation rates for the time 

period of January 2001 to August 2010. The series was obtained from the USA 

Federal Reserve Bank and the Bank of Canada respectively. Figure 1 provides graphs 

of the inflation rates, correlograms and periodograms respectively. The inflation rates 

in United States and Canada show the same trend movements which increased 

steadily with some oscillations to mid 2008 where the trend sharply declined. This 

similarity in the patterns between the US and Canada inflation rates, though not the 

levels, can lead to a potential cointegration relation between the two series. The 

corresponding correlograms exhibit the typical hyperbolic decline associated with 

long memory processes, while the periodograms in figure 11 confirm the presence of 

long memory features in the inflation series. 

 
Table 12: The estimates of the LM parameters 

 USA Canada T = r$.º¾     
 ��¬­® ���w ��¬­® ���w 
 0.473 0.488 0.318 0.274 
 (0.147) (0.112) (0.098) (0.073) 

     T = r$.¾     
 ��¬­® ���w ��¬­® ���w 
 0.448 0.426 0.291 0.236 
 (0.172) (0.124) (0.109) (0.080) 

     
Note: The numbers in the parenthesis are standard errors. 

 

Table 11 reports several descriptive statistics along with two unit root tests, including 

mean, standard deviation, skewness, kurtosis, Jarque-Bera statistic, ADF and KPSS. 

The US inflation rate averaged 2.4%, while the Canada inflation rate averaged 2%6. 

The values in the table give some information about the distribution of the US and 

Canada inflation rates. Both skewness and kurtosis statistics indicate that distributions 

are not normal. According to JB statistic, it is very clear that there are significant 

departures from normality. The next step of the analysis is to examine the unit root 

properties of the inflation rates using Augmented Dickey-Fuller (ADF) and 

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) unit root tests. The results are 

presented in Table 11 and suggest that both series can be represented by stationary 

                                                           
6
 The Bank of Canada aims to keep inflation rate at the 2% midpoint of an inflation-control target range 

of 1-3 %. 
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long memory processes. However, these unit root tests, especially the ADF, do not 

take account of the possible long memory properties of the series. Therefore, two 

semiparametric methods are employed to examine the long memory properties of the 

data. The GPH and LW estimators for long memory parameters are reported in Table 

12 for different bandwidths T = r$.º¾ and r$.¾ where all the estimates can be seen to 

be statistically significant. The results show that the memory estimates are not 

sensitive to the bandwidth choice, although they decrease as the bandwidth increases 

(the memory estimates vary from 0.42 to 0.48 and 0.23 to 0.31 for US and Canada 

respectively) and that inflation rates exhibits stationary long memory properties. 

Consequently, if there exists a stable relationship between the inflation rates, a 

stationary fractional cointegration would be expected. 

 

Now, consider the bivariate model in (2.2.4), Jàáâ,� − ÀJ�âã,� = Â!� 

J�âã,� = Â.� 

when À ≠ 0, the two series Jàáâ,� and J�âã,� are said to be cointegrated where the 

linear combination Â!� has a memory of �! which less than the memory of the 

original two series. 

 

Table 13: Application to the US and Canada inflation rates T = r$.º¾     
 ��! ��. À�  ;ä 
 0.072 0.356 1.165 0.206 
 (0.033) (0.1138) (0.298) (0.081) 

     T = r$.¾     
 ��! ��. À�  ;ä 
 0.056 0.328 1.149 0.281 
 (0.029) (0.156) (0.352) (0.110) 
     

Note: Standard errors are reported in the parentheses. 

 

Table 13 reports the joint local Whittle estimation including the estimates of the four 

unknown (two memory, phase and cointegration) parameters, while the standard 

errors are represented in parentheses. The results indicate that all the coefficients are 

statistically significant for both bandwidths T = r$.º¾ and r$.¾, respectively. The 

estimate of memory parameter �. indicates that the inflation rates can be described as 
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stationary long memory series confirming the results in table 12. In addition, the 

estimate of �! for the unknown linear combination appears to have less memory 

than �.. Moreover, the estimate of the cointegrating parameter À is close to unity 

reflecting a cointegration relationship between the US and Canada inflation rates. In 

particular, the LW estimates of the cointegration coefficient are significantly higher 

than unity for bandwidths T = r$.º¾ and r$.¾, implying that the long-run rate of 

inflation in the US is higher than that in Canada. 

 

2.5 Conclusion 

 
One contribution of this paper is to apply the theoretical framework in Robinson 

(2008) to inflation rates which allows for a new parameter, the phase shift, to the 

bivariate model. The possibility of existence of long memory features in the inflation 

rates was initially examined, then the relationship between the monthly US and 

Canada inflation rates was analysed using the analysis in Robinson (2008). This 

approach is preferable to other conventional methods as it allows for the possibility of 

phase shifts along with cointegration. In addition, the four unknown parameters were 

jointly estimated using local Whittle estimation. The main finding is that the monthly 

US and Canada inflation rates exhibit the properties of stationary long memory series 

confirming the presence of long memory in macroeconomic time series which is 

consistent with the results reported in Hassler and Wolters (1995) and Doornik and 

Oooms (2004). The local Whittle estimate gives evidence to a fractional cointegration 

relationship between the US and Canada inflation rates, with the estimate of the 

cointegrating parameter, À, is higher than unity. This implies that the long-run rate of 

inflation in the US is higher than that in Canada. Furthermore, this link between 

inflation rates in the US and Canada has its vital implications on the interdependence 

of monetary policies in both countries and the validity of purchasing power parity. As 

the US and Canada have differing rates of inflation, and the relative price of goods is 

linked to the exchange rate through the purchasing power parity theory. The relative 

prices of goods should change and the value of US dollar may decline against the 

Canadian dollar.  
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Abstract 
This chapter proposes a semiparametric estimator for multivariate fractionally 
cointegrated systems where the values of the memory parameter (�) lie between 0 and 
½ by optimising a local Whittle function in the frequency domain. The proposed local 
Whittle estimator (LWE) is used to jointly estimate the memory, cointegrating and 
phase parameters. To derive this estimator, a general shape of the spectral density 
matrix first noted in Davidson and Hashimzade (2008) is utilised to cover multivariate 
jointly dependent long memory time series. A Monte Carlo study exhibits the 
performance of the LWE for different sample sizes. Finally, three different 
empirically relevant examples are presented to examine the existence of stationary 
fractional cointegration relationships.  
 
JEL Classification: C14, C32. 
 
Keywords: Fractional cointegration; Frequency domain; Long memory; 
Semiparametric estimation; Whittle likelihood. 
 
 
 
 
 
 
 

                                                           
∗
  Amr Algarhi: a.s.i.algarhi@exeter.ac.uk  

I would like to thank Professor James Davidson at University of Exeter for his constant guidance and 
suggestions, and audiences at the 2010 Economics PGR Conference at University of Exeter, especially 
Professor Gareth Myles, Professor Tatiana Kirsanova, Andreea Halunga and Joao Madeira for the 
useful comments. Simulations and empirical applications were performed in Ox and TSM. All 
remaining errors are mine.  



59 

 

3.1 Introduction 

 
Robinson (2008) proposed an alternative version of the semiparametric approach to 

jointly estimate four unknown parameters (two memory parameters, a cointegrating 

parameter and a phase parameter) by optimising a local Whittle function. Robinson 

(2008) introduced a semiparametric local Whittle estimator and derived its 

consistency and asymptotic normality. Unlike previous studies, in the literature, that 

directly estimated the cointegrating parameter without the requirement of estimating 

the memory parameter or other nuisance parameters. Robinson analysis was in the 

context of a stationary bivariate system for long memory time series which raise the 

attention to two main issues. The first issue to emerge is the possibility of fractional 

cointegration among the two individual series and the second issue raised was that the 

phase does not need to be zero as in the short memory series. In literature, the former 

issue has been developed recently; unlike the latter which attracted very little 

attention.  

 

This chapter establishes, similar to Robinson (2008), a joint estimation of the 

memory, cointegrating and phase parameters in stationary fractionally cointegrated 

models. However, the bivariate framework is extended to consider a more general 

multivariate case. In order to extend Robinson (2008) analysis and to consider a 

general multivariate process with more than one cointegrating relation, a general 

shape of the spectral density matrix, first noted in Davidson and Hashimzade (2008), 

is utilised to cover multivariate jointly dependent stationary long memory time series. 

The estimation method adopted in this chapter follows the semiparametric approach, 

in that the spectral density is only specified in a neighbourhood of zero frequency.  

 

It has been commonly thought of cointegration as a stationary relationship between 

non-stationary variables. However, cointegration can be present between stationary 

processes with long memory where their linear combination is another stationary 

process with less memory. Throughout this chapter the main focus will be on the 

covariance stationary observable series with long memory where the memory 

parameter is between zero and ½, hence the notion of stationary fractionally 

cointegrated systems. The term fractional refers to a generalised operation of a non-

integer order and the stationary region lies in [0, ½). This interval is relevant for many 
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applications in macroeconomics and finance. Moreover, the most common value of 

the phase of the spectral density at the origin adopted in the literature is equal to zero. 

The spectral density that overlooks the information in the phase parameter leads to 

less efficient estimates of the cointegrating parameter. This chapter employs a more 

general form of the spectral density, as in Davidson and Hashimzade (2008), which 

allows for values of the phase parameters that is different from zero.  

 

A Monte Carlo study is presented to illustrate the properties of the proposed local 

Whittle estimator in finite samples. The stationary fractional cointegration model has 

many potential applications. The model developed in this chapter is applied to three 

different empirically relevant applications. The first example is to examine for 

inflation rate harmonization in Spain and France. Secondly, the fractional 

cointegration among the volatilities of three stock market indices is inspected. Finally, 

the model developed is applied on another trivariate series of the daily US Treasury 

rate, at constant maturities of 2 years, 3years and 7 years, in order to analyse the long 

range dependence. An evidence of a weak form of fractional cointegration was 

reported in the three empirical examples.  

 

The remainder of the chapter is organised as follows. The next section covers the 

relevant literature review for stationary fractionally cointegrated models. Section 3.3 

introduces the multivariate fractional cointegration model. Section 3.4 sets up the 

local Whittle likelihood. Sections 3.5 and 3.6 derive the consistency and the 

asymptotic normality of the local Whittle estimator for the multivariate case 

respectively. Section 3.7 reports and discusses the results of a Monte Carlo study, 

illustrating the finite sample behaviour of the LWE. Section 3.8 demonstrates the 

empirical application to three different relevant examples and finally section 3.9 

offers some concluding remarks. 

 

3.2 Literature Review 

 
In this section, a selective survey of the literature on stationary fractional 

cointegration model is presented. This section starts with the definition of 

cointegration which is the existence of a linear combination among two or more time 

series. Cointegrated time series form a long-run equilibrium relationship where they 
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share a common stochastic trend with a memory parameter �$. On the other hand, 

their linear combination is less persistent than any of the individual series which is 

measured in terms of a smaller memory parameter �Ã. Standard cointegration, which 

is considered so far the most studied special case of cointegration, reduces the 

memory parameter from  �$ = 1 to  �Ã = 0 by the linear combination. Tests for 

standard cointegration mainly depend on unit root theory. Alternatively, fractional 

cointegration generalizes the conventional �(1)/�(0) standard cointegration by 

allowing the memory parameter to be any real number, making it more flexible 

structure for analysing long run relationships between economic time series and 

enables more proper modelling of interdependence between them. Although both 

types of cointegration, standard and fractional, were concurrently defined and 

discussed in the seminal paper of Engle and Granger (1987); in the literature they 

have been developed separately. The literature on cointegration under autoregressive 

unit roots has exceeded that under long memory, until recently when theoretical 

studies of fractional cointegration have been rapidly expanding in several directions. 

In this section the focus is on the literature review that covers a stationary fractionally 

cointegrated systems where  0 ≤ �$ <  �Ã < !. .  
 

In literature, the most used simple model for stationary fractional cointegration can be 

presented as follows. Suppose the p-vector æ� = (9�, ��, )′ is observed, which is 

integrated of order  � ∈ (0, 1 2⁄ ), where æ� ∈ �(�), In other words, æ� ∈ �(�) if (1 − �)�æ� = ��, 

where �� ∈ �(0), a process is �(0) if it is covariance stationary and has spectral 

density that is bounded and bounded away from zero at the origin, and  (1 − �)� is 

defined by its binomial expansion 

(1 − �)� = ∑ �(���)�(��)�(� !)"�#$ �� , 

where  Γ(æ) = & 'è�!"$ )���' is the gamma function and � (�æ� = æ��!) is the lag 

operator.  

 

A scalar-valued stochastic process generated by (3.2.1) has spectral density F(G)~ÆG�.�  as G → 0 , 

 

(3.2.2) 

(3.2.1) 
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where Æ is a constant and the symbol “~” means that the ratio of the left- and right- 

hand sides tends to one in the limit. Such a process is said to possess strong 

dependence (or long range dependence), since the autocorrelations decay at a 

hyperbolic rate in contrast to the much faster exponential rate in the weak dependence 

case. The parameter � determines the memory of the process. If � > − !., æ� is 

invertible and admits a linear representation, and if � < !.  it is covariance stationary. 

If � = 0, the spectral density (3.2.2) is bounded at the origin, and the process has only 

weak dependence. Sometimes, æ� is said to have intermediate memory, short memory, 

and long memory when � < 0, � = 0, and � > 0, respectively. 

 

Moreover, suppose that æ� = (9�, ��, )′ satisfies the regression model 9� = À′�� + Â�, 

where the error term is integrated of a smaller order �Ã < �, Â� ∈ �(�Ã). When there 

is no integer constraint on � or �Ã, the model is called a fractional cointegration 

model. In addition, assuming 0 ≤ �Ã < � < !.  the model is called a stationary 

fractionally cointegrated model, since it is concerned with the long-run linear co-

movement between two or more stationary fractionally integrated processes. The 

properties of the model in the fractional cointegration framework have been examined 

only recently in Robinson and Yajima (2002).  

 

Many estimators of the memory parameter �  have been suggested in the literature; 

however, a selective survey on a semiparametric approach is presented in this section. 

Different attempts have been made to develop a semiparametric estimator of 

fractionally cointegrated systems. The two main methods of semiparametric 

estimation of the memory parameter discussed in empirical studies are log-

periodogram (LP) regression and local Whittle (LW) estimation. In the stationary 

case, the LW estimator was found to be more efficient than LP regression.  

 

Geweke and Porter-Hudak (1983) was the first to develop a semiparametric approach 

to estimate the memory parameter assuming only the model (3.2.2) for the spectral 

density and use a degenerating part of the periodogram around the origin to estimate 

the model. This approach has the advantage of being invariant to any short and 

(3.2.3) 
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medium term dynamics (as well as mean terms since the zero frequency is usually left 

out). Künsch (1987) firstly proposed the univariate local Whittle estimator. He 

developed a local Whittle quasi maximum likelihood estimator (QMLE) based on the 

maximization of a local Whittle approximation to the likelihood to estimate the 

memory parameter of the univariate stationary fractionally integrated time series. 

Robinson (1995a) worked on the univariate local Whittle estimator by showing its 

consistency and asymptotic normality for  � ∈ (− !. , !.) and called it a Gaussian 

semiparametric estimator. Velasco (1999) showed that the estimator is consistent 

for  � ∈ (− !. , 1) and asymptotic normally for  � ∈ (− !. , ½º).  

 

In the multivariate framework, Robinson (1994a) proposed a semiparametric narrow 

least squares (NBLS) estimator in the frequency domain that assumes only a 

multivariate generalization of (3.2.3), and essentially performs OLS on a degenerating 

band of frequencies around the origin. He also proved the consistency of this 

estimator in the stationary case. In addition, Christensen & Nielsen (2004) showed 

that its asymptotic distribution is normal when the collective memory of the 

regressors and the error term is less than ½. Nielsen and Frederiksen (2008) 

considered a fully modified narrowband least squares (NBLS) estimator that corrects 

the endogeneity bias of the NBLS, and analysed the estimation of the memory 

parameters from modified NBLS regression. Lobato (1999) derived a semiparametric 

two-step estimator in a multivariate stationary long memory model. Velasco (2003) 

and Hassler et al. (2006) sought to estimate the memory parameter of the equilibrium 

error, �Ã, by applying semiparametric estimators to the residuals from cointegrating 

regressions. Both Velasco (2003) and Hassler et al. (2006) required �$ − �Ã > 1/2 , 

because, when �$ − �Ã is small, the cointegrating vector estimate converges at a too 

slow rate to validate the subsequent residual-based analysis. Nielsen (2007) 

considered joint estimation of �Ã, �$ and the cointegrating vector under the 

assumption 0 ≤ �Ã < �$ < 1/2, but derived its asymptotic distribution only under 

the long-run exogeneity between the stochastic trend and equilibrium error. Shimotsu 

(2007) introduced a Gaussian semiparametric estimator of multivariate stationary 

fractionally integrated processes. He used a more general local form of the spectral 

density and from this he derived a semiparametric estimator of multivariate 

fractionally integrated processes. The class of spectral densities included in 
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Shimotsu’s specification includes those of multivariate fractionally integrated 

processes which includes the information in phase shifts and which will lead to more 

efficient estimates of the integration orders. Robinson (2008) introduced a Gaussian 

semiparametric estimator of bivariate stationary fractionally integrated processes by 

extending the work by Robinson (1995a) and derives its consistency and asymptotic 

normality under the assumption  0 ≤ �Ã < �$ < !..  

 

The methods described above are combined by Marinucci and Robinson (2001) and 

Christensen and Nielsen (2006), who suggest conducting a fractional cointegration 

analysis in several steps. First, the integration order of the raw data is estimated by 

local Whittle QMLE. Secondly, the narrow band FDLS estimator for the cointegrating 

vector is calculated, and finally the integration order of the residuals is estimated 

assuming that the approach is equally valid for residuals. Hypothesis testing is then 

conducted on �Ã as if Â� were observed, and on À as if �Ã were known. Although this 

is indeed a valid course of action, a joint estimation method for the integration orders 

and the cointegration vector is preferable.  

 

Furthermore, the different estimators developed, as mentioned above, in the literature 

can also be classified according to the assumptions on the phase parameter. The 

simplest special case, as assumed by Christensen and Nielsen (2006), is that all the 

phase parameters are equal to zero. This assumption is plausible, when the spectral 

density is real. However, neglecting the information in the phase parameter in the 

spectral density can lead to less efficient estimates of the cointegrating and memory 

parameter. Another case is considered in the literature where the phase parameter is 

equal to (J 2⁄ )� as in Lobato (1999), Robinson and Yajima (2002) and Shimotsu 

(2007). Finally, Robinson (2008) introduces a general case where the phase parameter 

in a bivariate framework is equal to (J 2⁄ − ?)� where ? is a real number satisfying 

the constraints that the phase parameter is in the Nyqvist range.  

 

This chapter’s contribution to the literature is to estimate the multivariate framework 

for a stationary fractional cointegration model by introducing a joint estimator of the 

cointegrating parameters together with the memory and phase parameters. Moreover, 

this chapter uses a more general form of the spectral density that allows for phase 
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shifts as in Davidson and Hashimzade (2008). The next two sections introduce the 

multivariate model and develop the semiparametric local Whittle estimator. 

 

3.3 Multivariate Stationary Fractional Cointegrated Model 

 
Consider a real-valued stationary fractional process �� that is generated by the model, 

 é�!�⋮�\�ë = ì}!(∙) 0 00 ⋱ 00 0 }\(∙)î éÂ!�⋮Â\�ë 

where  }Ù(∙) = }(�; �Ù, 
Ù, �Ù) ,  where ï = 1, … , V }Ù(∙) = 
Ù(1 − �)ðñ��ñ(1 − ��!)�ðñ + (1 − 
Ù)(1 − �)�ðñ(1 − ��!)ðñ��ñ 

The parameters �Ù, 
Ù, �Ù are real valued, 0 < �Ù < !., 0 ≤  �Ù ≤ �ñ.  and 0 ≤ 
Ù ≤ 1. 

These parameters are collected in Ê = (�′, 
′, �′)′ for �� = (�!, … , �\)′, 
� =
(
!, … , 
\)′ and �� = (�!, … , �\)′. The error vector, Â� = (Â!�, … , Â\�)′, is serially 

independent Gaussian process with (0, u.) whose spectral density FÃ(G) is bounded 

and bounded away from zero at the zero frequency G = 0. The memory 

parameters, �Ù, govern the long-run dynamics of the process �Ù� and the behaviour of 

its spectral density representation around the origin. Therefore, if empirical interest 

lies in the long-run dynamics of the process, it is useful to specify the spectral density 

only locally in the vicinity of the origin and avoid specifying the short-run dynamics 

of Â� explicitly. The parameters �Ù present different degrees of forward (lead) and 

backward (lag) memories that the model can exhibit and different choices of the 

parameters 
Ù influence the amount of short run memory relative to long run either 

symmetrically or asymmetrically (see Davidson and Hashimzade (2008)). 

 

The spectral density representation of the process (3.3.1) is F(G)~Λ�!ΩΛÉ�! , as G → 0 

where Λ�! = ���}{ΛÄ�!(�, 
, �)} 

 ΛÄ�!(�, 
, �) = |G|��ñ[
Ù)��ÄÅ³(I)@ñ + (1 − 
Ù))�ÄÅ³(I)@ñ]   
The over bar denotes the complex conjugate and the parameters  ;Ù = (2�Ù − �Ù) H.. 

The term sng(G) = 1 if G ≥ 0 and -1 otherwise. The matrix Ω is a V × V real, 

(3.3.1) 

(3.3.2) 
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symmetric, finite and positive definite. The spectral density F(G) has non-zero 

complex part. The notation "∼" in equation means that for each element, the ratio of 

real/imaginary parts of the left and right sides tend to 1. We can deduce the cross-

spectrum F�*(G), where < ≠ -, (off the diagonal elements of F(G)),  

F�*(G) = Æ�*|G|��z��ó ∑ ô·º·#! )��ÄÅ³(I)õö 
where 

ô! = 
�
* ÷! = ;� + ;* 

ô. = 
�(1 − 
*) ÷. = ;� − ;* 

ô½ = �1 − 
��
* ÷½ = −(;� − ;*) 

ôº = �1 − 
��(1 − 
*) ÷º = −(;� + ;*) 

 

3.4 Local Whittle Estimation 

 
A semiparametric local Whittle estimation is considered which utilises only Fourier 

frequencies in the neighbourhood of the origin and therefore is nonparametric with 

respect to the short run dynamics of the data. To begin with, the discrete Fourier 

transform (d.F.t.) and the periodogram of a time series ø� are defined and evaluated at 

frequency G  as 

��(G) = !√.HE ∑ ø�)��IzE�#!   

�Ñ(G) = ��(G)��∗(G) = r�!(∑ ø�)��IE�#! )(∑ ø�)���IE�#! )′   
where ��∗(G) is the conjugate transpose of ��(G). The Whittle approximation to the 

(negative) log-likelihood function is 

Ï(m, Ó) =  !� ∑ (log^F�G��^��#! + 'v[F�!�G��3)(��G��)])  

Ï(m, Ó) =  !� ∑ (log _Λù�!ΩΛúÉ �!_��#! + 'v[(Λù�!ΩΛúÉ �!)�!3)(��G��)])  

Ï(m, Ó) =  !� ∑ (log _Λù�!ΩΛúÉ �!_��#! + 'v[Ω�!3)�Λù��G��ΛúÉ �])  

To find the LW estimator, the minimization of (3.4.3) is needed with respect to the 

unknown parameters m = (Ê�, À′)′ and Ω, where À = (1, À!., … , À!\)  is the 

cointegrating parameters. The first step in minimising (3.4.3) is to concentrate it with 

respect to the parameter Ω. This means differentiating (3.4.3) with respect to Ω, 

solving the resulting first order condition for Ω and then substituting the result back 

into (3.4.3) as follows, 

(3.3.3) 

(3.4.3) 

(3.4.2) 

(3.4.1) 
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ûÏ(m, Ó)ûÓ = � [Ω�!�
�#! − Ω�!3)�Λù��G��ΛÉ��Ω�!] = 0 

The solution of the first order condition with respect to Ω gives 

Ó�(m) = 1T � Ô�3)N��G��PÔ�̅
�

�#!  

By substituting Ωü(θ) into Ï(m, Ó), this yields the concentrated likelihood function, 

3(m) = Ï ©m, Ωü(θ)ª = log^Ó�(m)^ − 2�∑ �Ù\Ù#! � !� ∑ log��#! ^G�^ 
+ ∑ log(1 − 4
Ù(1 − 
Ù) sin.(−;Ù))\Ù#!   

 

The local Whittle estimator of the parameter of interest, m, can then be defined in 

terms of the concentrated likelihood  m� = arg min{∈Ú 3(m) 

 The space of the true parameter m$ is the compact set þ = þ� × þ� × þ@ which is 

defined in the next section. 

 

3.5 Consistency 

 
This section introduces assumptions on the spectral density and the bandwidth that is 

needed to establish the consistency of the LW estimator. These assumptions are 

mainly multivariate extensions of those of Robinson (1995). They are similar to the 

assumptions imposed by Lobato (1999), Shimotsu (2007) and Robinson (2008). The 

assumptions imposed are as follows, 

 

Assumption 3.1: The cross spectral density between F�� and F*� , as G → 0, satisfies 

^F�*(G) − Æ�*|G|��z��ó ∑ �·º·#! exp[ �÷· sgn(G)]^ = =(G��z��ó) ,  <, - = 1, … , V 

 

Assumption 3.2: Â� = ∑ ,�����"�#$ , ∑ �,��. < ∞"�#$  

The innovations satisfy k(��|ℱ��!) = 0 and k(�����|ℱ��!) = �\ a.s. 

 

Assumption 3.3: m ∈ �r'(þ), 

(3.4.5) 

(3.4.4) 
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where the compact set þ = þ� × þ� × þ@, where þ� = {�:−Ý! ≤ � ≤ �� − Ý.}, þ� is 

an arbitrary large interval which includes {0} and þ@ = {;:−Ý½ − H. ≤ ; ≤ �� − Ýº} 

and Ý� are arbitrarily small positive numbers. 

 

Assumption 3.4:  !� + �E = =(1), as r → ∞. 

 

Assumption 3.5: 0 < Æ�* < �Æ**Æ��  

 

Assumption 3.1 is a smoothness condition that is typically imposed in spectral 

analysis. A rate of convergence of F�*(G) is imposed to G��z��ó. Assumption 3.2 

follow that of Robinson (1995) and Lobato (1999) in presenting the innovations in the 

Wold representation to be a square summable integrable martingale difference 

sequence that need not be strictly stationary, but satisfies a mild homogeneity 

restriction where the symbol ‖∙‖ denotes the supremum (Euclidean) norm and ℱ��! is 

the u-field generated by �Ù, ï < '. Assumption 3.2 also implies the existence of FÃ(G). 

Assumption 3.3 states that the unknown parameter m is an interior point to the 

compact set Θ. Assumption 3.4 restricts the rate of expansion of the bandwidth 

parameter T. The bandwidth must tend to infinity for consistency; however it must do 

so at slower rate compared to r in order to remain in the neighbourhood of the origin. 

Assumption 3.5 implies that Ω is positive definite and that the phase shift is 

identifiable. Under these assumptions, the following theorem can be set up which 

delivers the consistency of the LW estimator. 

 

Theorem 1: Assume that assumptions 3.1 through 3.5 hold, then 

   Êä Y→ Ê     as r → ∞ 

   À� − À = 	Y(G��z��ó)  as r → ∞    

 

Proof of Theorem 1: Consistency is derived by showing that the objective function 

converges uniformly in the parameter space to a limit which identifies all parameters 

and can thus be uniquely optimised. This proof follows mainly those of Robinson 

(1995), Lobato (1999), Shimotsu (2007) and Robinson (2008). 
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For any ? > 0 and � > 0, define the neighbourhoods which depend on ï, ��(?) = {ÀÙ: |�Ù| < ?} where �Ù = ÀÙ − À$Ù 

�@(?) = {;Ù: |�Ù| < ?} where ;Ù − ;$Ù 

��(?) = {�Ù: |
Ù| < ?} where 
Ù = �Ù − �$Ù �É�(?) = Θ�\��(?)  

�É@(?) = Θ@\�@(?)  

�É�(?) = Θ�\��(?)  Θ� = Θ@ × Θ�  

�É�(?) = ¦�É@(?) × Θ�§ ∪ {Θ@ × �É�(?)}  

�(�) = ��(��!� �̄��z��ó) × �@(�) × ��(�)  

�É(�) =  Θ\�(�)  

 

We have, PrNm� ∈ �É(�)P = Pr [ infãÉ(�) 3(m) ≤ infã(�) 3(m)] ≤Pr [ infãÉ(�) i(m) ≤ 0] 
where i(m) = 3(m) − 3(m$) 

We need to show that, Pr [ infãÉ(�) i(m) ≤ 0] → 0 

Then, 

i(m) = log^Ωü(m)Ωü(m)�!^ − 2 ∑ 
Ù\Ù#! ∑ log G���#!  

i(m) = log^Υ(�)Ξ(m)Ωü(m)Ξ(m)Υ(�)Ωü(m)�!^ + Â(�) 

 

where 

Υ(�) = ���}{(2
Ù + 1)��} 

Ξ(m) = ���}{(2JTr )�ñ} 

Â(�) = −2 � 
Ù
\

Ù#! ( 1T � log < − log T)�
�#! − � log(2
Ù + 1)\

Ù#!
= �{2
Ù − log(2
Ù + 1)\

Ù#! } − 2
Ù( 1T � log < − log T + 1)}�
�#!

= �{2
Ù − log(2
Ù + 1)\
Ù#! } + 	(log TT ) 

(3.5.2) 

(3.5.1) 
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since 
!� ∑ log < − log T + 1��#! = 	(±²³ �� ) and 
Ù = �Ù − �$Ù 

because � − log(� + 1) achieves a unique global minimum on (−1, ∞) at � = 0 and 

� − log(� + 1) > (�
¿  for 0 ≤ � < 1, for all sufficiently large r, 

minãÉ�(�) Â(�) ≥ �8 

(see, Robinson, 1995, p.1635). 

 

The first term in (3.5.2) can be written as log^Υ(�)Ωü∗(m)Υ(�)Ωü(m)�!^ where 

Ωü∗(m) = Ξ(m)Ωü(m)Ξ(m) = 1T Ξ(m)Ô�S � 3)(��G��)�
�#! S′Ô�̅Ξ(m) 

7� = Ô�(��G��)Ô�̅ 

As in Robinson (2008, p.23), Rearranging 

Ωü∗(m) = 6�(!)(Ê) + �E(À)6�(.)(Ê) + �E.6�(½)(Ê) 

�E(À) = ¸2JTr ¹�ñ (À$ − À) 

6�(�)(Ê) = ©}äÃ�(�)ª 

 

Then the first term in (3.5.2) can be defined as ��(Ê) + ��(m) where 

��(Ê) = Υ(�)6�(!)(Ê)Υ(�)6�(!)(Ê)�!  ��(m) = Ωü∗(m)6�(!)(Ê)�!  

 

It suffices to show that as r → ∞ Pr [infãÉ�(�) ��(Ê) ≤ 0] → 0 

Pr [ infãÉ�©���( �̄ )�z��óª��(Ê) ≤ 0] → 0 

 

To prove (3.5.6), it suffices to show following Lobato (1999) and Robinson (2008) 

supÚ��Υ(�){6(!)(Ê) − 6(!)(Ê)}Υ(�)� ­→ 0 

supÚ��[Υ(�)6(!)(Ê)Υ(�)]�!� < ∞ 

infãÉ�(�)×Ú� log^Υ(�)6(!)(Ê)Υ(�)6(!)(Ê)�!^ > 0 

 

(3.5.10) 

(3.5.9) 

(3.5.8) 

(3.5.7) 

(3.5.6) 

(3.5.4) 

(3.5.3) 

(3.5.5) 
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Now to prove (3.5.7), ��(Ê) = log Ò(�E(À)) where Ò(9) = 1 + ℵü!9 + ℵü.9., 

ℵü! = }äÃÃ(�)}ä��(�) − 2}äÃ�(�)}äÃ�(�)/det {6(!)(Ê)} and ℵü. = }äÃÃ(�)}ä��(�) − }äÃ�(�)./det {6(!)(Ê)} for 

all ℵü! and ℵü. ≥ 0. Since Ωü∗(m) and 6�(!)(Ê) are non-negative definite, then Ò(9) is 

non-negative for all real 9, thus the probability on the left side of (3.5.7) is bounded. 

The proof is complete. □ 

 

3.6 Asymptotic Normality 

 
Some further assumptions which need in deriving the asymptotic normality are listed. 

These assumptions are analogous to the assumptions in Lobato (1999), Shimotsu 

(2007) and Robinson (2008). 

 

Assumption 3.6: The cross spectral density between F�� and F*� , asG → 0, satisfies 

�F�*(G) − Æ�*|G|��z��ó � �·
º

·#! exp[ �÷· sgn(G)]� = 	(G��z��ó �) 

where  <, - = 1, … , V and 
 ∈ (0,1]. 
 

Assumption 3.7: Assumption 3.2 holds with also the elements of �� having a.s. finite 

third and fourth moments and cross-moments, conditional on ℱ��!. 

 

Assumption 3.8: Assumption 3.3 holds 

 

Assumption 3.9: 
�����(±²³ �)�

E�� + ±²³ E� = =(1), as r → ∞. 

 

Assumption 3.10: Assumption 3.5 holds 

 

Assumption 3.6 is the smoothness conditions used in the asymptotic theory of power 

spectral density estimates. This assumption imposes a rate of convergence on cross 

spectrum analogous to the one used in Robinson (1995) and Shimotsu (2007). 

Assumption 3.6 does not hold for 
 > 1. Assumption 3.7 implied that the innovations 

have third and fourth finite moments. Assumption 3.7 establishes that the process is 

linear with finite fourth moment. Assumption 3.8 is the same as assumption 3.3 (in 

section 3.5) that states that the unknown parameter m is an interior point to the 
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compact set Θ. Assumption 3.9 allows the bandwidth m to increase arbitrarily slowly 

with r, but it also imposes an upper bound on the rate of increase of T with r. It is 

similar to assumption 3.9 but slightly stronger. 

 

Theorem 2. Assume that conditions 3.6 through 3.10 hold, then 

√T�m� − m� �→ �(0, k�!) 

 m� is asymptotic normal with zero mean and asymptotic variance, k�!, where 

k = 2 ÌΩ$⨀(Ω$)�! + �\ + J.4 �Ω$⨀(Ω$)�! − �\�Í 7 
 

Proof of Theorem2: To prove the asymptotic normality of the LW estimator given 

the assumptions 3.6 to 3.10 and from theorem 1 in section 3.5, Êä Y→ Ê implies that  

��G� , Êä� − ��G�, Ê� = =Y(1) or tends to zero in probability as r → ∞; this enables us 

to use the same proofs  of asymptotic normality developed by Shimotsu (2007), 

Lobato(1999) and Robinson (2008). 

 

The theorem established if, for any V × 1 vector Ý, as r → ∞, 

Ý′√T ¶!({)¶{ �→ �(0, Ý�kÝ) 

¶�!({)¶{¶{" Y→ k 

 

The proof to show (3.6.1) is similar to that of Lobato (1999) and Shimotsu (2007). 

Consider, 

√T ¶!({)¶{# = − .� ∑ G���#! + tr �Ωü(m)�!√T ¶$ü({)¶{# � 
 

Let �Ã be a V × V matrix whose Âth diagonal element is one and all other elements are 

zero, and let Λ� denote Λ�(m).  

As 

 Λ��! = diag ¨^G�^��#[
Ã)��ÄÅ³(I)@# + (1 − 
Ã))�ÄÅ³(I)@#« 

and Re[(� + ��)(? + ��)] = �? − �� 
                                                           

7
 The symbol ⨀ denotes for the hadamard product. 

(3.6.1) 

(3.6.2) 

(3.6.3) 
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then 

√T ûΩü(m)ûmÃ = 1√T � log G�
�

�#! Re ��Λ�$��!��Ã�� + ���Ã��ΛÉ�$��!�
+ 1√T � G� − J2

�
�#! Im ��Λ�$��!�−�Ã�� + ���Ã��ΛÉ�$��!� = 7!ð + 7.ð 

 

Therefore (3.6.1) can be written as 

∑ ÝÃ\Ã#! ¨− .� ∑ log G� + trNΩü(m$)�!7!ðP« + ∑ ÝÃ\Ã#! trNΩü(m$)�!7.ðP = 4! + 4. 

 

We follow the same procedures in Shimotsu (2007, p.296) to find an approximation 

of  4! and 4.. 

4! = � ��� � Ψ��Ù�Ù + =Y(1) 

ΨÙ = 1J√Tr �'log G� − T�! � log G�
�

�#! (�
�#! ReNk� + k��P cos(ïG�) 

 

 4. = ∑ ��� ∑ Ψ*��Ù�Ù + =Y(1) 

Ψ*Ù = 12√Tr �'log G� − T�! � log G�
�

�#! (�
�#! ReNk� + k��P sin(ïG�) 

It follows from (3.6.5) and (3.6.6) that, with æ� = 0, 

� ÝÃ
\

Ã#! √T û3(m$)ûmÃ = � æ�
E

�#! + =Y(1) 

æ� = ��� �NΨ��ÙΨ*��ÙP�Ù
��!
Ù#!  

By standard martingale CLT, (3.6.1) follows if 

∑ k(æ�.|ℱ��!) − ∑ ∑ ÝÃÝ�kÃ�\�#! ­→ 0\Ã#!�#!  

∑ k(æ�.�(|æ�| > +)) ­→ 0�#! , for all + > 0  

(3.6.7) and (3.6.8) are proved in Robinson (1995, p.1645), Lobato (1999, pp.141-143) 

and Shimotsu (2007, pp.298-299). By establishing (3.6.7) and (3.6.8), (3.6.1) is 

proved. 

(3.6.4) 

(3.6.5) 

(3.6.6) 

(3.6.7) 

(3.6.8) 
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To prove (3.6.2) which is similar to that in Lobato (1999) and Shimotsu (2007), 

observe that 

¶�!({)¶{#¶{," = tr �−Ωü(m)�! ¶$ü({)¶{# Ωü(m)�! ¶$ü({)¶{, + Ωü(m)�! ¶�$ü({)¶{#¶{,"� 
 

where the derivatives of Ωü (m) are given by 

ûΩü(m)ûmÃ = 1T �Re Ì-log G� + G� − J2 �. �Ã(Λ�)�!��(ΛÉ�)�!Í�
�#!

+ 1T �Re Ì-log G� + G� − J2 �. (Λ�)�!��(ΛÉ�)�!�ÃÍ�
�#!  

and 

û.Ωü(m)ûmÃûm�� = 1T �Re é-log G� + G� − J2 �.. �Ã��(Λ�)�!��(ΛÉ�)�!ë�
�#!

+ 1T �Re Ì/log G� + G� − J2 �/. �Ã(Λ�)�!��(ΛÉ�)�!��Í�
�#!

+ 1T �Re Ì/log G� + G� − J2 �/. ��(Λ�)�!��(ΛÉ�)�!�ÃÍ�
�#!

+ 1T �Re é-log G� + G� − J2 �.. (Λ�)�!��(ΛÉ�)�!�Ã��ë�
�#!  

Define for ℎ = 0, 1, 2 

Ωü0(m) = !� ∑ (log G�)0 Re[�Λ���!���ΛÉ���!]��#!  

Ωü0∗ (m) = !� ∑ (log G�)0 Im[�Λ���!���ΛÉ���!]��#!  

then it follows that ûΩü(m)ûmÃ = �ÃΩü!(m) + Ωü!(m)�Ã + π2 �ÃΩ$∗ (m) − π2 �ÃΩ$∗ (m)�Ã + =Y[(log r)�!] 
û.Ωü(m)ûmÃûm�� = �Ã��Ωü.(m) + �ÃΩü.(m)�� + ��Ωü.(m)�Ã + Ωü.(m)�Ã�� 

  + Hº N−�Ã��Ωü$(m) + �ÃΩü$(m)�� + ��Ωü$(m)�Ã − Ωü$(m)�Ã��P 
   +J�Ã��Ωü!∗(m) − JΩü!∗(m)�Ã�� + =Y(1) 

 

(3.6.9) 

(3.6.10) 

(3.6.11) 
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We can write (3.6.10) and (3.6.11) as follows uniformly in m 

Ωü0(m) = Ωü$ !� ∑ (log G�)0 + =Y[(log r)0�.]��#! ,  Ωü0∗ (m) = =Y[(log r)0�.]  
 

The second term in assumption 3.9 is necessary in showing (3.6.12) because the terms 

with Ωü!∗(m) do not cancel out even if we take the trace of Ωü(m)�! ¶�$ü({)¶{#¶{," . Define 

Ω$!Ã = �ÃΩ$ + Ω$�Ã Ω$.Ã� = �Ã��Ω$ + �ÃΩ$�� + ��Ω$�Ã − Ω$�Ã�� Ω$½Ã� = −�Ã��Ω$ + �ÃΩ$�� + ��Ω$�Ã − Ω$�Ã�� 

 

It follows from (3.6.12) as Shimotsu (2007, p.301), that we can obtain û.3(m)ûmÃûm�� = tr Ω$�! Ω$.Ã� + J4 Ω$�!Ω$½Ã� + =Y(1) 

and (3.6.2) follows. Since Ωü(m) Y→ Ω$ follows from (3.6.12). It remains to show 

(3.6.12) as in Shimotsu (2007, pp.301-302). Define 

50(m) = 1T �(log G�)0�
�#! Λ�(�)�!Ω$ΛÉ�(�)�! 

where � = m − m$, then (3.6.12) follows if 

supÚ(m)1 !� ∑ (log G�)0��#! Λ�(m)�!��ΛÉ�(m)�! − 50(m)1 = =Y[(log r)0�.] 
supÚ(m)150(m) − Ω$ !� ∑ (log G�)0��#! 1 = =Y[(log r)0�.] 

 

(3.6.14) can be written as  

supÚ(m)1 !� ∑ (log G�)0��#! Λ�(m)�!NΛ�(m)�!��ΛÉ�(m)�! − Ω$PΛÉ�(m)�!1 

where the (Â, >) term inside supÚ(m) in (3.6.15) is equal to  

1T �(log G�)0�
�#!

|G|��#��, � ô·
º

·#!
)��ÄÅ³(I)õö é|G|��#��, � ô·

º
·#!

)��ÄÅ³(I)õö��G� , Ê��∗�G� , Ê� − Ω$Ã�ë 

and the (Â, >) term inside supÚ(m) in (3.6.14) is equal to 

!� ∑ (log G�)0��#! N|G|��#��, ∑ ô·º·#! )��ÄÅ³(I)õö��G�, Ê��∗�G�, Ê� − 1PΩ$Ã� 

 

and hence (3.6.13), (3.6.14) and (3.6.16) are =Y[(log r)0�.] as in Shimotsu (2007, 

p.302), then (3.6.12) is shown. The proof is complete. □ 

  

(3.6.13) 

(3.6.12) 

(3.6.14) 

(3.6.15) 

(3.6.16) 
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3.7 Simulation 

 
This section reports some simulations that were conducted to examine the finite 

sample behaviour of the developed local Whittle estimator (or LWE). The following 

generating mechanism (a two sided moving average process), introduced in Davidson 

and Hashimzade (2008), is adopted in this chapter to generate fractionally 

cointegrated systems, 

�� = }(�; �, 
, �)Â� = � ��Â���
"

�#�"  

where }(�; �, 
, �) = 
(1 − �)ð��(1 − ��!)�ð + (1 − 
)(1 − �)�ð(1 − ��!)ð�� 

 

The lag structure is a convolution of the binomial series associated with fractional 

integration as follows where < > 0, 

 �$ = !�(ð)�(��ð) ∑ �(ð *)�(��ð *)�(* !)�"*#$   

 �� = !�(ð)�(��ð) ∑ ©2�(ð *)�(��ð * �) (!�2)�(ð * �)�(��ð *)�(* !)�(* ! �) ª"*#$   

 ��� = !�(ð)�(��ð) ∑ ©(!�2)�(ð *)�(��ð * �) 2�(ð * �)�(��ð *)�(* !)�(* ! �) ª"*#$  

Using Stirling’s formula, it is easy to show that both, 

� Γ(� + -)Γ(� − � + - + <)Γ(- + 1)Γ(- + 1 + <)"
*#$ ~,<��! 

and 

� Γ(� + - + <)Γ(� − � + -)Γ(- + 1)Γ(- + 1 + <)"
*#$ ~,<��! 

where , is a strictly positive constant. The relationship between the value of the 

memory parameter and the persistence of a shock can be understood in terms of the 

coefficient in the binomial expansion. Given the long memory parameter �, different 

choices of 
 and � can affect the amount of short-run memory relative to long run, 

either symmetrically forwards and backwards or asymmetrically. The case � = 0, 
 = 1 gives  }(�; �) = (1 − �)�� which corresponds to the one-sided model (lags but 

no leads). Another case is  � = 0,  
 = 0, which yields }(�; �) = (1 − ��!)�� (leads 

but no lags). Moreover, when � = �., the model does not depend on 
. The symmetry 

property also holds for the case 
 = !. (see Davidson and Hashimzade (2008)). 
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Accordingly, to satisfy the process (3.3.1) the following fractionally cointegrated 

system is generated for simulation, 

34� = x}(�; �!, 
!, �!) 00 }(�; �., 
., �.)|567 
where  

3 = �1 −À0 1 �,   4� = �9����  and  56 = �Â!�Â.�� 
Â� is independently distributed and generated by ����(0, Ω), where the diagonal 

elements of Ω were fixed to 1 and the off-diagonal elements of Ω, �, were selected to 

be (0.0, 0.4, 0.8). � is the correlation between Â!� and Â.�. The fractional parameters 

of interest (�!, �.) are set as (0.05, 0.4) and (0.2, 0.3). The former cases (0.05, 0.4) are 

close to what is expected in many practical situations; while, the latter describes a 

weaker form of cointegration where the memory parameters are closer. Sample size r 

is chosen to be r = 512 and r = 1024, and the bandwidth parameters chosen 

are T = r$.¾ and T = r$.¿ to check the robustness of the estimator due to changes 

in T. The Monte Carlo bias and root mean squared error (RMSE) of the local Whittle 

estimator are computed using 10,000 replications. The performance of the LW 

estimator is studied for different values of 
 and � with fixed cointegrating 

parameter À = 1 in (3.7.1). The simulation results based on � = 0 and 
 = 1, � = 0 

and 
 = 0 and � = 0 and 
 = 0.5 are reported in the following tables (other values 

of 
 and � were tried, but are not reported here). Simulations are done in Ox6.0 and 

TSM4.3.

(3.7.1) 
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Table 14: Simulation results for bias and RMSE where � = 0 and 
 = 1 �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.005 0.086 -0.008 0.093 0.007 0.085  -0.003 0.080 -0.006 0.088 0.005 0.079 

0.05 0.4 0.4  0.003 0.081 0.005 0.082 0.005 0.080  0.002 0.078 0.004 0.082 0.005 0.077 

0.05 0.4 0.8  0.002 0.079 0.002 0.078 0.005 0.081  0.002 0.077 0.003 0.080 0.004 0.075 

0.2 0.3 0  -0.012 0.095 -0.011 0.096 0.008 0.086  -0.010 0.092 -0.011 0.098 0.006 0.081 

0.2 0.3 0.4  0.009 0.090 0.010 0.092 0.007 0.084  0.006 0.085 0.008 0.094 0.007 0.084 

0.2 0.3 0.8  0.009 0.091 0.008 0.087 0.005 0.080  0.007 0.089 0.008 0.093 0.008 0.083 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.003 0.081 -0.004 0.082 0.005 0.085  -0.002 0.076 -0.002 0.077 0.003 0.076 

0.05 0.4 0.4  0.002 0.074 0.002 0.075 0.004 0.082  0.000 0.066 0.001 0.069 0.004 0.079 

0.05 0.4 0.8  0.000 0.065 0.001 0.071 0.004 0.080  0.000 0.064 0.000 0.063 0.002 0.070 

0.2 0.3 0  -0.009 0.089 -0.010 0.092 0.006 0.087  -0.009 0.093 -0.008 0.095 0.004 0.081 

0.2 0.3 0.4  0.008 0.085 0.008 0.087 0.008 0.085  0.006 0.088 0.007 0.093 0.006 0.091 

0.2 0.3 0.8  0.006 0.084 0.009 0.089 0.007 0.082  0.004 0.085 0.005 0.084 0.006 0.090 
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Table 15: Simulation results for bias and RMSE where � = 0 and 
 = 0 �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.014 0.089 -0.013 0.085 0.009 0.090  -0.009 0.095 -0.007 0.094 0.007 0.094 

0.05 0.4 0.4  0.010 0.090 0.011 0.080 0.008 0.084  0.008 0.092 0.006 0.091 0.008 0.096 

0.05 0.4 0.8  0.016 0.091 0.015 0.081 0.007 0.087  0.011 0.096 0.006 0.097 0.005 0.082 

0.2 0.3 0  -0.016 0.090 -0.018 0.095 0.011 0.094  -0.012 0.099 -0.012 0.095 0.005 0.083 

0.2 0.3 0.4  0.011 0.089 0.020 0.093 0.009 0.089  0.011 0.084 0.011 0.098 0.006 0.089 

0.2 0.3 0.8  0.020 0.097 0.021 0.098 0.006 0.084  0.015 0.106 0.013 0.102 0.007 0.086 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.010 0.084 -0.009 0.080 0.007 0.088  -0.008 0.094 -0.005 0.091 0.005 0.092 

0.05 0.4 0.4  0.007 0.088 0.009 0.078 0.006 0.086  0.006 0.098 0.004 0.095 0.006 0.090 

0.05 0.4 0.8  0.012 0.087 0.012 0.082 0.005 0.087  0.009 0.103 0.003 0.098 0.008 0.091 

0.2 0.3 0  -0.013 0.090 -0.016 0.089 0.008 0.091  -0.010 0.096 -0.009 0.101 0.007 0.089 

0.2 0.3 0.4  0.010 0.079 0.015 0.087 0.009 0.087  0.008 0.090 0.008 0.095 0.009 0.085 

0.2 0.3 0.8  0.014 0.094 0.016 0.092 0.004 0.080  0.011 0.109 0.010 0.099 0.008 0.083 
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Table 16: Simulation results for bias and RMSE where � = 0 and 
 = �� �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.013 0.089 -0.012 0.087 0.011 0.091  -0.008 0.096 -0.009 0.091 0.005 0.093 

0.05 0.4 0.4  0.012 0.083 0.014 0.079 0.007 0.085  0.009 0.090 0.007 0.090 0.007 0.090 

0.05 0.4 0.8  0.014 0.094 0.013 0.082 0.009 0.084  0.010 0.094 0.008 0.095 0.006 0.085 

0.2 0.3 0  -0.013 0.095 -0.015 0.093 0.010 0.095  -0.011 0.103 -0.010 0.092 0.007 0.080 

0.2 0.3 0.4  0.010 0.087 0.021 0.094 0.011 0.091  0.010 0.085 0.010 0.095 0.004 0.085 

0.2 0.3 0.8  0.018 0.099 0.019 0.095 0.005 0.083  0.013 0.094 0.011 0.100 0.008 0.089 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.05 0.4 0  -0.009 0.080 -0.011 0.084 0.010 0.094  -0.007 0.090 -0.007 0.094 0.006 0.095 

0.05 0.4 0.4  0.008 0.089 0.010 0.079 0.008 0.089  0.007 0.096 0.006 0.097 0.008 0.097 

0.05 0.4 0.8  0.010 0.085 0.011 0.076 0.007 0.091  0.008 0.097 0.005 0.094 0.005 0.087 

0.2 0.3 0  -0.011 0.084 -0.014 0.085 0.010 0.095  -0.011 0.099 -0.007 0.095 0.007 0.086 

0.2 0.3 0.4  0.009 0.075 0.017 0.093 0.008 0.085  0.009 0.094 0.009 0.098 0.007 0.089 

0.2 0.3 0.8  0.012 0.090 0.014 0.087 0.005 0.083  0.010 0.103 0.008 0.095 0.009 0.085 
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The results are summarised in tables 14-16. Table 14 reports the simulation results 

for � = 0 and 
 = 1 where (3.7.1) which corresponds to lags-no leads model. The 

simulation results are reported in table 14 for bandwidth T = r$.¾ and T = r$.¿ for 

sample sizes r = 512 and r = 1024 and the correlation between Â!� and Â.� are set 

to different values 0, 0.4 and 0.8. The estimates of the memory parameters are �! 

and �. are discussed along with the cointegrating parameter À. The bias in the 

estimates �! and �. is very low and effectively diminishes (significantly decreases) 

when considering a larger sample. For most of the specifications, the bias is negative 

and it is uniformly lower than 0.012, in absolute value. The RMSE decreases in the 

bandwidth parameter which suggests that larger bandwidths are preferable. The 

RMSE shows that the memory parameters are estimated quite accurately. Looking at 

the case where correlation is 0.4 and 0.8, the same magnitude of bias on average and a 

bit lower RMSE is observed. Hence, the performance of the estimator improves with 

the presence of endogeneity for � = 0.4 and � = 0.8. Moreover, the estimates of  À works well over different bandwidth and sample size, even for (�!, �.) = (0.2,0.3)  

where �. − �! is small. 

 

Similar results can be deduced from tables 15 and 16. Table 15 reports the simulation 

results for � = 0 and 
 = 0 in which the data generating model (3.7.1) corresponds to 

leads-no lags. On the other hand, table 16 reports the simulation results for � = 0 

and 
 = 0.5 that corresponds to a symmetric two sided model. In (3.7.1), the 

cointegrating parameter is fixed to À = 1 for both cases. The estimates �! and �. 

suffer from severe bias, however it decreases for larger sample r = 1024. On the 

other hand, the RMSE reflects the bias and substantially increases in the bandwidth. 

In addition, results reports worse estimates for higher values of correlation � = 0.4 

and � = 0.8. The estimates of beta in tables 15 and 16 are imprecise and have almost 

identical poor performance. In general, the simulation results for the LWE, tables 15 

and 16, are significantly worse than that in table 14. Hence, the one-sided model for 

(3.7.1) is a better option for LWE. 

 

Overall, the one sided model where � = 0 and 
 = 1  dominates in terms of both bias 

and RMSE for all values of bandwidth and sample size and performs fairly stable 
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especially where (�!, �.) = (0.05,0.4). In addition, the LW estimator improves and 

performs best with the presence of endogeneity for � = 0.4 and � = 0.8. 

 

Furthermore, the Wald test with the above described simulation designs for the null 

hypotheses À = 0, 
! = 1, �! = 0 and �! = 0  is discussed in terms of size and 

power8. Table 17 reports the size for the hypotheses 
! = 1 and �! = 0 and the power 

for the hypotheses À = 0 and �! = 0 of Wald test for the one-sided model 

where �! = 0 and 
! = 1. The test on 
! and �! is over-sized, however it improves 

with the sample size and larger T. In addition, the sizes are better when (�!, �.) =(0.05,0.4). For the test on �!, the power is very poor, but it seems that it increases as 

the bandwidth increases. On contrast, the power for testing À is very high and it 

increases as À moves away from the null. Overall, the Wald test is oversized in nearly 

all the cases, the LW estimator appears to work best with larger bandwidth and 

sample. 

Table 17: Rejection frequency of Wald test with 5% level 
   r = 512 r = 1024 �! �. � T �! �! 
! À T �! �! 
! À 

0.05 0.4 0 22 0.40 0.06 0.08 1.00 32 0.46 0.03 0.05 1.00 
  0 42 0.63 0.04 0.05 1.00 64 0.65 0.02 0.03 1.00 
  0.4 22 0.51 0.08 0.09 1.00 32 0.58 0.06 0.07 1.00 
  0.4 42 0.78 0.06 0.08 1.00 64 0.85 0.03 0.03 1.00 
  0.8 22 0.49 0.08 0.09 0.98 32 0.55 0.04 0.04 1.00 
  0.8 42 0.75 0.06 0.06 1.00 64 0.79 0.02 0.03 1.00 

0.2 0.3 0 22 0.38 0.08 0.13 0.79 32 0.45 0.05 0.07 0.91 
  0 42 0.47 0.08 0.10 0.84 64 0.59 0.04 0.05 0.98 
  0.4 22 0.43 0.10 0.12 0.88 32 0.64 0.09 0.05 0.89 
  0.4 42 0.67 0.09 0.09 0.95 64 0.82 0.09 0.07 0.98 
  0.8 22 0.45 0.12 0.10 0.85 32 0.65 0.10 0.09 0.94 
  0.8 42 0.72 0.10 0.07 0.98 64 0.89 0.07 0.08 1.00 

 
 

3.8 Empirical Examples 

 
In this section, the LW estimation developed in the preceding sections is applied to 

three different empirically relevant examples. The examples considered are a bivariate 

                                                           

8
 The null hypothesis of a linear set of V restrictions Ï = (m� − m)�k�(m� − m) �→ 8\.,where (m� − m) is a V × 1 vector and the matrix k�  is a V × V covariance matrix obtained by replacing Ω$ by the estimate 

Ωü(m�) as Ωü(m�) Y→ Ω$ (see theorem 2). 
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series and two trivariate series denoting by �!� the variable chosen to be dependent. 

Suppose the following model that accommodates the trivariate series ��, S�� =  Â� 

where 

S = é1 −À!. −À!½0 1 00 0 1 ë,   �� = é�!��.��½�ë  and  Â� = éÂ!�Â.�Â½�ë 

 

When �! ≠ �. ≠ �½, and S = 0, then �!� , �.� and �½� have unequal memories �!, �. 

and �½ respectively. When �! < �. and/or �½ and S ≠ 0 (i.e. À!. ≠ 0 or À!½ ≠ 0); 

then the unobservable linear combination Â!� = �!�−À!.�.� − À!½�½� has less 

memory of �! than the returns series, and�!� , �.� and �½� are said to be fractionally 

cointegrated.  

 

3.8.1 Inflation Rate Harmonization in the European Union 

 

The consumer price indices (CPIs) of Spain and France are studied in this subsection. 

Hence, methods of calculating the CPI differs from one country to another, the 

harmonized index for consumer prices (HICP) developed in the European Union are 

used to examine for inflation rate harmonization in Spain and France. It is expected to 

find a stationary fractional cointegration between the inflation rates where evidence of 

long memory has been previously found, see Doornik and Ooms (2004) and Nielsen 

and Frederiksen (2010). A bivariate series of 159 observations on monthly inflation 

rates based on HICP of Spain and France is applied- Já­,� and J9!,� respectively. This 

data was obtained from Eurostat and spans from the January 1992 to April 2005.  

Table 18: LM estimates under the assumption of no cointegration 

Bandwidth Spain France 

 Já­,� J9!,� 

T = r$.¾ 0.3136 0.2057 

 (0.1382) (0.1438) T = r$.¿ 0.1080 0.0912 

 (0.0987) (0.0975) T = r$.: 0.0790 0.0643 

 (0.0721) (0.0706) 

Note: The table shows long memory estimates for the LWEs with standard errors in the parentheses. 
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The estimates of the memory parameters are reported in Table 18 under the 

assumption of no cointegration. The results suggest that the presence of long memory 

properties in the inflation rates, however, the memory estimates decrease as the 

bandwidth chosen increases. Across the different bandwidth, it can be easily 

concluded that the inflation rates in Spain and France are stationary series with long 

memory. As the results so far are consistent in a sense that the inflation rates in Spain 

and France can be described as stationary series with long memory parameters, now 

let’s proceed to conduct the multivariate local Whittle estimation on the fractionally 

cointegration system to estimate the memory and cointegrating parameters (see table 

19). 

Table 19: Application to inflation rates relation where 
� = 1 and �� = 0  
Bandwidth Parameters Spain France Wald test 

  �!� = Já­,� �.� = J9!,� Ï��#$ ,���#! T = r$.¾ = 12 ��� 0.0736 0.2098 

2.3463 
  (0.1023) (0.1853) 
 À�!.  1.407 
   (0.1136) T = r$.¿ = 20 ��� 0.0960 0.2681 

7.852* 
  (0.0725) (0.0816) 
 À�!.  1.029 
   (0.0945) 

Note: The table shows long memory and cointegrating estimates for the LWEs with standard errors in the 
parentheses. For the Wald tests, one or two asterisks denote significance at 5% or 1% respectively. 

 

Table 19 report the results for the joint local Whittle estimation where 
� = 1 

and �� = 0. Two different values for the bandwidth (T = r$.¾ = 12 and  T = r$.¿ =20) were used. The estimates of the memory parameters �! and �. along with 

cointegrating parameter À!. are reported, while the standard errors are reported in 

parentheses. The LW estimates specify that the inflation rate series can still be 

described as stationary long memory processes, and hence a stationary fractional 

cointegration is expected to be observed. The estimate of �! is smaller than �., and 

increases for larger bandwidth. The estimate of the cointegration coefficient À!. 

represents the existence of the fractional cointegration between the inflation rates. For 

the two different bandwidths 12 and 20, the estimates of the cointegration 

coefficient À!. are 1.407 and 1.029 respectively, which is higher than unity. 

Consequently, this implies that the long run inflation rate in Spain is much higher than 

that in France. The estimate of À!. decreases as the bandwidth increases. 
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The above results shows that the inflation rates relationship can be explained by a 

fractionally cointegrated system, as they tend to move together where the errors have 

less memory. Moreover, the last column in Table 19 reports the Wald test for the joint 

hypothesis �! = 0 and  À!. = 1.  The test does not reject the null hypothesis at the 5% 

level for T = r$.¾ = 12. On the other hand, the null hypothesis is rejected for T =r$.¿ = 20. Nevertheless, at 1% level the test does not reject the null hypothesis for 

both bandwidths  T = 12 and 20. These results suggest the presence of long memory 

property in inflation rates with a unit cointegrating coefficient. In other words, the 

results imply that we cannot reject that the inflation series are stationary fractionally 

cointegrated, where �! is less that �.. Finally, the estimates of �� were captured (but 

not reported here) to reflect the different degree of lag and lead memory. The phase 

shifts among the inflation rates depends on the estimates of the parameters �� and ��. 
Overall, the results show an evidence of fraction cointegration among the inflation 

rates in Spain and France. 

 

3.8.2 Volatility Relations in the Middle East 

 

This subsection analyses the relation among the volatilities of the Morgan Stanley 

Capital International (MSCI) indices in the Middle East. A trivariate series is used of 

MSCI Jordan, MSCI Israel and MSCI Egypt covering three different markets in the 

Middle East, i.e. the frontier, developed and emerging markets respectively. The data 

is obtained from the Thomson One Banker database. The sample covers the period 

from March 2002 to February 2012 with 121 observations. The analysis is 

implemented on the volatilities of MSCI Jordan, Israel and Egypt denoted as u;!<,�. , 

uyá!,�.  and u�¬=,�.  respectively. 
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Table 20: LM estimates under the assumption of no cointegration 

Bandwidth MSCI Jordan MSCI Israel MSCI Egypt 

 u;!<,�.  uyá!,�.  u�¬=,�.  

T = r$.¾ 0.4330 0.3546 0.3683 

 (0.0867) (0.0801) (0.0832) T = r$.¿ 0.4582 0.4011 0.4130 

 (0.0755) (0.0712) (0.0772) T = r$.: 0.3943 0.4266 0.4322 

 (0.0534) (0.0549) (0.0583) 

Note: The table shows long memory estimates for the LWEs with standard errors in the parentheses. 

 

Table 20 shows that the memory estimates of the three volatilities which are very 

similar and seem to be stable across the different bandwidths chosen. The memory 

estimates suggest that the volatilities exhibit stationary long memory properties. 

 

Table 21: Application to volatility relations where 
� = 1 and �� = 0  
Bandwidth Parameters MSCI Jor. MSCI Isr. MSCI Egy. Wald test 

  �!� = u;!<,�.  �.� = uyá!,�.  �½� = u�¬=,�.  Ï��#$ ,���#!T = r$.¾ = 11 ��� 0.2016 0.4775 0.4299 

2.0917 
  (0.0624) (0.0785) (0.0881) 
 À�!�  1.2190 0.3525 
   (0.1143) (0.0727) T = r$.¿ = 17 ��� 0.2642 0.4899 0.3945 

2.8644 
  (0.0713) (0.0880) (0.0726) 
 À�!�  1.0587 0.2759 
   (0.0955) (0.0781) 

Note: The table shows long memory and cointegrating vector estimates for the LWEs with standard errors in the 
parentheses. For the Wald tests, one or two asterisks denote significance at 5% or 1% respectively. 

 

 

Table 21 report the results for the joint local Whittle estimation for the bandwidth 

(T = r$.¾ = 11 and  T = r$.¿ = 17), where 
� = 1 and �� = 0. The estimates of the 

memory and cointegrating parameters are reported, while the standard errors are 

reported in parentheses. The LW estimates show that the volatilities can be described 

as stationary long memory processes. The volatility of MSCI Jordan was chosen to be 

the dependent variable as it is expected to depend on the volatilities in both Israel and 

Egypt stock markets. The estimates of the memory parameters �! and �. along with 
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cointegrating parameters À!� (where < = 2, 3) are reported, while the standard errors 

are reported in parentheses. The estimate of �! increases as bandwidth increases on 

average and is smaller than �. and �.. The stationary fractional cointegration relation 

between the volatilities of MSCI Jordan with that of MSCI Israel and Egypt indices is 

represented in the estimates of À!�. The estimates of À!., corresponding to that of the 

MSCI Israel, are 1.22 and 1.06; while, the estimates of À!½, corresponding to the 

MSCI Egypt, are 0.35 and 0.28. The cointegrating estimates between Jordan and 

Israel are close to 1. Accordingly, the results indicate that the volatility of MSCI 

Jordan follows and depends mostly on that of MSCI Israel. 

 

The above results show that the volatilities in both MSCI Jordan and Israel can be 

explained by a fractionally cointegrated system. In Table 21, the Wald test are also 

reported for the joint hypothesis �! = 0 and  À!. = 1.  The test does not reject the null 

the hypothesis at the 5% level for both bandwidths T = r$.¾ = 11 and T = r$.¿ =17. These results suggest that we cannot reject that the volatility relations are 

stationary fractionally cointegrated, where �! is less that �..  

 

3.8.3 Returns on the US Treasury Rates 

 

Finally, a potential long run relationship among the returns on the US treasury rates is 

examined. The model developed is applied to a trivariate series of 5,503 observations 

on the daily U.S. Treasury rate, at constant maturities of 2 years, 3 years and 7 years 

(Y2, Y3 and Y7 respectively). These series were obtained from the U.S. Department 

of the Treasury and the data spans from 02/01/1990 to 23/12/2011. The returns 

(differences of the log rates) of Y2, Y3 and Y7 are calculated and analysed. 
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Table 22: LM estimates under the assumption of no cointegration 

 Y2 Y3 Y7 

Bandwidth    T = r$.¾ 0.2092 0.2843 0.3237 

 (0.0968) (0.0984) (0.0989) T = r$.¿ 0.2216 0.3075 0.3429 

 (0.0876) (0.0885) (0.0891) T = r$.: 0.2591 0.3357 0.3722 

 (0.0690) (0.0693) (0.0711) 

Note: The table shows long memory estimates for the LWEs with standard errors in the parentheses. 

 

Table 22 reports the estimates of the memory parameters for Y2, Y3 and Y5 under the 

assumption of no cointegration. The standard errors are reported in parentheses. The 

memory estimates suggests that all the returns are stationary series with long 

memories as �� is between 0 and �� over different bandwidth chosen. As the memory 

parameters reflect the degree of the persistence of the series, the results indicate that 

the degree of persistence increases with maturity.  

 

Table 23: Application to the US treasury returns where 
� = 1 and �� = 0  
Bandwidth Parameters Y2 Y3 Y7 Wald test 

  �!� = �2� �.� = �3� �½� = �7� Ï��#$ ,���#!T = r$.¾ = 74 ��� 0.1724 0.3799 0.3285 

16.2946* 
  (0.6540) (0.852) (0.0833) 
 À�!�  0.8193 0.3567 
   (1.0934) (0.0908) T = r$.¿ = 175 ��� 0.2583 0.3162 0.3937 

18.2445* 
   (0.7958) (0.0889) 
 À�!�  0.7411 0.4486 
   (0.9766) (0.0914) 

Note: The table shows long memory and cointegrating vector estimates for the LWEs with standard errors in the 
parentheses. For the Wald tests, one or two asterisks denote significance at 5% or 1% respectively. 

 

 

Table 23 reports the results for the joint local Whittle estimation where 
� = 1 

and �� = 0 with large bandwidths (T = r$.¾ = 74) and (T = r$.¿ = 175). Similar to 

the last two examples, the estimates of the memory and cointegrating parameters are 

reported (the standard errors are reported in parentheses). The estimate of �! is 

smaller than �. and �½, and seems to be larger when bandwidth increases. On the 
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other hand, the estimates of À!. are 0.82 and 0.74 and the estimates of  À!½ are 0.36 

and 0.45 for the bandwidth r$.¾ and r$.¿ respectively. However, the estimates of À!., 

corresponding to Y3, are very close to unity, unlike the estimates of À!½ that 

corresponding to Y7. According to this results, we can expect strong cointegration 

between Y2 and Y3 compared to the one between Y2 and Y7 which concludes that 

the shorter time interval between the maturities, the stronger the evidence of fraction 

cointegration. In addition, the Wald tests for the joint hypothesis �! = 0 and  À!. = 1 

are reported.  The test rejects the null the hypothesis at the 5% level for T = 74 

and 175 which implies that we can reject that the US treasury returns are stationary 

fractionally cointegrated between Y2 and Y7. 

 

3.9 Conclusion 

 
This chapter proposes a semiparametric local Whittle estimator for multivariate 

stationary fractionally cointegrated systems. The multivariate framework is based on a 

spectral density that has both a real and complex part even at the origin, which 

accommodates for phase shifts. The phase of the proposed spectral density at the 

origin depends on the long memory parameters � and the parameter � which exhibits 

the degree of forward or backward memory.  

 

Furthermore, the proposed multivariate semiparametric estimator was applied on three 

different empirically relevant examples to examine the presence of stationary 

fractional cointegration relationships. The analysis covered both bivariate and 

trivariate framework and can accommodate for a multivariate framework. The first 

example applied to a bivariate series of the inflation rates in Spain and France where a 

strong evidence of a fractional cointegration was found. Secondly, a trivariate series 

of the volatilities of three stock market indices in the Middle East (MSCI Jordan, 

MSCI Israel and MSCI Egypt) was examined and the results showed that the 

volatility of MSCI Jordan strongly follows that of MSCI Israel. Finally, the model 

developed is applied on another trivariate series of the daily US Treasury rate at 

constant maturities of 2 years, 3 years and 7 years and an evidence of a stationary 

fractional cointegration was reported between the returns with short time interval 

between the maturities. 
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Abstract 
This chapter introduces a semiparametric extended local Whittle (XLW) estimator to 
be applied throughout the stationary and non stationary regions of the memory 
parameters for fractionally cointegrated systems based on the analysis in chapter 3. 
The extended local Whittle estimator utilises the idea of extended discrete Fourier 
transform and periodogram as in Phillips (1999) and Abadir et al. (2007). The model 
employed in this chapter covers the multivariate framework. A Monte Carlo study 
exhibits the performance of the XLWE in non-stationary region. Finally, an empirical 
analysis of a trivariate series of US money aggregates (��>�, 42� and 43�) is 
presented. It is found that there is strong evidence of fractional cointegration between 
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4.1 Introduction 

 
This chapter develops a semiparametric local Whittle (LW) estimator to be applied 

throughout the stationary and non stationary zones in a multivariate framework. In 

chapter 3, a general LW estimator for multivariate stationary fractionally cointegrated 

system was introduced for the stationary case when the long memory parameter � is 

between 0 and  ��, by extending the work by Robinson (2008) on the bivariate LW 

estimator. Since the importance of larger values of � in economics as evidence from 

the number of papers in economics that have derived estimators that are robust to non-

stationary values of �, it is a natural progress to modify the estimation procedures in 

chapter 3 to cover a wider range of �. The notion of the extended discrete Fourier 

transform (dFt) is utilised in this chapter to extend the multivariate LW estimator in 

chapter 3 to cover non stationary values of �.  

 

In the univariate framework, the LW estimator is a common semiparametric 

estimator. Robinson (1995) proved its consistency and asymptotic normality for the 

stationary region where  � ∈ (− !. , !.). Velasco (1999) extended Robinson’s (1995) 

results to show that the estimator is consistent for � ∈ (− !. , 1) and asymptotically 

normally distributed for � ∈ (− !. , ½º). Phillips and Shimotsu (2004) showed that the 

LW estimator has a non-normal limit distribution for � ∈ (½º , 1), and a mixed normal 

limit distribution for � = 1. When � > 1 the LW estimator converges in probability 

to unity as shown in many simulations studies and consequently is inconsistent. 

Therefore, the LW estimator is not a good general purpose estimator when �  takes on 

values in the non-stationary region beyond ¾. The asymptotic theory is discontinuous 

at � ∈ {½º , 1} and the estimator is not consistent for � > 1. For the multivariate 

framework, Lobato (1999) derived a semiparametric two-step estimator for a long 

memory process for stationary values of �. Lobato and Velasco (2000) extended the 

results of Lobato (1999) by using tapering, and thereby allowing for non-stationary 

values of � and potential trends in the data generating process. Shimotsu (2007) 

derived a semiparametric estimator of multivariate fractionally integrated processes 

using a different form of the spectral density than that in Lobato (1999). The class of 

spectral densities included in Shimotsu’s (2007) specification includes those of 
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multivariate fractionally integrated processes, whereas the specification used in 

Lobato (1999) is an alternative local form of the spectral density that neglects the 

information in phase shifts and which will lead to less efficient estimates of the 

integration orders. Shimotsu (2007) showed that the estimator of Lobato (1999) is 

consistent given the more precise spectral density representation, but the limiting 

distribution is more evolved. Therefore, the estimator of Shimotsu (2007) has a 

smaller limiting distribution than the two-step estimator of Lobato (1999). 

 

The contribution of this chapter is to develop a semiparametric LW estimator to be 

applied throughout the stationary and non stationary zones in a multivariate 

framework. Outside the stationary region, LW estimator is discontinuous at � = ?@  
and hence the asymptotic theory is awkward to use because of non normal limit 

theory. It is obvious that the LW estimator is not a good general-purpose estimator 

when the value of � may take on values in the non stationary region. Several methods 

were introduced in the literature to avoid the problems when entering the non 

stationary region e.g. fractional differencing (the series is differenced before using the 

semiparametric estimator and then add the fractional differencing to the estimate) and 

tapering (the multiplication of an observed series by a sequence of constants -the 

taper- prior to Fourier transformation). However, each of these methods used has 

drawbacks. For data differencing, prior information is needed on the appropriate order 

of differencing, and data tapering has the disadvantage that the filter distorts the 

trajectory of the data and inflates the asymptotic variance. 

 

In this chapter, the notion of the extended discrete Fourier transform is used to allow 

for the multivariate LW estimation to cover the non stationary region. The concept of 

the extending the dFt to the non stationary case is based on the work of Phillips 

(1999), Lahiri (2003), Dalla et al. (2006) and Abadir et al. (2007). Abadir et al. (2007) 

showed that when the  �(�) series is generated by a linear sequence the extended dFt 

and periodogram have the same asymptotic behaviour for � ∈ (− ½. , ∞). A new 

extended local Whittle (XLW) estimator will be introduced to cover both stationary 

and non stationary case. The XLW estimator is identical to the LW estimator in the 

stationary region. Furthermore the model developed will be applied to three US 

money aggregates. 
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The remainder of the chapter is organised as follows. The next section introduces the 

extended local Whittle estimator. Section 4.3 and 4.4 establish the consistency and 

asymptotic normality for the XLWE. Section 4.5 reports and discusses the results of a 

Monte Carlo study, illustrating the finite sample behaviour of the XLWE. Section 4.6 

demonstrates the empirical application to three US money aggregates and finally 

section 4.7 concludes. 

 

4.2 The Extended Multivariate Local Whittle Estimator 

 
In this section, the framework in the previous chapter is expanded to cover the non 

stationary region for the memory parameters, similar to that in Abadir et al. (2007). 

Firstly, assume a real-valued fractional process A� = (ø!, … , ø\)′  that is generated by 

the following model, B� = CÙ(. )D�  
where, CÙ(. ) = ���}{
Ù(1 − �)ðñ��ñ(1 − ��!)�ðñ + (1 − 
Ù)(1 − �)�ðñ(1 − ��!)ðñ��ñ} 

and Â� = (Â!�, … , Â\�)′ is serially independent Gaussian process with (0, u.) whose 

spectral density is bounded and finite. The parameters �Ù, 
Ù, �Ù are real valued, 

0 < �Ù < !., 0 ≤  �Ù ≤ �ñ.  and 0 ≤ 
Ù ≤ 1 and ï = 1, … , V. These parameters, similar 

to that in the previous chapter can be collected in Ê = (�′, 
′, �′)′ for �� =(�!, … , �\)′, 
� = (
!, … , 
\)′ and �� = (�!, … , �\)′. The memory parameters, �Ù, 

govern the long-run dynamics of the process and the behaviour of F(G) around the 

origin. Therefore, if empirical interest lies in the long-run dynamics of the process, it 

is useful to specify the spectral density only locally in the vicinity of the origin and 

avoid specifying the short-run dynamics of Â� explicitly. The spectral density 

representation of the process (4.2.1) is E(G)~FÄ�!(�, 
, �)GFÉÄ�!(�, 
, �) , as G → 0 

FÄ�!(�, 
, �) = ���}{|G|��ñ[
Ù)��ÄÅ³(I)@ñ + (1 − 
Ù))�ÄÅ³(I)@ñ]} 

where  ;Ù = (�Ù − �ñ� )J, sng(G) = 1 if G ≥ 0 and -1 otherwise, G is a V × V real, 

symmetric, finite and positive definite matrix, E(G) has non-zero complex part. The 

notation "∼" in equation (4.2.2) means that for each element, the ratio of 

real/imaginary parts of the left and right sides tend to 1. In addition, the over bar in 

(4.2.2) 

(4.2.1) 
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(4.2.2) denotes the complex conjugate. As in Davidson and Hashimzade (2008) and in 

the previous chapter, the cross-spectrum F�*(G) in (4.2.2), where < ≠ -, (off the 

diagonal elements of F(G)), can be written as, 

F�*(G) = Æ�*|G|��z��ó � ô·
º

·#! )��ÄÅ³(I)õö  

where 

ô! = 
�
* ÷! = ;� + ;* 

ô. = 
�(1 − 
*) ÷. = ;� − ;* 

ô½ = �1 − 
��
* ÷½ = −(;� − ;*) 

ôº = �1 − 
��(1 − 
*) ÷º = −(;� + ;*) 

The memory parameters, �Ù, emerge in both the power decay and the phase shift. The 

shift spectrum of ø�� and ø*� is nonzero and depends on ��, �*, ��and �* even at the 

zero frequency. To cover non-stationary values of � as well as stationary values, the 

framework of Abadir et al. (2007) is used in order to expand the set up in the previous 

chapter. Denote the Fourier frequencies by G� = 2J</r, where < = 1, … , r. The 

extended periodogram is defined by  

�E�G�; �� = ^Ð�G� , ��^.
 

where the extended dFt is 

Ð�G�; �� = ÐH�G�� + ?�G�; �� 

and has the property,  

Ð�G�; �� = (1 − )�Iz)�YÐH�G��. 

The extended dFt consists of the usual dFt (ÐH�G��), 

ÐH�G�� = !√.HE ∑ ø�)��IzE�#!  

and a new correction term ?�G�; �� is a step function that takes constant values on the 

intervals � ∈ �U − !.  , U + !.ª, U = −1, 0, 1, 2, … and is defined by 

  ?�G�; �� = 0    if � ∈ �− !.  , − !.ª 

 ?�G�; �� = )�Iz ∑ (1 − )�Iz)�IJIYI#!    if � ∈ �U − !.  , U + !.ª, U = 1, 2, … 

where 

JI = !√.HE ((1 − L)L�!ø� − (1 − L)L�!ø$),  v = 1, … , U 

Since the correction term is a step function, this feature facilitates the estimation 

procedures. Accordingly, the notion of the extended dFt allows estimating the usual 

(4.2.5) 

(4.2.4) 

(4.2.3) 
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LW estimator in the context of non-stationary values of the memory parameter �. The 

XLW estimator is based on the behaviour of, 

Ý� = y�Iz�Q�Iz�, for 1 ≤ < ≤ T  
Following Lahiri (2003), Shimotsu (2007) and Abadir et al. (2007), the random 

variables in (4.2.6) satisfy, k[Ý�] = 1 + 	(<�! log(<)), as r → ∞ 

M�v[Ý�] ≤ N 

,=>[Ý� , Ý*] → 0, where < ≠ - 

Equations (4.2.7), (4.2.8) and (4.2.9) imply that Ý� satisfies the weak law of large 

numbers (WLLN) as r → ∞ 

1T � Ý�
�

�#!
Y→ 1 

The extended local Whittle estimator, m�, can be derived by minimising the extended 

local Whittle objective function, 3(m, Ó), over the admissible parameter space as 

follows, 

3(m) = log O1T � Ô�3)(��G��)Ô�̅
�

�#!
O − 2P� �Ù

\
Ù#!

Q 1T � log�
�#!

^G�^ + � log(1 − 4
Ù(1 − 
Ù) sin.(−;Ù))\
Ù#!

 

m� = arg min{∈Ú 3(m) 

where m = (Ê�, À′)′ and where À = (1, À!., … , À!\). If the process is stationary the 

XLW estimator is identical to the LW estimator in chapter 3. 

 

4.3 Consistency 

 
Assumptions on the spectral density and the bandwidth are introduced to establish the 

consistency of the XLW estimator. These assumptions are mainly multivariate 

extensions and similar to those imposed by Robinson (2005) and Abadir et al. (2007). 

This section and the following one will focus on the memory parameter �Ù, assuming 

the parameters 
Ù = 1 and �Ù = 0. Relaxing this condition can be a subject for further 

studies. The assumptions imposed are as follows, 

 

Assumption 4.1: The cross spectral density between F�� and F*� , as G → 0, satisfies 

^F�*(G) − Æ�*|G|��z��ó ∑ �·º·#! exp[ �÷· sgn(G)]^ = =(G��z��ó) ,  <, - = 1, … , V 

(4.2.6) 

(4.2.9) 

(4.2.8) 

(4.2.7) 
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Assumption 4.2: � ∈ ∆, where the compact set ∆= [��, ?�]. 
 

Assumption 4.3: The bandwidth parameter satisfies  !� + �E = =(1), as r → ∞. 

 

Assumption 4.4:  Ý� satisfies the weak law of large numbers (WLLN) as r → ∞ 

!� ∑ Ý���#! Y→ 1  

 

Assumption 4.5: {Â�} is linear where, Â� = ∑ ,�����"�#$ , ∑ �,��. < ∞"�#$  

The innovations are martingale difference that satisfy k(��|ℱ��!) = 0 and k(�����|ℱ��!) = �\ a.s. 

 

Assumption 4.1 is the usual smoothness condition that was also used in chapter 3. A 

rate of convergence of F�*(G) is imposed to G��z��ó. Assumption 4.2 states that the 

unknown parameter � is an interior point to the compact set ∆; however, the 

restriction � ≠ �� is applied. The chosen interval is very important for economic data. 

Assumption 4.3 restricts the rate of expansion of the bandwidth parameter T. This 

assumption is used in chapter 3 for the LW estimator in the stationary region. 

Assumption 4.4 was discussed in the previous section. And finally assumption 4.5 

follow that of Abadir et al. (2007) where the innovations are relaxed and assumed to 

be a martingale difference sequence. The following theorem can be set up which 

delivers the consistency of the XLW estimator. 

 

Theorem 3: Assume that assumptions 4.1 through 4.4 hold, then 

   �� Y→ �     as r → ∞ 

 

Proof of Theorem 3: This proof follows mainly that of Abadir et al. (2007). For 

any ? > 0, define the neighbourhood  ��(?) = {�: |� − �$| ≥ ?}. It suffices to prove 

consistency we need to show, Pr [ infã�(S) i(m) ≥ +] → 1 
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where, i(m) = 3(m) − 3(m$), m$ is an interior point in the parameter space Θ, 

and  + > 0. Since !� ∑ log < + 1��#! = 	(±²³ �� ) then, 

i(m) = logΞ(�) − log Ξ(�$) + 2 � mÙ
\

Ù#! + =(1) 

where 

Ξ(�) = 1T � 3)[T�(�)Ó�(m)�(G�)T£�(�)]�
�#!  

T�Ù(�) = ���}{¸ <T¹�ñ [
Ù)��ÄÅ³(I)@ñ + (1 − 
Ù))�ÄÅ³(I)@ñ]} 

 

Hence by definition the extended periodogram matrix is 

��G� , �� = ^Ð�G� , ��^. = Ð�G� , ��Ð∗�G�, �� 

��G� , �� = ©ÐH�G�� + ?�G�; ��ª ©ÐH�G�� + ?�G�; ��ª∗
 

From Abadir et al. (2007, p.1368), it follows that 

Ð�G�; �$� = ÐH�G��(1 − )�Iz) 

and,  
�G�; �� = ?�G�; �� − ?�G�; �$� 

Consequently 

��G�, �� = ^Ð�G�; �$� + 
�G�; ��^.
 

Then Ξ(�) can be written as, 

Ξ(�) = 1T � 3)[T�(�)Ó�(m) ©Ð�G�; �$� + 
�G�; ��ª ©Ð�G�; �$� + 
�G�; ��ª∗ T£�(�)]�
�#!  

Now let’s set 
�G�; �� = 0 as in Abadir et al. (2007, p.1368), 

�(�) = 1T � 3)[T�(�)Ó�(m)Ð�G�; �$�Ð∗�G�; �$�T£�(�)]�
�#!  

 

Because of the uniform behaviour of �(�), now let any � > 0 and �� = �$ − ��U�  

where the sth element of  � is denoted by �Ù > 0 and very small. Then as proved using 

section 4.2 lemmas in Abadir et (2007)- particularly lemmas 4.2, 4.3 and 4.5 , we can 

deduce that, 
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Ξ(�) ≥ (1 + =(1))⨀�(max{�, ��}), 
where �(max{�, ��}) = Ô��![k(m�)⨀5(m�)]Ô�̅�! 

 

where ⨀ is the hadamard product. The matrices k(m�) and 5(m�) have the 

elements ∑ ô·º·#! )��õö and �1 + ;�� + ;*���!
respectively and hence for � > 0,  

i(m) ≥ log _à(VWX{�,�U})à( �Y) _ + 2 ∑ mÙ\Ù#! + =(1) 

                  = 2 ∑ mÙ\Ù#! − log|k(m�)⨀5(m�)| + =(1) 

then, 

2�m� + m*� − log _3)[∑ ô·º·#! )��õö�1 + ;�� + ;*���!]_ 
≥ 2�m� + m*� − log _3)[∑ ô·º·#! )���ö�1 + �� + �*��!]_ 

Therefore, 

infã�(S),�UZ� 2�m� + m*� − log _3)[∑ ô·º·#! )��õö�1 + ;�� + ;*���!]_ ≥ + > 0 

 

Then from (4.3.2), (4.3.4) and (4.3.6), it is shown that (4.3.1) holds and the proof is 

complete. □   

 

4.4 Asymptotic Normality 

 
Some further assumptions which need in deriving the asymptotic normality are listed. 

These assumptions are analogous to the assumptions in Abadir et al (2007) and 

Shimotsu (2007). 

 

Assumption 4.6: The cross spectral density between F�� and F*� , asG → 0, satisfies 

�F�*(G) − Æ�*|G|��z��ó � �·
º

·#! exp[ �÷· sgn(G)]� = 	(G��z��ó �) 

where  <, - = 1, … , V and 
 ∈ (0,2]. 
 

Assumption 4.7: Assumption 4.2 holds 

 

Assumption 4.8: 
�����(±²³ �)�

E�� + ±²³ E� = =(1), as r → ∞. 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

(4.3.6) 
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Assumption 4.9: Assumption 4.5 holds with also the elements of �� having a.s. finite 

third and fourth moments and cross-moments, conditional on ℱ��!. 

 

Assumption 4.6 is the smoothness conditions. Assumption 4.7 is the same as 

assumption 4.2. Assumption 4.8 imposes an upper bound on the rate of increase of T 

with r which is similar to assumption 4.3 but slightly stronger. Assumption 4.9 

implied that the innovations have third and fourth finite moments.  

 

Theorem 4: Assume that conditions 4.6 through 4.9 hold, then 

√T��� − �� �→ �(0, 6�!), where 6 = 2 �Ω$⨀(Ω$)�! + �\ + H�
º �Ω$⨀(Ω$)�! − �\�� 

 

Proof of Theorem 4: Given the above assumptions, theorem 3, and the extended dFt 

in (4.2.4), the following result can be deducted as r → ∞, 

Ð�G, ��� − Ð(G, �$) = =Y(1),  

where �$ is an interior point in Δ. As a result, Shimotsu (2007) proof of asymptotic 

normality can be used here as in section 3.6. Therefore, the same argument discussed 

in the proof of theorem 2 in the previous chapter (pp. 72-75) can applied here to prove 

that �� is asymptotic normal with zero mean and asymptotic variance 6�!, where for 

any V × 1 vector Ý, as r → ∞, 

Ý′√T ¶!(�)¶� �→ �(0, Ý�6Ý) 

¶�!({)¶�¶�" Y→ 6 

Using the score approximation arguments in Shimotsu (2007, pp.295-299) to prove 

(4.4.1) and the Hessian approximation arguments (see Shimotsu 2007, pp.299-302) to 

prove (4.4.2). The proof is complete. □ 

 

4.5 Simulation 

 
A Monte Carlo study is carried out to study the finite sample behaviour of the 

extended local Whittle estimator. The following bivariate framework is used to 

generate a two sided moving average processes \� = (�!�, �.�)�, 
 

(4.4.1) 

(4.4.2) 
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�1 −À0 1 � ��!��.�� = x}(�; �!, 
!, �!) 00 }(�; �., 
., �.)|567 
and 

56~ ����(0, x1 �� 1|) 

where }(�; �, 
, �) = 
(1 − �)ð��(1 − ��!)�ð + (1 − 
)(1 − �)�ð(1 − ��!)ð�� 

The experiment is carried out with the following specifications: the correlation � was 

set equal to 0, 0.4, 0.8. The memory parameters of interest (�!, �.) are set as (0.6, 0.6) 

and (0.6, 0.8). The stationary case is not reported here as the performance of the XLW 

estimator is expected to be equal to that of the LW estimator in chapter 3 for the 

stationary region. Series of length r =  512 and 1024 are generated, and the 

bandwidth parameters T chosen are T = r$.¾ and T = r$.¿ to check the robustness 

of the estimator due to changes in  T. Simulations are done in Ox 6.0 and TSM 4.35. 

Throughout the simulation exercise, all the results are based on 10,000 replications. 

The performance of the LW estimator is examined for different values of 
 and � 

(simulations are reported for the cases � = 0 and 
 = 1, � = 0 and 
 = 0 and � = 0 

and 
 = 0.5) with fixed cointegrating parameter À = 1. 

 

 

 

 

 

 

 

 

(4.5.1) 

(4.5.2) 
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Table 24: Simulation results for bias and RMSE where � = 0 and 
 = 1 �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.004 0.064 0.006 0.069 0.005 0.071  0.004 0.061 0.005 0.067 0.003 0.067 

0.6 0.6 0.4  0.006 0.067 0.008 0.081 0.006 0.075  0.005 0.062 0.008 0.075 0.005 0.071 

0.6 0.6 0.8  0.007 0.070 0.008 0.079 0.005 0.073  0.006 0.065 0.006 0.071 0.005 0.068 

0.6 0.8 0  0.006 0.069 0.006 0.072 0.007 0.072  0.007 0.079 0.007 0.081 0.005 0.074 

0.6 0.8 0.4  0.009 0.073 0.007 0.075 0.008 0.078  0.007 0.066 0.006 0.070 0.006 0.074 

0.6 0.8 0.8  0.011 0.075 0.009 0.078 0.010 0.081  0.008 0.072 0.009 0.075 0.009 0.078 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.002 0.060 0.004 0.066 0.004 0.065  0.003 0.058 0.002 0.061 0.001 0.054 

0.6 0.6 0.4  0.004 0.062 0.005 0.074 0.005 0.072  0.005 0.060 0.003 0.067 0.003 0.063 

0.6 0.6 0.8  0.005 0.066 0.007 0.073 0.007 0.078  0.007 0.064 0.004 0.065 0.005 0.064 

0.6 0.8 0  0.004 0.067 0.004 0.066 0.006 0.070  0.005 0.076 0.005 0.071 0.003 0.065 

0.6 0.8 0.4  0.007 0.068 0.006 0.074 0.005 0.075  0.007 0.061 0.007 0.076 0.005 0.070 

0.6 0.8 0.8  0.010 0.074 0.009 0.077 0.009 0.085  0.009 0.076 0.011 0.083 0.005 0.067 
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Table 25: Simulation results for bias and RMSE where � = 0 and 
 = 0 �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.007 0.069 0.008 0.073 0.006 0.075  0.006 0.073 0.005 0.079 0.006 0.081 

0.6 0.6 0.4  0.007 0.070 0.008 0.084 0.008 0.078  0.005 0.076 0.007 0.086 0.006 0.084 

0.6 0.6 0.8  0.009 0.073 0.009 0.083 0.007 0.076  0.008 0.075 0.008 0.089 0.005 0.078 

0.6 0.8 0  0.011 0.089 0.010 0.084 0.010 0.085  0.010 0.094 0.008 0.087 0.012 0.086 

0.6 0.8 0.4  0.013 0.091 0.009 0.087 0.011 0.092  0.009 0.095 0.007 0.092 0.009 0.099 

0.6 0.8 0.8  0.015 0.098 0.013 0.085 0.012 0.093  0.012 0.096 0.012 0.087 0.010 0.095 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.004 0.061 0.006 0.072 0.004 0.074  0.004 0.064 0.006 0.074 0.006 0.078 

0.6 0.6 0.4  0.005 0.064 0.007 0.077 0.007 0.070  0.004 0.069 0.005 0.072 0.006 0.076 

0.6 0.6 0.8  0.006 0.070 0.008 0.076 0.007 0.071  0.005 0.072 0.007 0.079 0.009 0.083 

0.6 0.8 0  0.009 0.085 0.008 0.082 0.008 0.073  0.008 0.086 0.007 0.089 0.010 0.086 

0.6 0.8 0.4  0.011 0.086 0.007 0.081 0.010 0.085  0.010 0.087 0.006 0.086 0.008 0.082 

0.6 0.8 0.8  0.013 0.094 0.011 0.079 0.013 0.089  0.012 0.093 0.008 0.083 0.010 0.095 
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Table 26: Simulation results for bias and RMSE where � = 0 and 
 = 0.5 �! �. �  �! �. À  �! �. À 

    Bias RMSE Bias RMSE Bias RMSE  Bias RMSE Bias RMSE Bias RMSE 

    r = 512 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.008 0.072 0.006 0.070 0.005 0.073  0.008 0.075 0.004 0.076 0.005 0.086 

0.6 0.6 0.4  0.007 0.071 0.007 0.081 0.006 0.075  0.006 0.079 0.008 0.089 0.007 0.087 

0.6 0.6 0.8  0.008 0.070 0.010 0.085 0.006 0.075  0.008 0.077 0.007 0.085 0.004 0.081 

0.6 0.8 0  0.009 0.084 0.011 0.085 0.009 0.084  0.009 0.097 0.009 0.088 0.010 0.084 

0.6 0.8 0.4  0.011 0.086 0.010 0.085 0.010 0.089  0.011 0.098 0.008 0.096 0.007 0.095 

0.6 0.8 0.8  0.013 0.092 0.012 0.086 0.011 0.089  0.014 0.105 0.010 0.083 0.012 0.099 

    r = 1024 

    T = r$.¾ T = r$.¿ 

0.6 0.6 0  0.005 0.067 0.005 0.071 0.004 0.071  0.003 0.069 0.003 0.074 0.003 0.073 

0.6 0.6 0.4  0.004 0.063 0.006 0.074 0.007 0.073  0.002 0.060 0.004 0.076 0.008 0.078 

0.6 0.6 0.8  0.007 0.071 0.008 0.078 0.005 0.070  0.004 0.065 0.007 0.075 0.006 0.071 

0.6 0.8 0  0.008 0.080 0.009 0.081 0.007 0.082  0.006 0.077 0.007 0.083 0.004 0.079 

0.6 0.8 0.4  0.009 0.083 0.011 0.084 0.009 0.085  0.008 0.085 0.010 0.081 0.006 0.078 

0.6 0.8 0.8  0.011 0.085 0.010 0.083 0.013 0.087  0.010 0.088 0.007 0.085 0.010 0.081 
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Table 24 reports the simulation results for the case for � = 0 and 
 = 1 where 

bandwidth T = r$.¾ and T = r$.¿ for sample sizes r = 512 and r = 1024 are 

chosen and the correlation between Â!� and Â.� are set to different values 0, 0.4 and 

0.8. The estimates of the memory parameters are �! and �. are discussed along with 

the parameter À. The extended LW estimator has little bias for the different values of � and significantly decreases when the sample size increases. The RMSE diminishes 

as bandwidth increases. The RMSE shows that the memory parameters are estimated 

quite accurately.  

 

Tables 25 and 26 report the simulation results for the cases (� = 0 and 
 = 0) and 

(� = 0 and 
 = 0.5) respectively. The estimates �!, �. and À have larger bias 

compared to that in table 24, however bias decreases for larger sample. The RMSE is 

substantially large, but decreases with larger bandwidth. Overall, the quality of the 

estimator does not seem to be affected by much for � = 0.4 and � = 0.8. The bias is 

slightly larger but the RMSE is higher than those when  � = 0. The estimator 

becomes positively biased, and the value of the bias seems roughly constant across the 

different  �. Regardless of the region studied, the estimator is unbiased and RMSE 

indicates that the memory parameter of interest is estimated accurately. In summary, 

there seems to be little doubt from these results that the XLW estimator is the best 

general purpose estimator over both stationary and non-stationary regions. 

 

4.6 Empirical Example 

 
The model, developed in section 4.2, were coded and performed in Ox 6.0 and TSM 

4.35 where can take the values in the interval (0.5, 1.5) by assuming U = 1 in the 

correction term. In this case, the correction term in the extended dFt can be expressed 

as, 

?�G�; �� = 1√2Jr )�Iz�1 − )�Iz��!(ø� − ø$) 

The time series data analysed, in this section, is the three US monetary aggregates. 

The data consists of 361 monthly observations from January 1976 to February 2006 

and is obtained from the St Louis Federal Reserve Bank for three observed series, 

large-denomination time deposits (��>), 42 and 43. The increment rates of the 
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original series are calculated, �'��, T2� and T3� where �'�� = ∆ log ��>, T2� =∆ log 42 and T3� = ∆ log 43. The larger aggregate 43 contains both 42 and ��>. 

 

 

Figure 12: The increment rates of LTD, M2 and M3are calculated  
as the differences of the logarithm of the original data 

 
 

 

Table 27: LM estimates under the assumption of no cointegration 
 �'�� T2� T3� 

Bandwidth    T = r$.¾ 0.3922 0.7164 0.6893 
 (0.0425) (0.0637) (0.0561) 

    T = r$.¿ 0.4066 0.6940 0.6548 
 (0.0537) (0.0611) (0.0514) 

    T = r$.: 0.3819 0.6802 0.6375 
 (0.0348) (0.0587) (0.0566) 

Note: The table shows long memory estimates for the XLWEs with standard errors in the parentheses. 
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Figure 12 shows a plot of the trivariate series. Visual inspection suggests that the 

three series exhibit similar trend movements, particularly between  T2� and T3� 

(downward trend until the mid of the 90s, when the trend is reverted). As a first step, 

the memory parameters � are estimated assuming no cointegration among the 

trivariate series. Table 27 reports the estimates of � over different bandwidth choices. 

It can be seen that the estimates of � are found to be decreasing as the bandwidth 

chosen increases in the three cases. The memory estimates suggest that �'��, T2� and T3� exhibit long memory properties. The results in Table 27 also demonstrate that �'�� is stationary series, with less memory than T2� and T3�. On the other hand, T2� 

and T3� are non stationary and have very similar memory levels. These results may 

show that the two series T2� and T3� can be cointegrated. Accordingly, the case of 

cointegration is considered next by relaxing the assumption À!� = 0. The following 

model is adopted to accommodate the cointegration case, 

 T3� − À!.�'��  − À!½T2�  = Â!� �'��  = Â.� T2�  = Â½� 

 

Table 28: Application to the US money aggregates where 
� = 1 and �� = 0  
Bandwidth Parameters T3� �'�� T2� T = r$.¾ = 19 ��� 0.3782 0.4019 0.8105 

  (0.0891) (0.0922) (0.1630) 
 À�!�  0.5375 0.9286 

   (0.0779) (0.1749) T = r$.¿ = 34 ��� 0.4669 0.5629 0.8991 
  (0.1033) (0.1352) (0.1951) 
 À�!�  0.4599 0.8922 

   (0.0718) (0.1685) 
Note: The table shows long memory and cointegrating estimates for the XLWEs with standard errors in the parentheses. 

 

 

Table 28 demonstrates the results for the joint XLW estimation for 
� = 1 and �� = 0  

with different values for bandwidth (T = r$.¾ = 19 and T = r$.¿ = 34). The 

estimates of the memory �� and cointegrating parameters À!� are reported, while the 

standard errors are reported in parentheses. The estimate of the cointegration 

coefficient À!� represents the existence of the cointegration relation among the US 

monetary aggregates, where the estimates of À!., corresponding to the cointegration 
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relation between T3� and �'��, are 0.53 and 0.46 for T =  19 and 34 respectively. 

And the estimates of À!½ that correspond to the cointegration relation between T3� 

and T2�, take the values of 0.93 and 0.89 for the same bandwidths respectively. This 

indicates that the growth rates in 43 can be explained mainly by the increment rates 

in 42. This result is expected as 42 is a main component of the larger aggregate 43 

and hence it would contribute to the persistence properties of its growth rate T3�. In 

general, it seems that the memory parameters representing the degree of persistence in 

the US monetary aggregates have decreased as the chosen bandwidths increase. It can 

also be concluded that T2� is the main long-term contribution to T3�, and their 

cointegration relationship might be cointegrated with �'�� which can be considered as 

a second-order long term contribution to T3�. 

 

4.7 Conclusion 

 
In this chapter, an extension of the multivariate LW estimator introduced in the 

previous chapter was proposed to cover potentially non-stationary multivariate 

fractional cointegrated system using the notion of the extended dFt and periodogram. 

The multivariate framework is based on a general form of the spectral density as 

introduced in Davidson and Hashimzade (2008), where the long memory parameters 

appear both in the slope and the phase of the spectral density at the origin. A 

simulation study confirms the asymptotic results. Finally, the proposed multivariate 

semiparametric estimation method is applied to the analysis of the US monetary 

aggregates. 
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Appendix 

 

This appendix presents excerpts of the codes for the methods developed in this 
dissertation covering chapters 2, 3 and 4. 
 
 
MakeB(const vParam) 
{ 
 decl bee = zeros(2, 2); 
 
 for(decl j = 0; j < 2; j++) 
 for(decl k = 0; k < 2; k++) 
  if (k != j) 
  { 
   bee[j][k] = vParam[3]; 
  } 
  else bee[j][k] = 1; 
  
 return bee;  
} 
 
BigPsi(const lamdaj, const vParam) 
{ 
 decl bigpsi = new array[2]; 
 bigpsi[0] = bigpsi[1] = zeros(2, 2); 
 
 decl lilpsi = fabs(lamdaj);        
      
  
 decl lamdasgn; 
 if(lamdaj < 0) lamdasgn = -1; 
 else lamdasgn = 1; 
 
 for (decl k = 0; k<2; k++) 
 { 
  decl d = vParam[k];       
  decl gamma = vParam[2];       
  decl Q = 1; 
  if (k == 1) Q = gamma*lamdasgn; 
  decl cosq = cos(Q); 
  decl sinq = -sin(Q); 
 
  bigpsi[0][k][k] = (lilpsi^d)*cosq;        
  bigpsi[1][k][k]= (lilpsi^d)*sinq;       
 } 
 
 return bigpsi; 
} 
 
 
 
MakeB(const vParam, const cM) 
{ 
 decl parpos = 3*cM; 
 decl bee = zeros(cM, cM); 
 
 for (decl j = 0; j<cM; j++) 
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 for (decl k = 0; k<cM; k++) 
  if (k != j) 
  { 
   bee[j][k] = vParam[parpos]; 
   parpos++; 
  } 
  else bee[j][k] = 1; 
  
 return bee; 
} 
 
LilPsi(const lamdaj) 
{ 
 return fabs(lamdaj); 
} 
 
BigPsi(const lamdaj, const vParam, const cM) 
{ 
 decl bigpsi = new array[2]; 
 decl lamsign; 
 
 if (lamdaj < 0) lamsign = -1; 
 else lamsign = 1; 
  
 decl lilpsi =  LilPsi(lamdaj); 
 bigpsi[0] = bigpsi[1] = zeros(cM, cM); 
  
 for (decl k = 0; k<cM; k++) 
 { 
  decl d = vParam[3*k]; 
  decl kappa = vParam[3*k + 1]; 
  decl astar = vParam[3*k + 2]; 
  decl Q = M_PI*d*(1-astar)*lamsign/2;   
  decl cosq = cos(Q); 
  decl sinq = -(1 - 2*kappa)*sin(Q); 
  decl mod = sqrt(cosq^2 + sinq^2); 
  bigpsi[0][k][k] = (lilpsi^d)*cosq/mod; 
  bigpsi[1][k][k] = (lilpsi^d)*sinq/mod; 
 } 
  
 return bigpsi; 
} 
 
AMat(const lamdaj, const perdg, const vParam) 
{ 
 decl m = rows(perdg[0]); 
 decl amat = 0; 
 decl P0, P1; 
 [P0, P1] = BigPsi(lamdaj, vParam, m); 
 decl mB = MakeB(vParam, m); 
 decl X0 = mB*perdg[0]*mB'; 
 decl X1 = mB*perdg[1]*mB'; 
 decl P0X0 = P0*X0; 
 decl P0X1 = P0*X1; 
 decl P1X0 = P1*X0; 
 decl P1X1 = P1*X1; 
 amat = P0X0*P0 + P1X0*P1 + P0X1*P1 - P1X1*P0; 
 return amat; 
} 
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EvalQfunc(const vParam, const mcX, const bMode) 
{ 
 decl qfunc = 0; 
 decl nobs = rows(mcX); 
 decl neq = columns(mcX); 
 decl cm = floor(sqrt(nobs)); 
 decl omegahat = 0, lilpsiterm = zeros(cm,1); 
 decl amat = new array[cm]; 
 decl bigpsi = new array[cm]; 
 decl perdg; 
 decl store = UserRetrieve(); 
 
 if (!bMode) 
 {  perdg = new array[cm]; 
  for (decl j=1; j<cm; j++)       
  
  { 
   decl lamdaj = M_2PI*j/nobs; 
   decl coslamt = cos(range(1, nobs)'*lamdaj); 
   decl sinlamt = sin(range(1, nobs)'*lamdaj); 
   decl w1star = sumc(mcX.*coslamt); 
   decl w2star = sumc(mcX.*sinlamt); 
   perdg[j] = new array[2]; 
   perdg[j][0] = (w1star'w1star + w2star'w2star);   
   perdg[j][1] = (w2star'w1star - w1star'w2star);   
  } 
  store[0]= perdg;  
  UserStore(store); 
 } 
 else perdg = UserRetrieve(); 
 
 decl sumds = 0; 
 
 for (decl j=0; j<neq; j++) sumds += vParam[3*j]; 
 
 for (decl j=1; j<cm; j++)        
   
 { decl lamdaj = M_2PI*j/nobs; 
  omegahat += AMat(lamdaj, perdg[j], vParam); 
  lilpsiterm[j-1] = 2*sumds*log(LilPsi(lamdaj));       
 } 
 
 omegahat /= cm; 
 decl loglikcontr = -log(determinant(omegahat)) + lilpsiterm; 
 return loglikcontr; 
} 
 
UserLikelihood(const mcDataset, const cStart, const cEnd, const vParam, 
 const aName, const bMode) 
{ 
 aName[0] = "Multifractional"; 
 decl x = <>, datalocs = VarNum(SERIES);          
 for (decl j=0; j<columns(datalocs); j++) 
  x ~= mcDataset[cStart:cEnd][datalocs[j]]; 
 return EvalQfunc(vParam, x, bMode); 
} 
 
MakeGam(const delta, const tee)         
{ 
 decl h = zeros(tee+1, 1);           
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 h[0]=1;          
   
 for (decl j=1; j<=tee; j++) 
  h[j] = h[j-1]*(j - delta - 1)/j;  
 return h;  
} 
 
UserGenerate(const mcX, const cStart, const cEnd, const vP, 
 const aName, const bMode) 
{ 
 for (decl k = 0; k<2; k++) 
 { 
  decl d = vP[3*k]; 
  decl kappa = vP[3*k + 1]; 
  decl a = vP[3*k + 2]; 
 } 
 
 decl d, kappa, a; 
 decl tee = cEnd - cStart + 1; 
 decl r = 3*tee; 
 decl shocks = zeros (r, 2); 
         
 decl u1 = rann(r, 1)*aa;         
 decl u2 = u1.*b + rann(r, 1).*c;          
 shocks = u1 ~ u2; 
  
 decl h, hh, store = UserRetrieve(); 
 
 if (!isarray(store)) store = new array[3];  
 if (bMode) { h = store[1];    } 
 else 
 { 
  decl h_a = MakeGam( -a, tee)|zeros(tee,1);  
  decl h_ad = MakeGam( a -d, tee)|zeros(tee,1);    
 
  decl h_af = h_a; 
  decl h_adf = h_ad; 
  decl h_ab = h_a; 
  decl h_adb = h_ad;  
 
  decl h = zeros(1, 2*tee+1); 
  h[tee+1] = h_a'h_ad;       
      
  for (decl j=0; j<tee; j++) 
  { 
   h_af = 0 | h_af[:rows(h_af)-2];     
     
   h_adf = 0 | h_adf[:rows(h_adf)-2]; 
   h[tee+j+1] = kappa*h_ad'h_af + (1-kappa)*h_a'h_adf;  
    
  } 
  for (decl j=0; j<tee; j++) 
  { 
   h_ab = 0|h_ab[:rows(h_ab)-2]; 
   h_adb = 0|h_adb[:rows(h_adb)-2]; 
   h[tee-j-1] = kappa*h_a'h_adb + (1-kappa)*h_ad'h_ab;    
  } 
  store[1] = h; 
 } 
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 if (!isarray(store)) store = new array[3];  
 if (bMode) { hh = store[2];    } 
 else 
 { 
  decl h_a = MakeGam( -a, tee)|zeros(tee,1);  
  decl h_ad = MakeGam( a -d, tee)|zeros(tee,1);    
 
  decl h_af = h_a; 
  decl h_adf = h_ad; 
  decl h_ab = h_a; 
  decl h_adb = h_ad;  
 
  decl hh = zeros(1, 2*tee+1); 
  hh[tee+1] = h_a'h_ad;       
      
  for (decl j=0; j<tee; j++) 
  { 
   h_af = 0 | h_af[:rows(h_af)-2];     
     
   h_adf = 0 | h_adf[:rows(h_adf)-2]; 
   hh[tee+j+1] = kappa*h_ad'h_af + (1-kappa)*h_a'h_adf;  
    
  } 
  for (decl j=0; j<tee; j++) 
  { 
   h_ab = 0|h_ab[:rows(h_ab)-2]; 
   h_adb = 0|h_adb[:rows(h_adb)-2]; 
   hh[tee-j-1] = kappa*h_a'h_adb + (1-kappa)*h_ad'h_ab;  
  
  } 
  store[2] = hh; 
 } 
  
 decl x; 
 for (decl j=tee; j<2*tee; j++) 
 { 
  decl x;          
       
  x[j-tee][0] = h*shocks[j-tee: j+tee][0]; 
  x[j-tee][1] = hh*shocks[j-tee: j+tee][1]; 
  return x; 
 } 
 return x; 
} 
 
 
LWES(const y, const x, const gamma, const m0, const m1, const m2) 
{ 
 decl k=columns(x); 
 decl T=rows(x); 
 decl Ixxr=zeros(k^2,T); 
 decl Ixxi=zeros(k^2,T); 
 decl Ixyr=zeros(k,T); 
 decl lam=range(0,M_2PI-M_2PI/T,M_2PI/T); 
 decl ic,jc,temp; 
 for (jc=0; jc<k; jc++) 
  { 
  Ixyr[jc][]=PER(xdat[][jc]',y')[0][]; 
  for (ic=0; ic<k; ic++) 
   { 
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   temp=PER(xdat[][ic]',x[][jc]'); 
   Ixxr[ic+jc*k][]=temp[0][]; 
   Ixxi[ic+jc*k][]=temp[1][]; 
   } 
  } 
  
 decl Fhatxx=shape(sumr(Ixxr[][1:m0]),k,k); 
 decl Fhatxy=sumr(Ixyr[][1:m0]); 
 decl lw0=invert(Omhatxx)*Fhatxy; 
 Fhatxx=shape(sumr(Ixxr[][1:m2]),k,k); 
 Fhatxy=sumr(Ixyr[][1:m2]); 
 decl lw2=invert(Fhatxx)*Fhatxy; 
  
 decl u=y-x*lw0; 
 decl Ixur=zeros(k,T); 
 decl Ixui=zeros(k,T); 
 for (ic=0; ic<k; ic++) 
  { 
  temp=PER(x[][ic]',u'); 
  Ixur[ic][]=temp[0][]; 
  Ixui[ic][]=temp[1][]; 
  } 
  
 decl dh=zeros(k+1,1); 
 for (ic=0; ic<k; ic++) dh[ic]=EstLW(x[][ic],1,m1,FALSE)[0]; 
 dh[k]=EstLW(u,1,m1,FALSE)[0]; 
 
 
  decl data=x~u; 
  decl perr=zeros((k+1)^2,T); 
  decl peri=zeros((k+1)^2,T); 
  decl OMEGA=zeros(k,k); 
  decl K=zeros(k,k); 
  decl H=zeros(k,1); 
  decl J=zeros(k,k); 
  decl Vhat=zeros(k,k); 
  for (jc=0; jc<k+1; jc++) 
   for (ic=0; ic<k+1; ic++) 
    { 
    temp=PER(data[][ic]',data[][jc]'); 
    perr[ic+jc*(k+1)][]=temp[0][]; 
    peri[ic+jc*(k+1)][]=temp[1][]; 
    }        
  for (jc=0; jc<k+1; jc++) 
   for (ic=0; ic<k+1; ic++) 
    { 
    perr[ic+jc*(k+1)][]=perr[ic+jc*(k+1)][].*cos((lam-M_PI).*(dh[ic]-
dh[jc])/2)-peri[ic+jc*(k+1)][].*sin((lam-M_PI).*(dh[ic]-dh[jc])/2); 
    peri[ic+jc*(k+1)][]=perr[ic+jc*(k+1)][].*(lam.^(dh[ic]+dh[jc])); 
    } 
  OMEGA=shape(meanr(perr[][1:m2]),k+1,k+1); 
  for (jc=0; jc<k; jc++) 
   { 
   H[jc]=OMEGA[jc][k]*cos(M_PI_2*(dh[jc]-dh[k]))/(1-dh[jc]-dh[k]); 
   for (ic=0; ic<k; ic++) 
    { 
    K[ic][jc]=OMEGA[ic][jc]*cos(M_PI_2*(dh[ic]-dh[jc]))/(1-dh[ic]-
dh[jc]); 
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 J[ic][jc]=OMEGA[ic][k]*OMEGA[k][jc]*cos(M_PI_2*(dh[ic]+dh[jc]-2*dh[k]))/(2-2*dh[ic]-
2*dh[ic]-4*dh[k]); 
    J[ic][jc]=J[ic][jc]+ 
OMEGA[ic][jc]*OMEGA[k][k]*cos(M_PI_2*(dh[ic]-dh[jc]))/(2-2*dh[ic]-2*dh[ic]-4*dh[k]); 
    } 
   } 
  Vhat=invert(K)*J*invert(K)/m0; 
  Vhat=Vhat.*lam[m0]^(-2*dhat[k]); 
  Vhat=diag(lam[m0].^dhat[0:k-1])*Vhat*diag(lam[m0].^dh[0:k-1]); 
 decl lwes=lw0|vec(Vhat); 
 
 
 decl c,xd,yd,ud; 
 if (gamma>=0) c=gamma; 
 if (gamma==-1) c=dhat[k]; 
 if (c!=0) 
  { 
  xd=diffpow(x,c); 
  yd=diffpow(y,c); 
  for (jc=0; jc<k; jc++) 
   { 
   Ixyr[jc][]=PER(xd[][jc]',yd')[0][]; 
   for (ic=0; ic<k; ic++) 
    { 
    temp=PER(xd[][ic]',xd[][jc]'); 
    Ixxr[ic+jc*k][]=temp[0][]; 
    Ixxi[ic+jc*k][]=temp[1][]; 
    } 
   } 
  Fhatxx=shape(sumr(Ixxr[][1:m0]),k,k); 
  Fhatxy=sumr(IxyR[][1:m0]); 
  lwe0=invert(Fhatxx)*Fhatxy; 
  Fhatxx=shape(sumr(Ixxr[][1:m2]),k,k); 
  Fhatxy=sumr(Ixyr[][1:m2]); 
  lwe2=invert(Fhatxx)*Fhatxy; 
  ud=yd-xd*nbls0; 
  for (ic=0; ic<k; ic++) 
   { 
   temp=PER(xd[][ic]',ud'); 
   Ixur[ic][]=temp[0][]; 
   Ixui[ic][]=temp[1][]; 
   } 
  } 
  
 decl Fhatxu=sumr(Ixur[][m0+1:m2]); 
 Fhatxx=shape(sumr(Ixxr[][m0+1:m2]),k,k); 
 decl OMEGAhat=invert(Fhatxx)*Fhatxu; 
 decl lammat1=diag((ones(k,1)*lam[m1]).^dh[:k-1]); 
 decl lammat2=diag((ones(k,1)*lam[m2]).^dh[:k-1]); 
 decl lweshat=lwe2-((m1/m2)^dhat[k])*lammat2*invert(lammat1)*OMEGAhat; 
 
  
 u=y-x*lweshat; 
 decl du=EstLW(u,1,m1,FALSE)[0]; 
 if (gamma==-1) c=du; 
 data=diffpow(xdat~udat,c); 
 perR=zeros((k+1)^2,T); 
 perI=zeros((k+1)^2,T); 
 OMEGA=zeros(k,k); 
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 K=zeros(k,k); 
 H=zeros(k,1); 
 J=zeros(k,k); 
 Vhat=zeros(k,k); 
 for (jc=0; jc<k+1; jc++) 
  for (ic=0; ic<k+1; ic++) 
   { 
   temp=PER(data[][ic]',data[][jc]'); 
   perr[ic+jc*(k+1)][]=temp[0][]; 
   peri[ic+jc*(k+1)][]=temp[1][]; 
   }        
 for (jc=0; jc<k+1; jc++) 
  for (ic=0; ic<k+1; ic++) 
   { 
   perr[ic+jc*(k+1)][]=perr[ic+jc*(k+1)][].*cos((lam-M_PI).*(dh[ic]-
dh[jc])/2)-peri[ic+jc*(k+1)][].*sin((lam-M_PI).*(dh[ic]-dh[jc])/2); 
   perr[ic+jc*(k+1)][]=perr[ic+jc*(k+1)][].*(lam.^(dh[ic]+dh[jc]-2*dh[k])); 
   } 
 OMEGA=shape(meanr(perr[][1:m2]),k+1,k+1); 
 for (jc=0; jc<k; jc++) 
  { 
  H[jc]=OMEGA[jc][k]*cos(M_PI_2*(dh[jc]-du))/(1-dh[jc]+du); 
  for (ic=0; ic<k; ic++) 
   { 
   K[ic][jc]=OMEGA[ic][jc]*cos(M_PI_2*(dh[ic]-dh[jc]))/(1-dh[ic]-
dh[jc]+2*c); 
   J[ic][jc]=OMEGA[ic][k]*OMEGA[k][jc]*cos(M_PI_2*(dh[ic]+dh[jc]-
2*dh[k]))/(2-2*dh[ic]-2*dh[ic]+4*c); 
   J[ic][jc]=J[ic][jc]+ OMEGA[ic][jc]*OMEGA[k][k]*cos(M_PI_2*(dh[ic]-
dh[jc]))/(2-2*dh[ic]-2*dh[ic]+4*c); 
   } 
  } 
 Vhat=invert(K)*J*invert(K)/m0; 
 Vhat=Vhat.*lam[m0]^(-2*dhat[k]); 
 Vhat=diag(lam[m0].^dh[0:k-1])*Vhat*diag(lam[m0].^dh[0:k-1]); 
 lweshat=lweshat|vec(Vhat); 
 
 
 return lwes~lweshat; 
} 
 
 
XLWfunc(const vParam, const mcX, const bMode) 
{ 
 decl qfunc = 0; 
 decl nobs = rows(mcX); 
 decl neq = columns(mcX); 
 decl cm = floor(sqrt(nobs)); 
 decl omegahat = 0, lilpsiterm = zeros(cm,1); 
 decl amat = new array[cm]; 
 decl bigpsi = new array[cm]; 
 decl perdg; 
 decl store = UserRetrieve(); 
 
 if (!bMode) 
 {  perdg = new array[cm]; 
  for (decl j=1; j<cm; j++)       
  
  { 
   decl lamdaj = M_2PI*j/nobs; 
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   decl coslamt = cos(range(1, nobs)'*lamdaj); 
   decl sinlamt = sin(range(1, nobs)'*lamdaj); 
   decl coslam = cos(lamdaj); 
   decl sinlam = sin(lamdaj); 
   decl w1star = sumc(mcX.*coslamt)+ sumc(mcX.*coslam); 
   decl w2star = sumc(mcX.*sinlamt)+ sumc(mcX.*sinlam); 
   perdg[j] = new array[2]; 
   perdg[j][0] = (w1star'w1star + w2star'w2star);   
   perdg[j][1] = (w2star'w1star - w1star'w2star);   
  } 
  store = perdg;  
  UserStore(store); 
 } 
 else perdg = UserRetrieve(); 
 
 decl sumds = 0; 
 
 for (decl j=0; j<neq; j++) sumds += vParam[3*j]; 
 
 for (decl j=1; j<cm; j++)        
   
 { decl lamdaj = M_2PI*j/nobs; 
  omegahat += AMat(lamdaj, perdg[j], vParam); 
  lilpsiterm[j-1] = 2*sumds*log(LilPsi(lamdaj));       
 } 
 
 omegahat /= cm; 
 decl loglikcontr = -log(determinant(omegahat)) + lilpsiterm; 
 return loglikcontr; 
} 
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