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ABSTRACT 

As the nanotechnology industry grows rapidly, the release of nanoparticles (NPs) will 

increase in the environment. The special functional properties of NPs bring uncertainty on 

how they will affect exposed organisms. Aquatic organisms may be particularly at risk 

because this environmental compartment acts as a sink for most contaminants. Two major 

NPs used in the nano industry are silver (Ag) and titanium dioxide (TiO2). Ag is being 

exploited principally for its antimicrobial properties and TiO2 for its photocatalytic 

properties. There is evidence that both of these particles can induce harmful effects in 

exposed organisms but our understanding on the mechanisms for their effects, uptake and 

fate of these NPs is still very limited, especially for environmentally relevant exposure 

regimes. The studies conducted during this thesis investigated the potential for biological 

effects to Ag and TiO2 in the aquatic environment using the zebrafish (Danio rerio).  

Uptake and effects of a range of NPs of different sizes (Ag -10nm, 35nm and a bulk 

counterpart 600-1600nm, and TiO2 -7nm, 10nm, 35nm and a bulk counterpart 134nm) were 

assessed in zebrafish embryos exposed via the water column. It was established that 

TiO2NPs had no adverse effects on zebrafish embryos even at an exposure concentration of 

25 000 µg/L. In contrast, AgNPs induced dose dependent lethality and the AgNP (35nm) was 

most toxic. At lower exposure concentrations Ag induced a number of morphological 

defects in embryos and apoptosis was seen to occur around 7 hours post fertilisation (hpf) 

in the extended yolk sac region of the embryo. Coating the AgNP materials with citrate and 

fulvic acid significantly reduced toxicity. Coherent Anti Raman Scattering (CARS) microscopy 

was applied to the exposed embryos and indicated that there was little, if any uptake of 

Ag/TiO2 NPs as particles into the embryo. CARS however showed very significant 

aggregation of both NPs at the chorion surface. It was concluded from this work that the 

toxicity observed was most likely mediated via silver ions dissociating from the AgNPs. In 

this work, the metallothionein (mt2) gene was activated (detected using whole mount in-

situ hybridisation-WISH) at sublethal exposure concentrations (500 µg AgNP/L and 12 µg 

AgNO3/L) in the extended yolk sac region of the embryo (24hpf), which is known to be a site 

of metal detoxification.  

ABSTRACT 
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In a second series of studies to explore the mechanisms and target tissues for AgNPs, WISH 

was adopted in early life stages of zebrafish using various genes that were markers of stress 

responses. These genes were metallothionein (mt2), glutathionine S-Transferase Pi (gstp), 

glutathionine S-Transferase Mu 1 (gstm1), hemeoxygenase 1 (hmox1) and ferritin heavy 

chain 1 (fth1). In the first instance the ontogeny of expression of these genes was 

established for up to 12 days post fertilisation (dpf) to determine the optimal time point to 

test for responses of these genes for the particle exposures. Early life stages of the zebrafish 

were exposed to citrate coated AgNP (10nm, 500 µg/L), Ag bulk (160nm, 500 µg/L) and 

silver ions (20 µg/L). The Ag materials induced upregulation in mt2, gstp and gstm1 in 

various target tissues including the yolk sac, olfactory bulbs, lateral line neuromasts, 

ionocytes in the skin and in regions of the head. Silver ions affected the same target tissues 

and induced the same gene responses as AgNPs, albeit there were differences in the levels 

of these gene responses between these two treatments. In contrast, both hmox1 and fth1 

were downregulated as a result of Ag exposure. To further explore the molecular 

mechanism by which AgNP toxicity occurs, an Nrf2 (a transcription pathway involved in 

oxidative stress) mutant zebrafish was included in exposures to Ag. These studies found that 

mt2 and gstp were both expressed at lower levels in the Nrf2 mutant zebrafish exposed to 

Ag materials compared with in the wild type zebrafish. This suggests that the Nrf2-Keap 

pathway plays a key role in controlling the expression of these genes that are responding to 

the AgNPs exposures. This work demonstrated that WISH provided a highly effective 

integrative approach for identifying target tissues exposure to the different silver materials 

and for exploring functional pathways of effects. 

In the final study of this thesis, adult breeding zebrafish were fed AgNP via the diet to 

investigate uptake and accumulation into target organs, the possibility of maternal transfer 

and the potential for subsequent effects in exposed offspring. Adult zebrafish were fed at a 

rate of 5µg Ag/g at 3% of their body weight to Ag materials (AgNP 10nm and AgB 600-

1600nm) over a period of 26 days. No effects were seen in the adult fish on any of the 

measures taken of fitness (condition factor index, gonadsomatic index, hepatosomatic 

index, haematocrit index). Ag did not significantly affect fecundity (numbers of eggs 

spawned) or fertility (numbers of eggs fertilised). A detectable level of uptake of Ag in target 

organs occurred only in the AgNP treatments: liver (up to 2.1 µg/g in males) and gonads (up 
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to 0.5 µg/g in males), suggesting particle size plays a role in the uptake and translocation 

through membranes into target organs and thus an enhanced bioavailability for AgNP 

compared with AgB. Maternal transfer was only detectable in the AgNP treatment (up to 

0.43 ng Ag/per embryo). Gene responses of mt2 and gstp measured in the subsequent 

offspring via WISH analysis at 24 hpf indicated significant mt2 upregulation occurred after 2 

weeks of adult exposure in both AgNP and AgB treatments. This demonstrates the potential 

for maternal exposure effects for exposure to AgNPs. Furthermore, challenging the 

subsequent embryos to the same Ag materials and measuring responses of mt2 via WISH 

indicated de-sensitisation to Ag in offspring where adults were treated with both nano and 

bulk forms of Ag. This finding has important considerations for risk assessments for silver 

base materials.  

Overall, the findings presented in this thesis have provided a body of evidence to show that 

silver material on a nanoscale may be of a greater hazard to fish and this warrants further 

investigation to consider more appropriately the potential risks associated with discharge of 

AgNPs into the aquatic environment.   
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Foreword: 

 

Nanotechnology is considered one of the most pioneering areas of technology in the 21st 

century. It will not only influence the way in which technology advances but will have a 

significant impact economically, socially and environmentally.  

 
1. INTRODUCTION 

 

1.1 THE  ‘ORGINS’  OF  NANO 

A nanoparticle is defined as an ultrafine material between 1-100nm. The term 

“nano”,  means   dwarf   in   Greek   and   as   a   unit  measure   (n)   is   one   billionth.   The   history   of  

nanotechnology dates back to the 1950s when physicist Richard Feynman described the 

possibility of altering atoms to a smaller magnitude and as a result changing their physical 

properties.  In  1974  the  term  nanotechnology  was  derived  as  “the processing of separation, 

consolidation,   and   deformation   of   materials   by   one   atom   or   one   molecule”   (Taniguchi, 

1974). In the late 1980s Dr Eric Drexler wrote the book Engines of Creation: The Coming Era 

of Nanotechnology; and this spurred scientists to explore the possibility of self assembly of 

particles on a nanoscale (Drexler, 1981). This is the process of particle self replication and 

assembly mediated with chemicals. Technological advances such as Scanning Tunneling 

Microscopy (STM) were fundamental in the advent of nanoparticle creation and 

nanotechnology itself. Scientists subsequently helped grow public awareness in this field 

and public funds were used to aid the establishment of the associated industries exploiting 

nanomaterials. 

 
1.2 PROPERTIES OF NANO 
 
Exploring the surface and interface of bulk materials (a material at a macro scale that 

has constant physical properties due to its size) led to an understanding on surface effects 

and in turn studies investigating the conduction of electrons. Nanoparticles (NPs) can be 

highly mobile and exert quantum effects which posses size dependent properties including; 

their reactivity, conductivity and optical properties. An example of this is gold; in bulk form 

it has a yellow/gold colour, however, at the nano scale it is exhibited as a red/purple colour. 

The structure of the nano establishes their properties. Encompassing the fact that there is a 
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size difference between the molecular and solid state structures creates new advantages to 

these particles. Some of the properties that can be achieved are: altered thermo physical 

properties (He et al., 2007), lower melting temperature (Goldstein et al., 1992) and a higher 

self diffusion coefficient, meaning a faster diffusion of particles by greater chemical 

potential (Horvath et al., 1987).  The properties such as the interactions between the nanos 

themselves, also determine how the particle behaves (Kelly et al., 2003). These are usually 

dominated by weak Van der Waals forces or covalent interactions. 

 

NPs can be found in different states: in a suspension (solids in a liquid form), aerosol (liquid 

phase in air) and emulsion (two liquid phases). NPs can be a wide range of different 

structures and compositions, illustrated in the figure below (Figure 1;  taken from Buzea et 

al., (2007). They are usually classified according to their morphology, dimensionality, 

whether they are coated or non-coated and the agglomeration state. NPs can be composed 

of one or various chemicals. Based on their agglomeration state (which can change due to 

electromagnetic or chemical properties) they can be made into one, two or three 

dimensional (D). (1D) means the NPs can be thin films or surface coatings, (2D) fixed long 

structures that contain nanostructures in two dimensions at the nanoscale or (3D) materials 

that are all at the nanoscale in three dimensions usually fixed in small structures or 

membranes with nanopores that contain free small NPs. Their morphology determines 

whether they have high-aspect ratio or low-aspect ratio. The high-aspect ratio ones include 

nanowires, nanozigzags and nanotubes; the low-aspect ratio ones include nanospherical, 

nanocubes and nanopyramids.  
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Figure 1. Classification of nanostructured materials considering their nanostructure 
dimensions, morphology, composition, uniformity and agglomeration state. 
 

1.3 NATURAL NANOPARTICLES 

 

NPs can also derive from natural sources (Banfield and Zhang, 2001), and exist in the 

atmosphere, ocean and subsurfaces. These natural NPs can be formed by atmospheric, 

geogenic, pyrogenic or biogenic. Environmental NPs are usually by-products, arising as a 

consequence of combustion in cars with defective catalysts (Zhiqiang et al., 2000), or from 

diesel engines (Schneider et al., 2005). They can be inorganic or carbon containing NPs. For 

example; some fullerenes usually considered to be man-made, have derived from polycyclic 

aromatic carbons (PAH) formed from algal matter at temperatures between 300-500°C in 

the presence of sulphur or during a natural combustion procedure. Some of these natural 

fullerenes are also believed to have arrived on earth via comets or asteroids (Becker and 

Bunch, 1997). 

 

Atmospheric Ultrafine Particles (UFP) form in atmosphere via nucleation processes, 

chemical reactions in atmosphere that lead to chemical species with low saturation vapour 

pressure (Covert et al., 1992). The formation of the NPs can vary due to geographical 

location, season and types of reactants in the atmosphere. Routes by which atmospheric 
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UFPs are produced, can include volcano eruption (Gislason et al., 2011), pyroclastic cloud 

from an active volcano and forest fires (Ribeiro et al., 2010). Other natural NPs include soot 

NPs, also known as Black Carbon (BC) continuum; these are a product of incomplete 

combustion of fossil fuels and vegetation.  

 

 It has been discussed that dust storms are the largest single source of environmental NPs. A 

case example of this, is dust storms that occur in the Gobbi dessert strongly affect the air in 

Asia and North America (Husar et al., 2001). It has been calculated that 90% of aerosol NPs 

are natural origin, and the other 10% are anthropogenic (Taylor, 2002). Weathering of 

oxides, minerals and silica can produce NPs such as amorphous silica, halloysite and 

magnate oxide. Other weathering examples include; sulphide rich rocks form NPs such as 

Ferrihydrate when mixed in natural water due to changes in pH, temperature and higher 

oxygen concentrations (Nowack, 2009). As a result of weathering, natural NPs can exist in 

the aquatic environment (Wigginton et al., 2007). An interesting natural NP recently 

discovered is Uranium dioxide (UO2) NPs; which is formed from a uranyl reaction with green 

rust (O'Loughlin et al., 2003). It is known that microorganisms can also produce NPs through 

metabolic energy pathways involving ions that take part in redox reactions. Some examples 

include sulphate-reducing bacteria producing sulphides such as Zinc sulphide (ZnS). 

 

1.4 NANO INDUSTRY 
 

The nanotechnology industry has boomed in recent years and assured us high 

performance products for a range of applications in the modern consumer world. It is likely 

to be one of the most dominating technologies of the 21st century. It is currently considered 

to be a multibillion $ industry in the US market and by 2015 it is expected to grow to 1 

trillion US$ (Aitken et al., 2006). Most NP manufacturing takes place in the United States 

(49%), followed by the European Union (30%) and then the rest of the world (21%) 

(Chaudhry et al., 2005).  
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1.5 NANO PRODUCTS 
 

According to the Project for Emerging Nanotechnologies (PEN) inventory, there are 

currently over 1000 consumer products on the market that contain NPs. The 

nanotechnology industry is continually presenting us with new refined products with novel 

functions that are impacting the consumer market. It is interesting to note that a new range 

of nano-foods are becoming increasingly available (Chaudhry et al., 2008), promoting health 

benefits and enhancing taste. PEN stated there are 3 to 4 nano containing manufactured 

goods entering the market per week. The following are areas and products in the market 

that are considered to have high market value:  

 

 Human health: Cancer therapeutics and drug delivery 

 Consumer products: cosmetics, sports equipment and food storage 

 Defence: Lightweight armour and energetic materials 

 Energy: Improved efficiency and catalysis 

 Agriculture: Increase crop yields and secure packing 

 Environment: Remediation, water filtration and reduced air emissions  

 

The consequence of nanotechnology growth and its potential worldwide means that it is 

estimated to be worth $2.6 trillion in manufactured goods by 2014 (Hullmann, 2007).  

 

As a result of nanotechnology industry growing, aquatic organisms may be at risk as their 

environmental compartment act as a sink for many contaminants including NPs. In this 

thesis work, the two nanomaterials studied were silver and titanium dioxide; both of which 

are heavily used in the nano industry. This thesis looks at the potential biological effects of 

these two nanomaterials in zebrafish (Danio rerio).  
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1.6 NANO PRODUCTION 

 

There are a range of chemical and physical methods used to synthesise NPs but all 

use toxic chemicals to do so (Krutyakov et al., 2008). There are two classified chemical and 

physical   methods   in   the   production   of   NPs.   The   first   one   is   classified   as   the   “top-down”  

method, which involves breaking up bulk materials and then stabilizing the particles by 

addition   of   a   colloid.   The   second  method   is   “bottom-up”   and   requires the reductions of 

metals, electrochemical methods or sonodecomposition that uses ultrasonic waves to 

generate cavitations. As a result the solution produces microscopic bubbles that eventually 

enlarge and burst. As a favourable alternative for producing NPs there are also biological 

methods which use microbes and plants (Gilaki, 2010). There is a growing need for 

environmentally friendly (and economically favourable) technologies to help avoid the use 

of toxic reducing and stabilising agents in the NP industry. 

 

1.7 TITANIUM DIOXIDE NANOPARTICLES 

 

Titanium dioxide nanoparticles (TiO2NPs) are particles of titanium dioxide (TiO2) that 

have photo catalytic properties making them anticorrosive. Traditionally TiO2NPs were used 

as a white pigment in products such as paints and toothpastes; however, with the expansion 

of the nano industry their use has been broadened extensively. Uses of TiO2NPs now include 

in self-cleaning textiles and anti-fogging windows. They are also being included in cosmetic 

products to reduce the visibility of wrinkles via light diffusion (Anselmann et al., 1998), 

enhance penetration of certain vitamins and antioxidants in the epidermis (Mu and 

Sprando, 2010) and in sunscreens for their high UV absorbing capability (Popov et al., 2005). 

Current research is trying to increase their solar absorption capability through new 

production methods, such as doping them with non-metallic elements creating new optical 

absorption through electronic transitions (Chen et al., 2011b). Other uses of TiO2NPs 

include, as photocatalytic agents in the treatment of water to aid organic chemical removal. 

TiO2NPs are also being used to develop new ways or detecting disease and combating 

antibiotic resistant strains such as Staphylococcus aureus by exploiting their photocatalytic 

properties which produce action oxygen species (Shiraishi et al., 2009) that destroy the 

outer cell membrane that leads to death (Wiesenthal et al., 2011).   
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TiO2 is a natural occurring mineral that can be found in three crystalline forms: rutile, 

anatase and brookite. Rutile is the most common form found in nature. There are numerous 

techniques to create TiO2NPs; the most common way is through hydrolysis of titanium salts 

in an acidic solution (Mahshid et al., 2007). With further treatment, for example a chemical 

vapour, the shape, structure and size can be altered, as required (Wu et al., 2005). Anatase 

is the most favourable form used in consumer products that require photocatalytic 

properties, such as self cleaning products or sunscreens (Sadrieh et al., 2010). The rutile 

form provides white pigment and is used in consumer products such as toothpaste and 

paints (Weir et al., 2012). 

 

TiO2NPs also have biocidal action. It is thought that under UV light conditions the NPs 

catalyse lipid peroxidation (Maness et al., 1999) and reactive oxygen species (ROS) 

subsequently play an important role in antibacterial properties (Blake et al., 1999). As with 

other compounds that are antimicrobial, it is thought that the inner cell membrane of the 

microbe is disrupted and this leads to cell death (Saito et al., 1992). Within the cell, leakage 

of K+ ions occurs causing changes in the cell permeability (Lu et al., 2003). There is also 

evidence that the outer membrane can be disrupted by photocatalytic action, and this also 

can induce cell death (Sunada et al., 1998). Increasingly TiO2, and silver NPs are being used 

because of their photocatalytic properties as antimicrobial agents. The increasing use and 

exploitation of TiO2NPs in this regard will inevitably mean increases in their environmental 

discharge and the greater potential for impacts on ecological systems. 

 

1.8 SILVER NANOPARTICLES 

 

Although silver (Ag) has been used for over 2 000 years, it is only recently that it has 

been exploited widely in biological, chemical, physical and pharmaceutical applications. 

Silver nanoparticles (AgNPs) are being applied to increase thermal and electrical 

conductivity; enhance optical spectroscopies to efficiently harvest light and as a biosensor 

for quantative detection (e.g. pathogens, toxins). The major commercial use of AgNPs is in 

consumer products for their antimicrobial properties. They are being used in food 

containers-to keep food fresh for up to three times longer than occurs for conventional 
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storage methods, in clothing equipment for promoting anti-bacterial, anti-fungal, anti-odour 

resistant and in epilators for inhibiting the growth of microorganisms on the head. 

 

The mechanism of AgNPs antimicrobial action is not fully understood. It is believed that 

AgNPs   are   able   to   accumulate   on   the   outside   of   the   surface   forming   ‘pits’   (Sondi and 

Salopek-Sondi, 2004) which in turn cause disruption of the permeability of the membrane 

subsequently leading to cell death. Another theory is that the AgNPs penetrate the cell 

membrane and interact with DNA bases (Hatchett and White, 1996) that then disrupts DNA 

replication and therefore cell death ensues. Another possibility is that AgNPs accumulate on 

the surface of the cells and release the Ag ions that interact with the thiol group in enzymes 

and inactivates them (Liau et al., 1997). It is also known that that Ag generates ROS causing 

inhibition of a respiratory enzyme which induces the cell to induce an autodestruct system, 

again leading to cell death (Stohs and Bagchi, 1995). In eukaryotic cells, it is thought that the 

Ag inhibits the uptake of phosphate and causes an efflux of intracellular phosphate. It has 

also been suggested, that AgNPs can inhibit the antioxidant defense by interacting directly 

with Glutathione (GSH) binding, GSH reductase or other GSH maintenance enzymes (Carlson 

et al., 2008).  

 

Ag is now one of the most commonly engineered nanomaterials. It has been stated that of 

over the 1 000 nano consumer products on the market, 25% contain AgNPs (Marambio-

Jones and Hoek, 2010). AgNPs are mostly comprised of silver oxide. There are two main 

methods to synthesise AgNPs, one physical and one chemical. Physical processes use 

evaporation/condensation or laser ablation of the bulk metal and then adding colloid 

stabilising agent. The chemical method is reduction of the metal by a chemical such as 

sodium borohydride and in the presence of a colloid stabiliser. When synthesised, AgNPs 

usually exhibit a yellowish brown colour in an aqueous solution due to excitation of surface 

plasma vibration.  

 

AgNPs can also be synthesised biologically. The three main biological ways to synthesise 

AgNPs are by using silver synthesising organisms. The first of these uses a silver-synthesising 

bacteria e.g. Pseudomonas stutzeri a strain of bacteria isolated from a silver mine (Haefeli et 
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al., 1984), that has adapted to tolerate metal ion through a number of ways such as 

alteration in solubility (i.e. controlling how much metals enters cells) and lack of metal 

transport systems. The silver-synthesising bacteria convert nitrate into nitrite through 

nitrate reductase enzyme. The second method utilises silver-synthesising fungi such as 

Fusarium oxysporum (Mandal et al., 2006). Here, the surfaces of fungal cells are used to trap 

Ag+ ions and then α-NADPH dependent nitrate reductase enzyme converts silver ion (AgNO3) 

to AgNPs. The major benefit of this process is it produces larger amounts of NPs. The third 

method uses silver-synthesising plants. Here, reduction of ions uses phytochemicals such as 

flavones, ketones and aldehydes. A recent example of this has been the use of a carob leaf 

extract to synthesise AgNPs ranging in size between 5-40nm, conducted in under 2 minutes 

at ambient temperature (Awwad et al., 2013). This method is especially safe and lacks toxic 

by products (Prabhu and Poulose, 2012).  

 

Ag particles can be produced and supplied as uncoated or as coated materials. Uncoated 

materials tend to aggregate which is not desirable. Coating of particles with peptides, 

sugars, citrate and polymers prevents aggregation and allows for more even dispersions. 

Due to their small particle size and high surface area to volume ratio, dissolution of the 

silver ions from AgNPs can occur at a faster rate compared with bulk counterpart Ag 

materials. AgNPs are produced and supplied in a variety of shapes, including as triangles, 

rods and spheres and they are usually in the size range of 1-40nm, but they range in size up 

to 100nm depending what their usage or purpose they will be used for. 

 

1.9 OTHER  METAL/METAL OXIDE NANOPARTICLES AND THEIR APPLICATIONS 

 

Other metal oxides that are being used widely in industry include Zinc (Zn), Cerium 

(Ce), Copper (Cu), Iron (Fe), Aluminium (Al), Magnesium (Mg), Zirconium (Zr) and chromium 

(Cr). 

 

Zinc oxide nanoparticles (ZnONPs) have UV light absorbing properties and are used in a wide 

range of applications spanning topical sunscreens (Becheri et al., 2008) to hybrid solar cells 

(Beek et al., 2004) for  producing  “green  electricity”.  ZnONPs are also used in garments to 
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improve breathability and reduce friction (Yadav et al., 2006). In addition, ZnONPs are used 

to produce antimicrobial materials because they are stable and generally considered safe 

for humans (Liu et al., 2009). 

 

Cerium oxide nanoparticles (CeO2NPs) have been used in a number of applications that 

include sunscreens- for their UV absorbing properties (Wu et al., 2010a), fuel additive to 

promote combustion, and in polishing agents. However, most recently their main use has 

been in biomedical applications for their antioxidants properties; this includes radiation 

protection to cells. As with other metal oxides, CeO2NPs are also known to be antimicrobial 

and therefore research is ongoing to see how these properties can be exploited. 

 

Copper oxide nanoparticles (CuONPs) posses magnetic, catalytic and optical properties 

amongst others that are used in a diverse number of sectors in industry. CuONPs are being 

applied to plastics, coating and textiles for their anti-fungal/anti-microbial properties (Ren et 

al., 2009) and to produce high strength metals and alloys (Karlsson et al., 2008). They can be 

an efficient catalyst enhancing the rate of chemical reactions in manufacturing processes. In 

the medical sector, CuONPs are being introduced in diet supplements to increase delivery of 

vitamins and minerals more efficiently. 

 

Zirconium oxide nanoparticles (ZrO2NPs) are mainly used for their thermal, optical and 

physical properties. They are applied in the production of ceramic pigments, glazes and fire-

retarding materials due to heat insulating properties (Mueller et al., 2004). Interestingly 

ZrO2NPs (single crystals) are used as a diamond stimulant in jewellery. Research is currently 

underway into applying ZrO2NPs (single crystals) into concrete to increase quality and 

tolerance in structures as zirconium crystals are known to display mechanical properties of 

high strength and flexibility (Negahdary et al., 2012). 

 

Gold nanoparticles (AuNPs), also named gold colloids, are the most stable metal NP (Daniel 

and Astruc, 2004) and are being used in biomedical applications for their optical, catalytic 

and magnetic properties. They are specifically being developed to provide drug delivery 

methods systems as they can be uptaken by human cells but do not induce cytotoxicity 
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(Connor et al., 2005). This non-toxic method of drug delivery is under current research for 

transporting and releasing pharmaceuticals and for applications spanning cancer therapy to 

condition diagnosis (Coelho et al., 2013). The targeted delivery of the drug is achieved by an 

internal factor such as pH (Polizzi et al., 2007) or glutathionine (Hong et al., 2006) that 

triggers drug release.  

 

 

1.10 ENVIRONMENTAL NANOTECHNOLOGY 

There is a branch of nanotechnology dedicated to researching products that can be 

used to enhance environmental quality, referred to as Green Nanotechnology. These areas 

include researching into the prospect of producing cleaner energy. Some examples of this 

include; reducing energy consumption through the use of lighter insulation systems, more 

efficient heating and cooling system using nano polymers that avoid the production of 

fluorocarbons, longer lasting batteries produced by copper hexacyanoferrate NPs that allow 

faster charging and discharging of electricity which would create a low cost battery with 

increased longevity. Other areas using nanotechnology to improve the environment include 

in remediation of pollutants. For water, this includes the nanomaterials applied to water 

filtration methods. Nanotechnology therefore offers exciting opportunities to reduce 

environmental wastes and reduce the adverse impacts man is placing on the environment 

due to consumerism. The schematic below (Figure 2) from Bystrzejewska-Piotrowska et al., 

(2009) shows the pathways where nanotechnology can help to improve sustainability. 
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Figure 2. Towards  ‘green  nanoscience’:  a  schematic  showing  pathway  from  nanotechnology  
to nanowaste (Bystrzejewska-Piotrowska et al., 2009). 
 
It is being increasingly recognised that in the future with the development of novel NPs the 

issue of environmental effects and impact needs to be part of the thinking in their 

production. The fact that eco friendly methods can actually lower the cost of manufacturing 

should attract industries in some of the greener nanotechnologies. 

 
1.11 ENVIRONMENTAL IMPACT OF NANOTECHNOLOGY 

 

Nanotechnology is advancing rapidly (Piccinno et al., 2012) with the development of 

and application of many more products. As nanotechnology becomes increasingly part of 

our everyday lives more commercially available anthropogenic NPs will inevitably enter the 

environment through numerous routes. In the first instance, the manufacturing process 

generates toxic waste (nanopollution) that inevitably will disseminate into the aquatic 

environment. Once the substance is manufactured, there is concern over waste disposal or 

recycling. In addition, after synthesis of NPs the chamber where they are made also has to 

be cleaned. As a result, the water from the cleaning brushes and sponges will enter into 

waste stream. A schematic diagram outlining some of the routes of entry into the 

environment is shown in the schematic below (Figure 3). 
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Figure 3. Schematic diagram showing how nanoparticles will enter the environment. 
 

There are also natural occurring NPs as discussed earlier, which would also have to be taken 

into consideration. Recent research suggests that carbon monoxide and other combustion 

gases that contain NPs produced during   a   forest   fire   remain   in   the   earth’s   stratosphere.  

Some anthropogenic NPs are released into the air via aerosols through industrial 

combustion and vehicle exhausts. Aerosol NPs <100nm levels can range between 5 000 and 

10 000 particles/ml and can reach to 3 000 000 particles/ml in heavily pollution events 

(Donaldson and Stone, 2003). Car emissions provide a major source of NPs into the 

environment (Palmgren et al., 2003) and inhaling such particles has been shown to pose 

health risks (Donaldson et al., 2001). Road traffic density has a major bearing on the 

associated particle numbers and size; in some urban areas emission numbers have been 
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estimated to range from (2.8±0.5)×1014 particles/km, (1.3±0.2)g NOx/(veh km) and (11±2)g 

CO/(veh km) per average vehicle (Ketzel et al., 2003). They can also be released in the air 

through cigarette smoke (Zhiqiang et al., 2000). Another route of release is through the 

products of incomplete combustion of fossil fuels and vegetation which produces soot NPs. 

It has been estimated that 0.05 to 0.27 Gt/year are produced via biomass burning 

(Kuhlbusch and Crutzen, 1995) and 0.012 to 0.024 Gt/year from fossil combustion (Penner 

et al., 1993). 

Major discharges of NPs into water also occur via domestic discharges. Inevitably NPs will 

pass through sewage treatment plants and they will end up in our freshwater and eventually 

marine ecosystems. Countries such as the USA use a large proportion of sewage sludge as a 

agricultural fertiliser (Nicholson et al., 2003) and this will in turn deposit nanomaterials 

directly onto soils with the potential for uptake into human crops and or leaching into water 

systems. TiO2NPs derived from anthropogenic use have been reported in sewage treatment 

plants (Westerhoff et al., 2011). For predicted environmental concentrations (PEC) see 

modelling section. Some NPs leach very slowly from the consumer products. As an example, 

it takes up 3 years for Ag in plastic products in continuous contact with water to be 

completely released (Blaser et al., 2008). 

 

There is an uncertainty as to whether ultra fine nano materials will cause environmental 

impact on ecosystems and the organisms they contain. Concerns include the potential for 

bioaccumulation and the potential also for them to transport other contaminants into the 

bodies of exposed animals. There is some evidence that some NPs can trophically transfer 

from organism to organism. Examples of this include for the transfer of TiO2NPs (21nm) to 

daphnia into zebrafish (Zhu et al., 2010b), and for AuNPs (15nm) from the Nicotiana 

tabacum (nicotine plant) to Manduca sexta (tobacco horn worm) (Judy et al., 2010). This 

may also be of concern for human health for NPs applied via fertilisers to soils could end up 

in the food chain (Rico et al., 2011).  

Release and Environmental Impacts of TiO2NPs 

It has been predicted that by 2025 2.5 million metric tons of TiO2 will be produced 

commercially (Robichaud et al., 2009). A modelling study predicted that as a result of urban 
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applications and weathering a significant amount of TiO2NPs (0.7-16 μg/L) end up in natural 

waters (Mueller and Nowack, 2008). A study estimated 47 300 kg/y in Switzerland surface 

waters (Battin et al., 2009). As these TiO2NPs end our aquatic systems, these NPs will also be 

exposed to environmental factors such as light. As TiO2 is known to have high photocatalytic 

activity, this could induce ROS and in turn oxidative stress in microbial communities 

including planktonic microorganisms. 

Release and Environmental Impacts of AgNPs 

Different NPs will cause different toxicological effects and their impacts on the environment 

will also depend on their fate in the environment. A major area of concern is for AgNPs as 

they are produced in high volumes for commerce. It has been estimated that 620 kg/y will 

enter surface waters of Switzerland (Battin et al., 2009). When Ag nano products are 

washed or discarded, they enter the environment and with resulting dissociation of silver 

ions which are toxic to aquatic life (Hogstrand and Wood, 2009) (see nanotoxicology 

section). The amount of Ag dispersed into the environment could be substantial enough to 

pose a risk to aquatic systems (Luoma and Nanotechnologies, 2008). A case example of this 

is how the release of silver ions (from 300-600 µg/g in the winter season) during the 1980s 

in the San Francisco Bay area led to sterility of Macoma balthica clams which were found to 

contain 15 µg/g (Cain and Luoma, 1985, Boisson et al., 1998). Another study in 2003, 

showed Potamocorbula amurensis clams had 60% reduction in their reproductive output  

when Ag exceeded >2 µg/g (Brown et al., 2003). Another concern with AgNPs is the 

possibility of altering bacterial communities in the environment (Marambio-Jones and Hoek, 

2010). The exploitation of AgNPs at current rates to tackle bacteria (Sondi and Salopek-

Sondi, 2004) and viruses, has the likelihood of the development of resistance. The majority 

of Ag released into wastewater is incorporated into sewage sludge and then spread onto 

agricultural fields. Although there is some past research into the ecotoxicology of Ag, most 

of it precedes the nanotechnology era and therefore does not foresee the possible new 

consequences and risks of it in NP form in these environments and settings.  
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 1.12 NANOTOXICOLOGY 

The consequence of a booming nanotechnology industry and concerns expressed on 

the lack of safety information associated with NP use and release into the environment has 

driven governments to start to invest in evaluations of the potential effects that these 

nanomaterials have on organisms, including humans. The term nanotoxicology refers to the 

study of the toxicity of nanomaterials. It is important to establish the potential effects of 

these novel materials for planning safety measures and whether some nanomaterials should 

be allowed to have continued use.  

 

Some of the exposure routes for NPs include: atmosphere through car emissions (Kittelson 

et al., 2004), through water by means of using NPs for filtration methods (Jain and Pradeep, 

2005) and the potential of ending up in our food chain through applying NPs as fungicides to 

the soil (He et al., 2011). As a result it is perhaps inevitable that organisms, including 

humans, will come into environmental contact with many NPs. 

 

Research on the effects of UFP in humans, principally via air pollution has been active for a 

long time. Studies since have shown that UFP entering lung tissue from the air can induce 

oxidative stress (Donaldson et al., 1998), proinflammatory activity (Brown et al., 2001), as 

well as mitochondrial damage through penetration of the cell causing structural damage (Li 

et al., 2003). Furthermore, these studies have shown that small sized materials have the 

potential to induce greater adverse health effects than their bulk counterpart (Oberdörster 

et al., 1994). There have been many studies (Peters et al., 1997, Heinrich et al., 1995) into 

how these ultrafine materials cause their effects and on their clearance from the body (Ferin 

et al., 1992). 

 

Some of the first research on the potential for toxicological effects of NPs in non-humans, 

was conducted in 2004 when environmental toxicologist Eva Oberdöester exposed large 

mouth bass to fullerenes and discovered they induced oxidative stress in the brain 

(Oberdörster, 2004). Since then, research into the biological and ecological threats posed by 

NPs has expanded dramatically. This is illustrated in the Figure 4 below through the 

numbers of peer review research papers on nanoparticle toxicology that has grown 
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dramatically in the last 10 years, with more than 9500 publications in 2013 (using the key 

words <nanotoxicology> in Google Scholar search for the period of 2003-2013). In a recent 

report, it was established that nanotoxicology had grown exponentially 600 percent since 

the year 2000 (Ostrowski et al., 2009). 

 

 

Figure 4. Graph to show the exponential increase of nanotoxicology research in the last 10 

years. Number of peer reviewed papers (numbers taken from a Google Scholar search with 

key  word  “nanotoxicology”  from  the  period  of  2003-2013). 

 

As nanomaterials are released in the environment, there are many parameters that 

determine the likelihood for toxicological effects and therefore, impact, which include 

features of the particle itself, notably the material, the particle shape, size, and surface 

reactivity with the surrounding tissue. There are also factors influencing uptake and the 

bioavailability of the particles including its fate in the environmental compartment, that is 

water is especially affected by the presence of organic compounds (Fabrega et al., 2011a) 

and the level and degree of aggregation that takes place (Navarro et al., 2008a). Aquatic 

animals that live in sediment areas or filter large quantities of water may be more at risk via 

ingestion (Fabrega et al., 2011b). The transport of these materials will be dominated by the 

different diffusion forces, which ultimately will determine mobility.  
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The following section describes some of the key research and findings for the 

nanotoxicology of TiO2 and Ag NPs. 

 

TiO2NP toxicology 

 

In the past, research into TiO2NPs on airborne exposure has shown that TiO2 can cause 

toxicity through respiratory systems (Baggs et al., 1997). Oberdörster et al., (2000) used rats 

and mice to establish the effects of TiO2; and concluded pulmonary toxicity and shown that 

translocation of the TiO2NPs (20nm) occurred across the respiratory epithelium. TiO2NPs 

(10nm and 20nm) cause an increased inflammatory response after inhalation and in turn 

caused oxidative damage (Gurr et al., 2005). TiO2NPs (21nm) also cause DNA damage at 

500mg/kg in mammals in mice exposed via the drinking water (Trouiller et al., 2009). 

 

TiO2 has now been shown to have effects in a wide range of organisms. Bacteria play key 

roles in the environment, including in aquatic systems, and in processes spanning carbon 

cycling to nitrogen fixation (Paerl and Pinckney, 1996), thus understanding the effects of 

NPs, especially those that can act as anti-microbial and/or antifungal agents is a 

fundamental requirement in considering nanoparticle sustainability. It has recently been 

established that commercially available TiO2NPs (15nm) at 2.7 mg/L in the anatase form 

caused dose dependent cytotoxicity under simulated solar radiation in Escherichia coli (Tong 

et al., 2013). TiO2 in anatase form is 100 times more toxic than in the rutile form due to the 

rutile form being less photoactive (Kawahara et al., 2002). Given the above, there is the 

concern of the possibility that release of significant quantities of TiO2 could alter the balance 

in microbial communities (Battin et al., 2009) by a number of ways including: directly 

penetrating cell membrane and through ROS production. By changing microbial 

communities, this in turn would have consequences for aquatic systems as microbial 

communities are the founders for some of our food webs. 

 

The findings for effects of TiO2NPs in bacteria correlate with the recent report on the 

toxicity effects on phytoplankton, another key organism in ecosystem functioning (Miller et 

al., 2012). Freshwater algae species: Pseudokirchneriella subcapitata and Chlamydomonas 
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reinhardtii both show growth reduction due to lipid peroxidation as a result of exposure to 

TiO2NPs (21nm) and caused upregulation in stress response genes at 1 mg/L (Wang et al., 

2008, Blaise and Vasseur, 2005). These exposure concentrations however, bear little 

environmental realism (see section on predicting the impacts of nanoparticles using 

modelling). 

 

Invertebrates too have been shown to be affected by exposure to TiO2NPs. Tests with 

Daphnia magna show lethality concentrations for TiO2 ranging from 5.5 mg/L (Lovern et al., 

2007) up to 143 mg/L (Zhu et al., 2009b). The reasons for this wide range of toxicities are not 

clear. Differences in testing conditions, preparation of solutions (Velzeboer et al., 2008), 

stability, coatings, size and the bioavailability of the TiO2NPs all change the toxicity of the 

particle. A wide range of toxicity thresholds can also be observed in other studies using 

other invertebrate organisms, such as crustaceans (Velzeboer et al., 2008). Chronic 

exposures TiO2NPs (66nm) 0.1 mg/L  have shown to cause higher toxicity and in some 

studies bioaccumulation has been observed in Daphnia magna (Zhu et al., 2010a). Further 

evidence supporting this, was a study that established TiO2 at 20 mg/L  for 8 consecutive 

days caused 40% mortality (Adams et al., 2006). Thus the duration of exposure may be 

critical when considering TiO2 particle toxicity. Predicted concentrations of TiO2NPs in 

surface waters however, are 0.7- 16 µg/L (Mueller and Nowack, 2008) therefore, some of 

the high range toxicity studies are not environmentally relevant. 

Research into fish has provided some evidence also for biological effects of exposure to TiO2. 

Studies on early life stages of zebrafish (Danio rerio) showed no toxicity for exposures up to 

500 mg/L (Zhu et al., 2008). Until recently, TiO2 was not thought to be especially toxic to 

aquatic organisms, however a recent report (Bar-Ilan et al., 2012) has identified that when 

zebrafish embryos are exposed to TiO2 under light, this led to death and malformations 

through ROS. Due to its photocatalytic properties, TiO2 is known to create ROS in the 

presence of UV light (Armelao et al., 2007). Additional to this, research has shown that 

illumination played an important part in the toxicity process of TiO2 with induced toxicity 

and oxidative stress (Xiong et al., 2011). Further studies on the zebrafish, have shown how 

TiO2NPs (15nm) at 10 mg/L can alter the biochemical constituents in the tissue cells of the 

gills of this fish (Palaniappan and Pramod, 2010). In other fish too, oxidative stress has also 
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been observed in the gills which led to gill injury (Federici et al., 2007). In that study, it was 

stated that TiO2 caused a decreased Na+/K+ ATPase activity. In another study on rainbow 

trout (Oncorhynchus mykiss), 100µg of TiO2 intravenously injected was found to accumulate 

in the kidneys (22.81 µg/g tissue) of the trout (Scown et al., 2009). In a dietary exposure 

study of rainbow trout to TiO2NPs (21nm), the fish were reported as being unable to 

eliminate TiO2NPs from target organs such as liver and especially from the brain (Ramsden 

et al., 2009). Accumulation of TiO2 has also been observed in the gills and viscera of carp for 

exposures via the water using TiO2NPs (21nm) (Zhang et al., 2007). Handy et al., (2008) 

discussed that the mechanisms involved in some of the toxicity and bioaccumulation 

observed for TiO2. They deduced that the anatase form (10nm/20nm) is more toxic than 

rutile (200nm) because it generates ROS which leads to lipid peroxidation and DNA damage.  

AgNP toxicology 

 

AgNPs and in turn silver ions that dissociated from them, will increase very significantly in 

the environment due to their widespread and increasing use in consumer products, notably 

as antimicrobials (Benn et al., 2010). It is known that AgNPs cause toxicity through a number 

of ways and this may differ in different organisms. Generally it is thought that Ag causes cell 

damage via mitochondrial damage and increases the production of ROS (Hwang et al., 

2008). Some studies support the theory that AgNP toxicity is derived directly from the 

release of silver ions (Fabrega et al., 2011a), however, others have concluded an AgNP effect 

relating to the particle itself (Choi and Hu, 2008). What is established, is that toxicity is 

influenced by how well the particle is dispersed within the medium (Kim et al., 2013). It has 

been shown how truncated triangular nanoplates exert stronger antibacterial activity than 

spherical and rod shaped ones because they contain more reactive facets. 

 

Mammalian studies have illustrated AgNPs have toxic effects through a number of biological 

effects. In vitro tests using mammalian keratinocytes demonstrated AgNPs induced 

cytotoxicity (Paddle-Ledinek et al., 2006). It is thought that these cytotoxic effects occur 

through apoptosis (Miura and Shinohara, 2009). Additional evidence has been provided by 

another study using human glioblastoma cells, which determined that AgNPs (6-20nm) 
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induced genotoxicity at 100 µg/ml speculating that through ROS DNA damage occurred 

(AshaRani et al., 2008a).   

 

Furthermore; there is evidence that these materials can penetrate into a wide range of 

tissues. For humans, a major exposure route is through the skin as AgNPs through the 

treatment of wounds/skin lesions. Due to their small size, AgNPs applied to the skin could 

be taken up into the blood and may then migrate to major organs (Singh and Ramarao, 

2012). A recent report interestingly revealed that the quantity of Ag released from AgNPs in 

textiles would also be mediated by sweat (Kulthong et al., 2010), which could potentially in 

turn induce adverse (as well as beneficial – as an anti-microbial) effects. It has already been 

shown that AgNPs can move between parts of the body through skin exposure and induce 

inflammatory and cytotoxic responses (Tiwari et al., 2011). When mice were fed AgNPs 

(22nm and 42nm) at 1 mg/kg the AgNPs were found in various organ tissues: lung, kidney, 

liver, brain and testis. It was reported that organ toxicity had occurred with inflammatory 

responses measured by blood chemistry (Park et al., 2010). Smaller particles appear to 

induce greater ROS than larger AgNPs. As an example, at the same concentration AgNPs of 

15nm generated a higher level of ROS in macrophages than 30nm particles (Carlson et al., 

2008). 

 

There has been a range of studies conducted on AgNPs toxicity in plants, fungi (Kim et al., 

2009) and aquatic organisms. Studies on the algae Chlamydomonas reinhardtii (Navarro et 

al., 2008b) have shown that AgNP toxicity was mediated by silver ions. It also revealed that 

uptake of the silver ions occurs and the efficacy of uptake depended on the nature of the 

surrounding media. Thioshulphate for example enhances Ag uptake, as the silver ions and 

thiosulphate form hydrophilic complexes (Smith et al., 2002) which make the complex more 

stable and easier to uptake into membranes through anion transporters. The unicellular 

microalgae Thalassiosira weissflogi was found to have reduced cell growth, related to the 

reduced rate of photosynthesis and chlorophyll production due to the release of silver ions 

from AgNPs (10nm) at 1.08 X 10-5 M (Miao et al., 2009). Toxicological effects AgNPs in 

aquatic invertebrates such as daphnia (Daphnia magna) have been shown for chronic 

exposure (Zhao and Wang, 2011). It was concluded from other daphnia studies that silver 
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ions again were the components of the AgNPs responsible for the effects seen (Griffitt et al., 

2008). Other invertebrates studies using oyster (Crassostrea virginica) embryos showed 

significant increases in MT mRNA expression at 0.16 µg/L and harmful effects on embryonic 

development with AgNPs (15nm) (Ringwood et al., 2010). Oxidative stress in response to 

AgNPs has been reported in other organisms, including the nematode Caenorhabditis 

elegans for exposure to AgNPs (20nm) at 0.1 mg/L (Roh et al., 2009). Other nematode 

studies have established a growth inhibition for exposures to AgNPs (7nm) at 5 mg/L  (Meyer 

et al., 2010). Recent studies using earthworms also found toxicological effects were 

mediated by silver ions (Shoults-Wilson et al., 2011). 

The toxicity of Ag to fish has been well studied (Wood et al., 1999) with LC10 values at 0.8 

µg/L (Birge and Zuiderveen, 1995). In nanoparticulate form these effects from Ag might 

differ and there has been extensive research recently to investigate this. In-vitro tests using 

medaka (Oryzias latipes) fish cells OLHNI2-medaka cell line established from adult fin tissue-

have shown that AgNPs (30nm) induced cytoxicity at 0.05 g/cm2 (Wise et al., 2010). In 

another study using medaka, acute toxicity tests established a AgNPs (20nm-37nm) LC50 in 

adult medaka of 1.03 mg/L (48h) with 100% mortality at 2.0 mg/L (Wu et al., 2010b). In 

other studies, exposure of zebrafish (Danio rerio) embryos have shown morphological 

abnormalities such as spinal deformities for exposure to AgNP (5-20nm) BSA (bovine starch 

albumin capping agent) at 5 µg/Land an LC50 50 µg/L (Asharani et al., 2008b). Some recent 

studies have shown oxidative stress in medaka (Oryzias latipes) embryos as a consequence 

of exposure to  250 µg AgNPs (35nm)/L (Wu and Zhou, 2012). Other studies using zebrafish, 

have suggested physiological responses to AgNPs (81nm) such as respiratory toxicity as 

determined by increase in operculum movement (Bilberg et al., 2011). These findings have 

also been reported in other fish species, such as the Eurasian perch (Perca fluviatilis) 

(Bilberg et al., 2010). 

Ag may induce toxicological effects through a number of pathways, including inflammation 

(Eom and Choi, 2010), free radical generation, apoptosis and membrane damage. The 

pathways involved are still under research but thus far it seems AgNP toxicity results 

principally from the release of silver ions and damage to mitochondria within the exposed 

cells. AgNO3 release can increases DNA mutation frequencies during DNA replication and/or 
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repair (Yang et al., 2009). Adopting a sequencing approach on zebrafish embryos to Ag 

materials, it was recently identified in van Aerle et al., (2013) that up/down regulation of 13 

genes was specific to AgNPs compared to that of their bulk counterpart and silver ions. 

Therefore it reported that these specific differences illustrate that toxicity observed from 

AgNPs is not only as a result of the silver ions. 

 

Considering the data as a whole on the toxicity of AgNPs, it would appear that there are 

numerous factors that affect the toxicity of this material, which include shape, particle size, 

stability, pH and coatings. Aside from their direct toxicological effects, another uncertainty is 

whether AgNPs will be retained within organisms and their potential for bioaccumulation. 

Some evidence has already shown how AgNPs can concentrate in the bodies of organism for 

aqueous exposures. Research using Paracentrotus lividus (sea urchins) illustrated how 

AgNPs (5-35nm) were found to be internalized after a 51hr exposure at 0.3 mg/L. An in vivo 

study on the icelandic scallop (Chlamys icelandica) revealed AgNPs (10-20nm) were readily 

uptaken and concentrated in the hepatopancreas (Maya et al., 2013). In studies on fish, it 

has been established that AgNPs (10nm) at 100 µg/L accumulates in the liver tissue (Scown 

et al., 2010a), with prevalence of particle size uptake at 10nm (Scown et al., 2010a). 

Furthermore; there has been some evidence showing AgNPs (5-46nm) can pass through the 

chorion membrane and being restricted in the chorionic space of zebrafish embryos (Lee et 

al., 2007) however; there was no indication of AgNPs present in the developing organs of 

the embryo.  

 
1.13 CHALLENGES IN ASSESSING THE TOXICITY OF NANOPARTICLES  

 
There are many challenges for  assessing  the toxicity of nanomaterials (Nel et al., 

2006). As discussed previously, due their particle size they possess special chemical 

properties of which includes quantum effects. This in turn brings uncertainty as to how they 

will behave in different environments and how these particles interact with different 

surfaces. The small size of these particles means that they can be readily uptaken by 

organisms, but their fate in the body of the organisms for the most part is still uncertain for 

most nanomaterials. 
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Measurements of NPs in the environment 

 

As discussed previously, there are both natural and anthropogenic NPs to consider; which 

arise from incomplete combustion of fossil fuels to commercial products. Therefore, 

distinguishing the natural NPs from anthropogenic NPs in the environment is hard (Lead and 

Wilkinson, 2006). In the past, no actual measurements in the environment were determined 

due to the lack of analytic methods to able to quantify trace concentrations in nanogram 

per litre (Mueller and Nowack, 2008). However; new characterization methods using high 

resolution techniques are aiding in achieving this (Simonet and Valcárcel, 2009b). New 

imaging methods include; near infrared fluorescence spectroscopy (NIFR) which uses 

molecular fluorescence microscopy making this technique highly sensitive with low 

background signal. Additionally, there is environmental scanning electron microscopy 

(ESEM), this has minimal disturbance to the samples and allows imaging of wet specimens. 

For quantification of NPs we usually rely on inductively coupled plasma membrane (ICP-MS), 

however, single particle identification cannot be achieved this way and this measures total 

amount of metal but cannot distinguish between micro and NP metals. However; new 

techniques by combining methods (ICP-MS, hydrodynamic chromatography (HDC) and field 

flow fraction (FFF)) are already being developed (Farkas et al., 2011, Lorenz et al., 2012) to 

achieve this. 

 

A recent review by Von der Kammer et al., (2012) established some analytic concentrations 

in surface waters. A study by Neal et al., (2011) and colleagues took measurements for 

TiO2NPs (<0.45 µm filtered fraction) in UK rural, agricultural and urban rivers; they 

established an average of 2.1 µg/L ranging between 0.55 up to 6.48 µg/L. It also 

demonstrated that 79% was TiO2 colloidal/nanoparticulate (1-2nm) in rural rivers and only 

28% was found in urban/industrial rivers.  

 

Predicting the concentrations of the nanomaterials is challenging as there are many factors 

that need to be considered and which are addressed in detail in the modelling section.  
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Provision of standardised (and well characterised materials) 

 

Characterisation of the NPs is fundamentally important when trying to evaluate the possible 

risks and comparing results across different studies (Stone et al., 2010). When trying to 

compare toxicity across different research it is often the case that results are not 

comparable. This is due to the lack of appropriate characterisation in both raw and the 

exposure medium that the NPs were tested in. We have now seen how thresholds and 

effects are different for same studies conducted and this in part may be due to differences 

in the way the particles are treated.  

 

 In   the   past,   it   wasn’t   known   that   the   behaviour   of   these   particles   would   change  

dramatically in the different experimental mediums, and in turn the toxicological effects as 

well (Powers et al., 2009). After a Workshop run in Florida in November 2004, it was 

advocated that the NPs should be characterised in the experimental medium (Stone et al., 

2010, Bucher et al., 2004). From then on, more research revealed that dispersion would also 

be affected and also aggregation would lead to different sized nanomaterials that would 

create non-nano sized materials (Powers et al., 2006). This approach was fundamental when 

attempting to assess and pin point the reasoning behind the effects that were being 

observed. The Joint Research Centre (JRC) is involved in the support for European Policy 

making. One of its important objectives is for reliably sizing NPs. 

 

There is constant debate as to what type of characterisation universally should be applied 

(Klaine et al., 2008). Therefore, in order to explore such characteristics, it has been deemed 

necessary to carry out a number of techniques on the NPs with a range of media as it is 

known that this influences behaviour changes or their potential to induce toxicity (Colvin, 

2003). In addition to toxicological studies, it has been advised that characterization of 

nanomaterials should also be applied in the life cycle assessment of NPs to predict fate 

(Fischer and Chan, 2007). 
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Dynamic nature of NPs and how the environment can fundamentally affect their nature 

and bioavailability 

 

Since water chemistry dramatically changes the toxicity of NPs, it may be difficult to predict 

their environmental impacts without considerably greater research efforts studying the 

materials of concern in relevant environmental compartments (Nowack and Bucheli, 2007). 

The toxicity and behaviour of NPs is known to change by a wide range of factors which 

range from humics to pH.  

 

Bioavailability will change as these particles come into contact with different elements in 

the marine environment (Jenne and Luoma, 1977). It is known for example; that NPs in a 

high salt solution generally causes the NPs to form aggregates (Hartmann et al., 2010) and in 

turn generally lead to a decrease in toxicity (Jiang et al., 2009). This result can be misleading 

and a challenge in toxicological studies, whereby the NPs tested agglomerate in the media 

tested and therefore possibly deeming the NPs less toxic than they are. Other concerns 

include; that aggregation may introduce these NPs into benthic organisms via the 

adsorption of the surface of such organism (Handy and Eddy, 1991). Furthermore, recent 

research has shown that marine aggregates facilitate ingestion of NPs in bi-valves (Ward and 

Kach, 2009) also proving a cause for worry. 

 

Another factor in the environment can be organic constituents/natural humics, such as 

fulvic acid found in surface waters through biodegradation of dead matter. Evidence has 

illustrated that humics can form complexes with metals (Mantoura et al., 1978) and that 

organic matter can improve dispersion (Hyung et al., 2007). It is also known that the 

distribution of metal ions between solution and colloids has a heavy influence on metal 

availability (Lead and Wilkinson, 2006). Therefore; once these nanomaterials enter the 

environment, natural colloids and even other NPs will interact with them and possible 

change the behaviour/effects seen in nanotoxicology studies. Evidence has already shown 

that natural organic matter (NOM) enhances NP stabilisation and as a result could mean the 

NPs entering aquatic systems will be stable enough to persist for a long period of time 

(Chinnapongse et al., 2011). 
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It has been established that pH can affect NPs size (Solomatin et al., 2003); evidence has 

shown that at a pH <4 particle size increases due to aggregation which in turn would 

decrease toxicity and at a high pH, particle size decreases, suggesting higher toxicity through 

size dependent differences. Other factors can also include illumination which plays an 

important role in the toxicity effects for photoactive NPs (Chen et al., 2009). 

  

Target organs for NPs 

 

Major questions that arise in trying to get a better understanding on the toxicity of NPs are 

where they partition within the body and what the main target tissues and whether they 

bioconcentrate. As NPs as being used for drug delivery in human therapies and diagnostic 

uses (Pissuwan et al., 2011), there is concerns for NPs to reach target organs by 

translocation through membrane barriers due to their small size (Oberdorster et al., 2009). 

It has been established that the main target organs in murine models is the brain and liver 

through the blood system (Wu et al., 2009). Interestingly, in another study using rats, it was 

demonstrated that 20-30nm carbon nanotubes (injected intravenously) were excreted in 

the urine suggesting that the nanomaterials can pass through glomerula pores (Lacerda et 

al., 2008). There is environmental concern for the NPs to potentially accumulate in organism 

(as discussed previously).  

 

In fish studies, it has been demonstrated that NPs target organs include liver (Johnston et 

al., 2010), gills (Chen et al., 2011a), gut (Johnston et al., 2010) and brain (Zhu et al., 2010c). 

Evidence for accumulation of metal based NPs in these target organs in different aquatic 

studies is as follows: 

 

● Liver: 10 day exposure to AgNPs (10nm, 35nm) via the water column (100 µg/L) to 

rainbow trout showed Ag uptake in the liver at 1.50 ± 0.30 µg/g and 0.92 ± 0.16 µg/g 

respectively (Scown et al., 2010a). 
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● Gills: 20 days exposure to TiO2NPs (50nm) at 10 mg/L to carp via the water column 

demonstrated TiO2 concentrated in their gills by a bioconcentration factor (BCF) of 

0.74 (Zhang et al., 2007). 

● Brain:  A 36 day dietary exposure to gold (Au) in zebrafish illustrated 4.6±2.3 µg 

Au/g in the brain (Geffroy et al., 2012). 

 

From this information it raises the possibility of NPs crossing membrane barriers from the 

gut into the blood system and translocation to target organs. However; this data only 

confirms trace metal measurement found in the target organs but not individual NPs 

themselves. In the past, it was hard to quantify uptake of NPs in organism as analytical 

methods were limited but new methodologies have helped tackle this problem. In 2006, it 

was suggested that improved methodologies were needed and stable isotopic tracing was 

suggested as the way forward to aid research in tracing the uptake and fate of these NPs in 

organisms (Gulson and Wong, 2006). For example for Zn, which is a natural occurring 

element, it is essential to are able to distinguish background metal concentration found in 

the environment from the new accumulated metals from the NP exposure. Another 

advantage to this method is that it enables us to use low environmentally relevant 

concentrations. A recent study has explained a relative cost effective way of using 

isotopically labelled ZnONPs to be able to differentiate between these (Larner and 

Rehkamper, 2012). An exposure study using this technique on Corophium volutator; 

established the majority of toxicity was due to ionic Zn with nano effects seen (Larner et al., 

2012).  

In vitro vs in vivo 

 

Consequently there is a need to determine a systematic approach for testing NPs and 

standardising methods is essential. Both in vitro and in vivo test methods have their place in 

assessing the toxicity of nanomaterials; and below summaries some of the advantages and 

disadvantages of using them.  
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In vitro 

 

As with other chemicals in vitro toxicity assays have been able to screen and provide 

mechanistic information (Hayashi et al 2005). These assays include apoptosis, DNA damage 

and oxidative stress. New techniques using video enhanced differential interference 

contrast (VEDIC) on cells in vitro, allow for NP observations on uptake and internal 

localisation are which easy to observe without the need to add fluorescent label (Connor et 

al., 2005). However; there are new imaging methods using fluorescently labelled particles 

which are currently being used to monitor the movement of NPs within cells (Takahashi et 

al., 2008). Controversy arises from using fluorescent techniques, as coating the particles can 

change behaviour and toxicity, therefore not representing the NP in its true state. Another 

advantage of using in vitro is a fast, cost effective approach for toxicity testing which 

minimises ethical issues on animals (Marquis et al., 2009). Furthermore; new in vitro toxicity 

methods combined with high-content screening assay (HSA) allow for RNA expression 

analysis determining whether RNA expression was up/down regulated in cells exposed to 

NPs (Zhang et al., 2006). In contrast to this, in vitro is hard to compare with in-vivo work and 

concentrations used in in vitro testing are somewhat higher than those found at a cellular 

level in vivo. Additionally, in vitro lacks the complexity of using an animal model which is 

why the research needs to be combined and complement one another to become a whole 

piece of research that we can put forward into measuring the possible effects of NPs. 

 

In vivo 

 

Studying the effects of NPs on living organisms allows for long term effects, localization, 

biodistribution and retention/excretion. Typical organisms used in in vivo studies are mice 

(Kim et al., 2001) and rats (Baker et al., 2008), however; aquatic species are also being used 

to assess the ecotoxicological effects of NPs (Menard et al., 2011). Typically, in vivo 

exposures determine the LC50 of the organism tested. To monitor biodistribution; 

fluorescent NPs can be detected within live or sacrificed animals. In addition to this, in vivo 

also allows for any morphological changes on the organism and target organs to be 

observed. Furthermore, histology can be performed on organs to explore presence of NPs. 
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An assay test used in in vivo work is the blood chemistry of the organism that can be used to 

analyze blood composition as well as blood cell population during/after an NP exposure. 

One of the controversies faced with in vivo tests is the handling and preparation of samples 

could alter effects seen. 

 

Lack of standardised test systems  

 

Even after outlining some of the benefits of in vitro and in vivo; there is still a lack of 

analytical and in-situ techniques which can detect these NPs in a complex or biological 

medium (Fabrega et al., 2011a), and in turn making it harder to predict the effects these 

particles will have within different mediums. Most of these issues lie within testing aquatic 

organisms in water systems. There is still a need for a standardised approach to 

ecotoxicological testing these NPs (Handy et al., 2012a); because, as discussed previously, 

water chemistry can change NP behaviour and effects dramatically.  

 

Preparation of the NPs is an important part as it can determine toxicity. It is known that 

better stability and dispersion of the NP usually induces increased toxicity. Sonication 

methods have been favoured as there is no need to add extra chemicals to NPs. However; 

these methods have been quite different i.e. different times, temperature and machinery -

and therefore, could account for some differences seen in the results. In addition, sonication 

methods have been criticised as they can overestimate toxicity of NP in an environmental 

scenario. Another factor to consider is the container of testing medium; it is known that 

some NPs adhere to glass and for that reason appropriate cleaning methods using e.g. nitric 

acid need to be established. Due to detection limitation capabilities; there is still a 

knowledge gap in biodistribution studies involving NPs which needs to be addressed and 

new testing methods need to be established. After a recent SETAC workshop; it has been 

discussed that the OECD are considering new methods of NP toxicity testing (Handy et al., 

2012b).  
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1.14 PREDICTING THE IMPACTS OF NANOPARTICLES ON THE ENVIRONMENT 
USING MODELLING 

 
Given that quantifying man-made NPs in the environment is extremely challenging, 

modelling approaches have been adopted to help predict amounts of NPs in the 

environment, now and in the future (Nowack et al., 2012) 

It is hard to estimate how many NPs will be released in the ecosystem as there is still no full 

inventory of these products (Gottschalk et al., 2010b). However; various studies have 

started to estimate PEC in air, soil and water. These PEC values will vary for different 

materials, different countries and different states in which the NPs are in. Depending on the 

nature of the NP, different scenarios have to be taken into account and different emission 

flows. The first modelling studies were reported in 2008; it took into account the whole life 

cycle of AgNPs, TiO2NPs and carbon nanotubes (Mueller and Nowack, 2008). The calculated 

PEC values they reported ranged from a realistic scenario to a high emission scenario: 

TiO2NPs (0.7- 16 µg/L); AgNPs (30-80 ng/L) and carbon nanotubes (0.5-0.8 ng/L).  

 

Gottschalk et al., (2009) used the probabilistic method of taking into account a number of 

consumer products that contain AgNPs to predict the environmental concentrations in 

Europe. They estimated concentrations of AgNPs at 0.5-2 ng/L in surface waters, 32-111 

ng/L in sewage treatment plants effluent and 1.3-4.4 mg/kg in sludge (Gottschalk et al., 

2009). This was supported by further data reporting that NPs will most likely accumulate in 

surface waters (Benn and Westerhoff, 2008).  

  

Later Gottschalk et al., (2010a) came up with another model they called the probabilistic 

material flow analysis (PMFA). It again, took into account a whole life cycle of the NP and 

considered application quantities, emission factors and the fate of the compounds in various 

environments. The simulation was used to establish PEC values for TiO2 in Switzerland and 

their results showed higher concentrations of TiO2 in surface water (~0.3 µg/L) than for air; 

and that there would be an annual increase in soil and sludge (Gottschalk et al., 2010a). The 

highest TiO2NP emission flow was in waste water (30.7-33.8 t/a) at a 95% confidence 

interval. 
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Nevertheless, these models are clearly limited and how well they fit with real world 

scenarios has not been forthcoming due to a lack of empirical studies. Where there have 

been empirical studies on the amounts of NPs in the environment, these have compared 

favourably to some studies with those in the models described above. In a recent review 

(Gottschalk et al., 2013), it revealed TiO2 concentration in river (using combined modelling 

predictions) at 3 ng/L -1.6 µg/L correlated well with a modelling prediction study (Gottschalk 

et al., 2009). The measurements established versus modelling prediction are higher but still 

give an approximate indication at NP concentrations in the environment. The differences 

can be possibly explained by size ranges of found in the environment (<0.45-0.7µm) to the 

modelled NP size (<0.1µm). Nonetheless, the models available presently for predicting NPs 

in the environment, lack data needed for many parameters to ensure robustness of the 

predictions. These factors include geographical location and varying water levels. 

 

The need for legislation on nanomaterials 

 

There have been numerous debates as to whether nanotechnology requires government 

regulation and whether there should be handling, labelling and risk assessments specifically 

for into these new materials. Research in technology has thrived in comparison to research 

into the possible effects on the environment and humans. As an example of this, in 2002, 

the U.S. government spent $710 million on nanotechnology research and $500 000 was 

spent on ecological assessments although the recent years the balance has improved 

significantly.  

In 2004, The Royal Academy of Engineering produced a report indicating the strong 

likelihood for nanomaterials highlighting their likely threats to the environment (Royal, 

2004). No specific legislation exists, or even a framework to set this out, for how to handle 

or dispose of these novel nanomaterials and there is no provision of any safety measures. 

The UK government Department for Food, Agriculture and Rural Affairs (DEFRA) released a 

report outlining in detail the research that was needed to identify the gaps in our knowledge 

relating to these new substances and the need for a better understanding on their possible 

associated health effects (DEFRA, 2005). 
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In 2007, the forty civil societies coalition (The International Centre for Technology 

Assessment) released a report Principles for the Oversight of Nanotechnologies and 

Nanomaterials (Kimbrell, 2009) declaring the need for these new substances to be regulated 

and properly investigated before their placement into the marketplace. 

There are a number of European Union (EU) framework projects that have started to now 

undertake risk assessment of nanomaterials in the environment. These projects include: 

● (2009) Engineered Nanoparticle Impact on Aquatic Environment: Structure, Activity 

and Toxicology (ENNSATOX)-€2.816 million 

● (2010) Nanoparticle Assessment and Toxicity in the Environment (NanoFATE)-€2.5 

million.  

● (2011) Modelling nanoparticles toxicity: principles, methods, novel approaches to 

toxicology (ModNanoTox)-€1  million 

● (2011) Managing Risks of Nanomaterials (MARINA)-€9  million 

● (2011) A pan-European infrastructure for quality in nanomaterials safety testing  

(QNano)-€7  million.  

 

 It is obvious from the listing presented above that the scale of the projects funding 

nanomaterials research for investigating their potential hazards and risk to the environment 

and human health has increased dramatically in the last 4 years, reflecting the need for full 

assessments on new nanomaterials as they enter commercial use. 

In an EU statement reflecting this concern for the use and exposure to NPs, it was reported 

that  “Full  risk  assessments  should  be  performed  on  new  nanomaterials  that  present  a  real  

risk of exposure during manufacture or use. Such assessments should take into 

consideration the toxicological hazard, the probability of exposure and the environmental 

and biological fate, transport, persistence, transformation into the finished product and 

recycling”  (Rickerby and Morrison, 2007). 

Belgium has recently provided a lead on how we might handle the future implications of 

nanotechnology. In July 2013, it released a draft on Nano Legislation to the European 

commission   that   will   ‘implement   a   register   of   substances   manufactured   at   a   nanoscale  
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based on declarations of products containing such substances by the parties placing these 

products   on   the   market’.   This   law   <substances manufactured at the nanoscale, and 

preparations containing them, be declared if more than 100 grams of these substances are 

placed on the market per year> would take place from January 2015. EU and Canada too 

have taken the first steps into limiting the use of NPs in food (Paull, 2010). 

As with any new developments in technology, the research on the technology outweighs the 

research in the associated health risks to society and the environment. However, in Europe 

we are beginning to see a change in labelling on products and codes of conduct using nano 

including safety for workers. It has been seen that regulation has been slow to emerge. 

Therefore, this advocates the need for continuing research in this field and the need for 

funding in this sector. There are still a lot of gaps in our knowledge to fully understand the 

impact of these nanomaterials on the environment. 

 

1.15 AIMS OF PHD 
 

The main aims of this PhD were to investigate the potential health effects of two 

selected NPs, TiO2 and Ag, in fish. These NPs were chosen for investigation because of their 

wide scale commercial use and literature evidence for the potential for biological and 

adverse health effects. 

 

Both TiO2 and AgNPs end up in aquatic systems and modelling flow charts have 

predicated significant discharges via sewage treatment plants and a potential also for them 

to enter the human food chain from the environment.  

 

This PhD set out to investigate the ecotoxicology and biological effects of 

commercially available Ag and TiO2 NPs, exploring their possible uptake and fate within 

exposed fish for aqueous exposures. The purpose of this work was also to explore their 

possible effect mechanisms and target tissues (most notably for Ag).  Another major goal 

was to investigate the potential impact of AgNPs on reproduction and for possible 

transgenerational effects for a dietary exposure to AgNPs. The work overall was to establish 
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toxicity effects from fish early life stages to adulthood and verify/compare the toxicity 

results with other scientific research to gain a better understanding into the fate, behaviour 

and biological effects of the selected metal based NPs. Fundamentally, throughout the work 

conducted, careful physical characterisations on the particles in their raw state and as part 

of the exposure matrices were conducted to help in understanding of the exposures and aid 

in interpretation of the biological effects seen. Throughout, also effects for NPs were 

compared with larger (bulk) particle counter parts to help discriminate effects that related 

to  ‘nano  effects’.  A  wide  range of techniques were applied in the thesis to better establish 

exposure, target tissues and biological effects of the selected NPs, including, embryology, 

whole mount in situ hybridisation for target gene expression analysis, ICP-MS, in life in vivo 

exposures and advanced imaging with Coherent Antistokes Raman Scattering (see Moger et 

al., (2008)). 

 

Throughout this thesis work, the zebrafish (Danio rerio) was the study organism used. The 

zebrafish is an excellent model organism well established as a platform for toxicity studies. 

The zebrafish also has a sequenced genome and is widely adopted in the field of 

developmental biology to examine gene pathways and create mutant lines. The egg of the 

zebrafish has a transparent chorion membrane which means physiological observations can 

be made very easily on the developing embryo. It also has short completion time for 

embryogenesis (96hr hatch), which allows for high throughput for toxicity studies. The 

zebrafish is small (adults 4-5cm in length) and easily maintained in the laboratory, 

facilitating studies on reproduction. Furthermore, Exeter has extensive experience in 

conducting studies on embryo development and reproduction with this species. 

 

The key specific objectives of my research were: 

 

Objective 1: To establish the effects of particle size and coating of different sized Ag and 

TiO2 NPs on zebrafish embryogenesis. 

 

Objective 2: To identify target tissues and some of the effect mechanisms of AgNPs in 

zebrafish using the application of whole mount in-situ hybridisation. 
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Objective 3: Establish whether Ag particles impact on breeding of zebrafish and/or can 

undergo maternal transfer with biological consequences for their offspring? 

 

The following studies were carried out to address these objectives and are presented in the 

form of scientific papers that have either been accepted or are being submitted for 

publication in peer-reviewed journals. 

 

Study 1 (Chapter 2): Here zebrafish (Danio rerio) embryos were exposed via the water to 

different sizes of TiO2 and AgNPs, and for Ag, particles with different coatings. The 

endpoints measured were acute toxicity, alterations in morphology, apoptosis, and 

expression of metallothionein 2, analysed via whole mount in-situ hybridisation. Supporting 

the biological analyses, Coherent Anti Raman Spectroscopy was conducted on the exposed 

embryos to explore evidence for particle uptake across the chorionic membrane. The Null 

hypothesis tested was particle size and coatings have no effect on the toxicity to zebrafish 

embryos. 

 

Study 2 (Chapter 3): In the second study, zebrafish (Danio rerio) embryos/larvae were 

exposed to citrate coated AgNPs and bulk counterparts via the water column and whole in-

situ hybridisation analysis was carried for a number of genes that represent key biological 

processes thought to be affected by NP exposure, principally related to oxidative stress and 

metal handling. These genes were: metallothionein (mt2), glutathionine S-transferase Pi 

(gstp), glutathionine S-transferase Mu 1 (gstm1), hemeoxygenase 1 (hmox1) and ferritin 

heavy chain 1 (fth1). In this work, the ontogeny of expression of these genes was conducted 

in early life stage embryos and larvae to establish the most appropriate time point for the 

exposure assessment studies. Exposure studies were then conducted to determine whether 

AgNPs/bulk counterpart stimulate the different stress response genes in the identified 

target tissues at the most appropriate life stages established in the ontogeny work (for 

embryos/larvae up to 12 days post fertilisation). Further investigations into the mechanistic 

pathways for the effects of AgNP were investigated using a mutant transgenic fish line for 

Nrf2. Nrf2 plays a role as a transcription factor in oxidative stress. This study tested the Null 
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Hypothesis that there were no differences for stress responses (as determined by induction 

of key stress response genes) for AgNPs compared with a bulk counterpart. 

 

Study 3 (Chapter 4): Here, zebrafish (Danio rerio) were exposed for three weeks to citrate 

coated AgNPs and bulk counterparts via the diet to investigate whether AgNPs could a) 

impact the breeding of zebrafish b) establish where they uptaken in the body – i.e. target 

tissues c) investigate for maternal transfer and the possibility for biological effects in the 

offspring. For this, fish were exposed via the diet and fecundity was measured over the 

course of the study. To test for Ag uptake into target organs in adults, liver and gonad 

tissues were acid digested and then analysed via ICP-MS to determine Ag concentrations. 

Embryos from treated adults were collected at two time points per week for measuring Ag 

uptake (via ICP-MS). Embryos were also analysed at 24 hour post fertilisation via whole 

mount in-situ hybridisation to investigate the response of gstp and mt2. Embryos on the last 

week of exposure were challenged to Ag materials for further in-situ analysis on the 

expression of mt2 to assess whether adult exposures to the different Ag materials affected 

subsequent responses. This chapter set out to test the Null hypothesis that AgNPs do not 

impact on breeding of zebrafish or undergo maternal transfer with biological consequences 

to their offspring for a dietary exposure.  

 

The final chapter of this thesis (Chapter 5), provides a critical overview on the main findings 

of my thesis studies, the challenges faced and discusses future prospects for 

nanotoxicology. 
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CHAPTER 2 

 

EFFECTS OF PARTICLE SIZE AND COATING ON NANOSCALE AG AND TIO2 EXPOSURE  

IN ZEBRAFISH (DANIO RERIO) 

 

Nanotoxicology (2013) Volume 7 Number 8 Pages 1315-1324. 

 

RESEARCH PAPER 1 
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Abstract: 

Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little 

understanding on their potential health impacts for exposed organisms. Adopting an 

integrative approach, we investigated effects of particle size and coating on biological 

responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) 

and titanium dioxide (TiO2) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 

4nm, 10nm, 30nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both 

in nano form (10nm and 35nm) and its larger counterpart (600-1600 nm) induced dose 

dependent lethality and morphological defects, occurring predominantly during gastrula 

stage. Of the silver material tested 10nm nanoparticles appeared to be the most toxic. 

Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In-situ 

hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano 

toxicity where there was a significant induction of the heavy metal stress response gene, 

metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering 

(CARS) microscopy provided no evidence for silver particles crossing the chorionic 

membrane in exposed embryos.  Collectively, our data suggest that silver ions play a major 

role in the toxicity of Ag nanoparticles.  

Keywords: nanoparticle, ecotoxicology; Danio rerio; embryo; titanium dioxide, silver. 
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Introduction 

Nanoparticles are being introduced rapidly into the consumer market but there is still little 

understanding on their potential consequences for human and environmental health. Two 

of the first metal based nanoparticles to gain widespread use are titanium dioxide (TiO2) and 

silver (Ag). TiO2 is of global importance with in excess of 4.3 million tonnes produced 

annually, with extensive use in sunscreen and in the pigmentation of paints. The surface 

reactivity and general properties of TiO2 are well documented (Long et al., 2007). Nano-TiO2 

has been reported to cause oxidative stress effects in mammals and in fish, inducing 

inflammation, cell damage and genetic damage, both with and without exposure to 

ultraviolet A (UVA) radiation. Available data suggest sub-lethal toxicity in the concentration 

range of 5-50 µg L-1 for exposures via the water in both invertebrates (Lovern et al., 2007, 

Heinlaan et al., 2008, Zhao et al., 2009) and fish (Lee et al., 2007, Scown et al., 2009). 

Modelled environmental concentrations indicate TiO2 concentrations may in some 

circumstances reach between 0.7 and 16 µg L-1 (Nowack and Bucheli, 2007) and this could 

present a risk to aquatic organisms.  

In the 1970s, 2.5 million kg of Ag was discharged into the environment in the United States 

of America (Luoma and Rainbow, 2008) and its high toxicity to aquatic animals subsequently 

led to stringent environmental regulations by the 1980s under the Clean Water Act in the US 

(Purcell and Peters, 1999). Nano Ag is now used extensively in consumer products, 

predominantly for its effective antimicrobial properties and low production cost. In 

wastewater treatment works receiving influents from industries using silver nanoparticles 

(AgNPs), levels of Ag have been shown to reach 100 µg L-1 (Hu, 2010) and this exceeds  

tolerable limits for some bacteria and which may therefore impact adversely on bacterial 

communities (Marambio-Jones and Hoek, 2010). Of particular concern is the potential for 

nano Ag to concentrate in sewage sludge as in some countries (including the UK) this can be 

subsequently applied to land as fertilizer. Several studies have indicated that AgNPs have 

the potential to induce toxic effects in a range of species, including in fish (Skebo et al., 

2007, Braydich-Stolle et al., 2005, Hussain et al., 2005, Scown et al., 2009, AshaRani et al., 

2009). One study exposing zebrafish embryos to an extremely high level of AgNPs (100 mg L-

1), that were stabilised with citrate or fulvic acid, showed Ag penetrated into various body 
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tissues, including brain, heart, and skin (AshaRani et al., 2009). This toxicity for exposure to 

AgNPs in fish may, in part, relate to an enhanced dissociation in the exposure water, and 

thus bioavailability, of free silver ions (Jin et al. 2010). 

The purpose of this study was to adopt an integrative approach to determine potential 

toxicity to zebrafish embryos of well characterised Ag and TiO2, of various sizes both as 

unmodified nanoparticles and dispersed with citrate or fulvic acid, and across a range of 

exposure concentrations. Zebrafish embryos offer a wide range of experimental 

conveniences including the ease for observing developmental effects through a transparent 

chorion. Mortality rates, developmental abnormalities, apoptosis, and targeted (in situ) 

gene expression were used as effects assessment endpoints. Advanced imaging techniques, 

including Coherent Anti-strokes Raman Scattering (CARS) were employed to investigate for 

uptake and distribution of nanoparticles in the tissues of the exposed embryos. 

Materials and methods 

Fish source, culture, and husbandry  

Wild-type WIK (Wild-Type India Calcutta) strain zebrafish embryos were obtained from the 

Max Planck Institute, Tubingen, Germany and maintained at University of Exeter as 

described in the supplementary material (S1).   

Nanoparticle source and characterisation  

 

AgNPs (nominal sizes 10nm and 35nm) and Ag bulk (nominal size 600-1600 nm) were 

acquired from Nanostructured and Amorphous Materials Inc. Houston USA. Titanium 

dioxide nanoparticles (TiO2NPs) (nominal sizes 3nm, 10nm and 35nm) and 134 nm particles 

were acquired from Alfa Aesar- A Johnson Matthey Company, Shore Road, Port of Heysham 

Industrial Park, Heysham, Lancashire, LA3 2XY, United Kingdom  

 

Physicochemical characterisation 

 

A number of techniques were carried out to characterize and quantify the particles. The 

techniques applied included: nanoparticle tracking analysis (NTA), Braun Emmett Teller 
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(BET) method of specific surface area analysis, X-ray diffraction (XRD), atomic force 

microscopy (AFM), and (high resolution-transmission electron microscopy (HR-TEM) with 

associated spectroscopy - X-ray electron dispersive spectroscopy (X-EDS). A full detailing of 

the methods applied to Ag and TiO2 particles can be found in Scown et al., (2009); and 

details of data analysis in Ju-Nam et al., (2012). 

 

 Silver dissolution 

Samples of silver nitrate (Perkin Elmer) were made up in milli Q water and embryo culture 

water (0.60 mg of marine salts [Tropic Marin] per litre of de-ionised water) as test standards 

for analysis by the ICP-MS. Sample concentrations were 0, 15, 30, 60, 120 and 260 μg L-1. 

Dissolution rates were determined for 35nm Ag and bulk Ag particles. For this, duplicate 1 

litre solutions containing 50 μg L-1 AgNPs were made up in embryo culture water (0.60 mg of 

marine salts–Tropic Marin per litre of de-ionised water) and mixed constantly using 

magnetic stirrers at a temperature of 21ºC. For each treatment, 8 Spectra/por dialysis 

membranes MWCO 1 000 (1KDa) (pre-washed in 0.05% sodium azide in Milli Q water ) were 

set up containing 10 ml of Milli Q water, that were then  clip sealed at each end before 

being submerged into the AgNP or Ag bulk solutions. At different time points; 4hrs, 24hrs, 

48hrs and 72hrs, 1 sample for each treatment vessel (2 per treatment) was taken, pipetted 

into a 15ml falcon tube and the silver ions stabilised through the addition of 1% of HNO3 

added before analyses using ICP-MS. 

Ag/ TiO2 nanoparticle exposure and effects assessments 

Particles  were  made  up  in  a  dilution  series  of  6  stock  solutions  (50  μg L-1,  500  μg L-1,  5  000  μg 

L-1,  50  000  μg L-1, 250 000  μg L-1) for each particle size. Solutions were sonicated in a water 

bath for 30 minutes and placed into glass, amber, Boston round 125ml tubes fitted with a 

Teflon lined cap and kept at 4ºC until required. When the solutions were required for the 

exposure studies they were sonicated in a water bath for 30 minutes and pipetted into the 

exposure wells. To investigate for effects of particle coating on biological effects a further 

dilution series of 10nm Ag particles was mixed with either 0.0075% sodium citrate or a 2% 

fulvic acid suspension prior to the exposures. For the exposures to silver ions, a stock 
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solution of silver nitrate (Perkin Elmer 2% AgNO3) was made and the required amount for 

each exposure concentration was added into the embryo culture water. 

For   the   embryos   exposures,   500   μl   of   the   stock   solutions  were      added   to   450ml   embryo  

culture  medium  to  give    final  exposure  concentrations  of  5  μg L
-1;  50  μg L

-1;  500  μg L
-1

;  

5   000   μg L
-1;   25   000   μg L

-1
. Controls received 5ml of embryo culture water only.    

Eggs/embryos were collected from breeding colonies transferred into a Petri dish and 

washed twice with embryo culture water (0.60 mg of marine salts Tropic Marin per litre of 

de-ionised   water)   with   the   addition   of   15   μl   of   methylene   blue   to   prevent   fungal and 

bacteria growth. For all exposures there were 20 embryos (at the 1-2 cell stage, 1-1.5hpf) 

per treatment well, and the studies were replicated at least 3 times. The embryos were 

incubated at 28+/- 1 °C up to 48hr. After 2h in culture, the numbers of unfertilized embryos 

were recorded and these were removed. At 48hpf (hours post fertilization) survival rates 

and any phenotypic deformities were recorded. Any physical deformities observed were 

recorded and converted to percentages for each treatment. Embryos were observed and 

photographed using Nikon SMZ1500 microscope equipped with a digital camera. To gain an 

insight into the timing of mortality and developmental effects induced by the exposures to 

Ag, time lapse video analysis was used, as described in the supplementary material (S2). 

 

 Cell necrosis  

 

To investigate further for silver particle toxicity, cell necrosis was recorded in embryos 

exposed during early life to either 35nm Ag or 35nm TiO2 at concentrations of 500 µg L
-1

and 

25 000 µg L
-1

. Twenty embryos for each exposure concentration were incubated at 28 +/- 

1°C  from the 1 to 2-cell stage and subsequently removed from the exposure at 7hpf and 

stained with a Propidium Iodide (PI) (Sigma P-4170) at 1mg/1ml mixed in distilled water; 

Fluorescine Diacetate (DAF) (Sigma F-&378) at 1.5mg/1ml mixed in DMSO; Hoechst (HO) 

(Sigma B2261) at 1mg/1ml mixed in distilled water and PBS (Pinero et al., 1997). The final 

concentrations of materials in the necrotic staining solution were; PI, 250 mg L
-1

; DAF, 750 

µg L
-1

; HO, 200 µg L
-1

. Embryos were incubated in the dark for 10 minutes in a 24-well plate 

and photographed using Leica DMI 4000 B Compound Microscope equipped with a digital 

camera.  
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Metallothionein gene expression assessed via whole mount in-situ hybridization 

 

In situ hybridization on exposed zebrafish larvae was undertaken to investigate for 

differential activation of gene expression for metallothionein 2 (Mt2), known to play key 

roles in toxicological responses to metals, including Ag (Choi et al., 2009). Mt2 cDNA was 

obtained from Imagene/RZPD (clone No IMAGp998C0115598Q). To prepare the RNA probe, 

Mt2 c DNA was amplified by PCR using two primers, Mt2_F: ATC AAC TCA TTC ACA AGC TGA; 

T3_Mt2_R: GGA TCC ATT AAC CCT CAC TAA AGG AAA TAC CAC CAT TTA TTT TAG, and in vitro 

transcribed with using digoxigenin labeling mixture (Roche) and T3 RNA polymerase 

(Promega). Using a G50 column the RNA was purified and precipitated using Lithium 

Chloride. The probe was then diluted with hybridisation buffer at 1/200. The in situ 

hybridisations were conducted as described in the supplementary material (S3).  For these 

studies embryos were exposed to 35 nm Ag and 35 nm TiO2 particles at 500 µg L-1, and  

AgNO3 at 12 µg L-1 (to represent the maximal rate of dissolution for the silver particle 

exposures – see results) from 1-2 cell stage to 24hpf, fixed with 4% PFA (S3). Embryos were 

observed and photographed using Nikon SMZ1500 microscope equipped with a digital 

camera. The expression level for Mt2 expression (localized in the YSL) was quantified using 

Image-J 1.44 P. The levels of expression were determined from the mean of 15-20 embryos 

for each treatment subtracting for the background measurement. Responses to silver 

treatment were then given as fold- increase above controls.   

 

CARS microscopy 

 

To investigate for uptake of nanoparticles into the exposed embryos Coherent Anti-Stokes 

Raman Scattering (CARS) microscopy was used to provide label-free imaging with sub-

cellular resolution (S5). For this imaging work, embryos were exposed at the 1 cell stage to 

500 µg L-1 and 5 000µg L-1 35nm Ag and 35nm TiO2 and their bulk counterparts. Ten embryos 

were taken at random for each exposure concentration at 24hpf, 5 of which were manually 

dechorionated and the other 5 the chorion left intact. Embryos were embedded in 1% low 

melting agarose with 0.05% of tricaine (to anaesthetise the fish) in a glass bottomed petri 

dish  photographed using IX71 and FV300, Olympus UK.  



BIOLOGICAL EFFECTS OF SELECTED METAL NANOPARTICLES IN ZEBRAFISH (Danio rerio) 

63 

 

 Statistics 

 

Unless stated otherwise, all data are presented as means ±S.E.M. The co-efficient of 

variation (CV) statistic was calculated for comparisons of variation, as CV= (standard 

deviation/mean)*100. All statistical analyses were performed using Sigma Stat version 12.0 

(Jandel Scientific Software, USA). Differences among groups were analyzed by one-way/two 

way ANOVA, followed by Holm-Sidak method comparison post-hoc test, where data were 

not normally distributed. All data were considered statistically significant at p < 0.05. 

Results 

Particle characterisation 

 

A summary of the characterisation and physiochemical properties of the silver particles is 

provided in the supplementary material Table S4 and further details are reported elsewhere 

(in Scown et al., (2009). All particles had purity >99% based on trace metal analysis. The 

measured sizes by TEM were found to be different from those reported by the 

manufacturer (the nominals) and were 49.0  18.5 nm and 114.0  65 nm for the 10 nm and 

35 nm particles, respectively. In our assessments, 10nm Ag particles had a specific surface 

area of 9-11m2 g-1, bulk density of 2.05 g cm-3 and a true density of 10.5 g cm-3. 35nm Ag 

particles had a density of 10.5 g cm-3, a specific surface area of 30-50 m2 g-1, and a bulk 

density of 0.30-0.60 g cm-3. Ag bulk particles had a range in particle size of 0.6-1.6 µm and 

purity of 99.95%.  

 

The measured physicochemical properties of TiO2 and TEM images of the different sized 

materials are shown in the supplementary material Table S1 and Figure S1, respectively. 

When in suspension, particles formed large aggregates of several hundreds of nanometres 

(Supplementary material Figure S1, Table S1). The high resolution TEM micrographs show 

that both the 3nm and 35 nm were comprised of very small particles likely to be less than 10 

nm, but their precise dimensions were not resolved due to the dense aggregation resulting 

in the formation of sheet like structures. The 10 nm particles formed fractal (i.e. porous) 

aggregates of about 19.1  13.8nm, as measured by TEM. It is worth noting the relatively 
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high polydispersity of this sample (Supplementary material Figure 1B, inset). The TEM 

measurement for 10nm particles were in good agreement with the sizes calculated from the 

SSA measured via the BET data and crystallite size measured by XRD (Supplementary 

material Table S1). The crystallite sizes were slightly larger than those measured by TEM or 

calculated from SSA, most likely due to the high polydispersity and aggregation observed. 

Measured sizes of the TiO2 were thus again different from the data supplied by the 

manufacturer.      

 

Dissolution of silver 

 

Mean recoveries of silver for the silver nitrate control standards (in Milli Q water) were 

between 78% and 103%, with greater recoveries at the higher concentrations 

(Supplementary material Table S2). In contrast, quantification of silver in embryo culture 

water gave measured concentrations at between 9.9% and 64.2% of nominals 

(Supplementary material Table S3). Dissolution of silver ions over the 72h period for 50 µg 

AgNP L-1, ranged between 0.1 and 2%; and for 50 µg Ag bulk L-1 between 0.21-0.83%.  

 

Lethality  

 

Overall TiO2 had an extremely low level of toxicity: 3nm and 35nm TiO2 particles showed no 

toxicity and the lowest effect concentration for 10nm TiO2 was 5 000 µg L-1 (p=0.029) and 

for 134 nm TiO2, 25 000 µg L-1 (p=0.004; Figure 1B). In contrast, there was a clear dose 

dependent toxicity for the different sized Ag NPs and the bulk counterpart (Figure 1A). 

There was a statistically significant interaction between concentration and Ag particle size 

(Two Way ANOVA p=0.001 DF=2 F=172.161) with the following lowest effect 

concentrations; 5 µg L-1 for 35nm Ag (p=0.002) and 50 µg L-1 for both 10nm Ag (p=0.001) and 

Ag bulk (p=0.003). 10nm Ag was significantly more toxic than 35nm Ag across all 

concentrations and it was also significantly more toxic than Ag bulk for almost all 

concentrations tested (the exception was for 5 µg L-1). Exposure to silver ions showed a dose 

dependent toxicity with a no effect concentration (NOEC) of 30 µg L-1 and a lowest effect 
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concentration (LOEC) of 60 µg L-1 (Two Way ANOVA p=0.001). At 500 µg L-1 there was 85% 

embryo mortality (Figure 1E).  

 

Figure 1. Mortality and morphological abnormalities at 48hpf in zebrafish embryos exposed 

to Ag nanoparticles (nominal sizes), TiO2 nanoparticles (nominal sizes), Ag coated with 

citrate, Ag coated with fulvic and AgN03. Mortality rates are shown for exposure to silver 

particles (A), TiO2 particles (B), Ag (10nm) and Ag (10nm) citrate coated particles (C), Ag 

(35nm) and (D) Ag (35nm) with fulvic acid (F), silver nitrate (E). For the different exposures 

there were statistically significant interactions between concentration and particle size (A, 

B, E), citrate coating (C) or fulvic acid (D) ( Two way ANOVAs p<0.001). The letters (a, b, c) 

indicate statistical difference (p<0.05) between particles/coating for each concentration 
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tested (All Pair-wise Multiple Comparison Procedures, Holm-Sidak method). There was  no 

statistically significant interaction between concentration and particle size for effects on 

heartbeat rate (Two Way Anova p=0.817). Significant differences in mortality between the 

treatment groups for exposure to silver nitrate were assessed by One Way ANOVA (* 

p<0.0001) to that of the control group.  

 

Effects of coating on silver nanoparticle toxicity 

 

Coating the 10nm Ag with citrate significantly reduced their toxicity across the 

concentration range tested (Two Way ANOVA DF=1 H=6.456 p=0.001) (Figure 1C). The 

maximum mortality rate (exposure to 25 000 µg L-1) in the citrate coated Ag particles was 

14% compared with 79% for non coated Ag particles of the same size. The lowest effect 

concentration for 10nm Ag was 50 µg L-1 (p<0.001) and for Ag 10nm+citrate, 500 µg L-1 

(p=0.05, Two way ANOVA).  10nm Ag was more toxic than 10nm Ag coated with citrate for 

all concentrations above 50 µg L-1.  

 

Similarly, the addition of fulvic acid significantly reduced the toxicity of the 35nm Ag (Two 

Way ANOVA DF=1 H=8.610 p=<0.001) (Figure 1D). The lowest effect concentration for 35nm 

Ag was 5 µg L-1 (p<0.001) and for 35nm Ag with fulvic acid, 500 µg L-1 (p<0.001). 35nm Ag 

was significantly more toxic than 35nm Ag + fulvic acid for all adopted exposure 

concentrations. 

 

Ag nano predominantly induces embryonic lethality at gastrula stage 

 

Video analysis on the developing embryos in the controls established that at 8hpf half had 

reached gastrulation stage, which is in accordance with the normal progression of expected 

development. In contrast, half of the embryos exposed to 25 000 µg Ag L-1, had died by this 

stage. Time lapse analysis showed that for embryos exposed to 35nm Ag the yolk sac 

membrane of the embryo became damaged, leading to the leakage of yolk and 

subsequently mortality (Figure 2). It was observed that the surface of the blastoderm 

became rough (Fig. 2E, F) and epiboly, the process where cells move and spread out into 
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sheets of tissue that overlie or surround other groups of cells, was delayed in comparison 

with control embryos (normally occurring at approximately 4hpf). The blastoderm in the 

surviving embryos treated with 35nm Ag did not cover the yolk and had only reached 

approximately 40% epiboly in comparison with the control embryos where there was nearly 

70% epiboly. Embryos that survived the exposure to Ag at the high exposure concentrations 

subsequently had morphological abnormalities including bent tails, small head and a 

reduced yolk sac size (Figure 2).   

 

 

 

Figure 2.  Images of embryos exposed to silver particles at various developmental stages. 
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Video captured images of zebrafish embryos in controls (A-C, 5hpf, 7.2hpf and 7.5hpf, 

respectively) and exposed  to  silver  particles  (35nmAg  at  25000  μg/l)    from  1-2 cell stage (D-

F, 5hpf, 7.2hpf showing - 1.Yolk leaking out from the cells, 7.5hpf showing -1. Uneven 

surface of dividing cells, 2.  Embryo bursting within the chorion membrane). 

G-R, microscope images of control/ exposed embryos at different developmental stages:  

G. 24hpf control embryo, H.24pf  Ag  (  10nm  5  000  μg/l)  I. 24pf  Ag  (  Bulk  5  000  μg/l  J. 24hpf 

AgNO3 (120  μg/l),  K. 24hpf control embryo L. 24hpf  Ag  (35nm  500  μg/l)  M. 24hpf Ag (Bulk 

500   μg/l) N. AgNO3 (120μg/l)  O. 48hpf control embryo, P. 48hpf   Ag   (35nm,   5   000   μg/l) 

showing -1. eyes spaced more widely on the head  compared with  controls, 2. absence of a  

tail, and  3. deformed yolk sac, Q. 24hpf   Ag   (Bulk,   5   000   μg/l)   showing   -1.bent tail,  2. 

reduced yolk sac, R. AgNO3 (120μg/l).   

 

Cell necrosis in early life stage embryos 

 

Staining for cell necrosis during the gastrula stage (7hpf) identified a high prevalence cell 

death   in   the   exposures   to   35nm   Ag   (500   μg L-1 and   25   000   μg L-1; Figure 3H, L). In the 

controls and embryos exposed to TiO2 there was a very low/no incidence of necrotic cells 

(Figure 3B, E). Based on a qualitative assessment only, there appeared to be similar numbers 

of live cells in all embryos examined in controls, TiO2 exposures   and   for   Ag   at   500   μg L-1 

(Figure 3 I, H). There was a high level of necrotic nuclei in the yolk syncytial layer (YSL), 

which forms during blastula stages of larval development (Figure 3 H). 
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Figure 3. Images showing live (green)/necrotic (red) cells in embryos at shield stage (Lateral 

View). A. control-live cells B. control-necrotic cells C. control -merged images live/necrotic 

cells D. TiO2 (35nm  500  μg/l)  -live cells E. TiO2 (35nm  500  μg/l)  - necrotic cells F. TiO2 (35nm 

500  μg/l)  – merged live/necrotic cells G. Ag  (35nm  500  μg/l)  -live cells H. Ag  (35nm  500  μg/l)  

- necrotic cells I. Ag  (35nm  500  μg/l)  – merged live/necrotic cells, showing -1. necrotic nuclei 

in blastoderm, 2. necrotic nuclei in yolk syncytial layer (YSL) 
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Particle uptake (CARS) 

 

The studies showing cell damage for the high concentration exposures suggested that 

material (particles and/or free silver) entered the embryo from the culture medium. CARS 

microscopy however, showed no detectable particles contained within the exposed 

embryos (Figure 4). CARS images (Figure 4), including images that were focused at the 

outside edge of the chorion (panels B and C), for exposures of embryos to both AgNP s and 

TiO2NPs, illustrate that the particles were associated with the outer edge of the embryo and 

not contained with the embryo itself. 
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Figure 4. Coherent Antistokes Raman Scattering images of embryos exposed to silver and 

titanium nanoparticles after 24h. Aggregates of NPs appear as coloured (yellow/red) 

patches on the image. NPs were visible only on the outside of chorion membrane. A. 

Control embryo - showing chorion margin, B. Embryo  exposed  to  Ag  (35nm,  25  000  μg/l)  -
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showing chorion margin, C. Embryo exposed to TiO2 (35nm,  25  000  μg/l)  -showing chorion 

margin, D. Control embryo showing chorion surface of embryo. E. Embryo exposed to Ag 

(35nm,  500  μg/l)  showing  silver  particles on chorion surface of embryo F. Embryo exposed 

to TiO2 (35nm,  500  μg/l)  showing  titanium  dioxide  particles  on  chorion  surface  of  embryo.  

CARS revealed nanomaterial on the surface of the chorion, likely as aggregates of nano 

particles B, C), but none were detected internally to the chorion within the embryo itself. 

 

Expression of metallothionein  

We conducted in situ hybridisation with Mt2 to identify possible tissue targets for metal 

responses induced by exposure to Ag nano. For the exposures to all silver treatment groups 

at sub-lethal doses, and for which no significant morphological defects were found, 

significant induction of Mt2 was detected in the YSL especially at the posterior extension. 

Exposure to 35nm Ag (Figure 5) induced a 3.9-fold increase, Ag bulk material induced a 2.7-

fold increase and Ag ion (12µg L-1) induced a 2.8 fold increase. TiO2 (500 µg L-1) did not show 

any enhanced expression of Mt2.  
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Figure 5. Embryos (24hpf) after applying the technique in-situ hybridisation to investigate 

for expression of metallothionein 2 as a measure of metal exposure/toxicity. There was a 

very low expression signal in the YSL especially at the posterior extension in the control 

embryos and in the embryos exposed to TiO2, but high expression in the Ag nano/bulk 

exposed embryos. A. Control embryo, B. Embryo-exposed  to  Ag  (Bulk  500  μg/l),  C. Embryo-

exposed   to   Ag   (35nm,   500   μg/l),   D. Embryo-exposed to AgNO3 (12   μg/l),   E. Graphical 

representation of the fold-increase Mt2 expression in the different treatments. 
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Discussion 

 

     We found TiO2NPs had little or no toxicity in zebrafish embryos on the endpoints 

measured and at exposure levels far exceeding those predicted to occur in some of the most 

polluted environments (Colvin, 2003). Our data support the majority of previous studies in 

this regard and would suggest therefore that in natural environments exposure to the TiO2 

particles tested are unlikely to pose any obvious health threat to fish embryos, which are 

widely accepted as highly sensitive to the effects of a wide range of toxicants.  

 

 In contrast Ag induced a dose dependent toxicity in both nano and bulk form. One possible 

explanation for the enhanced toxicity of the nano Ag is that the particles themselves may 

interfere with biological processes because they have the potential to by-pass barriers 

which normally prevent larger molecules from entering (Scown et al., 2010b). It is thought 

that nanoparticles can enter via pathways such as tight junctions (Luhmann et al., 2008) and 

if this is the case, in turn block the channel pathways of epithelial membranes (Hunziker et 

al., 2009). But for these particles, this is unlikely as they were aggregated. Furthermore; an 

enhanced ability to cross cell membranes was not supported by the CARS imaging in this 

study where at 24hpf we found no evidence for uptake of Ag (or TiO2) nanoparticles into the 

embryo (Figure 4). 

 

Time lapse video analysis of the embryos exposed to nano and bulk silver established that it 

was during gastrulation, when the yolk sac folds in on itself over the cells, where the 

greatest mortality occurred. The necrosis assay confirmed a high incidence of damaged 

nuclei both in the blastoderm and the YSL in the Ag exposed embryos at this development 

period (7hpf). We recently reported that deformity of the YSL often results in failure of 

gastrulation cell movement which leads to embryonic lethality at the gastrula stage 

(Takesono et al.,  2012). The  developmental morphologies seen  for exposure to Ag 

particles (i.e. bent tails and a small head) are common for embryos exposed to xenobiotic 

compounds (Yeo and Kang, 2008) and some abnormalities likely result from failed epiboly 

movement.  
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Citrate is used widely to stabilize NPs to  prevent /reduce their aggregation (Baveye and 

Laba, 2008) and here we found that coating 10nm Ag particles with citrate reduced 

significantly rates of mortality and abnormalities in exposed embryos compared with 

uncoated 35nm Ag; the LC50 of 35nm Ag was 500 µg L-1 compared with 5 000µg L-1 for 

35nm Ag coated with citrate (i.e. 10-fold lower). No studies were undertaken to investigate 

the aggregation behaviour of the different particles in the embryo incubation water, but 

some other studies have shown that in high ionic strength water there can be an enhanced 

aggregation rate for particles coated with citrate (Christian et al., 2008). It is possible 

therefore, that an enhanced aggregation of the citrate coated particles resulted in a lower 

bioavailability of Ag particles/ions for uptake. Subtle differences in the nature of NPs have 

also been found to profoundly affect biological effects responses (Moore, 2006). An 

alternative hypothesis is that the toxicity of the silver nanoparticles derives from the 

dissolution of silver ions from the particles and the rate of this process is much reduced in 

citrate coated silver particles (Treuel et al., 2010, Studer et al., 2010, Kittler et al. 2010). 

Similarly, addition of fulvics to the medium also reduced the toxicity of the AgNPs to the fish 

embryos. Such a coating could affect the particles by reducing Ag particle dissolution rates, 

and/or complexing free Ag ions after dissolution.  

 

 It is well established that fish and many other aquatic animals are sensitive to the toxic 

effects of silver ions, with LC10 concentrations reported for rainbow trout (Oncorhynchus 

mykiss)  between    0.7  to  0.8  μg L-1 and  LC50  between  10  μg L-1 to 240 μg L-1 for freshwater 

fish species (Birge and Zulderveen, 1996). The degree of dissolution (up to 2%) we found for 

Ag 35nm equates well with previous literature (Kittler et al., 2010, Fabrega et al., 2009). 

Based on the amount of silver ions in solution, it appears that they do not explain all of the 

toxicity observed. However; the Ag particles settle on the embryo surface (as evidenced by 

the CARS imaging), and therefore the local concentration of dissolved Ag ions is likely to be 

higher at the membrane surface compared with the surrounding medium and therefore 

may explain all toxicity observed in our experiments. Nevertheless, it is still possible that the 

NP is having an effect directly on toxicity. These discrepancies further highlight the need for 

stringent reporting on the physio-chemical characterization of materials used. A further 

difficulty in relating the toxicity effects with the measured Ag+ is the embryo medium 
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contained relatively high levels of chloride ion (626.2 µmol L-1) and this can complex Ag+ and 

in turn reduce its toxicity.  

 

CARS images (Figure 4) illustrated that the nanomaterials, generally appearing as 

aggregates, were associated with the outer edge of the embryo (panels B and C) with no 

evidence for penetration of the embryo itself. This was supported by CARS images of 

embryos that were dechorionated and showed an absence of any nanomaterial at the 

embryo surface and again no evidence of body penetration. Contrasting with this however, 

expression of Mt2, that  plays a central role in metal transport, storage and detoxification 

(Ngu and Stillman, 2006), strongly supports an intracellular presence of  silver ions in 

exposed embryos/larvae.  

 

We identified Mt2 expression in the YSL of the embryo, a body region where  processing of 

xenobiotic compounds is known to occur in zebrafish embryos (Chen et al., 2004a). The YSL 

was both the target for a toxicology response (cell necrosis) to AgNPs at the gastrula stage 

of development and location of Mt2 expression later in development (24hpf), for exposure 

to the lower Ag exposure concentration. We found low level and more diffuse expression of 

Mt2 at 7.2hpf compared with at 24hpf and this may confer a lower resistance of earlier life 

stage embryos to the toxic effects of Ag, but this would need further investigation to 

confirm this hypothesis. No such gene up-regulation was seen in TiO2 exposed embryos. 

These findings provide further evidence that at least some of the Ag toxicity relates to the 

bioavailability of silver ions that may be more readily released from nanoform silver. This 

would indicate the possibility for greater health effects associated with silver for AgNP 

exposure. Our data further show Mt2 as an effective biomarker for exposure to silver 

nanoparticles in fish embryos. Where the release of silver ions occurs to induce the 

response in Mt2 is not known, it may potentially occur outside of the embryo from where 

the silver ions are then transported into the embryo or be released from AgNPs that have 

penetrated the embryo, or a combination of both.     
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Conclusion 

       Our findings indicate that TiO2NPs are not likely to have adverse biological effects in fish 

in the natural environment. In contrast; AgNPs at sublethal exposure concentrations have 

the potential to induce harmful effects, disrupting embryo development predominantly at 

gastrula stage, inducing embryonic deformity at 1-2dpf stage and inducing the heavy metal 

stress response gene Mt2 in the YSL. These reported effects occur predominantly at 

exposure levels exceeding those currently found (or estimated) in the most aquatic 

environments but with the rapid expansion in the use and discharge of AgNPs, 

concentrations in the aquatic environment are likely to rise in the near future (Simonet and 

Valcárcel, 2009a); reviewed in Fabrega et al. (2011) heightening potential health concerns. 

Collectively, our data would suggest that silver ions play a major role in the toxicity of AgNPs 

and furthermore we show that coating of the particles, here with citrate or natural organic 

matter (here fulvics) can reduce significantly associated toxicity with major implications for 

understanding toxicity of metal NPs in the natural environment.   
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Supplementary Material 

   

S1 

Fish source, culture, and husbandry  

Wild-type WIK strain zebrafish embryos were obtained from the Max Planck Institute, 

Tubingen, Germany and maintained at University of Exeter. Fry from approximately 2 days 

post-hatch (dph) were fed on a microencapsulated diet (ZM Advanced Fry feed; ZM Ltd., 

Hampshire, U.K.). This was supplemented from approximately 7 dph with freshly hatched 

Artemia nauplii (ZM Premium Grade Artemia; ZM Ltd.). From approximately 21 dph onwards 

to adulthood fish were fed with freshly hatched Artemia nauplii to satiation twice daily. As 

adults, fish were fed daily on both freshly hatched Artemia nauplii and TetraMin tropical 

flake food (TetraMin, Tetra Werke, Melle, Germany). Embryos for use in the toxicity 

assessments were collected from naturally spawning colonies.  

S2 

Time lapse video analysis using compound microscopy 

To gain an insight into the timing of mortality and developmental effects induced by the 

exposures to Ag, time lapse video analysis was used. 20 embryos were exposed at the 1 cell 

stage to 35nm Ag at 25 000µg L-1and incubated at 28+/- 1 °C for 5 hours.  Four embryos 

were then taken at random and embedded into 1% low melting agarose in a petri dish. The 

petri dish was placed on a hotplate (in order to maintain the temperature at 28+/- 1 °C) and 

images were taken every 150 seconds for 3 hours. A petri dish containing non exposed 

control embryos was run under identical conditions for comparison. Embryos were 

photographed using Leica DMI4000 B Compound Microscope equipped with a digital 

camera.   

S3 

Whole mount in-situ hybridization 

 

For the hybridizations, embryos were fixed using 4% PFA in PBS at 4ºC overnight, then 

dechorionated and placed in methanol for 2 hours. The embryos were placed in 
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hybridisation buffer for 1 hour and incubated with the Mt2 probe overnight at 65ºC. The 

embryos were then washed in  50% formamide 2XSSC, 0.1%Tween 20 wash for 30minutes 

at 65ºC, followed by a 2XSSC 0.1%Tween 20 wash at 65ºC and then 2x 30 minutes wash at 

65ºC with 0.2XSSC 0.1%Tween 20. Blocking solution (2% Blocking reagent (Roche) 2.5ml of 

calf serum in MAB: component here) was added for 1 hour. Anti-DIG antibody (Roche) 

(x5000, dilute 1/100 with pre-absorption with fixed embryos) was then added for 2 hours. A 

series of 4x 30minutes of PBS + 0.1%Tween20 washes was conducted before a 10 minute 

wash with AP buffer (Tris 0.1M  pH 9.5, NaCl 0.1M, MgCl2 50mM, Tween 20 0.1%). Embryos 

were transferred to a 24 well plate and placed in the staining solution of BM-Purple AP 

Substrate (Roche REF 11442074001) to reveal the probe.  

S4 

CARS microscopy 

 

CARS microscopy derives chemically specific contrast from the vibrational frequencies of 

molecular bonds within a sample (for reviews see Zumbusch et al., (1999)). Briefly, imaging 

was performed using a modified commercial inverted microscope and confocal laser 

scanner (IX71 and FV300, Olympus UK), as described previously (Moger et al., 2008, 

Majewska et al., 2000, Wang et al., 2005). A 60X, 1.2 NA water immersion objective (UPlanS 

Apo, Olympus UK) was used to focus the laser excitation into the sample. Due to the 

directional nature of the CARS generation, simultaneous forwards- and epi-detection is 

desirable (Cheng and Xie, 2004). The forward-CARS signal was collected by an air condenser 

(NA=0.55) and directed onto a red sensitive photomultiplier tube (R3896, Hamamatsu) via a 

mirror and collimating lenses. The epi-CARS signal was collected using the objective lens and 

separated from the pump and Stokes beams by a long-wave pass dichroic mirror (z850rdc-

xr, Chroma Technologies) and directed onto a second R3896 photomultiplier tube at the 

rear microscope port. The anti-Stoke signal was isolated at each photodetector by a single 

band-pass filter cantered at 750 nm (HQ750/210, Chroma Technologies). 
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Supplementary Tables: 

Table S1. Characterisation measurements on 3 nm TiO2, 10 nm TiO2, 35 nm TiO2 and Bulk 

TiO2 in distilled water 

Original 

S Mitov swap 
3 nm TiO2 10 nm TiO2 35 nm TiO2 Bulk TiO2 

CAS No 1317-70-0 1317-70-0 1317-70-0 1317-70-0 

     

Primary particle size by TEM 

(nm) 
* 19.1  13.8 *  

Mean particle size by AFM (nm) - 46.0  2.6 - 518.1  65.9 

Mean particle size calculated 

from SSA (nm)  
10.8 32.5 4.4 115.5 

Crystallite size by XRD (nm)              20.7  4.1** 42.4  3.9** 8.1  1.1** 63.8  2.3** 

Specific Surface Area (SSA) by 

BET (m2 g-1) 
142.6 47.3 350.0 10.6 

Particle number by NTA mL-1    (1.8  0.3) x 108 (1.0  0.2) x 108 (0.9  0.2) x 108 (0.6  0.4) x 108 

Hydrodynamic diameter by NTA 

(nm) 
38  14 65  14 475  128 393  354 

Aggregate size by TEM (nm) 1242  682 1377  1113 959  570  

* particles formed sheets of aggregates with aligned orientation and grain boundaries 

could not be resolved. 

** Estimates of particle size by XRD using peak 101 and 200. Strain effect is ignored. 

Samples are composed primarily of Anataze 

Density = 3.9 
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Table S2. ICP-MS results of mean recoveries of silver for AgNO3 control standards 

measured in Milli-Q water 

AgNO₃  in  Milli-Q water CONCENTRATION (ppb) 

  

Sample Ag /  107 

  

0 ppb < 0.1 

15 ppb 11.75 

30 ppb 30.29 

60 ppb 63.60 

120 ppb 129.2 

240 ppb 249.8 

 

Table S3. ICP-MS results of mean recoveries of silver for AgNO3 control standards 

measured in embryo culture water 

AgNO₃  in  culture  water CONCENTRATION (ppb) 

  

Sample Ag /  107 

  

0 ppb < 0.1 

15 ppb 9.93 

30 ppb 13.13 

60 ppb 19.61 

120 ppb 23.63 

240 ppb 23.79 
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Table S4. Characterisation measurements on 10nm Ag, 35 nm Ag and Bulk Ag in distilled 

water 

 10nm Ag 35nm Ag Bulk Ag 

Zeta Potential -12.52 ± 2.7 -6.5 ± 1.8 -2.8 ± 0.6 

pH 7.11 7.34 6.40 

Hydrodynamic 

Diameter (nm) DLS 

589 ± 101 2029 ± 524 938 ± 230 

Polydispersant Index 0.54 0.93 0.69 

Hydrodynamic 

diameter (nm) NTA 

technique 

158 ± 76 166 ± 72 217 ± 130 

Particle per ml   

(NTA technique) 

1.07 x 108 0.21 x 108 0.27 x 108 

Mean particle size (nm)  

(TEM) 

49 ± 18.5 114 ± 65.3 137 ± 62.0 

Mean particle size (nm) 

(AFM) 

46.3 ± 10.7 90.0 ± 15.6 147.5 ± 82.3 

Crystallite size (nm) 

(XRD technique) 

21.2 ± 0.5 68.0 ± 2.0 60.0 ± 4.6 

Surface area 

(m2/g)(BET) 

2.0 ± 0.2 2.9 ± 0.2 0.6 ± 0.1 
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Supplementary Figures :- 

Figure S1 Typical TEM micrographs of TiO2NPs aggregates (A) 3 nm, (C) 10 nm, (E) 35 nm 

and (G) Bulk. The corresponding HRTEM of TiO2 NPs (B) 3 nm, (D) 10 nm and (F) 35 nm and 

(H) Bulk. 
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Figure S2 Combined mortality and developmental abnormality data for exposure to silver 

particles
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Abstract 

There is concern internationally  that some nanoparticles (NPs) may induce adverse health 

effects in exposed organisms, but to date the evidence for this in wildlife is minimal. Silver 

nanoparticles (AgNPs) comprise more than 30% of marketed nano products and they can be 

toxic to aquatic organisms, including fish, at concentrations relevant for some 

environmental exposures. Major challenges in the ecotoxicology of nanomaterials include 

identifying where NPs interact in the body and establishing their effect mechanisms. Here, 

we applied whole mount in-situ hybridisation (WISH) in zebrafish embryos and larvae for a 

suite of genes involved with detoxifying processes and oxidative stress including, 

metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-transferase mu 

(gstm1), heme oxygenase (hmox1) and ferritin heavy chain 1 (fth1) to identify potential 

target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic 

silver (AgNO3). AgNPs caused upregulation in the expression of mt2, gstp and gstm1 and 

down regulation of expression of both hmox1 and fth1 and there were both life stage and 

tissue specific responses. Responding tissues included olfactory bulbs, lateral line 

neuromasts, ionocytes in the skin, yolk sac and regions of the head. Target sites of AgNPs 

thus included sensory systems, with the potential for effects on olfaction, behaviour, and 

maintaining ion balance. Silver ions affected the same target tissues and induced the same 

gene responses as AgNPs, albeit there were differences in the levels of gene responses. 

Silver particles without coating (where a more rapid rate of silver ion dissolution occurs) 

invoked levels of gene responses more similar to silver treatments compared with coated 

silver NPs. These findings indicate the gene responses seen for the silver materials were due 

to silver ions. Expression of mt2 (24 hpf) and gstp (3 dpf) were either non-detectable or 

were at lower levels, in an Nrf2 zebrafish mutant compared with wild type zebrafish for 

exposures to AgNPs indicating these gene responses are controlled through the Nrf2-Keap 

pathway. 

Keywords: silver nanoparticles, Danio rerio, oxidative stress, target tissues, Nrf2 pathway 
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Introduction 

Given the rapid expansion in global markets in nanotechnology, an increasing number of 

NPs will enter aquatic systems. There is concern internationally that some NPs,  may induce 

adverse health effects in exposed organisms, but to date the evidence for this in wildlife is 

minimal. More than 30% of nano products in the marketplace contain silver nanoparticles 

(AgNPs) (Wijnhoven et al., 2009) and current global use is approximately 500 tonnes per 

year (Fabrega et al., 2011a). AgNPs are of particular concern to wildlife as most will be 

discharged via wastewater treatment works into surface waters where dissolution will 

release silver ions and these are toxic to aquatic species (Hogstrand and Wood, 2009).  

Studies on the acute toxicity for AgNPs in zebrafish embryos and in subsequent early life 

stages have established adverse effect concentrations ranging between 50 µg/l and 500 

µg/l, and have suggested greater effects compared with bulk counterparts (Osborne et al., 

2013, Asharani et al., 2008b). Developmental effects of AgNP exposure in zebrafish include 

stunted growth, a reduced yolk sac and distortions in the tail, albeit for high exposure 

concentrations (between 5 000 µg/l and 25 000 µg/l). These effects on embryogenesis have 

also been reported in other fish, such as the medaka (Kashiwada et al., 2012). Reported 

effects of AgNPs are believed to result from silver ions dissociating from AgNPs, but there is 

limited evidence also for direct effects of the particles themselves (Beer et al., 2012, van 

Aerle et al., 2013).  

Heavy metals, including silver, induce oxidative stress (Ercal et al., 2001) in a wide range of 

organisms spanning algae (Pinto et al., 2003) to fish (Sanchez et al., 2005) and usually they 

do so via generation of Reactive Oxygen Species (ROS) resulting in lipid peroxidation. AgNPs 

have been shown to induce oxidative stress in vitro through an increase in the production of 

ROS (Foldbjerg et al., 2009). In their detoxification in the body, metals usually bind to thiol-

containing compounds such as metallothionein (MT) and glutathionine (GSH).  

Standard approaches for testing the effects of NPs do not inform on material partitioning 

within the body or the target organs affected in an integrated manner. Whole mount in-situ 

hybridisation (WISH) as applied to zebrafish embryos and early life stages potentially offers 

a highly integrative, systems-wide approach to assess the toxicity of NPs through effects on 
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gene expression. The method offers the ability to target where in the body nanomaterials 

induce biological responses to help inform on their potential health effects (Nakajima et al., 

2011b). Application of the technique of in situ hybridisation to assess for effects of toxicants 

on target genes, however, requires understanding on the ontogeny of the expression of the 

target genes, and this is known for very few genes of toxicological relevance.  

In this study, we applied WISH in zebrafish embryos and early life stages exposed to AgNPs, 

a bulk counterpart and silver ions, for a suite of genes known to respond to metals (toxicity, 

transport and storage), oxidative stress and other markers of cellular stress. The genes 

selected were metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-

transferase mu (gstm1), heme oxygenase (hmox1) and ferritin heavy chain 1 (fth1). Mt2 is 

involved with transport and storage of heavy metals (Andrews, 2000) and has been shown 

previously to be responsive to AgNPs in zebrafish embryos (Osborne et al., 2013). 

Glutathionine S-transferases are a major group of detoxification enzymes that catalyze the 

nucleophillic addition of the tripeptide GSH to many xenobiotics and endogenous 

electrophiles. Gstm1 functions in the detoxification of electrophilic compounds and gstp 

plays roles in xenobiotic metabolism and oxidative stress (Garner and Di Giulio, 2012). Gstp 

is also known to be responsive to silver (Cheng et al., 2006). The gstm1 gene encodes for the 

carcinogen detoxification enzyme glutathione S-transferase M1. Heme oxygenase (encoded 

by hmox1 ) is an enzyme that catalyzes the degradation of heme which in turn produces iron 

and protects against oxidative stress (Ponka et al., 1998). We initially studied the ontogeny 

and tissue expression profiles for each of these target genes in unexposed animals up to 12 

days post fertilization (dpf) to determine their expression dynamics and identify the most 

appropriate life stages for studies on the effects of silver materials.  

Nrf2 plays a role in the protection of cells against oxidative stress (Kobayashi and 

Yamamoto, 2005) and regulates our marker genes such as gstp. Others include the heavy 

metal response gene mt2. Under normal conditions Nrf2 is nestled in the cytoplasm by 

cytoskeletal protein Keap1. When ROS occurs this causes the dissociation of Keap1 as a 

consequence Nrf2 is translocated to the nucleus which leads to an activation of antioxidants 

i.e. stress response genes. To investigate the potential involvement of the Nrf2 pathway in 
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the stress response againgst AgNP we have used mutant zebrafish which has defect in the 

Nrf2 gene (Mukaigasa et al., 2012). 

The Nrf2 mutant line was already well established in the same laboratory that had supplied 

us with some of the plasmids for the probes for stress response genes; therefore, it was a 

good opportunity to take advantage of this to further explore some mechanisms of AgNP 

toxicity. 

 

Materials and Methods 

Nano particle source and characterization 

 

Citrate-covered Ag 10-nm nanoparticles (measured diameter of 9.9 ± 3.1 nm; AgNPCi) and 

larger sized citrate-covered Ag particles (measured diameter of 160 nm AgBCi) were 

acquired from the University of Birmingham. Uncoated Ag 35 nm nanoparticle (measured 

diameter 114 ± 65 nm; AgNP) and uncoated Ag bulk (measured diameter of 137 ± 62.0 nm; 

AgB) were acquired from Nanostructured and Amorphous Materials Inc. Houston, USA. 

Detailed information on the characteristics of the particles derived from Nanostructured 

and Amorphous Materials are provided in Scown et al., (2010c) and Osborne et al., (2013). A 

series of techniques were applied to quantify and characterize AgNPCi and AgBCi particles 

including, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta 

Potential. For TEM, 0.1 mg/L suspensions of AgNPCi (0.1 mg/L and AgBCi were prepared in 

milli Q-water and embryo media (0.60 mg marine salts [Tropic marin] per 1 litre of deionised 

water with 10 µl of methylene blue). 10 mL of each suspension were deposited on 

Formvar/Carbon coated TEM-grids using ultracentrifugation (Beckman L-75) at 30 000 rpm 

for 60 min. Thereafter, the grids were rinsed by gently immersion in milli Q-water, and then 

dried overnight. Micrographs were acquired at 30 k, 75 k, 300 k and 500 k magnification (5-

10 micrographs at each magnification from each sample) at 80 keV accelerating voltage 

using a JEOL 1200EX TEM-instrument. Methods for deriving information on size (DLS), 

charge (Zeta Potential) are given in the supplementary material, S1. 
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Dissolution of silver 

 

(Currently awaiting data for dissolution of AgNPCi in embryo culture medium) However; a 

study using the same AgNPCi in seawater was carried out which gives approximate 

dissolution estimations. For materials and methods see supplementary materials S3. 

 

Fish source, culture and husbandry 

 

Wild type Indian Calcutta (WIK) strain embryos were obtained from the Max Planck 

Institute, Tubingen, Germany and maintained at the University of Exeter (see 

supplementary material S2 for details on fish maintenance). Nrf2 mutant zebrafish were 

supplied from the University of Tskuba, Japan (Mukaigasa et al., 2012). 

 

Embryo handling and Ag exposures 

 

Embryos for gene expression ontogeny analysis and silver material exposures were collected 

from breeding colonies and transferred into a Petri dish and washed twice with embryo 

culture water. For all gene expression analyses and exposure studies, 15 to 20 embryos 

were studied for each gene/exposure (collected at the 1-2 cell stage, 1-1.5 hours post 

fertilisation (hpf)) per treatment well (5 ml) and each exposure study was replicated at least 

3 times. The materials underwent sonication prior to use in the exposures using a Cole and 

Palmer Ultrasonicator Processor a full amplification and pulsing for two 10-second bursts. 

The required amount of silver material was then introduced into the embryo culture 

medium containing the embryos. The embryos for both gene expression ontogeny analyses 

and ecotoxicology studies were incubated at 28 +/-1⁰C   and   the  embryos  were   then   fixed  

with 4% PFA at the appropriate collection time. The expression ontogeny analyses were 

conducted in embryos from fertilisation up to 12 dpf. 
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Ag exposures   

 

 Based on the ontogeny of expression of the individual target genes in control animals (see 

results section) in situ expression analysis for the silver materials was adopted for the 

different target genes at specific life stages (see results section). The silver dosing regimen 

adopted for assessing target gene responses using WISH analysis was between 500 μg/l and 

1 000 μg/l   based  on  previous   findings   for   sublethal   effect   concentrations   (Osborne et al., 

2013). Citrate-coated nanomaterials were included as most NPs in industry are coated with 

a surfactant to reduce aggregation (Christian et al., 2008). Silver ions (AgNO3) (Perkin Elmer) 

were used as an ionic control at 20 μg/l,  calculated to provide an approximate dissolution 

equivalence (1-2%) for the dosing of AgNPCi, based on previous dissolution experiments 

with these materials, exposure medium and exposure periods (Osborne et al., 2013). WISH 

responses of the gstp gene were also analysed with non-coated AgNP and AgB particles for 

a dosing series of 0 μg/l, 5 μg/l, 50 μg/l, 500 μg/l, 5 000 μg/l and 25 000 μg/l  and  for mt2 

with AgNP encompassing exposure concentrations spanning 0 μg/l to 32  μg/l for sensitivity 

analysis. To investigate the role of the nrf2  transcription factor in the toxicology responses 

to the silver materials tested, Nrf2 mutant zebrafish embryos were exposed to AgNPCi (500 

µg/l) and AgNO3 (20 µg/l) at the 1-2 cell stage for a period of 24 h for mt2 and 3 days for 

gstp. As for the studies on wild type zebrafish, all exposures for Nrf2 mutants were repeated 

3 times. 

Synthesis of gene probes: mt2, gstm1, gstp, hmox1 and fth1 

The mt2 in situ probe was prepared as described previously (Osborne et al., 2013). For 

gstm1, a clone (IRBOp991A0110D) was obtained from Bioscience Life Sciences. To prepare 

the RNA probe for this gene, gstm1 cDNA was amplified by PCR using two primers, 

Sugano_F1: CTG CTC CTC AGT GGTGT TGC CTT TAC and T3_ Sugano_R1: GGA TCC ATT AAC 

CCT CAC TAA AGG CAG GTT CAG GGG GAG GTG TGG. Gstp, hmox1 and fth1 were acquired 

from University of Tsukuba (Mukaigasa et al., 2012). To make antisense probes for WISH, 

plasmids encoding gstp, hmox1 and fth1 were digested and transcribed with the following 

sets of restriction enzymes and RNA polymerases: gstp with BamH1/T7, fth1 with 

BamH1/T3, hmox1 with Xho1/ T3. Using a G50 column (GE Healthcare) the RNA was purified 
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and precipitated using Lithium Chloride. The probes were then diluted 1/200 with 

hybridisation buffer (Osborne et al., 2013). 

Whole mount in-situ hybridization 

For the hybridizations, embryos were fixed using 4% PFA in PBS at 4ºC overnight. They were 

then dechorionated and placed in methanol for 2 hours. Embryos/larvae were incubated in 

proteinase K (5 μg/ml) for either 30 minutes (for embryos between 24 hpf to 5 dpf) or 40 

minutes (for larvae between 6 dpf and 12 dpf). They were then washed two times with 

PBS+0.1% Tween 20 (PBSTw), placed in hybridisation buffer for 1 hour and incubated with 

the desired probe overnight at 65ºC. Embryos were then washed in 50% formamide 2XSSC, 

0.1%Tween 20 wash for 30 minutes at 65ºC, followed by a 2X SSC 0.1% Tween 20 wash at 

65ºC and received 2x 30 minutes washes at 65ºC with 0.2X SSC 0.1%Tween 20. Blocking 

solution (2% Blocking reagent (Roche) containing 2.5 ml of calf serum in MAB (Osborne et 

al., 2013) was added and the embryos were incubated for 1 hour. Anti-DIG antibody (5000x 

diluted with Blocking solution) (Roche) was then added and the embryos incubated for 2 

hours. Embryos subsequently received a series of 4 x 30 minutes washes in PBTw before a 

10-minute wash with AP buffer (Tris 0.1 M pH 9.5, NaCl 0.1 M, MgCl2 50 mM, Tween 20 

0.1%). Embryos were transferred to a 24 well plate and placed in staining solution (BM-

Purple AP Substrate, Roche) to reveal the probe, and photographed using a Nikon SMZ1500 

stereo microscope equipped with a digital camera. For the studies on gene ontogeny, the 

levels of gene expression were assessed on a qualitative basis. For the silver materials 

exposure work the levels of expression of the different genes studied were quantified using 

Image-J 1.44 P. Here, the expression intensity for a target gene was determined for a 

specific tissue area for 15-20 embryos/larvae, subtracting any background. The intensity 

value obtained was then converted to a fold change (FC) compared with controls to give an 

approximate quantification of effect for the different silver material treatments for that 

gene and tissue. Given the variation in the background expression of the target genes, only 

measured expressions differing from controls by more than 20% (i.e. fold changes above 1.2 

or below 0.8) were considered as significant. 
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Antibody staining of skin cells: vHATPase and NaKATPase 

Double immunohistochemistry was used to characterise skin ionophores, specifically 

vHATPase and NaKATPase. Ionophores are involved with ion transport and the exchange of 

other molecules in the zebrafish larvae (Esaki et al., 2007). Larvae were fixed with 4% PFA in 

PBS at 4ºC overnight and then dehydrated in 100% methanol. After rehydration in PBT 

(PBS+0.2% Triton X-100) and incubation in PBT containing 10% sheep serum (Sigma) for 1 h, 

the larvae were incubated overnight at 4°C with rat anti-dace vHATPAse and rabbit anti-eel 

NaKATPase (diluted 1:1000 with PBT containing 10% sheep serum). Following washing with 

PBT, the larvae were further incubated at room temperature for 2 hours with anti-rabbit 

IgG, Alexa Flour 543-conjugated anti-rabbit IgG, Alexa Fluor 488-conjugated anti-rat IgG 

(diluted 1:1000, Invitrogen) and then washed with PBT, embedded in 2% methylcellulose 

and photographed under Zeiss Microscope Observer Z.1. 

Results  

Particle Characterization  

A summary of the physiochemical properties of the AgNP, AgB, AgNPCi and AgBCi particles 

is provided in the supplementary information (supplementary information Figure S1 and 

Tables S1 and S2). DLS data illustrated that AgNPCi had a mean diameter of 20 nm and 

AgBCi a mean diameter of 160 nm (supplementary information, Table S1). In contrast, 

AgNPCi in the embryo culture medium had a mean diameter of 92.25 ± 1.8 nm and AgBCi 

had a mean diameter of 2456.2 ± 1287.5 nm. When dispersed in the embryo medium the 

measured sizes as determined via TEM were 52 93
22 nm for AgNPCi and 145 509

114 nm for 

AgBCi. Zeta potential for AgNPCi was -47.78 ± 4.25 and for AgBCi was -35.97 ± 6.2 mV. In the 

embryo culture medium, the zeta potential for AgNPCi was -18.38 ± 1.6 and -21.54 ± 3.9 mV 

for AgBCi. TEM micrographs illustrated that individual nanomaterials could be distinguished 

in liquid form, but there was evidence of aggregation when they were placed in the embryo 

exposure medium. Micrographs of bulk particles showed they occurred as large aggregates 

in the embryo culture medium. It is possible that some of the aggregation seen in the TEM 
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images for both the nano and bulk materials occurred as a consequence of the collection 

and fixing for the TEM processing (Bozzola and Russell, 1999).  

Dissolution of silver 

 

Please refer to supplementary materials S4 and Graph S1 for full details.  

 

Expression of target genes in zebrafish during early life (0-12 dpf): 

mt2 (metallothionein 2) was expressed at 3-4 hpf in cells of the blastoderm, and then at a 

relatively low level at 24 hpf in the extended yolk sac region of the embryo. No expression 

was seen after 2 dpf up to 12 dpf (Supplementary Figure 2, Ai-Aii; see also Osborne et al. 

(2013)). 

 gstm1 (glutathionine S-transferase mu) There was low-level expression at 3-4 hpf in cells 

of the blastoderm which was more intense at 8-10 hpf. Low detectable expression of this 

gene occurred at 24 hpf in the extended yolk sac region. No detectable expression occurred 

during the subsequent development up to 12 dpf (Supplementary Figure 2 Bi-Bii).  

gstp (glutathionine S-transferase pi) Expression was detected throughout the ontogeny 

period studied and occurred in olfactory bulbs, ventricles in the brain, neuromasts, jaw fins 

and gut. The patterns of expression and intensity of expression differed over the life stages 

studied. At 24 hpf gstp expression occurred in the extended yolk sac region and at 48 hpf in 

the olfactory bulbs and brain ventricles. At 3 dpf expression occurred in neuromasts 

expressed along the lateral line and at 96 hpf also in the jaw. At 3 dpf some weak expression 

also occurred in the region of the olfactory bulb. Gstp expression occurred in the pectoral 

fins at 120 hpf, and at 144 hpf was also associated with the region of the gut. At 168 hpf, 

192 hpf and 240 hpf there was relatively weak gstp expression and this occurred 

predominantly in neuromasts (Supplementary Figure 2, Ci-Cviii). 

hmox 1 (heme oxygenase 1) There was little detectable expression of hmox1 in embryos 

until 24 hpf, when a relatively high level of expression was observed in the retina and at the 

tip of extended yolk sac. At 48 hpf expression also occurred in the retina, in the yolk sac and 

in some neuromasts.  At 72 hpf onwards some (18%) of the embryos studied showed a low 
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level, or no observable expression of hmox1, until 7 dpf when there was a relatively high 

level expression in the liver (Sadler et al., 2007) which was continued subsequently to 12 dpf 

(Supplementary Figure 2, Di-Dvii). 

fth1 (ferritin heavy chain 1) Expression of fth1 occurred 3-4 hpf in the entire blastoderm. At 

7-9 hpf low level expression was detected in the germ ring and at 24 hpf there was a 

pronounced expression in the forebrain, which persisted in the brain at 48 hpf with 

additional expression in the extended yolk sac. No expression of fth1 was detected at 72 hpf 

or at 96 hpf, but from day 6 to 11 variable and relatively low level expression occurred in the 

yolk sac and/or gills. Fth1 expression occurred in the liver from 144 hpf to 216 hpf, was 

absent in this tissue at 240 hpf, but detected again at 264 hpf (See supplementary Figure 2 

Ei-Eviii). 



BIOLOGICAL EFFECTS OF SELECTED METAL NANOPARTICLES IN ZEBRAFISH (Danio rerio) 

102 

 

Figure S2 
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Figure S2: Representative in situ hybridisation images showing ontogeny of expression of 

mt2, gstp, gstm1, fth1 and hmox1 for up to 12 dpf in zebrafish: mt2 in 3-4hpf (Ai) and 24hpf 

(Aii) embryos; gstm1 in 3-4hpf (Bi) and 24hpf (Bii) embryos; gstp in a 24hpf (Ci), 48hp, (Cii), 

72hpf (Ciii) 96hpf (Civ) 144hpf (Cv), 192hpf (Cvi, and CVii with head close up, showing 

neuromasts , and 240hpf) (Cviii, showing extended yolk sac) embryos/larvae; hmox1 in 3-

4hpf (Di), 24hpf (Dii),  48hpf (Diii) 96hpf (Div),  144hpf (Dv) 168hpf (Dvi), and 240hpf (Dvii) 

embryos/larvae; fth1 in 3-4hpf (Ei), 24hpf (Eii),   48hpf (Eiii),  144hpf (Eiv), 168hpf (Ev), 

216hpf (Evi), 240hpf (Evii) and 264hpf (Eviii) embryos/larvae.  indicates focal areas of 

expression for the target genes studied.  

 

Developmental life stages adopted for assessing exposure responses to silver materials  

Based on the ontogeny of expression of the different genes, appropriate life stages were 

chosen for exposure studies on silver materials. These stages allowed for analysis assessing 

possible stimulation and/or suppression of target gene expression. Mt2: 24 hpf and 4 dpf, 

gstp: 24 hpf, 48 hpf and 4 dpf, hmox1 and fth1: 24 hpf and 5 dpf, gstm1: 24 hpf, 4 dpf and 5 

dpf. 

Quantifying Ag effects 

An overview of threshold responses for the different target genes and responsive genes 

showing the fold change (FC) difference to that compared with controls is shown in Table I.  
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Table I. Quantification of target gene responses derived from in situ hybridisations showing 

fold change in expression compared with controls. A. mt2, gstp, gstm1, hmox1 and fth1 at 

24 hpf-dosings: 500 µg AgNPCi/l, 500 µg AgBCi/l, 20 µg AgNO3/l; B. gstp at 48 hpf-dosings: 

500 µg AgNPCi/l, 500 µg AgBCi/l, 20 µg AgNO3/l; C. mt2, gstp and gstm1 at 4 dpf-dosings: 1 

000 µg AgNPCi/l, 1 000 µg AgBCi/l, 20 µg AgNO3/l;. D. gstm1, hmox1 and fth1 at 5 dpf 

dosings: 1 000 µg AgNPCi/l. 
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Effects of silver materials on gene expression 

mt2  

At 24 hpf, in non-exposed embryos 57% showed a detectable expression of mt2 in the 

extended yolk sac region and this was consistently (80% + embryos) elevated for exposures 

to 500 μg AgNPCi/l (4.6-fold), 500 μg AgBCi/l (4.7-fold) and 20 µg AgNO3/l (2.7-fold) (Figure 

1 Ai-Aiv) (Table I). Mt2 showed an enhanced level of expression in the extended yolk sac 

region for exposures to AgNPs as low as 4 µg/l (the lowest concentration tested; Figure 2 

Bii). At 4 dpf (Figure 2 Ci-Cii) a 24-hour exposure to AgNPCi resulted minimally in a 2-fold 

higher level of mt2 expression (Table I) across various regions of the larval body including 

head, jaw and yolk sac (and consistently so, in 92% of the embryos). 

 

Figure 1. Expression of mt2 in zebrafish embryos/larvae at 24 hpf-after exposure to AgNPCi, 

AgBCi and AgNO3 as determined by whole mount in situ hybridisation (n=60 for each 

treatment group). Indicates target tissue/focal areas where mt2 expression was affected 

by the treatments. Ai. Control embryo, Aii. 500 µg AgNPCi/l, Aiii. 500 µg AgBCi/l, Aiv. 20 µg 

AgNO3/l (all 24 hours post fertilisation). Bi. Control embryo, Bii-Bv AgNP, at (Bii) 4 µg /l, (Biii) 

8 µg/l, (Biv) 16 µg/l and (Bv) 32 µg/l (all 24 hours post fertilisation). Ci-ii AgNPCi, Ci. Control 
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larvae, Cii 1 000 µg/l (all exposed at 4 days post fertilisation for 24h). Numbers represent 

percentage of embryos affected in the treatment (n = 15-20). Upwards and downwards 

pointing arrows indicate enhanced or reduced gene expression respectively compared with 

controls (see also Table I). 

gstp  

At 24 hpf gstp expression was enhanced in the extended yolk sac by between 1.5 and 1.7-

fold above controls (Table I) for exposures to 500 μg AgNPCi/l, 500 μg AgBCi/l and 20 µg 

AgNO3/l, and in a consistent manner (more than 90% of the embryos responding in the 

same manner) (Figure 2 Ai-Aiv). For exposures to non-coated silver materials, at 48 hpf 

(Fig.2 Bi-Cv) AgNP activated gstp expression in regions of the head and pectoral fin in a 

concentration related manner (75% of embryos showing this response). Levels of gstp 

expression for embryos exposed to AgNP were 2.1-fold greater in the head, and 1.4-fold 

greater in the pectoral fin compared with controls. Exposure to AgB induced a 1.5-fold 

higher expression in the head and 1.3-fold higher expression in the pectoral fin compared 

with controls (Table I). For ionic silver, there were 1.5-fold and 1.6-fold higher levels of 

expression in the head and pectoral fin, respectively (Figure 2 Ci) (Table I). Antibody staining 

of ionocytes with vHATPase (shown in green) NakATPase (shown in red, Figure 2 Di-Dv) 

showed that focal areas of gstp expression on the yolk sac, extended yolk sac and some 

other body regions of zebrafish larvae were co-localised  with vHATPase and NakATPase skin 

cells. In 4 dpf larvae, (Figure 2 Ei-Eii) 24-h exposure to AgNPCi (1 000 μg/l) resulted in a 2-

fold higher expression of gstp (Table I) across various body of the larvae (and in 100% of the 

embryos examined; Figure 2 Ei-Eii). 
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Figure 2. Expression of gstp in zebrafish embryos/larvae at 24 hpf-after exposure to AgNPCi, 

AgBCi and AgNO3 as determined by whole mount in situ hybridisation (n=60 for each 

treatment group). Indicates target tissue/focal areas where gstp expression was affected 

by the treatments. Ai. Control embryo, Aii. 500 µg AgNPCi/l, Aiii. 500 µg AgBCi/l, Aiv. 20 µg 

AgNO3/l (all 24 hours post fertilisation). Bi. Control embryo, Bii-Bv AgNP, at (Bii) 5 µg /l, 50 

µg/l (Biii), 500 µg/l (Biv) and 5 000 µg/l (Bv); Cii-Cv AgB, (Cii) at 5 µg /l, (Ciii) 50 µg/l, (Civ) 

500 µg/l and (Cv) 5 000µg/l and (Cvi) 20 µg AgNO3/l (all 48 hours post fertilisation). Di-Div 

Embryos exposed to AgNPs and subjected to in situ hybridisation for gstp and antibody 

staining with vHATPase (green) and NaKATPase (red) to detect ionocytes. Di. Exposure to 

500 µg AgNP/l showing in-situ staining at 50 hpf, Dii. Close up of embryo at 50 hpf after 

application of antibody staining (green -vHATPase, and red -NaKATPase) to reveal ionocytes 

on yolk sac, Diii. 500 µg AgNP/l dosed embryo showing skin cell staining on extended yolk 
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sac, Div. embryo after application of antibody staining (green -vHATPase, red -NaKATPase) 

indicating ionocytes on yolk sac. Ei-ii AgNPCi, Ei. Control larvae, Eii. 1 000 µg/l (all exposed 

at 4 days post fertilisation for 24 h). Numbers represent percentage of embryos affected in 

the treatment. Upwards and downwards pointing arrows indicate enhanced or reduced 

gene expression respectively compared with controls (see also Table I). 

gstm1 

At 24 hpf gstm1 was expressed in controls (57% of the embryos) at detectable (albeit low) 

levels in the extended yolk sac region. Exposure to 500 μg AgNPCi/l, 500 μg AgBCi/l and 20 

µg AgNO3/l induced enhanced expression between 1.6 and 1.8–fold (Table I) higher in the 

extended yolk sac region. AgNPCi and AgBCi induced between 1.2 and 1.8–fold higher 

expression in the head region (occurring in over 60% of embryos). The same pattern 

occurred for exposures to AgNO3 but with higher fold inductions (4.8-fold in the head for 

40% of the embryos; Figure 3 Ai-Aiv, Table I). At 4 dpf larvae showed a consistently (70% of 

the embryos) enhanced expression of gstm1 for exposures to 1 000 μg AgNPCi/l, 1 000 μg 

AgBCi/l and 20 µg AgNO3/l with focal activity in regions of the head (between a 1.9 and 2.1 

fold increase) and yolk sac (between 1.2-1.7-fold increase) (Table I). There was no 

detectable expression of gstm1 in control embryos (Figure 3 Bi-Biv). Exposure of 5 dpf larvae 

to AgNPCi (1 000 μg/l) for 6 h induced expression of gstm1 in both the head region (by a 3.1-

fold) and in the yolk sac (2.3-fold, Figure 3 Ci-Cii, Table I) in all of the larvae. 
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Figure 3. Expression of gstm1 in zebrafish embryos/larvae at 24 hpf-after exposure to 

citrate-coated AgNPCi, AgBCi and AgNO3 as determined by whole mount in situ 

hybridisation (n=60 for each treatment group). Indicates target tissue/focal areas where 

gstm1 expression was affected by the treatments. Ai. Control embryo, Aii. 500 µg AgNPCi/l, 

Aiii. 500 µg AgBCi/l, Aiv. 20 µg AgNO3/l (all 24 hours post fertilisation). Bi. Control embryo, 

Bii. 1 000 µg AgNPCi/l, Biii. 1 000 µg AgBCi/l, Biv. 20 µg AgNO3/l (all 4 days post fertilisation). 

Ci-ii AgNPCi, Ci. Control larvae, Cii. 1 000 µg/l (all exposed at 5 days post fertilisation for 6 

h). Numbers represent percentage of embryos affected in the treatment (n = 15-20). 

Upwards and downwards pointing arrows indicate enhanced or reduced gene expression 

respectively compared with controls (see also Table I). 

hmox1  

 

At 24 hpf there was no effect of any of the silver treatments (AgNPCi, AgBCi nor AgNO3) on 

the expression of hmox1 in the yolk sac region or the lens region of the eye (Figure 4 Ai-Aiv). 

At 5 dpf, hmox1 expression was downregulated in all of the larvae in the head region (0.5 of 

controls and yolk sac (0.7 of controls) (Figure 4 Bi-Bii, Table I). 
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fth1  

 

At 24 hpf, fth1 expression occurred mainly in the head and in almost all (97%) of control 

embryos (Figure 4 Ci-Civ). There was also some more minor expression seen on the skin. 

There were no obvious effects of exposure to AgNPCi, AgBCi nor AgNO3 on the expression 

pattern or intensity for fth1 compared to controls. However, at 5 dpf a 6 h exposure to 

AgNPCi (1 000 µg/l) resulted in a suppressive effect (in all larvae) on the expression of fth1 

in both the head and yolk sac region (expression was between 0.4 and 0.5 of controls; Figure 

4 Di-Dii, Table I). 

 

Figure 4. Expression of hmox1 and fth1 in zebrafish embryos/larvae at 24 hpf-after exposure 

to coated AgNPCi, AgBCi and AgNO3 as determined by whole mount in situ hybridisation 

(n=60 for each treatment group). Indicates target tissue/focal areas of hmox1 and fth1 
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expression. Hmox1: Ai. Control embryo, Aii. 500 µg AgNPCi/l, Aiii. 500 µg AgBCi/l, Aiv. 20 µg 

AgNO3/l (all 24 hours post fertilisation). Bi-ii AgNPCi, Bi. Control larvae, Bii. 1 000 µg/l (all 

exposed at 5 days post fertilisation for 6 h). Fth1: Ci. Control embryo, Cii. 500 µg AgNPCi/l, 

Ciii. 500 µg AgBCi/l, Civ. 20 µg AgNO3/l (all 24 hours post fertilisation). Di-ii AgNPCi, Di. 

Control larvae, Dii. 1 000 µg/l (all exposed at 5 days post fertilisation for 6 h). Numbers 

represent percentage of embryos affected in the treatment (n = 15-20). Upwards and 

downwards pointing arrows indicate enhanced or reduced gene expression respectively 

compared with controls (see also Table I). 

Effects of AgNP on expression of mt2 and gstp in the nrf2 mutant 

We examined expression of two of our study genes, mt2 and gstp, in an Nrf2 mutant 

zebrafish to investigate their regulatory mechanism. In wild type (WIK) zebrafish at 24 hpf 

mt2 was expressed in the extended yolk sac region in response to AgNPCi and AgNO3 (Figure 

5 Ai and Aiii) but in an Nrf2 mutant the same exposures induced no detectable expression in 

the extended yolk sac region in the majority of embryos (over 70%; Figure 5 Aii and Aiv). 

There was variable, but comparatively minor expression by up to 0.7 of mt2 in the 

remaining Nrf2 mutant embryos compared with wild type fish. In wild type zebrafish (at 3 

dpf), exposure to AgNPCi and AgNO3 induced gstp expression in the olfactory region, 

pectoral fin, cloaca, and neuromasts of the head region (Figure 5 Bi and Biii). In contrast 

with this, in the Nrf2 mutant, gstp expression was not observed in either the olfactory 

region or the cloaca in the AgNPCi treatment group in any embryo (Figure 5 Bii). For 

exposure to 20 µg AgNO3/l (Figure 5 Biv), there was expression of gstp in the neuromasts 

and olfactory region in the Nrf2 mutant, albeit at a lower level compared with the wild type 

zebrafish, and no detectable gstp expression in the cloaca.  
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Figure 5. Expression of mt2 and gstp in zebrafish embryos (WIK and Nrf2 mutant) -after 

exposure to AgNPCi and AgNO3 as determined by whole mount in situ hybridisation (n=60 

for each treatment group). Indicates target tissue affected. -Mt2: Ai. AgNPCi (WIK) Aii. 

AgNPCi (Nrf2 mutant), Aiii. AgNO3 (WIK), Aiv. AgNO3 (Nrf2 mutant) –all at 24 hpf. Gstp: Bi. 

AgNPCi (WIK) Bii. AgNPCi (Nrf2 mutant) Biii. AgNO3 (WIK) Biv. AgNO3 (Nrf2 mutant)- all at 3 

dpf. Numbers represent percentage of embryos affected in the treatment (n = 15-20).  
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Discussion 

Adopting WISH as a technique we identified target tissues for exposure to AgNPs, a bulk 

counterpart and silver ions via responses in genes associated with metal handling, 

detoxification and oxidative stress (Valko et al., 2006). We provide evidence that key 

sensory systems and ionocytes are targets for these materials in fish exposed via the water 

and that the toxicological responses to the silver materials tested are due principally to 

silver ions. Furthermore, we show that the Nrf2 pathway is involved in the toxicological 

response to AgNPs. 

Whole organism gene expression ontogeny 

Detailed expression ontogeny analysis on more than 2 700 zebrafish embryos and early life 

stages (15 to 20 individuals x 12 stages x 5 markers x triplicate analyses) identified the 

potential receptive tissues and life stages for toxicological effects of silver materials 

(Supplementary information, Figure S2). In unexposed embryos, we found that mt2 was 

weakly expressed in the extended yolk sac (at 24 hpf), as we have shown previously 

(Osborne et al., 2013). Low level expression of gstp also occurred in the yolk sac and in 

head, pectoral fin, jaw, olfactory and gill and this probably serves to provide constitutive 

protection against oxidative damage in the developing embryo/larvae. Similarly, the 

expression of gstm1 (at 24 hpf) in the yolk sac seen in control embryos may serve to help 

protect against electrophilic compounds during early life development. Overall, the 

oxidative stress genes gstp and gstm1 shared similar tissue expression patterns. 

Hmox1 and fth1 that both play roles in maintaining cellular iron and in the control of the 

porphyrin metabolic pathway, showed similar patterns of expression in non-exposed 

embryos and larvae, but the patterns differed from the genes associated with oxidative 

stress. Expression of hmox1 and fth1 in the head, yolk sac and liver is consistent with the 

roles of iron in processes including growth and immunity. The finding of the liver as the 

major tissue expressing fth1 in 6 dpf fish is consistent with this tissue containing the highest 

levels of ferritin (Neves et al., 2009). The variable expression of hmox1 and fth1 between 

different tissues and within tissues over time is reflective of the variable requirement for 

metals such as iron in development and growth.  
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For all genes studied, the yolk sac was a major site of activity which may relate to its role in 

processing of metabolites generally (Chen et al., 2004a). Based on the patterns of 

expression in control embryos and larvae we selected zebrafish early life stages between 24 

hpf and 5 dpf that allowed for effective assessment of silver material effects on their 

expression. The expression of the target genes detected at 3-4 hpf in the blastoderm 

probably represented maternally derived mRNA. 

Genes and tissues responsive to Ag materials  

 

There were concentration dependent responses to the silver materials for mt2 (Figure 1) 

and all silver treatments induced mt2, principally in the region of the extended yolk sac 

(Figure 1 Ai-Aiv). Mt2 was relatively sensitive with responses detected down to exposures of 

4 µg/L for AgNP. These levels that are environmentally relevant Ag concentrations from  

predicted modelling studies (Gottschalk et al., 2009, Mueller and Nowack, 2008). In oyster 

embryos, Ag has been shown to induce MT down to only 0.16 µg/l, as detected via real time 

quantitative PCR analyses, which is a more sensitive detection method (Ringwood et al., 

2010). In adult fish, responsive tissues to Ag reported in previous studies include the liver 

and gills (Hogstrand et al., 1996).  

 

Gstp expression was induced by Ag materials in a variety of tissues, consistent with findings 

from previous studies showing oxidative stress in fish exposed to AgNPs (Choi et al., 2009, 

Foldbjerg et al., 2009). Induction of this gene was also seen in olfactory bulbs, an established 

tissue target for heavy metals and potentially affecting olfaction (Gobba, 2006). 

 

An interesting finding was that gstp activation co-localised with other parts of the sensory 

system, including neuromasts (Figure 2 Biii). Neuromasts are receptors comprised of groups 

of hair cells usually found in the lateral line and head region of the zebrafish. These sensory 

receptors are essential for various behaviours, social interactions, prey detection and 

predator avoidance (Froehlicher et al., 2009). It is known that heavy metals can alter vision, 

taste and olfaction, orientation and auditory functions (Kasumyan and DÖving, 2003). Our 

data indicate that exposure to silver particles could impact on the neuromasts and other 

associated sensory functions in the zebrafish. 
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We also observed enhanced gstp expression co-localised with ionocytes (skin cells) 

specifically ion transferring NaKATPase channels (Lin et al., 2008) in zebrafish larvae (Figure 

2 Di-Dv). The distribution of ionocytes in zebrafish larvae detected using antibody staining 

concurred with that reported previously (Esaki et al., 2009), with wide distribution over the 

skin and yolk sac (Hiroi et al., 1998). In adult fish, ionocytes are principally located in the gill 

area and are involved in the molecular transfer and exchange of ions (Dymowska et al., 

2012). In trout gills, exposure to silver can inhibit basolateral membrane Na+/K+ ATPase 

activity in ionophores (Wood et al., 1999). Responses in gstp expression in zebrafish larvae 

indicate that silver might affect ionic regulation in the skin. In gill ionophores, Ag ion affects 

on the Na+/K+ pumps reduces active N+ and Cl- uptake, which can consequently lead to an 

imbalance of Na+/Cl- ions in the blood plasma and in extreme cases, even death (Hogstrand 

and Wood, 2009).   

Gstp induction also occurred in response to Ag in regions of the head, yolk sac, skin and the 

pectoral fin (48 hpf). Recently, gstp upregulation was shown to occur during the 

regeneration of caudal fin, indicating a role in repair in response to tissue damage (Timme-

Laragy et al., 2012). Gstm1 is upregulated in the presence of large number of xenobiotics 

(Higgins and Hayes, 2011) indicating  a general role in the prevention of xenobiotic induced 

oxidative stress. Our studies on the zebrafish embryo support a wider body of literature 

showing AgNPs cause oxidative stress in various cell systems (Foldbjerg et al., 2009). In 

human liver cells, it has been reported that PVP coated AgNPs can generate ROS in only 30 

minutes and this effect is maintained for 12 hours (Piao et al., 2011). In this study, we also 

showed a clear inductive response for gstm1 after a 6-hour exposure to AgNPCi. 

 

We found a reduced expression of both hmox1 (Figure 4 Bi-Bii) and fth1 (Figure 4 Di-Dii) in 

the head region and yolk sac (Table I) after a 6-hour exposure to AgNPCi s in 5 dpf zebrafish. 

Oxidative stress (occurring through ROS) and inflammatory responses have been shown also 

to have suppressive effects on hmox1 in mice, for example in chronic inflammatory illness 

(Poss and Tonegawa, 1997). Intracellular excess iron causes oxidative stress by generating 

Fe2+ and in turn a hydroxyl radical in the Fenton reaction (Harrison and Arosio, 1996). It is 

still uncertain whether ferritin causes more oxidative stress by releasing Fe2+ as part of its 
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cytoprotective role of oxidative stress (Arosio et al., 2009). It has been suggested that this is 

why fth1 down-regulation or over expression can be seen during oxidative stress (Orino and 

Watanabe, 2008). In our study we observed suppressed effect of fth1 (Figure 4 Di-Dii). 

 

The toxicity of AgNP is via silver ion 

Increasing evidence suggests that the toxicity of AgNPs is a direct effect of dissociating silver 

ions (Kittler et al., 2010, Osborne et al., 2013) and our data for the expression of the various 

genes studied would support this.  

In the first instance at 24 hpf, gstp and mt2 induction in the yolk sac region was common 

across all silver treatments (Figure 2 Ai-Aiv) for equivalent estimated availability of silver 

ions. Secondly, AgNP induced stronger gstp responses compared with the bulk counterpart 

for the same affected tissues (Figure 2 Bi-Cv) and this too is consistent with the response 

being due to silver ions, as dissolution tends to be faster for NPs compared with their bulk 

counterparts (Choi et al., 2008). Furthermore, we found coating of particles in citrate 

reduced toxicity, and coating of particles reduces the level (rate) of dissolution and thus 

bioavailability of silver ions (Marambio-Jones and Hoek, 2010). Also, there were no 

differences between the tissues affected for gstm1 induction for the nano and bulk silver 

material exposures (4 dpf) i.e. the response patterns were the same.   

Nrf2 plays a key role in the toxicological response to Ag 

 

We saw expression of nrf2 in the head, nose, yolk sac and gills of fish. Another recent study 

on nrf2 reported expression in the nose, liver and gill of fish (Nakajima et al., 2011a). In 

mammals, it is established that Nrf2 plays a major role in mediating the oxidative stress 

response in cells (Theodore et al., 2008) and activation of this transcriptional response is 

triggered in the presence of reactive oxygen species (ROS) (Motohashi and Yamamoto, 

2004) (Knörr-Wittmann et al., 2005). Studies with mice have indicated that the 

metallothionein gene contains an antioxidant response element (ARE) (Ohtsuji et al., 2008) 

to which Nrf2 binds. Here, we established that mt2 and gstp were both induced by Ag in 

wild type (WIK strain) zebrafish, but in an Nrf2 mutant zebrafish, their expression was 

diminished considerably at 24 hpf (mt2) and 3 dpf (gstp) supporting Nrf2 mediating the role 
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of Nrf2 in the oxidative stress cascade for mt2 and gstp in fish. Our findings concur with 

studies in nrf1 mutant mice, where expression of both metallothionein (Ohtsuji et al., 2008) 

and GSH were decreased (Itoh et al., 1997) and indicating similarities in the response 

mechanisms between mice and fish. In the Nrf2 mutant zebrafish exposed to AgNO3 (at 3 

dpf) gstp expression was still clearly evident in the neuromasts, suggesting that the 

response in this tissue could be mediated by a transcriptional oxidative stress pathway 

different than that of Nrf1 (Biswas and Chan, 2010). Collectively data for the Nrf2 mutant 

however, shows that the Nrf2 pathway plays an important role in mediating the 

toxicological response to Ag materials in fish. 

 

Conclusion 

 

Applying WISH, we identify target tissues for silver nanomaterials, and they include tissues 

involved in environmental sensing (olfactory bulbs and neuromasts) and ionocytes involved 

with ion transport. Furthermore, the gene response associated with detoxification and 

oxidative stress appears to occur as a consequence of silver ions rather than a physical 

effect of the materials. We further show that, mutant lines used in combination with whole 

mount in situ hybridisation can be an effective way to better delineate pathways of effect 

for nanomaterials. Here, using an Nrf2 mutant zebrafish we show that Nrf2 is an important 

transcription factor in the toxicological response of mt2 and gstp to AgNPs. 
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Supplementary information 

 S1  

Particle Characterization  

0.1 mg L-1 suspensions of AgNPCi and 1mg L-1 AgBCi were prepared in embryo media. The 

nanoparticles in 10 mL of each suspension were deposited on Formvar/Carbon coated TEM-

grids using 30,000 rpm ultracentrifugation (Beckman L-75) during 60 min. Thereafter the 

grids were rinsed by gently immersing in milli Q-water, and dried overnight. Micrographs 

were acquired at 30k, 75k, 300k and 500k magnification (5-10 micrographs at each 

magnification from each sample) at 80 keV accelerating voltage using a JEOL 1200EX TEM-

instrument. 

S2  

Fish source, culture and husbandry 

Wild-type WIK strain zebrafish embryos were obtained from the Max Planck Institute, 

Tubingen, Germany and maintained at University of Exeter.  Fry from approximately 2dpf 

were fed on a microencapsulated diet (ZM Advanced Fry feed; ZM Ltd., Hampshire, U.K.). 

This was supplemented from approximately 7dpf with freshly hatched Artemia nauplii (ZM 

Premium Grade Artemia; ZM Ltd.). From 21dpf onwards to adulthood fish were fed with 

freshly hatched Artemia nauplii to satiation twice daily. As adults, fish were fed daily on 

both freshly hatched Artemia nauplii and TetraMin tropical flake food (TetraMin, Tetra 

Werke, Melle, Germany). Embryos for use in the toxicity assessments were collected from 

naturally spawning colonies.  

S3 

Silver dissolution of AgNPCi 

Two plastic containers were filled with 500 mL of 16 ppt salinity synthetic seawater. In each 

container, 2 dialysis bags (Spectra/Por, 1 kDa MWCO), labelled A and B respectively, each 

filled with 25 mL of 16 ppt synthetic seawater, were placed. The solutions in the containers 

(outside the dialysis bags) was stirred. 0.5 mL blank samples were taken, inside dialysis bag 
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A and B, and from the solution outside the bags, in each container, in order to check 

background Ag concentrations. In one of the containers, 50 mL of the synthetic seawater 

was removed, and was replaced by 50 mL of a suspension of 9.0 ppm 10nm Ag-labelled 

citrate capped Ag-nanoparticles (AgNPCi), resulting in 0.9 ppm AgNPCi in suspension in the 

containers. Synthetic seawater salt was added to the container to adjust for the dilution 

resulting from the AgNPCi-addition. 0.5 mL samples were taken inside the dialysis bags, and 

from the suspension/solution outside the dialysis bags, in both containers, immediately 

after the silver-additions. The containers were thereafter kept dark (inside a dark plastic 

bag) and under stirring for 27 days. The sampling was repeated 14 times during this period, 

to monitor the Ag-concentration inside and outside the dialysis bags.  

S4 

Results of silver dissolution of AgNPCi in container 

Mean recovery of Ag was 54%. It was concluded that this low recovery could be due to the 

AgNPs aggregating and adsorbing onto the container. Dissolution of the silver ions from 

AgNPCis in the first 23-34 hours was around 0.12-0.22 ppm in the dialysis membrane bags 

concluding a rapid dissolution of the AgNPs. At 4.5-7.5 days the Ag concentrations 

decreased and were around 0.047-0.071 ppm. Soon after Ag concentration started to 

increase and reached 0.32 ppm after 27 days which was similar to the outside solution at 

0.39ppm.  This  suggests  that  Ag  only  fully  “dissolved”  at  day  27  (Graph  S1). 
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Graph S1 

 

 

Graph S1. Graph showing dissolution over time for citrate coated Ag nanoparticles showing 

the variations of Ag concentrations inside and outside dialysis membrane in the container. 
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Table S1: Summary of AgNPCi and AgBCi particle characteristics 

 

 

 

 

 

 

 

 

 AgNPCi AgNPCi 

in embryo medium 

 

AgBCi AgBCi 

in embryo medium 

 

Zeta Potential 

(mV) 

 

-47.78±4.3 

 

-18.38 ± 1.6 

 

 

-35.97±6.2 

 

-21.54 ± 3.9 

 

Z average 

diameter (DLS) 

 

 

20 

 

 

92.25 ± 1.8 

 

160 

 

 

2456.2 ± 1287.5 

TEM (nm) 

 

 

9.9 ± 3.1 

 

52 93
22 

Median value 
Upper quartile

Lower quartile 

- 145 509
114 

Median value 
Upper quartile

Lower quartile 
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Table S2: Summary of characterisation measurements on AgNP (35nm) and AgB in 

distilled water 

 

 AgNP 35nm AgB (Ag Bulk) 

Zeta Potential -6.5 ± 1.8 -2.8 ± 0.6 

pH 7.34 6.40 

Hydrodynamic 

Diameter (nm) DLS 

2029 ± 524 938 ± 230 

Polydispersant Index 0.93 0.69 

Hydrodynamic 

diameter (nm) NTA 

technique 

166 ± 72 217 ± 130 

TEM (nm) 114 ± 65.3 137 ± 62.0 
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Figure S1 

 

 

Figure S1: Characterization of the AgNPCi and AgBCi. TEM of AgNPCi at 0.1 mg/l embryo 

culture medium x35 magnification (A), and x300 magnification (B);  DLS separation of 

AgNPCi in embryo exposure medium at 0.1 mg/l showing  circular particle size distribution 

(C);  Circular particle size distribution determined via TEM analysis (D); TEM of AgBCi at 1 

mg/l embryo culture medium, x35 magnification (E), and x300 magnification (F);   DLS 

separation of AgBCi in embryo exposure medium at 1 mg/l showing circular particle size 

distribution (G).  

 



BIOLOGICAL EFFECTS OF SELECTED METAL NANOPARTICLES IN ZEBRAFISH (Danio rerio) 

131 

 

 

 

CHAPTER 4 

 

ALTERED TOXICOLOGICAL RESPONSIVENESS IN LARVAL ZEBRAFISH AFTER PARENTAL 

DIETARY EXPOSURE TO SILVER NANOPARTICLES 
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Abstract 

Increasing amounts of products containing silver nanoparticles (AgNPs) in the market means 

that inevitably discharges will increase into surface waters. Predicated amounts ending up in 

surface waters pose a potential health risk to our aquatic systems. This study investigated 

the effects of a dietary exposure to citrate coated AgNPs (10nm, 62.6±3.20 mg/kg) and a 

bulk counterpart (600-1600nm, 43.9±0.33 mg/kg) on breeding in zebrafish (Danio rerio), and 

assessed for maternal transfer and subsequent biological consequences in their offspring. 

ICP-MS analysis detected silver in the liver (up to 2.1 µg/g in males) and gonad (up to 0.5 

µg/g in males) of adult fish dosed with ciAgN only (detection limit > 0.1 µg /g) indicating an 

enhance bioavailability for the silver (Ag) nanomaterial compared with the bulk counterpart. 

Dosing of adult zebrafish for three weeks with the Ag materials had no effect on fecundity 

(numbers of eggs spawned) or on fertility (numbers of eggs fertilised). Ag was detected in 

the embryos for the ciAgN treated adults only (up to 0.43 ng/per embryo) confirming 

maternal transfer. Gene responses of metallothionein 2 (mt2) and glutathionine S 

Transferase Pi (gstp) were measured in the subsequent offspring via whole mount in-situ 

hybridisation (WISH) at 24 hours post fertilisation (hpf). This showed significant mt2 

upregulation in the offspring during the period of adult dosing with AgNPs. Challenging the 

subsequent embryos to the same Ag materials indicated de-sensitisation of mt2 to Ag in 

offspring for adults treated previously (over 26 days) with nano and bulk forms of Ag. 

Overall, we show that dosing breeding fish with the different Ag materials had no effect on 

obvious measures of reproductive fitness but there was an enhanced Ag accumulation in 

selected tissues of adult fish exposed to AgNP compared with a bulk counterpart and an 
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altered response sensitivity of the mt2 gene to Ag in their offspring which may have 

implications for their ability to process metal based materials. 

Keywords: Silver nanoparticles, zebrafish, fecundity, stress response, transgenerational 

effects  
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Introduction 

Nanoparticles (NPs) are being used in a very wide range of applications and the 

nanotechnology industry is growing at a rapid rate. One of the consequences of this will be 

that NPs will increasingly end up in aquatic environments due to their direct discharge and 

via leaching from products containing nanomaterials as they age and deteriorate. There is 

much uncertainty as to how NPs a will behave or impact in our environment. The fate and 

transport of these NPs will be determined, at least in part, by environmental factors and the 

manner in which they are disposed (Nowack et al., 2012). 

Most research has focused on short-term biological effects of NPs and generally adverse 

effects for acute exposures are observed only for concentrations that far exceed those with 

environmental relevance (Scown et al., 2010b). There is less certainty however, regarding 

the ability of NPs to accumulate in exposed organisms or on longer-term exposures and 

even less information or the trophic transfer of NPs.  

There is some evidence that NPs can accumulate in fish. An example of this, is a study on 

carp exposed to titanium dioxide nanoparticles (TiO2NPs) (50nm) at 10 mg/L for 20 days via 

the water column showed titanium concentrated mainly in their gills by a bioconcentration 

factor (BCF) of 0.74 and the viscera 1065 which is extremely high (Zhang et al. 2006). A 

further study on zebrafish exposed via the diet to gold (Au) NPs (12nm), dosed at 5 µg Au/g 

given at 2% of their body weight for 36 days showed they accumulated in the brain and liver 

with resulting tissues concentrations of 4.6±2.3 µg Au/g and 3.0±2.4 µg Au/g, respectively. 

Studies in medaka too exposed via the water to fluorescent NPs (solid latex solution) at 10 

mg/L over a period of 7 days, provided evidence via fluorescence intensity for accumulation 

mainly in the gills, gallbladder, liver and testis (Kashiwada, 2006). Further studies on fish 

have clearly established the liver as a target tissue for NPs, including Ag materials (Wood et 

al., 1999). In studies on Ag, the liver has consistently been identified as a target site. Early 

studies showed in juvenile rainbow trout exposed to 9.3 µg AgNO3/L for 7 days Ag was 

found subsequently in the liver at 20 µg/g with an approximate BCF of 2.1 (Hogstrand et al., 

1996). Another example is a study by (Scown et al., 2010a); where a 10 day exposure to 

AgNPs (10nm, 35nm) via the water column (100 µg/L) to rainbow trout showed Ag uptake in 

the liver at 1.50 ± 0.30 µg/g and 0.92 ± 0.16 µg/g respectively. 
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A few studies have now also demonstrated that some NPs can undergo trophic transfer. 

Examples of this include TiO2NPs that have been shown to pass into body tissues of 

zebrafish fed daphnia pre-dosed with TiO2NPs (Zhu et al., 2010b). Furthermore; trophic 

transfer of AuNPs (15nm) initially uptaken from the water column into different organisms 

(clams, snails, shrimp and fish) via sea grass, biofilms and microbes has been observed 

through a series of mesocosms studies (Ferry et al., 2009). 

One potentially key route of entry for nanomaterials into organisms is into developing eggs 

and or offspring via maternal transfer. Studies using rodents have shown NPs can cross the 

placenta to the foetus, depending on the NPs size and coating. One study showed TiO2NPs 

(25-75nm) administered into pregnant mice via subcutaneous injection at 1 mg/L were 

detected via Field Electron Scanning Electron Microscopy (FE-SEM) in the testis and brain of 

the offspring (Takeda et al., 2009). A further study on TiO2NPs (2570nm) administered to 

pregnant mice at 1 µg/µL (injected subcutaneously for the gestational period), found 

upregulation and down regulation in the foetuses/pups brain in a number of genes, 

specifically related with development and function of nervous system which included 

apoptosis, oxidative stress and motor activity (Shimizu et al., 2009). It is being increasingly 

recognised that various NPs can translocate membrane barriers such as the blood brain 

barrier and placental-foetal barrier and this is now being exploited for the development of 

drug delivery and nanomedicines (Silva, 2007).   

Ag is used in 34% of the 1 000 plus nano products (Wijnhoven et al., 2009) on the market 

currently, making it a priority material for toxicology research. Ag can be persistent in 

aquatic ecosystems (Kothe and Varma, 2012, Luoma et al., 1995) and resulting 

concentrations in the aquatic environment can be very significant indeed. In a recent study, 

up to 175 µg/L of Ag was measured in leachates from painted facades (Kaegi et al., 2010), 

and it has been reported that AgNP socks release up to 1 300 µg Ag/L (Benn and 

Westerhoff, 2008). Estimates of Ag in natural waters range from 0.03 and 500 ng/L (Luoma 

and Nanotechnologies, 2008). Ag is a well known toxicant inducing biological effects 

including apoptosis, oxidative stress in the liver (Choi et al., 2009), DNA damage and 

morphological abnormalities in zebrafish (Asharani et al., 2008b) at concentrations of 5-500 

µg/L. AgNPs at concentrations 50 µg/L cause lethality in zebrafish embryos (Osborne et al., 
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2013) and cause Metallothionein 2 (mt2) upregulation via WISH analysis at sublethal doses 

(Osborne et al., 2013).  

Here we carried out a dietary exposure of breeding zebrafish to Ag particles to investigate 

their uptake into selected body tissues and effects on breeding. We further assessed for 

evidence for both maternal transfer into the developing eggs and effects in their subsequent 

offspring. Fish were dosed with citrate coated 10nm AgNPs and a bulk counterpart and 

effects determined on cumulative egg number and fertilisation rates. Responses of genes 

involved in detoxification (mt2) and oxidative stress (gstp), both of which are targets for Ag 

materials, were measured in resulting embryos for these exposures and for mt2 gene also in 

embryos further exposed to Ag materials. The rationale for the latter is being to establish 

whether parental exposure to Ag materials impacts on the response of the mt2 gene. 

Dietary exposure to AgNPs is an expected natural exposure route. 

Materials and Methods 

Nano particle source and characterization 

 

Citrate covered Ag 10nm NPs (measured size of 9.9 ± 3.1 nm; AgNPCi) were acquired from 

the University of Birmingham and larger sized Ag particles (measured size of 600-1600nm; 

AgB) acquired from Nanostructured and Amorphous Materials Inc. Houston, USA. These 

materials were characterised in the following manner: Transmission Electron Microscopy 

(TEM) and Dynamic Light Scattering (DLS), as further detailed in the results section and 

supplementary information (Figure S1 and Table S1). 

 

Flake preparation and flake dosing 

Three treatments of artificial flake were made up: Citrate control, Ag Nano and Ag Bulk. A 

citrate control was used because the Ag materials were coated in citrate to facilitate 

stabilisation. Many AgNPs used for industrial applications are coated with materials such as 

citrate, PVP, Poly (Ethylene Glycol) (PEG), silica and thiol to name a few. The diet comprised 

of TetraMin Tropical Flakes-ground to a fine powder mixed with flour and the required 

amount of Ag and citrate (0.15mM-the known concentration for the AgNPCi treatment). 
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Each treatment was made up as follows: In the citrate control, 40g of ground flake was 

added to 4g of flour combined with 80ml of citrate; in the Ag nano treatment, 250ml of 

AgNPCi at 11ppb (colloidal form) was added to 40g of ground flake and 4g of flour; for the 

bulk treatment, 2.32mg of AgB was added to 40g of ground flake, 4g of flour and 80ml of 

citrate. The amalgam for each treatment was mixed together and then spread evenly onto 

baking  paper  and  dried  in  an  oven  at  50⁰C.  Once  dried,  the  flakes  were  crumbled  and  placed  

in  a   falcon  tube  for  storage  at  4⁰C.  Three  3g   samples of each synthesised flake treatment 

analysed by ICP-MS to determine Ag levels. Fish were fed at 3% of their bodyweight per day. 

For the pre dosing period, the adult breeding fish were fed TetraMin Tropical Flakes and 

subsequently during the 21 day exposure period they were fed the artificially synthesised 

diet containing TetraMin Tropical Flake, flour and the dosing materials. 

Fish source and husbandry 

Wild type WIK strain zebrafish embryos were obtained from the Max Planck Institute, 

Tubingen, Germany and maintained at the University of Exeter. Fry from approximately 2 

days post fertilisation (dpf) were fed on a microencapsulated diet (ZM advanced fry feed; 

ZM Ltd. Hampshire, U.K). This was supplemented from approximately 7 dpf with freshly 

hatched Artemia nauplii. From 21 dpf fish were fed twice daily to satiation with freshly 

hatched Artemia nauplii and then throughout with freshly hatched Artemia nauplii in the 

morning and with TetraMin Tropical Flake Food in the afternoon. Once the exposure to the 

Ag materials had been initiated the breeding fish were fed/dosed TetraMin Tropical Flake in 

the morning and afternoon. In addition, every 3 days the fish were fed Artemia nauplii to try 

to ensure optimal nutrition and to maintain maximum breeding output. 

Fish were maintained in reconstituted water. Mains tap water was filtered by reverse 

osmosis (Environmental Water Systems (UK) Ltd) and reconstituted with Analar-grade 

mineral salts to standardized synthetic freshwater (final concentrations to give a 

conductivity of 300mS: 58 mg/L CaCl2.2H2O, 24.65 mg/L MgSO4.7H2O, 12.95 mg/L NaHCO3, 

1.15 mg/L KCl, 12.5 mg/L Tropic Marin Sea Salt). This water was aerated, and heated to 28°C 

in a reservoir before it was supplied to each aquarium using a flow-through system. 

Aquarium water was routinely monitored for pH, conductivity, ammonia, nitrate, and 

nitrite, all of which were well within acceptable limits of U.S. EPA guidelines (12). The 
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photoperiod was set to 14:10h light:dark, with an artificial dawn to dusk transition of 30min. 

Prior to the experiment, fish of mixed sex were maintained in large holding aquaria, 

900x500x300mm in dimension, with a working volume of 112L (approximately 100 fish per 

aquarium). Flow rates were checked every other day to ensure they did not vary 3 ml/min. 

Sexing and weighing/measuring fish 

Fish were sexed using differences in their colourations and differences in the behaviours 

that exist between males and females. Individual sexually mature fish were placed carefully 

in a beaker of water to obtain an accurate body weight measurement. They were then 

placed on a laminated graph paper to measure fork length.  

Tank setup 

Sixteen  tanks  of  ‘4  males  X  4  females’  breeding  colonies  were  established  (tank  dimensions:  

30cm X 30 cm with a volume of 12L, with 5 full water tank replacements every 24h). Fish 

were allowed to acclimate for 2 weeks to ensure that all fish were spawning and behaving 

normally. The 12 tanks of fish showing the most consistent breeding over this time period 

were then used for the study. A random number generator approach was used to assign 4 

replicate tanks to the three different treatments: Citrate control (cc), citrate coated Ag Nano 

(ciAgN) and citrate coated Ag Bulk (ciAgB) (Figure1).  
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Figure 1: Schematic showing overview of experimental set up and procedures carried out 

during the study. 

Biological Sampling 

At the end of the experiment fish were sacrificed by terminal anaesthesia (Benzocaine, 

Sigma Poole, UK). Measurements of fork length and weight were recorded, and blood was 

collected from the caudal vein into haematocrit micro-capillary tubes containing heparin 

that were placed on ice, prior to centrifugation (Hawskley England Microhaematocrit 

centrifuge) at 11 800 rpm for 10 minutes, to obtain an haematocrit reading. Blood samples 

collected were then stored at -20 °C. Fish were then dissected and the gonads and liver, 

weighed and stored at -80⁰C until used for Ag content analysis by ICP-MS. The Gonad 

Somatic Index (GSI) for males and females was calculated as follows: (weight of gonad mg) / 

(weight of the total body)*100, the Hepato Somatic Index (HSI) for males and females was 

determined suing the formula (weight of liver mg) / (weight of the total body)*100 and the 

Haematocrit Index measured for males and females as follows: (red blood cells) / (red blood 

cells and plasma)*100. 
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Ag concentrations  in  adult  fish  tissues  and  embryos  determined  by  ICP-MS  

Tissue samples (liver and gonads) were defrosted at room temperature. Samples of livers 

and gonads were pooled in the following way: for each sex, gonads and/livers from 2 fish 

were collected from each tank for each treatment x (4 replicates) giving a total of 4 livers / 4 

gonads per treatment for each sex. Samples were then digested by adding 1ml of 20% nitric 

acid (HNO3) (AR grade, Fischer Scientific), and 200μl   of   hydrogen   peroxide   (Laboratory  

Reagent Grade, Fischer Scientific) to  each  liver/gonad  sample  and  left  at  70⁰C  in  a  heat  block  

for 3 days. Once digested the individual samples for the tissue samples were combined for 

each tissue and dissolved in 10ml 2% solution of HNO3 using Milli Q water. Pooling of tissues 

samples for the gonad and for the liver was necessary to provide sufficient tissue for 

detecting the Ag materials. For the embryos, 10 embryos for each treatment group were 

digested with 1ml of 20% nitric   acid   at   70⁰C.   Once   digested   the   embryo   samples   were  

dissolved in 10ml 2% solution of HNO3 using Milli Q water. Samples were analysed for Ag 

using Inductively Coupled Plasma Spectrometry (ICP-MS) at the University of Plymouth and 

the University of Birmingham. The detection limit of the ICP-MS for Ag in the tissues was 

>0.1 µg/g and the detection limit for embryos was >0.1 µg/g. 

Measuring egg output and fertilisation 

The glass aquarium was designed  with  sloping  sides  to  form  a  ‘funnel’  to  channel  any  eggs 

spawned in to an egg-collecting chamber. This facilitated daily embryo collection whilst 

minimizing disturbance to the fish. Glass marbles of 10mm diameter were placed in the 

‘funnel’  section  of  the  base  of  the  aquaria  at  a  depth  of  3–4 marbles to act as a spawning 

substrate and to minimize oophagy. An artificial weed was placed in the tanks rooted in the 

marbles to act as a refuge and spawning stimulus. Eggs/embryos were collected 1h after 

dawn. This was done by opening the valve at the base of the egg collecting chamber, 

underneath which a fine mesh sieve (tea strainer) had been placed, forcing the water 

through the marbles where the eggs were trapped (marbles were simultaneously agitated). 

The eggs were captured on the fine mesh sieve and washed with embryo culture water (60 

mg/L of Tropic marin salt, 10 µl of methylene blue to reduce the chance of fungal infections) 

to remove any waste food and/or faeces. The eggs/embryos collected were then transferred 

into a Petri dish with embryo culture water. Thirty embryos were separated from each tank 
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collection and used to calculate fertilisation success. Following collection from all tanks, and 

at approximately 2 hours post fertilization (hpf), any infertile eggs /dead embryos were 

easily distinguished and separated from the live embryos. For each of the test aquaria, the 

numbers of live and dead eggs were counted giving a record of total egg output and overall 

egg viability for each colony of fish. The same process was conducted 30 minutes after the 

final feed each day in order to ensure that no further eggs had been spawned and to flush 

away any waste products (food/faeces) that may have built up during the day, particularly in 

the marbles.  

Whole Mount in-situ hybridisation and synthesis of gene probes: mt2 and gstp 

Twice a week during both the pre and post exposure period embryos from different tanks 

and different treatment groups (n=30) were collected and stored in 4% PFA for WISH 

analysis and ICP-MS analysis. 

The expression of two genes (mt2 and gstp) was measured to evaluate the expression over 

the pre and during exposure periods. The mt2 in situ probe was prepared as described 

previously (Osborne et al., 2013). Gstp plasmid was acquired from University of Tsukuba 

(Mukaigasa et al., 2012). The antisense gstp probe for WISH plasmid encoding gstp was 

digested and transcribed with restriction enzyme BamH1 and RNA polymerases T7. Using a 

G50 column (GE Healthcare) the RNA was purified and precipitated using Lithium Chloride. 

The probes were then diluted 1/200 with hybridisation buffer (Osborne et al., 2013). 

Whole Mount in-situ hybridisation 

For the hybridizations, embryos were fixed using 4% PFA in PBS at 4ºC overnight. They were 

then dechorionated and placed in methanol for 2 hours. They were then washed two times 

with PBS+0.1% Tween20 (PBSTw), placed in hybridisation buffer for 1 hour and incubated 

with the desired probe overnight at 65ºC. Embryos were then washed in 50% formamide 

2XSSC, 0.1%Tween 20 wash for 30minutes at 65ºC, followed by a 2XSSC 0.1%Tween 20 wash 

at 65ºC and received 2x 30 minutes washes at 65ºC with 0.2XSSC 0.1%Tween 20. Blocking 

solution (2% Blocking reagent (Roche) containing 2.5ml of calf serum in MAB (Osborne et 

al., 2013) was added and the embryos were incubated for 1 hour. Anti-DIG antibody (5000x 

diluted with Blocking solution) (Roche) was then added and the embryos incubated for 2h. 
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Embryos subsequently received a series of 4 x 30minutes washes in PBTw before a 10 

minute wash with AP buffer (Tris 0.1M pH 9.5, NaCl 0.1M, MgCl2 50mM, Tween 20 0.1%). 

Embryos were transferred to a 24 well plate and placed in staining solution (BM-Purple AP 

Substrate, Roche) to reveal the probe, and photographed using a Nikon SMZ1500 stereo 

microscope equipped with a digital camera. Here, the expression intensity for a target gene 

was determined for the specific tissue area (extended yolk sac region) of these two gene 

responses for 15-20 embryos/larvae, subtracting any background using Image-J 1.44 P. This 

value obtained was then converted to a fold change (FC) compared with controls for each 

week to give an approximate quantification for effect for the different Ag material 

treatments for that gene in the target tissue. These values were then analysed to assess for 

statistical differences. 

Ag exposures of embryos from treated adults 

In addition to assessing target gene responses in the subsequent offspring from Ag dosed 

parents; evaluation of the embryos responsiveness to these Ag materials was measured. To 

determine this, 20 embryos taken from different treatment tanks collected during week 6 of 

study were studied for each gene/exposure (at the 1-2 cell stage, 1-1.5 hpf) per treatment 

well (5ml) and the embryo exposure analysis was replicated at least 3 times. For the 

material treatments, sonication was conducted prior to exposure using a Cole and Palmer 

Ultrasonicator Processor, amplification at 100% with pulsing for two 10 second bursts. The 

embryos from treated adults were challenged to ciAgN and AgNO3 and then fixed at 24 hpf 

for WISH analysis using the mt2 probe. The dosing regime was 500 µg AgNPCi/l and 30 µg 

AgNO3/l (Perkin Elmer) based on previous work showing this as an effective dose for 

inducing expression of the mt2 gene. 

 

Statistics 

Unless otherwise stated all data represented, all data presented as means±S.E.M. The co-

efficient variant (CV) statistic was calculated for comparisons of variation, as CV= standard 

deviation/mean) *100. All statistical analyses were performed using Sigma Stat Version 12.0 

(Jandel Scientific Software, USA). Differences among groups were analysed by one-way 

ANOVA,   followed   by   Tukey’s   multiple   comparison   post-hoc test, or a non parametric 
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alternative (Kruskal-Wallis one-way ANOVA on ranks) where data were not normally 

distributed. 

 

Results 

Particle Characterization  

Characterisation of raw materials: 

A summary of the physiochemical properties of the ciAgN and AgB particles is provided in 

the supplementary material (supplementary information Figure S1 and Table S1). It was 

established that AgNPCi in raw form had a zeta potential of -47.78±4.3 mV, DLS data 

illustrated that AgNPCi had a mean diameter of 20nm, whereas TEM determined 9.9±3.1nm. 

AgNPCi in milli Q water had a zeta potential of -40.21±9.3 mV, a mean diameter of 32.4±2.6 

nm measured by DLS and 36±50 nm measured via TEM. AgB in milli Q water had a 137±62.0 

nm measured via TEM and a zeta potential of -2.8±0.6 mV. For full details see 

supplementary information, Table S1.  

Materials in the embryo culture medium (for final embryos exposures): 

DLS established AgNPCi in the embryo culture medium had a mean diameter of 92.25±1.8 

nm. When dispersed in the embryo medium the measured sizes as determined via TEM 

were 52 93
22 nm for AgNPCi, the zeta potential for AgNPCi was -18.38±1.6 mV. TEM 

micrographs illustrated that individual nanomaterials could be distinguished in liquid form, 

but there was evidence of aggregation when they were placed in the embryo exposure 

medium (Table S1).  

Artificial Flake -Ag concentration determined by ICP-MS 

Concentrations of Ag in the dietary flake treatments were determined by ICP-MS. Final 

average concentrations for the artificial flake were cc (0.3 mg/kg±0.00), ciAgN (62.6 

mg/kg±3.20) and ciAgB (43.9 mg/kg±0.33). 
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Determination of Ag concentrations  in  fish  tissues  and  embryos  determined  by  ICP-MS 

Trace metal (Ag) analyses carried out on digested fish tissues (liver/gonads) and embryos 

from treated adults using ICP-MS is shown in Tables 1 and 2. 

Gonads:  In the citrate control treatment group both females and males contained <0.1 µg 

Ag/g. In the ciAgN treatment gonads contained 0.5 µg Ag/g in males and 0.3 µg Ag/g in 

females. In the ciAgB treated fish gonads in both males and females contained <0.1 µg Ag/g.  

Liver: In the citrate control group liver Ag content was <0.1 µg Ag/g in both males and 

females. In the ciAgN treatment the liver content of Ag was 2.1 µg Ag/g in males and 0.5 µg 

Ag/g in females. In the ciAgB treatment both males and females contained <0.1 µg Ag/g 

tissue. 

 

Table 1: Ag levels (µg/g) determined via ICP-MS in adult livers and gonads in adult fish in the 

different treatment groups after a dietary exposure to Ag materials. n=8 per treatment and 

tissue. 

 Embryos: In the first two weeks of the study during the pre exposure period embryo 

content of Ag was <0.1 ng /per embryo. After exposure to the Ag materials embryos content 

for the cc and ciAgB treatments was <0.1 ng/per embryo but for the ciAgN treatments, Ag 

content was as follows: on day 26, 0.24 ± 1.74 ng/per embryo; on day 30, 0.15 ± 4.31 ng/per 

embryo; on day 34, 0.14± 0.87 ng/per embryo; on day 41, 0.43 ± 1.92 ng/per embryo. 
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Table 2: Ag levels (ng/per embryo) determined via ICP-MS in embryos from adults exposed 

via the diet to Ag materials. Data are means ±SEM, n=30 per treatment. 

Biological Effects 

There was only one mortality over the 46 day study - a single male in the ciAgN treatment in 

Week 4 and this animal was not included in the subsequent data analysis.  In controls, the 

condition factor in males ranged between 1.0 and 1.1 and in females between 1.1 and 1.2. 

No difference was found in the condition factor index (p>0.05) between treatment groups 

or within a treatment group for the different sexes when compared for the pre and post 
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exposure periods (data not shown). The adult breeding fish were in good condition 

throughout the study. 

Tissue somatic indices and Haematocrit Index 

HSI and GSI values are provided in Figure 2. No significant difference (One Way ANOVA DF=2 

F= 0.570 p=0.814) was found for the HSI in females (Fig.2 A), however in males treated with 

ciAgB treatment had significant difference compared with the control treatment (One Way 

ANOVA H=9.110 DF=2 p=0.011) (Fig.2 A). No significant difference was seen in the GSI 

across treatments for both males (One Way ANOVA H= 2.366 DF=2 p=0.386) and females 

(One Way ANOVA H=4.806 DF=2 p=0.097) (Fig. 2 B). The HSI and GSI in fish exposed to the 

ciAgN treatment showed greater variation for both sexes compared with the ciAgB 

treatment and cc treatment. No significant difference was seen in the haematocrit index 

across treatments for either males (One Way ANOVA F=0.567 DF=2 p=0.571) or females 

(One Way ANOVA H=4.806 DF=2 p=0.341) In the controls, the haematocrit value in both 

males and females was 0.39, in the ciAgN treatment slightly higher than control at 0.40 and 

in males and slightly lower than control at 0.37 in females. In the ciAgB treatment slightly 

lower at 0.38 in males and 0.38 in females. 

Fecundity and fertilisation success 

Approximate egg output per day for the different treatment groups pre exposure period 

was as follows: control - 471±163, ciAgN - 498±100, ciAgB - 443±162. There were no 

differences in fecundity (egg numbers) during the pre- exposure period between the 

different treatment groups (One Way ANOVA DF=2 F=0.639 p=0.863) and there was no 

difference either between treatment during the exposure period (One Way ANOVA DF=2 

F=0.857 p=0.457). Overall egg production was greater in controls during the pre-exposure 

period versus during exposure period and this was also the case for the Ag treatment 

groups. During the exposure period egg output was reduced in both control (One way 

ANOVA DF=1 F=18.712 p=0.005) and both treatments (ciAgN -One way ANOVA DF=1 

F=30.779 p=0.001, and ciAgB - One way ANOVA DF=1 H=5.333 p=0.029, Fig. 2 C-E). No 

differences were seen between control and treatments during the pre or during exposure 

period, so there was no effect of the Ag treatment. There was no significance difference 
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(One Way ANOVA DF=2 F=0.778 p=0.572) in fertilisation success between treatment groups 

or tanks either during the pre exposure period of exposure period (Fig. 2 F-H). There were 

no obvious differences in the breeding behaviour between males and females. No 

developmental effects were observed in subsequent embryos.  
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Responses of mt2 and gstp genes in embryos assessed via WISH  

WISH data carried out on 24 hpf embryos assessing the gene responses for mt2 and gstp are 

shown in Figure 3.   

Mt2 (Fig.3 A): The variations in the controls were deemed negligible throughout the study 

based on previous work (Chapter 3). During the pre exposure period no significant (p=>0.05) 

differences were observed in mt2 expression for any of the treatment groups. For both Ag 

treatment groups there was a statistically significant decrease in mt2 expression at the 

onset of dosing period; mt2 expression for ciAgN and ciAgB was 0.7 and 0.8 of that in 

controls. In week 4, one week after the dosing had been initiated, there was an increased 

level of expression of mt2 in both Ag treatment groups (1.3 fold-difference) and in week 5 

these responses were significantly (One Way ANOVA DF=2 F=1.34 p=<0.05) further elevated 

(ciAgN, mt2 expression was 1.7 fold higher than controls and in ciAgB 1.6 fold higher than 

controls). This level of mt2 induction in the Ag treatment groups persisted in the third week 

of the exposure period (week 6), where for both ciAgN and ciAgB expression was 

significantly 1.5 higher than for controls.  

Gstp (Fig.3 B): During the pre exposure period, there were no significant differences in gstp 

expression between the treatments and over time. During the exposure period, there was 

an apparent increase in the level of gstp in the ciAgN treatment but this was not statistically 

significant.   
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Figure 3: Linear graphs showing quantification of target gene responses (Mt2 [A] and GSTp 

[B]) derived from WISH analysis and showing fold change in expression compared with 

controls (cc) within that week throughout study (Week1-Week6) on 24hpf embryos derived 

from adults treated with Ag materials. Panels below graphs show photographic examples of 

WISH analysis of the target genes analysed. (One way ANOVA, *denote p<0.05). ( ) 

Indicates target tissue area quantified for the gene expression. 
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Mt2 expression in embryos exposed directly to Ag materials as assessed via WISH 

Exposure of embryos (24hpf) derived from adults treated with Ag materials to AgNPCi and 

AgNO3 via the culture medium was conducted to assess effects of parental exposure on the 

responses of mt2 (Figure 4). Exposure of embryos derived from control fish to both AgNPCi 

and AgNO3 induced a significant induction of mt2 (by 16-fold and 21- fold, respectively). 

Exposure of adults to ciAgN and ciAgB resulted in a significant reduction in the relative 

response of mt2 to AgNPCi and AgNO3 treatments. Embryos derived from parental exposure 

to ciAgN induced a 1.3 fold response to AgNPCi and a significant induction (3.3 fold 

response) to AgNO3. Embryos derived from parental exposure to ciAgB induced a 1.3 fold 

response to AgNPCi and a significant 6 fold response to AgNO3. 

One way ANOVA showed there was statistical difference between groups (One Way ANOVA 

DF=2 F=0.640 p=<0.0475). A pair means comparison test showed significant differences 

between the groups p<0.05 marked by an asterisk (*). 
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Figure 4. WISH analysis showing responses of mt2 to exposure to AgNPCi and AgNO3 for 

embryos derived from adults exposed to different Ag materials (ciAgN or ciAgB). Data 

presented represent fold change in expression compared with controls within treatment 

group. (One way ANOVA, *p=<0.05). Images show WISH examples from each treatment 

group and ( ) indicating target tissue area quantified for the expression. 

Discussion 

This study set out to determine whether AgNPs and their bulk counterpart dosing the fish 

each day at approximately 5µg Ag/g at 3% of their body weight over a period of 3 weeks 

affected breeding in zebrafish. This dose is in parallel with other similar zebrafish dietary 

studies that explore the possibility of metal NPs toxicity (Geffroy et al., 2012) and represents 

environmentally relevant concentrations found in surface waters as reported in Gottschalk 

et al., (2009). We show that for fish dosed with ciAgN, but not ciAgB, Ag was detected in the 

liver and gonad indicating an enhanced deposition in these tissues compared with ciAgB and 

this was further reflected in the subsequent embryos where there was detectable Ag 
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measured for the ciAgN exposure. We show that although there were no effects on 

breeding output due to the dietary Ag treatments, the adult exposures to both AgNP and 

AgB affected expression of mt2 during early life and reduced the responsiveness of this gene 

to Ag materials on challenging these embryos to Ag materials. 

Ag accumulation in adult body tissues and evidence for maternal transfer  

Ag accumulated in the liver and gonads of ciAgN treated males and females, but levels in 

ciAgB treated fish were below the detection limit in these tissues (Table 1). The liver is well 

established as a the primary organ for the accumulation of Ag (Hogstrand et al., 1996), as 

well as other metals (Lanno et al., 1987). In murine models, studies have shown NPs are 

generally retained in the liver after uptake through the gastrointestinal tract (Wang et al., 

2007). In a study on zebrafish dosing AgNPs (5-20nm) for 24h at 120 mg/L for 24h via the 

water resulted in 2.4ng Ag/mg in the liver (Choi et al., 2009). Other mammalian studies have 

shown how rats introduced intravenously to a range of AuNPs (10nm, 50nm, 100nm and 

250nm) also accumulated in the liver (De Jong et al., 2008); showing particle size dependent 

differences for organ distribution specifically for 10nm size, the same size particles used in 

this study. Another study by Gaiser et al., (2009), showed AgNPs (35nm) had higher uptake 

than their bulk counterpart (600-1600nm). The reasoning for these size dependent 

differences seen in our study and others, could relate to the physical uptake of NPs 

themselves compared with their bulk counterpart (Chithrani et al., 2010) as they are 

smaller, and research has shown how they can readily cross physiological membrane 

barriers (Chen et al., 2004b). Another possibility for these differences, could be the 

bioavailability of NPs (Johnston et al. 2010). It is known that NPs have a greater capacity to 

release Ag ions in comparison to bulk counterparts (Klaine et al., 2008) and therefore a 

greater dissolution of the NPs could have done so in the gut of the zebrafish in this study; 

subsequently, Ag ions could have then easily crossed the epithelium into the blood and into 

liver/gonads. Past research has discussed that in the gut epithelium of fish they are able to 

uptake particles via endocytosis (Handy et al., 2008) which could mean the Ag is being 

absorbed through the gut epithelium and translocation through gut wall into the blood 

systems and into target organs. In this study, there is no data on dissolution of Ag from the 

particles in the treatment groups. Handy et al., (2008) proposed organ specific toxic effects 
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for NPs including liver, also suggesting NPs to be a high free metal ion concentration 

delivery system. Handy et al., (2008) also proposed that certain NPs (depending if they are 

hydrophobic) would enhance accumulation in certain tissues such as the liver. The pattern 

of uptake of the Ag materials into the gonad mimicked that for the liver, with detectable 

quantities of Ag in the gonads in both males and females for the ciAgNP exposure, but not 

for the ciAgB exposure. In other studies the gonad in rats has been shown to take up a 

variety of NPs for dietary exposures (McAuliffe and Perry, 2007).  

An interesting observation from the exposures of adult fish to the Ag materials was an 

apparently higher content of Ag in the liver and gonads of males compared with in females.  

Other studies in zebrafish too have shown gender related differences in the accumulation of 

toxicants, for example for Perfluorooctanoic Acid (PFOA) in Hagenaars et al., (2013) study 

showed males to have a higher body burden than females (accumulating 9 times more). It is 

not known why these differences occur, but it may relate, in part, to differences in the 

endocrinology and metabolism that occur between the sexes. In our study, a very real 

possibility for the lower content of Ag in the ovary of females (per weight tissue) is likely to 

be related to the fact that the Ag deposited is expelled in ovulated eggs.    

Consistent with the uptake of Ag into adult fish dosed, Ag in embryos was detected only in 

fish dosed with ciAgN. An approximate estimation of how much Ag theoretically would be 

embryos in relation to the amount dosed to the fish each day (taking into account: amount 

of Ag dosed per day X number of exposure days = (total amount of Ag) / (number of eggs 

produced in ciAgN treatment / the number of fish in treatment) / by the total amount of Ag) 

gives ~0.65 ng Ag/embryo. Our study found up to 0.43 ± 1.92 ng Ag/embryo detected (Table 

2) by the last week of the exposure period. There is evidence for placental transfer of NPs 

(Au and C60) in mammals (Ema et al., 2010). Investigations have shown how larger particles 

i.e. bulk particles, do not cross blood barriers or accumulate in target organs in comparison 

with smaller particles (Hillyer and Albrecht, 2001) which could be a possible theory as to 

why no Ag in the ciAgB treatment was detected and as a result did not reach/no levels were 

detected in target organs or embryos in this study. NPs are known to be transported across 

epithelium at rates up to 250 times higher (Desai et al., 1996) than their larger counterparts, 

and this in turn, would account for the differences in liver/gonad and embryos content for 
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the different Ag materials in our study. Evidence for NPs crossing blood-brain barrier has 

been reported (Schroeder et al., 1998) stating the mechanism of doing so could be through 

passive diffusion or receptor mediated endocytosis. The reason for greater amounts of Ag in 

the ciAgN treated embryos could be due to the ability for smaller particles to translocate 

into the embryos from the Ag found in the gonads. It is known that AgNPs can pass through 

chorion membrane barrier of zebrafish by Brownian motion (Lee et al., 2012). The pore size 

of the chorion membrane is around 0.5-0.7 µm, hence it is possible ciAgN (10nm) did cross 

into chorionic space of the embryo. Size has been shown to play an important part in the 

uptake of AgNPs into zebrafish embryos in other recent studies (George et al., 2012). As 

discussed before; there is also the possibility that it could be due to the fact that there is a 

greater dissolution from the ciAgN particles in the gut and more free Ag is available for 

uptake into the liver and gonads and in turn the embryos. The limitation of our study is that 

ICP-MS  doesn’t  measure   the  amount  of  nano  but   the  measurement  of   the amount of Ag. 

However, we established that a relative amount of Ag reached target organs and embryos 

confirming maternal transfer. 

Ag exposures did not affect fecundity 

We found no effects of exposure to the Ag materials on measures of health or reproductive 

fitness. Indices of liver function (HSI), gonad development/mass (GSI) and red blood cell 

volume (haematocrit), showed no toxic effects for the Ag treatments. From past research, it 

has been shown how Ag exposures to adult marine fish have shown high tolerance to Ag 

(Calabrese et al., 1977). Examples include; Tautogolabrus adspersus (cunner) which has 

been known to survive up to 1 000 ppb in a 96 hr exposure and the Pseudopleuronecles 

americanus (winter flounder) 10 ppb in a 60 day exposure. Calabrese et al., (1977) 

concluded that adults had acquired Ag tolerance through a sequestering mechanism 

(metabolism can function even with a high body burden of Ag) that juveniles lack which 

could be a possibility why Ag did not have effect on the zebrafish health status. As seen in 

other species, adult stage of zebrafish are far less sensitive to Ag than in larval stages 

(embryo form) (Osborne et al., 2013). Our dosing was applied on an environmentally 

relevant basis, so it was known that Ag would not cause lethality to the zebrafish at adult 

stage. If we compare with previous studies, they have shown that the LC50 for AgNP in adult 
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zebrafish is 7 mg/L for exposure via the water column (Griffitt et al., 2008). Other studies 

have shown how 25 µg AgNP(50nm)/L induced significant upregulation of mt2 and heat 

shock protein 70 (hsp70) in the liver of Oryzias latipes (Japanese medaka). Scown et al., 

(2010a) reported significant upregulation of cyp1 a2 in gills of exposed trout to 100µg 

AgNP(10nm)/L .  

The measured fecundity of zebrafish prior to the particle treatments (4 X 4 breeding colony 

per day produced 87 ±7 eggs) which is comparable to that shown for previous studies with 

similar breeding matrices (e.g. Paull et al., (2008)).The reduced egg during the exposure 

period, that occurred  across all treatments, was not due to treatment. This reduction in the 

control treatment is not usually observed in other zebrafish breeding studies (Lin and Janz, 

2006), so we concluded that this reduction could have been as a result of  a number of 

reasons including diet. Brine shrimp were only fed every 3 days in comparison to everyday 

pre-study period; the artificial synthesised flake contained additional chemicals to that of 

the commercial fish flake which was given to fish prior the exposure period; seasonal 

breeding ovarian cycle (Hisaoka and Firlit, 1962); and/or because fatigue over the extensive 

breeding period could also have been another reason. The dietary exposures to the Ag 

materials however, resulted in no adverse effects on the adult fish or their ability to breed 

and no differences in fertility rates (Fig.2 C-H). The lack of any effect on fecundity for 

exposure to AgNPs contrasts with some previous studies on other organisms, such as C. 

elegans (Roh et al., 2009), where decreases in fecundity have been reported. In that study, 

they exposed the organism via the water column at 0.5 mg AgNP/L therefore one of the 

contrasts could be because the dosing route was different. Another possibility could be the 

organism is different and it is known that lethality/toxic effects in C. elegans are more 

sensitive than those of the zebrafish (LC50 4.4mg AgNP/L) (Ellegaard-Jensen et al., 2012). It 

has also been discussed that exposure via the water column the toxicity is generally greater 

than via the diet where it is uptaken in the gut. Other studies using different NPs (TiO2) have 

also reported that long term exposure (0.1 mg/L) had a negative impact on the reproduction 

(egg output) in zebrafish (Wang et al., 2011b). Some of the reasons for these differences 

could be accounted for as follows; this study was short term in comparison with Wang et al., 

(2011a) which ran over the course over 60 days; and different particles were used in the 

exposure.  
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Expression of mt2 and gstp in derived embryos from adult fish dosed with Ag materials 

During the pre dosing period, mt2 and gstp expression was consistent and did not vary to 

any significant degree across the treatment groups. This basal level expression of mt2 and 

gstp found in the extended yolk sac region is consistent with previous work (Chapter 3) and 

the upregulation of mt2 seen in the extended yolk sac region (target tissue) due to Ag has 

been reported previously (Osborne et al., 2013). There was significant elevated expression 

of mt2 in the embryos for parental exposures to Ag materials (Figure 3). The elevated mt2 

expression for the ciAgNP is consistent with the uptake of measurable levels of Ag in these 

embryos. The elevated expression of mt2 in embryos derived from adults dosed with ciAgB 

is less easily explained. It is known however, that mt2 is a highly a sensitive marker to 

exposures to even low levels of Ag and the likelihood is that Ag is present in the embryos 

below the detection limit of ICP-MS analysis conducted (>0.1 µg/g). In other studies using 

real time PCR, mt2 has been shown to be induced in zebrafish embryos at 0.16 µg Ag/L, 

further illustrating the sensitivity of this gene to Ag (Ringwood et al., 2010). There was not a 

statistically significant induction of gstp in embryos for the parent exposures to Ag 

materials, but there was a trend for an effect indicating a possible low level oxidative stress 

response. It is known from previous work (Chapter 3) that gstp responds to Ag materials but 

not necessarily as sensitive as mt2 at 24 hpf. Other NPs such as ZnONPs have also been 

shown to generate ROS causing oxidative stress in zebrafish embryos (Zhu et al., 2009a). 

Embryos from Ag treated adults show desensitised response to Ag  

Embryos derived from the parental exposures to the Ag materials illustrated marked 

differences in the responses of mt2 when challenged with AgNPCi and AgNO3. In embryos 

derived from untreated adult fish, mt2 was highly responsive to AgNPCi and AgNO3 which is 

consistent with previous studies on zebrafish embryos (Osborne et al., 2013). In contrast, for 

embryos derived from parental exposure to the different Ag there was a marked reduction 

in the responses of the mt2 genes to the Ag challenge (Figure 4). 

It is known that continuous or repeated stimulation from a chemical can constitute to 

desensitization (Hoffman et al., 1986), through counter-regulatory mechanisms amongst 

others. This means the mechanism that usually keeps the internal environment stable reacts 
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in the opposite way to create a balance between thresholds. These effects are often 

idiosyncratic for a particular pathway and have been studied for some drugs and hormones 

(Sibley and Lefkowitz, 1985). It has been reported that Metallothionein can become 

desensitised in HeLa cells with prolonged exposure to the metal Zinc (Karin et al., 1981);  

they proposed inhibition of protein synthesis and as a result reduction of gene transcription. 

We propose that prolonged exposure to Ag at early life stages of the embryos in our study 

may have similarly caused Ag desensitization, through Ag inhibiting mt2 protein synthesis 

and as of consequence reduction in mt2 induction. Alternative effects have been reported in 

the behaviour of other fish such as Oncorhynchus mykiss (rainbow trout); where avoidance 

preference to heavy metals was seen in adult fish which had been previously exposed to 

heavy metals at their early life stages (Svecevicius, 2003). The desensitisation seen in this 

study might have occurred through epigenetics, it has been known that environmental 

exposure to metals has been known to modulate (Vandegehuchte and Janssen, 2011). 

Chemicals, in this case Ag may interact with proteins such as histone, which in turn can 

interfere with transcription or translation.  

The implications of such would warrant further investigations into the potential risk 

associated with AgNPs exposures. Hagens et al., (2007) stated that it is important to asses 

internal exposure and the possibility of the NPs reaching target organs. Understanding the 

biodistribution of the NPs will be also fundamental to predicting accumulation and possible 

transfer through food chains. It is also key to ensure the history of the fish is well 

documented as responses and biological effects observed could be different, and therefore 

alternative interpretations could be made. 

Conclusions 

We show that dietary exposure to the Ag materials did not impact zebrafish condition, 

breeding or embryo viability. Ag was only found in the tissues and embryos of ciAgN (and 

not ciAgB) treated adults suggesting that size plays an important part in determining the 

translocation of the particles and/or Ag ions into target organs. There also appeared to be 

gender related differences in the accumulation of Ag, with greater body burdens in males. 

WISH analysis revealed that adult dietary exposure to Ag materials resulted in elevated mt2 
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expression in the subsequent offspring and also a de-sensitisation to their responsiveness to 

Ag, the functional consequences of which warrant further investigation.   
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Supplementary material 

 S1  

Particle Characterization of AgNPCi and AgB in milli Q water 

0.1 mg L-1 and 1 mg L-1 suspensions of AgNPCi and AgB respectively in milli q water. The 

nanoparticles in 10 mL of each suspension were deposited on Formvar/Carbon coated TEM-

grids using 30,000 rpm ultracentrifugation (Beckman L-75) during 60 min. Thereafter the 

grids were rinsed by gently immersing in milli Q-water, and dried overnight. Micrographs 

were acquired at 30k, 75k, 300k and 500k magnification (5-10 micrographs at each 

magnification from each sample) at 80 keV accelerating voltage using a JEOL 1200EX TEM-

instrument. 

Particle Characterization of AgNPCi in embryo culture medium 

0.1 mg L-1 suspensions of AgNPCi in embryo media. The nanoparticles in 10 mL of each 

suspension were deposited on Formvar/Carbon coated TEM-grids using 30,000 rpm 

ultracentrifugation (Beckman L-75) during 60 min. Thereafter the grids were rinsed by 

gently immersing in milli Q-water, and dried overnight. Micrographs were acquired at 30k, 

75k, 300k and 500k magnification (5-10 micrographs at each magnification from each 

sample) at 80 keV accelerating voltage using a JEOL 1200EX TEM-instrument. 
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Table S1: Summary of AgNPCi and AgB particle characteristics 

 

 

 AgNPCi 

(raw) 

AgNPCi 

in milliQ water 

AgNPCi 

in embryo 

medium 

 

AgB (Ag Bulk) 

in milli Q water 

Zeta Potential 

(mV) 

 

-47.78±4.3 

 

 

-40.21±9.3 

 

-18.38 ± 1.6 

 

 

-2.8 ± 0.6 

 

Z average 

diameter (DLS) 

 

 

20 

 

 

32.4±2.6 

 

92.25 ± 1.8 

- 

TEM (nm) 

 

 

9.9 ± 3.1 

 

36 67
17 

Median value 
Upper quartile

Lower 

quartile 

52 93
22 

Median value 
Upper quartile

Lower 

quartile 

 

137 ± 62.0 
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Figure S1. Characterization of the AgNPCi in embryo culture water (EC) and AgNPCi in Milli-

Q water (MQ). TEM of AgNPCi at 0.1 mg/l embryo culture medium x35 magnification (A) , 

and x300 magnification (B); x500 magnification (C). TEM of AgNPCi at 1 mg/l Milli-Q water 

x35 magnification (D), and x300 magnification (E); x500 magnification (F). 

 

Figure S1 

 

Figure S2. (G) TEM image of AgB taken from Scown et al., (2010) 

Figure S2 
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GENERAL DISCUSSION 

This chapter presents a critical analysis of the studies conducted in this thesis, reviewing 

the key results and presenting the significance of the outcomes.  

Some of the main questions being addressed in aquatic nanotoxicology are whether 

nano materials differ in their effects compared with bulk materials for silver nanomaterials, 

whether toxicity is a result of a dissolution of the silver ions, what the mechanistic pathways 

are for nanomaterials effects more broadly and whether exposure to nanomaterials have 

long term health effects, including on reproductive success. This addressed some of these 

questions and specifically the following objectives: (1) to establish the effects of particle size 

and coating of different sized Ag and TiO2; (2) to identify some target tissues and the effect 

mechanism of AgNPs; (3) to establish whether Ag particles impact on the breeding of 

zebrafish and undergo maternal transfer with consequences for their offspring.  

The following was established from this thesis work: 

(1) Size plays an important role in toxicity of silver NPs and affects uptake into target 

organs (Chapter 2 and Chapter 4). In Chapter 2 evidence is provided that size plays a role in 

the degree of toxicity, and provides evidence also for a possible effect of the particle itself. 

Past research has shown how smaller particles sizes can result in a faster dissociation rate  

faster due to their larger surface area (Stebounova et al., 2011). In Chapter 4 ICP-MS 

revealed that Ag was only found in the liver and gonads as well as the embryos for the 

ciAgNP treatment only, demonstrating that the nanomaterials have different uptake 

dynamics in comparison to the bulk materials. Further concern that warrants further 

investigation with this evidence is the potential for bioaccumulation and entering food 

chains. 

(2) The toxicity of AgNPs is largely derived from the dissolution of silver ions as 

demonstrated in Chapter 2 and Chapter 3. It has been widely discussed whether the main 

source of toxicity from AgNPs is through the dissociation of silver ions (Beer et al., 2012) and 

experiments were carried out also to test for this. A dissolution study on AgNPs and AgB 

particles established that up to 2% of silver ions can dissociate within 72hr in the embryo 

culture medium. An ionic AgNO3 was run in parallel with the AgNP exposures to also test for 
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silver ion effects. In Chapter 2 the morphological effects and lethality seen in the AgNPs and 

AgB were identical in nature to those also observed in the silver ion treatment suggesting 

that the toxicity of Ag particles could be explained by the dissociation of silver ions. In 

Chapter 3; AgNPCi, AgBCi and AgNO3 all induced responses in the same target tissues, again 

supporting that the toxicity seen was mediated through silver ion availability. All this 

evidence supports the theory that the main source of AgNP toxicity is derived the silver ions 

which in nanotoxicology research is one of the main questions asked. 

 (3) In the natural aquatic environment, NPs will come into contact with organic matter 

such as humics and fulvic acids (Christian et al., 2008). We demonstrated (Chapter 2) that 

coating the AgNPs with fulvic acids and citrate (used in industry for stabilising the NPs) 

reduced toxicity, resulting in up to a 10 fold lower toxicity than for those uncoated particles 

(Chapter 2, Figure 1).  

(4) AgNP target tissues included olfactory bulbs, lateral line neuromasts, ionocytes in the 

skin which are key sensory systems in fish. We determined that stress response genes mt2, 

gstp and gstm1 were upregulated and genes hmox1/fth1 were downregulated post AgNP 

exposure concluding how different genes respond to stimuli. Past research has shown how 

AgNPs can up/down regulate genes but this research established where in the body i.e 

which target tissues in the body of the organism these stress response genes are affected.  

(5) Mechanisms of effects of AgNPs include via oxidative stress and are mediated via the 

Nrf2 pathway which was established in Chapter 3. Up until recently very few studies have 

looked at some of the mechanistic pathways involved in AgNP toxicity. By using an Nrf2 

mutant fish analysis it showed that the nrf2 pathway was involved in the toxicological 

response to AgNPs-specifically for genes mt2 and gstp (Chapter 3, Figure 5).  

(6) The work presented also provides evidence for maternal transfer as Ag was detected 

in the embryos derived from the adults exposed to ciAgNP and transgenerational effects of 

AgNPs were observed (Chapter 4, Figure 3 and Figure 4). Past research has used other 

organisms such as C.elegans (Roh et al., 2009) to show fecundity effects for AgNP exposure. 

This research is one of the first in showing transgenerational effects from a dietary exposure 

route using zebrafish. WISH analysis on embryos from treated adults revealed upregulation 
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in both treatments for genes mt2 and gstp in for exposure to both NP and their bulk 

counterpart (Chapter 4, Figure 3). Challenging the embryos to silver materials for 24 hours 

from treated adults showed significant gene (mt2) desensitisation measured by WISH 

analysis (Chapter 4, Figure 4). The desensitisation to silver materials is hypothesised to be a 

result of DNA methylation as a consequence of the constant Ag exposure during 

embryogenesis/early life stage. Similar effects have been seen with exposure to heavy 

metals where sensitisation (avoidance preference) occurred in rainbow trout (Oncorhynchus 

mykiss) who were exposed from juvenile stage (Svecevicius, 2003).The transgenerational 

effects seen in Chapter 4 should be considered for further investigation as fundamentally it 

could change the way toxicology is measured and asses its implications. 

The challenges and limitations of the experimental studies conducted in this thesis are 

also discussed and evaluated. A short discussion on the future prospects for nanotoxicology 

research is presented, with a foray into new promising methods that will aid scientific 

research in this area. Finally, a closing summary provides some overall concluding thoughts 

on nanotoxicology as it currently stands. 

5.1 CHALLENGES AND LIMITATIONS OF THE WORK UNDERTAKEN  

 

Whole mount in-situ hybridisation 

 

Whole mount in-situ hybridisation (WISH) was the method applied to examine the tissue 

specific effects of Ag materials on stress response genes zebrafish embryos. In the 

preparation of the embryos for WISH, proteinase K is needed to soften the skin and enable 

penetration of the probe for embryos at 24hpf onwards as the skin becomes tougher (Le 

Guellec et al., 2004) and less permeable. Appropriate time periods and concentrations for 

proteinase K treatment for WISH were already known for life stages between 2-5 dpf; 

however, protocols had to be developed for the life periods between 5 dpf up to 12 dpf and 

for the different probes. This included testing a variation of temperatures and different 

concentrations of proteinase K along with measuring how long to leave the probe staining. 

Therefore optimising the right conditions took a considerable amount of time. The limitation 

of WISH is the limited sensitivity. Unlike qPCR; whereby a AgNP toxicological response 
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detection of genes such as MT expression can go down to 0.16 µg/L in oyster embryos 

(Ringwood et al., 2010), WISH often requires higher concentrations.  

 

ICP-MS analysis 

 

With regard to determining the uptake of silver in target organs and the possibility of 

maternal transfer to offspring ICP-MS analysis were carried on gonads, liver and embryos 

that of adults fed AgNPs through diet. Preparation of samples uses acid digestion of tissues 

and embryos. In the past, protocols have stated how tissues have been digested but no 

literature stated how to digest embryos. Some length of time was spent to establish the 

adequate amount of nitric acid and hydrogen peroxide in combination with different 

temperatures to digest the embryos. A limitation of using ICP-MS  is  that  it  doesn’t  give  you  

the measurement of NPs but rather the metal present in sample. As a result, in the dietary 

exposure it was not possible to determine exactly how much nano was present or 

distinguish between ions and NPs in the organism. Therefore the measurement is a 

combination of Ag from AgNPs and dissociation of silver ions from the AgNPs. However, 

considering the toxicity of Ag ion, it is likely that the majority of the Ag contained in the liver 

and gonad are still in NP form otherwise the cells in these tissues would not survive and 

significant effects on fish health would have been observed. This assumption is also 

supported by the fact that tissues from the fish fed with AgB did not show any detectable Ag 

level but their eggs still had effect of Ag exposure (elevated mt2/gstp and also 

desensitisation to Ag in embryonic exposure). These results suggest that the level of Ag ion 

required for change of these expression markers is at a low level, almost under detection by 

ICP-MS, and in turn suggest that majority of the Ag in the tissue from AgNP fed fish are still 

in AgNP form. 

 

Testing of NPs at environmentally relevant concentrations 

 

A major knowledge gap is determining environmentally relevant concentrations of NPs. It is 

hard to quantify NPs in the environment due to the limitations available technology to do so 

(Tiede et al., 2008). However; new technologies with better detection capabilities are 
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working towards giving us a better idea of these concentrations in the environment to be 

able to test and foresee any possible effects. These new techniques include combining 

methods (ICP-MS, hydrodynamic chromatography (HDC) and field flow fraction (FFF)) which 

are already being developed (Farkas et al., 2011) to achieve single particle detection (Lorenz 

et al., 2012). 

 

 Therefore, at the start of conducting this thesis it was hard to test environmentally relevant 

concentrations. Nevertheless; some empirical data are now available, but it is still uncertain 

how much NP material will reach certain surface waters. Factors that will determine this 

include the rate and amount of NPs leaching from materials disposed on the environment 

facades may differ due to weather; water levels due to seasonal changes can affect the 

concentration of the pollutant. Therefore, sometimes predictive modelling estimates were 

used to model experimental doses accordingly and sometimes empirical data (where 

available) was applied (Chapter 3 and 4). 

 

Stability and dispersion of the NPs 

 

Dispersion is a major factor in establishing the toxicity of a particle, as it can change 

dramatically the bioavailability to an organism. It is known that different coatings can 

change toxicity of an NP. In the first study, NPs were used in their dry form and one could 

visibly see aggregates forming within your medium. Sonication in water baths were used to 

help prevent aggregation; but even then aggregation proved to be a problem. Coating the 

AgNPs with fulvic acid was done to mimic humics that NPs would come into contact within 

the environment. As the project progressed, better dispersion methods via sonication 

probes were adopted and better dispersion was achieved.  

 

Additionally, it is known that the longevity of an experiment can in turn change the toxicity 

of a NP. This is crucial in measuring toxicity as some coated NPs show slower dissolution 

rates which in turn would show less toxicity. Therefore, in short term acute toxicity tests 

NPs could show minimal toxicity on organism, and not foresee the true long term 

toxicological effects when maximum dissolution is achieved. Hence it is fundamental to 
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carry out dissolution studies in parallel to be able to asses how much silver ion dissociates 

within the medium and test NP toxicity.  

 

5.2 FUTURE PROSPECT FOR NANOTOXICOLOGY RESEARCH 

 

Nanotoxicology is still relatively new (Donaldson et al., 2004) and there are significant 

knowledge gaps and challenges. The high complexity and different structures of NPs makes 

them unpredictable and hard to predict potential hazard.  

 

Various organisations e.g. International Organization for Standardisation (ISO) are 

developing guidelines and working towards a standardised approach for testing materials. 

This will minimise variation in NP toxicological data resulting from different lab approaches 

and via the adoption of different preparation procedures. These organisations are also 

suggesting testing different NPs (size, surface properties and charge) in different mediums 

to explore the biological activity and behaviour of these NPs. Until recently, NP 

characterisation was performed on either the dry material or in the solution in which it was 

produced, with no consideration for the nature of the material in the relevant biological 

medium for testing. Now, knowing that NPs in different mediums greatly changes the 

behaviour of the NP, there has been an initiative in recent reviews, to push for studies to 

carry out chemical characterisation in the medium tested as well in their original form 

(Johnston et al., 2013). In the second experimental chapter of this thesis (Chapter 3) citrate 

coated NPs were characterised in their original form as well as in the embryo culture 

medium tested. The data demonstrated the NPs formed aggregates in the embryo culture 

medium, in turn creating larger sized NPs. This further supports the above theory and in 

turn could decrease the toxicity of the NPs as a result of slower dissolution of silver ions due 

to smaller surface area. Characterisation of materials in the relevant exposure matrix will aid 

us in understanding how NPs behave in relevant environments and hopefully help us predict 

the toxicity of them. 

 

Quantifying NPs within the exposed organism has been challenging so far, but new 

methodologies using isotope labelling looks promising and already studies have been done 
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(Larner et al., 2012). Some of the benefits of using isotopically labelled NPs are being able to 

distinguish background metal concentration found in the environment such as Zn and new 

accumulated metals from the NP exposure. Additionally, by using this approach, 

environmentally relevant concentrations can be applied. 

 

Surface-enhanced Raman Scattering is a non-invasive in vivo monitory system and allows for 

single particle sensitivity by using Raman Scattering but enhances sensitivity by surface-

sensitive technique; this uses molecules adsorbed onto the surface you are testing. This 

method has recently been done using AuNPs (40nm) to assess the distribution of NPs within 

various cells in organism such as the zebrafish (Danio rerio) (Wang et al., 2010). The study 

demonstrated that the NPs microinjected at the 1 cell stage can distribute into cells and 

organs of the developing embryo. This method proved to have better detection capabilities 

than CARS (used in Chapter 2) as it could detect single particles, and therefore, future 

nanotoxicology biodistribution studies using this new imaging technique will benefit 

enormously. 

 

New nanotoxicology testing methods and assessing NPs risks are currently being evaluated 

(Shatkin and North, 2010, Arora et al., 2012). Recent reviews collectively suggest that more 

experiments should have a series of doses from low to high in the experiments. The results 

generated in these in vivo and in vitro studies will be used in conjunction with in silico 

studies to predict and establish nano safety. In silico toxicity testing uses computer 

simulation to predict chemical toxicity by using laboratory generated data, categorising 

physical properties and toxicity effects observed in vitro / in vivo studies. By mathematical 

modelling, they establish relationships between particles and the toxicity effects observed 

with potential to be able to predict hazard (Sayes and Ivanov, 2010). An example of the new 

mathematical methodologies for anticipating effect is through Quantative Structure-Activity 

Relationship (QSAR) (Puzyn et al., 2009). Modelling strategies have shown predicted striking 

results on metal oxides by using nano QSAR equation. One study used E.coli cells to test 

cytotoxicity for metal oxides comparing with the predicted EC50 (the effective concentration 

of a compound that brings about a 50% reduction in bacteria viability); ZnO EC50 predicted 

concentration was 3.30 mol-1 and ZnO EC50 observed concentration was 3.45 mol-1 (Puzyn et 
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al., 2011), demonstrating how accurate some modelling studies can be. However, scientists 

have worded their concern as usually these models use very small data sets and the validity 

of them can be at times questionable. It is essential to use and combine in vivo as well as in 

vitro results to be able to develop this new type of modelling.  

 

Another new type of modelling is called Quantitative Nanostructure-Activity Relationship 

(QNAR) (Fourches et al., 2010); the strategy is to able to combine characterisation features 

with biological effects observed. QNAR hopes to be able to predict in a quick and efficient 

way the potential effect on newly commercially available NPs. Xia and colleagues proposed 

a biological surface absorption index (BSAI) to characterise interactions by quantifying the 

competitive adsorption of a set of small molecular probes onto the nanoparticles by 

simulating molecular interactions of the NP with amino acid residues of the proteins (Xia et 

al., 2010). This approach is mainly being used in developing nanomedicines to predict 

cellular uptake but could be used in risk assessment.  

 

Another important step in progress of nanotoxicology is promoting data sharing (Clark et al., 

2011). An open system which would have non-published as well as published data to aid 

scientists in their experiments, as often negative results are not published and it would be 

an opportunity to share difficulties within experimentation.  

 

It was recently reviewed that within a 5 year time frame reliable in vitro and in vivo 

endpoints need to be established, more research into the mechanistic of how NPs interact 

with biology and more predictive models for biologically relevant NPs species (Winkler et al., 

2012). In addition, this study established that high throughput technologies will also benefit 

the understanding of those mechanisms and be able to measure the effects observed. In the 

long-term 10 year plan, it hopes to use new modelling systems such as the ones mentioned 

above and QNTR which explores the interaction between structural properties and toxicity 

to be able to predict environmental effects by grouping biological profiles with certain NPs, 

as well as NP fingerprinting which will group together NPs with similar in vivo effects in a 

physiochemical, genomic and biological profile. 
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5.3 SOME CONCLUDING THOUGHTS 

The research conducted in this thesis has provided knowledge on a few metal/metal 

oxide NPs in terms of their biological effects on zebrafish from early life stages to adulthood. 

It has provided data on how size and coating play important roles in the magnitude of 

toxicity. We show that the toxicity from AgNPs is mainly due to the bioavailability of silver 

ions and this corresponds with the latest research. This thesis established AgNP target 

tissues, as well as determining some toxicological pathways, which can hopefully initiate and 

further explore different toxicological pathways as well as mechanisms of AgNPs. Through 

establishing target tissues it was concluded that sensory systems in fish are affected by 

AgNPs-this data is of concern for aquatic species specifically fish when exposed to AgNPs. 

Furthermore; it showed Ag uptake into target organs is highly dependable on size proving 

accumulation in organisms; therefore more research into bioaccumulation should be carried 

out in future to asses this. Additionally; it confirmed maternal transfer with 

transgenerational effects on embryos, confirming AgNPs require further investigation as a 

potential threat to fish, as well as an environmental issue. 

I believe that in order for nanotoxicology research to move forward, more emphasis on the 

behaviour of these particles and mechanisms behind toxicity will be crucial. This will better 

enable us to predict the fate of these NPs also. Finally, the future key to nanotoxicology 

research is making sure the industry, policy makers and research collaborate with each 

other to create a network of people that each can put forth ideas and data. Progress of NP 

research and understanding implications for the environment requires collaboration with 

industry and policy makers. Future advancement for the comparison of studies and data 

between laboratories requires a framework that standardises tests to better compare 

toxicity tests and thresholds in a manner with greater precision. Programs like Horizon 2020 

will help achieve this. It aims to combine research, knowledge and innovation to create 

guidelines, which will benefit nanotoxicology research. If there is a mutual correspondence 

between research and industry through a lifecycle assessment before/in the process of 

making NPs this will aid the process in predicting and preventing any irreversible damage to 

our ecosystems. In addition, funding bodies need to keep financing research to create 
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laboratory data for computational predictive models. Ultimately, we need try to find a 

harmony between the nano industry growing and protecting the environment in a 

manageable way. 
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Abstract
Manufactured metal (oxide) nanoparticles are entering the
aquatic environment with little understanding on their potential
health impacts for exposed organisms. Adopting an integrative
approach, we investigated effects of particle size and coating on
biological responses for two of the most commonly used metal
(oxide) nanoscale particles, silver (Ag) and titanium dioxide
(TiO2) in zebrafish embryos. Titanium dioxide nanoparticles
(nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no
toxicity on the endpoints measured. Ag both in nano form
(10 nm and 35 nm) and its larger counterpart (600–1600 nm)
induced dose-dependent lethality and morphological defects,
occurring predominantly during gastrula stage. Of the silver
material tested 10 nm nanoparticles appeared to be the most
toxic. Coating Ag nanoparticles with citrate or fulvic acid
decreased toxicity significantly. In situ hybridisation analysis
identified the yolk syncytial layer (YSL) as a target tissue for
Ag-nano toxicity where there was a significant induction of the
heavy metal stress response gene, metallothionein 2 (Mt2) at
sub-lethal exposures. Coherent Anti-stroke Raman Scattering
(CARS) microscopy provided no evidence for silver particles
crossing the chorionic membrane in exposed embryos.
Collectively, our data suggest that silver ions play a major role in
the toxicity of Ag nanoparticles.

Keywords: nanoparticle, ecotoxicology, Danio rerio, embryo,
titanium dioxide, silver

Introduction

Nanoparticles are being introduced rapidly into the con-
sumer market but there is still little understanding on their
potential consequences for human and environmental
health. Two of the first metal-based nanoparticles to gain
widespread use are titanium dioxide (TiO2) and silver (Ag).
Titanium dioxide is of global importance with in excess of

4.3 million tonnes produced annually, with extensive use in
sunscreen and in the pigmentation of paints. The surface
reactivity and general properties of TiO2 are well documen-
ted (Long et al. 2007). Nano-TiO2 has been reported to cause
oxidative stress effects in mammals and in fish, inducing
inflammation, cell damage and genetic damage, both with
and without exposure to ultraviolet A (UVA) radiation.
Available data suggest sub-lethal toxicity in the concentra-
tion range of 5–50 mg L–1 for exposures through the water in
both invertebrates (Lovern et al. 2007; Heinlaan et al. 2008;
Zhao et al. 2009) and fish (Lee et al. 2007; Scown et al. 2009).
Modelled environmental concentrations indicate TiO2 con-
centrations may in some circumstances reach between
0.7 and 16 mg L–1 (Nowack & Bucheli 2007) and this could
present a risk to aquatic organisms.

In the 1970s, 2.5 million kg of Ag was discharged into the
environment in the United States (Luoma & Rainbow 2008)
and its high toxicity to aquatic animals subsequently led to
stringent environmental regulations by the 1980s under the
Clean Water Act in the United States (Purcell & Peters 1999).
Nano-silver is now used extensively in consumer products,
predominantly for its effective antimicrobial properties and
low production cost. In wastewater treatment works recei-
ving influents from industries using silver nanoparticles (Ag
NPs), levels of silver have been shown to reach 100 mg L–1

(Hu 2010), and this exceeds tolerable limits for some bac-
teria, which may therefore impact adversely on bacterial
communities (Marambio-Jones & Hoek 2010). Of particular
concern is the potential for nano-silver to concentrate in
sewage sludge as in some countries (including the United
Kingdom) this can be subsequently applied to land as
fertilizer. Several studies have indicated that Ag NPs have
the potential to induce toxic effects in a range of species,
including fish (Skebo et al. 2007; Braydich-Stolle et al. 2005;
Hussain et al. 2005; Scown et al. 2009; AshaRani et al. 2009).
One study exposing zebrafish embryos to an extremely
high level of Ag NPs (100 mg L–1), that were stabilised
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with citrate or fulvic acid, showed silver penetrated into
various body tissues, including brain, heart and skin
(AshaRani et al. 2009). This toxicity for exposure to Ag
NPs in fish may, in part, relate to an enhanced dissociation
in the exposure water, and thus bioavailability, of free silver
ions (Jin et al. 2010).

The purpose of this study was to adopt an integrative
approach to determine potential toxicity to zebrafish
embryos of well-characterised Ag and TiO2, of various sizes
both as unmodified nanoparticles and dispersed with citrate
or fulvic acid, and across a range of exposure concentrations.
Zebrafish embryos offer a wide range of experimental con-
veniences including the ease for observing developmental
effects through a transparent chorion. Mortality rates, deve-
lopmental abnormalities, apoptosis and targeted (in situ)
gene expression were used as effects assessment endpoints.
Advanced imaging techniques, including Coherent Anti-
strokes Raman Scattering (CARS) were employed to inves-
tigate for uptake and distribution of nanoparticles in the
tissues of the exposed embryos.

Materials and methods

Fish source, culture and husbandry
Wild-type WIK (Wild-Type India Calcutta) strain zebrafish
embryos were obtained from the Max Planck Institute,
Tubingen, Germany, and maintained at University of Exeter
as described in the supplementary material (S1).

Nanoparticle source and characterisation
Ag NPs (nominal sizes 10 nm and 35 nm) and Ag bulk
(nominal size 600–1600 nm) were acquired from Nanostruc-
tured and Amorphous Materials Inc. Houston, USA. Tita-
nium dioxide nanoparticles (TiO2 NPs) (nominal sizes 3 nm,
10 nm and 35 nm) and 134 nm particles were acquired from
Alfa Aesar- A JohnsonMatthey Company, Lancashire, United
Kingdom.

Physicochemical characterisation
A number of techniques were carried out to characterise and
quantify the particles. The techniques applied included: nano-
particle tracking analysis (NTA), Braun Emmett Teller (BET)
method of specific surface area analysis, X-ray diffraction
(XRD), atomic force microscopy (AFM) and high-resolution
transmission electron microscopy (HR-TEM) with associated
spectroscopy – X-ray electron dispersive spectroscopy
(X-EDS). A full detailing of the methods applied to Ag and
TiO2particles canbe found in (Scownetal. 2009); anddetailsof
data analysis in (Ju-Nam et al. 2012).

Silver dissolution
Samples of silver nitrate (Perkin Elmer) were made up in
milli Q water and embryo culture water (0.60 mg of marine
salts [Tropic Marin] per litre of deionised water) as test
standards for analysis by the ICP-MS. Sample concentrations
were 0, 15, 30, 60, 120 and 260 mg L–1. Dissolution rates were
determined for 35 nm silver and bulk silver particles. For this,
duplicate 1 litre solutions containing 50 mg L–1 Ag NPs were
made up in embryo culture water and mixed constantly

using magnetic stirrers at a temperature of 21!C. For each
treatment, 8 Spectra/por dialysis membranes MWCO
1000 (1 KDa) (prewashed in 0.05% sodium azide in Milli
Q water) were set up containing 10 mL of Milli Q water,
which were then clip sealed at each end before being
submerged into the Ag NP or Ag bulk solutions. At different
time points, 4 h, 24 h, 48 h and 72 h, one sample for each
treatment vessel (two per treatment) was taken, pipetted into
a 15 mL falcon tube and the silver ions stabilised through the
addition of 1% of HNO3 added before analyses using ICP-MS.

Ag/TiO2 nanoparticle exposure and effects assessments
Particles were made up in a dilution series of six stock solu-
tions (50 mg L–1, 500 mg L–1, 5000 mg L–1, 50,000 mg L–1,
250,000mgL–1) for eachparticle size. Solutionswere sonicated
in awaterbath for 30minandplaced intoglass, amber,Boston
round 125mL tubes fitted with a Teflon-lined cap and kept at
4!C until required. When the solutions were required for the
exposure studies, they were sonicated in a water bath for
30min andpipetted into the exposurewells. To investigate for
effects of particle coating on biological effects a further dilu-
tionseriesof 10nmAgparticleswasmixedwitheither0.0075%
sodium citrate or a 2% fulvic acid suspension prior to the
exposures. For the exposures to silver ions, a stock solution of
silver nitrate (Perkin Elmer 2% AgNO3) was made and the
required amount for each exposure concentration was added
into the embryo culture water.

For the embryos exposures, 500 mL of the stock solutions
were added to 450 mL embryo culture medium to give final
exposure concentrations of 5 mg L–1, 50 mg L–1, 500 mg L–1,

5000 mg L–1 and 25,000 mg L–1. Controls received 5 mL of
embryo culture water only. Eggs/embryos were collected
from breeding colonies transferred into a Petri dish and
washed twice with embryo culture water with the addition
of 15 mL of methylene blue to prevent fungal and bacteria
growth. For all exposures, there were 20 embryos (at the
1–2 cell stage, 1–1.5 hpf) per treatment well, and the studies
were replicated at least three times. The embryos were
incubated at 28 +/– 1!C up to 48 h. After 2 h in culture,
the numbers of unfertilised embryos were recorded and
these were removed. At 48 hpf (hours post fertilisation)
survival rates and any phenotypic deformities were
recorded. Any physical deformities observed were recorded
and converted to percentages for each treatment. Embryos
were observed and photographed using Nikon SMZ1500
microscope equipped with a digital camera. To gain an
insight into the timing of mortality and developmental
effects induced by the exposures to Ag, time lapse video
analysis was used, as described in the supplementary
material (S2).

Cell necrosis
To investigate further for silver particle toxicity, cell necrosis
was recorded in embryos exposed during early life to either
35 nm Ag or 35 nm TiO2 at concentrations of 500 mg L–1 and
25,000 mg L–1. Twenty embryos for each exposure concen-
tration were incubated at 28 +/– 1!C from the 1 to 2-cell stage
and subsequently removed from the exposure at 7 hpf and
stained with a Propidium Iodide (PI) (Sigma) at 1 mg/mL
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mixed in distilled water; Fluorescine Diacetate (DAF)
(Sigma) at 1.5 mg/mL mixed in DMSO; Hoechst (HO)
(Sigma) at 1 mg/mLmixed in distilled water and PBS (Pinero
et al. 1997). The final concentrations of materials in
the necrotic staining solution were PI, 250 mg L–1; DAF,
750 mg L–1; and HO, 200 mg L–1. Embryos were incubated in
the dark for 10 min in a 24-well plate and photographed
using Leica DMI 4000 B Compound Microscope equipped
with a digital camera.

Metallothionein gene expression assessed through
whole mount in-situ hybridisation
In situ hybridisation on exposed zebrafish larvae was under-
taken to investigate for differential activation of gene expres-
sion for metallothionein 2 (Mt2), known to play key roles in
toxicological responses to metals, including silver (Choi et al.
2009). Mt2 cDNA was obtained from Imagene/RZPD (clone
No IMAGp998C0115598Q). To prepare the RNA probe,
Mt2 cDNA was amplified by PCR using two primers,
Mt2_F: ATC AAC TCA TTC ACA AGC TGA; T3_Mt2_R:
GGA TCC ATT AAC CCT CAC TAA AGG AAA TAC CAC
CAT TTA TTT TAG, and in vitro transcribed by using digoxi-
genin labelling mixture (Roche) and T3 RNA polymerase
(Promega). Using a G50 column the RNA was purified
and precipitated using Lithium Chloride. The probe was
then diluted with hybridisation buffer at 1/200. The in situ
hybridisations were conducted as described in the supple-
mentary material (S3). For these studies embryos were
exposed to 35 nm Ag and 35 nm TiO2 particles at 500 mg
L–1 and Ag NO3 at 12 mg L–1 (to represent the maximal rate of
dissolution for the silver particle exposures – see results)
from 1–2 cell stage to 24 hpf, fixed with 4% PFA (S3).
Embryos were observed and photographed using Nikon
SMZ1500 microscope equipped with a digital camera. The
expression level for Mt2 expression (localised in the YSL) was
quantified using Image-J 1.44 P. The levels of expression
were determined from the mean of 15–20 embryos for each
treatment subtracting for the background measurement.
Responses to silver treatment were then given as fold-
increase above controls.

CARS microscopy
To investigate the uptake of nanoparticles into the exposed
embryos, Coherent Anti-Stokes Raman Scattering (CARS)
microscopy was used to provide label-free imaging with
sub-cellular resolution (S5). For this imaging work, embryos
were exposed at the 1-cell stage to 500 mg L–1 and 5000 mg L–1

35 nm Ag and 35 nm TiO2 and their bulk counterparts. Ten
embryos were taken at random for each exposure concen-
tration at 24 hpf, five of which were manually dechorionated
and the other five the chorion left intact. Embryos were
embedded in 1% low melting agarose with 0.05% of tricaine
(to anaesthetise the fish) in a glass-bottomed petri dish
photographed using IX71 and FV300, Olympus, UK.

Statistics
Unless stated otherwise, all data are presented as means ± S.
E.M. The coefficient of variation (CV) statistic was calculated
for comparisons of variation, as CV = (standard deviation/

mean)*100. All statistical analyses were performed using
Sigma Stat version 12.0 (Jandel Scientific Software, USA).
Differences among groups were analysed by one-way/two-
way ANOVA, followed by Holm-Sidak method comparison
post hoc test, where data were not normally distributed. All
data were considered statistically significant at p < 0.05.

Results

Particle characterisation
A summary of the characterisation and physiochemical
properties of the silver particles is provided in the sup-
plementary material Table S4 and further details are
reported elsewhere (in Scown et al. 2009). All particles
had purity > 99% based on trace metal analysis. The mea-
sured sizes by TEM were found to be different from those
reported by the manufacturer (the nominals) and were
49.0 ± 18.5 nm and 114.0 ± 65 nm for the 10 nm and
35 nm particles, respectively. In our assessments, 10 nm
Ag particles had a specific surface area of 9–11 m2 g–1, bulk
density of 2.05 g cm–3 and a true density of 10.5 g cm–3.
The 35 nm Ag particles had a density of 10.5 g cm–3, a
specific surface area of 30–50 m2 g–1, and a bulk density of
0.30–0.60 g cm–3. Ag bulk particles had a range in particle
size of 0.6–1.6 mm and purity of 99.95%.

The measured physicochemical properties of TiO2 and
TEM images of the different sized materials are shown in
the supplementary material Table S1 and Figure S1, respec-
tively. When in suspension, particles formed large aggre-
gates of several hundreds of nanometres (Supplementary
material Figure S1, Table S1). The high-resolution TEM
micrographs show that both the 3 nm and 35 nm were
comprised of very small particles likely to be less than
10 nm, but their precise dimensions were not resolved due
to the dense aggregation resulting in the formation of
sheet-like structures. The 10 nm particles formed fractal
(i.e., porous) aggregates of about 19.1 ± 13.8 nm, as
measured by TEM. It is worth noting the relatively high
polydispersity of this sample (Supplementary material
Figure 1B, inset). The TEM measurement for 10 nm par-
ticles were in good agreement with the sizes calculated
from the SSA measured through the BET data and crystal-
lite size measured by XRD (Supplementary material Table
S1). The crystallite sizes were slightly larger than those
measured by TEM or calculated from SSA, most likely
due to the high polydispersity and aggregation observed.
Measured sizes of the TiO2 were thus again different from
the data supplied by the manufacturer.

Dissolution of silver
Mean recoveries of silver for the silver nitrate control
standards (in Milli Q water) were between 78% and 103%,
with greater recoveries at the higher concentrations (Sup-
plementary material Table S2). In contrast, quantification of
silver in embryo culture water gavemeasured concentrations
between 9.9% and 64.2% of nominals (Supplementary mate-
rial Table S3). Dissolution of silver ions over the 72 h period
for 50 mg Ag NP L–1, ranged between 0.1% and 2%, and for
50 mg Ag bulk L–1 between 0.21% and 0.83%.
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Lethality
Overall TiO2 had an extremely low level of toxicity: 3 nm and
35 nm TiO2 particles showed no toxicity and the lowest effect
concentration for 10 nm TiO2 was 5000 mg L–1 (p = 0.029) and
for 134 nm TiO2, 25,000 mg L–1 (p = 0.004; Figure 1B). In
contrast, there was a clear dose-dependent toxicity for the
different sized Ag NPs and the bulk counterpart (Figure 1A).
There was a statistically significant interaction between
concentration and Ag particle size (Two-way ANOVA
p < 0.001) with the following lowest effect concentrations:
5 mg L–1 for 35 nm Ag (p = 0.002), 50 mg L–1 for both 10 nm Ag
(p < 0.001) and Ag bulk (p = 0.003). The 35 nm Ag was

significantly more toxic than 10 nm Ag across all concen-
trations and it was also significantly more toxic than Ag bulk
for almost all concentrations tested (the exception was for
5 mg L–1). Exposure to silver ions showed a dose-dependent
toxicity with a no effect concentration (NOEC) of 30 mg L–1

and a lowest effect concentration (LOEC) of 60 mg L–1

(p < 0.001, Two-way ANOVA). At 500 mg L–1 there was
85% embryo mortality (Figure 1E).

Effects of coating on silver nanoparticle toxicity
Coating the 10 nm Ag with citrate significantly reduced
their toxicity across the concentration range tested
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Figure 1. Mortality and morphological abnormalities at 48 hpf in zebrafish embryos exposed to Ag nanoparticles (nominal sizes), TiO2
nanoparticles (nominal sizes), Ag coated with citrate, Ag coated with fulvic and AgN03. Mortality rates are shown for exposure to silver particles
(A), TiO2 particles (B), Ag (10 nm) and Ag (10 nm) citrate-coated particles (C), Ag (35 nm) and Ag (35 nm) with fulvic acid (D), silver nitrate (E). For
the different exposures there were statistically significant interactions between concentration and particle size (A, B, E), citrate coating (C) or fulvic
acid (D) (Two-way ANOVAs p < 0.001). The letters (a, b, c) indicate statistical difference (p < 0.05) between particles/coating for each concentration
tested (All Pairwise Multiple Comparison Procedures, Holm-Sidak method). There was no statistically significant interaction between concen-
tration and particle size for effects on heartbeat rate (Two-way ANOVA p = 0.817). Significant differences in mortality between the treatment groups
for exposure to silver nitrate were assessed by One-way ANOVA (*p < 0.0001) to that of the control group.
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(Two-way ANOVA p < 0.001) (Figure 1C). The maxi-
mum mortality rate (exposure to 25,000 mg L–1) in the
citrate-coated silver particles was 14% compared with
79% for non-coated silver particles of the same size. The
lowest effect concentration for 10 nm Ag was 50 mg L–1

(p < 0.001) and for Ag 10 nm + citrate, 500 mg L–1 (p = 0.05,
Two-way ANOVA). The 10 nm Ag was more toxic than
10 nm Ag coated with citrate for all concentrations above
50 mg L–1.

Similarly, the addition of fulvic acid significantly reduced
the toxicity of the 35 nm Ag (Two-way ANOVA p < 0.001)
(Figure 1D). The lowest effect concentration for 35 nm Ag
was 5 mg L–1 (p < 0.001) and for 35 nm Ag with fulvic acid,
500 mg L–1 (p < 0.001). The 35 nm Ag was significantly more

toxic than 35 nm Ag + fulvic acid for all adopted exposure
concentrations.

Ag-nano predominantly induces embryonic
lethality at gastrula stage
Video analysis on the developing embryos in the controls
established that at 8 hpf half had reached gastrulation stage,
which is in accordance with the normal progression of
expected development. In contrast, half of the embryos
exposed to 25,000 mg Ag L–1 had died by this stage. Time
lapse analysis showed that for embryos exposed to 35 nm Ag
the yolk sac membrane of the embryo became damaged,
leading to the leakage of yolk and subsequently mortality
(Figure 2). It was observed that the surface of the blastoderm

Figure 2. Images of embryos exposed to silver particles at various developmental stages. Video-captured images of zebrafish embryos in controls
(A-C, 5 hpf, 7.2 hpf and 7.5 hpf, respectively) and exposed to silver particles (35 nm Ag at 25,000 mg/L) from 1–2 cell stage (D-F, 5 hpf, 7.2 hpf
showing – 1.Yolk leaking out from the cells, 7.5 hpf showing – 1. Uneven surface of dividing cells, 2. Embryo bursting within the chorionmembrane).
G-R, microscope images of control/exposed embryos at different developmental stages. G. 24 hpf control embryo; H.24 hpf Ag (10 nm 5000 mg/L); I.
24 hpf Ag (Bulk 5000 mg/L); J. 24 hpf AgNO3 (120 mg/L); K. 24 hpf control embryo; L. 24 hpf Ag (35 nm 500 mg/L); M. 24 hpf Ag (Bulk 500 mg/L); N.
AgNO3 (120 mg/L); O. 48 hpf control embryo; P. 48 hpf Ag (35 nm, 5000 mg/L), showing – 1. Eyes spaced more widely on the head compared with
controls, 2. absence of a tail and 3. deformed yolk sac; Q. 24 hpf Ag (Bulk, 5000 mg/L) showing – 1.bent tail, 2. reduced yolk sac; R. AgNO3 (120 mg/L).
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became rough (Figure 2E, F) and epiboly, the process where
cells move and spread out into sheets of tissue that overlie or
surround other groups of cells, was delayed in comparison
with control embryos (normally occurring at approximately
4 hpf). The blastoderm in the surviving embryos treated with
35 nm Ag did not cover the yolk and had only reached
approximately 40% epiboly in comparison with the control
embryos where there was nearly 70% epiboly. Embryos that
survived the exposure to silver at high exposure concentra-
tions subsequently had morphological abnormalities includ-
ing bent tails, small head and a reduced yolk sac size
(Figure 2G–R).

Cell necrosis in early life stage embryos
Staining for cell necrosis during the gastrula stage (7 hpf)
identified a high prevalence cell death in the exposures to
35 nm Ag (500 mg L–1 and 25,000 mg L–1; Figure 3H, I). In the
controls and embryos exposed to TiO2 there was a very low/
no incidence of necrotic cells (Figure 3B, E). Based on a
qualitative assessment only, there appeared to be similar
numbers of live cells in all embryos examined in controls,
TiO2 exposures and for Ag at 500 mg L–1 (Figure 3A, D, G).
There was a high level of necrotic nuclei in the yolk syncytial
layer (YSL) (Figure 3I).

Particle uptake (CARS)
The studies showing cell damage for the high concentration
exposures suggested that material (particles and/or free
silver) entered the embryo from the culture medium.
CARS microscopy, however, showed no detectable particles
contained within the exposed embryos (Figure 4). CARS
images, including images that were focused at the outside
edge of the chorion (Figure 4B, C), for exposures of embryos
to both Ag NPs and TiO2 NPs, illustrate that the particles
were associated with the outer edge of the embryo and not
contained with the embryo itself.

Expression of metallothionein
We conducted in situ hybridisation with Mt2 to identify
possible tissue targets for metal responses induced by expo-
sure to Ag-nano. For the exposures to all silver-
treatment groups at sub-lethal doses, and for which no
significant morphological defects were found, significant
induction of Mt2 was detected in the YSL especially at the
posterior extension. Exposure to 35 nm Ag (Figure 5C, E)
induced a 3.9-fold increase, Ag bulk material induced a
2.7-fold increase (Figure 5B, E) and Ag ion (12 mg L–1)
induced a 2.8-fold increase (Figure 5D, E). TiO2 (500 mg
L–1) did not show any enhanced expression of Mt2.

Live cells
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Figure 3. Images showing live (green)/necrotic (red) cells in embryos at shield stage (Lateral View). A. control-live cells; B. control-necrotic cells; C.
control-merged images live/necrotic cells; D. TiO2 (35 nm 500 mg/L) – live cells; E. TiO2 (35 nm 500 mg/L) – necrotic cells; F. TiO2 (35 nm 500 mg/L) –
merged live/necrotic cells; G. Ag (35 nm 500 mg/L) – live cells; H. Ag (35 nm 500 mg/L) – necrotic cells; I. Ag (35 nm 500 mg/L) – merged live/
necrotic cells, showing – 1. necrotic nuclei in blastoderm, 2. necrotic nuclei in yolk syncytial layer (YSL).
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Discussion

We found TiO2 nanoparticles had little or no toxicity in zebra-
fishembryosontheendpointsmeasuredandatexposure levels
far exceeding those predicted to occur in some of the most
polluted environments (Colvin 2003). Our data support the
majority of previous studies in this regard and would suggest,
therefore, that in natural environments exposure to the TiO2

particles testedareunlikely toposeanyobvioushealth threat to
fish embryos, which are widely accepted as highly sensitive to
the effects of a wide range of toxicants.

In contrast Ag induced a dose-dependent toxicity in both
nano and bulk form. One possible explanation for the

enhanced toxicity of the Ag-nano is that the particles them-
selves may interfere with biological processes because they
have the potential to by-pass barriers which normally pre-
vent larger molecules from entering (Scown et al. 2010). It is
thought that nanoparticles can enter through pathways such
as tight junctions (Luhmann et al. 2008) and, if this is the
case, in turn block the channel pathways of epithelial mem-
branes (Hunziker et al. 2009). But for these particles, this is
unlikely as they were aggregated. Furthermore, an enhanced
ability to cross cell membranes was not supported by the
CARS imaging in this study, where at 24 hpf we found no
evidence for uptake of Ag (or TiO2) nanoparticles into the
embryo (Figure 4).

Figure 4. Coherent Anti-stokes Raman Scattering images of embryos exposed to silver and titanium nanoparticles after 24 h. Aggregates of
nanoparticles appear as coloured (yellow/red) patches on the image. NPs were visible only on the outside of chorion membrane. A. Control
embryo – showing chorion margin; B. Embryo exposed to Ag (35 nm, 25,000 mg/L) – showing chorion margin; C. Embryo exposed to TiO2 (35 nm,
25,000 mg/L) – showing chorionmargin; D. Control embryo showing chorion surface of embryo; E. Embryo exposed to Ag (35 nm, 500 mg/L) showing
silver particles on chorion surface of embryo; F. Embryo exposed to TiO2 (35 nm, 500 mg/L) showing titanium dioxide particles on chorion surface of
embryo. CARS revealed nanomaterial on the surface of the chorion, likely as aggregates of nanoparticles B, C, but none were detected internally to
the chorion within the embryo itself.
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Time lapse video analysis of the embryos exposed to nano
and bulk silver established that it was during gastrulation,
when the yolk sac folds in on itself over the cells, when the
greatest mortality occurred. The necrosis assay confirmed a
high incidence of damaged nuclei both in the blastoderm
and the YSL in the Ag-exposed embryos at this development
period (7 hpf). We recently reported that deformity of the
YSL often results in failure of gastrulation cell movement
which leads to embryonic lethality at the gastrula stage
(Takesono et al. 2012) The developmental morphologies
seen for exposure to silver particles (i.e., bent tails and a
small head) are common for embryos exposed to xenobiotic
compounds (Yeo & Kang 2008) and some abnormalities
likely result from failed epiboly movement.

Citrate is used widely to stabilise NPs to prevent/reduce
their aggregation (Baveye & Laba 2008), and here we found
that coating 35 nm Ag particles with citrate reduced signif-
icantly rates of mortality and abnormalities in exposed
embryos compared with uncoated 35 nm Ag; the LC50 of
35 nm Ag was 500 mg L–1 compared with 5000 mg L–1 for
35 nm Ag coated with citrate (i.e., 10-fold lower). No studies
were undertaken to investigate the aggregation behaviour of
the different particles in the embryo incubation water, but
some other studies have shown that in high ionic strength
water there can be an enhanced aggregation rate for particles
coated with citrate (Christian et al. 2008). It is possible

therefore that an enhanced aggregation of the citrate-coated
particles resulted in a lower bioavailability of silver particles/
ions for uptake. Subtle differences in the nature of nano-
particle have also been found to profoundly affect biological
effects responses (Moore 2006). An alternative hypothesis is
that the toxicity of the silver nanoparticles derives from the
dissolution of silver ions from the particles, and the rate of
this process is much reduced in citrate-coated silver particles
(Treuel et al. 2010; Studer et al. 2010; Kittler et al. 2010).
Similarly, addition of fulvics to the medium also reduced
the toxicity of the silver nanoparticles to the fish embryos.
Such a coating could affect the particles by reducing silver
particle dissolution rates, and/or complexing free Ag ions
after dissolution.

It is well established that fish and many other aquatic
animals are sensitive to the toxic effects of silver ions, with
LC10 concentrations reported for rainbow trout (Oncor-
hynchus mykiss) between 0.7 mg L–1 and 0.8 mg L–1 and
LC50 between 10 mg L–1 and 240 mg L–1 for freshwater fish
species (Birge & Zulderveen 1996). The degree of dissolution
(up to 2%) we found for Ag 35 nm equates well with previous
literature (Kittler et al. 2010; Fabrega et al. 2009). Based on
the amount of silver ions in solution, it appears that they do
not explain all of the toxicity observed. However; the silver
particles settle on the embryo surface (as evidenced by the
CARS imaging), and therefore the local concentration of
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Figure 5. Embryos (24 hpf) after applying the technique in situ hybridisation to investigate the expression of metallothionein 2 as a measure of
metal exposure/toxicity. There was a very low expression signal in the YSL especially at the posterior extension in the control embryos and in the
embryos exposed to TiO2, but high expression in the Ag nano/bulk exposed embryos. A. Control embryo, B. Embryo exposed to Ag (Bulk 500 mg/L),
C. Embryo exposed to Ag (35 nm, 500 mg/L), D. Embryo exposed to AgNO3 (12 mg/L), E. Graphical representation of the fold-increaseMt2 expression
in the different treatments.
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dissolved Ag ions is likely to be higher at the membrane
surface compared with the surrounding medium and there-
fore may explain all toxicity observed in our experiments.
Nevertheless, it is still possible that the NP is having an effect
directly on toxicity. These discrepancies further highlight the
need for stringent reporting on the physiochemical charac-
terisation of materials used. A further difficulty in relating
the toxicity effects with the measured Ag+ is that the embryo
medium contained relatively high levels of chloride ion
(626.2 mmol L–1), and this can complex Ag+ and in turn
reduce its toxicity.

CARS images (Figure 4) illustrated that the nanomaterials,
generally appearing as aggregates, were associated with the
outer edge of the embryo (panels B and C) with no evidence
for penetration of the embryo itself. This was supported by
CARS images of embryos that were dechorionated and
showed an absence of any nanomaterial at the embryo
surface and again no evidence of body penetration. Con-
trasting with this, however, expression of Mt2, that plays a
central role in metal transport, storage and detoxification
(Ngu & Stillman 2006), strongly supports an intracellular
presence of silver ions in exposed embryos/larvae.

We identified Mt2 expression in the (YSL) of the embryo,
a body region where processing of xenobiotic compounds is
known to occur in zebrafish embryos (Chen et al. 2004). The
YSL was both the target for a toxicology response (cell
necrosis) to Ag nanoparticles at the gastrula stage of deve-
lopment and location of Mt2 expression later in development
(24 hpf), for exposure to the lower Ag exposure concentra-
tion. We found low level and more diffuse expression of
Mt2 at 7.2 hpf compared with at 24 hpf, and this may confer a
lower resistance of earlier life stage embryos to the toxic
effects of Ag, but this would need further investigation to
confirm this hypothesis. No such gene upregulation was
seen in TiO2-exposed embryos. These findings provide
further evidence that at least some of the Ag toxicity relates
to the bioavailability of silver ions that may be more readily
released from nanoform silver. This would indicate the
possibility for greater health effects associated with silver
for Ag nanoparticle exposure. Our data further show Mt2 as
an effective biomarker for exposure to silver nanoparticles in
fish embryos. Where the release of silver ions occurs to
induce the response in Mt2 is not known, it may potentially
occur outside of the embryo from where the silver ions are
then transported into the embryo or be released from Ag NPs
that have penetrated the embryo, or a combination of both.

Conclusion

Our findings indicate that TiO2 nanoparticles are not likely to
have adverse biological effects in fish in the natural envi-
ronment. In contrast, Ag NPs at sub-lethal exposure con-
centrations have the potential to induce harmful effects,
disrupting embryo development predominantly at gastrula
stage, inducing embryonic deformity at 1–2 cell stage and
inducing the heavy metal stress response gene Mt2 in the
(YSL). These reported effects occur predominantly at expo-
sure levels exceeding those currently found (or estimated) in
the most aquatic environments but with the rapid expansion

in the use and discharge of Ag NPs, concentrations in the
aquatic environment are likely to rise in the near future
(Simonet & Valcárcel 2009); reviewed in (Fabrega et al. 2011)
heightening potential health concerns. Collectively, our data
would suggest that silver ions play a major role in the toxicity
of Ag NPs and furthermore we show that coating of the
particles, here with citrate or natural organic matter (here
fulvics) can reduce significantly associated toxicity with
major implications for understanding toxicity of metal NPs
in the natural environment.

Supportive Information

The supportive information contains extra information on
the materials and methods. In addition it contains data for
the characterisation of the titanium dioxide particles.
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