
Parametric Ontologies in Formal Software Engineering

Achim D. Bruckera,1,∗, Idir Ait-Sadouneb, Nicolas Méricc, Burkhart Wolffc

aUniversity of Exeter, Department of Computer Science, EX4 4RN, Exeter, UK
bUniversité Paris-Saclay, CentraleSupelec, LMF, Paris, 91190, France

cUniversité Paris-Saclay, LMF, Paris, 91190, France

Abstract

Isabelle/DOF is an ontology framework on top of Isabelle/HOL. It allows for
the formal development of ontologies and continuous conformity-checking of in-
tegrated documents, including the tracing of typed meta-data of documents.
Isabelle/DOF deeply integrates into the Isabelle/HOL ecosystem, allowing to
write documents containing (informal) text, executable code, (formal and semi-
formal) definitions, and proofs. Users of Isabelle/DOF can either use HOL or
one of the many formal methods that have been embedded into Isabelle/HOL
to express formal parts of their documents.

In this paper, we extend Isabelle/DOF with annotations of 𝜆-terms, a per-
vasive data-structure underlying Isabelle to syntactically represent expressions
and formulas. We achieve this by using Higher-order Logic (HOL) itself for
query-expressions and data-constraints (ontological invariants) executed via
code-generation and reflection. Moreover, we add support for parametric onto-
logical classes, thus exploiting HOL’s polymorphic type system.

The benefits are: First, the HOL representation allows for flexible and effi-
cient run-time checking of abstract properties of formal content under evolution.
Second, it is possible to prove properties over generic ontological classes. We
demonstrate these new features by a number of smaller ontologies from vari-
ous domains and a case study using a substantial ontology for formal system
development targeting certification according to CENELEC 50128.

Keywords: Ontologies, Generic Classes, Ontology Mapping, Formal
Development, Formal Documents, Isabelle/HOL, Software Engineering,
Certification

∗Corresponding author
Email addresses: a.brucker@exeter.ac.uk (Achim D. Brucker),

idir.aitsadoune@centralesupelec.fr (Idir Ait-Sadoune),
nicolas.meric@universite-paris-saclay.fr (Nicolas Méric),
burkhart.wolff@universite-paris-saclay.fr (Burkhart Wolff)

1This work was partly funded by UKRI as part of the Innovate UK project AutoCHERI.

Preprint submitted to Science of Computer Programming October 23, 2024

1. Introduction

The linking of formal and informal information is perhaps the most perva-
sive challenge in the digitization of modern society. Extracting knowledge from
reasonably well-structured “raw”-texts is a crucial prerequisite for any form
of advanced search, classification, “semantic” validation and “semantic” merge
technology. This challenge incites numerous research efforts summarized un-
der the labels “semantic web” or “data mining”. A key role in structuring this
linking is played by ontologies (also called “vocabulary” in semantic web com-
munities), i.e., a machine-readable form of the structure of documents and the
document discourse. Such ontologies can be used for scientific discourse underly-
ing scholarly articles, the conversion, and integration of semiformal content, for
advanced semantic search in mathematical libraries or documentation in various
domains. In other words, ontologies generate the meta-data necessary to anno-
tate raw text allowing their “deeper analysis”, in particular inside mathematical
formulas or equivalent formal content such as programs or UML-models.

Throughout this paper, we will distinguish document ontologies from domain
ontologies. The former are oriented towards meta-information used for the rep-
resentation aspects of a target type-setting technology (e. g., LATEX, HTML).
The latter are oriented towards a specific knowledge domain. In this paper,
we are particularly interested in domain ontologies concerning software devel-
opments targeting certifications (such as CENELEC 50128 [1] or Common Cri-
teria [2]). Certifications of safety or security-critical systems, albeit responding
to the fundamental need in the modern society of trustworthy numerical infras-
tructures are particularly complex and expensive. A major reason for this is
that distributed labor requires that complex documents composed of artifacts
from analysis, design, coding, and verification must preserve coherence under
permanent changes. Moreover, certification processes impose a strong need of
traceability within the global document structure. Last but not least, modifi-
cations and updates of a certified product usually result in a complete restart
of the certification activity since the impact of local changes can usually not be
mechanically checked and must be done by manual inspection. Our interest in
this domain led us to the development of Isabelle/DOF (where DOF stands for
Document Ontology Framework), an environment implementing our concept of
deep ontology, i. e., ontologies represented inside a logical language such as HOL
rather than a conventional programming language like Java.

1.1. Editing Annotated Documents
Isabelle/HOL [3] is a well-known semi-automated proof environment and

documentation generator. Isabelle’s Document Ontology Framework (Is-
abelle/DOF) [4] extends the Isabelle/HOL core (see Figure 1) by a number
of constructs, allowing for the specification of formal ontologies (left-hand side);
additionally, it provides documentation constructs (right-hand side) for text-,
definition-, term-, proof-, code-, and user-defined elements that enforce docu-
ment conformance to a given ontology.

2

Figure 1: The Ontology Environment Isabelle/DOF.

Isabelle/DOF2 is a new kind of ontological modelling and document vali-
dation tool. In contrast to conventional languages like OWL and development
environments such as Protégé [6], it brings forward deep ontologies that gen-
erate strongly typed meta-information specified in HOL-theories allowing both
efficient execution and logical reasoning about meta-data. They generate a par-
ticular form of checked annotations called antiquotation to be used inside code
and texts. Deeply integrated into the Isabelle ecosystem [7], thus permitting
continuous checking and validation, they also allow ontology-aware navigation
inside large documents with both formal and informal content.

We will now detail this by example of annotated text in a document. We will
assume a given ontology; an introduction to our ontology definition language
ODL is given in section 3. Isabelle’s document elements like definition‹ … ›
for a HOL definition, text‹ … ›- for a text or ML‹ … › for code are extended
to the corresponding Isabelle/DOF elements:

definition∗[label∶∶cid, attrib_def 1,… ,attrib_def 𝑛]‹… HOL−equation … ›
text∗[label∶∶cid, attrib_def 1,… ,attrib_def 𝑛]‹… annotated text … ›
ML∗[label∶∶cid, attrib_def 1,… ,attrib_def 𝑛]‹… annotated code … ›

where cid is an identifier of an ontological class introduced in an ontology to-
gether with attributes belonging to this class defined in ODL. For example, if
an ontology provides a semiformal concept Definition, we can do the following:

text∗[safe∶∶Definition,name=safety]‹Our system is safe if the following holds...›

The Isabelle/DOF command text∗ creates an instance safe of the ontological
class Definition with the attribute name and associates it to the text inside
the ‹...›-brackets. We call the content of these brackets the text-context (or

2The official releases are available in the Archive of Formal Proofs (AFP) [5], devel-
oper versions at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF and https:
//zenodo.org/record/6810799.

3

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
https://zenodo.org/record/6810799
https://zenodo.org/record/6810799

ML-context, respectively). Of particular interest for this paper is the ability to
generate a kind of semantic macro called antiquotation, which is continuously
checked and whose evaluation uses information from the background theory of
this text element. We might refer to this definition in another text element:

text∗[...]‹As stated in @{Definition ‹safe›}, . . . ›

where Isabelle/DOF checks on-the-fly that the reference “safe” is indeed defined
in the document and has the right type (it is not an Example, for example),
generates navigation information (i.e. hyperlinks to safe and the ontological de-
scription of Definition in the Isabelle IDE) and specific documentation markup
in the generated PDF document, e.g.:

As stated in Def. 3.11 (safety), ...

where the underline may be blue because the layout description configured for
this ontology says so. Moreover, this is used to generate an index containing,
for example, all definitions. Similarly, this also works for an ontology providing
concepts such as “objectives”, “claims” and “evidences”, and invariants may be
stated in an ontological class that finally enforces properties such as that “all
claims correspond to evidences in the global document”, and “all evidences must
contain at least one proven theorem”, etc. In contrast to a conventional type-
setting system, Isabelle can additionally type-check formulas, so for example:

text∗[...]‹The safety distance is defined by @{term dist𝑠𝑎𝑓𝑒 = sqrt(d−a⋅(Δt)2)}...›

where functions like dist𝑠𝑎𝑓𝑒, sqrt, ⋅, etc., have to be defined in the signature
and logical context or background theory of this formula. Anti-quotations as
such are not a new concept in Isabelle; the system comes with a couple of
hand-programmed antiquotations like @{term ...}. In contrast, Isabelle/DOF
generates antiquotations from ontological classes in ODL, together with checks
generated from data-constraints (or: class invariants) specified in HOL.

1.2. Novelty No. 1: Term Contexts
Isabelle uses typed 𝜆-terms as a syntactic presentation for expressions, for-

mulas, definitions, and rules. Rather than using a classical programming lan-
guage, our concept of deep ontologies led us to use HOL itself and generate the
checking-code for antiquotations via reflection and reification techniques. In
particular, this paves the way for a new context type called term contexts. As
a consequence, DOF commands like:

definition∗[t12∶∶“formal_def”...] inv𝑠𝑎𝑓𝑒𝑡𝑦1 ∶∶ “𝜎 ⇒ bool”
where “inv𝑠𝑎𝑓𝑒𝑡𝑦1 𝜎 ≡ (dist𝑠𝑎𝑓𝑒 𝜎 < (@{model_parameter ‹lab›}max_dist))”}

or

theorem∗[d15∶∶“formal_def”...] safety_preserving_1
assumes “inv𝑠𝑎𝑓𝑒𝑡𝑦1 𝜎 ” and “(@{requirement ‹t5›}a𝑚𝑎𝑥 < 20∶∶�[m⋅s−2])”
shows “no_collision(system_transition 𝜎)” proof ...

4

can not only be referenced in ontological definitions via their oid’s (labels) t12
and d15, they can also contain ontological references inside their formulas to
entities such as the model_parameter lab and the requirement t5 described for-
mally or informally elsewhere.

1.3. Novelty No. 2: Polymorphism for Parametric Ontological Classes
It is a distinguishing feature of Isabelle/DOF that ontologies and meta-

data are not just implemented in some implementation language such as SML
(c.f. [7]). Rather, Isabelle/DOF generates a HOL theory defining types, terms,
and definitions resulting from the definitions of an ontology. This allows for
proving properties over ontology-generated meta-data and efficient execution
via Isabelle’s code-generator. Code-generation and reflection are the techniques
used to execute validation checks generated from class invariants. They are also
used for the execution of advanced queries.

It is, therefore, natural to take advantage of the advanced typing features
of HOL in our ontology language ODL. Thus, it made it possible to declare
in some classes an attribute name having some polymorphic type 𝛼, leaving it
open how the name is represented.

1.4. Improvements over Earlier Work
This paper extends our earlier paper [8]: first, section 6 was added to intro-

duce the use of polymorphism for parametric ontological classes. Second, we
added a new application, i.e., the CENELEC 50128 ontology (section 7) and,
third, an example showing the use of this ontology (section 8). Furthermore, we
reflect on our experience of using Isabelle/DOF (section 9). Finally, we updated
the content of the remaining sections and also added more details.

2. Background

2.1. Isabelle and HOL
While still widely perceived solely as an interactive theorem proving environ-

ment, Isabelle [3] has nowadays become a flexible system framework providing
an infrastructure for components. This comprises extensible state management,
extensible syntax, code-generation and the advanced documentation support
we built upon in Isabelle/DOF. Isabelle/HOL is a kind of component offering
support for Higher-order logic (HOL), a logical language similar to functional
programming languages, extended by automated proof techniques and provides
feedback via animations such as hyperlinks and popup windows.

Isabelle possesses an order-sorted polymorphic type system [9, 10] (see [11],
pp 250, for an introduction). This means that we can not only express genericity
on the level of meta-data and its relations, but also that type-variables 𝛼, 𝛽, 𝛾,

5

... can be constrained in a judgement 𝛼 ∶∶ C where C is a sort.3 The judgement
𝛼∶∶{C1,...,C𝑛} is a compact form of the conjunction 𝛼∶∶C1 ∧ . . . ∧ 𝛼∶∶C𝑛.
Alternatively, we may think of 𝛼∶∶{C1,...,C𝑛} as a notation for C1 ∩ ... ∩
C𝑛, the intersection of the types belonging to the sorts C1 to C𝑛. Sorts can be
understood as an abstract interface to types, imposing operations and properties
over them. For example, the sort constraint 𝛼∶∶order may constrain the possible
instances of 𝛼 to those who possess an ordering operation ord ∶∶ 𝛼 ⇒ 𝛼 ⇒ bool
which must satisfy the properties of reflexivity, transitivity and anti-symmetry.
When declaring that a concrete type, say int, is an instance of order, which
is to say that the judgement int∶∶order holds, this results in the obligation to
define ord by a concrete operation, say _≤_ ∶∶ int ⇒ int ⇒ bool, and proof
obligations that this definition satisfies the required properties on order-types.
Thus, it is possible to define once and for all the operation sort ∶∶ (𝛼∶∶order) list
⇒ (𝛼∶∶order) list, prove a bunch of theorems over it, and inherit them for the
special case sort ∶∶ int list ⇒ int list, without proving them again.

2.2. The Isabelle/DOF Framework
As explained earlier, Isabelle/DOF extends Isabelle/HOL (recall Figure 1)

by ways to annotate an integrated document with meta-data specified in an
own Ontology Definition Language (ODL). Isabelle/DOF generates from an
ODL ontology a family of antiquotations allowing to specify machine-checked
links between annotated entities.

The perhaps most attractive aspect of Isabelle/DOF is its deep integration
into the IDE of Isabelle (Isabelle/PIDE), which allows hypertext-like navigation
and fast user-feedback during the development and evolution of the integrated
document source. This includes rich editing support, namely on-the-fly seman-
tics checks, hinting, or auto-completion. Isabelle/DOF supports LATEX-based
document generation and ontology-aware “views” on the integrated document,
i. e., specific versions of generated PDF addressing, e. g., different stake-holders.

3. A Guided Tour through ODL

Isabelle/DOF provides a strongly typed ODL that provides the usual con-
cepts of ontologies, such as

• document class or ontological class (using the doc-class or onto-class
keyword, respectively),

• attributes specific to classes (attributes might be initialized with default
values), and

3Throughout this paper, rather than speaking of “type-classes” and “type-class polymor-
phism”, we will use the more ancient equivalent terms “sorts” and “order-sorted polymor-
phism” in order to avoid confusion with “ontological classes” as introduced in ODL.

6

Isabelledoc-class “title” = short_title ∶∶ “string option” <= “None”
doc-class affiliation =

journal_style ∶∶ ′𝛼
doc-class author =

affiliations ∶∶ “ ′𝛼 affiliation list”
name ∶∶ string
email ∶∶ “string” <= “ ′′′′”
invariant ne_name ∶∶ “name 𝜎 ≠ ′′′′”

doc-class “text_element” =
authored_by ∶∶ “(′𝛼 author) set” <= “{}”
level ∶∶ “int option” <= “None”
invariant authors_req ∶∶ “authored_by ≠ {}”
and level_req ∶∶ “the (level) > 1”

doc-class “introduction” = text_element +
authored_by ∶∶ “(′𝛼 author) set” <= “UNIV”

doc-class “technical” = text_element +
formal_results ∶∶ “thm list”

doc-class ′𝛼 “example” = “ ′𝛼 technical” +
title ∶∶ “string”

doc-class “definition” = technical +
is_formal ∶∶ “bool”

doc-class “theorem” = technical +
assumptions ∶∶ “term list” <= “[]”
statement ∶∶ “term option” <= “None”

doc-class “conclusion” = text_element +
wrapup ∶∶ “(definition set × theorem set)”
invariant (∀ x∈fst wrapup. is_formal x)

⟶ (∃ y∈snd wrapup. is_formal y)
doc-class “article” =

style_id ∶∶ string <= “ ′′LNCS ′′”
accepts “(title ∼∼ {∣author ∣}+ ∼∼ {∣introduction∣}+

∼∼ {∣{∣definition ∼∼ example∣}+ ∣∣ theorem∣}+ ∼∼ {∣conclusion∣}+)”

Figure 2: A Basic Document Ontology: paper𝑚

7

• a special link, the reference to a super-class, establishes an is-a relation
between classes.

ODL can be used to specify both document and domain ontologies; in the sequel,
we will discuss the example paper𝑚 in Figure 2 for the former and cenelec𝑚 in
Figure 3 for the latter.4

The ontology paper𝑚 introduces document classes which are typical for the
structure of a mathematical paper framing the canonical sequence “definition-
theorem-proof”, where entities are not necessarily formal.5 Attributes like
short_title were typed with HOL types from the Isabelle library, and default
values like None for class-instances can be declared. ODL can refer to any pre-
defined type from the HOL library, e. g., string, int and parameterized types,
e. g., option, list. Isabelle/DOF also supports polymorphic variables in these
types in order to support class schemata. For example, in affiliation, the precise
format specification is left open due to the fact that publishers like Elsevier
or ACM have very different requirements to represent them; thus, polymor-
phism is a means to increase reusability by abstraction. Semantically, classes
have a strong similarity to HOL’s extensible records [11] used to represent them
logically. Classes can be equipped with invariants allowing to formalize meta-
data-constraints in HOL. At the same time, accepts-clauses can specify in a
regular expression language over class-id’s the textual order in which instances
may appear within an article.

In contrast to general handling of polymorphic variables, Isabelle/DOF is
equipped with notational mechanisms to manage the propagation of polymor-
phic variables implicitly. This is due to the fact that:

1. Isabelle/DOF uses polymorphism to implement single-inheritance induced
sub-typing (hiding the polymorphism of the “more-fields” in extensible
records [11]). These type of variables appear so often in medium-size
ontologies, and reveal so many technical details of the Isabelle/HOL im-
plementation, that their management by hand appears tedious.

2. Isabelle/DOF uses polymorphism to implement true order-sorted poly-
morphism for the parameterization of attribute types. Again, their use in
class-types is common, and the resulting lists of type-variables for class
types may be daunting and difficult to maintain. In both cases, we pre-
ferred to hide these subtleties from the users of ontologies, deferring them
to specialized query functions that reveal them. In proofs, these details
become explicit, of course.

The types of attributes are HOL-types, and concrete values for attributes are
just HOL-terms, i.e., 𝜆-terms over the signature of imported HOL-theories. As

4Both are fragments of the ontologies Isabelle_DOF.scholarly_paper (paper𝑚) and
Isabelle_DOF.CENELEC_50128 (cenelec𝑚), which are included in the Isabelle/DOF distribu-
tion. The size of the former is about 400 loc, the latter about 1200 loc, plus the corresponding
LATEX configurations of about the same size.

5Proofs are abstractly represented in the cenelec𝑚 example as result classes whose instances
will have an evidence attribute set to the proof kind.

8

a consequence of the logical representation, for each class, there will be a HOL
type for the instances of a class. Therefore, class definitions allow for formal links
to and between ontological concepts, as the use of the author class inside the
introduction class definition, for example. The underlying Isabelle/DOF theory
provides types for Isabelle types, terms, and theorems and specific means to
denote them when referring to them in meta-data.

As for the domain ontology fragment cenelec𝑚 shown in Figure 3, the defi-
nition proceeds as an extension of the paper𝑚 ontology providing elements such
as introductions, conclusions, formal and informal definition elements, etc. Note
that cenelec𝑚 is a very condensed version of some aspects of one artifact out of
27 in CENELEC EN 50128, the software requirements specification (SRS).

Since ODL specification elements are just another kind of command in Is-
abelle, they can be arbitrarily mixed with standard HOL specification constructs
like inductive datatype definitions—in our example, the enumeration for role’s, a
simplified version of CENELEC’s requirement to enforce a separation of author
groups in a process. The Isabelle/DOF command class-synonym introduces
equivalent names for classes; it also generates a type-synonym for the types
induced by the ODL class, but is aware of the implicit type variables.

Note that the concept of definition appears in both ontologies. This is a
consequence of the fact that this entity and similar common rhetoric construc-
tions, like assumption or consequence, appear in many domains with different
meanings and document representations; a mathematician may have a differ-
ent understanding of these terms than a lawyer or an engineer. ODL supports
namespaces that allow for a separation of these.

3.1. The Effect of ODL Specifications in Isabelle/DOF
Recall that the purpose of ODL inside the Isabelle platform is to generate

support for navigation and on-the-fly validation of antiquotations plus a meta-
theory. For example, from the class-ids definition, EC or SRAC of cenelec𝑚,
Isabelle/DOF generates text-, term-, and code-antiquotations of the form

@{“definition” ‹oid›} ... @{EC ‹oid›} ... @{SRAC ‹oid›}

where oid is some reference to some class instance. As text-antiquotations, they
produce configurable output and checks.

Figure 4 shows an ontological annotation of a requirement and its referencing
via an antiquotation @{requirement ‹req1›}; the latter is generated from the
above class definition. Undefined or ill-typed references are rejected, and the
high-lighting displays the hyperlinking which is activated with a click. The
class-definition of requirement and its documentation is also just a click away.

As Isabelle/DOF is based on the idea of “deep ontologies”, a logical represen-
tation for the instance req1 is generated, i. e. a 𝜆-term, which is used to represent
this meta-data. For this purpose, we use Isabelle/HOL’s record support [11].

For the above example, this means that req1 is represented by:

9

Isabelleimports paper𝑚

datatype role = developer ∣ verifier ∣ validator

onto-class requirement = text_element +
long_name ∶∶“string option”
is_concerned∶∶“role set”

onto-class SR = requirement +
class-synonym safety_requirement = SR
onto-class FR = requirement + ...
class-synonym functional_requirement = FR

onto-class “definition” = text_element + ... — terminological definition.

onto-class assumption = text_element + ...

onto-class ASS = assumption + ...
class-synonym application_constraint = ASS
onto-class EC = assumption + ...
class-synonym exported_constraint = EC
onto-class SRAC = exported_constraint + ...
class-synonym safety_related_application_constraint = SRAC

onto-class model_element = ...

doc-class SRS = ...
accepts “({∣requirement∣}+ ∼∼ {∣assumption∣}+ ∼∼ {∣model_element∣}+)”
class-synonym software_requirements_specification = SRS

datatype kind = expert_opinion ∣ argument ∣ “proof”

onto-class result = technical +
evidence ∶∶ kind
property ∶∶ “ ′𝛼 theorem list” <= “[]”
invariant has_property ∶∶ “evidence = proof ⟷ property ≠ []”

Figure 3: A Basic Domain Ontology: cenelec𝑚

(a) A Text-Element as Requirement. (b) Referencing a Requirement.

Figure 4: Referencing a Requirement.

10

• the record term (∣long_name = None, is_concerned = {developer ,
validator}∣) and the corresponding record type requirement =
(∣long_name∶∶string option, is_concerned∶∶role set∣),

• while the resulting selectors are written long_name r, is_concerned r.

In general, onto-classes and the logically equivalent doc-classes are repre-
sented by extensible record types and instances thereof by HOL terms (see [7]
for details).

3.2. Term-Evaluations in Isabelle
Besides the powerful, but relatively slow rewriting-based proof method simp,

there are basically two other techniques for the evaluation of terms:

• evaluation via reflection into SML [12] (eval), and

• normalization by evaluation [13] (nbe).

The former is based on a nearly one-to-one compilation of datatype specification
constructs and recursive function definitions into SML datatypes and functions.
The generated code is directly compiled by the underlying SML compiler of
the Isabelle platform. This way, pattern-matching becomes natively compiled
rather than interpreted as in the matching process of simp. Aehlig et al [13]
are reporting on scenarios where eval is five orders of magnitude faster than
simp. In special applications, e.g., the verification of security protocols, eval
can reduce the running time from several hours to a few seconds, compared to
simp [14]. However, eval is essentially restricted to ground terms. Note that
nbe is not restricted to ground terms, its efficiency lying between simp and eval.

Isabelle/DOF uses a combination of these three techniques in order to evalu-
ate invariants and check data-integrity on the fly during editing. For reasonably
designed background theories and ontologies, this form of runtime-testing is
sufficiently fast to remain unnoticed by the user.

3.3. The Previewer
A screenshot of the editing environment is shown in Figure 5. It supports

incremental continuous PDF generation which improves usability. Currently,
the granularity is restricted to entire theories (which have to be selected in
a specific document pane). The response times can not (yet) compete with
a Word- or Overleaf editor, though, which is mostly due to the checking and
evaluation overhead (the processing time for the theory file containing the first
three section of this paper is around 30s). However, we believe that better
parallelization and evaluation techniques will decrease this gap substantially for
the most common cases in future versions.

11

Figure 5: A Screenshot while editing this Paper in Isabelle/DOF with Preview.

4. Term-Context Support, Invariants, and Queries in DOF

As Isabelle/HOL offers a document-centric view to the formal theory devel-
opment process, this led to strong documentation generation mechanisms over
the years. A particular feature is the support of built-in text and code an-
tiquotations. As mentioned earlier, Isabelle/DOF generates from ODL classes
antiquotations for text and code contexts [4, 7]. In this section, we introduce
the novel concept of term contexts, i. e., annotations to be made inside 𝜆-terms.

For example, we consider the Isabelle/DOF commands term∗ and value∗
(replacing the traditional term and value); they parse and type-check respec-
tively compile and execute a 𝜆-term:

Isabelleterm∗‹ @{thm ′′HOL.refl ′′} = @{thm ′′HOL.sym ′′} ›
value∗‹ @{thm ′′HOL.refl ′′} = @{thm ′′HOL.sym ′′} ›

It is instructive to see what is happening here. Terms comprising term
antiquotations are treated by a refined process involving the steps:

• parsing and typechecking of the term in HOL theory context,

• ontological validation of the term:

– the arguments of term antiquotations are parsed and checked,
– checks resulting from ontological invariants are applied,

• generation of markup information for the navigation in the IDE,

12

Isabelletext∗[church∶∶author , email=“‹church@lambda.org›”]‹... text›

text∗[intro1∶∶introduction, authored_by=“{@{author ‹church›}}”,
level=“Some 0”]‹... text›

text∗[safety∶∶“theorem”, assumptions = “[@{term ‹s = t›}]”,
statement = “Some @{term ‹t = s›}”]‹... text›

text∗[security∶∶“theorem”, assumptions = “[@{term ‹t = s›}]”,
statement = “Some @{term ‹P s ⟹ P t›}”]‹... text›

text∗[proof1∶∶“ ′a result”, evidence = “proof”,
property=“[@{theorem ‹safety›}, @{theorem ‹security›}]”,

level = “Some 2”,
authored_by = “{@{author ‹church›}}”]‹... text›

text∗[proof2∶∶“ ′a result”, evidence = “proof”,
property=“[@{theorem ‹security›}, @{theorem ‹safety›}]”,

level = “Some 2”,
authored_by = “{@{author ‹church›}}”]‹... text›

Figure 6: Some Instances referring to Figure 2.

• elaboration of term antiquotations: depending on the antiquotation specific
elaboration function, the antiquotations containing references are replaced
by the object they refer to, and

• evaluation: HOL expressions are compiled and the result executed.

Here, term∗ parses and type-checks this 𝜆-term as usual; logically, the @{thm
′′HOL.refl ′′} is predefined by Isabelle/DOF as a constant ISA_thm. The vali-
dation will check that the string ′′HOL.refl ′′ is indeed a reference to the theorem
in the HOL-library, notably the reflexivity axiom. The type-checking of term∗
will infer bool for this expression. Now, value∗ will replace it by a constant
representing a symbolic reference to a theorem; code-evaluation will compute
False for this command. Note that this represents a kind of referential equality,
not a “very deep” ontological look into the proof objects (in our standard con-
figuration of Isabelle/DOF). There is a variant of value∗, called assert∗, which
explicitly fails (stops evaluation) if the evaluation yields False.

Some class instances of the paper𝑚 and cenelec𝑚 ontologies can be de-
fined with the text∗ command, as in Figure 6. In the instance intro1, the
term antiquotation @{author ‹church›}, or its equivalent notation @{author
′′church ′′}, denotes the instance church of the class author, where church is a
HOL-string referring to an author text-element in the global context. One can
also reference a class instance in a term∗ command as a term antiquotation.
In the command term∗‹@{author ‹church›}› the term @{author ‹church›} is

13

(a) Here, church is an existing Instance. (b) The Instance churche is not defined.

Figure 7: Type-Checking of Antiquotations in a Term-Context.

(a) The Evaluation succeeds. (b) The Evaluation fails.

Figure 8: Evaluation of Antiquotations in a Term-Context.

type-checked (see Figure 7).

The command value∗‹email @{author ‹church›}› validates @{author
‹church›} and returns the attribute-value of email for the church instance, i. e.
the HOL-string ′′church@lambda.org ′′ (see Figure 8).

Since term antiquotations are basically uninterpreted constants, it is possible
to compare class instances logically. The assertion in the Figure 9 fails: the prop-
erty attribute of class instances proof1 and proof2 is not equivalent because the
lists sorting differs. When assert∗ evaluates the term, the term antiquotations
@{theorem ‹safety›} and @{theorem ‹security›} are checked against the global
context such that the strings ‹safety› and ‹security› denote existing theorem
class instances.

The mechanism of term annotations is also used for the new concept of in-
variant constraints which can be specified in common HOL syntax. They were
introduced by the keyword invariant in a class definition (recall Figure 2). The
authors_req invariant of the class text_element enforces that a text_element
instance has at least one author. Following the constraints proposed in [4], one
can specify that any instance of a result class finally has a non-empty prop-
erty list, if its kind is proof (see the has_property invariant). The is_form
invariant specifies the relation between the sets of definition and theorem doc-
ument elements for the wrapup attribute of the conclusion class and forces a
theorem to be tagged as formal if its related definition also is. By relying on the
implementation of extensible records in Isabelle/HOL [11], one can reference
an instance attribute using its selector function. For example, in the is_form

Figure 9: Evaluation of an Attribute of two Class Instances.

14

Figure 10: Inherited Invariant Violation.

invariant, wrapup denotes the wrapup attribute-value of the future conclusion
class instance.

The value of each attribute defined for the instances is checked at run-time
against their class invariants. Recall that classes also inherit the invariants from
their super-classes. As the result class is a subclass of the text_element class,
it inherits its invariants. In Figure 10, we attempt to specify a new instance
res1 of this class. However, the invariant checking triggers an error because the
authors_req invariant forces the authored_by attribute to be a non-empty set
and as its value was not set in the res1 instance definition, res1 inherits the
default value from the text_element class which is the empty set.

Any class definition generates term antiquotations checking a class instance
reference in a particular logical context; these references were elaborated to
objects they refer to. This paves the way for a new mechanism to query the
“current” instances presented as a HOL list. Using functions defined in HOL,
arbitrarily complex queries can therefore be defined inside the logical language.
Thus, to get the property list of the result class instances, it suffices to process
this meta-data via mapping the property selector over the result class:

Isabellevalue∗‹map (property) @{instances_of ‹result›}›

Analogously we can define an arbitrary filter function, for example the HOL
filter definition on lists:

Isabellefun filter ∶∶ “(′a ⇒ bool) ⇒ ′a list ⇒ ′a list”
where “filter P [] = []”

∣ “filter P (x # xs) = (if P x then x # filter P xs else filter P xs)”

to get the list of the result class instances whose evidence is a proof :

Isabellevalue∗‹filter (𝜆𝜎. evidence 𝜎 = proof) @{instances_of ‹result›}›

With Isabelle/DOF comes the concept of monitor classes [7], which are
classes that may refer to other classes via a regular expression in an accepts
clause. Semantically, monitors introduce a behavioral element into ODL and
enforce the structure in a document. Monitors generate traces about a part of a
document, recorded in the trace attribute of the monitor, and also presented as a
list of string. Monitors are regular expressions composed of options, sequences,
and repetitions. In the following monitor specification:

15

Isabelledoc-class doc_monitor =
ok ∶∶ “unit”
accepts “[[introduction]] ∼∼ {∣result∣}+ ∼∼ [[conclusion]]”

the accepts clause enforces the document structure to be a sequence of an intro-
duction, one or more results and a conclusion. Then, one can define an is−in
function in HOL to check the trace of a document fragment against a regular
expression:

Isabelledefinition example_expression
where “example_expression ≡ {∣introduction ∣∣ result ∣∣ conclusion∣}∗”

value∗‹ (map fst @{trace_attribute ′′monitor1 ′′}) is−in example_expression
›

Here, the term antiquotation @{trace_attribute ′′monitor1 ′′} denotes the
instance trace of monitor1. It is checked against the regular expression exam-
ple_expression, which matches zero or more occurrences of either an introduc-
tion, a result, or a conclusion. Actually, example_expression is compiled via an
implementation of the Functional-Automata of the AFP [15] into a deterministic
automaton. On the latter, the above acceptance test is still reasonably fast.

5. Proving Morphisms on Ontologies

The Isabelle/DOF framework does not assume that all documents refer to
the same ontology. Each document may even build its local ontology without
any external reference. It may also be based on several reference ontologies (e. g.,
from the Isabelle/DOF library). Making a relationship between a local ontology
and reference ontologies is a way to express that the content referencing a local
ontology is not “far away” from a domain reference ontology.

Since ontological instances possess representations inside the logic, the rela-
tionship between a local ontology and a reference ontology can be represented by
a formalized morphism. More precisely, the instances of local ontology classes
may be mapped via conversion functions to one or several other instances be-
longing to another ontology. Since an instance representation as well as the
conversion functions are constructed inside HOL, it is possible to prove formally
once and for all that the morphism preserves the invariants for all meta-data.
This means that morphisms may provably be injective, surjective, bijective, and
thus describe abstract relations between ontologies.

To illustrate invariance preservation of a morphism, we zoom into the paper𝑚

example where authors for specific journals were defined. The example addresses
the common problem that publishers require slightly different meta-data which
might be a nuisance for an author when addressing a paper to a different journal.
We specialize authors in the following:

16

Isabelledoc-class acm_author = “acm author” +
orcid ∶∶ int
footnote ∶∶ string

doc-class elsevier_author = “elsevier author” +
short_author ∶∶ string
url ∶∶ string
footnote ∶∶ string

Each class inherits the affiliations attribute from the author class and defines
a list of affiliations as specified by the journal. In our example, elsevier_author
and acm_author implement the specification of an Elsevier article or of an ACM
article respectively. Also, each class inherits the author name attribute and the
ne_name invariant that enforces its name to be non-empty.

Now we refine the concept of author in a local ontology:
Isabelledoc-class “title” = short_title ∶∶ “string option” <= “None”

doc-class affiliation =
journal_style ∶∶ ′𝛼

doc-class author =
affiliations ∶∶ “ ′𝛼 affiliation list”
firstname ∶∶ string
surname ∶∶ string
email ∶∶ “string” <= “ ′′′′”
invariant ne_fsnames ∶∶ “firstname 𝜎 ≠ ′′′′ ∧ surname 𝜎 ≠ ′′′′”

doc-class elsevier_author = “elsevier author” +
short_author ∶∶ string
url ∶∶ string
footnote ∶∶ string

As a local ontology, it may have different meanings and document represen-
tations when compared to paper𝑚, which “live” together in the same document
but in different name-spaces. This ontology also defines a local elsevier_author
class that implements an Elsevier article author. It is a subclass of the local au-
thor class and inherits its firstname and surname attributes. It also inherits the
ne_fsnames invariant that requires that firstname and surname are non-empty.

Using this ontology we are now able to update Elsevier article authors from
the local ontology to ACM article authors from the reference ontology, for ex-
ample. And if all the specification of an Elsevier article were to be defined
in our local ontology, we would be able to convert the meta-data of an entire
Elsevier article to an ACM article. To update an Elsevier article author, we
define a relationship between the local ontology and the paper𝑚 ontology using
conversion functions (also called mapping rules in the ATL framework [16] or
in the EXPRESS-X language [17]). These rules are applied to define the rela-
tionship between one class of the local ontology to one or several other class(es)
described in our paper𝑚 ontology. In our case, our morphism is represented by
three conversion functions, addressing the conversion of base-data, the affilia-
tion and finally the authors. The base-data conversion of an enumeration type
(not shown here for economy of space) is defined as follows:

17

Isabelledefinition elsevier_to_acm_morphism ∶∶ “elsevier ⇒ acm”
(“_ ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟” [1000]999)

where “𝜎 ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟 = (∣ tag_attribute = 1∶∶int,
position = ′′no position ′′, institution = organization 𝜎, department = 0,
street_address = address_line 𝜎, city = elsevier .city 𝜎, state = 0,
country = ′′no country ′′, postcode = elsevier .postcode 𝜎 ∣)”

The more high-level conversions concerning the affiliation is detailed as:
Isabelledefinition

elsevier_aff_to_acm_aff_morphism ∶∶ “elsevier affiliation ⇒ acm affiliation”
(“_ ⟨acm ′_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟

′_𝑎𝑓𝑓” [1000]999)
where “𝜎 ⟨acm_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑓𝑓 = (∣ tag_attribute = 1∶∶int,

journal_style = (affiliation.journal_style 𝜎) ∣> (𝜆x. x ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟) ∣)”

where (∣>) is simply a reverse application combinator. The top-level conversion
for the author looks as follows:

Isabelledefinition elsevier_author_to_acm_author_morphism
∶∶ “elsevier_author ⇒ acm_author”

(“_ ⟨acm ′_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟
′_𝑎𝑢𝑡ℎ” [1000]999)

where “𝜎 ⟨acm_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑢𝑡ℎ = (∣ tag_attribute = 1∶∶int,
affiliations = (author .affiliations 𝜎)

∣> map (𝜆x. x ⟨acm_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑓𝑓) ,
name = acm_name (firstname 𝜎) (surname 𝜎),
email = author .email 𝜎, orcid = 0,
footnote = elsevier_author .footnote 𝜎 ∣)”

These definitions specify how affiliation and elsevier_author metadata rep-
resentations are mapped to affiliation and acm_author objects as defined
in paper𝑚. The acm_author name attribute-value is derived from the el-
sevier_author firstname and surname attributes using a parsing function
acm_name that follows the ACM journal author specification. This mapping
shows that the structure of a local (user) ontology may be arbitrarily different
from the one of a standard ontology it refers to.

In order to support morphisms, we implemented a high-level syntax for this:
onto-morphism (elsevier_author) to acm_author ..

where the “..” stands for a standard proof attempt consisting of unfolding the
invariant predicates and a standard auto proof. This syntax also covers more
general cases such as :

onto-morphism (A1, ..., A𝑛) to X 𝑖 and (D1, ..., D𝑚) to Y 𝑗

were tuples of instances belonging to classes (A1, ..., A𝑛) can be mapped to
instances of another ontology.

After defining the mapping rules, we have to deal with the question of in-
variant preservation. The following nearly trivial proof for a simple but typical
example is shown below:

18

Isabellelemma elsevier_inv_preserved ∶
“ne_fsnames_inv 𝜎 ⟹ ne_name_inv (𝜎 ⟨acm_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑢𝑡ℎ)”
unfolding ne_fsnames_inv_def ne_name_inv_def

elsevier_author_to_acm_author_morphism_def
by (simp add∶ combinator1_def acm_name_def)

After unfolding the invariant and the morphism definitions, the preservation
proof is automatic. The advantage of using the Isabelle/DOF framework com-
pared to approaches like ATL or EXPRESS-X is the possibility of formally
verifying the mapping rules, i. e., proving the preservation of invariants once
and for all rather than converting data and then relying on a post-hoc check.

6. Order-sorted Polymorphic Classes for Ontologies

The overall objective of this work is to express the machine-checkable link-
ing between formal and informal content in documents. In database commu-
nities, algebraic structures have been proposed to express a particular form of
this linking, the provenance of data, used in results of queries or virtual ta-
bles (cf. [18, 19, 20]) and among them polynomials [21]. Adapted to integrated
documents, data provenance describes the history of a document element, for
example the origin of a formal definition by declaring its dependency on other
definitions expressed informally, opening new workflows for the validation of
document specification targeting a certification standard. Recall that a multi-
variate polynomial structure (A,X ,∗,+) over a set of coefficients A and a set of
indeterminates X forms with respect to the multiplicative and additive opera-
tions a semi-ring. As a consequence, polynomials such as:

𝑃(𝑥) = 𝑎𝑛 ∗ 𝑥𝑛 + … + 𝑎1 ∗ 𝑥1 + 𝑎0

or even more generally:

𝑃 ′(𝑥1...𝑥𝑚) = ∑ 𝑎𝑖1𝑖2…𝑖𝑚
𝑥𝑖1

1 𝑥𝑖2
2 … 𝑥𝑖𝑚𝑚

can be represented in this structure and will have a normal form which permits
their comparison via partial orders. Moreover, multivariate polynomials are
substitutive, i. e. an equality like x1 = P(x2) can be used to eliminate the
variable x1 in P ′ and to compute again a normal form. A set of such equalities
allows therefore to reduce multivariate polynomials to one based only on a subset
of base multivariates.

We will mostly use � or � for the coefficients A; the indeterminates can be
interpreted by oid’s or arbitrary labels used to define groups over them. An in-
terpretation of the coefficients � and the (∗)-operator by the logical conjunction
(∧) and the (+) by the disjunction (∨) leads to a collapse of the polynomials
to disjunctive normal-forms (DNF) which can be interpreted by “this concept
depends on the concept (x1 and x2) or x3”, for example. More general inter-
pretations than the latter allow for expressing weights on these dependencies.

19

6.1. Modeling “Provenance” in ODL
Isabelle/DOF’s support of order-sorted polymorphism opens a new path to

use multivariate polynomials to express the linking between a document element
and others where the indeterminates 𝑥𝑖1

1 , 𝑥𝑖2
2 , … 𝑥𝑖𝑚𝑚 will capture some kind of

document element references, the coefficients 𝑎𝑖1𝑖2…𝑖𝑚
the “linking flavor” of

each monomial, and the exponents 𝑖1, 𝑖2, … 𝑖𝑚 will capture a specific “weight”
of a reference (an indeterminate) within each monomial.

By leaving open the concrete computational structure for a multivariate
polynomial (A,X ,∗,+) at the moment of the creation of a document element,
we can express various forms of the linking within a single class attribute and
postpone the decision of the concrete computational structure to a later stage,
for example, at the point where a concrete query is formulated. Views on doc-
uments can be represented to draw different paths that lead to the same formal
definition, offering alternatives for groups of validation with distinct domain ex-
pertise and help in a certification process by embedding in the same document
specifications expressed in several but equivalent ways.

This constitutes a new form of abstract representation of dependency us-
ing an order sort, possibly reinforced by class invariants. Using order-sorted
polymorphism, we construct an executable type for multivariate polynomial
structures (A,X ,∗,+):

(′𝜈∶∶linorder , ′𝛼∶∶semiring) mpoly

where ′𝜈 corresponds to the set of multivariates (assumed to be orderable for
reasons of normal-form computations) and where ′𝛼 corresponds to the coef-
ficients. On a true semiring structure this type captures precisely the notion
of how-provenance [21] and tracks how document elements relate to each other
along the declaration of the instances. Note that this is a significantly more
fine-grained approach than using invariants like the is_form invariant (cf. the
conclusion class in section 4).

The construction of this type is technically quite involved and out of the
scope of this paper.6 This part of the theory also yields the constructor
var_mpoly∶∶((′𝜈∶∶linorder×nat)list × ′𝛼∶∶semiring_0)list ⇒ (′𝜈, ′𝛼) mpoly that
converts a list of indeterminates indexed by their exponents and pondered by
a coefficient into our type-constructor providing an efficient represention for
multivariate polynomials (′𝜈, ′𝛼) mpoly.

Now we zoom into our paper𝑚 example and present an alternative specifi-
cation of the definition class:

6It uses, among other Isabelle machinery, the data refinement package by [22] and the
Lifting/Transfer packages [23].

20

Isabelledoc-class relation =
rel ∶∶ “ ′𝛼∶∶semiring”

doc-class “text_element” = “ ′𝛽∶∶semiring relation” +
authored_by ∶∶ “ ′𝛼 author set” <= “{}”
level ∶∶ “int option” <= “None”
invariant authors_req ∶∶ “authored_by ≠ {}”
and level_req ∶∶ “the level > 1”

doc-class technical = “(′𝛼, ′𝛽∶∶semiring) text_element” +
id ∶∶ nat
formal_results ∶∶ “thm list”

doc-class “definition” = “(′𝛼, ′𝛽∶∶semiring) technical” +
is_formal ∶∶ “bool”

The definition class inherits the order-sorted polymorphic rel attribute from
the relation class.

It is now possible to specify relations between definition instances and other
documents elements:

Isabelletext∗[def1∶∶“(′𝛼, (nat, int) mpoly) definition”,
rel = “ var_mpoly [([((id @{theorem ‹safety›}), 1)], 1∶∶int)]

∗ var_mpoly [([((id @{theorem ‹security›}), 1)], 1∶∶int)]
+ var_mpoly [([((id @{result ‹proof1›}), 1)], 1∶∶int)]

∗ var_mpoly [([((id @{result ‹proof2›}), 1)], 1∶∶int)]”]‹... text ...›

value∗‹rel @{definition ‹def1›}›

In our example, the indeterminates of the polynomial will be instances of
theorem identifiers. We use nat for the identifiers and int for the coefficients, so
the type of the def1 instance we just declared is (′𝛼, (nat, int) mpoly) definition.
id @{theorem ′′safety ′′} refers to the safety theorem instance identifier. The
evaluation of the def1 instance rel attribute gives:

var_mpoly [([(123, 1), (456, 1)], 1), ([(789, 1), (987 , 1)], 1)]

The value can be understood as follows: the annotated text will depend on the
safety instance and the security instance or the proof1 instance and the proof2
instance, where and is expressed using the (∗) operator and or using the (+)
operator of the semiring when declaring the rel attribute-value of def1. Intu-
itively, the or is justified by the wish to offer consistently either a more abstract
or a more concrete (proof-object based) representation of the dependence on
other document elements.

As proof1 and proof2 are result class instances, they also inherit the rel at-
tribute, and could also have specified relations that should be checked. For a
certification, the more abstract or concrete representations will be views on the
same document for different groups involved in the document specification. A

21

validation team could be presented with a view where all the informal elements
are present and will need to check them manually, i. e., check the content of each
informal document element. Another team assigned to the writing of a partic-
ular specification document could be presented with a view with only formal
elements where the checking process is fully automated using Isabelle/HOL and
Isabelle/DOF checking mechanisms, and we are sure that the checking process
will end due to the directed acyclic graph architecture of the document and
the ordered declaration of the instances enforced by the parsing process. The
same team could also specify weights on instances within a rel to express levels
of recommendation for the presence of an element as a dependence of another
document element. Should a software Safety Integrity Level (SIL), expressing
the accepted risk of software failure in the certification, require that a specific
element is only Recommended and not Highly Recommended in the document
specification that targets this SIL, a weight will be used to reflect this recom-
mendation.

The relation between document elements can always be specified indepen-
dent of being a formal or informal document element, where the checking of
informal documents elements has to be delegated to humans during the certifi-
cation validation process.

6.2. An Access-Control Model for Integrated Isabelle/HOL Documents
One might object that the suggested integrated document model underlying

our approach is incompatible with the reality of industrial projects, where their
partners will need to enforce strategies to protect their intellectual property.
However, a system having access to the integrated document is fundamental for
mechanisms to ensure global consistency. A way out of this dilemma are fine-
grained access control models allowing decisions on individual text elements for
any user role. In this section, we show how such a fine-grained security model
can be built with the existing mechanisms of ODL.7

Order-sorted polymorphism opens ways to implement security and integrity
models based on lattices, such as Bell-LaPadula-like access control models. The
key is to provide a sec attribute that is to define the basic access control status.
This can also be useful when targeting certifications where roles and responsi-
bilities of the involved entities (person, group, organization) are identified.

The sec attribute is implemented using a lattice sort and declares the security
label of the document element. The sec attributes of document elements can be
computed to express the minimum security level required to access a collection
of document elements associated with each other, whether it is by the is−a
relation of the class inheritance or by other means, like the how-provenance just
presented, or by looking at the instance attributes. First we declare the security
labels using a datatype:

7Note that our current front-end Isabelle/jEdit does not support access-restriction func-
tionality; however, we consider this as a current technical limitation.

22

Figure 11: The Lattice of Security Labels.

Isabelle
datatype security = Unclassified ∣ Restricted ∣ Confidential

∣ Secret ∣ Top_Secret

Then we make the security datatype a lattice sort instance. The resulting
lattice is shown in Figure 11 where security labels are ordered from least sen-
sitive (Unclassified) to most sensitive (Top_Secret). Finally, we add syntactic
definitions for the (+) and (∗) operators.

The new specification of the result class, sec_result, now has a sec attribute
inherited from sec_relation:

Isabelledoc-class sec_relation =
sec ∶∶ “ ′𝛽∶∶lattice”

doc-class “sec_text_element” = “(′𝛽∶∶lattice) sec_relation” +
authored_by ∶∶ “ ′𝛼 author set” <= “{}”
level ∶∶ “int option” <= “None”
invariant authors_req ∶∶ “authored_by ≠ {}”
and level_req ∶∶ “the level > 1”

Isabelledoc-class “sec_technical” = “(′𝛼, ′𝛽∶∶lattice) sec_text_element” +
id ∶∶ nat
formal_results ∶∶ “thm list”

doc-class sec_result = “(′𝛼, ′𝛽∶∶lattice) sec_technical” +
evidence ∶∶ sec_kind
property ∶∶ “(′𝛼, ′𝛽) sec_theorem list” <= “[]”
invariant has_property ∶∶ “evidence = proof ⟷ property ≠ []”

In this setting, we can specify access control as follows:

Isabelletext∗[proof3∶∶“(′𝛼, security) sec_result”,
id = “789”, evidence = “proof”,
property=“[@{sec_theorem ‹safety2›}, @{sec_theorem ‹security2›}]”,
level = “Some 2”, authored_by = “{@{author ‹church2›}}”,
sec = “Unclassified”]‹... text›

The proof3 instance sec attribute-value is Unclassified, and its property at-
tribute is a list of sec_theorems that also have a security level. We can have a

23

coarse grain policy where access control to proof3 will use only its sec attribute-
value. Then every user with a security level above Unclassified will be able
to read all proof3 information, including the information of every entry in its
property attribute. With a more fine grain policy, the sec attribute-value of
each property list element will also be checked. The sec attribute-value of the
security2 instance is Confidential, so a user with an Unclassified security level
should be able to access proof3 information but not security2 information when
querying proof3 property attribute. With the following query:

Isabellevalue∗‹property @{sec_result ‹proof3›}
∣> filter (𝜆x. statement x = statement @{sec_theorem ‹security2›})›

the access control checking mechanism should compute the involved instances
security level using the (∗) operator for read access:

Isabelle
value∗‹sec @{sec_result ‹proof3›} ∗ sec @{sec_theorem ‹security2›}›

which evaluates to Confidential. Whether the access control is coarse or fine
grain, a user with an Unclassified security level will not be able to make this
query because they can not access security2 information.

To fully integrate our access control model for integrated documents, one
possible way is to rely on a remote access to overcome the access control of the
local file system. We could extend the VSCode extension of Isabelle/HOL to
support security models and host an online instance to access our document
stored on the server, using for example an openvscode-server8 server instance.
We plan this extension as future work.

7. A Domain-specific Ontology: CENELEC 50128

In this section, we briefly describe a domain ontology for the required docu-
mentation of a CENELEC 50128 certification. The CENELEC 50128 standard
is a major industry standard addressing the development and validation pro-
cesses for software in the railway domain. It provides a framework for software
assurance, which is aimed at creating a software package with a minimum level
of error, based on quality assurance, skill evaluation, verification and validation,
and independent evaluation. Interestingly, it became also relevant for vendors
of operating systems such as ThreadX (formerly Microsoft’s Azure, cf. [24]),
which achieved the highest assurance level. From its beginning, Isabelle/DOF
had been used for documents containing formal models targeting certifications.

CENELEC 50128 requires 18 different documents representing milestones; a
fully fledged description of our ontology covering (most of) these documents is
therefore out of reach of this paper. Instead, we present how the novel concepts

8https://github.com/gitpod-io/openvscode-server/

24

https://github.com/gitpod-io/openvscode-server/

such as invariants and term-antiquotations are used in selected elements in this
ontology.9 According to CENELEC Table C.1, for example, we specify the
category of “Design and Test Documents” as follows :

Isabelledatatype phase = SR — Softw. Requirement
∣ SDES — Softw. Design ∣ SV — Softw. Validation ∣ ...

datatype role = RQM — Requirements Mgr ∣ DES — Designer
∣ IMP — Implementer ∣ VER — Verifier ∣ ...

doc-class cenelec_document = text_element +
phase ∶∶ phase
written_by ∶∶ role — Annex C Table C.1
fst_check ∶∶ role — Annex C Table C.1
snd_check ∶∶ role — Annex C Table C.1
...
invariant must_be_chapter ∶∶ “text_element.level 𝜎 = Some(0)”
invariant four_eyes_prcple ∶∶ “written_by 𝜎 ≠ fst_check 𝜎

∧ written_by 𝜎 ≠ snd_check 𝜎”

This class refers to the “software phases” the standard postulates (like SR
for “Software Requirement” or SDES for “Software Design”) which we model
by corresponding enumeration types. Similarly, the standard postulates “roles”
that certain specified teams possess in the overall process (like verifier for ver-
ification) and assumes that each person is assigned a unique role. We added
invariants that specify certain constraints implicit in the standard: for example,
a cenelec_document must have the textual structure of a chapter (the level-
attribute is inherited from an underlying ontology library specifying basic text-
elements) as well as the four-eyes-principle between authors and checkers of
these chapters10.

A concrete subclass of cenelec_document is the class SWIS (“software inter-
face specification”) as shown below, which provides the role assignment required
for this document type:

Isabelledoc-class SWIS
= cenelec_document + — software interface specification
phase ∶∶ “phase” <= “SDES” written_by ∶∶ “role” <= “DES”
fst_check ∶∶ “role” <= “VER” snd_check ∶∶ “role” <= “VAL”
components∶∶ “SWIS_E list”

The structural constraints expressed so far can in principle be covered by any
hand-coded validation process and suitable editing support (e. g., Protégé [6]).
However, a closer look at the class SWIS_E (“software interface specification
element”) referenced in the components-attribute reveals the unique power of Is-
abelle/DOF; rather than saying “there must be a pre-condition”, Isabelle/DOF

9Our CENELEC 50128 ontology is part of the Isabelle/DOF library: https:
//github.com/logicalhacking/Isabelle_DOF/blob/main/Isabelle_DOF-Ontologies/
CENELEC_50128/CENELEC_50128.thy.

10The standard assumes, as is common in role-based access control, that credentials for roles
have not been shared between individuals.

25

https://github.com/logicalhacking/Isabelle_DOF/blob/main/Isabelle_DOF-Ontologies/CENELEC_50128/CENELEC_50128.thy
https://github.com/logicalhacking/Isabelle_DOF/blob/main/Isabelle_DOF-Ontologies/CENELEC_50128/CENELEC_50128.thy
https://github.com/logicalhacking/Isabelle_DOF/blob/main/Isabelle_DOF-Ontologies/CENELEC_50128/CENELEC_50128.thy

can be far more precise:
Isabelledoc-class SWIS_E =

op_name ∶∶ “string”
op_args_res ∶∶ “(string × typ) list × typ” — args and result type
pre_cond ∶∶ “(string × thm) list” — labels and predicates
post_cond ∶∶ “(string × thm) list” — labels and predicates
invariant well_formed_pre ∶∶ “∀ cond ∈ set(map snd (pre_cond 𝜎)).

iswff 𝑝𝑟𝑒 (op_args_res 𝜎) (cond)”
invariant well_formed_post∶∶ ...

where the constant iswff 𝑝𝑟𝑒 is bound to a function at the SML-level, that is ex-
ecuted during the evaluation phase of these invariants, and checks the following:

• Any cond is indeed a valid definition in the global logical context (tak-
ing HOL-libraries but also the concrete certification target model into
account).

• Any such HOL definition has the syntactic form:

pre_<op_name> (a1∶∶𝜏1) ... (a𝑛∶∶𝜏𝑛) ≡ <predicate>,

where (a1∶∶𝜏1) ... (a𝑛∶∶𝜏𝑛) correspond to the argument list.

Note that this technique can also be applied to impose specific syntactic con-
straints on types. For example, via the SI-package available in the Isabelle AFP
[25], it is possible to express that the result of some calculation is of type 32
unsigned [m⋅s−2], so a 32-bit natural number representing an acceleration in
the SI-system. Therefore, it is possible to impose that certain values refer to
physical dimensions measured in a concrete metrological system, or constraints
on conversions between them, etc.

We used this ontology in the development of an odometer for train systems,
tracing requirements from a high-level physics model (describing the require-
ments as differential equations over real numbers) down to an implementation in
C (and verified using AutoCorres2 [26]), running on a microprocessor. The latter
uses a discretized measurement of the distance, approximations for derivatives,
and works over bounded fixed-point arithmetic. The used CENELEC 50128 on-
tology leverages the tracking of requirements across the refinement-chain of our
models to ensure that the low-level implementation model satisfies the precision
requirements expressed in the high-level physics model.

8. An Example Instance: The Distributed Interlocking System.

In this section, we will demonstrate the use of the CENELEC 50128 ontology
(as introduced in section 7) in a (fragment of) a certification documentation;
our example stems from the context of a distributed interlocking (IXL) method
as introduced by [27]. The focus of this section is to showcase the features of the
CENELEC 50128 ontology. We do not aim to introduce the IXL method in its

26

Figure 12: A Distributed Interlocking System for Autonomous Trains.

full detail. For short, the IXL methods provides route-based allocation of paths
through an arbitrary railway network topology with points and crossings in or-
der to reach a desired destination. In the scenario sketched in Figure 12 there
is no centralized decision point (which would represent a single-point vulnera-
bility); rather, a collection of protocols to so-called switch boxes should ensure
global safety and reachability. A major advantage of the architecture is that no
communication between trains is necessary.

The cenelec_document of the phase SR will start by establishing a vocab-
ulary of the domain. We annotate these notions from the start to make them
navigable and the linking structure explicit:

IsabelleDefinition∗[def1∶∶vocabulary, short_name=“‹mission specification›”]‹A
‹mission specification› consists of destination location (like ‹S15› in the example
diagram), a route identification, and a start time.›
Definition∗[def2∶∶vocabulary, short_name=“‹track element›”]‹A track element
to denote any straight or curved track portion, point, and crossing.›
etc...

It is straight-forward to provide formal definitions for the introduced con-
cepts like mission specification and to link them to formal concepts, in order to
support document navigation and queries (“which formal definitions are related
to the concept?”). An explanation of the general system assumptions capturing
the “boundaries of the product” follows:

27

IsabelleAssumption∗[ass1, short_name=“‹track−elements sensored›”]‹Each
track segment, point, or crossing is associated with sensors.›
Assumption∗[ass2, short_name=“‹switch−box−control›”]
‹Each switch box controls one point or one crossing (if any) and monitors the
free/occupied status
of the point and its neighboring track segments.›

etc...

These assumptions will lead to a number of formal well-formedness con-
ditions that will shape the class of admissible networks for which the overall
system is guaranteed to work.

A some point, we will have to state the major safety-requirements:
IsabelleRequirement∗[R1∶∶SR, short_name=“‹no−collision›”]‹Two

different trains may never reside simultaneously on the same track element.›
Requirement∗[R2∶∶SR, short_name=“‹no−derailing›”]
‹Whenever a train enters a point or movable crossing 2 from a neighbouring
segment 1,
the point positions or positions of movable crossings must always connect 1 with

2 ...›
Requirement∗[R3∶∶SR, short_name=“‹no−deadlock›”]‹...›
etc...

In practice, these requirements will be divided into sub-requirements (in
the style of unified assurance cases [28]) to make the task to link them more
manageable, be it to formal definitions, informal and formal design-decisions
and eventually code-elements.
9. Discussion

Undeniably, in a direct comparison of Isabelle/DOF with an off-the-shelf
LATEX editing environment like OverLeaf or TeXStudio, just to name two out
of a plethora, the former seems to fall painfully short in terms of usability: the
present and subsequent page take about 20 s in an incremental recompilation
compared to 4 s in either of the mentioned two11. Even when taking into ac-
count that Isabelle/DOF makes currently a full triple LATEX run with BibTEX
interlude, which takes the underlying LuaLATEX about 12s, while OverLeaf op-
timizes and does just one run, this seems to be long for the small amount of
checking done on the present page (i.e., the citations and hyperrefs). On some
pages of this document, recompilation is even worse: the section 6, which con-
tains the import of nine theories and several proofs underlying the presented
examples which were used—hidden from the reader—to fully type-check and
consistency-check the presented material. Here, initial loading takes up to two
minutes, and a recompilation-to-previewing up to 35 seconds.

However, we argue that this kind of comparison is misleading. Isabelle/DOF
allows for type-checking and a full proof of formal content as it is presented in

11On a 2,7 GHz Intel Xeon E5 running MacOS.

28

the paper, up to the semantic depth and up to the degree of layout consistency
desired by the author. While conventional LATEX type-setting is possible inside
Isabelle/DOF text-elements, we recommend to use Isabelle markup and an-
tiquotations whenever possible — thus, errors can be detected in the front-end,
and re-compilations can thus be avoided. Finally, we suggest shifting proofs or
time-consuming evaluations into background sessions pre-compiled to editing,
and to devise documents into smaller portions.

It can be safely stated that the Isabelle document generation is fairly regu-
larly used for its technical documentation and many reports and scientific papers
by the more regular users of the system (according to the AFP statistics, this
figure can be estimated by about 500). As far as the plugin Isabelle/DOF is
concerned, it is used by the authors and their co-authors more or less systemati-
cally in all of our publications of the last six years. This includes three technical
reports and one PhD-thesis [29] of substantial size, two journal articles, and
about ten conference papers. Our non-developer co-authors tell us that it feels
like using a markdown-like language; in particular, they appreciate the use of
antiquotations for HOL-formulas rather than LATEX typesetting.

And last but not least, we’d like to emphasize that there are a number of ob-
vious and less obvious ways to increase usability, to speed up editing and check-
ing: more incremental heuristics to use the LATEX backend, more use of Isabelle’s
advanced parallelization mechanisms, support for common editing patterns and
better support of initial document setup.

10. Related Work

This paper has already mentioned conventional ontology modeling languages
like OWL; these are often supported by development environments such as Pro-
tégé [6] which allow the documentation generation and ontology-based queries
in structured texts. The platform allows also the integration of plug-ins that
provide Prolog-like reasoners over class invariants in a description logic or frag-
ments of first-order logic. In contrast to OWL, Isabelle/DOF brings forward
our concept of deep ontologies, i. e., ontologies represented inside an extensible
and expressive language such as HOL. Deep ontologies also allow using meta-
logical entities such as types, terms and theorems, and provide antiquotations as
a means to reference inside them. The purpose is to establish strong, machine-
checkable links between formal and informal content.

Isabelle/DOF’s underlying ontology definition language ODL has many
similarities with F-Logic [30] and its successors Flora-2 and ObjectLogic.12

Shared features include object identity, complex objects, inheritance, polymor-
phic types, query methods, and encapsulation principles. Motivated by the de-
sire for set-theories in modeling, F-Logic possesses syntax for some higher-order
constructs but bases itself on first-order logics; this choice limits the potential
for user-defined data-type definitions and proofs over classes significantly. Orig-
inally designed for object-oriented databases, F-Logic and its successors became

12With OntoStudio as a commercial ObjectLogic implementation.

29

mostly used in the area of the Semantic Web. In contrast, Isabelle/DOF rep-
resents an intermediate layer between a logic like HOL and its implementing
languages like SML or OCaml (having their roots as meta-language for these
systems). This “in-between” allows for both executability and logical reasoning
over meta-data generated to annotate formal terms and texts.

While F-Logic and its successors have similar design objectives, Is-
abelle/DOF is tuned towards systems with a document-centric view on code
and semiformal text as is prevailing in proof-assistants. Not limited to, but
currently mostly used as document-ontology framework, it has similarity with
other documentation generation systems such as Javadoc [31, 32], Doxygen
or ocamldoc [33, chap. 19]. These systems are usually external tools run in
batch-mode over the sources with a fixed set of structured comments simi-
lar to Isabelle/DOF’s antiquotations. In contrast, our approach foresees freely
user-definable antiquotations, which are in the case of references automatically
generated. Furthermore, we provide a flexible and highly configurable LATEX
backend.

Regarding the use of formal methods to formalize standards, the Event-
B method was proposed by Fotso et al. [34] for specifications of the hybrid
ERTMS/ETCS level 3 standard, in which requirements are specified using
SysML/KAOS goal diagrams. The latter were translated into Event-B, where
domain-specific properties were specified by ontologies. In another case, Mendil
et al. [35] propose an Event-B framework for formalizing standard conformance
through formal modelling of standards as ontologies. The proposed approach
was exemplified on the ARINC 661 standard. These works are essentially inter-
ested in expressing ontological concepts in a formal method but do not explicitly
deal with the formalization of invariants defined in ontologies. The question of
ontology-mappings is not addressed.

Another work along the line of certification standard support is Is-
abelle/SACM [28], which is a plug-in into Isabelle/DOF in order to provide
specific support for the OMG Structured Assurance Case Meta-Model. The use
of Isabelle/SACM guarantees well-formedness, consistency, and traceability of
assurance cases, and allows a tight integration of formal and informal evidence
of various provenances.

Obvious future applications for supporting the link between formal and in-
formal content, i.e., between information and knowledge, consist in advanced
search facilities in mathematical libraries such as the Isabelle Archive of Formal
Proofs [36]. The latter passed the impressive numbers of 730 articles, written by
450 authors at the beginning of 2023. Related approaches to this application are
a search engine like http://shinh.org/wfs which uses clever text-based search
methods in many formulas, which is, however, agnostic of their logical context
and of formal proof. Related is also the OAF project [37] which developed
a common ontological format, called OMDoc/MMT, and six export functions
from major ITP systems into it. Limited to standard search techniques on this
structured format, the approach remains agnostic on logical contexts and an
in-depth use of typing information.

30

http://shinh.org/wfs

11. Conclusion and Future Work

We presented Isabelle/DOF, an ontology framework deeply integrating
continuous-check/continuous-build functionality into the formal development
process in HOL. The novel feature of term-contexts in Isabelle/DOF, which
permits term-antiquotations elaborated in the parsing process, paves the way
for the abstract specification of meta-data constraints as well as the possibility
of advanced search in the meta-data of document elements. Thus, it profits
from and extends Isabelle’s document-centric view on formal development.

Many ontological languages such as F-Logic as well as the meta-modeling
technology available for UML/OCL provide concepts for semantic rules and con-
straints, but leave the validation checking usually to external tools or plug-ins.
Using a combination of advanced code-generation, symbolic execution and reifi-
cation techniques existing in the Isabelle ecosystem, we provide the advantages
of a smooth integration into the Isabelle IDE. Moreover, our approach leverages
the use of invariants as first-class citizens, polymorphism, and type-classes into
our ontology definition language ODL which turns it into an object of formal
study in, for example, ontological mappings. Such a technology exists, to our
knowledge, for the first time.

Our experiments with adaptations of existing ontologies from engineering
and mathematics show that Isabelle/DOF’s ODL has sufficient expressive power
to cover all aspects of languages such as OWL (with perhaps the exception to
multiple inheritance on classes). However, these ontologies have been developed
specifically in OWL and target its specific support, the Protégé editor [6]. We
argue that Isabelle/DOF might ask for a re-engineering of these ontologies: less
deep hierarchies, rather deeper structure in meta-data and stronger invariants.

The development of Isabelle/DOF led to incremental LATEX generation and
a previewing facility that will further increase the usability of our framework
for the ontology-conform editing of formal content, be it in the engineering or
the mathematics domain Although in an early stage, we believe that this is a
valuable contribution to the Isabelle platform in itself.

Another line of future application is to increase the “depth” of term antiquo-
tations such as @{typ ‹ ′𝜏›}, @{term ‹a + b›} and @{thm ‹HOL.refl›}, which
are currently implemented just as validations of references into the logical con-
text. In the future, they could optionally be expanded to the types, terms, and
theorems (with proof objects attached) in a meta-model of the Isabelle Kernel
such as the one presented in [38] (also available in the AFP). This will allow
for definitions of query-functions in, e. g., proof-objects, and pave the way to
annotate them with typed meta-data. Such a technology could be relevant for
the interoperability of theories across different ITP platforms.

Availability. Isabelle/DOF is available in the Archive of Formal Proofs (AFP)
as “Isabelle/DOF” [5] under a 2-clause BSD-license (SPDX-License-Identifier:
BSD-2-Clause). Additional extensions (e.g., ontologies, document templates,
and examples) are available on Zenodo [39]. The development version is avail-
able at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/.

31

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/

References

[1] BS EN 50128:2011: Railway applications – communication, signalling and
processing systems – software for railway control and protecting systems,
Standard, British Standards Institute (BSI) (Apr. 2014).

[2] Common criteria for information technology security evaluation, available
at https://www.commoncriteriaportal.org/. (2022).

[3] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL—A Proof Assistant
for Higher-Order Logic, Vol. 2283 of LNCS, Springer, 2002. doi:10.1007/
3-540-45949-9.

[4] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, B. Wolff, Using the Isabelle on-
tology framework: Linking the formal with the informal, in: Conference on
Intelligent Computer Mathematics (CICM), no. 11006 in LNCS, Springer,
2018. doi:10.1007/978-3-319-96812-4_3.

[5] A. D. Brucker, N. Méric, B. Wolff, Isabelle/DOF, Archive of For-
mal Proofs,https://isa-afp.org/entries/Isabelle_DOF.html, Formal
proof development (April 2024).

[6] M. A. Musen, The Protégé project: A look back and a look forward, AI
Matters 1 (4) (2015) 4–12. doi:10.1145/2757001.2757003.

[7] A. D. Brucker, B. Wolff, Isabelle/DOF: Design and implementation, in:
P. C. Ölveczky, G. Salaün (Eds.), Software Engineering and Formal
Methods (SEFM), no. 11724 in LNCS, Springer, 2019. doi:10.1007/
978-3-030-30446-1_15.

[8] A. D. Brucker, I. Ait-Sadoune, N. Méric, B. Wolff, Using deep ontologies in
formal software engineering, in: U. Glässer, D. Méry (Eds.), International
Conference on Rigorous State Based Methods (ABZ), no. 14010 in Springer,
Springer-Verlag, 2023. doi:10.1007/978-3-031-33163-3_2.

[9] T. Nipkow, Order-sorted polymorphism in Isabelle, in: G. Huet, G. Plotkin
(Eds.), Workshop on Logical Environments, 1993, pp. 164–188.

[10] T. Nipkow, C. Prehofer, Type reconstruction for type classes, Journal of
Functional Programming 5 (2) (1995) 201–224.

[11] M. Wenzel, The Isabelle/Isar Reference Manual, part of the Isabelle distri-
bution. (2023).

[12] F. Haftmann, T. Nipkow, Code generation via higher-order rewrite systems,
in: M. Blume, N. Kobayashi, G. Vidal (Eds.), Functional and Logic Pro-
gramming, 10th International Symposium (FLOPS), Vol. 6009 of LNCS,
Springer, 2010, pp. 103–117. doi:10.1007/978-3-642-12251-4_9.

32

https://www.commoncriteriaportal.org/
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-96812-4_3
https://isa-afp.org/entries/Isabelle_DOF.html
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-031-33163-3_2
https://doi.org/10.1007/978-3-642-12251-4_9

[13] K. Aehlig, F. Haftmann, T. Nipkow, A compiled implementation of nor-
malisation by evaluation, J. Funct. Program. 22 (1) (2012) 9–30. doi:
10.1017/S0956796812000019.

[14] A. V. Hess, S. Mödersheim, A. D. Brucker, A. Schlichtkrull, Performing
security proofs of stateful protocols, in: 34th IEEE Computer Security
Foundations Symposium (CSF), Vol. 1, IEEE, 2021, pp. 143–158. doi:
10.1109/CSF51468.2021.00006.

[15] T. Nipkow, Functional automata, Archive of Formal Proofs.https://
isa-afp.org/entries/Functional-Automata.html, Formal proof devel-
opment (March 2004).

[16] Eclipse Foundation, ATL – a model transformation technology, https:
//www.eclipse.org/atl/.

[17] Y. A. Ameur, F. Besnard, P. Girard, G. Pierra, J. Potier, Formal spec-
ification and metaprogramming in the EXPRESS language, in: The 7th
International Conference on Software Engineering and Knowledge Engi-
neering (SEKE), Knowledge Systems Institute, 1995, pp. 181–188.

[18] T. Imieliński, W. Lipski, Incomplete information in relational databases, J.
ACM 31 (4) (1984) 761–791. doi:10.1145/1634.1886.

[19] P. Buneman, S. Khanna, W. C. Tan, Why and where: A characterization
of data provenance, in: J. V. den Bussche, V. Vianu (Eds.), Database
Theory - (ICDT), Vol. 1973 of LNCS, Springer, 2001, pp. 316–330. doi:
10.1007/3-540-44503-X_20.

[20] Y. Amsterdamer, D. Deutch, V. Tannen, Provenance for aggregate queries,
in: M. Lenzerini, T. Schwentick (Eds.), Symposium on Principles of
Database Systems, (PODS), ACM, 2011, pp. 153–164. doi:10.1145/
1989284.1989302.

[21] T. J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in:
L. Libkin (Ed.), Symposium on Principles of Database Systems, ACM,
2007, pp. 31–40. doi:10.1145/1265530.1265535.

[22] F. Haftmann, A. Krauss, O. Kuncar, T. Nipkow, Data refinement in Is-
abelle/HOL, in: S. Blazy, C. Paulin-Mohring, D. Pichardie (Eds.), Inter-
active Theorem Proving (ITP), Vol. 7998 of LNCS, Springer, 2013, pp.
100–115. doi:10.1007/978-3-642-39634-2_10.

[23] B. Huffman, O. Kuncar, Lifting and transfer: A modular design for quo-
tients in Isabelle/HOL, in: G. Gonthier, M. Norrish (Eds.), Certified Pro-
grams and Proofs CPP 2013, Vol. 8307 of LNCS, Springer, 2013, pp.
131–146. doi:10.1007/978-3-319-03545-1_9.

[24] Eclipse Foundation, Eclipse threadx, https://adx.io/ (2023).

33

https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1109/CSF51468.2021.00006
https://doi.org/10.1109/CSF51468.2021.00006
https://isa-afp.org/entries/Functional-Automata.html
https://isa-afp.org/entries/Functional-Automata.html
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
https://doi.org/10.1145/1634.1886
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-319-03545-1_9
https://adx.io/

[25] S. Foster and B. Wolff, A Sound Type System for Physical Quan-
tities, Units, and Measurements, https://www.isa-afp.org/entries/
Physical_Quantities.html, Accessed: 2023-03-02 (2022).

[26] M. Brecknell, D. Greenaway, J. Hölzl, F. Immler, G. Klein, R. Kolanski,
J. Lim, M. Norrish, N. Schirmer, S. Sickert, T. Sewell, H. Tuch, S. Wimmer,
Autocorres2, Archive of Formal Proofs,https://isa-afp.org/entries/
AutoCorres2.html, Formal proof development (April 2024).

[27] A. E. Haxthausen, J. Peleska, Formal development and verification of a dis-
tributed railway control system, IEEE Trans. Software Eng. 26 (8) (2000)
687–701. doi:10.1109/32.879808.

[28] S. Foster, Y. Nemouchi, M. Gleirscher, R. Wei, T. Kelly, Integration of for-
mal proof into unified assurance cases with Isabelle/SACM, Formal Aspects
Comput. 33 (6) (2021) 855–884. doi:10.1007/s00165-021-00537-4.

[29] N. Méric, An Ontology Framework For Formal Libraries, Theses, Université
Paris-Saclay (Jul. 2024).

[30] M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and
frame-based languages, J. ACM 42 (4) (1995) 741–843. doi:10.1145/
210332.210335.

[31] B. Venners, J. Gosling, Visualizing with JavaDoc, https://www.artima.
com/articles/analyze-this#part3 (2003).

[32] Oracle Corp., The Java API Documentation Generator, https://docs.
oracle.com/javase/1.5.0/docs/tool (2011).

[33] The OCaml Manual - Release 5, https://v2.ocaml.org/manual/
ocamldoc.html (2022).

[34] S. J. T. Fotso, M. Frappier, R. Laleau, A. Mammar, Modeling the hy-
brid ERTMS/ETCS level 3 standard using a formal requirements engi-
neering approach, in: Abstract State Machines, Alloy, B, TLA, VDM,
and Z (ABZ), Vol. 10817 of LNCS, Springer, 2018, pp. 262–276. doi:
10.1007/978-3-319-91271-4_18.

[35] I. Mendil, Y. Aït-Ameur, N. K. Singh, D. Méry, P. A. Palanque, Standard
conformance-by-construction with Event-B, in: Formal Methods for Indus-
trial Critical Systems (FMICS), Vol. 12863 of LNCS, Springer, 2021, pp.
126–146. doi:10.1007/978-3-030-85248-1_8.

[36] Archive of Formal Proofs, https://afp-isa.org, Accessed: 2022-03-15
(2022).

[37] M. Kohlhase, F. Rabe, Experiences from exporting major proof assis-
tant libraries, J. Autom. Reason. 65 (8) (2021) 1265–1298. doi:10.1007/
s10817-021-09604-0.

34

https://www.isa-afp.org/entries/Physical_Quantities.html
https://www.isa-afp.org/entries/Physical_Quantities.html
https://isa-afp.org/entries/AutoCorres2.html
https://isa-afp.org/entries/AutoCorres2.html
https://doi.org/10.1109/32.879808
https://doi.org/10.1007/s00165-021-00537-4
https://doi.org/10.1145/210332.210335
https://doi.org/10.1145/210332.210335
https://www.artima.com/articles/analyze-this#part3
https://www.artima.com/articles/analyze-this#part3
https://docs.oracle.com/javase/1.5.0/docs/tool
https://docs.oracle.com/javase/1.5.0/docs/tool
https://v2.ocaml.org/manual/ocamldoc.html
https://v2.ocaml.org/manual/ocamldoc.html
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-030-85248-1_8
https://afp-isa.org
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0

[38] T. Nipkow, S. Roßkopf, Isabelle’s metalogic: Formalization and proof
checker, in: A. Platzer, G. Sutcliffe (Eds.), Automated Deduction (CADE),
Springer, 2021, pp. 93–110.

[39] A. D. Brucker, B. Wolff, Isabelle/DOF, Zenodo (Aug. 2019). doi:10.5281/
zenodo.3370482.

35

https://doi.org/10.5281/zenodo.3370482
https://doi.org/10.5281/zenodo.3370482

	1 Introduction
	1.1 Editing Annotated Documents
	1.2 Novelty No. 1: Term Contexts
	1.3 Novelty No. 2: Polymorphism for Parametric Ontological Classes
	1.4 Improvements over Earlier Work

	2 Background
	2.1 Isabelle and HOL
	2.2 The Isabelle/DOF Framework

	3 A Guided Tour through ODL
	3.1 The Effect of ODL Specifications in Isabelle/DOF
	3.2 Term-Evaluations in Isabelle
	3.3 The Previewer

	4 Term-Context Support, Invariants, and Queries in DOF
	5 Proving Morphisms on Ontologies
	6 Order-sorted Polymorphic Classes for Ontologies
	6.1 Modeling ``Provenance'' in ODL
	6.2 An Access-Control Model for Integrated Isabelle/HOL Documents

	7 A Domain-specific Ontology: CENELEC 50128
	8 An Example Instance: The Distributed Interlocking System.
	9 Discussion
	10 Related Work
	11 Conclusion and Future Work

