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BACKGROUND: Cardiovascular disease (CVD) is among the leading causes of death worldwide. The discovery of new omics 
biomarkers could help to improve risk stratification algorithms and expand our understanding of molecular pathways contributing 
to the disease. Here, ASSIGN—a cardiovascular risk prediction tool recommended for use in Scotland—was examined in tandem 
with epigenetic and proteomic features in risk prediction models in ≥12 657 participants from the Generation Scotland cohort.

METHODS: Previously generated DNA methylation–derived epigenetic scores (EpiScores) for 109 protein levels were 
considered, in addition to both measured levels and an EpiScore for cTnI (cardiac troponin I). The associations between 
individual protein EpiScores and the CVD risk were examined using Cox regression (ncases≥1274; ncontrols≥11 383) and 
visualized in a tailored R application. Splitting the cohort into independent training (n=6880) and test (n=3659) subsets, a 
composite CVD EpiScore was then developed.

RESULTS: Sixty-five protein EpiScores were associated with incident CVD independently of ASSIGN and the measured 
concentration of cTnI (P<0.05), over a follow-up of up to 16 years of electronic health record linkage. The most significant 
EpiScores were for proteins involved in metabolic, immune response, and tissue development/regeneration pathways. A 
composite CVD EpiScore (based on 45 protein EpiScores) was a significant predictor of CVD risk independent of ASSIGN 
and the concentration of cTnI (hazard ratio, 1.32; P=3.7×10−3; 0.3% increase in C-statistic).

CONCLUSIONS: EpiScores for circulating protein levels are associated with CVD risk independent of traditional risk factors and 
may increase our understanding of the etiology of the disease.
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See Editorial by Bozack et al

For the past 20 years, cardiovascular disease (CVD) has 
been among the leading causes of mortality and mor-
bidity worldwide. Given that many CVD cases are pre-

ventable, it is important to identify at-risk individuals early, 
when an intervention is most likely to be effective, and 
translate this knowledge into preventative strategies.1,2 

Although there are many CVD risk prediction algorithms, 
currently, they have limited predictive performance.3 It 
may be possible to improve on that by discovering novel 
factors strongly associated with the disease, for example, 
the type and the concentrations of proteins expressed as 
a response to the damage to the cardiovascular system.
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Several proteins have been highlighted as possible 
biomarkers for CVD. These include GDF15 (growth dif-
ferentiation factor 15), NT-proBNP (N-terminal pro-B-
type natriuretic peptide), and ADM (adrenomedullin).4–7 An 
established and highly sensitive marker of myocardial dam-
age is cardiac troponin.8 It is a complex of 3 proteins, namely, 
cTnI (cardiac troponin I), cTnT (cardiac troponin T), and cTnC 
(cardiac troponin C) regulating the contraction of the car-
diac muscle. Cardiac forms of troponin T9,10 and troponin 
I are expressed almost exclusively in the heart.11 Following 
myocyte damage, cardiac troponin enters the circulation 
and can be detected in blood samples. A high-sensitivity 
cardiac troponin test plays a role in the rapid diagnosis of 
myocardial infarction.8 Low-grade elevations in cardiac tro-
ponin are associated with an increased risk of CVD.8

Individual differences in protein concentration can 
be well captured by DNA methylation (DNAm). DNAm 
is a type of epigenetic modification characterized by 
the addition of methyl groups to DNA. Typically, the 
methyl group is added to cytosine-phosphate-guanine 
dinucleotides that are found mostly (but not exclu-
sively) in gene promoters.12 Blocking promoters, to 
which activating transcription factors should bind to ini-
tiate transcription, is one of the mechanisms by which 
DNAm can precisely regulate gene expression.13 Con-
versely, changes in DNAm patterns can also be a result 
of changes in gene expression and chromatin state.14,15

DNAm-based proxies for protein levels are referred to as 
protein epigenetic scores (EpiScores) and are broadly anal-
ogous to polygenic risk scores. These methylation scores 
can be derived from penalized linear regression models 
of protein concentrations. Due to their temporal stability, 
protein EpiScores may exhibit stronger associations with 
disease outcomes than singular protein measurements, 
which are known to fluctuate between measurements.16–19 
We have shown that EpiScores for 109 circulating pro-
tein levels are associated with the time to diagnosis for a 
host of leading causes of morbidity and mortality, including 

cardiovascular outcomes.20 Protein EpiScores are, there-
fore, useful biomarker tools for disease risk stratification.

Here, we examine whether protein EpiScores, calcu-
lated for ≥12 657 participants of the Generation Scot-
land (GS), study can augment predictions made by a CVD 
risk calculator developed for use in Scotland (ASSIGN21). 
We first run individual Cox proportional hazard (PH) mod-
els to discover relationships between individual protein 
EpiScores and incident CVD. We then create a CVD 
EpiScore (based on the protein EpiScores) and test the 
additional predictive performance offered by it for CVD 
risk stratification. A graphical overview of the analyses is 
presented in Figure 1.

METHODS
All methods are described in the Supplemental Material. A 
key resource in this study, GS, is a family-based research ini-
tiative focusing on genetic and environmental factors influ-
encing health. Briefly, from 2006 to 2011, eligible individuals 
were selected from participating general medical practices in 
Scotland and invited at random to take part in the study.22 All 
participants provided written informed consent for research. The 
study received ethical approval from the National Health Service 
Tayside Committee on Medical Research Ethics (REC reference 
number: 05/S1401/89). The GS data set is not publicly avail-
able as it contains information that could compromise partici-
pant consent and confidentiality. However, the data, research 
materials, and analytical methods will be made accessible to 
other researchers for the purpose of replicating the findings. 
Access will be granted upon successful project application to 
the GS Access Committee and obtaining ethical approval for 
accessing linked health data from NHS Scotland. Instructions 
for accessing GS data can be found at https://www.ed.ac.uk/
generation-scotland/for-researchers/access; the GS Access 
Request Form can be downloaded from this site.

RESULTS
Clinical Risk Prediction Tools
ASSIGN scores were calculated for 16 366 individuals 
with nonmissing risk factor data. To meet the PH assump-
tion of the Cox model, the data set was filtered to individu-
als aged between 30 and 70 years (results split by decade 
are presented in Table SI) and trimmed of outliers (points 
beyond 3 SDs of the mean; n=181). This left a cohort of 
12 790 individuals, which was further filtered to records 
with nonmissing concentrations of cTnI (n=12 657). 
Table 1 summarizes the training, test, and full data sets.

Incremental Model Using Cardiac Troponin and 
Cardiac Troponin EpiScores
We tested whether concentrations of cardiac troponin 
were associated with CVD risk above ASSIGN over 16 
years of follow-up. While the measured concentration 
of cTnI was associated with a hazard ratio (HR) of 1.20 
per SD increase in the full (n=12 657) cohort (95% CI, 

Nonstandard Abbreviations and Acronyms

ADM	 adrenomedullin
cTnC	 cardiac troponin C
cTnI	 cardiac troponin I
cTnT	 cardiac troponin T
CVD	 cardiovascular disease
DNAm	 DNA methylation
EpiScores	 epigenetic scores
GDF15	 growth differentiation factor 15
GS	 Generation Scotland
HR	 hazard ratio
NT-proBNP	� N-terminal pro-B-type natriuretic 

peptide
PH	 proportional hazard
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1.13–1.29; P=1.9×10-8), an EpiScore generated for cTnI 
(see Methods for details) was not associated with the 
measured concentrations in the n=3659 test set (incre-
mental R2, 0.027%; P=0.31) and did not predict CVD 
risk in Cox models adjusted for ASSIGN in the same test 
set (P=0.59). For that reason, it was not considered a 
feature in the generation of the composite CVD score.

Incremental Model Using EpiScores for Plasma 
Protein Levels
We then tested whether 109 protein EpiScores gen-
erated by Gadd et al20 (protein description available in 
Table SII) were associated with CVD risk over 16 years 
of follow-up (n=12 657; nevents=1274).

First, we generated 109 Cox PH CVD risk models 
adjusted for ASSIGN. Each model was additionally adjusted 
for a different protein EpiScore. Two EpiScores failed to sat-
isfy the PH assumption (Schoenfeld residual test P>0.05), 
and 6 EpiScores were not unique (proxied the concentra-
tion of the same protein). Of the remaining 101 protein 
EpiScores, 67 were significantly associated with CVD risk 
(P<0.05). After applying a conservative Bonferroni thresh-
old for multiple testing (P<0.05/101=5.0×10−4), 36 asso-
ciations remained statistically significant.

Secondly, to understand whether protein EpiScores 
were associated with CVD risk beyond established bio-
markers such as cardiac troponin, we included the con-
centration of cTnI as a covariate in the model along with 
ASSIGN, and we repeated the analysis. Of the 101 

Figure 1. Project overview.
A series of Cox proportional hazard (PH) models were run to model the relationship between time-to-cardiovascular disease (CVD) and 109 
protein epigenetic scores (EpiScores). Basic models were adjusted for the ASSIGN score, whereas fully adjusted models also included the 
concentration of cTnI (cardiac troponin I). This was followed by a prediction analysis where a composite protein EpiScore was trained. The 
CVD EpiScore was derived using elastic net and 109 protein EpiScores as possible input features. The score was assessed in the test sample 
to quantify the additional predictive performance offered by it over and above ASSIGN and SCORE2. The test Cox PH models were adjusted 
for age, sex, cTnI, and the CVD EpiScore, with time-to-CVD as the outcome. ASSIGN indicates the cardiovascular risk score chosen for use 
by SIGN (Scottish Intercollegiate Guidelines Network) and Scottish Government Health Directorates; AUC, area under the receiver operating 
characteristic curve; cTnT, cardiac troponin T; PRAUC, area under the precision recall curve; and SCORE2, an algorithm derived, calibrated, 
and validated to predict 10-year risk of first-onset CVD in European populations. Created with BioRender.com
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aforementioned protein EpiScores, 65 were associated 
with CVD over and above the ASSIGN score and the con-
centration of cTnI (P<0.05; Figure 2). Thirty-three asso-
ciations remained significant after correcting for multiple 
tests. Of the 65 protein EpiScores, higher levels of 41 
were associated with an increased hazard of CVD (HR>1 
and P<0.05). For example, elevated levels of CRP and 
MMP12 were associated with HR per SD of 1.23 (95% 
CI, 1.16–1.30; P=9.2×10−12) and 1.13 (95% CI, 1.06–
1.22; P=5.4×10−4; Figure 3A), respectively. In contrast, 
higher levels of 24 protein EpiScores were associated 
with a decreased hazard of CVD (HR<1 and P<0.05). 
Examples of protein EpiScores belonging to this group 
include NOTCH1 (HR per SD, 0.84 [95% CI, 0.79–0.89]; 
P=1.6×10−9) and OMD (HR per SD, 0.87 [95% CI, 0.82–
0.92]; P=1.0×10−6). The relationships between individual 
EpiScores and CVD risk have been visualized in the form 
of risk-over-time (Figure 3B), forest, and Kaplan Meier 
plots in an online R application (https://shiny.igc.ed.ac.
uk/3d2c8245001b4e67875ddf2ee3fcbad2/).

As DNAm levels vary between different types of white 
blood cells, there is a concern that the associations that 
we observe may be influenced by cellular heterogene-
ity. To mitigate this potential effect, we incorporated esti-
mated white blood cell proportions as covariates in the 
model adjusted for the concentration of cTnI and the 
ASSIGN score. In this model, 50 protein EpiScores were 
significantly associated with CVD risk (P<0.05). The 
comparison of HRs associated with protein EpiScores 
in each of the studied models can be found in Table SIII.

Finally, to learn whether individual protein EpiS-
core can augment CVD prediction beyond established 

biomarkers and clinical risk prediction tools, we calcu-
lated C-statistics for null and full models. While the null 
model was adjusted for ASSIGN and the concentration 
of cTnI (C-stat, 0.728), the full model also contained the 
studied protein EpiScore. Table 2 lists the top 10 asso-
ciations that result in the greatest improvement in CVD 
risk prediction.

Composite Episcore for CVD Risk Prediction
To understand whether the abovementioned protein 
EpiScores can be used as biomarkers that add additional 
predictive value over and above typically used clinical 
risk scores (ASSIGN and SCORE2) and the concentra-
tion of cTnI, we generated a composite CVD EpiScore—a 
weighted linear combination of individual protein EpiS-
cores. The score was trained using 2 modeling tech-
niques: Cox PH Elastic Net and Random Survival Forest. 
There were 6880 records in the training set and 3659 
records in the test set. The Elastic Net assigned nonzero 
coefficients to 45 of 109 protein EpiScores (Table SIV).

In a 10-year Elastic Net prediction analysis, the null 
model (containing age, sex, and ASSIGN) had an area 
under the receiver operating characteristic curve (AUC) 
of 0.719. The model with the CVD EpiScore increased 
the AUC to 0.723. The addition of cTnI to the null 
model resulted in an AUC of 0.721. The full model (null 
model+cTnI+CVD EpiScore) AUC was 0.724. Full output 
for the CVD models including C-statistics and a compari-
son with SCORE2 can be found in Tables V through VII. 
These analyses were a carbon copy of the aforementioned 
ASSIGN models—a null model (containing age, sex, and 

Table 1.  Summary of Training, Test, and Full Data Sets. The Full Data Set Contains Related Individuals

 

Training Test Full

Cases Controls Cases Controls Cases Controls 

n 658 6222 337 3322 1274 11 383

Time-to-event (years to onset or  
censoring)

7.0 (4.1–9.9) 11.8 (11.1–13.0) 4.8 (2.6–7.6) 11.8 (11.0–13.6) 6.8 (3.7–9.8) 11.8 (11.1–13.2)

Age, y 58.3 (50.8–62.6) 50.0 (40.8–58.8) 56.6 (51.6–60.0) 51.5 (43.9–57.6) 57.4 (51.0–62.2) 50.4 (41.5–58.2)

Sex, male 345 (52.4%) 2452 (39.4%) 165 (49.0%) 1219 (36.7%) 655 (51.4%) 4399 (38.6%)

SIMD, score/10 41.6 (22.2–53.3) 45.3 (26.3–55.1) 45.1 (20.2–54.9) 44.5 (22.6–54.8) 41.8 (21.6–54.0) 44.9 (25.5–54.9)

Family history of CHD/stroke, yes 443 (67.3%) 3171 (51.0%) 224 (66.5%) 1781 (53.6%) 862 (67.7%) 5881 (51.7%)

Diabetes, yes 19 (2.9%) 63 (1.0%) 16 (4.7%) 72 (2.2%) 43 (3.4%) 165 (1.4%)

Rheumatoid arthritis, yes 29 (4.4%) 140 (2.3%) 23 (6.8%) 110 (3.3%) 71 (5.6%) 281 (2.5%)

Nonsmoker, yes 534 (81.2%) 5306 (85.3%) 280 (83.1%) 2752 (82.8%) 1044 (81.9%) 9623 (84.5%)

Systolic blood pressure, mm Hg 142.1 (16.7) 130.8 (16.9) 140.3 (17.6) 130.3 (16.5) 141.5 (17.2) 130.6 (16.8)

Total cholesterol, mmol/L 5.4 (1.1) 5.2 (1.0) 5.3 (1.1) 5.3 (1.1) 5.4 (1.1) 5.2 (1.0)

HDL cholesterol, mmol/L 1.3 (1.1–1.6) 1.4 (1.2–1.7) 1.4 (1.1–1.6) 1.5 (1.2–1.8) 1.3 (1.1–1.6) 1.4 (1.2–1.7)

ASSIGN score 19 (12–29) 9 (4–18) 18 (11–28) 10 (5–17) 18 (11–28) 9 (4–17)

To make sure that members of the same family are not present across training and test data sets, any individuals in the training set who shared family ID with individu-
als from the test set were excluded from subsequent analyses (n=2118). For continuous variables with normal distributions, summary values are reported as mean (SD). 
Median (Q1-Q3) are given for continuous variables that do not follow a normal distribution. A number and a percentage of samples are reported for categorical variables.

ASSIGN indicates the cardiovascular risk score chosen for use by SIGN (Scottish Intercollegiate Guidelines Network) and Scottish Government Health Directorates; 
CHD, coronary heart disease; HDL, high-density lipoprotein; ID, identification number; and SIMD, Scottish Index of Multiple Deprivation.
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SCORE2) was compared with models with cTnI and the 
CVD EpiScore. The CVD EpiScore remained statistically 
significant after adjusting for the concentration of cTnI in 
models incorporating ASSIGN and SCORE2 (HR, 1.32; 
P=3.7×10−3 and HR, 1.36; P=1.4×10−3, respectively).

Random Survival Forest–based analysis (see Meth-
ods) yielded similar results. The null model (as above) 
had an AUC of 0.719. Adding the CVD EpiScore to the 
null model increased the AUC to 0.721. The full model 
adjusted for CVD EpiScore and the concentration of car-
diac troponin had an AUC of 0.723.

DISCUSSION
In this study, we describe 65 novel epigenetic biomarkers 
that are associated with long-term risk of CVD indepen-
dently of a clinical risk prediction tool (ASSIGN) and the 
concentration of an established protein biomarker (cTnI). 
The most statistically significant EpiScores reflected 
concentrations of proteins involved in metabolic, immune, 
and developmental pathways. A weighted linear combi-
nation of protein EpiScores (the composite protein-CVD 
EpiScore) was significantly associated with CVD risk in 

Figure 2. Associations between protein epigenetic scores (EpiScores) and incident cardiovascular disease.
Hazard ratios are plotted for the 67 significant associations (P<0.05) with 95% CI limits. Basic models were adjusted for ASSIGN (red), 
whereas full models included the ASSIGN score and concentration of cTnI (cardiac troponin I) as covariates (blue).
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models adjusted for ASSIGN. Although the score may 
be a useful addition to other omic features in future CVD 
risk prediction tools, at present, it is unlikely to be mea-
sured in a clinical setting.23

One previous study focused on how DNAm biomark-
ers improve CVD risk prediction.24 Using time-to-event 
data and a panel of 60 blood DNAm biomarkers mea-
sured in an Italian cohort of 1803 individuals (295 cases), 
Cappozzo et al24 trained a composite score for predict-
ing short-term risk of CVD. In comparison, we focused 
on a more extensive panel of DNAm protein markers in 
addition to measured troponin levels. We also ran uni-
variate analyses to identify individual proteins and pro-
tein classes that are associated with CVD. Furthermore, 
we developed 10-year prediction models (the prediction 
window for which both ASSIGN and SCORE2 are rec-
ommended) trained on more than double the number of 
cases.

Our findings suggest that individual protein EpiScores 
capture disease-specific biomarker signals relevant to 

CVD risk prediction. The relationships found between 65 
protein EpiScores and incident CVD mirrored previously 
reported associations between CVD and measured pro-
tein concentrations. For example, elevated levels of CRP, 
a marker for systemic low-grade inflammation, have been 
associated with multiple age-related morbidities, includ-
ing CVD.25 MMP12 and OMD, in turn, are involved in 
maintaining the stability of atherosclerotic plaques. While 
MMP12 contributes to the growth and destabilization of 
plaques,26 increased levels of OMD have been observed 
in macrocalcified plaques from asymptomatic patients.27 
Finally, multiple studies have demonstrated that NOTCH1 
signaling protects the heart from CVD-induced myocar-
dial damage. The Notch1 pathway is involved in neoan-
giogenesis and revascularization of a failing heart.28 It 
limits the extent of ischemic injury,28 reduces fibrosis,29 
and improves cardiac function.30 Several protein EpiS-
cores associated with CVD in our study, such as SELE 
and C5, have also been shown to be associated with 
stroke and ischemic heart disease in our previous work.20

Figure 3. Changes in cardiovascular disease (CVD) free survival and CVD risk plotted for two selected protein EpiScores.
A, Individuals with higher levels of MMP12 (>75th percentile) had shorter CVD-free survival when compared with those with lower levels of this 
EpiScore (<25th percentile). B, Hazard ratios (per SD of the EpiScore) and 95% CIs associated with the levels of OMD EpiScore plotted over 
time. At all examined time points, the association with CVD risk was significant (P<0.05).
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Whereas some of the EpiScores reflect known protein- 
CVD associations, others reflect novel pathways. This 
includes, but is not limited to, PRSS2 and CNTN4. 
PRSS2, which encodes the digestive enzyme trypsin 2, 
has been mainly studied in the context of pancreatitis. 
However, recent studies provide evidence that trypsin can 
leak from the small intestine into the bloodstream and 
digest myocardial tissue during heart failure.31 Trypsin-
mediated degradation of heart tissue was also observed 
in cases of dilated cardiomyopathy following influenza A 
infection.32 CNTN4, in turn, encodes a cell adhesion mol-
ecule implicated in the development of autism spectrum 
disorders.33 Recent studies have shown that mutations 
in CNTN4 were associated with an elevated production 
of a prothrombotic agent called thromboxane A2 and an 
increased risk of cardiovascular events.34

The protein EpiScore that we trained for cTnI was 
not associated with the incidence of CVD. Therefore, we 
excluded it from composite CVD score generation. This 
highlights an important consideration in the develop-
ment of multiomics biomarkers, as there are unlikely to 
be DNAm differences that associate with every blood 
protein. For example, the 109 protein EpiScores gener-
ated by Gadd et al20 that we make use of in our study 
were extracted as the best-performing EpiScores from a 
total set of 953 proteins tested as potential outcomes. It 
is, therefore, not always possible to generate a meaning-
ful protein EpiScore that reflects the protein biology. In 
the case of cardiac troponins, the elevations in circulating 
cTnI and cTnT are a result of a leakage of these proteins 
from the damaged heart muscle into the bloodstream.35 
As opposed to transcription, this process is not regulated 
by DNAm. Therefore, the methylation signal underlying an 
increased concentration of cardiac troponin in the blood-
stream may be too weak to enable the generation of a 
meaningful EpiScore. This limitation may also extend to 
other proteins derived in the heart or other tissues involved 

in CVD onset. Nonetheless, the ability of a DNAm array 
to capture surrogate markers for hundreds of proteins—
many of which are not routinely measured in the clinic—
offers promise in the development of CVD biomarkers.

Strengths of this study include the precise timing of 
the CVD event through the electronic health records, the 
ability to generate a clinical risk predictor in a population 
cohort, and the large sample size for DNAm, which also 
permitted the splitting of the data into train/test sets to 
formally examine the improvement in risk prediction from 
our omics biomarkers.

Limitations to this work include the generalizability 
beyond a Scottish population. In this study, we trained 
and tested predictors in a Scottish cohort to augment the 
ASSIGN score. However, many of the protein EpiScores 
were trained in a German cohort (KORA [Cooperative 
Health Research in the Region Augsburg]) and pro-
jected to GS.20 This suggests that the EpiScore biomark-
ers part-translate across European ancestry populations. 
Although the ASSIGN score is tailored to the Scottish 
population, we observed similar findings across all mod-
els when replacing it with SCORE2, which is widely 
used across Europe. To generalize the findings further, 
replication of the EpiScore associations with CVD (while 
adjusting for SCORE2) across other European ancestry 
populations is required.

CONCLUSIONS
In conclusion, we identified novel epigenetic signals 
that were associated with the incidence of CVD inde-
pendently of ASSIGN and the concentration of cardiac 
troponin. The exploration of associations between pro-
tein EpiScores and CVD shed light on the etiology and 
molecular biology of the disease. As DNAm and proteins 
are assessed in increasingly large cohort samples, it will 
be possible to evaluate more precisely the potential gains 
in risk prediction, disease prevention, and any associated 
health economic benefits.
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