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Invariant Curves and Explosion of Periodic Islands in Systems of Piecewise
Rotations∗

Peter Ashwin† and Arek Goetz‡

Abstract. Invertible piecewise isometric maps (PWIs) of the plane, in spite of their apparent simplicity, can
show a remarkable number of dynamical features analogous to those found in nonlinear smooth
area preserving maps. There is a natural partition of the phase space into an exceptional set, E ,
consisting of the closure of the set of points whose orbits accumulate on discontinuities of the map,
and its complement.

In this paper we examine a family of noninvertible PWIs on the plane that consist of rotations
on each of four atoms, each of which is a quadrant. We show that this family gives examples of
global attractors with a variety of geometric structures. On some of these attractors, there appear
to be nonsmooth invariant curves within E that form barriers to ergodicity of any invariant measure
supported on E . These invariant curves are observed to appear on perturbations of an “integrable”
case where the exceptional set is a union of annuli and it decomposes into a one-dimensional family
of interval exchange maps that may be minimal but nonergodic. We have no adequate theoretical
explanation for the curves in the nonsmooth case, but they appear to come into existence at the
same times as an explosion of periodic islands near where the interval exchanges used to be located.
We exhibit another example—a piecewise rotation on the plane with two atoms that also appears
to have nonsmooth invariant curves.
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1. Introduction. Piecewise isometries are natural generalizations of interval exchange
transformations (IETs) and interval translation maps and are of current interest because
they arise in a number of applications. These include signal processing [13], rounding and
discretization effects [30], Hamiltonian systems [27, 28], and printing processes [2]. Roughly
speaking, a piecewise isometry is a map that is simply an isometry on each of a number of
disjoint domains. More precisely, suppose that T : M → M is an invertible map of a region
M ⊂ C to itself such that for some partition of M into open disjoint polygons Pi, T is an
orientation preserving isometry on each Pi. In such cases we say T is a piecewise isometry
map (PWI).

If we consider the zero measure set given by the union E of all preimages of the set of
discontinuities D, then its closure E (which may be of positive measure) is referred to as the
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exceptional set for the map. The complement of the exceptional set is called the regular set
for the map and consists of disjoint polygons or disks that are periodically coded by their
itinerary through the atoms of the PWI. In the case that T is noninvertible, there may exist
a global attractor. We say there is a global attractor M̃ if this bounded set is the union
of accumulation points of all forward trajectories. Note that M̃ need not be a finite-sided
polygon even if all the Pi are such.

It is difficult to show the existence of and to characterize all but the simplest global at-
tractors for piecewise isometries. One of the aims of this paper is to highlight some interesting
dynamical and geometric examples of global attractors in the hope that this will contribute
to an understanding of the richness of the general case.

We do this by introducing a family of examples of piecewise isometries with four convex
(unbounded) atoms that are the standard quadrants of the complex plane. For this family of
maps we find numerical evidence of a number of interesting effects. We have found examples
of global attractors with many different connected components (possibly a countably infinite
number) and with a range of different geometric forms of boundary—for example, polygons,
circles, regions with a mixture of straight and curved boundaries, smooth and possibly non-
smooth curves, and multiply connected regions.

We consider a special family of “integrable” examples where the exceptional set E has an
open interior but is nonergodic. On this E the dynamics reduces to a family of nontrivial
IETs on a union of one-dimensional curves. The dynamics on these curves may be minimal
but nonuniquely ergodic. We observe the following:

• For general perturbations, the family of exchanges breaks up to form a large number
of periodic islands.

• For a specific family of perturbations, there appear to be invariant curves within E
that are Lipschitz, but not differentiable, embeddings of curves. We refer to these as
nonsmooth invariant curves.

• The nonsmooth invariant curves appear to come in discrete families and appear to be
limits of sequences of periodic disks.

• The global attractor in the “integrable” case is a union of two disks up to a set of zero
measure (see Theorem 4.5).

• For small perturbations from the “integrable” case, the global attractor becomes much
more complicated. For general perturbations, the global attractor appears to become a
totally disconnected union of disks, whereas more complicated connected components
appear in cases where there are nonsmooth invariant curves in the exceptional set.

This break-up of an “integrable” case with smooth invariant curves to a union of periodic
islands and invariant curves is highly reminiscent of area preserving twist maps [24]. The non-
smooth invariant curves form barriers to the existence of dense orbits within the exceptional
set. There has been some work on piecewise versions of the standard area preserving map;
for example, see [9, 11, 31]. In certain cases these can be reduced to piecewise isometries [4];
we note that only discontinuous piecewise isometries can have nontrivial dynamics.

Such invariant curves were first noticed for a piecewise isometry in [3] at an isolated
parameter value and in a rather small part of phase space. In this article we note a number
of contrasts to the curves noted in [3]. First, the curves seem to appear over a large range of
parameters and in particular are not limited to an isolated value of the rotation parameters.
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Second, the curves can enclose a large proportion of the global attractor; in cases where they
exist they seem to allow the possibility of highly complicated dynamics on the global attractor.
Finally, we can observe that these curves appear on perturbations of circles on which there is
nontrivial interval exchange dynamics.

A special case of the class of systems investigated here, for which the parameters are multi-
ples of π/5, reduces to the “pentagon map” studied in [6] for a return map where the rotation
angles are multiples of π/5. This latter system was found to have a natural renormalization
scheme that divides phase space into a union of polygons filled with periodic points and a set
foliated with a continuum of lines on which there are interval exchanges.

The rest of this paper is structured as follows. Section 2 defines the piecewise isometry T
on M = C with atoms that are quadrants parametrized by two angles α0, α1, two rotation
centers h0, h1, and two translations t0 and t1. For the special case where h0 = h1 and
t0 = t1 = 0, we characterize the dynamics of this map and show that its regular set is a
union of two disks contained within a global attractor that consists of two larger disks. Its
exceptional set is then a union of annuli. In section 3 we perturb the map so that h0 �= h1,
and we observe creation of chains of periodic islands within the exceptional set. These appear
to be interleaved between nonsmooth invariant curves. Although we are not able to prove
a continuation of any invariant sets within the exceptional set, some features do appear to
persist. We also observe and discuss the appearance of invariant “fans” within the global
attractor.

Section 4 shows (in Theorem 4.2) that the mapping has a global attractor that is geomet-
rically simple (a union of two disks) in the special case of the parameters where h0 = h1 and
the αi/π are equal and irrational.

In section 5 we revisit a special case of the map introduced by Goetz in [14, 15, 16, 17,
18, 19] of the plane to itself with two half-plane atoms. For parameters such that the global
attractor is a rhombus, we also find instances of nonsmooth invariant curves from numerical
observations. The map arises as a local return map for a piecewise affine rotation on a torus
also possessing a nonsmooth invariant curve. This also hints at the richness of the dynamics
for the piecewise affine map studied, for example, in [1, 20] for an irrational value of the
rotation parameter. We continue by discussing a number of conjectures and comments on the
dynamics within the exceptional set. This includes a symbolic characterization of a subset
contained within the global attractor that appears to contain most of the dynamics of interest.

2. A planar piecewise isometry with four quadrant atoms. We define a disjoint partition
of C into the usual four quadrants (Figure 2.1 (a))

P0 = {z | Re(z) > 0, Im(z) ≥ 0},
P1 = {z | Re(z) ≤ 0, Im(z) > 0},
P2 = {z | Re(z) < 0, Im(z) ≤ 0},
P3 = {z | Re(z) ≥ 0, Im(z) < 0}

(we will later disregard any points that land on the discontinuities, including z = 0) and four
isometries

T0(z) = eiα0(z − s0) + s0,
T1(z) = eiα1(z − s1) + s1,
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T2(z) = eiα0(z + 1 + t0 − s0) + s0,
T3(z) = eiα1(z − 1 + t1 − s1) + s1,

where the angles of rotations α0, α1 ∈ [0, 2π), the centers s0, s1 ∈ C, and the translations
1 + t0,−1 + t1 ∈ R are parameters. We consider only ti real to ensure that the map is
invertible in a neighborhood of the si that crosses the real axis. We define the piecewise
isometry T : C → C (illustrated schematically in Figure 1) by

T (z) = Tk(z) ⇔ z ∈ Pk.(2.1)

We consider the case where

s0 =
1

2
+ ih0, s1 = −1

2
+ ih1,(2.2)

and h0, h1 ∈ R. This gives a family of piecewise isometries with six real parameters.1 The
system (2.1) clearly extends to more general cases, and some of these are conjugate under
similarities, but we do not attempt a full classification of the maps; rather, we are concerned
with highlighting several features of interest that we believe may by “typical” for families of
piecewise isometries.

2.1. The “integrable” case h0 = h1 = h, t0 = t1 = 0. In this section we state and
prove results for a special case when the centers of rotations are in the upper half-plane and
they are symmetric with respect to the imaginary axis; see Figure 2(a). In this case, the
dynamics is determined by three real parameters: the angular parameters α0 and α1, and h.
We will assume that h is nonnegative.

Define the circles Cr,0 = {z : |z − ih− 1
2 | = r}, Cr,1 = {z : |z − ih + 1

2 | = r}, and let

Cr = Cr,0 ∪ Cr,1.(2.3)

Under these assumptions on the parameters, we will see that Cr is invariant for r ≤ 1
2 ; more

precisely, we have the following.
Lemma 2.1. For the parameters of the “integrable” case h0 = h1 = h > 0, t0 = t1 = 0, the

following hold.
• If r < min(1

2 , h), then T (Cr,0) = Cr,0, T (Cr,1) = Cr,1, and each is simply a rotation by
αi about si.

• If h < 1
2 and h < r < 1

2 , then T (Cr) = Cr, but the individual Cr,i are not invariant.
This lemma enables one to characterize the dynamics of all points z inside C 1

2
and has

as a consequence that all initial conditions in this region have ω-limit sets with dimension
at most 1. The dynamics on the pair of circles Cr is conjugate to an IET. This exchange is
equivalent to the interval exchange Gr on [0, 4π) defined by

Gr(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(x + α0) if x ∈ [0, 2π) and h + r sin(x) > 0,
g(x + α1) + 2π if x ∈ [2π, 4π) and h + r sin(x) > 0,
g(x + α1) + 2π if x ∈ [0, 2π) and h + r sin(x) < 0,
g(x + α0) if x ∈ [2π, 4π) and h + r sin(x) < 0,

(2.4)

1An interactive on-line simulation tool and movies illustrating the dynamics of this map are available at
http://dynamics.sfsu.edu/siam/.

http://dynamics.sfsu.edu/siam/
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Figure 1. A schematic illustration of the action of T with atoms given by the four quadrants; we have
s0 = 1

2
+ ih0 and s1 = − 1

2
+ ih1. The map T takes P0 and rotates it by an angle α0 about s0, and it rotates

P1 by α1 about s1. The map first translates P2 by the real number 1 + t1 and then rotates the image by α1

about s0. Finally, T translates P3 by −1 + t0 and then rotates the image by α1. Note that ti real means that
T (P0) ∩ T (P2) = T (P1) ∩ T (P3) = ∅.

where g(x) = x for x ∈ [0, 2π) and g is 2π-periodic. As the reader may verify, the dynamics
of Gr on [0, 4π) and T on Cr is explicitly conjugate as follows.

Lemma 2.2. For 0 < r < min(h, 1
2), the map T on Cr is conjugate to Gr via the map

c : [0, 4π) → C:

c(x) =

{
1
2 + ih + r exp ix : if x ∈ [0, 2π),
−1

2 + ih + r exp ix : if x ∈ [2π, 4π).

We now consider the dynamics of the IET Gr. We say that αi are rationally independent
of 2π if there are no solutions of

k0α0 + k1α1 = 2π�
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for k0, k1 ∈ Z+, and � ∈ Z; in particular, αi/π must both be irrational in this case. Note that
an orbit of Gr taken modulo [0, 2π) will consist of a composition of rotations.

Now define ξn to be the rotation undergone on the tangent space to a point starting at z0

under the action of T (i.e., ξn = arg(DTn(z0)) chosen as in (2.1)). We define upper and lower
rotation numbers associated to the trajectory of z0 under T by

R(z) = lim inf
n→∞

ξn
n
, R(z) = lim sup

n→∞

ξn
n
.

If these are equal, we refer to both as the rotation number R(z).

Lemma 2.3. Suppose (without loss of generality) that α0 < α1; then for all z ∈ C

α0 ≤ R(z) ≤ R(z) ≤ α1.

If z ∈ Cr and IET Gr is uniquely ergodic, then

R(z) =
α0 + α1

2

for almost all z.

Proof. This comes by noting that the action of Tn on a tangent vector is rotation k times
by α0 and (n− k) times by α1, where 0 ≤ k ≤ n. In the case of unique ergodicity, this must
be with respect to a normalized Lebesgue measure on Gr that assigns equal measure to each
of Cr,0 and Cr,1. Integration with respect to this measure gives the second result.

Remark 1. Consider the “integrable” case (t0 = t1 = 0 and h0 = h1 = h) such that
0 < h < 1

2 .

• If r < h, then Gr is independent of r and consists of rotations on the two invariant
intervals [0, 2π) and [2π, 4π).

• If h = 0, then Gr is independent of r.
• If αi = piπ/qi, then all orbits of Gr are periodic with period at most twice the least

common multiple of q1 and q2.
• If α0 and α1 are rationally independent of 2π, then there are no periodic orbits except

when r = 0. To see this, observe that a periodic orbit x must satisfy Gn
r (x) = x+2π�.

Hence x + k0α0 + k1α1 = x + 2π�, which has no solution for αi and 2π rationally
independent.

For h < r < 1
2 , the dynamics of Gr is a nontrivial interval exchange on two circles with

four intervals. We observe that these maps parametrized by α0, α1, and r/h contain some
surprising dynamics that in general is not fully understood.

If we let α0 = α1 = α, our system can be naturally conjugated to Z2 skew products over
irrational rotations studied first by Veech [29] and also by Keynes and Newton [22]. Define

β = min(0, 2 arccos(h/r))

and the map fα,β : [0, 2π) × {0, 1} 
→ [0, 2π) × {0, 1} by

(x, i) 
→ (x + α (mod 2π), i + χ[0,β)(x) (mod2)),(2.5)
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where χA(x) is the indicator function for the set A. The map fα,β is conjugate to Gr via
π : [0, 2π) × {0, 1} → [0, 4π) given by

π(x, k) = x + 2πk − (π + β)/2 (mod 4π).

We now summarize a number of remarkable results that have been obtained for this family
of maps. An irrational number x ∈ (0, 1) is said to have bounded quotients if there is a K such
that

x =
1

a1 + 1
a2+···

for positive integers a1, a2, . . . , where ai < K for all i. The first results were obtained by
Veech [29].

Theorem 2.4. Assume that α/π �∈ Q and let B denote the uncountable Lebesgue zero mea-
sure set of all numbers θ ∈ (0, 2π) such that θ

2π has bounded partial quotients.
1. Minimality [29]. If β/α �∈ Q, then the map fα,β is minimal.
2. Unique ergodicity for a residual set [29]. For all α ∈ B, fα,β is uniquely ergodic.
3. Nonunique ergodicity [29]. For all α �∈ B, there exist uncountably many β’s such that

fα,β is not uniquely ergodic.
Complementary results have been obtained for fixed β by Masur and Smillie [26] and more

recently by Cheung and Boshernitzan [12].
Theorem 2.5 (see [25]). Fix β. The set of all α such that fα,β is not ergodic has Hausdorff

dimension at most 1/2.
Theorem 2.6 (see [12]). Fix β ∈ B ( β

2π with bounded quotients). The set of α such that
fα,β is not ergodic has Hausdorff dimension precisely 1/2.

Theorem 2.7 (see [12]). The set of all α for which fα,β is not uniquely ergodic has zero
Hausdorff dimension.

3. Examples of dynamics and global attractors. If we perturb from the “integrable” case
where the rotation centers have the same height and all dynamics is contained within one-
dimensional invariant sets, we find a qualitative difference in dynamics even when h0 ≈ h1.
Figure 2 shows some trajectories for ten randomly selected points on the exceptional set within
global attractor for α0 = α1 = 1 and t0 = t1 = 0. We show (a) and (b) (h0, h1) = (0.25, 0.25),
(c) (0.25, 0.23), and (d) (0.25, 0.2). Details of the invariant sets in (c) and (d) are shown
in Figure 3(a) and (b), respectively. The trajectories show a high degree of complexity and
some appear to enclose high period island chains. Others appear to be nonsmooth invariant
circles—in particular, the trajectory of Figure 3(a) fourth from the bottom and the trajectory
of Figure 3(b) third from the bottom. In all cases the nonsmooth invariant curves appear
as barriers to movement of trajectories across them and in particular to ergodicity of the
exceptional set.

To observe the appearance of dynamically fine structure as we perturb away from the
“integrable” case, the movie 60539 01.mpg illustrates an animated scan through parameter

space given by fixing α0 = α1 = −2πγ, where γ =
√

5−1
2 is the golden mean, t0 = t1 = 0,

and we linearly interpolate (h0, h1) along paths first from (0, 0) to (0.125, 0) and then from
(0.125, 0) to (0.125, 0.25).2 The white regions denote points that are not in the global attractor.

2Individual frames can be viewed on http://dynamics.sfsu.edu/siam/.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60539_01.mpg
http://dynamics.sfsu.edu/siam/
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Figure 2. (a) The shaded region shows the global attractor for T with parameters α0 = α1 = 1, (h0, h1) =
(0.25, 0.25), and t0 = t1 = 0; the darker shaded area is the exceptional set E. (b) Ten trajectories in the
exceptional set of the global attractor in (a) are shown; each trajectory moves according to an IET on the union
of circles. (c) A near-integrable case with (h0, h1) = (0.23, 0.25) and the same initial conditions. Some of the
outer circles in (b) have broken into chains of periodic islands; one notes the presence of apparent nonsmooth
invariant curves close to the previous circles. (d) A further perturbation with (h0, h1) = (0.20, 0.25); for (b)–(d)
106 iterates were taken for ten initial conditions (x, 10−10) for x chosen randomly in the range [0.2, 0.8] + 0i.
In (a)–(d) the surrounding boxes show the region [−1, 1] + i[−1, 1] of the complex plane.

The colors are assigned to points depending on their relative frequency of visiting one of
the quadrants, namely, according to an approximated value of

lim sup
N→∞

#{Tnx ∈ P2 : 1 ≤ n ≤ N}
N

.
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Figure 3. Figures (a) and (b) show details of Figure 2 (c) and (d) in the area [0.4, 0.6]+ i[−0.2, 0.0]. Both
images show the trajectories of ten initial conditions chosen as in Figure 2. Observe the presence of “nonsmooth
invariant curves” and “stochastic layers” that are full of periodic islands approximately following the line of
the invariant circles for the case h0 = h1.

Observe that an orbit of a periodic (or eventually periodic) cell is thus shaded using one color.
This coloring scheme allows one to clearly identify and distinguish different periodic cells.

The “integrable” cases (0, 0) occur at the start of the movie and (0.125, 0.125) near the
end of the movie. In both cases the global attractor consists of a simple pair of disks that are
tangent at the imaginary axis. Observe the creation of very complicated global attractors on
moving away from an “integrable” case. The periodic islands can be observed to be ejected
by the global attractor to form extra connected components that are then gradually reduced
in size by colliding with the discontinuity on the imaginary axis.

Figure 4 illustrates the structure of the global attractor for h0 = 0.05, h1 = 0.0, and
α0 = α1 = 2πγ. The panels (a)–(d) show successive enlargements of regions of the images.
We observe a very detailed structure of island chains. Figure 5 shows a dozen trajectories,
iterated up to 106 times, within the global attractor.

The movie 60539 02.mpg shows an animated zoom into the structure shown in Figure 4
(note that the sense of rotation is opposite to that in 60539 01.mpg). Observe, in particular,
the boundary of the global attractor that consists of several components—a main compo-
nent with a very complicated boundary and a number of disks. Observe also that the main
component does not appear to be simply connected; instead it encloses a number of holes.

3.1. Invariant fans within the global attractor. At one point in the movie sequence
60539 01.mpg one can observe the brief appearance of a number of red “fans.” These are
reproduced in Figure 6(a) for the particular case α = −2πγ, t0 = t1 = 0, h0 = 0.07203725,
and h1 = 0. The fans exchange according to the permutation

E 
→ A 
→ H 
→ D 
→ C 
→ G 
→ B,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60539_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60539_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60539_01.mpg
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(a) (b)

(c) (d)

(a) curves/pix1.gif, (b) curves/pix50.gif, (c)curves/pix90.gif, (d) curves/pix10000.gif

Figure 4. (a)–(d) show successive details of the dynamics on the global attractor for parameters α0 =
α1 = 2πγ, t0 = t1 = 0, h0 = 0.05, and h1 = 0. The coloring corresponds to the average frequency of visits
of an orbit to an upper-left quadrant. All orbits with the same eventually periodic itinerary are colored in one
color. Observe the presence of a highly complex boundary on the global attractor, and observe that the attractor
appears to contain a number of holes on a small scale. Clicking on the above images displays the associated
movie (60539 02.mpg).

and then B ∪ F is mapped onto E ∪ F .

Hence the first return map to E ∪ F consists of a simple exchange with rotation, giving
orbits on a continuum of invariant arcs that foliate the fan E ∪ F . The value of h0 can be
found by noting that the isometry T3(z) has a fixed point on the boundary of its domain of
definition, namely, at z̃1 = −0.1944i. The isometry

T0 ◦ T2 ◦ T1 ◦ T1 ◦ T3 ◦ T0 ◦ T2

is also defined on some region as can be verified from the Figure 6(b,c), and this has a fixed
point at z̃2 = −(1.322389h0 + 0.09914)i. From this it can be determined that the two fixed
points coincide (at z̃ = z̃1 = z̃2) when h0 = 0.07203725.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60595_02.mov


INVARIANT CURVES FOR PIECEWISE ROTATIONS 447

(a) (b)

Re(z)

Im(z)

Re(z)

0.5+0.1i

Figure 5. Trajectories of T at same parameters as in Figure 4. We show trajectories of a small selection
of initial conditions; each color signifies a different trajectory. (a) shows the square [−1, 1] + i[−1, 1], while (b)
shows [0.3, 0.7] + i[−0.2, 0.2]. Observe the presence of “nonsmooth invariant curves” and “stochastic layers”
that are not so obvious in Figure 4.

Proposition 3.1 (invariant fans). Let h0 = 0.07203725, h1 = 1, t0 = t1 = 0, and α0 = α1 =
−2πγ. Let

F = {z ∈ C | π/2 ≥ arg(z − z̃) > −0.4790168, |z − z̃| < 0.1944},
E = {z ∈ C | 3.9707596 ≥ arg(z − z̃) > π/2, |z − z̃| < 0.1944}

be as illustrated in Figure 6(b). Then the return map of T to the union of E ∪ F acts as an
exchange on the two fans E and F :

TE∪F =

{
T0 ◦ T2 ◦ T1 ◦ T1 ◦ T3 ◦ T0 ◦ T2 if z ∈ E,

T3 if z ∈ F.

As a consequence, there is a dense set of preimages of the discontinuities within the set of
fans. To our knowledge this is the first example in the literature of a piecewise isometry that
has open sets within the exceptional set with a mixture of curved and straight boundaries.
Previous examples in [5, 6] are bounded by polygons.

3.2. Persistence of nonsmooth invariant curves. Previous work on the dynamics of
piecewise isometries has noted that they can bear close resemblances to Hamiltonian (area
preserving) dynamics [27, 28]; see [24]. Our numerical experiments suggest that the analogy
may be even closer than previously suspected. Perturbations from an “integrable” case ε = 0
are typically associated with the appearance of rings of very small periodically coded islands.
This behavior is analogous to that given by the Poincaré–Birkhoff theorem for smooth area
preserving maps. However, we note that there are no periodic points for any Gr (except
possibly on the map discontinuities), and Poincaré–Birkhoff cannot be applied in this context.
Moreover, for many small perturbations of ε it appears that some of the invariant curves on
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Figure 6. An example that occurs in 60539 01.mpg has an exceptional set that contains open “fans” for
α0 = α1 = −2πγ, t0 = t1 = h1 = 0, and h0 = 0.07203725. There is an exchange on the fans in (a) labeled A–H
in (b). These are mapped onto themselves by the map T as shown in (c) which leads to a first return on E ∩B
that is conjugate to a rotation on a continuum of concentric arcs.
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Figure 7. Plots showing probability P of escape from a neighborhood of the period-one cell centered at
s0 = 1

2
+ ih0. We set αi = 1, (h0, h1) = (0.005, 0), t1 = 0 and vary t0. Twenty random initial conditions are

chosen just outside the period-one cell, and the proportions that escape to a distance at least 0.1 from the cell
are plotted. Observe that, for increasing length of trajectory, if t0 �= 0, then all trajectories escape, while for
t0 = 0 none escape.

which IETs occur may actually persist to become “nonsmooth” invariant curves. This is
analogous to the persistence of invariant curves for smooth area preserving maps as predicted
by the Kolmogorov–Arnol’d–Moser theorem.

We have tried to detect the appearance of nonsmooth invariant curves near the period-one
cell by studying a set of twenty trajectories started at random points on the discontinuity just
outside a period-one cell. If the trajectory on its return to P0 moves to an order-one distance
from the period-one cell, then we say it escapes. Figure 7 shows that, fixing t1 = 0, the
curves appear to exist only in the case t0 = 0. Other numerical experiments suggest that the
invariant curves can exist for a set of parameter values for (2.1), where t0 = t1, i.e., for a set
of parameter values of codimension at most one.

We are at a loss as to how to explain these invariant curves, but because of Theorem 2.4
and the discussion immediately thereafter, we believe they may be connected to the break-up
of minimal nonergodic interval exchanges that appear in the “integrable” case. The fact that
they appear for some parameter values but not for others may be associated with a symmetry
of the map that we have not been able to identify as yet.

4. Global attractors for the “integrable case” of the quadrant map. In this section
we show that for all choices of s0, s1 and angles α = α0 = α1 incommensurate with π, the
piecewise rotation T has a global attractor (Theorem 4.2). Moreover, if the heights of the
centers of rotations are the same (s0 = 1

2 + ih, s1 = −1
2 + ih), then up to a set of measure

zero the attractor is the union of two disjoint disks.



450 P. ASHWIN AND A. GOETZ

Definition 4.1 (global attractor). The global attractor for the map T : X 
→ X is

M̃ =
⋃
x∈X

ω(x),

where ω(x) denotes the set of accumulation points of the T -orbit of x. The set M̃ is the
bounded global attractor for T if M̃ is bounded.

Note that our definition of global attraction is slightly unusual; this is simply for conve-
nience in the results below. In particular, the maximal Milnor attractor (the smallest compact
set containing the ω-limit set of all full measure sets) is contained within the closure of this
set.

Remark 2. Observe that since T is continuous on the interior of each quadrant and since
we ignore a countable union of lines whose forward orbits are the boundaries of the quadrants,
the set M̃ is invariant under T except for a set of zero measure.

In the subsequent results we use the fact that map T has a bounded global attractor if
and only if that there is a constant K > 0 such that

lim sup
n→∞

|Tnx| < K for all x.

Theorem 4.2 (existence of a bounded attractor). For all choices of s0, s1, α = α0 = α1

incommensurate with π and t0 = t1 = 0, the piecewise rotation T has a bounded global
attractor.

In order to prove Theorem 4.2 we use a general result presented in [8]. Since α = α0 = α1

is incommensurate with π, at infinity, the piecewise rotation essentially behaves as a uniquely
ergodic irrational rotation on the circle. This is used in the computation of the average drift
or attraction of an orbit to the origin. Computations in [8] yield that the piecewise rotation
is globally attracting if ∫ 2π

0
lim

R→∞, x=Reθi
(|Tx| − |x|) dθ < 0.(4.1)

The same technical estimates apply here in the case of the map T with four atoms. Hence
in order to prove Theorem 4.2 it suffices to show that the above integral is negative. Actually,
as the following computation illustrates, it turns out that the integral (4.1) is constant; and
it does not depend on the angle of rotation α, nor does it depend on the position of s0 and
s1. The computation is divided into two lemmas.

Lemma 4.3. For i = 1, . . . , 4 and any θ, if x = Reθi, then

lim
R→∞

(|Tix| − |x| − fi(θ)) = 0,(4.2)

where

fi(θ) =
1

2

(
ciσ

−1(ρ−1 − 1) + ciσ(ρ− 1)
)
,

and σ = eθi, ρ = eαi, and numbers ci denote the centers of rotations for Ti.
We remark that the ci are given by

c0 = s0, c1 = s1, c2 = s0 +
ρ

1 − ρ
, c3 = s1 −

ρ

1 − ρ
.(4.3)
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Proof of Lemma 4.3. Note that

|Tx| = |ρ(Rσ − ci) + ci| = |ρσ|
∣∣∣R + ciσ

−1(ρ−1 − 1)
∣∣∣ =

∣∣∣R + ciσ
−1(ρ−1 − 1)

∣∣∣ .(4.4)

The lemma follows from the fact that for any z ∈ C

lim
R→∞

(|R + z| −R− Re(z)) = 0(4.5)

by substituting z = ciσ
−1(ρ−1 − 1) in (4.5).

Lemma 4.4. Let f(θ) be defined as follows:

f(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(θ) if 0 ≤ θ < π
2 ,

f1(θ) if π
2 ≤ θ < π,

f2(θ) if π ≤ θ < 3π
2 ,

f3(θ) if 3π
2 ≤ θ < 2π.

(4.6)

Then ∫ 2π

0
f(θ)dθ = −2.

Proof. First we compute the antiderivative

Fi(θ) =

∫
fi(θ)dθ = i

2 (ρ− 1)
(
σ ci + σ−1ρ−1ci

)
.

The definite integral can then be computed as follows:

∫ 2π

0
f(θ)dθ =

(
F0(

π
2 ) − F0(0)

)
+

(
F1(π) − F1(

π
2 )

)
+(F2(

3π
2 ) − F2(π)) + (F3(2π) − F3(

3π
2 ))

= i+1
2 (ρ− 1)

(
s0 − is1 − c2 + ic3 − iρ−1(s0 − is1 − c2 + ic3)

)
= i+1

2 (ρ− 1)

((
(i+1)ρ
ρ−1

)
− iρ−1 (i+1)ρ

ρ−1

)
= −2.

In the penultimate line of the above computation we have used (4.3). Since
∫ 2π
0 f(θ)dθ =

−2 < 0, the piecewise rotation T is globally attracting. This concludes the proof of
Theorem 4.2.

Remark 3. One may define a “rate of repulsion from infinity” as follows:

rate(x) = lim
N→∞

lim
|x|→∞

|TNx| − |x|
N

.

We have computed that rate(x) = 1
2π

∫
f(θ) dθ = −1/π is constant for large enough x.

Theorem 4.2 states that the set of accumulation points for the piecewise rotation T is
bounded. As illustrated in previous sections of this paper, in general the accumulation set is
mysterious and complicated. However, in the particular “integrable” case with s0 = 1/2 + hi,
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s1 = −1/2+hi, where h ∈ R , we are able to determine precisely that all points are attracted
to the invariant set Ω = D(s0, 1/2) ∪ D(s1, 1/2) ∪ Z, which is the union of two unit disks
centered at s0 and s1, respectively, and a set Z of zero measure.

Theorem 4.5 (global attractor, integrable case). Let s0 = 1/2 + hi, s1 = −1/2 + hi, t0 =
t1 = 0, and α0 = α1 = α with α incommensurate with π. Then the global attractor for T is

Ω = D(s0, 1/2) ∪D(s1, 1/2) ∪ Z,

where Z has zero (two-dimensional) Lebesgue measure.
Proof. The proof consists of three parts. First, observe that every point x in D(s0, 1/2)∪

D(s1, 1/2) is an accumulation point for the orbit of x. This is because the map restricted to
the two circles ∂D(s0, |x− s0|) and ∂D(s1, |x− s1|) is conjugate to an interval exchange and
all except finitely many points are recurrent for any interval exchange [21].

Next, define the “Lyapunov” function L(x) = min{|s0 − x|, |s1 − x|} for x ∈ C. We wish
to show that for all x �∈ Ω,

L(Tx) ≤ L(x).(4.7)

Since on P0, T acts as a rotation about s0, it follows that for all x ∈ P0

L(Tx) = min{|s0 − Tx|, |s1 − Tx|}
= min{|s0 − x|, |s1 − Tx|} ≤ |s0 − x| = L(x).

(4.8)

Similarly, if x ∈ P1, L(Tx) ≤ L(x) since s0 and s1 are symmetric with respect to the imaginary
line. Suppose that x ∈ P2. Since T acts on P2 as a translation by the unit, 1 = s0−s1, followed
by the rotation about s1,

L(Tx) = min{|s0 − Tx|, |s1 − Tx|}
= min{|s0 − ρ(x− s1) − s0|, |s1 − Tx|}
= min{|s1 − x|, |s1 − Tx|} ≤ |s1 − x| = L(x).

(4.9)

Similarly, if x ∈ P3, then one can verify that L(Tx) ≤ L(x). This means that {L(Tnx)}n≥0

is nondecreasing, bounded below, and hence has a limit as n → ∞. Consider any x and let
R = limn→∞ L(Tnx); then necessarily ω(x) ⊂ L−1(R).

The second part of the proof aims to show that the set of recurrent points on L−1(R) has
zero Lebesgue measure for almost all R > 1

2 . Suppose that R > 1
2 and define

E(R) := ((P0 ∪ P3) ∩ ∂D(s0, rx)) ∪ ((P1 ∪ P2) ∩ ∂D(s1, rx)) = L−1(R).

Geometrically, the set E is a union of arcs, meeting at two points on the imaginary axis for
R > 1

2 and resembling a “pair of spectacles” when R = 1
2 . Note that L−1(R) = CR (2.3) for

R ≤ 1
2 . Let Ẽ(R) be the set of points within E that are recurrent and denote one-dimensional

Lebesgue measure by �1.
For all points z ∈ E such that T (z) remains within E, the map T is conjugate to GR and

hence to fα,β with β = min(0, 2 arccos(h/R)) depending explicitly on R. As a special case
of Theorem 2.4(1) we have that fα,β is minimal for almost all β, namely, for those such that
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β �∈ αQ. The set of β �= 0 that gives nonminimal fα,β has zero measure, and hence the set of
R > max(1

2 , h) that gives GR nonminimal has zero measure. Since GR being minimal means
that almost all points starting on E must leave it after a finite number of iterates, we can
conclude that

�1(Ẽ(R)) = 0

for all R in this full measure set.

If h < 1
2 , we are done. In the case that h > 1

2 , we note that for h ≥ R > 1
2 we have β = 0.

In this case the map GR is transitive and dense on each of the circles ∂D(si, R), and hence
also in this case Ẽ(R) is empty. In either case, the set of recurrent points is contained within
the set ⋃

R> 1
2

Ẽ(R),

and by Fubini’s theorem this has zero two-dimensional measure. Hence, the set of recurrent
points on L−1(R) has zero Lebesgue measure for almost all R > 1

2 .

Finally, T (Ω) = Ω up to a set of zero measure by Remark 2, and since T as a piecewise
isometry may only decrease measure, T must be almost everywhere 1-1. Thus T preserves
a finite Lebesgue-equivalent two-dimensional measure on any subset of the global attractor
Ω. By Poincaré recurrence, Ω must contain a full measure subset of recurrent points; this
completes the proof.

5. Discussion. We discuss a number of disparate topics related to the dynamics of the
piecewise isometries such as (2.1). First, we note that nonsmooth invariant curves can ap-
pear in piecewise isometries with only two atoms. Next, we show that under fairly general
assumptions one cannot find invariant curves that are just a union of curved arcs formed from
boundaries of periodic cells. We then discuss the aspects of the coding of the orbits that
appears to contain most of the “interesting” dynamics, and we conclude with a summary of a
few of the open questions this work raises, particularly as related to the existence and stability
of nonsmooth invariant curves.

5.1. Nonsmooth invariant curves for a piecewise isometry with two atoms. The map
introduced by Goetz [14] also shows evidence of nonsmooth invariant curves for certain pa-
rameter values. In particular, we consider S : C → C defined by

S(z) =

{
eiθ(z − s0) + s0 for Re(z) ≥ 0,
eiθ(z − s1) + s1 for Re(z) < 0,

(5.1)

where we fix

s0 = 0.3872983 + 0.5i, s1 = −0.1936491 + 0.25i, θ = −1.8234765.

(We note that θ = arccos(−0.25).) Figure 8 illustrates that the global attractor is a rhombus
ABCD that intersects both axes and in particular the discontinuity OB. The parameter
values can be calculated by observing that this map is a piecewise isometry in PWI(3,3) of
class IId as defined in [5], and so this map is specified (up to similarity) by the rotation θ. We
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Figure 8. The global attractor ABCD for the map S (5.1); see text for parameter values. Note that the
global attractor consists of a rhombus; several trajectories are illustrated in different colors. There appear to be
many families of nonsmooth invariant curves in the exceptional set of this map.

show the trajectories of a number of initial conditions on the global attractor, each of which
is shown in a different color.

In fact, the phenomena of nonsmooth invariant circles for PWIs was observed first in [3]
for a map of [−1, 1)2 to itself defined by

(x, y) 
→ (y, g(−x + ay))

with g(x) = x for x ∈ [−1, 1), g(x + 2) = g(x), and parameter a = 2 cos θ. This map
can be viewed, after a linear shear of the coordinates, as a one-parameter family of PWIs
parametrized by θ ∈ R. In the case θ = arccos(0.25) one can find small regions of [−1, 1)2

apparently enclosed by a series of nonsmooth invariant circles.

5.2. Jordan curves composed of unions of circular segments are not invariant. In the
absence of any positive argument of the existence of the nonsmooth invariant curves, we
demonstrate that under general conditions, they cannot be composed of a union of segments
from boundaries of circular cells. In particular, we have the following.

Lemma 5.1. Consider x ∈ E and a periodic cell D with period p such that the return to D
is an irrational rotation. If ω(x) ∩ ∂D contains an interval, then

ω(x) ∩ ∂D = ∂D.
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Proof. Suppose ω(x) ∩ ∂D = W with W contains some interval in ∂D. Thus, there is an
N > 0 such that

N⋃
n=1

T pN (W ) ⊇ ∂D \Q,

where Q is a finite set consisting of points in ∂D that land on the discontinuity after at most
pN iterates. Pick any q ∈ ∂D \ Q and note that there is a q̃ ∈ W such that T k(q̃) = q with
k ≤ pN and q̃ is a point of continuity of T k for all 1 ≤ k ≤ pN . We then note that for a
sequence T lj (x) → q̃ we have T lj+k(x) → q, and this gives the conclusion of Lemma 5.1.

Lemma 5.1 gives rise to the following theorem, which excludes the possibility that the
invariant curves consist (for example) of the boundary of a connected component of the plane
bounded by a ring of tangent periodic disks.

Theorem 5.2. Suppose that C = ω(x) is a continuous embedding of a circle into the excep-
tional set E that is not the boundary of a periodic cell. Then C cannot contain any curved
segments from periodic cells.

Proof. Lemma 5.1 shows that such a circle contains either the whole of the boundary of a
periodic cell, or no interval within the boundary of that cell.

We observe that Theorem 5.2 does not preclude the possibility that unions of segments
from ellipses form invariant curves for more general piecewise affine maps; these have been
observed in recent work [23] on a piecewise affine map with two pieces.

5.3. Symbolic dynamics for T on the global attractor. We wish to demonstrate in this
section that the invariant curves observed in the map T defined by (2.1) do not require or
use the lack of invertibility of T . The map T : C → C defined by (2.1) induces a symbolic
dynamics through the correspondence between z ∈ C and the symbol sequence

ι(z) = {sk} ∈ Σ+ = {0, 1, 2, 3}N

such that sk = l if and only if T k(z) ∈ P l. Note that only a zero entropy subshift is coded by
orbits of T [10]. The shift operator σ : Σ+ → Σ+ is semiconjugate to T , ι(T (z)) = σ(ι(z)),
and the set

Σ+
1 = ι(C)

characterizes all admissible sequences for the map T . Now consider the set

Σ+
2 = Σ+

1 ∩ Σ+
A,

where A is the matrix

A =

⎛
⎜⎜⎜⎝

1 0 1 1
0 1 0 0
0 1 0 0
1 0 1 1

⎞
⎟⎟⎟⎠

and the subshift is defined by Σ+
A = {s : Ask,sk−1

= 1 for all k ∈ N}. We extend these
definitions to two-sided time and write the corresponding sets by dropping the “+.” The
following lemma shows that orbits in Σ+

2 have unique backward orbits in Σ2.
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(a) (b)

Figure 9. (a) The global attractor for α = −2πγ, t0 = t1 = h1 = 0, and h0 = 0.05 (see Figure 4(a)); (b)
shows the subset of the global attractor that disregards points with codings not lying in Σ+

A. We conjecture this
contains everything in (a) except for a finite set of periodically coded islands.

Lemma 5.3. Suppose that s+ = ι(z) ∈ Σ+
2 . Then there is at most one s ∈ Σ2 such that

s+
i = si for i ≥ 0.

Proof. First, suppose that z ∈ C is such that z ∈ T (C); then we claim that

#{w : ι(w) ∈ Σ+
A & T (w) = z} = 1.

Note that T (P1) ∩ T (P2) = ∅ and T (P0) ∩ T (P3) = ∅. Assume that z ∈ P0 and T (w) = z.
If ι(w) ∈ Σ+

A, then w ∈ P0 or w ∈ P3, but T (P0) ∩ T (P3) = ∅, and so only one such w can
exist. Similar arguments apply in the case that z lies in one of the other atoms. Hence there
is at most one w such that T (w) = z and ι(w) ∈ Σ+

2 . By induction we can choose at most
one backward trajectory through w with coding lying in Σ2.

As a direct consequence we can characterize the symbolic dynamics of a subset of the
global attractor.

Theorem 5.4. The set ι−1(Σ2) is contained within the global attractor.
In fact, for the parameter range considered this set seems to contain a large proportion

of the measure of the global attractor. Figure 9 illustrates this for the numerically obtained
attractor for parameters given in the figure caption. (a) shows the global attractor for the
map (2.1), while (b) shows only the subset of the attractor obtained when we disregard all
trajectories that do not give a coding lying in Σ+

A.

5.4. Open problems. The examples presented here are highly suggestive that the non-
smooth invariant curves are real dynamical effects. However, in the absence of a single example
in which we can prove that they exist, one clearly needs to proceed with great caution. We
highlight a few of the many intriguing open problems:

• Can one find a nontrivial but rigorously provable example of a nonsmooth invariant
curve for any PWI?

• Can one quantify the codimension of parameter values for which one typically finds
these curves?

• More precisely, can one use a perturbed map in the neighborhood of the map Gr in
(2.4) to find conjugacies between periodic orbits and invariant graphs?
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• What is the role of Diophantine properties of the rotation number in determining the
dynamics on the exceptional set near the “integrable” case? The analogy with smooth
area preserving maps and Theorem 2.4 would suggest that these are very important.
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