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Smart contracts are computer programs designed to automate legal agreements. They are usually developed in

a high-level programming language, the most popular of which is Solidity. Every day, hundreds of thousands

of new contracts are deployed managing millions of dollars’ worth of transactions. As for every computer

program, smart contracts may contain bugs which can be exploited. However, since smart contracts are often

used to automate financial transactions, such exploits may result in huge economic losses. In general, it is

estimated that since 2019, more than $5B was stolen due to vulnerabilities in smart contracts.

This paper addresses the issue of smart contract vulnerabilities by introducing an executable denotational

semantics for Solidity within the Isabelle/HOL interactive theorem prover. This formal semantics serves as

the basis for an interactive program verification environment for Solidity smart contracts. To evaluate our

semantics, we integrate grammar-based fuzzing with symbolic execution to automatically test it against the

Solidity reference implementation. The paper concludes by showcasing the formal verification of Solidity

programs, exemplified through the verification of a basic Solidity token.
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1 INTRODUCTION
Blockchain [42] is a novel technology to store data in a decentralised way without the need of a

trusted third party. Although the technology was originally invented to enable cryptocurrencies,

it quickly found applications in several other domains, such as finance [33], healthcare [21], land
management [15], business process management [23], and even identity management [57]. According
to McKinsey, blockchain had a market capitalisation of more than $150B in 2018 [22] and Gartner

predicts a business value of the technology of $3.1T by 2030 [24].

One important innovation which comes with blockchain are smart contracts. These are digital
contracts which are automatically executed once certain conditions are met and which are used to

automate transactions on the blockchain. For instance, a payment for an item might be released

instantly once the buyer and seller have met all specified parameters for a deal. Every day, hundreds

of thousands of new contracts are deployed managing millions of dollars’ worth of transactions [56].

Technically, a smart contract is code which is deployed to a blockchain and which can be executed

by sending special transactions to it. Thus, as for every computer program, smart contracts may

contain bugs which can be exploited. However, since smart contracts are often used to automate
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financial transactions, such exploits may result in huge economic losses. For example, in 2016 a

vulnerability in an Ethereum smart contract was exploited resulting in a loss of approximately

$60M [7]. More recently, hackers exploited a vulnerability in the DeFi-platform Poly Network to

steal $600M [43]. As another example, an incorrectly initialised contract was the root cause of the

Parity Wallet bug that froze $280M [46]. In general, it is estimated that since 2019, more than $5B

was stolen due to vulnerabilities in smart contracts [16].

The high impact of vulnerabilities in smart contracts together with the fact that once deployed

to the blockchain, they cannot be updated or removed easily, makes it important to “get them right”

before they are deployed. Thus, companies have specialised to provide dedicated auditing services

in which experts analyse smart contracts for vulnerabilities. Unfortunately, however, even rigorous

security audits cannot guarantee correctness of smart contracts as shown in a more recent attack

in which $31M was stolen from a smart contract which had received already three security audits

throughout the year [25].

Smart contracts are usually developed in a high-level programming language, the most popular

of which is Solidity [5]. Solidity has been designed for use with the Ethereum Virtual Machine

(EVM) and thus it works on all EVM-based smart contract platforms, such as Ethereum, Avalanche,

Moonbeam, Polygon, BSC. As of today, more than 90% of all smart contracts are developed using

Solidity [36] and according to a 2023 survey, Solidity is by far the most popular language used by

blockchain developers (in fact it is twice as popular as second most popular language) [6].

To provide a first impression of the language, we briefly discuss a simple smart contract in

Solidity which allows clients to deposit and withdraw funds:

1 contract Bank {

2 mapping(address => uint256) balances;

3

4 function deposit() public payable {

5 balances[msg.sender] = balances[msg.sender] + msg.value;

6 }

7

8 function withdraw() public {

9 msg.sender.transfer(balances[msg.sender]);

10 balances[msg.sender] = 0;

11 }

12 }

The example shows several specialities of the Solidity programming language. In particular,

every contract has an internal balance and funds can be transferred to and from this balance either

explicitly (by transferring funds) or implicitly (via an external method call). Additionally, the type

system provides, e.g., numerous integer types of different sizes (e.g., uint256) and the Solidity

programs can make use of different types of stores for data (e.g., storage and memory).

In this paper, we address the problem of developing correct smart contracts in Solidity. To this

end, we present an executable denotational semantics for Solidity in the interactive theorem prover

Isabelle/HOL [45]. Our approach combines an expressive logic, i.e., higher-order logic (HOL) within

an interactive theorem prover with a testing framework allowing us to validate the formalization

against the actual implementation. This combination enables us to quickly analyse the impact of

changes to the semantics while ensuring formal consistency and compliance to the implementation.

The ability to quickly assess changes in Solidity is important, as Solidity is a fast evolving language.
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The Solidity manual [5], e.g., states: “When deploying contracts, you should use the latest released

version of Solidity. This is because breaking changes as well as new features and bug fixes are

introduced regularly.” In more detail, the contributions of this paper are:

(1) An executable formal semantics, using monads to capture state, of the core of Solidity as

conservative embedding into Isabelle/HOL.

(2) A formalisation of contracts identified by addresses and consisting of member variables and

methods.

(3) A formal model of method invocations, both within the same contract (internal method

invocation) and to arbitrary contracts on the blockchain (external method invocation).

(4) A case study demonstrating how the formal semantics can be used, within Isabelle/HOL, to

verify the correctness of a smart contract.

The semantics as well as the case studies are completely mechanised in Isabelle/HOL and available

in the archive of formal proofs [39].

An older version of the semantics (contribution 1) is described in a previously published confer-

ence paper [37]. This journal article presents a significantly updated version of the semantics with

several extensions. Compared to [37], the semantics has been completely redesigned using monads.

In addition, we added support for contracts as well as internal and external method invocations.

The remainder of the paper is structured as follows: In Sect. 2 we provide some background to

our work. In particular, we discuss the notion of finite maps and state monads which build the

foundation for our semantics. Sect. 3 presents our formalization of the storage model of Solidity. In

Sect. 4 we present our formalization of environments and variable declarations. We then present

our formalization of Solidity expressions (Sect. 5) and statements (Sect. 6). In Sect. 7 we discuss how

the gas model of Solidity can be leveraged to ensure termination of the semantic functions. To this

end, we describe a corresponding measure function and how it can be used to prove termination.

In Sect. 8 we describe a case study showing how to verify correctness of a simple banking contract.

We discuss our experience in formalising Solidity and limitations of our approach (Sect. 9) and

related work (Sect. 10). Sect. 11 concludes the paper with a discussion of future work.

Our formalization is based on the official Solidity v0.5.16 language specification
1
. All the Isabelle

theory files related to this paper are publicly available
2
and we will refer to them throughout the

paper. To this end we will use

Types

to refer to definition Types in the theory Valuetypes.thy. The theory is usually clear from the

context and the Isabelle symbol is a clickable link to the corresponding part of the formalization.

2 BACKGROUND
Our formalization is based on higher-order logic using inductive data types [9]. To this end, we use

bold font for types and italics for type constructors. We shall also use

type⊥
def

= ⊥ ∪ {𝑥⊥ | 𝑥 ∈ type}
to denote the type which adds a distinct element ⊥ to the elements of type.

2.1 Finite maps
Our formalization is based on the concept of finite maps. If A and B are types, we use

A⇒ B

1
https://docs.soliditylang.org/en/v0.5.16/

2
https://github.com/dmarmsoler/isabelle-solidity-deep
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to denote a finite map from A to B. Such a map associates at most one element of type B with each

element of type A. Given a map𝑚 : A⇒ B we denote with𝑚(𝑎) ∈ B⊥ the unique element of B
associated with 𝑎 ∈ A or ⊥ in the case no such element exists. The empty map is denoted fmempty
and with𝑚[𝑎 ↦→ 𝑏] we associate element 𝑏 ∈ B with element 𝑎 ∈ A in mapping𝑚.

2.2 State monads
To model stateful computations in a purely functional world such as HOL, we use monads, a widely

used concept for modelling stateful computations, which is also frequently used in Isabelle/HOL for

this purpose (e.g., [14, 51]). Actually, we make use of the monad syntax provided by Isabelle/HOL

(in the standard theory Monad_Syntax.thy). In more detail, our semantics is defined using the

concept of a state monad [17, 54]
3
. To this end we first define a result type as follows:

Result(N, E) ::= Normal(N) | Exception(E) ( result)

The type Result is defined over two type parameters N and E to denote the type for normal and

exceptional return values, respectively. Thus, Normal(𝑠) represents a normal return with value 𝑠

while Exception(𝑒) represents an exceptional return with exception 𝑒 .

We can then define our monad as follows:

State_Monad(A, E, S) def

= S→ Result(A × S, E) ( state_monad)

The monad requires three type parameters:

• A type A for return values

• A type S for states
• A type E for exceptions

Such a monad is then supposed to update the state and return an element of type A or return an

exception of type E.

2.2.1 Bind. The bind operator 𝑓 >>=𝑔 (𝑠) allows to combine a monad 𝑓 : State_Monad(A, E, S) with
a function 𝑔 : A→ State_Monad(B, E, S):

𝑓 >>=𝑔 (𝑠) def

=

{
𝑔(𝑎) (𝑠′) if 𝑓 (𝑠) = Normal(𝑎, 𝑠′)
Exception(𝑒) if 𝑓 (𝑠) = Exception(𝑒)

( bind)

In addition, we shall use the following constants to denote normal and erroneous returns:

return(𝑎) def

= 𝜆𝑠. Normal(𝑎, 𝑠) ( return)

throw(𝑒) def

= 𝜆𝑠. Exception(𝑒) ( throw)

Note that our monad satisfies the usual laws required for monads. First, return is absorbed on

the left of a bind, applying the return value directly.

Lemma 2.1 ( return_bind). For function 𝑓 : A → State_Monad(A, E, S) and an 𝑎 ∈ A, we
have:

(return(𝑎) >>= 𝑓 ) = 𝑓 (𝑎)

Moreover, return is absorbed on the right of a bind.

Lemma 2.2 ( bind_return). For a monad𝑚 : State_Monad(A, E, S), we have:
(𝑚 >>= return) =𝑚

Finally, bind is associative.

3
State monads are formalized in theory StateMonad.thy
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Lemma 2.3 ( bind_assoc). For a monad 𝑚 : State_Monad(A, E, S), and functions 𝑓 : A →
State_Monad(B, E, S) and 𝑔 : B→ State_Monad(C, E, S), we have:

(𝑚 >>= 𝑓 ) >>=𝑔 =𝑚 >>=(𝜆𝑥. 𝑓 (𝑥) >>=𝑔)

To combine multiple monads we will often use the familiar do-notation
4
. Then,

do
[
𝑎 ← return(1)
return(𝑎)

denotes the monad given by

return(1) >>=(𝜆𝑥 . return(𝑥))

2.2.2 Manipulating monads. We shall use the following functions to retrieve or change the state of

a monad:

get (𝑠) def

= Normal(𝑠, 𝑠) ( get)

put (𝑠, _) def

= Normal((), 𝑠) ( put)

In addition, we shall use the following functions to modify a monad’s state or simply apply a

function to it:

modify(𝑓 ) def

= get >>=(𝜆𝑠. put (𝑓 (𝑠))) ( modify)

apply(𝑓 ) def

= get >>=(𝜆𝑠. return(𝑓 (𝑠))) ( applyf)

2.2.3 Assertions. The assert monad allows to specify a state predicate which determines an erro-

neous situation:

assert (𝑥, 𝑐,𝑚) def

= 𝜆𝑠.

{
throw(𝑥) if 𝑐 (𝑠)
𝑚(𝑠) if ¬𝑐 (𝑠)

( assert)

We shall usually use the following notation to denote an assert monad:

assert 𝑥
[
𝑐

𝑚

2.2.4 Options. The option monad allows us to use option types with monads:

option(𝑥, 𝑓 , 𝑔) def

= 𝜆𝑠.

{
𝑔(𝑦) (𝑠) if 𝑓 (𝑠) = 𝑦⊥
Exception(𝑥) if 𝑓 (𝑠) = ⊥

( option)

Again, we often use the following notation to denote an option monad:

option 𝑥
[
𝑓

𝑔

3 STORES AND STATES
In the following, we describe the storage model for our formalization. To this end, we first discuss

the formalization of the basic types of data which can be stored (Sect. 3.1). Then, we discuss the

different types of stores involved in Solidity (Sect. 3.2). Finally, we discuss the notion of a state in a

Solidity program (Sect. 3.3).

4
formalized in https://www.isa-afp.org/sessions/hol-library/#Monad_Syntax.html
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3.1 Value types
Value types are formalized in theory Valuetypes.thy. Our version of Solidity supports four

different basic data types, called value types:

Types ::= TBool | TAddr | TSInt (Nat) | TUInt (Nat) ( Types)

TBool denotes boolean values and TAddr denotes addresses. Solidity also supports signed and

unsigned integers from 8 to 256 bits in steps of 8. Thus, TSInt 𝑏 and TUInt 𝑏 denote signed and

unsigned integers of 𝑏-bit size.

In Solidity, raw data is encoded in hexadecimal format, however, to simplify the computation of

locations for reference types (as discussed in more detail in Sect. 3.2), we use strings to represent

raw data in our model. Thus, type Valuetype is actually just a synonym for type string, and it is

used to represent the data of value types in the store. In addition, we shall write ⌊𝑣⌋ and ⌈𝑣⌉ to
convert the value 𝑣 of a basic data type to and from a string representation, respectively.

3.1.1 Overflows. Converting an arbitrary integer to a fixed-width bit representation can result in

an overflow or underflow. Consider, for example, the following two Solidity statements:

1 assert(uint8(500) == uint8(244)); //true

2 assert(int8(200) == int8(-56)); //true

In Line 1, we create an 8-bit unsigned integer from number 500. However, since the maximum

size of such an integer is 256we get an overflow which results in 500−256 = 244. A similar situation

arises with signed integers as shown in Line 2. This time, however, the size is from −128 to +127
which is why a value of 200 results in −128 + (200 − 128) = −56.

Thus, we define two functions createUInt and createSInt to convert an arbitrary number to

a corresponding unsigned or signed integer representation of a certain size. The definition of

createUInt is simple:

createUInt : Nat × Int→ Valuetype ( createUInt)

createUInt (𝑏, 𝑣) def

=
⌊
𝑣 mod 2

𝑏−1⌋
where “𝑥 mod 𝑦” denotes the non-negative remainder when dividing 𝑥 by 𝑦.

The definition of createSInt is a bit more complex since we need to distinguish between positive

and negative values:

createSInt : Nat × Int→ Valuetype ( createSInt)

createSInt (𝑏, 𝑣) def

=

{⌊(
(𝑣 + 2𝑏−1) mod 2

𝑏
)
− 2𝑏−1

⌋
if 𝑣 ≥ 0⌊

2
𝑏−1 −

(
(2𝑏−1 − 𝑣 − 1) mod 2

𝑏
)
− 1

⌋
if 𝑣 < 0

Essentially, the functions can be used to create a representation of a given number which fits into a

certain bit size. For example, constructing an unsigned 8-bit integer of 500 results in an overflow:

createUInt (8, 500) = “244”

Similarly we get an overflow if we create a signed 8-bit integer from 200: createSInt (8, 200) = “−56”.
Sometimes we need to convert a value between types. To this end we define function

convert : Types × Types × Valuetype→ (Valuetype × Types)⊥ ( convert)
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using usual pattern-matching notation as follows:

convert (TSInt (𝑏1), TSInt (𝑏2), 𝑣)
def

=

{
(𝑣, TSInt (𝑏2))⊥ if 𝑏1 ≤ 𝑏2
⊥ otherwise

convert (TUInt (𝑏1), TUInt (𝑏2), 𝑣)
def

=

{
(𝑣, TUInt (𝑏2))⊥ if 𝑏1 ≤ 𝑏2
⊥ otherwise

convert (TUInt (𝑏1), TSInt (𝑏2), 𝑣)
def

=

{
(𝑣, TSInt (𝑏2))⊥ if 𝑏1 < 𝑏2

⊥ otherwise

convert (TBool, TBool, 𝑣) def

= (𝑣, TBool)⊥
convert (TAddr, TAddr, 𝑣) def

= (𝑣, TAddr)⊥
convert (_, _, _) def

= ⊥
If the types are compatible then the function simply returns the original value with the new type.

However, if the types are not compatible the function returns an error value ⊥. In particular, we can

convert a signed/unsigned integer to another signed/unsigned integer of equal or larger bit size. In

addition, we can convert an unsigned integer to a signed integer only if the size of the signed one

is strictly larger than the size of the unsigned one. Finally, we can never convert a signed integer to

an unsigned one.

3.1.2 Arithmetic. We can then define functions to lift basic arithmetic and relational operations

to corresponding operations over signed and unsigned integers of various sizes. According to the

current specification of Solidity, adding two integers of the same type is always possible but results

in a new integer of the size of the larger one. Adding integers of different type is only possible if

the size of the signed integer is strictly greater than the one of the unsigned one, in which case the

result is always a signed integer with the size of the signed one. Moreover, the result of adding two

numbers might not fit into the corresponding result type in which case an overflow occurs.

Consider, for example, the following Solidity statements:

1 assert(uint8(50) + uint8(50) == uint8(100)); // true

2 assert(uint16(100) + int16(32700)); // compiler error

3 assert(uint8(200) + int16(32600) == int16(-32736)); // true

In Line 1 we add two 8-bit unsigned integers of 50which results in a corresponding 8-bit unsigned

integer of 100. However, in Line 2 we try to add a 16-bit unsigned integer with a 16-bit signed

integer which results in a compiler error since the two types are not compatible. Finally, in Line 3

we add an 8-bit unsigned integer of 200 with a 16-bit signed integer of 32 600 which results in a

16-bit signed integer of 32 800. However, since this does not fit in the result type we get again an

overflow which gives us −32 736 as final value.
In the following, we define function

add : Types × Types × Valuetype × Valuetype→ (Valuetype × Types)⊥ ( add)

as follows:

add (TUInt (𝑏𝑙 ), TUInt (𝑏𝑟 ), 𝑣𝑙 , 𝑣𝑟 )
def

= createU (max (𝑏𝑙 , 𝑏𝑟 ), ⌈𝑣𝑙 ⌉ + ⌈𝑣𝑟 ⌉)

add (TSInt (𝑏𝑙 ), TSInt (𝑏𝑟 ), 𝑣𝑙 , 𝑣𝑟 )
def

= createS (max (𝑏𝑙 , 𝑏𝑟 ), ⌈𝑣𝑙 ⌉ + ⌈𝑣𝑟 ⌉)
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add (TUInt (𝑏𝑙 ), TSInt (𝑏𝑟 ), 𝑣𝑙 , 𝑣𝑟 )
def

=

{
createS (𝑏𝑟 , ⌈𝑣𝑙 ⌉ + ⌈𝑣𝑟 ⌉) if 𝑏𝑙 < 𝑏𝑟

⊥ if 𝑏𝑙 ≥ 𝑏𝑟

add (TSInt (𝑏𝑙 ), TUInt (𝑏𝑟 ), 𝑣𝑙 , 𝑣𝑟 )
def

=

{
createS (𝑏𝑙 , ⌈𝑣𝑙 ⌉ + ⌈𝑣𝑟 ⌉) if 𝑏𝑟 < 𝑏𝑙

⊥ if 𝑏𝑟 ≥ 𝑏𝑙

add (_, _, _, _) def

= ⊥

where createU (𝑏, 𝑣) = (createUInt (𝑏, 𝑣), TUInt (𝑏))⊥ and createS(𝑏, 𝑣) = (createSInt (𝑏, 𝑣), TSInt (𝑏))⊥.
We can now use our function to evaluate the examples above:

add (TUInt (8), TUInt (8), “50”, “50”) = (“100”, TUInt (8))⊥
add (TUInt (16), TSInt (16), “100”, “32700”) = ⊥
add (TUInt (8), TSInt (16), “200”, “32600”) = (“−32736”, TSInt (16))⊥

Similar definitions are provided for the remaining arithmetic and relational operators: subtrac-

tion ( sub), equality ( equal), less than ( less), and less or equal ( leq).

3.1.3 Logical operations. Finally, we can lift basic logical operators, such as

vtand : Types × Types × Valuetype × Valuetype→ (Valuetype × Types)⊥ ( vtand)

as follows:

vtand (TBool, TBool, 𝑎, 𝑏) def

=

{
(⌊True⌋ , TBool)⊥ if 𝑎 = ⌊True⌋ ∧ 𝑏 = ⌊True⌋
(⌊False⌋ , TBool)⊥ otherwise

vtand (_, _, _, _) def

= ⊥

Again, a similar definition is provided for logical disjunction denoted vtor ( vtor).

3.2 Stores and Reference Types
Stores are formalized in theory Storage.thy. In Solidity, storage cells are addressed by hexadecimal

numbers. Again, however, we use strings to model them to simplify computation of locations for

reference types. Thus, type Loc denotes the type of strings and is used to represent storage locations.
We can then model a general store for values of type 𝑣 as a parametric data type:

Store(𝑣) ::= (Loc⇒ 𝑣) × Nat ( Store)

It consists of a (finite) mapping to assign values of type v to locations and in addition it holds a

pointer to the next free location. In the following we denote with mapping(𝑠) the mapping of a

store 𝑠 while we use toploc(𝑠) to denote its top location. We can then define the following functions

to create an empty store and access/update elements of a store:

emptyStore def

= (fmempty, 0) ( emptyStore)

accessStore(𝑙, 𝑠) def

= mapping(𝑠) (𝑙) ( accessStore)

updateStore(𝑙, 𝑣, 𝑠) def

= (mapping(𝑠) [𝑙 ↦→ 𝑣], toploc(𝑠)) ( updateStore)

Moreover, we can define a function to allocate new memory and return the new top location as

follows:

allocate(𝑠) def

= (⌊ntop⌋ , (mapping(𝑠), ntop)) , where ntop = toploc(𝑠) + 1 ( allocate)
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Finally, we define a function to add a new element to the top of a store:

push(𝑣, 𝑠) def

= (allocate(updateStore(⌊toploc(𝑠)⌋ , 𝑣, 𝑠)))
2

( push)

where (𝑥)𝑛 denotes the projection to the 𝑛th component of a tuple 𝑥 .

3.2.1 Computing storage locations. The way Solidity computes storage locations for reference

types is a bit special and thus worth a closer look. In Solidity the storage location for elements

of a reference type are calculated by combining the address of the reference type variable with

the corresponding index and hashing the result using the Keccak hash function [10]. Consider, for

example, the simple contract in Listing 1 and assume that variable balances refers to stack location
0𝑥 . . . 0047𝑒7𝑒 𝑓 24. Assume that we call deposit with value 0𝑥 . . . 5𝑓 56𝑏𝑒𝑑𝑑𝐶4 for address 𝑎. Now the

storage location modified by the assignment in Line 6 is keccak256(“. . . 5f56beddC4 . . . 0047e7ef24”).

Listing 1: Solidity contract demonstrating the calculation of storage locations.

1 contract EtherStore {

2 mapping(address => uint) public balances;

3

4 function deposit(address a, uint256 v) public {

5 // balances[a] refers to location keccak256(a+balances)

6 balances[a] = v;

7 }

8 }

The main objective of this approach is to obtain a unique storage cell for every element. The

purpose of using the hash value is to deal with a limited amount of storage cells which are available

in practice. In theory, collisions are possible when using a hash function, however, in practice, such

collisions are very unlikely to happen, and thus they may be neglected. Thus, in our model, the

location of the storage cell which holds the value of an element ix of a reference type which is

stored at location loc is obtained by concatenating ix with loc separated by a dot:

h(loc, ix) def

= ix + “.” + loc ( hash)

An important property of our representation of a hash function is that a given value indeed

uniquely identifies location and index of a given element.

Proposition 3.1 ( hash_injective). Assuming that h(𝑙, 𝑖) = h(𝑙 ′, 𝑖′) and “.” ∉ 𝑖 and “.” ∉ 𝑖′,
then we have

𝑙 = 𝑙 ′ and 𝑖 = 𝑖′

Thus, if we refrain from using dots in indices, we can be sure that our hash function is collision

resistant, i.e., that different locations or indices indeed produce different hash values. Note, however,

that we are not allowed to use dots in index names as otherwise collisions can occur as demonstrated

by the following example:

h(“1.0”, “2”) = “2.1.0” = h(“0”, “2.1”)
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Listing 2: Solidity contract demonstrating different types of storage.

1 contract Example {

2 mapping(address => uint256) myMapping; //storage map

3

4 uint8[2][3] myStorageArray; //storage array

5

6 function example(uint8[2] calldata myCDArray) external { //calldata array

7 uint8[2] storage myPointer = myStorageArray[1]; //storage pointer

8

9 uint8[2] memory myMemoryArray; //memory array

10 }

11 }

3.2.2 Types of Stores. Solidity supports four different types of stores: stack, memory, calldata, and

storage. Consider, for example, the simple contract in Listing 2. The mapping declared in Line 2

and the array declared in Line 4 are contract variables which are kept in storage, a persistent store

on the blockchain. The array declared in Line 6 as part of the formal parameters of method example
is kept in calldata, a volatile store which is mainly used to pass data for method invocations. The

storage array declared in Line 7 and the memory array declared in Line 9 are both pointers which

are kept on the stack. The first one is a pointer to the storage location where the second array of

myStorageArray is located. The second one is a pointer to a newly allocated array in memory, a

volatile store for temporary data storage.

Stack. The stack stores the values for variables which can either be concrete values (for value

type variables) or pointers to either memory, calldata, or storage (for reference type variables).

Thus, a stack can be modelled as a store which can keep four different types of values:

Stackvalue ::= Simple(Valuetype) | Memptr (Loc)
| CDptr (Loc) | Stoptr (Loc) ( Stackvalue)

Stack ::= Store(Stackvalue) ( Stack)

Memory, calldata, and storage. Solidity supports three additional stores for storing the value of

reference types. While memory and calldata support only arrays, storage also supports mappings:

MTypes ::= MTValue(Types) | MTArray(Nat,MTypes) ( MTypes)

STypes ::= STValue(Types) | STArray(Nat, STypes)
| STMap(Types, STypes) ( STypes)

The internal organization of the three stores differs fundamentally: while memory and calldata use

pointer structures to organize the values of reference types, storage values are accessed directly by

computing the corresponding location. Thus, we model memory and calldata as stores which can

keep two different types of values:

Memoryvalue ::= Value(Valuetype) | Pointer (Loc) ( Memoryvalue)

Memory ::= Store(Memoryvalue) ( MemoryT)

Calldata ::= Memory ( CalldataT)
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Storage, on the other hand is modelled as a simple mapping from locations to value types:

Storage ::= Loc⇒ Valuetype ( StorageT)

Storage access is non-strict, which means that access to an undefined storage cell returns a default

value. To this end, we first define a function

ival : Types→ Valuetype ( ival)

which returns a default value for each value type. Then, we can define a corresponding access

function for storage:

accessStorage : Types × Loc × Storage→ Valuetype ( accessStorage)

accessStorage(𝑡, 𝑙, 𝑠) def

=

{
𝑣, if 𝑠 (𝑙) = 𝑣⊥
ival(𝑡), if 𝑠 (𝑙) = ⊥

3.2.3 Copying data. Our model also provides functions to copy reference types. To this end we

use a higher-order function

iter′ : (Int→ 𝑎 → 𝑎⊥) → 𝑎 → Int→ 𝑎⊥ ( iter’)

such that iter′ (𝑓 , 𝑣, 𝑥) executes function 𝑓 on value 𝑣 and then passes the outcome on to another

execution of 𝑓 until 𝑓 was executed 𝑥 times. Note that iter′ is strict in the sense that it returns ⊥ if

one of the applications of 𝑓 returns ⊥.

Memory. Now we can define the following function to copy 𝑥 elements of type 𝑡 from location 𝑙𝑠
of memory𝑚𝑠 to location 𝑙𝑑 of memory𝑚𝑑 :

cpmm : Loc × Loc × Int ×MTypes ×Memory ×Memory→ Memory⊥ ( cpm2m)

cpmm (𝑙𝑠 , 𝑙𝑑 , 𝑥, 𝑡,𝑚𝑠 ,𝑚𝑑 )
def

= iter′ (𝜆𝑖,𝑚. cprec𝑚𝑚 (h(𝑙𝑠 , ⌊𝑖⌋), h(𝑙𝑑 , ⌊𝑖⌋), 𝑡,𝑚𝑠 ,𝑚),𝑚𝑑 , 𝑥)
where

cprec𝑚𝑚 (𝑙𝑠 , 𝑙𝑑 ,MTArray(𝑥, 𝑡),𝑚𝑠 ,𝑚𝑑 )
def

=


iter′ (go,𝑚, 𝑥),

if accessStore(𝑙𝑠 ,𝑚𝑠 ) = Pointer (𝑙)⊥
⊥, otherwise

(1)

cprec𝑚𝑚 (𝑙𝑠 , 𝑙𝑑 ,MTValue(𝑡),𝑚𝑠 ,𝑚𝑑 )
def

=


updateStore(𝑙𝑑 ,Value(𝑣),𝑚𝑑 ),

if accessStore(𝑙𝑠 ,𝑚𝑠 ) = Value(𝑣)⊥
⊥, otherwise

(2)

with go = 𝜆𝑖,𝑚′ . cprec𝑚𝑚 (h(𝑙𝑠 , ⌊𝑖⌋), h(𝑙𝑑 , ⌊𝑖⌋), 𝑡,𝑚𝑠 ,𝑚
′) and𝑚 = updateStore(𝑙𝑑 , Pointer (𝑙𝑑 ),𝑚𝑑 ).

Remember that, in memory, reference types are stored using pointer structures and function cpmm
needs to traverse the pointer structure in the source and recreate the structure in the destination.

Thus, when copying an array in Equation 1 we first need to look up the corresponding pointer

from the source memory location 𝑙𝑠 and create a new pointer in the destination memory location

𝑙𝑑 . Value types are simply copied as shown in Equation 2.

Consider, for example, a memory structure mymemory : Memory defined as follows:

• “0.0” ↦→ Pointer (“0.0”)
• “0.0.0” ↦→ Value(“True”)
• “1.0.0” ↦→ Value(“False”)

• “1.0” ↦→ Pointer (“1.0”)
• “0.1.0” ↦→ Value(“True”)
• “1.1.0” ↦→ Value(“False”)
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Now assume we want to copy the second array of mymemory to location “5” of a new, empty

memory and execute:

cpmm (“1.0”, “5”, 2,MTValue(TBool),mymemory, emptyStore)
The result would be a memory with the following mapping:

• “0.5” ↦→ Value(“True”) • “1.5” ↦→ Value(“False”)

Storage. We can define a similar function to copy reference types from one location to another

on storage:

cpss : Loc × Loc × Int × STypes × Storage→ Storage⊥ ( copy)

cpss (𝑙𝑠 , 𝑙𝑑 , 𝑥, 𝑡, sto)
def

= iter′ (𝜆𝑖, 𝑠′ . cprec𝑠𝑠 (h(𝑙𝑠 , ⌊𝑖⌋), h(𝑙𝑑 , ⌊𝑖⌋), 𝑡, 𝑠′), sto, 𝑥)
where

cprec𝑠𝑠 (𝑙𝑠 , 𝑙𝑑 , STArray(𝑥, 𝑡), sto)
def

= iter′ (𝜆𝑖, 𝑠′ . cprec𝑠𝑠 (h(𝑙𝑠 , ⌊𝑖⌋), h(𝑙𝑑 , ⌊𝑖⌋), 𝑡, 𝑠′), sto, 𝑥) (3)

cprec𝑠𝑠 (𝑙𝑠 , 𝑙𝑑 , STValue(𝑡), sto)
def

= sto[𝑙𝑑 ↦→ accessStorage(𝑡, 𝑙𝑠 , sto)]⊥ (4)

cprec𝑠𝑠 (_, _, STMap(_, _), _) def

= ⊥ (5)

Remember that unlike for memory, reference types are not stored using pointer structures in

storage. Thus, we do not need to access storage when computing the storage location of an array

element as shown in Equation 3. Moreover, observe that we use function accessStorage to lookup

elements in Equation 4 which provides default values for elements which are not initialized. Finally,

storage can keep mappings which is addressed by Equation 5. However, since Solidity does not

allow enumerating mappings we simply return an error value for this case.

Consider for example a storage mystorage : Storage defined by the following mapping:

• “0.0.0” ↦→ “False” • “1.1.0” ↦→ “True”

Now lets again try to copy the second array of the storage to location “5” by executing

cpss (“1.0”, “5”, 2, STValue(TBool),𝑚𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒)
which results in the following, modified storage:

• “0.0.0” ↦→ “False”
• “1.1.0” ↦→ “True”

• “0.5” ↦→ “False”
• “1.5” ↦→ “True”

Note that the original storage was modified by adding two new elements: The one in location “1.5”
is the copy of element “1.1.0” whereas the element at location “0.5” is initialized with the default

value for booleans since the corresponding location “0.1.0” was not defined in the original storage.

3.2.4 Initializing Memory. When declaring new memory arrays we need to initialize them by

creating the corresponding pointer structure. To this end, our model provides a function to initialize

memory arrays. To specify it, we use a higher-order function

iter : (Int→ 𝑎 → 𝑎) → 𝑎 → Int→ 𝑎 ( iter)

such that iter (𝑓 , 𝑣, 𝑥) executes function 𝑓 on value 𝑣 and then passes the outcome on to another

execution of 𝑓 until 𝑓 was executed 𝑥 times. Note that iter is similar to function iter′ defined above
except that it does not support errors.
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We can then define the following function to initialize a memory array:

minit : Int ×MTypes ×Memory→ Memory ( minit)

minit (𝑖, 𝑡,𝑚) def

= (allocate(iter (𝜆𝑖′,𝑚′ . initrec(h(⌊top(𝑚)⌋ , ⌊𝑖′⌋), 𝑡,𝑚′),𝑚, 𝑖)))
2

where

initrec(loc,MTArray(𝑖, 𝑡)) def

= iter (𝜆𝑖′,𝑚′ . initrec(h(loc, ⌊𝑖′⌋), 𝑡,𝑚′),𝑚′′, 𝑖) (6)

initrec(loc,Value(𝑡)) def

= updateStore(loc, (Value(ival(𝑡)))) (7)

with𝑚′′ = updateStore(loc, Pointer (loc),𝑚).
To initialize the array we first create the corresponding pointer structure in Equation 6. In

addition, we initialize the elements using their default value in Equation 7.

Let’s assume, for example, we want to initialize a fresh memory with a two-dimensional boolean

array. Then, we could use

minit (2,MTArray(2,MTValue(TBool)), emptyStore)
The result would be store (𝜇, 1) with 𝜇 containing the following entries:

• “0.0” ↦→ Pointer (“0.0”)
• “0.0.0” ↦→ Value(“False”)
• “1.0.0” ↦→ Value(“False”)

• “1.0” ↦→ Pointer (“1.0”)
• “0.1.0” ↦→ Value(“False”)
• “1.1.0” ↦→ Value(“False”)

The array is stored at location “0” which is why the top location is set to one. The first dimension

of the array contains two entries: the first is located at “0.0” and the second one at “1.0”. Both
entries store pointers to the corresponding second dimension. In the first case, the pointer points to

location “0.0” and the corresponding entries are located at “0.0.0” and “1.0.0”, respectively. In the

second case, the pointer points to location “1.0” and the corresponding entries are located at “0.1.0”
and “1.1.0”, respectively. Note that the primitive values are all initialized with the corresponding

default value which for type boolean is “False”.

3.2.5 Inter-store copy. Often, we need to copy values from one type of store to another. Thus, our

model provides additional functions to support inter-store copies. To specify them, we use again

the higher-order function iter′ introduced above:

cpsm : Loc × Loc × Int × STypes × Storage ×Memory→ Memory⊥ ( cps2m)

cpsm (𝑙𝑠 , 𝑙𝑚, 𝑖, 𝑡, 𝑠,𝑚)
def

= iter′ (𝜆𝑖′,𝑚′ . cprecsm (h(𝑙𝑠 , ⌊𝑖′⌋), h(𝑙𝑚, ⌊𝑖′⌋), 𝑡, 𝑠,𝑚′),𝑚, 𝑖)
where

cprecsm (ls, lm, STArray(𝑖, 𝑡), 𝑠,𝑚)
def

= iter′ (𝜆𝑖′,𝑚′ . cprecsm (h(𝑙𝑠 , ⌊𝑖′⌋), h(𝑙𝑚, ⌊𝑖′⌋), 𝑡, 𝑠,𝑚′),𝑚′′, 𝑖) (8)

cprecsm (ls, lm, STValue(𝑡), 𝑠,𝑚)
def

= updateStore(𝑙𝑚,Value(accessStorage(𝑡, 𝑙𝑠 , 𝑠)),𝑚)⊥ (9)

cprecsm (ls, lm, STMap(𝑡, 𝑡 ′), 𝑠,𝑚) def

= ⊥ (10)

with𝑚′′ = updateStore(𝑙𝑚, Pointer (𝑙𝑚),𝑚).
In Solidity, value types are just copied between stores which is reflected by Equation 9. For

reference types, however, the situation is different. Mappings can only be kept in storage and not

in memory which is why a mapping is never copied from storage to memory, and we just return ⊥
for this case (Equation 10). Arrays, on the other hand, can be kept in both: storage and memory.

As mentioned above, however, the way of storing them differs depending on the type of store: in

storage, we just calculate the location of the elements of an array whereas in memory arrays are
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stored using a pointer structure. Thus, when copying arrays from storage to memory we need to

create the corresponding pointer structure as shown by Equation 8.

Our model provides a similar function to copy data from memory to storage:

cpms : Loc × Loc × Int ×MTypes ×Memory × Storage→ Storage⊥ ( cpm2s)

cpms (𝑙𝑚, 𝑙𝑠 , 𝑖, 𝑡,𝑚, 𝑠) def

= iter′ (𝜆𝑖′, 𝑠′ . cprecms (h(𝑙𝑚, ⌊𝑖′⌋), h(𝑙𝑠 , ⌊𝑖′⌋), 𝑡,𝑚, 𝑠′), 𝑠, 𝑖)

where

cprecms (lm, ls,MTArray(𝑖, 𝑡),𝑚, 𝑠) def

=

{
𝑠′′ if accessStore(𝑙𝑚,𝑚) = Pointer (𝑙)⊥
⊥ otherwise

(11)

cprecms (lm, ls,MTValue(𝑡),𝑚, 𝑠) def

=

{
𝑠 [𝑙𝑠 ↦→ 𝑣]⊥ if accessStore(𝑙𝑚,𝑚) = Value(𝑣)⊥
⊥ otherwise

(12)

with 𝑠′′ = iter′ (𝜆𝑖′, 𝑠′ . cprecms (h(𝑙𝑚, ⌊𝑖′⌋), h(𝑙𝑠 , ⌊𝑖′⌋), 𝑡,𝑚, 𝑠′), 𝑠, 𝑖).
Again value types are just copied between the stores which is reflected by Equation 12. However,

since memory does not support mappings, we only have to consider one case for reference types.

Note that this time we do not need to create a pointer structure for an array but rather we need to

navigate such a structure to obtain all its elements (Equation 11).

Consider, for example a memory store𝑚 = (𝜇, 1), where 𝜇 contains the following mappings:

• “0.0” ↦→ Pointer (“0.0”)
• “0.0.0” ↦→ Value(“True”)
• “1.0.0” ↦→ Value(“False”)

• “1.0” ↦→ Pointer (“1.0”)
• “0.1.0” ↦→ Value(“True”)
• “1.1.0” ↦→ Value(“False”)

Note that𝑚 stores a two-dimensional boolean array at location 0.

We can now copy location “0” of the memory to location “1” of a newly created storage as follows:

cp𝑚𝑠 (“0”, “1”, 2,MTArray(2,MTValue(Bool)),𝑚, ∅)

Here, the third parameter specifies the length of the first array and the fourth parameter specifies

the type of each entry of this array. The ∅ denotes a new, empty, storage.

The above function returns a storage 𝑠 which contains the following mappings reflecting the

entries of the memory array:

• “0.0.1” ↦→ “True”
• “1.0.1” ↦→ “False”

• “0.1.1” ↦→ “True”
• “1.1.1” ↦→ “False”

Note that the layout of the data has changed. In particular the storage version does not contain any

pointers. In addition, the array is now stored at location “1” instead of “0”.
We can now copy the array from the storage back to a fresh memory to obtain a store equal to

the original𝑚:

cp𝑠𝑚 (“1”, “0”, 2, STArray(2, STValue(Bool)), 𝑠, (allocate(emptyStore))
2
)

Note, that the copy function does not change the top location automatically since it is not always

the case that we allocate new memory when copying data. Thus, we needed to allocate a new slot

before copying over the elements.
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3.3 Accounts, Gas, and States
3.3.1 Accounts. Accounts are formalized in theory Accounts.thy. Each account is associated

with an address in hexadecimal format. We model Address and Balance as strings and accounts as

mappings from addresses to their balance:

Accounts ::= Address→ Valuetype ( Accounts)

We can then define functions to modify balances. The function for adding some value to a certain

account is defined as follows:

addBalance : Address × Balance × Accounts→ Accounts⊥ ( addBalance)

addBalance(ad, val, acc) def

=

{
acc[ad ↦→ ⌊𝑣⌋]⊥ if ⌈val⌉ ≥ 0 ∧ ⌈acc(ad)⌉ + ⌈val⌉ < 2

256

⊥ otherwise

Note that the function fails whenever the value is negative or the new balance would produce

an overflow. Otherwise, it simply adds the value to the balance of the given account. This is

demonstrated by the following lemma:

Lemma 3.2 ( addBalance_add). Assuming addBalance(ad, val, acc) = acc′⊥, then

⌈acc′ (ad)⌉ = ⌈acc(ad)⌉ + ⌈𝑣𝑎𝑙⌉

Also note that, for the case it is successful, addBalance is monotonic:

Lemma 3.3 ( addBalance_mono). Assuming addBalance(ad, val, acc) = acc′⊥, then

⌈acc′ (ad)⌉ ≥ ⌈acc(ad)⌉

The function for removing funds from an account is denoted subBalance ( subBalance) and
defined similarly.

Finally, we can use the two functions to define a new function to transfer money from one

account to another:

transfer : Address × Address × Valuetype × Accounts→ Accounts⊥ ( transfer)

transfer (ads, adr, val, acc) def

=

{
addBalance(adr, val, acc′) if subBalance(ads, val, acc) = acc′⊥
⊥ if subBalance(ads, val, acc) = ⊥

Again, the function fails when either subBalance or addBalance fails. Otherwise, it just removes the

value from the balance of one account and adds it to another one as shown by the following lemma:

Lemma 3.4 (Transfer). Assuming transfer (ads, addr, val, acc) = acc′⊥ and addr ≠ ads, then

⌈acc′ (addr)⌉ = ⌈acc(addr)⌉ + ⌈𝑣𝑎𝑙⌉ ( transfer_add)

and

⌈acc′ (ads)⌉ = ⌈acc(ads)⌉ − ⌈𝑣𝑎𝑙⌉ ( transfer_sub)

3.3.2 Gas. One interesting aspect of Solidity is that execution of expressions/statements is subject

to fees, i.e., the execution consumes gas: if all gas is consumed, the execution terminates with an

exception. To this end, we assume the existence of generic cost functions which provide the gas

costs for executing a given expression/statement (see semantics of expressions/statements for more

details on the cost functions). In addition, we define a special type of exception to be used with our

monad:

Exception ::= Gas | Err ( Ex)
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Now we can define a simple monad to check availability of gas:

gascheck : (State→ Gas) → State_Monad((), Exception, State) ( gascheck)

gascheck(check) def

= do 
𝑔← apply(check)
assert Gas

[
𝜆st . gas(𝑠𝑡) ≤ 𝑔
modify(𝜆st . 𝑢𝑝𝐺𝑎𝑠 (gas(𝑠𝑡) − 𝑔, gas(𝑠𝑡)))

The gascheck monad uses an external function to determine the actual costs. Then it checks that

enough gas is available and updates the state to deduce the costs. For the rest of this section, we

use a generic gas model. We will later, in Sect. 7, constrain it slightly to ensure termination. A more

detailed discussion on gas models is included in Sect. 9.

3.3.3 States. States are formalized in theory Statements.thy. They consist of the balances of the

accounts as well as the configuration of the different stores and the remaining amount of gas:

State ::= Accounts × Stack ×Memory × (Address⇒ Storage) × Nat ( State)

Note that each address has its own storage. Later on we will see that a program can only access

storage associated with its own address. In the following we shall use acc(𝑠), sck(𝑠),mem(𝑠), sto(𝑠),
and gas(𝑠) to access the account, stack, memory, storage, and gas of a state 𝑠 . Moreover, we shall

use 𝑢𝑝𝐴𝑐𝑐 (𝑎, 𝑠), 𝑢𝑝𝑆𝑐𝑘 (𝑘, 𝑠), 𝑢𝑝𝑀𝑒𝑚(𝑚, 𝑠), 𝑢𝑝𝑆𝑡𝑜 (𝑡, 𝑠), and 𝑢𝑝𝐺𝑎𝑠 (𝑔, 𝑠) to change account, stack,

memory, storage, or gas, of a state 𝑠 to 𝑎, 𝑘 ,𝑚, 𝑡 , or 𝑔, respectively.

4 ENVIRONMENTS AND DECLARATIONS
Variables are always interpreted with respect to an environment which assigns them types and

values. In the following, we describe our formalization of environments. To this end, we first

introduce the definition of an environment and some useful functions to manipulate environments

(Sect. 4.1). Then, we discuss the definition of a declaration function to support the declaration of new

variables (Sect. 4.2). Finally, we discuss our notion of contract environment to store data belonging

to a contract (Sect. 4.3). Environments and declarations are formalized in theory Environment.thy.

4.1 Environment
To this end, we introduce a new type Identifier (a synonym of type string) for variable names.

Variables in Solidity can either be a stack reference or a storage reference and refer to either a

valuetype or a complex data type in one of the stores.

Type ::= Value(Types) | Calldata(MTypes)
| Memory(MTypes) | Storage(STypes) ( Type)

Denvalue ::= Stackloc(Loc) | Storeloc(Loc) ( Denvalue)

In addition to type and value for variables, an environment contains the address of the executing

contract, the address triggering the execution and the amount of money sent with it:

Environment ::= Address × Address × Valuetype × (Identifier⇒ Type × Denvalue)
( Environment)

We use address(env), sender (env), svalue(env), and denvalue(env) to denote the address, sender,
obtained funds, and denvalue of an environment env. Moreover, we use upAdd (𝑎, env), upSender (𝑠, env),
upVal(𝑣, env), and upDV (𝑑, env) to update the address, sender, funds, and denvalue of env with 𝑎,

𝑠 , 𝑣 , and 𝑑 . Finally, we use empty(𝑠, 𝑠, 𝑣) to denote an empty environment with address 𝑠 , sender 𝑠 ,

and value 𝑣 ( emptyEnv).
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Sometimes it is required to update an environment only if the identifier is not yet declared. To

do so, we define the following function:

updateEnvDup : Identifier × Type × Denvalue × Environment

→ Environment ( updateEnvDup)

updateEnvDup(𝑖, 𝑡, 𝑣, 𝑒) def

=

{
𝑒 if denvalue(𝑒) (𝑖) ≠ ⊥
upDV (denvalue(𝑒) [𝑖 ↦→ (𝑡, 𝑣)], 𝑒) if denvalue(𝑒) (𝑖) = ⊥

Often, when declaring a new variable, we want to update environment and stack at the same

time. To this end, we define the following function:

append : Identifier × Type × Stackvalue × (Stack × Environment)
→ (Stack × Environment) ( astack)

append (id, tp, vl, (sk, ev)) def

=

(push(vl, sk), upDV (denvalue(ev) [id ↦→ (tp, Stackloc(⌊toploc(sk)⌋))], ev))
Function append adds a new element to the top of the stack and adds a pointer to the location to

the corresponding entry of the identifier in the environment.

Example 4.1 (Append). Let’s assume we want to add a new boolean variable with value “True” to
an empty environment and stack:

append (“id1”,Value(TBool), Simple(“True”), (emptyStore, empty)) = (mystack,myenv)
This results in an updated stack and environment, respectively, containing the following entries:

myenv :

• “id1” ↦→ (Value(TBool), Stackloc(“0”))
mystack :

• “0” ↦→ Simple(“True”)

In particular, myenv now contains a new entry for variable “id1” which points to stack location

“0” which contains the actual element on the new stack mystack. Note that the top location of the

stack was updated and toploc(mystack) = 1. To append another element we can now execute

append (“id2”,Value(TBool), Simple(“False”), (mystack,myenv)) = (mystack′,myenv′)
The resulting environment and stack are as follows:

myenv′ :
• “id1” ↦→ (Value(TBool), Stackloc(“0”))
• “id2” ↦→ (Value(TBool), Stackloc(“1”))

mystack′ :
• “0” ↦→ Simple(“True”)
• “1” ↦→ Simple(“False”)

The environment now contains a new entry for variable “id2” which holds a reference to the added

entry on location “1” of the new stack.

4.2 Declarations
To support the declaration of new variables, our model provides the following function:

decl : Identifier × Type × (Stackvalue × Type⊥) × Bool × Calldata ×Memory

× (Address⇒ Storage) × (Calldata ×Memory × Stack × Environment) ( decl)

→ (Calldata ×Memory × Stack × Environment)⊥
We can use this function to declare a new variable as follows:

decl id tp vl cp cd mem st (𝑐,𝑚, 𝑘, 𝑒) def

= (𝑐′,𝑚′, 𝑘 ′, 𝑒′)
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This updates calldata 𝑐 , memory𝑚, stack 𝑘 , and environment 𝑒 to declare a new variable id of type

tp. vl is an optional initialization value. If it is ⊥, the type’s default value is taken. The copy flag cp
indicates whether memory should be copied (from mem parameter) or not. Copying is required, for

example, for external method calls. cd and mem refer to the original calldata and memory stores

which are used as a source for copying.

In the following we discuss the definition of decl. We begin with the declaration of value type

variables:

decl(𝑖,Value(𝑡),⊥, _, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

return(append (𝑖,Value(𝑡), Simple(ival(𝑡)), (𝑘, 𝑒))) (13)

decl(𝑖,Value(𝑡), (Simple(𝑣),Value(𝑡 ′))⊥, _, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do
[
(𝑣 ′, 𝑡 ′′) ← convert (𝑡 ′, 𝑡, 𝑣)
return(𝑐,𝑚, append (𝑖,Value(𝑡 ′′), Simple(𝑣 ′), (𝑘, 𝑒)))

(14)

decl(_,Value(_), _, _, _, _, _, _) def

= ⊥ (15)

Equation 13 captures the case in which we declare a new variable without an initial value. In

such a case we use function ival to determine the default value of the corresponding type which is

used to initialize the variable. In the case we provide a default value (Equation 14), we first convert

the value to the type of the variable and if this conversion is successful we use the corresponding

value to initialize the variable. Inconsistencies in the declaration are captured by Equation 15 in

which case we simply return an error.

Next we discuss the declaration of variables for calldata. Calldata is only initialized once when a

new method is called, and it cannot be modified later on. Thus, we only need to consider the cases

in which a structure is copied completely:

decl(𝑖,Calldata(MTArray(𝑥, 𝑡)), (CDptr (𝑝), _)⊥, True, cd, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do
[
𝑐′′ ← cpmm (𝑝, 𝑙, 𝑥, 𝑡, cd, 𝑐′)
return(𝑐′′,𝑚, append (𝑖,Calldata(MTArray(𝑥, 𝑡)),CDptr (𝑙), (𝑘, 𝑒)))

(16)

where 𝑐′ = (allocate(𝑐))
2
and 𝑙 = ⌊toploc(𝑐)⌋.

decl(𝑖,Calldata(MTArray(𝑥, 𝑡)), (Memptr (𝑝), _)⊥, True, _,mem, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do
[
𝑐′′ ← cpmm (𝑝, 𝑙, 𝑥, 𝑡,mem, 𝑐′)
return(𝑐′′,𝑚, append (𝑖,Calldata(MTArray(𝑥, 𝑡)),CDptr (𝑙), (𝑘, 𝑒)))

(17)

decl(𝑖,Calldata(_), _, _, _, _, _, _) def

= ⊥ (18)

In particular, we have two possibilities: Either the source lies in calldata (Equation 16) or the

source lies in memory (Equation 17). In both cases we use the function cpmm to copy the array and

initialize the variable with a pointer to the newly created structure. All other cases are captured by

Equation 18 and just throw an error to signal an inconsistency with the parameter values.

Next we discuss the declaration of arrays for memory stores. The first case deals with situations

in which we do not provide an explicit initialization value:

decl(𝑖,Memory(MTArray(𝑥, 𝑡)),⊥, _, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

return(𝑐,minit (𝑥, 𝑡,𝑚), append (𝑖,Memory(MTArray(𝑥, 𝑡)),Memptr (⌊toploc(𝑚)⌋), (𝑘, 𝑒)))
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In such a case we use functionminit discussed earlier to create the corresponding pointer structure
in memory and initialize the elements with their default value. Then we just create a pointer to the

corresponding location.

The next two cases capture the situation in which we do have an explicit initialization value. In

such a situation, the behaviour of a declaration depends on the value of the copy flag. The situation

in which it is true is as follows:

decl(𝑖,Memory(MTArray(𝑥, 𝑡)), (Memptr (𝑝), _)⊥, True, _,mem, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do
[
𝑚′ ← cpmm (𝑝, ⌊toploc(𝑚)⌋ , 𝑥, 𝑡,mem, (allocate(𝑚))

2
)

return(𝑐,𝑚′, append (𝑖,Memory(MTArray(𝑥, 𝑡)),Memptr (⌊toploc(𝑚)⌋), (𝑘, 𝑒)))
(19)

For this case we use function cpmm discussed above to copy the complete array structure from one

memory to another. Then, we simply create a new pointer to the location of the copied memory

location to initialize the variable. If the copy flag is false, the behaviour is as follows:

decl(𝑖,Memory(MTArray(𝑥, 𝑡)), (Memptr (𝑝), _)⊥, False, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

return(𝑐,𝑚, append (𝑖,Memory(MTArray(𝑥, 𝑡)),Memptr (𝑝), (𝑘, 𝑒)))
Thus, in such a case we just create a new pointer to the original memory location to initialize the

variable.

The remaining cases deal with the situation in which the array is stored in a different type of

store. The case in which the array is stored in calldata is similar to the situation described above in

which the copy flag is set to true:

decl(𝑖,Memory(MTArray(𝑥, 𝑡)), (CDptr (𝑝), _)⊥, _, cd, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do
[
𝑚′ ← cpmm (𝑝, ⌊toploc(𝑚)⌋ , 𝑥, 𝑡, cd, (allocate(𝑚))2)
return(𝑐,𝑚′, append (𝑖,Memory(MTArray(𝑥, 𝑡)),Memptr (⌊toploc(𝑚)⌋), (𝑘, 𝑒)))

(20)

In particular, we first use function cpmm to copy the structure from calldata to memory and initialize

the variable with a pointer to the newly created structure. The situation in which the array is stored

in storage is defined as follows:

decl(𝑖,Memory(MTArray(𝑥, 𝑡)), (Stoptr (𝑝), Storage(STArray(𝑥 ′, 𝑡 ′)))⊥, _, _, _, 𝑠, (𝑐,𝑚, 𝑘, 𝑒)) def

=

do 
𝑠′ ← 𝑠 (address(𝑒))
𝑚′′ ← cpsm (𝑝, ⌊toploc(𝑚)⌋ , 𝑥 ′, 𝑡 ′, 𝑠′, (allocate(𝑚))2)
return(𝑐,𝑚′′, append (𝑖,Memory(MTArray(𝑥, 𝑡)),Memptr (⌊toploc(𝑚)⌋), (𝑘, 𝑒)))

(21)

Again we use function cpsm to copy the structure from storage to memory and then initialize the

variable with a pointer to the newly created structure. Note, however, that we first need to look up

the private store of the executing contract.

The last case captures unexpected calls to decl and returns an error:

decl(_,Memory(_), _, _, _, _, _, _) def

= ⊥
Finally, we discuss the declaration of storage variables:

decl(𝑖, Storage(𝑆𝑇𝐴𝑟𝑟𝑎𝑦 (𝑥, 𝑡)), (Stoptr (𝑝), _)⊥, _, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=

return(𝑐,𝑚, append (𝑖, Storage(𝑆𝑇𝐴𝑟𝑟𝑎𝑦 (𝑥, 𝑡)), Stoptr (𝑝), (𝑘, 𝑒))) (22)

decl(𝑖, Storage(STMap(𝑡, 𝑡 ′)), (Stoptr (𝑝), _)⊥, _, _, _, _, (𝑐,𝑚, 𝑘, 𝑒)) def

=
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return(𝑐,𝑚, append (𝑖, Storage(𝑆𝑇𝑀𝑎𝑝 (𝑡, 𝑡 ′)), Stoptr (𝑝), (𝑘, 𝑒))) (23)

decl(_, Storage(_), _, _, _, _, _, _) def

= ⊥ (24)

Equation 22 and Equation 23 capture the case in which the variable is initialised with a pointer to a

storage array or storage map. Note that Solidity only allows for the declaration of storage pointers

and not explicit data structures. Thus, the definitions above do not involve any copy operations.

Moreover, storage pointers need to be initialized. Thus, the remaining cases in Equation 24 are not

valid and throw an error.

An important property for declarations is that they do not modify the address, sender, and funds

of the given environment:

Lemma 4.2 ( decl_address). Assuming

decl(id, tp, vl, cp, cd,mm, st, (𝑐,𝑚, 𝑘, 𝑒)) = (𝑐′,𝑚′, 𝑘 ′, 𝑒′)⊥
then

address(𝑒′) = address(𝑒) ∧ sender (𝑒′) = sender (𝑒) ∧ svalue(𝑒′) = svalue(𝑒)

Proof. We need to consider all the possible cases from the definition of decl. Most of the cases

are trivial and need no further discussion. An exception is the case for Equation 14 which needs

to convert data from one type to another and thus requires an additional case distinction on the

outcome of the conversion. Moreover, Equation 16, Equation 17, Equation 19, Equation 20, and

Equation 21, copy data from one store to another and thus need an additional case distinction on

the outcome of this copy process. □

4.3 Contract environments
In addition to an environment for variables we do also need an environment to store data and

methods belonging to a contract. Contract environments are formalized in theory Statements.thy
and consist of two parts:

Member ::= Method ( [Identifier × Type] × S × E⊥) | Var (STypes) ( Member)

EnvironmentP ::= Address⇒ (Identifier⇒ Member) × S ( EnvironmentP)

A contract is identified by an address and consists of members and a fallback method. Members can

be either variables or methods. Variables keep the data elements of a contract which are of type

STypes. Methods, on the other hand, consist of a body of type S and an optional return value of

type E. These are the types for statements and expressions discussed below. A contract’s fallback

method is a statement of type S which is executed whenever the contract receives any funds as

discussed further in the semantics of the transfer statement and external method calls.

To initialize a variable environment with the member variables of a contract we provide the

following function:

init : (Identifier⇒ Member) × Identifier × Environment→ Environment ( init)

init (ct, 𝑖, 𝑒) def

=

{
updateEnvDup(𝑖, Storage(𝑡𝑝), Storeloc(𝑖), 𝑒) if ct (𝑖) = Var (tp)⊥
𝑒 otherwise

The function simply updates a given variable environment by adding a new entry for a corre-

sponding member variable. Note that the type of the identifier in the variable environment is

, Vol. 1, No. 1, Article . Publication date: November 2018.

https://archive.softwareheritage.org/swh:1:cnt:48abc5b99461bfa0215844059d5899ac657763f6;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Environment.thy;lines=L167-L392
https://archive.softwareheritage.org/swh:1:cnt:0a51c742981a2b96fd88e96bec4cfd478ba9d1d3;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Statements.thy
https://archive.softwareheritage.org/swh:1:cnt:0a51c742981a2b96fd88e96bec4cfd478ba9d1d3;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Statements.thy;lines=78-79
https://archive.softwareheritage.org/swh:1:cnt:0a51c742981a2b96fd88e96bec4cfd478ba9d1d3;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Statements.thy;lines=91
https://archive.softwareheritage.org/swh:1:cnt:0a51c742981a2b96fd88e96bec4cfd478ba9d1d3;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Statements.thy;lines=93-96


Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL 21

set to Storage(tp) where tp is the type of the member variable itself. Note that due to the use of

updateEnvDup, init commutes:

init (ct, id, init (ct, id′, ev)) = init (ct, id′, init (ct, id, ev)) ( init_commte)

This is an important property which allows us to fold init over a set to support the initialization of

multiple variables.

5 EXPRESSIONS
Our subset of Solidity supports basic logical and arithmetic operations over signed and unsigned

integers of various bit sizes. Moreover, we can reference variables and navigate complex data types.

In addition, we can create addresses, query the balance of some address, or obtain the address of

the currently executing contract. Finally, we can call internal and external functions, obtain the

address which triggered the current execution, and obtain the value sent with it. The corresponding

syntax of expressions is given by a data type E defined as follows:

B ::= 8 | 16 | . . . | 256
L ::= Id (String) | Ref (String, [E]) ( L)

E ::= SInt (B, Int) | UInt (B, Int) | True | False
| E==E | E+E | E−E | E<E | ¬E | E∧E | E∨E
| Address(String) | Balance(E) | L(L) | This | Sender | Value | Call(String, [E])
| ECall(E, String, [E], E) ( E)

where String denotes the type of strings and [𝑎] a list of elements of type 𝑎.

Expressions are formalized in theory Statements.thy. In the following, we discuss the semantics

of expressions in more detail. To this end, we first discuss the notion of selectors (Sect. 5.1) and

lookup functions (Sect. 5.2) to access the value of a variable. We then use these functions to define

the semantics of each of our expressions (Sect. 5.3).

5.1 Selectors
To access the value of a reference type we define functions to look up the corresponding value in

memory or storage. We first discuss the function

msel : Bool ×MTypes × Loc × [E] × Environment𝑝 × Environment × Calldata→
State_Monad(Loc ×MTypes, Exception, State) ( msel)

to lookup values in memory. The general idea is that

msel(mm, 𝑡, 𝑙, xs, 𝑒𝑝 , env, cd)
looks up the index xs of an array of type 𝑡 stored at location 𝑙 . The flag mm can be used to change

the source of the lookup from memory to calldata. The definition is as follows:

msel(_,MTArray(al, 𝑡), loc, [𝑥], 𝑒𝑝 , env, cd)
def

=

do 

kv ← expr (𝑥, 𝑒𝑝 , env, cd)

⌞_⌟



assert Err
[
𝜆_. ¬less(𝑡 ′, TUInt (256), 𝑣, ⌊al⌋) = (⌊True⌋ , TBool)⊥
return(h(loc, 𝑣), 𝑡)

if kv = (Simple(𝑣),Value(𝑡 ′))

throw(Err)
otherwise
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msel(mm,MTArray(al, 𝑡), loc, 𝑥#𝑦#ys, 𝑒𝑝 , env, cd)
def

=

do 
kv ← expr (𝑥, 𝑒𝑝 , env, cd)

⌞_⌟

{
1 if kv = (Simple(𝑣),Value(𝑡 ′))
throw(Err) otherwise

where 1 = assert Err 

𝜆_. ¬less(𝑡 ′, TUInt (256), 𝑣, ⌊al⌋) = (⌊True⌋ , TBool)⊥

do


𝑠 ← apply

(
𝜆st .

{
Memory(st) if mm
cd otherwise

)

⌞_⌟


msel(mm, 𝑡, 𝑙, (𝑦#𝑦𝑠), 𝑒𝑝 , env, cd)

if accessStore(h(loc, 𝑣), 𝑠) = Pointer (𝑙)⊥
throw(Err)

otherwise

msel(_, _, _, _, _, _, _) def

= throw(Err)

Note that we require the list of indices to be non-empty. Then, we distinguish two cases.

msel(_,MTArray(al, 𝑡), loc, [𝑥], 𝑒𝑝 , env, cd) captures the case in which the list contains only a single

index 𝑥 . If 𝑥 evaluates to a basic valuetype 𝑣 , we check whether 𝑣 falls within the bounds of the

array. If it does, we return the result of hashing the concatenation of the location loc with 𝑣 .

msel(mm,MTArray(al, 𝑡), loc, 𝑥#𝑦#ys, 𝑒𝑝 , env, cd), on the other hand, captures the case in which

the list contains at least two indices. If 𝑥 evaluates to a valuetype ( 1 ), we first check that it is

within the array’s bounds and we then retrieve the pointer stored at location 𝑙 and pass it to the

recursive call of msel.
Note that indices are evaluated using the expression function expr which may have side effects.

Thus, using msel to traverse a reference type may also lead to a change in state.

To give an example, let us assume that 𝑡 =MTArray(5,MTArray(6,MTValue(TBool))), and the

memory of state 𝑠 is [“3.2” ↦→ Pointer (“5”)]. Then,

msel(True, 𝑡, “2”, [UInt (8, 3)], _, _, _, 𝑠) = Normal (“3.2”,MTArray(6,MTValue(TBool)), 𝑠)
msel(True, 𝑡, “2”, [UInt (8, 3),UInt (8, 4)], _, _, _, 𝑠) = Normal (“4.5”,MTValue(TBool), 𝑠)
msel(True, 𝑡, “2”, [UInt (8, 5)], _, _, _, 𝑠) = Exception(Err)

A similar function

ssel : STypes × Loc × [𝐸] × Environment𝑝 × Environment × Calldata
→ State_Monad(Loc × STypes, Exception, State) ( ssel)

is defined to look up storage values:

ssel(STArray(al, 𝑡), loc, 𝑥#xs, 𝑒𝑝 , env, cd)
def

= do 
kv ← expr (𝑥, 𝑒𝑝 , env, cd)

⌞_⌟


1 if kv = (Simple(𝑣),Value(𝑡 ′))

throw(Err)
otherwise

where 1 = assert Err
[
𝜆_. ¬less(𝑡 ′, TUInt (256), 𝑣, ⌊al⌋) = (⌊True⌋ , TBool)⊥
ssel(𝑡, h(𝑙𝑜𝑐, 𝑣), xs, 𝑒𝑝 , env, cd)
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ssel(STMap(_, 𝑡), loc, 𝑥#xs, 𝑒𝑝 , env, cd)
def

= do 

kv ← expr (𝑥, 𝑒𝑝 , env, cd)

⌞_⌟


ssel(𝑡, h(𝑙𝑜𝑐, 𝑣), xs, 𝑒𝑝 , env, cd)

if kv = (Simple(𝑣), _)

throw(Err)
otherwise

ssel(tp, loc, [], _, _, _) def

= return(loc, tp)

ssel(_, _, _, _, _, _, _) def

= throw(Err)

Again, we assume the list of indices to be non-empty. Then, ssel(STArray(al, 𝑡), loc, 𝑥#xs, 𝑒𝑝 , env, cd)
captures the case in which we want to traverse a storage array. If the index evaluates to a valuetype 𝑣

( 1 ), we check if it is within the bounds of the array, in which case we hash the concatenation of

location loc with 𝑣 and recursively call ssel again on the resulting location.

The case for mappings is similar and handled by ssel(STMap(_, 𝑡), loc, 𝑥#xs, 𝑒𝑝 , env, cd). The main

difference is that we do not need to check that the index is within some bounds since mappings do

not have them.

Note that since storage does not support pointer structures, we do not access the store while

iterating through the list of selectors.

5.2 Lookup functions
We can now define functions to look up the value of a variable. Note that the meaning of a variable

is different depending on whether it is on the left or right-hand side of an assignment.

5.2.1 Left-hand side. We first discuss the meaning of a variable on the left-hand side of an assign-

ment. We first introduce the following type to encapsulate the return value of the corresponding

lookup:

LType ::= LStackloc(Loc) | LMemloc(Loc) | LStoreloc(Loc) ( LType)

The idea is that a variable on the left-hand side always refers to either a location on the stack,

memory, or storage. Note that we do not allow for locations in calldata since calldata is read-only,

and we are not allowed to assign to it anyway.

We can define the following function to look up the location of a variable on the left-hand side:

lexp : L × Environment𝑝 × Environment × Calldata
→ State_Monad(LType × Type, Exception, State) ( lexp)

The definition of the function distinguishes two cases depending on whether the variable is

dereferenced or not. The latter case is defined as follows:

lexp(Id (i), _, 𝑒, _) def

=


return(LStackloc(𝑙), tp) if denvalue(𝑒) (𝑖) = (tp, Stackloc(𝑙))⊥
return(LStoreloc(𝑙), tp) if denvalue(𝑒) (𝑖) = (tp, Storeloc(𝑙))⊥
throw(Err) otherwise

In this case, the variable refers to either a location on the stack or storage. In either case we just

look up the location from the environment and return it as a corresponding LType
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The case in which the variable is dereferenced using Ref is as follows:

lexp(Ref (𝑖, 𝑟 ), 𝑒𝑝 , 𝑒, cd)
def

=



do 

𝑘 ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟



do
[
(𝑙 ′′, 𝑡 ′) ← msel(True, 𝑡, 𝑙 ′, 𝑟 , 𝑒𝑝 , 𝑒, cd)
return(LMemloc(𝑙 ′′),Memory(𝑡 ′))

if 𝑘 =Memptr (𝑙 ′)⊥ ∧ tp =Memory(𝑡)

do
[
(𝑙 ′′, 𝑡 ′) ← ssel(𝑡, 𝑙 ′, 𝑟 , 𝑒𝑝 , 𝑒, cd)
return(LStoreloc(𝑙 ′′), Storage(𝑡 ′))

if 𝑘 = Stoptr (𝑙 ′)⊥ ∧ tp = Storage(𝑡)

throw(Err)
otherwise

if denvalue(𝑒) (𝑖) = (tp, Stackloc(𝑙))⊥
do

[
(𝑙 ′, 𝑡 ′) ← ssel(𝑡, 𝑙, 𝑟 , 𝑒𝑝 , 𝑒, cd)
return(LStoreloc(𝑙 ′), Storage(𝑡 ′))

if denvalue(𝑒) (𝑖) = (tp, Storeloc(𝑙))⊥ ∧ tp = Storage(𝑡)

throw(Err)
otherwise

Again, the variable either refers to a location on stack or storage. If it refers to a location on stack it

can be either a pointer to memory or storage. In the former case we use themsel function introduced
above to look up the corresponding location in memory. In the latter case we use the ssel function
instead. For the case the variable refers to a location on storage we can just use the ssel function to

directly look up the corresponding storage location.

5.2.2 Right-hand side. The meaning of a variable occurring on the right-hand side of an assignment

is defined by the following function:

rexp : L × EnvironmentP × Environment × Calldata
→ State_Monad(Stackvalue × Type, Exception, State) ( rexp)

Again, the definition distinguishes two cases. The case in which the variable is referred to using

Id is as follows:

rexp(Id (i), 𝑒𝑝 , 𝑒, cd)
def

=


1 if denvalue(𝑒) (𝑖) = (tp, Stackloc(𝑙))⊥
2 if denvalue(𝑒) (𝑖) = (Storage(STValue(𝑡)), Storeloc(𝑙))⊥
3 if denvalue(𝑒) (𝑖) = (Storage(STArray(𝑥, 𝑡)), Storeloc(𝑙))⊥
throw(Err) otherwise

1 = do 

𝑠 ← apply(𝜆st . accessStore(𝑙, sck(𝑠𝑡)))

⌞_⌟



return(Simple(𝑣), tp) if 𝑠 = Simple(𝑣)⊥
return(CDptr (𝑝), tp) if 𝑠 = CDptr (𝑝)⊥
return(Memptr (𝑝), tp) if 𝑠 =Memptr (𝑝)⊥
return(Stoptr (𝑝), tp) if 𝑠 = Stoptr (𝑝)⊥
throw(Err) otherwise

2 = option Err
[
𝜆st . sto(𝑠𝑡) (address(𝑒))
𝜆𝑠. return(Simple(accessStorage(𝑡, 𝑙, 𝑠)),Value(𝑡))
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3 = return(Stoptr (𝑙, Storage(STArray(𝑥, 𝑡))))

In the case the variable refers to a location on stack ( 1 ) we simply look up the location on the

stack and return the corresponding value. In the case the variable refers to storage, it is either a

valuetype ( 2 ) or a pointer to an array ( 3 ) (since pointers to mappings are not allowed). In the

former case we again look up the corresponding value from storage and return it. In the latter case

we create a corresponding storage pointer which we then return. Note the use of accessStorage
instead of accessStore which ensures that access to storage returns a default value for the case the

variable is not initialised.

The case in which the variable is dereferenced is defined as follows:

rexp(Ref (𝑖, 𝑟 ), 𝑒𝑝 , 𝑒, cd)
def

=


1 if denvalue(𝑒) (𝑖) = (tp, Stackloc(𝑙))⊥
2 if denvalue(𝑒) (𝑖) = (tp, Storeloc(𝑙))⊥ ∧ tp = Storage(𝑡)
throw(Err) otherwise

In particular, we distinguish two cases depending on whether the variable refers to a location on

the stack ( 1 ) or ( 2 ) storage.

The case in which the variable refers to the stack is as follows:

1 = do 

kv ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟


1.1 if kv = CDptr (𝑙 ′)⊥ ∧ tp = Calldata(𝑡)
1.2 if kv =Memptr (𝑙 ′)⊥ ∧ tp =Memory(𝑡)
1.3 if kv = Stoptr (𝑙 ′)⊥ ∧ tp = Storage(𝑡)
throw(Err) otherwise

1.1 = do 

(𝑙 ′′, 𝑡 ′) ← msel(False, 𝑡, 𝑙 ′, 𝑟 , 𝑒𝑝 , 𝑒, cd)

⌞_⌟



(Simple(𝑣),Value(𝑡 ′′))
if 𝑡 ′ =MTValue(𝑡 ′′) ∧ accessStore(𝑙 ′′, cd) = Value(𝑣)⊥

(CDptr (𝑝),Calldata(MTArray(𝑥, 𝑡 ′′)))
if 𝑡 ′ =MTArray(𝑥, 𝑡 ′′) ∧ accessStore(𝑙 ′′, cd) = Pointer (𝑝)⊥

throw(Err)
otherwise

1.2 = do 
(𝑙 ′′, 𝑡 ′) ← msel(True, 𝑡, 𝑙 ′, 𝑟 , 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1.2.1 if 𝑡 ′ =MTValue(𝑡 ′′)
1.2.2 if 𝑡 ′ =MTArray(𝑥, 𝑡 ′′)

1.2.1 = do 
mv ← apply(𝜆st . accessStore(𝑙 ′′,mem(𝑠𝑡)))

⌞_⌟

{
return(Simple(𝑣),Value(𝑡 ′′)) if mv = Value(𝑣)⊥
throw(Err) otherwise

1.2.2 = do 
mv ← apply(𝜆st . accessStore(𝑙 ′′,mem(𝑠𝑡)))

⌞_⌟

{
return(Memptr (𝑝),Memory(MTArray(𝑥, 𝑡 ′′))) if mv = Pointer (𝑝)⊥
throw(Err) otherwise
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1.3 = do 
(𝑙 ′′, 𝑡 ′) ← ssel(𝑡, 𝑙 ′, 𝑟 , 𝑒𝑝 , 𝑒, cd)

⌞_⌟


1.3.1 if 𝑡 ′ = STValue(𝑡 ′′)
return(Stoptr (𝑙 ′′), Storage(𝑡 ′)) if 𝑡 ′ = STArray(_, _)
return(Stoptr (𝑙 ′′), Storage(𝑡 ′)) if 𝑡 ′ = STMap(_, _)

1.3.1 = Err
[
𝜆st . sto(st) (address(𝑒))
𝜆𝑠. return(Simple(accessStorage(𝑡 ′′, 𝑙 ′′, 𝑠)),Value(𝑡 ′′))

We first look up the corresponding pointer from the stack and distinguish three cases. If the pointer

points to calldata ( 1.1 ), we use function msel from above to lookup the corresponding location

referred to by the index. Now depending on whether the location refers to a valuetype or to another

array we return either a valuetype or a pointer to calldata. The case in which the pointer points to

memory ( 1.2 ) is similar to the calldata case with two notable differences: First, we need to change

the first parameter when usingmsel to make sure we use memory instead of calldata. Second, since

memory is part of the state we need to first look it up using apply. The case in which the pointer

points to storage ( 1.3 ) is again similar except that we now also need to handle the case in which

the variable refers to a map. This situation, however, is handled similar to the array case, and we

can just return a storage pointer.

The case in which the variable refers to storage directly is just similar to the case in which it

refers to a storage pointer in stack:

2 = do 
(𝑙 ′, 𝑡 ′) ← ssel(𝑡, 𝑙, 𝑟 , 𝑒𝑝 , 𝑒, cd)

⌞_⌟


2.1 if 𝑡 ′ = STValue(𝑡 ′′)
return(Stoptr (𝑙 ′), Storage(𝑡 ′)) if 𝑡 ′ = STArray(_, _)
return(Stoptr (𝑙 ′), Storage(𝑡 ′)) if 𝑡 ′ = STMap(_, _)

2.1 = option Err
[
𝜆st . sto(𝑠𝑡) (address(𝑒))
𝜆𝑠. return(Simple(accessStorage(𝑡 ′′, 𝑙 ′, 𝑠)))

5.3 Semantics of expressions
We can now define the semantic function for expressions:

expr : E × EnvironmentP × Environment × Calldata
→ State_Monad(Stackvalue ∗ Type, Exception, State) ( expr)

The function requires three parameters to compute the semantics of an expression:

• A procedure environment to handle procedure calls

• A variable environment to look up the value of variables

• Calldata to access reference types passed through method calls

It then produces a monad modifying the state and returning a result value and type for the

corresponding expression.

As mentioned in Sect. 3.3.2, we assume the existence of a function

costs : E × EnvironmentP × Environment × Calldata→ (State→ Nat) ( costse)

to capture the gas costs associated with executing a certain expression.

In the following we discuss the definition of the function in detail.
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5.3.1 Basic expressions. The semantics of the boolean constants is straightforward and defined as

follows:

expr (True, 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(True, 𝑒𝑝 , 𝑒, cd))
return(Simple(⌊True⌋),Value(TBool))

expr (False, 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(False, 𝑒𝑝 , 𝑒, cd))
return(Simple(⌊False⌋),Value(TBool))

We only need to ensure that enough Gas is available to execute the command for which we use the

gascheck monad. Then we can just return a textual representation of the corresponding constant.

The semantics of the expression to create addresses is similar:

expr (Address(ad), 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(Address(ad), 𝑒𝑝 , 𝑒, cd))
return(Simple(ad),Value(TAddr))

We simply create a corresponding stackvalue element and type.

The semantics of integer constants is also straightforward and defined as follows:

expr (SInt (𝑏, 𝑥), 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(SInt (𝑏, 𝑥), 𝑒𝑝 , 𝑒, cd))
return(Simple(createSInt (𝑏, 𝑥)),Value(TSInt, 𝑏))

expr (UInt (𝑏, 𝑥), 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(UInt (𝑏, 𝑥), 𝑒𝑝 , 𝑒, cd))
return(Simple(createUInt (𝑏, 𝑥)),Value(TUInt, 𝑏))

Note, however, that we use functions createSInt and createUInt to handle overflow when converting

a number to a certain integer representation.

The values of the constants denoting the currently executing contract, the message sender, and

the transferred funds can be obtained from the current environment:

expr (This, 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(This, 𝑒𝑝 , 𝑒, cd))
return(Simple(address(𝑒)),Value(TAddr))

expr (Sender, 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(Sender, 𝑒𝑝 , 𝑒, cd))
return(Simple(sender (𝑒)),Value(TAddr))

expr (Value, 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(Value, 𝑒𝑝 , 𝑒, cd))
return(Simple(svalue(𝑒)),Value(TUInt (256)))

Note that the amount of funds is returns as a 256-bit unsigned integer.

Having defined function rexp above makes it easy to define the semantics of lvalues:

expr (L(𝑖), 𝑒𝑝 , 𝑒, cd)
def

= do
[
gascheck(costs(L(𝑖), 𝑒𝑝 , 𝑒, cd))
rexp(𝑖, 𝑒𝑝 , 𝑒, cd)

We just need to ensure that enough gas is available and can then simply pass on the identifier to

rexp.
To obtain the balance of an address we first need to evaluate the corresponding expression to

determine the actual address:

expr (Balance(ad), 𝑒𝑝 , 𝑒, cd)
def

=
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do 

gascheck(costs(Balance(ad), 𝑒𝑝 , 𝑒, cd))
kv ← expr (ad, 𝑒𝑝 , 𝑒, cd)

⌞_⌟


return(Simple(acc(𝑠𝑡) (adv)),Value(TUInt (256)))

if kv = (Simple(adv),Value(TAddr))

throw(Err) otherwise

For the case the expression does not evaluate to an address we return an exception Err . Again, the
balance is returned as a 256-bit unsigned integer.

5.3.2 Compound expressions. The semantic of negation is straightforward and defined as follows:

expr (¬𝑥, 𝑒𝑝 , 𝑒, cd)
def

= do 

gascheck(costs(¬𝑥, 𝑒𝑝 , 𝑒, cd))
kv ← expr (𝑥, 𝑒𝑝 , 𝑒, cd)

⌞_⌟


expr (False, 𝑒𝑝 , 𝑒, cd) if kv = (Simple(⌊True⌋),Value(TBool))
expr (True, 𝑒𝑝 , 𝑒, cd) if kv = (Simple(⌊False⌋),Value(TBool))
throw(Err) otherwise

We just need to compute the result of the original value 𝑥 and inspect its string representation.

The semantics of the addition operation is defined as follows:

expr (𝑒1+𝑒2, 𝑒𝑝 , 𝑒, cd)
def

= do 
gascheck(costs(𝑒1+𝑒2, 𝑒𝑝 , 𝑒, cd))
kv1← expr (𝑒1, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1 if kv1 = (Simple(𝑣1),Value(𝑡1))
throw(Err) otherwise

1 = do 
kv2 ← expr (𝑒2, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1.1 if kv2 = (Simple(𝑣2),Value(𝑡2))
throw(Err) otherwise

1.1 = option Err
[
𝜆_. add (𝑡1, 𝑡2, 𝑣1, 𝑣2)
𝜆(𝑣, 𝑡). return(Simple(𝑣),Value(𝑡))

Note that we use the function add defined above to deal with potential overflows. In addition, note

that evaluating the first operand may have side effects on the state which impact the evaluation of

the second operand. The semantics of the remaining arithmetic and logical operators is similar and

not discussed further here.

5.3.3 Method calls. To define the semantics of method calls we first need to define a function

load : Bool × [Identifier × Type] × [E] × EnvironmentP × Environment × Calldata
× Stack ×Memory × Environment × Calldata
→ State_Monad(Environment × Calldata × Stack ×Memory, Exception, State) ( load)

to load the methods parameters:

load (cp, (𝑖𝑝 , 𝑡𝑝 )#𝑝𝑙, 𝑒#el, 𝑒𝑝 , 𝑒′𝑣, cd′, sck′,mem′, 𝑒𝑣, cd)
def

= do
[
(𝑣, 𝑡) ← expr (𝑒, 𝑒𝑝 , 𝑒𝑣, cd)
1

1 = option Err
[
𝜆st . decl(𝑖𝑝 , 𝑡𝑝 , (𝑣, 𝑡)⊥, cp, cd,mem(𝑠𝑡), sto(𝑠𝑡), (cd′,mem′, sck′, 𝑒′𝑣))
𝜆(𝑐,𝑚, 𝑘, 𝑒). load (cp, pl, el, 𝑒𝑝 , 𝑒, 𝑐, 𝑘,𝑚, 𝑒𝑣, cd)

load (_, [], [], _, 𝑒′𝑣, cd′, sck′,mem′, 𝑒𝑣, cd)
def

= return(𝑒′𝑣, cd′, sck′,mem′)
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load (_, _, _, _, _, _, _, _, _, _) def

= throw(Err)

Roughly speaking, the function takes a list of formal parameters and expressions and creates an

environment in which the parameters are initialized with the values obtained from the correspond-

ing expression. Note that loading the parameters may have side effects and change the overall

state.

In particular, the idea is that

load (cp, fp, es, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐) (st) = Normal((𝑒′, 𝑐′, 𝑘 ′,𝑚′), st′)

creates a new environment with corresponding stack, calldata and memory. Thus, we cannot just

update the corresponding elements from the state st but rather need to carry separate copies of

these elements as parameters 𝑒 , 𝑘 , 𝑐 , and𝑚. The function the updates these elements to 𝑒′, 𝑘 ′, 𝑐′,
and𝑚′ by adding variables from fp with values obtained from evaluating es. When evaluating

the expressions, however, we do rely on the original environment, stack, calldata, and memory

from the state st. In addition, evaluation of the expressions may change the state which is why

the function also returns an updated version of the state st′. Parameter env and cd represent the

original versions of the environment and calldata when starting the loading process.

In Solidity, method arguments are evaluated from left to right as demonstrated by the following

example.

Example 5.1 (Method calls). Consider the following contract:

1 contract Example {

2 function inc1(uint8[1] memory x)

3 private returns (uint8) {

4 assert (x[0] == 0);

5 x[0] = 1;

6 return 0;

7 }

8 function inc2(uint8[1] memory x)

9 private returns (uint8) {

10 assert (x[0] == 1);

11 x[0] = 2;

12 return 0;

13 }

14 function test(uint a, uint8 b)

15 private returns (uint8) {

16 return 0;

17 }

18 function test2() public {

19 uint8[1] memory x=[0];

20 test(inc1(x), inc2(x));

21 }

22

23

24

25

26 }

The contract provides two methods inc1 and inc2 which modify the only entry of an integer

memory array. However, while inc1 sets the value to 0, inc2 sets it to one. Now to test the

evaluation of arguments we provide a third function test which requires two integers as input.

Finally, we can define a method test2 which just invokes test with parameter values given by

inc1 and inc2, respectively. Now, since both, inc1 and inc2 modify a member variable of the

contract we can check the evaluation of arguments using corresponding assertions. In our example

we can see that inc1 is evaluated first as otherwise the assertions would fail.

The semantics of method calls requires looking up the corresponding statement from the proced-

ure environment, prepare the environment, and execute the statement. The semantics of internal
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calls is defined as follows:

expr (Call(𝑖, xe), 𝑒𝑝 , 𝑒, cd)
def

= do 
gascheck(costs(Call(𝑖, xe), 𝑒𝑝 , 𝑒, cd))

⌞_⌟


1 if 𝑒𝑝 (address(𝑒)) = (ct, _)⊥

∧ct (𝑖) =Method (fp, 𝑓 , 𝑥⊥)⊥
throw(Err) otherwise

1 = do 

𝑚𝑜 ← apply(𝜆st . mem(st))
(𝑒𝑙 , cd𝑙 , 𝑘𝑙 ,𝑚𝑙 ) ← load (False, fp, xe, 𝑒𝑝 , 𝑒′,

emptyStore, emptyStore,𝑚𝑜 , 𝑒, cd)
ko ← apply(𝜆st . sck(st))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑙 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑙 , st)))
stmt (𝑓 , 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
rv ← expr (𝑥, 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st))
return(rv)

where 𝑒′ = ffold (init (ct), empty(address(𝑒), sender (𝑒), svalue(𝑒)), dom(𝑐𝑡)).
To execute a method 𝑖 on the current contract, we first need to look up the corresponding method

from the procedure environment 𝑒𝑝 . Then ( 1 ), we create a fresh stack and use the ffold function

defined above to create a fresh variable environment 𝑒′ for the execution of the method. Next we

load the parameters of the method into the new environment to obtain another environment 𝑒′′.
Since reference types used in arguments are stored in calldata, the load command also returns a

calldata store cd′. Moreover, evaluating the parameters may have side effects which result in a new

state st′′. We then keep a copy of the original state in st′′′ and replace it with the new state st′′

obtained from loading the parameters. Finally, we can execute the statement of the method using

the new environment 𝑒′′ and calldata cd′. We then evaluate the methods return expression rv and

reset the stack to how it was in state st′′′ before returning the actual value rv.
The semantics of external method calls is defined as follows:

expr (ECall(ad, 𝑖, xe, val), 𝑒𝑝 , 𝑒, cd)
def

= do 

gascheck(costs(ECall(ad, 𝑖, xe, val), 𝑒𝑝 , 𝑒, cd))
kad ← expr (ad, 𝑒𝑝 , 𝑒, cd)

⌞_⌟


1 if kad = (Simple(adv),Value(TAddr))

∧ 𝑒𝑝 (adv) = (ct, _)⊥ ∧ ct (𝑖) =Method (fp, 𝑓 , 𝑥⊥)⊥
throw(Err) otherwise

1 = do 
kv ← expr (val, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1.1 if kv = (Simple(𝑣),Value(𝑡))
throw(Err) otherwise

1.1 = do 

(𝑒𝑙 , 𝑐𝑑𝑙 , 𝑘𝑙 ,𝑚𝑙 ) ← load (True, fp, xe, 𝑒𝑝 , 𝑒′, emptyStore, emptyStore, emptyStore, 𝑒, cd)
option Err 

𝜆st . transfer (address(𝑒), adv, 𝑣, acc(𝑠𝑡))
𝜆acc. do 

(𝑘𝑜 ,𝑚𝑜 ) ← apply(𝜆st . (sck(st),mem(st)))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑙 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑙 , 𝑢𝑝𝐴𝑐𝑐 (acc, st))))
stmt (𝑓 , 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
rv ← expr (𝑥, 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑜 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st)))
return(rv)
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Here, we first need to evaluate expression ad to obtain the address of the target contract and lookup

the corresponding method from the procedure environment 𝑒𝑝 . Next ( 1 ) we need to evaluate

expression val to obtain the amount of funds to be sent with the call. Then ( 1.1 ) we prepare a

new state st′ with a fresh stack and memory as well as a new environment 𝑒′ using function ffold
described above. We can then use the new state and environment to load the method parameters

into a new environment e′′ using function load defined above. We then keep a copy of the current

state st′′′ and transfer the funds sent with the method call from the calling contract to the called

one. We execute the body of the method on an updated version of state st′′ which contains the

new balances after transferring the funds. Finally, we compute the return value rv, restore the state
of the stack and memory, and return rv.
Note that we return an error in the case that we call a method identifier which does not exist.

In Solidity such a call would actually be allowed and trigger an execution of the fallback function

of the contract. However, as soon as we try to access the expected return value we would get an

exception which reverts the execution.

Consider, for example, the following two contracts:

1 contract Caller {

2 function tCall(address _ad, string memory _mt) public returns (uint) {

3 (bool s, bytes memory d) = _ad.call.gas(5000)(

4 abi.encodeWithSignature(_mt)

5 );

6 return abi.decode(d, (uint));

7 }

8 }

1 contract Receiver {

2 event Received(string message);

3

4 function () external {

5 emit Received("Fallback called");

6 }

7 function test() public returns (uint) {

8 return 1;

9 }

10 }

Executing function tCall of contract Callerwith the address of the Receiver contract andmethod

parameter “test()” will execute function test of the receiver contract and return a 1. Now, if we

misspell the method name and use “ttest()” instead, contract Receiver would execute its fallback

function instead. However, since the fallback function does not return any value, the decoding in

Line 6 of the Caller contract would throw an exception and revert the execution and the Receiver
contracts fallback function is never executed. Thus, our semantics indeed faithfully models the

execution of an external method call used in an expression.

Note also that there are several differences between internal and external method calls. In

particular, internal method calls keep the original memory while external calls use a fresh memory
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to execute. Moreover, only external calls allow funds to be transferred with the call. The transfer

triggered by an external method call does not trigger the fallback function.

6 STATEMENTS
Our subset of Solidity supports the following types of statements:

S ::= Skip | L = E | S ; S | Ite(E, S, S) | While(E, S) | Transfer (E, E)
| Block((Identifier × Type × 𝐸⊥), S) | Invoke(Identifier, [E])
| External(E, Identifier, [E], E) ( S)

In particular, we support a specific statement to transfer funds as well as internal and external

method calls.

The semantics of statements is given by function

stmt : S × EnvironmentP × Environment × Calldata
→ State_Monad((), Exception, State) ( stmt)

which requires a procedure environment and a calldata store and returns a monad capturing the

semantics of a statement. Similarly, as for expressions we assume the existence of a cost function

for statements:

costs : S × EnvironmentP × Environment × Calldata→ (State→ Nat) ( costs)

Statements are formalized in theory Statements.thy. In the following, we discuss the definition

of stmt in more detail. We first present the semantics of basic statements such as skip and assign

(Sect. 6.1). We then discuss the semantics of composition, conditionals, loops, and block statements

(Sect. 6.2). Finally, we discuss the semantics of internal (Sect. 6.3) and external (Sect. 6.4) method

invocations as well as the transfer statement (Sect. 6.5).

6.1 Basics
The semantics of the Skip is straightforward:

stmt (Skip, 𝑒𝑝 , 𝑒, cd)
def

= gascheck(costs(Skip, 𝑒𝑝 , 𝑒, cd))

We just need to ensure that enough gas is available before we return.

The semantics of assignments is a bit special in Solidity and thus worth a closer look:

stmt (lv=ex, 𝑒𝑝 , env, cd)
def

= do 

gascheck(costs(lv=ex, 𝑒𝑝 , env, cd))
re← expr (ex, 𝑒𝑝 , env, cd)

⌞_⌟



1 if re = (Simple(𝑣),Value(𝑡))
2 if re = (CDptr (𝑝),Calldata(MTArray(𝑥, 𝑡)))
3 if re = (Memptr (𝑝),Memory(MTArray(𝑥, 𝑡)))
4 if re = (Stoptr (𝑝), Storage(STArray(𝑥, 𝑡)))
5 if re = (Stoptr (𝑝), Storage(STMap(𝑡, 𝑡 ′)))
throw(Err)

otherwise

After checking the available gas we first evaluate the right-hand side of the assignment. Depending

on the outcome of this we distinguish five different cases.
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The first case deals with the situation in which the right-hand side evaluates to a simple valuetype

on the stack:

1 = do 

rl ← lexp(lv, 𝑒𝑝 , env, cd)

⌞_⌟


1.1 if rl = (LStackloc(𝑙),Value(𝑡 ′))
1.2 if rl = (LStoreloc(𝑙), Storage(STValue(𝑡 ′)))
1.3 if rl = (LMemloc(𝑙),Memory(MTValue(𝑡 ′)))
throw(Err) otherwise

1.1 = option Err
[
𝜆_. convert (𝑡, 𝑡 ′, 𝑣)
𝜆(𝑣 ′, _). modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (updateStore(𝑙, Simple(𝑣 ′), sck(st)), st))

1.2 = option Err 
𝜆_. convert (𝑡, 𝑡 ′, 𝑣)
𝜆(𝑣 ′, _). option Err 

𝜆st . sto(st) (address(env))
𝜆𝑠. modify(𝜆st .

𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠 [𝑙 ↦→ 𝑣 ′]], st))
1.3 = option Err

[
𝜆_. convert (𝑡, 𝑡 ′, 𝑣)
𝜆(𝑣 ′, _). modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(updateStore(𝑙,Value(𝑣 ′),mem(st)), st))

In this case the corresponding value is just copied from the stack to the storage location given by

the left-hand side. Note, however, that we need to use function convert to convert between the

types of the value on the stack and the target destination.

The next case deals with the situation in which the right-hand side is a value kept in calldata:

2 = do 

rl ← lexp(lv, 𝑒𝑝 , env, cd)

⌞_⌟



2.1 if rl = (LStackloc(𝑙),Memory(_))
2.2 if rl = (LStackloc(𝑙), Storage(_))
2.3 if rl = (LStoreloc(𝑙), _)
2.4 if rl = (LMemloc(𝑙), _)
throw(Err) otherwise

2.1 = do 
sv ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟

{
2.1.1 if sv =Memptr (𝑝′)⊥
throw(Err) otherwise

2.1.1 = option Err
[
𝜆st . cpmm (𝑝, 𝑝′, 𝑥, 𝑡, cd,mem(st))
𝜆𝑚. modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (𝑚, st))

2.2 = do 
sv ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟

{
2.2.1 if sv = Stoptr (𝑝′)⊥
throw(Err) otherwise

2.2.1 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆_. cpms (𝑝, 𝑝′, 𝑥, 𝑡, cd, 𝑠)
𝜆𝑠′ . modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠′], st))

2.3 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆_. cpms (𝑝, 𝑙, 𝑥, 𝑡, cd, 𝑠)
𝜆𝑠′ . modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠′], st))
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2.4 = option Err
[
𝜆st . cpmm (𝑝, 𝑙, 𝑥, 𝑡, cd,mem(st))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚, st))

Again, we first evaluate the left-hand side of the assignment to determine the corresponding type

of store and location. The left-hand side may be either a pointer to memory ( 2.1 , 2.4 ) or storage

( 2.2 , 2.3 )
5
. In either case we need to copy the structure from calldata to either memory or storage

(using the functions cpmm or cpsm, respectively) and update the corresponding store in the state.

The case in which the right-hand side is a pointer to memory is defined as follows:

3 = do 

rl ← lexp(lv, 𝑒𝑝 , env, cd)

⌞_⌟



modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (updateStore(𝑙,Memptr (𝑝), sck(st)), st))
if rl = (LStackloc(𝑙),Memory(_))

3.1 if rl = (LStackloc(𝑙), Storage(_))
3.2 if rl = (LStoreloc(𝑙), _)
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(updateStore(𝑙, Pointer (𝑝),mem(st)), st))

if rl = (LMemloc(𝑙), _)

throw(Err)
otherwise

3.1 = do 
sv ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟

{
3.1.1 if sv = Stoptr (𝑝′)⊥
throw(Err) otherwise

3.1.1 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆st . cpms (𝑝, 𝑝′, 𝑥, 𝑡,mem(st), 𝑠)
𝜆𝑠′ . modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠′], st))

3.2 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆st . cpms (𝑝, 𝑙, 𝑥, 𝑡,mem(st), 𝑠)
𝜆𝑠′ . modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠′], st))

As usual we first evaluate the left-hand side of the assignment to obtain a store and location. The

semantics of the assignment now depends on the type of store referred to by the left-hand side. For

the case the left-hand side points to a location in memory, we just update the pointer referred to

by the right-hand side. For the case the left-hand side points to a storage location ( 3.1 , 3.2 ) the

situation is different. In such a case the semantics of an assignment requires us to copy the whole

structure from memory to the corresponding storage location referred to by the left-hand side.

5
Note that Solidity v.5.16 does not support pointers to calldata which is why we do not need to consider this case here.
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The next case to consider is the case in which the right-hand side is a reference to a storage

array:

4 = do 

rl ← lexp(lv, 𝑒𝑝 , env, cd)

⌞_⌟



4.1 if rl = (LStackloc(𝑙),Memory(_))

modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (updateStore(𝑙, Stoptr (𝑝), sck(st)), st))
if rl = (LStackloc(𝑙), Storage(_))

4.2 if rl = (LStoreloc(𝑙), _)
4.3 if rl = (LMemloc(𝑙), _)
throw(Err)

otherwise

4.1 = do 
sv ← apply(𝜆st . accessStore(𝑙, sck(st)))

⌞_⌟

{
4.1.1 if sv =Memptr (𝑝′)⊥
throw(Err) otherwise

4.1.1 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆st . cpsm (𝑝, 𝑝′, 𝑥, 𝑡, 𝑠,mem(st))
𝜆𝑚. modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚, st))

4.2 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆_. cpss (𝑝, 𝑙, 𝑥, 𝑡, 𝑠)
𝜆𝑠′ . modify(𝜆st . 𝑢𝑝𝑆𝑡𝑜 (sto(st) [address(env) ↦→ 𝑠′], st))

4.3 = option Err 
𝜆st . sto(st) (address(env))
𝜆𝑠. option Err

[
𝜆st . cpsm (𝑝, 𝑙, 𝑥, 𝑡, 𝑠,mem(st))
𝜆𝑚. modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚, st))

Again, we first evaluate the left-hand side to obtain the store and location and proceed as follows: In

the case the left-hand side evaluates to a memory location ( 4.1 , 4.3 ) we need to copy the structure

from memory to storage. In the case the left-hand side evaluates to a storage pointer, we can just

update the pointer. In the case the left-hand side evaluates to a storage location ( 4.2 ), we need to

copy the structure from the location referred to be the right-hand side to the location referred to

by the left-hand side.

The final case to consider is when the right-hand side is a reference to a map:

5 = do 

rl ← lexp(lv, 𝑒𝑝 , env, cd)

⌞_⌟


modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (updateStore(𝑙, Stoptr (𝑝), sck(st)), st))

if rl = (LStackloc(𝑙), _)

throw(Err)
otherwise

Since maps cannot be copied we do only need to consider the case in which the left-hand side is a

storage pointer in which case we just update the pointer to the location of the map.
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6.2 Composed statements
Composition of two statements is defined according to the traditional definition of composition for

denotational semantics:

stmt (𝑠1 ; 𝑠2, 𝑒𝑝 , 𝑒, cd)
def

= do 
gascheck(costs(𝑠1 ; 𝑠2, 𝑒𝑝 , 𝑒, cd))
stmt (𝑠1, 𝑒𝑝 , 𝑒, cd)
stmt (𝑠2, 𝑒𝑝 , 𝑒, cd)

Similarly, the semantics of the conditional statement is defined as expected if we consider that

value types are represented as strings:

stmt (Ite(ex, 𝑠1, 𝑠2), 𝑒𝑝 , 𝑒, cd)
def

= do 

gascheck(costs(Ite(ex, 𝑠1, 𝑠2), 𝑒𝑝 , 𝑒, cd))
𝑣 ← expr (ex, 𝑒𝑝 , 𝑒, cd)

⌞_⌟



stmt (𝑠1, 𝑒𝑝 , 𝑒, cd) if 𝑣 = (Simple(𝑏),Value(TBool))
∧𝑏 = ⌊True⌋

stmt (𝑠2, 𝑒𝑝 , 𝑒, cd) if 𝑣 = (Simple(𝑏),Value(TBool))
∧𝑏 = ⌊False⌋

throw(Err) otherwise

Similarly, the definition of the loop statement is standard denotational semantics:

stmt (While(ex, 𝑠), 𝑒𝑝 , 𝑒, cd)
def

= do 

gascheck(costs(While(ex, 𝑠), 𝑒𝑝 , 𝑒, cd))
𝑣 ← expr (ex, 𝑒𝑝 , 𝑒, cd)

⌞_⌟



1 if 𝑣 = (Simple(𝑏),Value(TBool))
∧𝑏 = ⌊True⌋

return(()) if 𝑣 = (Simple(𝑏),Value(TBool))
∧𝑏 = ⌊False⌋

throw(Err) otherwise

1 = do
[
stmt (𝑠, 𝑒𝑝 , 𝑒, cd)
stmt (While(ex, 𝑠), 𝑒𝑝 , 𝑒, cd)

The semantics of a block statement is defined using the decl function introduced above:

stmt (Block((id, tp, ex), 𝑠), 𝑒𝑝 , 𝑒𝑣, cd)
def

= do 
gascheck(costs(Block((id, tp, ex), 𝑠), 𝑒𝑝 , 𝑒, cd))

⌞_⌟

{
1 if ex = ⊥
2 if ex = ex′⊥

1 = option Err 
𝜆st . decl(id, tp,⊥, False, cd,mem(st), sto(st), (cd,mem(st), sck(st), 𝑒𝑣))
𝜆(cd′,mem′, sck′, 𝑒′). do

[
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(mem′, 𝑢𝑝𝑆𝑐𝑘 (sck′, st)))
stmt (𝑠, 𝑒𝑝 , 𝑒′, cd′)

2 =

do 
(𝑣, 𝑡) ← expr (ex′, 𝑒𝑝 , 𝑒𝑣, cd)
option Err 

𝜆st . decl(id, tp, (𝑣, 𝑡)⊥, False, cd,mem(st), sto(st), (cd,mem(st), sck(st), 𝑒𝑣))
𝜆(cd′,mem′, sck′, 𝑒′). do

[
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(mem′, 𝑢𝑝𝑆𝑐𝑘 (sck′, st)))
stmt (𝑠, 𝑒𝑝 , 𝑒′, cd′)
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In particular we distinguish two cases: The first case ( 1 ) deals with situations in which a variable

is declared but not initialized. In such a case the variable should be initialized with its default

value which is done by function decl by passing it ⊥ as 3rd parameter. The second case ( 2 ) deals

with situations in which a variable is declared and initialized in which case we just forward the

initialized value to decl. Note that local declarations do not copy structures between memory which

is why the 4th parameter of decl is False in both cases.

6.3 Method invocations
Invocations of internal methods are defined similar to internal method calls in expressions:

stmt (Invoke(𝑖, xe), 𝑒𝑝 , 𝑒, cd)
def

=

do 
gascheck(costs(Invoke(𝑖, xe), 𝑒𝑝 , 𝑒, cd))

⌞_⌟

{
1 if 𝑒𝑝 (address(𝑒)) = (ct, _)⊥ ∧ ct (𝑖) =Method (fp, 𝑓 ,⊥)⊥
throw(Err) otherwise

1 = do 

𝑚𝑜 ← apply(𝜆st . mem(st))
(𝑒𝑙 , cd𝑙 , 𝑘𝑙 ,𝑚𝑙 ) ← load (False, fp, xe, 𝑒𝑝 , 𝑒′, emptyStore, emptyStore,𝑚𝑜 , 𝑒, cd)
𝑘𝑜 ← apply(𝜆st . sck(st))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑙 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑙 , st)))
stmt (𝑓 , 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
modify(𝜆st . 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st))

where 𝑒′ = ffold (init (ct), empty(address(𝑒), sender (𝑒), svalue(𝑒)), dom(𝑐𝑡)).
The main difference to internal method calls is that we do expect the method to not have any

return expression but a ⊥ instead. Consequently, we do not need to evaluate the return expression.

6.4 External Calls
External method invocations are again similar to external method calls:

stmt (External(ad, 𝑖, xe, val), 𝑒𝑝 , 𝑒, cd)
def

=

do 
gascheck(costs(External(ad, 𝑖, xe, val), 𝑒𝑝 , 𝑒, cd))
kad ← expr (ad, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1 if kad = (Simple(adv),Value(TAddr)) ∧ 𝑒𝑝 (adv) = (ct, fb)⊥
throw(Err) otherwise

1 = do 
kv ← expr (val, 𝑒𝑝 , 𝑒, cd)

⌞_⌟


2 if kv = (Simple(𝑣),Value(𝑡)) ∧ ct (𝑖) =Method (fp, 𝑓 ,⊥)⊥
3 if kv = (Simple(𝑣),Value(𝑡)) ∧ ct (𝑖) = ⊥
throw(Err) otherwise

2 = do 

(𝑒𝑙 , cd𝑙 , 𝑘𝑙 ,𝑚𝑙 ) ← load (True, fp, xe, 𝑒𝑝 , 𝑒′, emptyStore, emptyStore, emptyStore, 𝑒, cd)
option Err 

𝜆st . transfer (address(𝑒), adv, 𝑣, acc(𝑠𝑡))
𝜆acc. do 

(𝑘𝑜 ,𝑚𝑜 ) ← apply(𝜆st . (sck(st),mem(st)))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑙 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑙 , 𝑢𝑝𝐴𝑐𝑐 (acc, st))))
stmt (𝑓 , 𝑒𝑝 , 𝑒𝑙 , cd𝑙 )
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑜 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st)))
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3 = option Err 

𝜆st . transfer (address(𝑒), adv, 𝑣, acc(𝑠𝑡))
𝜆acc. do 

(𝑘𝑜 ,𝑚𝑜 ) ← apply(𝜆st . (sck(st),mem(st)))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(emptyStore,

𝑢𝑝𝑆𝑐𝑘 (emptyStore, 𝑢𝑝𝐴𝑐𝑐 (acc, st))))
stmt (fb, 𝑒𝑝 , empty(adv, address(𝑒), 𝑣), cd)
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑜 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st)))

where 𝑒′ = ffold (init (ct), empty(adv, address(𝑒), 𝑣), dom(𝑐𝑡)).
There is, however, one notable difference to external method calls. For the case that we try to

invoke a method which does not exist ( 3 ), we do indeed execute the contracts fallback function

instead.

6.5 Transfer
The transfer statement is used to transfer funds from the current contract to another account. Its

semantics is defined as follows:

stmt (Transfer (ad, ex), 𝑒𝑝 , 𝑒, cd)
def

=

do 
kv ← expr (ex, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1 if kv = (Simple(𝑣),Value(𝑡))
throw(Err) otherwise

1 = do 
kv′ ← expr (ad, 𝑒𝑝 , 𝑒, cd)

⌞_⌟

{
1.1 if kv′ = (Simple(adv),Value(TAddr))
throw(Err) otherwise

1.1 = option Err 
𝜆st . transfer (address(𝑒), adv, 𝑣, acc(st))

𝜆acc.

{
1.1.1 if 𝑒𝑝 (adv) = (ct, 𝑓 )⊥
modify(𝜆st . 𝑢𝑝𝐴𝑐𝑐 (acc, st)) if 𝑒𝑝 (adv) = ⊥

1.1.1 = do 
(𝑘𝑜 ,𝑚𝑜 ) ← apply(𝜆st . (sck(st),mem(st)))
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(emptyStore, 𝑢𝑝𝑆𝑐𝑘 (emptyStore, 𝑢𝑝𝐴𝑐𝑐 (acc, st))))
stmt (𝑓 , 𝑒𝑝 , 𝑒′, emptyStore)
modify(𝜆st . 𝑢𝑝𝑀𝑒𝑚(𝑚𝑜 , 𝑢𝑝𝑆𝑐𝑘 (𝑘𝑜 , st)))

where 𝑒′ = ffold (init (ct), empty(adv, address(𝑒), 𝑣), dom(𝑐𝑡)).
First we compute the value ex to be transferred and the target address ad. Then, we transfer

the desired funds from the account of the executing contract to the target account using function

transfer discussed above. If the target address refers to a normal account we are done. However, if

the target address refers to another contract then we need to invoke its fallback function.

Example 6.1 (Transfer). Let’s assume we are given a contract Receiver containing a member

variable received and fallback method which assigns value True to the received flag. In our

model this would be represented by a procedure environment env𝑝 with the following entry for

the receiver contract:

env𝑝 (“Receiver”) = [“received”,Var (STValue(TBool)), Id (“received”)=True]

Moreover, let’s assume that the received flag is currently set to False which is represented by a

state st with the following entry for storage:

sto(st) (“Receiver”) (“received”) = “False”
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Finally, let’s assume that we are given another contract Sender and both contracts, Sender and

Receiver have a current balance of 100 wei6:

• acc(st) (“Sender”) = “100”
• acc(st) (“Receiver”) = “100”

Now, assume that the sender contract executes a Transfer statement to transfer 10 wei to the

receiver contract. To this end we use an environment env𝑣 with

address(env𝑣) = “Sender”

to indicate the currently executing contract and assume

stmt (Transfer (Address(“Receiver”),UInt (256, 10)), env𝑝 , env𝑣, cd) (st) = Normal(st′)
This indicates that the statement executed successfully and updated the state to st′. Inspecting

the accounts of st′ reveals that the execution updated the balances of the contracts accordingly:

• acc(st′)(“Sender”)=“90”
• acc(st′)(“Receiver”)=“110”

However, the transfer command also triggered the execution of the receiving contracts fallback

function which changed its received flag to “True”:

sto(st′) (“Receiver”) (“received”) = “True”

7 PROVING TERMINATION
The formalization of our abstract gas model as well as the termination proof can be found in

theory Statements.thy. As mentioned in Sect. 3.3.2 we use abstract cost functions (introduced

in Eq. ( costse) and Eq. ( costs)), to represent the gas cost of a given expression/statement.

The actual gas fees are computed on the level of the Ethereum byte code [55] and, moreover,

are frequently updated. Thus, our Solidity formalization does not provide a built-in gas model

trying to faithfully represent the actual gas model on the level of Ethereum bytecode. Rather, we

allow for an external gas model to be added later on by providing actual definitions for these

costs functions. However, to be able to ensure termination we do assume that the costs of certain

expressions/statements is not zero ( statement_with_gas):

0 < costs(Call(id, es), env𝑝 , env, cd, st)
0 < costs(ECall(ad, id, xe, val), env𝑝 , env, cd, st)
0 < costs(While(ex, stm), env𝑝 , env, cd, st)
0 < costs(Invoke(id, es), env𝑝 , env, cd, st)
0 < costs(External(ad, id, xe, val), env𝑝 , env, cd, st)
0 < costs(Transfer (ad, xe), env𝑝 , env, cd, st)

(25)

To capture these requirements we use Isabelle’s module concept, called locale [32]. Locales allow us

to make use of these properties in proofs. These proofs are then valid for any concrete cost model

(e.g., the one presented in Sect. 7.3) that satisfies these requirements. Technically, the user defining

a new cost model needs to prove that their cost model is a so-called interpretation of our generic

cost model. For this, the user has to prove only that their cost model satisfies these requirements.

Our generic cost model is not a limitation with respect to the actual cost model of Solidity:

according to [55, Appendix G], the actual costs for any execution of these expressions/statements

will be positive.

6
Wei is the smallest denomination of ether—the cryptocurrency coin used on the Ethereum network. One ether = 10

18
wei.
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7.1 Measure function
To prove termination we need to provide an appropriate measure function which can be used

to create a well-formed relation which decreases with every recursive call. To understand the

construction of the measure function we need to understand a bit about how Isabelle represents

mutual recursive functions. To eliminate the mutual dependencies, Isabelle internally creates a

single function operating on the sum type of the different function specifications. Consequently,

termination has to be proved simultaneously for both functions, by specifying a measure on the

sum type.

The overall idea of the measure function is to use the lexicographic combination of gas costs and

the number of data type constructors. To this end we first specify a function mgas over the sum
type of our semantic functions:

mgas(𝑥) def

=



gas(st) if 𝑥 =msel(mm, tp, loc, es, env𝑝 , env, cd, st)
gas(st) if 𝑥 = ssel(tp, loc, es, env𝑝 , env, cd, st)
gas(st) if 𝑥 = lexp(lv, env𝑝 , env, cd, st)
gas(st) if 𝑥 = rexp(lv, env𝑝 , env, cd, st)
gas(st) if 𝑥 = load (cp, fp, es, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐, st)
gas(st) if 𝑥 = expr (ex, env𝑝 , env, cd, st)
gas(st) if 𝑥 = stmt (st, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐, st)

( mgas)

Note that this function simply extracts the gas costs of the parameter representing the state in the

corresponding function.

The second function msize is defined as follows:

msize(𝑥) def

=



size(es) if 𝑥 =msel(mm, tp, loc, es, env𝑝 , env, cd, st)
size(es) if 𝑥 = ssel(tp, loc, es, env𝑝 , env, cd, st)
size(lv) if 𝑥 = lexp(lv, env𝑝 , env, cd, st)
size(lv) if 𝑥 = rexp(lv, env𝑝 , env, cd, st)
size(es) if 𝑥 = load (cp, fp, es, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐, st)
size(ex) if 𝑥 = expr (ex, env𝑝 , env, cd, st)
size(st) if 𝑥 = stmt (st, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐, st)

( msize)

This definition uses the function sizewhich returns the size of the term using type specific definitions

that are, for instance, provided by the function package and datatype package of Isabelle.

7.2 Termination
Now to verify termination of our semantic functions we need to verify two properties. First, we need

to show that the lexicographic combination of our two measure functions is indeed well-founded:

Lemma 7.1 (Well founded). The lexicographic combination of mgas and msize is well-founded.

Next, we need to show that the measure function decreases with each recursive call. To this end

we first prove the following lemma:

Lemma 7.2 ( msel_ssel_lexp_expr_load_rexp_stmt_dom_gas).

msel(mm, tp, loc, es, env𝑝 , env, cd) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)
ssel(tp, loc, es, env𝑝 , env, cd) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)

lexp(lv, env𝑝 , env, cd) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)
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rexp(lv, env𝑝 , env, cd) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)
load (cp, fp, es, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)

expr (ex, env𝑝 , env, cd) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)
stmt (st, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐) (st) = Normal(_, st′) =⇒ gas(st′) ≤ gas(st)

Proof. The proof is by structural induction over Solidity statements/expressions. Some cases

are trivial and do not need further discussion. For the remaining 28 cases the proofs proceed as

follows: We construct a sequence of abstract states following the definition of the corresponding

statement/expression. For each state we then show that it does not increase the amount of available

gas. Thus, by transitivity of gas costs we can conclude that the overall statement does not increase

the gas costs. □

We can then use this lemma and the assumptions about our cost functions (Equation 25) to prove

the following lemma:

Lemma 7.3. For each recursive call 𝑥 ′ from a function 𝑥 the following holds:
• mgas(𝑥 ′) < mgas(𝑥)
• mgas(𝑥 ′) =mgas(𝑥) ∧msize(𝑥 ′)

We now have everything to prove the following theorem:

Theorem 7.4 ( termination). The following functions are always defined:

msel(mm, tp, loc, es, env𝑝 , env, cd) (st)
ssel(tp, loc, es, env𝑝 , env, cd) (st)
lexp(lv, env𝑝 , env, cd) (st)
rexp(lv, env𝑝 , env, cd) (st)
load (cp, fp, es, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐) (st)
expr (ex, env𝑝 , env, cd) (st)
stmt (st, env𝑝 , env, cd𝑜 , 𝑘,𝑚, 𝑒, 𝑐) (st)
Note that this result has several important practical consequences. First, it allows us to execute

our functions and generate code. Second, it allows us to use induction to verify properties over

each of the above functions, in particular expr and stmt.

7.3 A minimal cost model
To provide a concrete cost model for our semantics we just need to provide a definition for our

cost functions which satisfy the conditions from Equation 25. Consider, for example the following

definitions:

costsmin (stm, env𝑝 , env, cd, st)
def

=


1 if stm =While ∨ stm = Transfer ∨ stm = Invoke

∨ stm = External

0 otherwise

( costs_min)

costsmin (ex, env𝑝 , env, cd, st)
def

=

{
1 if stm = Call ∨ stm = ECall
0 otherwise

( costs_ex)

The definitions obviously satisfy the conditions from Equation 25. Thus, this is a valid cost

function to be used with our semantics.
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8 CASE STUDY: VERIFIED BANKING
As shown in previous work [20], our semantics can be used to verify the correctness of tools which

modify Solidity programs. However, it can also be used to verify invariants for individual contracts

as demonstrated in the following case study.

To use our semantics to verify invariants for individual contracts we need to perform three steps:

• Formalize the contract. A contract is formalized as a finite mapping from an identifier to a

corresponding member which can either be a storage variable or a method ( Member). A
method consists of a list of formal parameters, an optional return value, and a method body,

which is formalized as a statement of our semantics.

• Formalize the invariant. The invariant is formalized as a HOL predicate over two parameters:

an integer which represents the balance of the contract as well as a state which can be used

to access the contract’s private storage ( State).
• Verify the invariant. To verify the invariant we need to prove one theorem for each method

of our contract. The theorem assumes that the method is executed in a state which satisfies

the invariant and shows that the invariant still holds in the state obtained after executing the

method.

Note that the verification of methods which invoke methods from other contracts requires some

considerations. Since we usually don’t know the implementation of the method, we need to verify

that the invariant is preserved for every possible implementation of the method. Thus, for such a

case, we need to prove a corresponding lemma using structural induction over statements (lemma

msel_ssel_lexp_expr_load_rexp_stmt.induct).

8.1 The problem
In the following we use the above methodology to verify a contract implementing a simple banking

system (theory Reentrancy.thy).
The contract should allow users to deposit funds and withdraw them later on. A possible solution

is given by the contract briefly discussed in the introduction and repeated in Listing 3. The contract

Listing 3: A simple banking contract.

1 contract Bank {

2 mapping(address => uint256) balances;

3

4 function deposit() public payable {

5 balances[msg.sender] = balances[msg.sender] + msg.value;

6 }

7

8 function withdraw() public {

9 msg.sender.transfer(balances[msg.sender]);

10 balances[msg.sender] = 0;

11 }

12 }

has one member variable balances to keep track of all the balances. Moreover, it provides two

methods to deposit and withdraw funds. When a contract calls deposit with some funds, then the

funds are transferred to the Bank contract and the amount is kept in msg.value. Thus, method
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deposit just adds the value to the balance of the calling contract to keep track of how much each

contract contributed to the funds of the banking contract. A contract can call withdraw to get its

funds back. To this end, the banking contract first returns the corresponding funds (Line 9) and

then sets the callers internal balance to 0 (Line 10).

The contract in Listing 4 is a possible client contract for our bank contract, assuming our

bank contract got address 0x438eacEBf3F2a1c3E8560277345E83ff228355bE assigned during its

deployment. Once deployed, we can send a transaction to invoke deposit method which will

Listing 4: A simple client contract.

1 contract Client {

2 function deposit() public payable {

3 0x438eacEBf3F2a1c3E8560277345E83ff228355bE.call.value(1 ether)(

4 abi.encodeWithSignature("deposit()")

5 );

6 }

7

8 function withdraw() public {

9 0x438eacEBf3F2a1c3E8560277345E83ff228355bE.call(

10 abi.encodeWithSignature("withdraw()")

11 );

12 }

13 }

then deposit 1 ether to the bank. To claim our money back we can send a transaction to invoke

withdraw which just forwards the call to the bank to get its funds back.

In our example, contract Bank has a so-called reentrancy vulnerability. To this end, remember that

transferring funds to a contract implicitly invokes the recipients fallback function. This behaviour

can be exploited by an attacker as demonstrated by contract in Listing 5. Contract Malicious is
similar to our client contract with one important difference: It uses its callback function to withdraw

again as long as the bank has some funds left.

If we have such a contract deployed we can first use it to deposit 1 ether to the bank using

deposit. This sets our internal balance in the bank contract to 1. Now we can invoke withdraw to

claim our money back. However, Line 9 in the banking contract (recall Listing 1) not only transfers

our money back but afterwards it also invokes our fallback function which calls withdraw again.
This is done as long as the bank still owns more than 1 ether after which our fallback function

terminates and the bank sets our balance to 0. However, in the meantime we were able to retrieve

all the available funds from the bank.

8.2 Formalizing the contract
The problem with the banking contract (recall Listing 1) is that the money is being transferred

before we adjust the callers balance. A simple solution to the problem is to just change the order of

the two operations as done by the following contract shown in Listing 6. Here we first look up the

current balance of the caller and remember it in a variable bal. Then, we adjust the caller’s balance
and only then we transfer the funds. If an attacker now tries to execute the same attack as before

they would fail because at the time the fallback function is invoked their internal balance is already

adjusted.
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Listing 5: A malicious contract developed by an attacker.

1 contract Malicious {

2 function deposit() public payable {

3 0x438eacEBf3F2a1c3E8560277345E83ff228355bE.call.value(1 ether)(

4 abi.encodeWithSignature("deposit()")

5 );

6 }

7

8 function withdraw() public {

9 0x438eacEBf3F2a1c3E8560277345E83ff228355bE.call(

10 abi.encodeWithSignature("withdraw()")

11 );

12 }

13

14 function () external payable {

15 if (0x438eacEBf3F2a1c3E8560277345E83ff228355bE.balance > 1 ether) {

16 0x438eacEBf3F2a1c3E8560277345E83ff228355bE.call(

17 abi.encodeWithSignature("withdraw()")

18 );

19 }

20 }

21 }

Listing 6: A modified banking contract.

1 contract MyToken {

2 mapping(address => uint256) balances;

3

4 function deposit() public payable {

5 balances[msg.sender] = balances[msg.sender] + msg.value;

6 }

7

8 function withdraw() public {

9 uint256 bal = balances[msg.sender];

10 balances[msg.sender] = 0;

11 msg.sender.transfer(bal);

12 }

13 }

However, the question remains if the contract is indeed secure now or if it does expose other

vulnerabilities. To answer this question, we first need to formalize the contract in our semantics.

Bank : Identifier⇒ Member ( bank)

, Vol. 1, No. 1, Article . Publication date: November 2018.

https://archive.softwareheritage.org/swh:1:cnt:9c2ca64d83ab54125131eeae6ea38db06bd75cdb;origin=https://github.com/dmarmsoler/isabelle-solidity-deep;visit=swh:1:snp:96acd1512e04b360b94771e1405ff94d25253431;anchor=swh:1:rev:7577b25aed78489f1314d2da564388c42573700b;path=/Reentrancy.thy;lines=99-103


Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL 45

Bank def

=


“balances” ↦→ Var (STMap(TAddr, STValue(TUInt (256))))
“deposit” ↦→ Method ( [], deposit,⊥)
“withdraw” ↦→ Method ( [],withdraw,⊥)

The contract is formalized as amapping from identifiers to correspondingmembers.While “balances”
refers to a variable, “deposit” and “withdraw” refer to methods with body “deposit” and “withdraw”,

respectively.

Deposit is defined as a simple assignment to the member “balances”:

deposit def

= Ref (“balances”, [Sender]) = L(Ref (“balances”, [Sender])) + Value ( deposit)

Withdraw, on the other hand, is defined as a block statement.

withdraw def

= Block((“bal”,Value(TUInt (256)), L(Ref (“balances”, [Sender]))), comp) ( keep)

comp def

= Ref (“balances”, [Sender]) = UInt (256, 0); transfer ( comp)

transfer def

= Transfer (Sender, L(Id (“bal”))) ( transfer)

8.3 Formalizing the Invariant
To verify our contract we verify that the following invariant is preserved by both methods of the

banking contract.

inv(bal, ac, 𝑠) def

= ac − sum(𝑠) ≥ bal ∧ bal ≥ 0 ∧ pos(𝑠) ( frame_def)

sum(𝑠) def

=
∑︁

{ (ad,𝑥 ) | 𝑠 (ad+“.”+“balances”)=𝑥⊥ }
⌈𝑥⌉ ( SUMM)

pos(𝑠) def

= ∀ad, 𝑥 . 𝑠 (ad + “.” + “balances”) = 𝑥⊥ =⇒ ⌈𝑥⌉ ≥ 0 ( POS)

The important part here is the first conjunction in the definition of inv: ac − sum(𝑠) ≥ bal. Here,
ac represents the funds available to our banking contract and sum(𝑠) represents the sum of all its

internal balances. Thus, the formula requires that the difference between these two balances is

bound by a certain value bal.

8.4 Verifying the Invariant
As discussed above, Solidity implicitly triggers the call of a so-called fallback method whenever

we transfer money to a contract. In particular if another contract calls withdraw, this triggers an
implicit call to the callee’s fallback method. Since we do not know all potential contracts which call

withdraw, we need to verify our invariant for all possible Solidity programs.

Thus, we first prove that the invariant is preserved by every Solidity program which is not

executed in the context of our own contract. To this end we verified corresponding lemmata for all

our semantic functions. The one for expr is as follows.

Lemma 8.1 ( secure-expr). Let env𝑝 be a contract environment which assigns contract Bank to
address “Bank”:

env𝑝 (“Bank”) = (Bank, Skip)⊥
Moreover, let env be a variable environment, such that the address of the executing contract is different
from “Bank”:

address(env) ≠ “Bank”
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Finally, let st be a state which satisfies the invariant for a certain balance bal:

∃𝑠 . sto(st) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st) (“Bank”)⌉ , 𝑠)
Then, the invariant is preserved by the semantics of an expression ex evaluated with an arbitrary

calldata cd:

∀st′ . expr (ex, env𝑝 , env, cd) (st) = Normal(_, st′)
=⇒ ∃𝑠 . sto(st′) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st′) (“Bank”)⌉ , 𝑠)

Proof. The proof is by structural induction over Solidity expressions. For the non-trivial cases

we expand the definition of the expression and construct a sequence of abstract states following

the definition of the expression. We then show that the invariant is preserved for each of the

intermediate states. □

We verified similar lemmata for the remaining semantic functions: msel, ssel, lexp, rexp, and load.
In particular, we have a similar result for stmt. However, for statements we do also need to consider

the case in which the currently executing contract is the banking contract. Indeed, the invariant can

be violated while executing the withdraw method as long as it is established again after execution.

To this end, we verified different lemmata about pre- and corresponding postconditions for the

different statements of the method.

For the actual transfer we verified the following lemma:

Lemma 8.2 ( secure-transfer). Let env𝑝 be a contract environment as defined in Theorem 8.1.
Moreover, let env be a variable environment, such that the currently executing address is the bank, the
sender is not the bank, and variable “bal” refers to location 𝑥 on the stack:

address(env) = “Bank”

sender (env) ≠ address(env)
denvalue(env) (“bal”) = (Value(TUInt (256)), Stackloc(𝑥))⊥
Finally, let st be a state in which the value val, stored in stack at location 𝑥 , deduced from the

balance of the bank satisfies the invariant:

accessStore(𝑥, sck(𝑠𝑡)) = Simple(val)⊥
sto(st) (“Bank”) = 𝑠⊥

inv(bal, ⌈acc(st) (“Bank”)⌉ − ⌈val⌉ , 𝑠) (26)

Then, executing transfers leads to a state which satisfies again the invariant:

∀st′ . stmt (transfer, env𝑝 , env, cd) (st) = Normal((), st′)
=⇒ ∃𝑠 . sto(st′) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st′) (“Bank”)⌉ , 𝑠)

Proof. First, we need to show that transferring of the funds from a state which satisfies the

preconditions indeed establishes the invariant. However, since the precondition requires that we

are in a state in which the invariant holds for a deduced banking balance and transfer actually

reduces the banks balance by the very same amount, the invariant must hold afterwards.

In addition, the transfer statement invokes the execution of the fallback method of the sender,

and we need to show that for all possible implementations of this fallback method, the invariant

will not be violated. However, this follows from the fact that the external contract does not have

direct access to the bank’s private store and balance, and can only modify it indirectly by calling

the methods provided by the bank. However, these are already shown to preserve the invariant. □
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This lemma provides us with a set of preconditions that need to hold before transferring the funds to

ensure that the invariant holds afterwards. Since the transfer command reduces the funds available

to our banking contract, the precondition requires that we have a surplus corresponding to the

value stored in variable bal on the stack (Equation 26).

The lemma for the composition uses the above lemma to establish preconditions for the compound

statement:

Lemma 8.3 ( secure-composition). Let env𝑝 be a contract environment as defined in The-
orem 8.1 and Theorem 8.2. Moreover, let env be a variable environment as defined in Theorem 8.2 but
with the additional requirement that variable “balance” refers to the storage location “balance” which
contains the contracts internal client balances:

denvalue(env) (“balance”)
= Storage(STMap(TAddr, STValue(TUInt (256))), Storeloc(“balance”))⊥

Finally, let st be a state in which the stack location 𝑥 contains the internal balance of the message
sender:

accessStore(𝑥, sck(𝑠𝑡)) = Simple(accessStorage(TUInt (256), sender (env) + “.” + “balance”, 𝑠))⊥
(27)

and which satisfies the invariant:

sto(st) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st) (“Bank”)⌉ , 𝑠)
Then, executing the composed statement leads to a state which satisfies again the invariant:

∀st′ . stmt (comp, env𝑝 , env, cd) (st) = Normal((), st′)
=⇒ ∃𝑠 . sto(st′) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st′) (“Bank”)⌉ , 𝑠)

To be able to establish the invariant after executing the composed statement, we have to ensure

that the invariant already holds before. Moreover, we need to ensure that variable bal on the

stack indeed contains the value of the balance of the caller from the contracts internal balances

(Equation 27).

We can now use the result for the composition to establish the preconditions for the withdraw

method as a whole:

Lemma 8.4 ( secure-withdraw). Let env𝑝 be a contract environment as defined in Theorem 8.1
and Theorem 8.2. Moreover, let env be a variable environment, such that the currently executing address
is the bank, the sender is not the bank, and variable “balance” refers to the storage location “balance”
which contains the contracts internal client balances:

address(env) = “Bank”

sender (env) ≠ address(env)
denvalue(env) (“balance”) = Storage(STMap(TAddr, STValue(TUInt (256))),

Storeloc(“balance”))⊥
Finally, let st be a state which satisfies the invariant for a certain balance bal:

∃𝑠 . sto(st) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st) (“Bank”)⌉ , 𝑠)
Then, executing withdraw leads to a state which satisfies again the invariant:

∀st′ . stmt (withdraw, env𝑝 , env, cd) (st) = Normal((), st′)
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=⇒ ∃𝑠 . sto(st′) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st′) (“Bank”)⌉ , 𝑠)

In particular, the lemma requires that the invariant holds before the execution. In addition, it

requires that the variable environment contains the correct reference to the contracts balances.

This second condition is established automatically when calling the withdraw method.

Thus, we are now able to prove the following theorem about our banking contract:

Theorem 8.5 ( final1). Let env𝑝 be a contract environment which assigns contract Bank to
address “Bank”:

env𝑝 (“Bank”) = (Bank, Skip)⊥

Moreover, let env be a variable environment, such that the address of the executing contract is different
from “Bank”:

address(env) ≠ “Bank”

Finally, let st be a state which satisfies the invariant for a certain balance bal:

∃𝑠 . sto(st) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st) (“Bank”)⌉ , 𝑠)

Then, the invariant is preserved by executing method “withdraw” of contract “Bank”:

∀st′ . stmt (External(Address(“Bank”), “withdraw”, [], val), env𝑝 , env, cd, st) = Normal((), st′)
=⇒ ∃𝑠 . sto(st′) (“Bank”) = 𝑠⊥ ∧ inv(bal, ⌈acc(st′) (“Bank”)⌉ , 𝑠)

The theorem states that method withdraw indeed preserves our invariant. We verified a similar

result for the deposit method as well ( final2).
Note that since the contract itself as well as unknown contracts may depend on each other, all

the lemmata are encoded in a single lemma which is then proved by mutual induction. The final

result is then given in terms of two corollaries for the corresponding methods of our contract.

Note also that in an earlier version of the proof we tried to verify a stronger invariant given by

∃𝑠 . sto(st) (“Bank”) = 𝑠⊥ ∧ ⌈acc(st) (“Bank”)⌉ = sum(𝑠) ≥ bal

In particular we thought that the sum of internal balances will be equal to the funds of the contract.

However, during verification we found that this property does not necessarily hold. In particular

another contract may just “gift” some money to the banking contract without going through the

depositmethod. In such a case, the gift will not be recognized in the contracts internal balances, and

we needed to modify the invariant. While the current version of the invariant does not guarantee

that no money is gifted to the contract it does, however, guarantee that no money can be stolen

which is indeed the desired property.

The second thing to note is that we were not able to verify that the difference is indeed constant.

During verification, it turned out that this is not the case since in the fallback method a contract

could simply send us additional money without calling “deposit”. In such a case the difference

would change. In particular, it would grow. However, we were able to verify that the difference

does never shrink which is what we actually want to ensure.

9 DISCUSSION
In the following, we discuss briefly various aspects of our semantics, respectively, of design decisions

that we took when formalising it in Isabelle/HOL.
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Supported Language Features. In Appendix A we provide a detailed overview of all supported

and unsupported Solidity language features. In summary, our formalization supports the following

key features of the language:

• Fixed-size integer types of various lengths and arithmetic with support for overflows.

• Domain-specific primitives, such as money transfer or balance queries.

• Different types of stores, such as storage, memory, calldata, and stack.

• Complex data types, such as hash-maps and arrays.

• Assignments with different semantics, depending on the location of the involved data types.

• An extendable gas model which ensures termination.

• Internal and external method calls with the ability to send funds with external calls.

However, there are also some important features which are not supported yet. Most importantly,

our formalization does not support the notion of checked arithmetic. This feature is now the default

in newer versions of Solidity and thus it is becoming increasingly important and should be added

in future work. In addition, our formalization does not support user defined types in the form of

structs. Although this can be encoded using our notion of array (each field becomes an entry in

the array), it would be nice to have a more explicit notion of structs. Moreover, we do not support

custom exception handling mechanisms. However, our formalization is based on an exception

monad and it should not be too difficult to add additional types of exceptions and handlers. Finally,

we do not support the creation of new contracts at runtime as well as inheritance. These features

are not so common in practice yet and it remains to see if they are required.

Cost Model. As many other languages for writing contracts on blockchains, Solidity is equipped

with a cost model [55, Appendix G]. This cost model is defined in terms of operations of the Solidity

bytecode. Thus, we cannot provide a precise formalisation of the actual cost model, as the actual

costs do depend on how a compiler translates (and optimises) Solidity into bytecode. Thus, we

opted for a pluggable cost model on the level of the Solidity source language: we only require

that each command does cost a non-negative amount of Ether (this is justified by the actual costs

specified in [55, Appendix G]). A user of our framework is able to plug in a cost model that suits

their needs, as long as it satisfies this minimal requirement.

Monadic Representation. Compared to earlier versions of our work [37], we use a monadic

representation in the version described in this paper. In our experience, this significantly improved

the readability of the formal semantics. A drawback is that Isabelle is no longer able to prove

termination of the semantic function automatically. Hence, we needed to provide a manual proof

for this (see Sect. 7).

Executability of our Semantics. When designing our semantics for Solidity, we took care that the

semantics is executable. This gives us several advantages: first, properties can be proven by the

simplifier, essentially using symbolic execution. For more complex properties, we can make use

of a technique called normalisation by evaluation that, internally, relies on being able to generate

executable code [27]. Second, we can explore our semantics by evaluating it for ground terms

within Isabelle, using Isabelle’ value-statement. Third, we can generate a trustworthy interpreter

for our formal semantics using Isabelle’s code generator [27]. The latter can be used as test oracle

for compliance testing (see discussion below).

Updates to the Solidity Language. The Solidity language is under frequent development and, hence,

new versions of the language specification are published frequently. This is not only a challenge

for formalisation efforts, this is also a general challenge for developers of tools for Solidity and for

Solidity developers themselves. Still, this raises questions how we can update our semantics and
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how we can ensure that our semantics complies to a certain version of the Solidity language. While

we do not have a silver bullet in terms of updating the formal semantics, our conservative approach

guarantees that none of the changes we make during an update does endanger the consistency of

our semantics. This is a big advantage over approaches that define the semantics axiomatically. For

the latter, see the next paragraph.

Compliance of the Formal Semantics. To ensure the compliance of our semantics to the actual

implementation of Solidity, we developed a grammar-based fuzzing framework [38]. For this, we

leverage that our semantics is executable: in more detail, we generate a trustworthy interpreter

of Solidity using Isabelle’s code generator for Haskell. This stand-alone interpreter is used as

test-oracle, i.e., we execute a test-case—a Solidity program—on both the Ethereum blockchain and

our interpreter and compare the results. If both yield the same result state (starting from the same

initial state), our semantics complies to the implementation. If they differ, we found a divergence,

and we need to update our semantics. Again, given our conservative approach of defining the

Solidity semantics, such updates do not endanger the consistency of the semantics. Finally, for

generating test cases, we use a grammar-based fuzzing approach based on a type-enriched grammar

of Solidity. For more details, we refer the reader elsewhere [38].

Secure Transfer. Newer versions of Solidity impose restrictions on the amount of Gas that can be

used in a fallback function. Typically, the provided Gas is insufficient to call back into the original

contract, thus preventing reentrancy attacks. Although this could be verified from our semantics by

providing an appropriate Gas model, Gas limits are subject to change, and there’s no assurance that

the Gas available for fallback functions won’t be adjusted in the future. Consequently, contracts

verified without relying on a specific Gas model are more future-proof.

10 RELATEDWORK
The work presented in this paper is about the formalization of Solidity in Isabelle. Thus, related

work can be found in two different areas: First, work related to the formalization of Solidity and

work related to the formalization of programming languages using Isabelle. We discuss other works

formalizing Solidity in Isabelle at the end of this section.

10.1 Formalizations of Solidity
As outlined by Almakhour et al. [3] and Tolmach et al. [52], there is a growing amount of research

investigating the formalization of smart contracts. While most of this work has focussed on the

formalization of low-level bytecode, there exists also work which focusses on the formalization of

Solidity. Early work in this area was done by Bhargavan et al. [11] which describe an approach to

map a Solidity contract to F* where it can then be verified. Mavridou et al. [41], provide an approach

based on FSolidM [40], in which a Solidity smart contract is modelled as a state machine to support

model checking of common security properties. TinySol [8] and Featherweight Solidity[18], on the

other hand, are two calculi formalizing some core features of Solidity. Crosara et al. [19] describe an

operational semantics for a subset of Solidity. Moreover, Ahrendt and Bubel describe SolidiKeY [2],

a formalization of a subset of Solidity in the KeY tool [1] to verify data integrity for smart contracts.

In addition, Zakrzewski [58] describes a big-step semantics of a small subset of Solidity and Yang

and Moreover, Hajdu and Jovanovic [28, 29], provide a formalization of Solidity in terms of a simple

SMT-based intermediate language which they evaluate on a set of manually developed tests. In

addition, Jiao et al. [30, 31], provide a formalization of Solidity in K with a rigorous evaluation

using the Solidity compiler test set. Finally, Singh et al. [50] describe a formalization of Solidity in

Event-B. All of these works use an axiomatic approach for defining the formal semantics of Solidiy.
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In contrast, we use a conservative embedding into Isabelle/HOL, which ensures the consistency of

our semantics "by construction".

10.2 Formalization the Semantics of Programming Languages in Isabelle
Formalizing programming languages or specification languages in Isabelle is by no means a new

technique. Over the substantial body of languages and tools have been developed along this line,

which have seen substantial applications—we cite only the current flagships of this development

Isabelle/SIMPL [49] and the seL4 verification project [34]. As our work, most embeddings of

programming languages in Isabelle/HOL, e.g., [35, 44, 49], are deep embeddings (for a discussion of

deep and shallow embeddings, we refer the reader to [4, 12]). Also, using amonadic representation of

stateful computations is common. For example, the AutoCorres [13, 26] (used in the seL4 verification

project [34]) provides an abstraction of C code using monads, and also Clean [53], as an example of

a shallow embedding, does use monads for modelling stateful computations.

10.3 Formalization of Solidity in Isabelle
To the best of our knowledge there is only one other formalization of Solidity in Isabelle by Ribeiro et

al. [47]. The authors adapt the Simpl language [48] to formalize a subset of Solidity in Isabelle/HOL.

SOLI supports the following language features:

• Skip: the empty program

• Upd: execute a state-update function
• Seq: sequential composition

• If, While: conditionals and loops

• Dyncom: receives a state and allows to write statements which are state dependent.

• Call: calling a procedure
• Revert, Handle: Throw and handle exceptions

• Require: Solidity exceptions

• Init: State reversion

Compared to our work, SOLI is quite low-level and rather an intermediate language than a direct

formalization of Solidity. Indeed, while it supports several features which are not provided by

Solidity (Upd, Dyncom), it does not provide explicit support for Solidity-specific language features,

such as different types of stores, a notion of Gas, fallback methods, external vs. internal functions,

etc. Another difference to our work is that their semantics seems to be not executable and therefore

difficult to evaluate. On the other hand, we considered it important to have an executable semantics

that can be evaluated against the reference implementation.

11 CONCLUSION
In this paper we presented a formal semantics of a subset of Solidity with support for the following

language features:

• Fixed-size integer types of various lengths and corresponding arithmetic with support for

overflows.

• Domain-specific primitives, such as money transfer or balance queries.

• Different types of stores, such as storage, memory, calldata, and stack.

• Complex data types, such as hash-maps and arrays.

• Assignments with different semantics, depending on the location of the involved data types.

• Internal and external method calls with the ability to send funds with external calls.
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Our semantics provides also an abstract gas model which ensures termination. This abstract model

can be instantiated by providing concrete cost functions to support verification of gas-related

aspects.

Our semantics is implemented in Isabelle as a deep embedding in Isabelle/HOL and can be

symbolically executed. Since symbolic execution can sometimes be slow, we also provide code

generation to execute the semantics in Haskell. To ensure that our semantics describes the behaviour

of the actual Solidity implementation faithfully we developed a test framework to automatically test

our semantics against a reference implementation of Solidity. The framework uses grammar-based

fuzzing to generate random Solidity programs which are then executed with our semantics and on

the actual blockchain to compare the outcome and detect potential deviations.

As demonstrated by our case study, our semantics can indeed be used to verify the correctness of

smart contracts. However, the case studies also revealed some limitations of our semantics. In par-

ticular, reasoning from basic definitions can be tedious and verification requires quite some manual

effort. Thus, future work should focus on improving the support for verification by developing

calculi and verification condition generators for our semantics.
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A SOLIDITY LANGUAGE FEATURES
In the following, we provide an overview of the language features of Solidity and their formalization.

The list of features follows the official language specification
7
. A feature which is supported is

marked by a □✓symbol. If it is not currently supported it is marked by a □✗symbol. If it is partially

supported it is marked by a □ symbol.

• Structure of a Contract

□✓ State Variables

□✓ Functions

□✗ Function Modifiers

□✗ Events

□✗ Errors

7
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□✗ Struct Types

□✗ Enum Types

• Types
□ Value Types

□✓ Signed and unsigned integers from 8-256 bit

□✓Address type

□✗ Contract Types

□ Others: some basic types are missing

□ Reference Types

□ Memory: arrays but not structs

□ Storage: arrays but not structs

□ Calldata: arrays but not structs

□✓Mapping types

□ Operators: some operators are missing

□ Conversions

□✓ Implicit

□✗ Explicit

□ Conversions between literals and elementary types: some conversions are not supported

• Units

□ Ether Units: some units are not supported

□✗ Time Units

□ Special Variables and Functions: some special variables/functions are missing

• Control Structures

□ Control structures: no support for break, continue, try and catch

□ Function calls

□✓ Internal function calls

□✓External function calls

□✗ Creating contracts via new

□ Assignments

□✗ Returning Multiple Values

□✓Complications for Arrays and Structs

□ Scoping and Declarations: declarations are only allowed at the beginning of a block

□ Checked or Unchecked Arithmetic: only unchecked is supported

□✗ Error Handling

• Contracts

□✗ Creating contracts (constructors)

□ Visibility: only internal and external

□✗ Function modifiers

□✗ Constant and Immutable state variables

□ Functions

□✓Parameters and return values

□✗ View and Pure functions

□✗ Receive function

□✓ Fallback function

□✗ Function overloading

□✗ Inheritance

□✗ Interfaces and abstract contracts
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□✗ Libraries

□✗ Inline assembly
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