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Abstract 22 

We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer 23 

fragmentation, benthic carbon isotopes (δ13C) and radiogenic isotopes (Sr, Nd, Pb) of 24 

the terrigenous component from IODP Site U1313, a reoccupation of benchmark 25 

subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles 26 

in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are 27 
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unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 28 

million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene 29 

boundary. We show these lithological cycles to be driven by enhanced glacial fluxes 30 

of terrigenous material (aeolian dust), not carbonate dissolution (the classic 31 

interpretation). Our radiogenic isotope data indicate a North American source for this 32 

dust  (~3.3 to 2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-33 

derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude 34 

provenance regardless of (inter)glacial state, a finding that is inconsistent with the 35 

biomarker-inferred importance of glaciogenic mechanisms of dust production and 36 

transport. Moreover, we find that the relation between biomarker and the lithogenic 37 

component of dust accumulation is distinctly non-linear. Both records show a jump in 38 

glacial rates of accumulation from MIS G6 (2.72 Ma) onwards but the amplitude of 39 

this signal is about 3 to 8 times greater for biomarkers than for dust and particularly 40 

extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly 41 

to a distinctly more arid and windy glacial regime from MIS G6, but major shifts in 42 

glacial North American vegetation biomes and regional wind fields (exacerbated by 43 

the growth of a large Laurentide ice sheet during MIS 100) likely explain 44 

amplification of this signal in the biomarker records. Our findings are consistent with 45 

wetter-than-modern reconstructions of North American continental climate under the 46 

warm high CO2 conditions of the Early Pliocene but contrast with most model 47 

predictions for the response of the hydrological cycle to anthropogenic warming over 48 

the coming 50 years (poleward expansion of the subtropical dry zones). 49 

 50 
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 53 

1. Introduction 54 

Deep-sea sediments in the climatically sensitive North Atlantic region are composed 55 

of two main constituents: biogenic carbonate (CaCO3) produced in the overlying 56 

water column and allochtonous detrital material, with volcanic ash important only 57 

locally. It has long been recognised that striking rhythmic changes in the abundance of 58 

these constituents and therefore sediment color and %CaCO3 (Figure 1) provide both 59 

a high fidelity means of stratigraphic correlation and an expression of pronounced 60 

climate variability, especially in sediments deposited during times of significant 61 

northern hemisphere glaciation (NHG) (e.g. Ericson et al., 1961; Ruddiman and 62 

Glover, 1972). 63 

Shackleton et al. (1984) drew attention to the remarkable correspondence 64 

between high amplitude changes in both benthic δ18O and %CaCO3 back to earliest 65 

Pleistocene Marine Isotope Stage (MIS) 100 (2.52 Ma) at Deep Sea Drilling Project 66 

(DSDP) Site 552, where sediment deposition is dominated by pelagic rain from 67 

above. Prior to 2.52 Ma, variance in benthic δ18O is unaccompanied by large 68 

amplitude change in %CaCO3 at Site 552 (Figure 1A). Originally, initiation of high-69 

amplitude variance in color and %CaCO3 at this site was attributed by Shackleton et 70 

al. (1984) to onset of major NHG with %CaCO3 controlled by variations in the flux of 71 

non-carbonate material transported by ice rafting. We now know that the exact timing 72 

of the large decrease in %CaCO3 in sediments deposited at Site 552 is obscured 73 

because MIS G6 through 103 (2.72–2.58 Ma) fall in a core break (Raymo et al., 74 

1989). As it happens, however, extensive work elsewhere shows MIS 100 to be the 75 

oldest glacial during which ice sheets were large enough (Ruddiman et al. 1987; 76 

Maslin et al. 1998; Jansen and Sjoholm, 1991; Jansen et al. 2000; Kleiven et al. 2002; 77 
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Bailey et al., 2013) and high latitude surface ocean temperatures cool enough 78 

(Lawrence et al. 2009; 2010; Naafs et al. 2010) to initiate ice-rafting on a basin-wide 79 

scale across the open North Atlantic Ocean. 80 

In Figure 1A we show %CaCO3 records from two further classic North 81 

Atlantic drill sites, DSDP 607 and 609 located on the southern fringe and at the centre 82 

of the last glacial IRD belt, respectively (Figure 2). Originally, %CaCO3 variability at 83 

these two sites prior to ~2.5 Ma was attributed to sea floor CaCO3 dissolution, a 84 

consequence of their greater water depth (Sites 609, ~3.9 km & 607, ~3.5 km, vs. 552 85 

~2.3 km, Figure 1A) and the influence of corrosive poorly ventilated southern-86 

sourced bottom waters (Ruddiman et al., 1987; Ruddiman and Raymo, 1988). Yet, 87 

comparison of the %CaCO3 plots compiled by Ruddiman et al. (1987) to records from 88 

shallower more recently drilled sites (Figure 1A vs. 1B) reveals that the timing of the 89 

initiation of marked lithological cycles in North Atlantic Ocean sediments is not a 90 

simple function of water depth indicating the influence of some factor other than 91 

CaCO3 dissolution.  92 

In principle, three mechanisms have the potential to deliver terrigenous 93 

sediments to Site U1313. But negligible Pliocene rates of accumulation of sand-sized 94 

IRD and volcanic grains at Integrated Ocean Drilling Program (IODP) Site U1313 95 

(Bolton et al. 2010), the reoccupation of DSDP Site 607, confirms that the 96 

contemporaneous variability seen in %CaCO3 (Figure 1) is not a function of melting 97 

icebergs over this classic site. Two alternative potential explanations must therefore be 98 

considered: (1) Transport beyond the contemporary iceberg front by ocean currents of 99 

fine-grained material delivered by ice-rafting to the Nordic Seas by the Greenland Ice 100 

Sheet (Winkler, 1999; Jansen et al., 2000; Andrews 2000). (2) Transport of 101 

continentally derived eolian dust from North Africa or from North America as inferred 102 
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based on biomarker records (Naafs et al., 2012). 103 

To better understand the control(s) on, and climatic significance of, %CaCO3 104 

variability of North Atlantic Ocean sediments deposited during the intensification of 105 

northern hemisphere glaciation (iNHG) we present new orbital-resolution records of 106 

carbonate dissolution, benthic δ13C, coarse lithic abundance and sediment %CaCO3 107 

for IODP Site U1313, and radiogenic isotopes datasets that track the provenance of 108 

terrigenous inputs to this site. We show that lithological cycles in North Atlantic 109 

sediments of Pliocene age are driven by enhanced glacial fluxes of terrigenous 110 

material, not carbonate dissolution. Our provenance work indicates that the 111 

terrigenous component at the site is dominated by eolian dust sourced from the mid 112 

latitudes of North America – a result consistent with published interpretations of the 113 

record from Site U1313 of biomarkers derived from higher plant leaf waxes (Naafs et 114 

al., 2012). A sharp increase in the biomarker proxy for dust inputs to our study site 115 

during MIS G6, 2.72 Ma, is interpreted to reflect the importance of glacial grinding 116 

by a large North American ice sheet complex in amplifying dust inputs to the North 117 

Atlantic Ocean during glacials from this time (Naafs et al., 2012). Comparison among 118 

data sets, however, indicates strong non-linearity in coupling between the dust and 119 

biomarker records indicating that a reappraisal is merited of the sequence of climatic 120 

events that they record and the mechanisms involved.  121 

 122 

2. Materials & Methods 123 

2.1. IODP Site U1313 124 

IODP Site U1313 is located at the base of the upper western flank of the Mid Atlantic 125 

Ridge at a water depth of 3426 m, ~240 nautical miles northwest of the Azores 126 

archipelago (41˚N, 32.5˚W), on the extreme southerly limit of the last glacial “IRD 127 
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belt” (Ruddiman, 1977), a southwest-northeast trending band of maximum iceberg 128 

melting and hence IRD deposition between ~40˚N and 55˚N in the Atlantic Ocean 129 

(Figure 2). Site U1313 was drilled during IODP Expedition 306 and constitutes a 130 

reoccupation of DSDP Site 607, a benchmark mid-depth site monitoring North 131 

Atlantic Deep Water throughout the Plio-Pleistocene (Ruddiman et al., 1987; Raymo 132 

et al., 1989; Ruddiman et al., 1989; Raymo et al., 1992; Raymo et al., 2004). Site 133 

U1313 offers distinct advantages over its Site 607 precursor because it benefits from 134 

recovery by modern coring methods and from application of a full suite of physical 135 

property data collection and stratigraphic correlation techniques (Channel et al., 136 

2010). 137 

 138 

2.2. Stable isotope analysis, foraminifera fragmentation and chronology 139 

Samples from IODP Site U1313 were obtained at 10 cm resolution from 114.12 to 140 

155.28 meters composite depth (mcd) and washed over a 63 µm sieve. The ratio 141 

between fragments and whole foraminifera was established for the >150 µm fraction 142 

where more than 300 whole foraminifera were present following Ivanova et al. 143 

(2003). We focus our discussion on the interval 3.33 Ma (MIS MG1) to 2.41 Ma (MIS 144 

95) covered by a published oxygen isotope stratigraphy (Bolton et al., 2010), 145 

measured on the benthic foraminifera Cibicidoides wuellerstorfi (>212 µm). For 146 

discussions of the younger Pleistocene portion of the Site U1313 record, we utilize the 147 

age model of Naafs et al. (2012) based on benthic δ18O datasets spanning three time 148 

windows of the past 1 Myr (Stein et al., 2009; Feretti et al., 2010; Naafs et al., 2012) 149 

and shipboard correlation (Expedition 306 Scientists, 2006) of sediment physical 150 

properties (L*, lightness) to the LR04 stack (Lisiecki and Raymo, 2005). We present a 151 

new benthic δ13C record from the samples analysed by Bolton et al. (2010) with an 152 
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external analytical precision, based on replicate analysis of an in-house standard 153 

calibrated to NBS-19, of ±0.031‰ (1σ). 154 

 155 

2.3 Coarse lithic counts 156 

The only high-resolution record of IRD deposition at Site U1313 for iNHG spans MIS 157 

102-96 (Bolton et al., 2010). To improve our understanding of the history of IRD 158 

deposition at our study site during MIS M2 (3.3 Ma) and between MIS G6 and MIS 159 

102 (2.72–2.56 Ma), new coarse lithic counts were performed on the >150µm size 160 

fraction between, respectively, 152.98–154.98 mcd and 120.74–129.86 mcd. The 161 

abundance of coarse lithics in Site U1313 sediments are very low throughout our 162 

study interval and are extremely low in sediments deposited prior to MIS 100 (2.52 163 

Ma). To generate a statistically significant record of sand IRD abundance in Site 164 

U1313 sediments (expressed as IRD per gram of dry sediment) we therefore counted 165 

all coarse IRD (>150µm) in each sample studied. 166 

 167 

2.4. Sediment color 168 

There is a long history of attempts to develop rapid-throughput proxy methods to 169 

estimate sediment %CaCO3 from the spectral properties of sediments (e.g. Chester 170 

and Elderfield, 1966). Use of optical lightness as an analytical tool in sediments 171 

recovered by DSDP and IODP has its roots in late Quaternary studies (Balsam, 1981), 172 

was pioneered by grey-scale analysis of photographs (e.g. Herbert and D’Hondt, 173 

1990; Busch, 1991) and is now determined routinely from sediment color in 174 

sediments of appropriate lithology. Sediment color can be defined using three 175 

variables, a* (red-green), b* (blue-yellow) and L* (lightness), that lie along mutually 176 

perpendicular axes in color space. We obtained shipboard color reflectance data at 2 177 
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cm resolution for Site U1313 from the IODP database website 178 

(http://iodp.tamu.edu/database/index.html), generated using a modern version of the 179 

split core automatic track reflectance spectrometer first trialled to remarkable effect 180 

during Ocean Drilling Program (ODP) Leg 138 (Mix et al., 1992; Mix et al., 1995; 181 

Ortiz et al., 1999). Here we employ records of L* to represent sediment color.  182 

A comparison of L* data for Site U1313 and discrete  %CaCO3 measurements 183 

generated post-cruise on sediments deposited during MIS 16–9 (640–320 ka; Stein et 184 

al., 2009) illustrates that large variations in L* for Site U1313 sediments deposited 185 

over late Pleistocene glacial-interglacial cycles correspond to pronounced variations 186 

(of ~30 %) in sediment %CaCO3 (Figure 3). To improve our understanding of the 187 

relationship between sediment color and %CaCO3 for the Pliocene portion of the Site 188 

U1313 record (for which L* values are typically higher and amplitude change muted 189 

relative to those documented for the Pleistocene) we generated 193 new %CaCO3 190 

estimates on small (~0.5 cc), discrete samples using a standard (LECO) combustion 191 

technique following Stein et al. (2009). 192 

To generate a high-resolution record of %CaCO3 of Site U1313 sediments for 193 

the past 3.3 Ma, we perform a least-squares linear regression between our new 194 

discrete %CaCO3 data (Figure 3C; n = 193), supplemented by the previously 195 

published %CaCO3 data (Figure 3B; n = 151 (Stein et al., 2009)), and 10 cm (5 point) 196 

running average of the L* data series (Figure 3D). The excellent linear correlation 197 

(r2=+0.88, p<0.001; Figure 3D) between these two variables indicates that our orbital-198 

resolution L*-based estimates of %CaCO3 are not strongly influenced by potential 199 

complicating factors (e.g. changing composition of the non-CaCO3 fraction (Balsam 200 

et al., 1999)). This calibration is applicable to the task of generating a record of 201 

%CaCO3 for Site U1313 sediments of Pliocene through late Pleistocene age, but the 202 
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resultant %CaCO3 record can only be used to estimate eolian dust fluxes prior to the 203 

late Pleistocene interval because of the error propagation associated with notable 204 

delivery of IRD during late Pleistocene ice-rafting events, most notably the extreme 205 

Heinrich events (see Section 3.3 (Stein et al., 2009; Naafs et al., 2013)). Fortunately, 206 

our focus is on the origin and temporal evolution of terrigenous MARs at our study 207 

site during the Pliocene where the linear fit is excellent and our new IRD record 208 

demonstrates that the terrigenous sediment component contains negligible (i.e. 209 

interglacial-like) ice-rafted sand-sized grains. 210 

 211 

2.5. Radiogenic isotope data 212 

The radiogenic isotope (Nd, Pb, Sr) composition of Atlantic Ocean sediment is well 213 

established as a tracer of both eolian sediment (e.g. Grousset et al., 1998; Abouchami 214 

and Zabel, 2003; Grousset and Biscaye, 2005) and ice rafted material (e.g. Revel et 215 

al., 1996; Grousset et al., 2001; Fagel et al., 2002; Fagel et al., 2004; Fagel and 216 

Matielli, 2011; Colville et al., 2011). These applications rely on regional differences in 217 

circum-North Atlantic Ocean geology as a function of age and tectonic (metamorphic) 218 

history. 219 

To understand better the origin of the terrigenous component of Site U1313 220 

Pliocene sediments, we have measured the Pb, Nd and Sr isotopic composition of 221 

carbonate-free bulk terrigenous samples selected from peak glacials and interglacials 222 

associated with the interval of iNHG (3.5–2.5 Ma; Mudelsee and Raymo (2005)). 223 

Sample processing closely followed Gutjahr et al. (2007). Approximately 0.5 g of 224 

crushed and homogenised bulk sediment was decarbonated using a Na acetate buffer, 225 

and absorbed metals were removed with a 1M MgCl2 solution. Authigenic coatings 226 

were then removed using a 0.05 M hydroxylamine hydrochloride – 15 % acetic acid 227 
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− 0.03 M Na–EDTA solution buffered to pH 4 with analytical grade NaOH in two 228 

steps totalling 27 hours on a shaker table. Following removal of organic matter using 229 

hydrogen peroxide and aqua regia, samples were pressure-dissolved in a HF-HNO3 230 

mixture. 231 

Pure samples of Pb, Nd and Sr were extracted using standard procedures. The 232 

Nd-isotope (143Nd/144Nd) and Pb-isotope ratios (206Pb/204Pb, 207Pb/204Pb and 233 

208Pb/204Pb) of our processed samples were measured at the University of 234 

Southampton using a multi-collector inductively coupled plasma mass spectrometer 235 

(MC-ICP-MS, Thermo Scientific Neptune). Neodymium isotopic compositions were 236 

obtained using the method of Vance and Thirlwall (2002) through adjustment to a 237 

146Nd/144Nd value of 0.7219. Mass-bias corrected ratios were normalized to the given 238 

143Nd/144Nd value (0.512115) of the standard JNdi-1 (Tanaka et al., 2000). Mass bias 239 

corrected Pb isotopic compositions were measured following a standard-sample 240 

bracketing approach normalizing Pb isotopic compositions of NBS981 to the values 241 

of Baker et al. (2004). The Strontium isotope composition (87Sr/86Sr) of these samples 242 

was also measured at the University of Southampton using a thermal ionisation mass 243 

spectrometer (ThermoFisher TRITON Plus). Total procedural blanks averaged 174pg, 244 

106pg and 195pg for Nd, Sr and Pb, respectively. External precisions are calculated 245 

(at 2 standard deviations) as the reproducibility of the following standards: JNdi-1 246 

(Nd), NBS 987 (Sr) and NBS 982 (Pb). Precision is 0.000007 (<0.15 εNd), 0.000015, 247 

0.047, 0.022 and 0.062 for 143Nd/144Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 248 

208Pb/204Pb respectively. For convenience Nd isotope ratios are reported in epsilon 249 

notation as:  250 

4
144143

144143

101
/
/

×











−=
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Nd NdNd
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�252 

where 143Nd/144NdCHUR reflects the Chondrite Uniform Reservoir value of 0.512638 253 

(Jacobsen and Wasserburg, 1980). 254 

We assessed the provenance of terrigenous sediments deposited at Site U1313 255 

by comparing their Pb, Sr and Nd isotopic compositions to equivalent radiogenic 256 

isotopic compositions of potential source regions, which are based on our compilation 257 

of discrete measurements made on circum-North Atlantic Ocean bedrock, terrestrial 258 

loess outcrop, atmospheric aerosols, and continental ice and dust source-proximal 259 

(core top and down-core) marine sediments and river samples (Figure 2a and 4 and 260 

Supplementary Information). Potential source areas for IRD deposited in the North 261 

Atlantic Ocean fall into three groups marked by a range of radiogenic isotope 262 

compositions (Figure 2a and 4 (c.f. Thierens et al., 2012)). The old, primarily 263 

Precambrian terranes of Greenland and North Eastern Canada (including the Labrador 264 

Sea, Hudson Strait and Baffin Bay) comprise the “Canadian Province” (Dawes et al., 265 

2009). Paleocene to recent volcanic rocks found in Eastern Greenland, Iceland and the 266 

Faeroe Islands comprise the “Volcanic Province”, local Azores volcanism may also 267 

contribute material of this composition. Together, areas with their corresponding 268 

compositions represent the high-latitude regions that constitute the most likely sites of 269 

early ice sheet growth (e.g. Winkler et al., 1999; DeConto et al., 2008). Lower-latitude 270 

ice rafting from Britain, Scandinavia or North America (the Appalachian terrane and 271 

Grenville Province in the region of the Gulf of Saint Lawrence) were important 272 

sources of ice-rafted material to the North Atlantic Ocean during the last glacial 273 

maximum (Watkins et al., 2007). Owing to their similarities in Pb and Nd-Sr isotope 274 

spaces, we group these three distinct geographic regions into a third province, 275 

intermediate in age to the two high-latitude provinces. Eolian material sourced from 276 
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the Sahara and North America has a similar geologic age and isotopic composition to 277 

the Fenoscandinavian tectonic terranes and the Gulf of St Lawrence region of North 278 

America, but is unequivocally distinct from high-latitude Volcanic Province material 279 

and Precambrian and Proterozoic Canadian and Greenland terranes in Nd-Sr space. 280 

 281 

3. Results and Discussion 282 

3.1. Stable isotope stratigraphy and sediment color 283 

The record of benthic δ13C at Site U1313 shows only modest glacial-interglacial 284 

variability with the exception of prominent excursions to low values during the large 285 

benthic δ18O glacials MIS 100, 98 and 96 (Figure 5). This result is consistent with the 286 

record from predecessor Site 607 (Raymo et al., 1989), but the prominent 287 

(inter)glacial δ13C signal established in MIS 100 is more pronounced in our record. 288 

Our record also resolves with higher fidelity earlier key glacials and illustrates, for 289 

example, that MIS M2 (~3.3 Ma), the first prominent excursion in benthic δ18O to 290 

interrupt early Pliocene warmth, is not associated with a prominent benthic δ13C 291 

excursion indicative of corrosive southern sourced waters. 292 

Our L*-derived record of sediment %CaCO3 at Site U1313 is shown in 293 

Figures 1A and 5 and reveals the expected North Atlantic pattern (lighter, CaCO3-rich 294 

sediments during interglacials and darker more terrigenous-rich intervals during 295 

glacials), but the fidelity of the signal and its unambiguous correlation to our benthic 296 

δ18O series are remarkable back to 3.3 Ma (the base of our isotope record – Figure 297 

5G). This relationship was postulated for Site U1313 based on shipboard correlation 298 

of L* to the LR04 stack (Expedition 306 Scientists, 2006). Here we confirm, using 299 

our co-registered signal (%CaCO3 and benthic δ18O determined from the same 300 

sediments) that variations in L* at Site U1313 track changes in benthic δ18O at this 301 
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site across iNHG from 3.33 to 2.4 Ma. This result demonstrates that the onset of clear 302 

glacial-interglacial lithological cycles at this site took place at least 800 kyr earlier 303 

than the onset both of basin-wide ice rafting at MIS 100, 2.52 Ma, and of pronounced 304 

glacial-interglacial variability in benthic δ13C at our study site (Figure 5B). 305 

 306 

3.2. Abundance of the carbonate sedimentary component at Site U1313 307 

Pliocene sediments at Site U1313 are characterized by small variations in color and 308 

%CaCO3 relative to the higher amplitude changes that characterize the late 309 

Pleistocene (Figure 1). High amplitude changes in Pleistocene %CaCO3 (and color) 310 

from the North Atlantic Ocean are often interpreted to reflect primarily changes in 311 

carbonate production and dilution by other sediment components (e.g. Lototskaya et 312 

al., 1998; Helmke and Bauch, 2001), while the lower amplitude %CaCO3 variations 313 

observed during the Pliocene at DSDP Sites 607 and 609 have been classically 314 

attributed to dissolution on glacial-interglacial timescales (Ruddiman et al., 1987). 315 

Our analysis, however, calls this classic interpretation into question. Calcareous 316 

microfossils are extremely well preserved in Pliocene sediments from Site U1313 317 

with foraminifera fragment counts typically well within the zero ∆CO3 range of Le 318 

and Shackleton (1992) (Figure 5A). The relationship between the fraction of CaCO3 319 

dissolved and that remaining is highly non-linear such that, when the CaCO3 fraction 320 

is large, substantial CaCO3 must be dissolved to achieve small percentage variations 321 

(Berger, 1971). For example, to generate a change in carbonate content of the order 322 

observed at Site U1313/607 between about 3.3 and 2.8 Ma (~95% to 85%, Figure 323 

5G), about 60% of the initial CaCO3 must be dissolved. Such substantial dissolution 324 

of CaCO3 at Site U1313 is not consistent with the extremely well preserved 325 

calcareous microfossils observed in these sediments. Thus, in contrast to the classic 326 
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interpretation, CaCO3 dissolution does not control carbonate content at Site 327 

U1313/607 prior to MIS 100 and cannot be used to assess changes in North Atlantic 328 

deep-water carbonate chemistry through time. Instead, the dominant controls must be 329 

calcite production and/or terrigenous dilution (Ruddiman and McIntyre, 1976; 330 

Ruddiman et al., 1987; Lototskaya et al., 1998; Helmke and Bauch, 2001). 331 

A recently published record of alkenone accumulation from Site U1313 (Naafs 332 

et al., 2010) reveals the onset of high amplitude glacial-interglacial changes in 333 

alkenone accumulation, and therefore total export productivity (Bolton et al., 2010b; 334 

Bolton et al., 2011), from ~2.72 Ma (MIS G6). The orbital signal in the alkenone data, 335 

however, is of the wrong sign for carbonate productivity to control sediment color and 336 

CaCO3 burial (alkenone accumulation peaks during glacials whereas %CaCO3 and 337 

color, L*, peak during interglacials; Figure 5C). Furthermore, our records demonstrate 338 

that terrigenous accumulation peaks during glacials throughout our study interval and 339 

not just from ~2.72 Ma onwards (Figure 5E). We conclude that the glacial-interglacial 340 

signal in Pliocene sediment color and %CaCO3 at Site U1313 is driven by addition of 341 

terrigenous material. Next we assess the potential mechanisms by which this 342 

terrigenous material might have been transported to our study site. 343 

 344 

3.3. Radiogenic isotopes and sediment provenance 345 

The Sr, Nd and Pb isotope composition of the bulk sediment terrigenous fraction 346 

deposited at Site U1313 during peak interglacial and glacial conditions during iNHG 347 

are shown in Figure 6. The Sr and Pb isotope composition of the samples analysed 348 

display a relatively small range of variability, with 87Sr/86Sr ranging from 0.71664 to 349 

0.72561 and 206Pb/204Pb ranging from 18.20 to 18.97 (Fig 7A and C, respectively). 350 

Variation in εNd is more pronounced (ranging between -9.85 to -17.67), although 351 
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most values fall between -13.9 and -16 (Figure 7B). Two samples (corresponding to 352 

interglacials MIS G1 and 101) are indicative of volcanic material transported from 353 

East Greenland or Iceland, or from the Azores volcanic islands. Remarkably, aside 354 

from these two volcanically influenced exceptions, Nd, Sr and Pb isotope ratios show 355 

no systematic difference between samples selected from peak glacial and peak 356 

interglacial climate states (across a range in benthic δ18O >1.5‰, Fig. 7D). 357 

Based on the continuous presence of terrestrial leaf waxes in the Pliocene 358 

sediments at our study site (a tracer of eolian dust in marine sediments at Site U1313; 359 

Figure 5D), we know that at least some portion of the terrigenous fraction at Site 360 

U1313 is composed of eolian dust. This biomarker record exhibits fluxes akin to those 361 

observed for wind-blown leaf-waxes deposited in the Southern Ocean over the past ~4 362 

Ma - where eolian dust is known to dominate the make-up of terrigenous sediments at 363 

ODP Site 1090 (Martínez-Garcia et al., 2011). Comparison of the Nd, Sr and Pb 364 

isotope composition of Site U1313 terrigenous sediments to those of potential source 365 

regions points to a definitive (non-volcanic) mid-latitude origin (Figures 6 and 7 and 366 

Supplementary Information). This observation is paleoclimatically powerful because 367 

it demonstrates that, prior to MIS G6 (>2.72 Ma), in a world characterized by only 368 

incipient high latitude NHG (e.g. Bintanja and van de Wal, 2008), eolian dust supply 369 

from the Sahara or North America is the only credible source capable of producing 370 

orbital-scale cyclical variations in terrigenous inputs to our study site. Our data are 371 

incompatible with a contribution from Greenland or Northern Canada, which are 372 

widely inferred to have been the nucleation points of the earliest northern hemisphere 373 

ice sheets (Winkler, 1999; Jansen et al., 2000; DeConto et al., 2008). In fact, where 374 

present, sand-sized IRD and volcanic grains occur in only trace numbers (typically 0 375 

to <0.1 grains/g) in sediments older than MIS G4 at Site U1313, This finding, 376 
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together with the lack of a glacial-interglacial signal in our geochemical data, makes a 377 

high-latitude or even an improbable mid-latitude glacial origin for the bulk 378 

terrigenous fraction at Site U1313 untenable for sediments deposited prior to 2.7 Ma. 379 

These findings indicate that the bulk terrigenous sediment component deposited at 380 

Site U1313 between 3.3 Ma and 2.7 Ma is dominated by eolian dust. 381 

We might expect a direct contribution from ice rafting to the terrigenous 382 

sediment component at Site U1313 during glacials between ~2.72 Ma and 2.4 Ma 383 

associated with the onset of significant NHG (Kleiven et al., 2002). As in the case of 384 

the older part of our record, however, our grain counts reveal, accumulation rates of 385 

sand-sized IRD in glacial sediments from MIS G4 onwards to be negligible (Figure 386 

5). This result is in keeping with the location of Site U1313, situated far south 387 

(~41˚N) of the late Pliocene IRD belt (centred on ~53˚N; Bailey et al., 2013) and on 388 

only the southernmost fringe of the IRD belt even during the Last Glacial (Figure 1). 389 

This finding, together with, the consistent mid-latitude geochemical provenance 390 

indicated for terrigenous sediments deposited at Site U1313 leads us to conclude that, 391 

throughout our Pliocene record, the contribution made by IRD deposition shed from 392 

icebergs over site to the average radiogenic isotope composition of terrigenous 393 

sediments is insignificant in comparison to the major player, eolian dust. Similarly, 394 

despite evidence for abudant deposition of IRD in the higher latitude northeast North 395 

Atlantic Ocean sourced from high-latitude Archaean and Proterozoic-aged terranes 396 

during glacials since ~2.72 Ma (Bailey et al., 2013), the consistent mid-latitude 397 

geochemical provenance that we report here for the terrigenous fraction at Site U1313 398 

makes it extremely unlikely that transport of fine-grained IRD beyond the 399 

contemporary iceberg front by ocean currents could be responsible for terrigenous 400 

deposition at our study site from MIS G6 onwards. 401 
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Similarities of the Nd and Sr isotopic composition of North American and 402 

Saharan eolian dust means that we must consider additional lines of evidence to pin 403 

down the source of the dust at Site U1313. Today, while most of the African-derived 404 

dust is driven westwards over the tropical North Atlantic by the Trade Winds, some 405 

dust is also transported northwards towards the North Atlantic, the Mediterranean and 406 

as far north as Northern Europe (Bergametti et al., 1989; Moulin et al., 1997; Kuss 407 

and Kremling, 1999; Kellog and Griffin, 2006). Three lines of evidence, however, 408 

support the notion that eolian dust deposition at our study site during iNHG is 409 

dominated by North American sources. First, spectral analysis of our record of 410 

terrigenous accumulation at Site U1313 reveals a dominant obliquity beat (with no 411 

strong precession signal) throughout our study interval that is in contrast to the pattern 412 

of variability in records of Saharan dust deposition (Fig. 8). Saharan dust deposition 413 

reveals the influence of obliquity from ~2.7 Ma, but precessional variability is 414 

important for at least the last 5 Ma (Tiedemann et al., 1994; DeMenocal, 2004)). 415 

Second, both modern wind trajectories (Figure 2B) and those modelled for both the 416 

last glacial maximum and Pliocene (Haywood et al., 2000; Hewitt et al., 2003; 417 

Pausata et al., 2011) indicate that Site U1313 is strongly influenced by intense 418 

westerly winds originating from the major present-day North American dust source 419 

region, the American Southwest (including all land between 125°W and 95°W and 420 

25°N and 40°N) that incorporates the southwestern United States and parts of 421 

northern Mexico (Seager et al., 2007). Third, organic biomarker- and clay 422 

mineralogy-based provenance studies, respectively, independently link Plio-423 

Pleistocene eolian derived terrestrial high plant waxes at Site U1313 (Naafs et al., 424 

2012) and Holocene eolian-derived material across the central North Atlantic 425 

(Grousset and Chesselet, 1986) to North American sources. 426 
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 427 

3.4. Records and mechanisms of North American eolian dust flux during Pliocene 428 

iNHG 429 

Dust is both a signal and an agent of climate change (Martin et al., 1990; Kohfield and 430 

Harrison, 2001; Mahowald et al., 2005; Winckler et al., 2008; Ganopolski et al., 2010; 431 

Sun et al., 2010; McGee et al., 2010). To date, however, nearly all we know of the 432 

history of eolian dust export from North America during Pliocene iNHG comes from 433 

a single proxy biomarker record of terrestrial higher plant leaf wax (organic n-alkane) 434 

deposition at Site U1313 (Naafs et al., 2012). That benchmark high-resolution record 435 

shows that eolian-derived n-alkane and alkan-l-ols inputs to the North Atlantic Ocean 436 

jumped to higher glacial values from ~2.7 Ma (MIS G6, Figure 5). Yet, these 437 

biomarkers represent only a minor and often highly variable component of eolian dust 438 

(Huang et al., 2000; Conte and Weber, 2003) so it is important to compare the proxy 439 

biomarker record for dust deposition at Site U1313 with our record of variations in the 440 

deposition of the terrigenous sediment component at this site.  441 

 Our record reveals that, while dust fluxes to our study site prior to the onset of 442 

significant NHG at ~2.72 Ma are lower than those associated with Quaternary 443 

glaciations, they are still high (up to 0.9 g/cm2/ka) and unambiguously mimic global 444 

climate (as recorded by benthic δ18O) back to at least 3.3 Ma (Figure 5E). The two 445 

published biomarker records reveal that, from ~2.7 Ma onwards, glacial accumulation 446 

of the organic fraction of North American dust increases significantly during glacials 447 

at Site U1313 (Figure 5D). We are careful not to interpret our terrigenous record as a 448 

pure signal of lithogenic dust deposition from this time because our records show 449 

evidence for a contribution from ice rafting during glacials from MIS G4 onwards 450 

(albeit extremely small, see Section 3.3). But our record of the bulk terrigenous flux 451 
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to Site U1313 places an upper limit on the potential magnitude of increase in eolian 452 

dust flux to our study site that is possible during MIS G6 relative to background 453 

interglacial values prior to this time: it can not be greater than a factor of about two 454 

(Figure 5E). In fact, the peak fluxes that we record for the bulk terrigenous fraction 455 

around 2.7 Ma (~2 g/cm2/ka, Figure 5E) are similar to the lower end of the estimated 456 

range of late Pleistocene glacial dust flux to the North Atlantic Ocean (2-5 g/cm2/ka; 457 

Maher and Denis, 2001). 458 

The jumps in glacial accumulation in both the biomarker records and our 459 

terrigenous record from MIS G6 (2.72 Ma) onwards (Figures 5D and 5E) strongly 460 

suggest that the North American continent shifted abruptly into a distinctly more 461 

Pleistocene-like cold stage regime (cold, arid, and windy) from MIS G6. One 462 

potential mechanism for the sudden jump in dust inputs to our study site from 2.72 463 

Ma is the development of large ice-sheets on North America from MIS G6 onwards as 464 

inferred by Naafs et al. (2012). Large ice sheets advancing over regolith-rich Pliocene 465 

terrains (Clark and Pollard, 1998) provide an attractive mechanism for delivering fine-466 

grained sediments to mid-latitude outwash plains for eolian entrainment (Ganopolski 467 

et al., 2010), but three lines of evidence call this interpretation into question. (1) 468 

Typically, the biomarker component of atmospheric dust becomes wind-entrained 469 

through ablation from living vegetation assisted by sand blasting (eolian abrasion) 470 

rather than by the deflation of soils and glacial outwash plains in dust source regions 471 

(Huang et al., 2000; Conte and Weber, 2002; Schefuß et al., 2003). (2) Recent work 472 

on the provenance of North Atlantic IRD (Bailey et al. 2013) and on Arctic climate 473 

(Bringham-Grette, 2013) during iNHG indicates that major ice sheets (i.e. extending 474 

into the mid latitudes) are unlikely to have been sustained in North America as early 475 

as during MIS G6. In fact, our data show that dust inputs to Site U1313 were likely 476 
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substantial during cold stages well before MIS G6 with a particularly prominent peak 477 

in MIS M2 (Figure 5E), long before the existence of a large Laurentide ice sheet is 478 

tenable (De Schepper et al., 2013; Bringham-Grette et al., 2013). (3) Our radiogenic 479 

isotope data show a consistently mid-latitude provenance of the bulk terrigenous 480 

fraction at Site U1313 from 3.3 through 2.4 Ma regardless of glacial-interglacial state, 481 

thereby ruling out a significant high latitude contribution, even during MIS 100. 482 

These observations suggest that non-glaciogenic processes of Pliocene dust 483 

production, akin to those important during the last glacial maximum (e.g. increased 484 

wind intensity, enhanced aridity and reduced vegetation (Rea et al., 1994; Aleinikoff 485 

et. al., 1999; Mason 2001; Werner et al., 2002; Bettis et al., 2003; Winkler et al., 2002; 486 

Prospero et al., 2002; Bussaca et al., 2003 Mahowald et al., 2006; Aleinikoff et al., 487 

2008; McGee et al., 2010)), are more important than suggested previously. 488 

 489 

3.5. Non-linearity in the relation between biomarkers and terrigenous eolian dust 490 

deposition in the North Atlantic Ocean during Pliocene intensification of northern 491 

hemisphere glaciation. 492 

In Figure 9 we present cross plots of our record of terrigenous mass accumulation at 493 

Site U1313 and the published biomarker records of Naafs et al. (2012) for our study 494 

interval (3.33-2.41 Ma). These cross plots reveal a close association between 495 

biomarker and terrigenous sediment accumulation at our study site but, in contrast to 496 

what is seen in other paleo-dust proxy records (Winckler et al., 2008) including other 497 

applications of the n-alkane technique (e.g. at South Atlantic Site 1090; Figure 9C; 498 

Martinez-Garcia et al., 2011), the relationships observed between the biomarkers and 499 

terrigenous fraction in Site U1313 are distinctly non-linear (e.g. Figure 9A vs. 9B). 500 

While stratigraphic comparison of these three records shows that they all display 501 
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jumps in glacial accumulation from MIS G6 (2.72 Ma) onwards (Section 3.4), the 502 

amplitude of this signal is about 3 to 8 times greater for biomarkers than for 503 

terrigenous inputs (Figure 10). The amplified jump in the biomarker records relative 504 

to the jump in the terrigenous record is particularly extreme during MIS 100 (2.52 505 

Ma), especially in the record of n-alkan-1-ol accumulation (Figure 10). This 506 

observation underscores an important point: Non-linearity in the relation between the 507 

biomarkers and the lithogenic record cannot be explained by invoking the input of 508 

terrigenous material through additional mechanisms (ice rafting and volcanic inputs 509 

are the only other viable mechanisms at Site U1313) because additional terrigenous 510 

inputs would act to amplify our terrigenous record rather the biomarker record (ice 511 

rafting control on biomarker flux is not documented even during the extreme Heinrich 512 

events of the Late Pleistocene, Naafs et al. 2012). Furthermore, our records show that, 513 

where present (low values from MIS G4), IRD accumulation rates are always higher 514 

in glacials than in interglacials (sand-sized volcanic grains are extremely rare in Site 515 

U1313 sediments throughout our study interval; Figure 5). Thus, there is no way to 516 

explain amplification of the glacial jumps in the biomarker record (relative to the 517 

terrigenous fraction) by invoking decreases in IRD and/or volcanics inputs while 518 

a linear relation is maintained between biomarker and lithogenic dust. In other words, 519 

our records point to the unequivocal existence of some mechanism that acts to 520 

amplify the glacial jumps in the biomarker record relative to those in our terrigenous 521 

record. 522 

Amplification of the glacial biomarker signal from MIS G6, and particularly 523 

during MIS 100 (Figure 10) points to increased efficiency of biomarker export/burial 524 

(especially in n-alkan-1-ols) and/or major shifts in vegetation biomes relative to 525 

preceding glacials. It seems an unlikely co-incidence that MIS 100 is the oldest glacial 526 
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for which there exists convincing evidence from diverse proxy records for the 527 

existence of a major Laurentide Ice Sheet (Bailey et al., 2010; 2013; Bringham-Grette 528 

et al., 2013) extending well into the mid-latitudes (39° north based on the terrestrial 529 

record of glacial tills; Balco and Rovey, 2010). We hypothesize that some 530 

combination of a southward shift of boreal and temperate forest biomes across North 531 

America, strengthening of wind-driven sand-blasting and perhaps precipitation-led 532 

increase in woody plant cover (woody thickening) in arid regions south of the 533 

Laurentide Ice Sheet front may be responsible for the amplified glacial jumps in the 534 

biomarker records, especially the extreme signal seen in MIS 100. Our hypothesis 535 

requires testing but is consistent with the interpreted response of the atmosphere and 536 

vegetation to ice sheet advance well into the mid-latitudes during the Last Glacial 537 

Maximum (LGM) (e.g., Clark & Pollard, 1998; Kutzbach et al., 1998; Clark et al., 538 

1999; Thompson and Anderson 2000; Huang et al., 2001; Prentice et al., 2011; Bragg 539 

et al., 2013; Ullman et al., 2014). 540 

 541 

3.6. Eolian dust deposition in the North Atlantic Ocean during the warm Pliocene. 542 

We argue that the onset of clear glacial-interglacial cycles in sediment color is driven 543 

by changes in terrigenous dust accumulation at Site U1313 and that these cycles 544 

appear at least 800 kyr earlier than MIS 100 and well before significant iNHG 545 

commenced around 2.72 Ma. In Figure 11 we assess how far back into the Pliocene 546 

Epoch these signals extend by comparing sediment color reflectance and estimated 547 

lithogenic dust flux from Site U1313 to published climate records for the entire Plio-548 

Pleistocene (to ~5.3 Ma, the base of LR04). The correspondence between sediment 549 

color at Site U1313 and global climate change registered by benthic δ18O is 550 

remarkable. With the exception of one main interval of peak Pliocene warmth (4.3 to 551 
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~4.0 Ma; Seki et al., 2012) when the sediment color reflectance record shows high 552 

values with little orbital structure and a minor contribution from lithogenic dust can 553 

be inferred, we observe the Pleistocene pattern (L* minima during glacials; maxima 554 

during interglacials) at Site U1313 back to 5.3 Ma (the base of LR04, Fig. 11A). 555 

In some respects, the signal of a minor lithogenic dust component during high 556 

CO2 warm Pliocene conditions is expected because climate model simulations (e.g. 557 

Salzmann et al., 2008; 2013; Goldner et al., 2011) and paleo-data (e.g. Zarate and 558 

Fasana, 1989; Thompson, 1991; Smith, 1994; Axelrod, 1997; Salzmann et al., 2008, 559 

2009, 2013; Jimenez-Moreno et al., 2010) for the warm Pliocene, particularly for the 560 

Mid-Piacenzian PRISM time-slab (Dowsett et al., 2012; Haywood et al., 2013), 561 

indicate noticeably wetter than modern conditions in modern arid and semi-arid 562 

regions, including the American Southwest. Yet in other respects our findings are 563 

surprising because there is broad consensus among climate model predictions for the 564 

future suggesting an increase in the expanse of arid to semi-arid mid-latitudes in a 565 

warmer world, and that this transition should already be underway in North America 566 

(e.g. Held and Soden, 2006; Seager et al., 2007; O’Gorman and Schneider, 2009).  567 

Three main hypotheses have been suggested to explain the fundamental 568 

discrepancy between climate model predictions for the next 50 to 100 years and the 569 

model simulations of the warm Pliocene: (i) Differing boundary conditions, in 570 

particular the effect on regional precipitation fields of a potentially markedly lower 571 

elevation of the Pliocene Rocky Mountains (Wolf et al., 1997; Bonham et al., 2009) 572 

prior to the mid Pliocene (Foster et al., 2010). (ii) Enhanced regional precipitation in 573 

(southwest) North America relative to today in response to a warm eastern equatorial 574 

Pacific (Fig. 11B) in an El Niño-prone world (Goldner et al., 2011). (iii) Fundamental 575 

differences in the climate signal being modeled (equilibrium condition Pliocene 576 
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climates incorporate both short and long-term feedbacks associated with climate 577 

sensitivity while predictions for the non-equilibrium condition ‘climate transient’ of 578 

the coming 50 years necessarily incorporate only fast or Charney feedbacks 579 

(Salzmann et al., 2009)). 580 

Each of these hypotheses makes different predictions for the timing of the 581 

onset of source aridification and dust generation spatially through Pliocene time, 582 

thereby presenting a means to test their validity. For example, the disappearance of 583 

summer wet flora in North American terrestrial records that span the Miocene-584 

Pliocene boundary on both sides of the Cascades and Sierra Nevada mountains 585 

suggests that aridification of the American West through the Mio-Pliocene is unlikely 586 

to be related to a rain shadow effect due to mountain uplift (Lyle et al., 2008). 587 

Similarly, based on global terrestrial vegetation reconstructions, the picture of a 588 

wetter-than present warm Pliocene appears to be too extensive (Salzmann et al., 2009; 589 

2013) to support the suggested role of North American mountain orography. But 590 

while terrestrial records of precipitation balance provide powerful insights into 591 

Pliocene climate (Salzmann et al., 2013), they are, by their nature, discontinuous in 592 

coverage and often suffer from age control limitations. Plio-Pleistocene data coverage 593 

for mid-latitude North America, including for the core of the present-day arid 594 

American Southwest, is extremely poor because of the lack of lacustrine deposits 595 

generally and Pleistocene glacial erosion in the north (Salzmann et al., 2009; 2013). 596 

The secular signal in the Site U1313 record is broadly consistent with the 597 

hypothesized importance of warm sea surface temperatures in the Pliocene eastern 598 

equatorial Pacific (Fig. 11). Yet, many differences between early Pliocene and 599 

present-day climates of parts of Africa, Asia, and Australia do not resemble the 600 

anomalies associated with canonical El Niño teleconnections (Cane and Molnar, 601 
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2007). Alongside model-based evaluation of the influence of fast versus slow 602 

feedbacks on precipitation balance and proxy reconstructions of the hydrological 603 

cycle, improved records of Pliocene dust deposition in well-dated marine sites 604 

recovered downwind from known Quaternary dust source regions will provide a 605 

valuable means to help understand the climatic response to sustained global warmth in 606 

the recent geological past. 607 

 608 

4. Conclusions 609 

We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer 610 

fragmentation, benthic δ13C, coarse lithic counts and the radiogenic isotope (Nd, Sr, 611 

Pb) composition of terrigenous sediment component from IODP Site U1313. We 612 

demonstrate that glacial-interglacial cycles in sediment color are unambiguously 613 

correlated to benthic δ18O back to at least 3.3 Ma, and represent changes in sediment 614 

%CaCO3. Our new records of terrigenous and carbonate sediment accumulation rates, 615 

foraminifera fragmentation and benthic δ13C show that these cycles are driven by 616 

enhanced glacial fluxes of terrigenous material and not glacial dissolution of 617 

carbonate material as previously interpreted. 618 

On the basis of our radiogenic isotope data, we rule out a high-latitude origin 619 

for the terrigenous sediment component deposited at Site U1313 during our study 620 

interval and suggest that eolian dust sourced from mid latitude North America 621 

dominates clastic sediment deposition at this site during the Pliocene. This finding is 622 

consistent with previously published inferences on the provenance of an n-alkane 623 

biomarker proxy for dust inputs to our study site. Together with the biomarker 624 

records, our lithogenic data sets demonstrate that North America shifted abruptly to a 625 

distinctly more modern cold and arid glacial regime from MIS G6 with the 626 
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development of a Laurentide ice sheet extending well into the mid-latitudes by MIS 627 

100. Yet the relation between the biomarker and lithogenic component of dust 628 

accumulation at Site U1313 is distinctly non-linear. Both records show a jump in 629 

glacial rates of accumulation from ~2.7 Ma onwards (during MIS G6) but the 630 

amplitude of this signal is about 3 to 8 times greater for biomarkers than for lithogenic 631 

dust and particularly extreme during MIS 100 (2.52 Ma).  632 

The development of significant continental ice in the northern hemisphere 633 

during glacials from MIS G6 onwards undoubtedly had a profound impact on dust 634 

generation on North America. Our analysis, however, suggests that glacial grinding 635 

and transport of fine grained sediments to mid latitude outwash plains is not the 636 

fundamental mechanism controlling the magnitude of the flux of higher plant leaf 637 

waxes from North America to Site U1313 during iNHG. We hypothesize that some 638 

combination of latitudinal biome shift, strengthening of sand-blasting south of North 639 

American ice sheet front and perhaps precipitation-led woody thickening of arid 640 

regions in response to ice sheet advance towards the mid-latitudes may be responsible 641 

for the non-linearity observed. The secular pattern of change in the North Atlantic 642 

record indicates that there existed a minor lithogenic dust component at our study site 643 

during high-CO2 peak Pliocene warm conditions (in contrast to climate model 644 

predictions for the future suggesting an increase in the expanse of arid to semi-arid 645 

zones in a warmer world). At least part of the discrepancy between climate model 646 

predictions for enhanced aridity of the mid latitudes over next 50 to 100 years and 647 

geologic observations for a warm wet Pliocene is likely attributable to fundamental 648 

differences in the climate signal being observed for the Pliocene versus that being 649 

modeled for future decades (equilibrium condition Pliocene climates versus transient 650 

non-equilibrium model predictions for the future). The form of secular change shown, 651 
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however, is broadly consistent with the hypothesized importance of warm sea surface 652 

temperatures in the eastern equatorial Pacific during the Early Pliocene in bringing 653 

about wetter-than-modern conditions in mid-latitude North America. 654 

 655 
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 1162 

Figure captions 1163 

Figure 1. Lithostratigraphic cycles in North Atlantic deep-sea sediments of Plio-1164 

Pleistocene age in multiple drill sites as revealed by published physical property 1165 

records. Sites arranged (from top to bottom) in order of increasing water depth. Note 1166 

the existence of clear rhythmic cycles significantly earlier than MIS 100, the inferred 1167 

glacial for the onset of basin-wide ice rafting. The data presented in the bottom panel 1168 

(A) were originally compiled by Ruddiman et al. (1987, their Figure 3), although we 1169 

substitute their record from DSDP Site 607 with our higher resolution proxy record 1170 

from IODP Site U1313 (See Section 2.4 for methods). Those authors concluded that 1171 

%CaCO3 variability at pelagic DSDP Sites 607 (U1313) and 609, but not at the 1172 

shallower DSDP Site 552, prior to Gauss/Matuyama boundary time was attributable 1173 

to sea floor CaCO3 dissolution, a consequence of the influence of corrosive poorly 1174 

ventilated glacial intermediate waters in the North Atlantic. Top panel (B) shows data 1175 

generated from additional shallow sites drilled after the Ruddiman et al., (1987) study 1176 

(pelagic Site 982 (Shipboard Scientific Party, 1996), drift Site 980/981 (Ortiz et al., 1177 
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1999)). Note that the timing of the initiation of marked lithological cycles in the North 1178 

Atlantic drill sites is not a simple function of water depth suggesting that CaCO3 1179 

dissolution is not the principle origin of these cycles (see text). The horizontal 1180 

black/white bars in each panel denote paleomagnetic (sub)chronozone boundaries 1181 

(Cande and Kent, 1995): B = Brunhes, M = Matuyama, G = Gauss, K = Keana, Ma  = 1182 

Mammoth and Gil = Gilbert. 1183 

 1184 

Figure 2. North Atlantic region showing location of IODP Site U1313 relative to 1185 

other drill sites referred to in the text (A) and mean April to September (the ‘dust 1186 

season’; Prospero et al., 2002) surface wind vectors (B; image source 1187 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996)). Also shown in (A) is the last 1188 

glacial maximum IRD-belt (stippled area) of Ruddiman (1977), relevant principal 1189 

surface-ocean current systems (adapted from Kleiven et al., 2002) and average 1190 

radiogenic isotope composition of potential source regions of terrigenous sediments 1191 

deposited at Site U1313 (based on data shown in Figure 4).  1192 

 1193 

Figure 3. Relationship between IODP Site U1313 sediment color (L*) and calcium 1194 

carbonate (%CaCO3) content. Global benthic oxygen isotope stack for the Plio-1195 

Pleistocene, the LR04 (Lisiecki and Raymo, 2005) and published benthic oxygen 1196 

isotope data for IODP Site U1313 (A); discrete %CaCO3 measurements for late 1197 

Pleistocene (B, black circles, Stein et al., (2009), n = 151) and late Pliocene and 1198 

earliest Pleistocene (C, red circles, this study, n = 193) and our high resolution 1199 

estimate of sediment %CaCO3  (against meters composite depth, mcd) based on least 1200 

squares linear regression of L* (5-point, 10 cm, moving average) onto discrete 1201 

%CaCO3 measurements (D). Data corresponding to North Atlantic Hudson Strait 1202 

Heinrich-like events (vertical grey bars in B labelled HE), for which the relationship 1203 
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between L* and %CaCO3 breaks down, are excluded from our least square regression. 1204 

We identified Heinrich Layers at Site U1313 following Stein et al. (2009), based on 1205 

their high (>500 cps) x-ray diffraction-derived dolomite concentrations. The 1206 

horizontal black/white bars in each panel denote paleomagnetic (sub)chronozone 1207 

boundaries (Cande and Kent, 1995): B = Brunhes, M = Matuyama, G = Gauss, K = 1208 

Keana, Ma  = Mammoth, Gil = Gilbert, C = Cochiti, N = Nunivak and S = Sidufjall. 1209 

Depth range of chronozone boundaries shown in (B) and (C) based on shipboard 1210 

measurements (Expedition 306 Scientists, 2006). 1211 

 1212 

Figure 4. Characterisation of likely sources of terrigenous sediment to Site U1313 in 1213 

Nd-Sr (A) and Pb-Pb (B & C) spaces. These fields are based on modern bedrock, 1214 

loess, river sediment and aerosol data, and modern to LGM ice sheet/dust source 1215 

proximal sediment core data. Potential sources constitute high-latitude material from 1216 

Greenland and Northern Canada (the Canadian Province, Blue), volcanic material 1217 

from Eastern Greenland and Iceland (Red, together with the Canadian Province this 1218 

represents the most likely source of ice rafted material), mid-latitude material from 1219 

Europe and the Gulf of St. Lawrence (purple) that is unlikely to be a significant 1220 

source of ice-rafted material prior to significant northern hemisphere glaciation and 1221 

potential aeolian sources from North America and the Sahara (green and yellow 1222 

bubbles, respectively). Fields based on data from (also see Supplementary 1223 

Information, Figures S1–S5): Abouchami and Zabel. (2003), Aleinkoff et al. (1999), 1224 

Aleinkoff et al. (2008), Asmerom and Jakobsen (1993), Bernstein et al., (1998), 1225 

Biscaye et al. (1997), Cohen and O’Nions (1982), Cole et al. (2009), Farmer et al. 1226 

(2003), Goldstein and Jacobsen (1988), Grousset et al. (1988), Grousset et al. (2001), 1227 

Hansen and Nielsen (1999), Juteau et al. (1986), Kokfelt et al. (1983), Kokfelt et al. 1228 
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(2006), Millot et al. (2004), Revel et al. (1996). 1229 

  1230 

Figure 5. Paleoceanographic records from IODP Site U1313 for the late Pliocene and 1231 

earliest Pleistocene: (A) Foraminifera fragments as a percentage of total foraminifera 1232 

plus fragments observed in the >150µm fraction (Ivanova et al., 2003). Overall, the 1233 

carbonate material from this site is exceptionally well preserved. Modest increases in 1234 

fragmentation are observed, however, during glacial periods from ca. 2.52 Ma 1235 

onwards, demonstrating that more corrosive conditions existed at this site during 1236 

glacials MIS 100, 98 and 96. For reference, we have included a line that approximates 1237 

∆(CO3
2-) = 0 in terms of percentage fragmentation based on Le and Shackleton 1238 

(1992); (B) Benthic foraminiferal δ13C, measured on Cibicidoides wuellerstorfi (this 1239 

study); (C) Alkenone mass accumulation rates, a productivity proxy (Naafs et al., 1240 

2010); (D) Mass accumulation rates, MAR, of n-alkanes and C26-alkan-1-ol, aeolian 1241 

derived biomarkers (Naafs et al., 2012); (E) Calculated MAR of terrigenous material 1242 

(this study); (F) Concentration of ice rafted coarse lithics (Ice rafted detritus, IRD, 1243 

>150 µm, excluding volcanics, which are only ever present in trace numbers). 1244 

Transparent grey box shows the range of peak glacial values estimated for high-1245 

latitude North Atlantic Ocean DSDP Site 611 between MIS G6-100 (~2.72-2.5 Ma; 1246 

Bailey et al., 2013). Overall, coarse lithic content of iNHG sediments at Site U1313 is 1247 

extremely low (<50 grains g-1) and prior to MIS 100 never higher than 5 grains g-1 1248 

(contrast with extremely high concentrations of 1500-5000 g-1 at Site 611); (G) 1249 

Benthic δ18O (Bolton et al., 2010) and L* derived %CaCO3 (this study), a remarkable 1250 

correlation is seen. All data plotted on age model of Bolton et al. (2010). All MAR 1251 

data shown estimated (as MAR = component abundance x linear sedimentation rate x 1252 

dry bulk density) using sedimentation rates based on the age model of Bolton et al. 1253 
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(2010) and dry-bulk densities from shipboard determined GRAPE wet-bulk density 1254 

data following the approach of Maslin et al. (1995). MARs shown in (C) and (D) 1255 

recalculated on this basis using published datasets, but do not differ appreciably from 1256 

original fluxes reported by Naafs et al. (2012). The horizontal black/white bars at the 1257 

base of the figure denote paleomagnetic chronozone boundaries (Cande and Kent, 1258 

1995): M = Matuyama, G = Gauss, K = Keana and Ma  = Mammoth. 1259 

  1260 

Figure 6. Pb (A & B) and Nd-Sr (C) isotope composition of Plio-Pleistocene IODP 1261 

Site U1313 bulk terrigenous sediments and range of radiogenic isotope values for 1262 

potential terrigenous sources (as compiled in this study, see supplementary 1263 

information, Figures S1–S5). Data from interglacial (triangles) and glacial (circles) 1264 

samples are highlighted. Data uncertainty (at 2σ) is plotted, but usually smaller than 1265 

symbols shown. 1266 

 1267 

Figure 7. Time series of the radiogenic isotope composition of bulk terrigenous 1268 

sediments deposited at IODP Site U1313: 87Sr/86Sr (A) εNd (B), 206Pb/204Pb (C). 1269 

Benthic δ18O stratigraphy for Site U1313 (Bolton et al., 2010) shown for reference. 1270 

Grey dashed lines highlight relationship between data in (A-C) and glacial and 1271 

interglacial marine isotope stages shown in (D). Data uncertainty (at 2σ) in A-C is 1272 

smaller than symbols used. The radiogenic isotope composition of source regions 1273 

shown on right hand side of figure (median – black line, 66th percentile – box, 95th 1274 

percentile – “whisker”, outlying data-points marked as small crosses) are determined 1275 

from data shown in Figure 4. Horizontal green lines denote the median of North 1276 

American loess measurements, concluded to be the dominant source of Site U1313 1277 

terrigenous sediments (see main text). For comparison, Nd and Sr isotope 1278 
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measurements from last glacial maximum ice rafting events at nearby drill cores 1279 

(Sites SU90-08 and SU90-09 (Revel et al., 1996; Grousset et al., 2001)) are shown in 1280 

(A) and (B). These data reveal extensive variability during the last glacial cycle (from  1281 

-5.8 to -40.9 εNd, 0.72904 to 0.71662 87Sr/86Sr) and demonstrate that the radiogenic 1282 

isotope systems studied are sensitive to large ice rafted debris inputs when present. Ice 1283 

rafted debris is first observed at Site U1313 during MIS G6 (labelled in D). The 1284 

horizontal black/white bars at the base of the figure denote paleomagnetic chronozone 1285 

boundaries (Cande and Kent, 1995): M = Matuyama, G = Gauss, K = Keana and Ma 1286 

= Mammoth. 1287 

 1288 

Figure 8. Wavelet analysis of North Atlantic ODP Site 659 terrigenous accumulation 1289 

rate (A) (Tiedemann et al., 1994), and Site U1313 terrigenous accumulation rate (B) 1290 

and benthic oxygen isotopes (Bolton et al., 2010) (C). Wavelet spectra estimated 1291 

following (Torrence and Compo, 1998). Solid black lines in each panel enclose 1292 

regions of >95% confidence, based on a red-noise model (Torrence and Compo, 1293 

1998). Within light shaded areas of panel B and C confident interpretation cannot be 1294 

drawn due to edge effects  (Torrence and Compo, 1998). These effects are not visible 1295 

in (A) because we show only a central portion of a 5.3 Ma record analysed. 1296 

Horiztonal dashed grey lines on each panel labeled with 19, 23, 41 and 100 pick out 1297 

dominant periodicities of orbtial cycles. The dominant 20 ka, precessional cyclicity 1298 

seen in Saharan dust inputs to Site 659 is not found in the mass accumulation rate of 1299 

terrigenous sediment at Site U1313. The age model used for Site 659 is based on that 1300 

published in Tiedemann et al. (1994). Re-analysis of the Site 659 terrigenous 1301 

accumulation rate record following retuning of its benthic δ18O stratigraphy to the 1302 

LR04 stack (Lisiecki and Raymo, 2005) does not remove the strong 20 ka 1303 
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precessional cyclicity shown in panel A (see Supplementary Information). 1304 

 1305 

Figure 9. Cross plots of late Pliocene and earliest Pleistocene (3.33–2.41 Ma) IODP 1306 

Site U1313 paleoceanographic and paleoclimate proxies: (A) Non-linear relationship 1307 

between accumulation rates of terrigenous sediment (this study, interpreted as 1308 

dominantly eolian dust) and dust-derived organic biomarkers (Naafs et al., 2012); (B) 1309 

Non-linear relationship between global climate as recorded by benthic oxygen 1310 

isotopes at Site U1313 (Bolton et al., 2010) and dust-derived organic biomarkers 1311 

(Naafs et al., 2012); (C) Linear relationship between inferred eolian dust 1312 

accumulation rates and dust-derived biomarker accumulation rates at Southern Ocean 1313 

ODP Site 1090 (42°54.8′S, 8°54.0′E (Martinez-Garcia et al., 2011)). (D) Linear 1314 

relationship between Site U1313 benthic oxygen isotopes (Bolton et al., 2010) and 1315 

accumulation rates of terrigenous sediment (interpreted here as dominantly eolian 1316 

dust). Note, we only plot data older than 2.41 Ma for Site U1313 when we can be 1317 

confident that the bulk terrigenous sediment component at this site is dominated by 1318 

eolian dust. Site 1090 data represent the last 4 Ma of aeolian dust deposition at this 1319 

site. Biomarker accumulation rates used in this figure come from those plotted in 1320 

Figure 4. Cross-plots in (A), (B) and (D) generated following linear interpolation of 1321 

the terrigenous mass accumulation rate record to match the relatively lower resolution 1322 

of the biomarker and benthic δ18O data. 1323 

 1324 

Figure 10. Time series of the ratio of accumulation rates of C26-alkan-1-ol and n-1325 

Alkane (Naafs et al., 2012) to terrigenous sediments at Site U1313. Both ratio time 1326 

series are normalized to the average ratio observed for the Piacenzian PRISM time-1327 

slab  (defined as 3.025-3.264 Ma). Biomarker accumulation rates used are the same as 1328 
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those shown in Figure 5. Our higher-resolution record of terrigenous sediment 1329 

accumulation rate is linearly interpolated to match the resolution of the biomarker 1330 

records. The Site U1313 oxygen isotope stratigraphy (Bolton et al., 2010) is shown 1331 

for reference, with key glacial marine isotope stages (M2, G6 and 100) labelled. Note, 1332 

during glacial periods biomarker accumulation rates are enhanced relative to 1333 

accumulation rates of bulk terrigenous material. The horizontal black/white bars at the 1334 

base of the figure denote paleomagnetic chronozone boundaries (Cande and Kent, 1335 

1995): M = Matuyama, G = Gauss, K = Keana and Ma = Mammoth. 1336 

 1337 

Figure 11. The relationship between Site U1313 sediment lightness (L*) and globally 1338 

representative benthic δ18O, the LR04 (Lisiecki and Raymo, 2005) (A) and proxy 1339 

indicators of the evolution of eastern equatorial Pacific (EEP) sea-surface temperature 1340 

(B, based on alkenones from ODP Site 846 (Lawrence et al., 2006)) and sub-surface 1341 

temperature (C, based on Mg/Ca ratios in foraminifer from ODP Sites 848, 849 and 1342 

853 (Ford et al., 2012); ODP Site 1241 (Steph et al., 2006)). Horizontal dashed blue 1343 

line in (B) corresponds to Holocene sea-surface temperature average for ODP Site 1344 

846 (Lawrence et al., 2006). During the early Pliocene the mid latitudes of North 1345 

America were wetter and warmer than present (Goldner et al, 2011). Note the warm 1346 

temperatures of the EEP Ocean (associated with small zonal equatorial SST gradients 1347 

(Ford et al., 2012), a state referred to as permanent El Niño-like (implies nothing 1348 

about interannual variability). It is hypothesised that the development of the EEP cold 1349 

tongue at this time and a subsequent poleward shift in the Pacific jet stream led to the 1350 

aridification of North America (Goldner et al., 2011). Note that L* at Site U1313, a 1351 

proxy for sediment eolian content is unambiguously correlated to global climate 1352 

(LR04) back to 3.3 Ma and intermittantly so probably back to 5.3 Ma (base of LR04), 1353 
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the notable exception being ~4.3 to 4 Ma (see main text). For sediments older than 3.3 1354 

Ma, our manual graphical correlation of Site U1313 and LR04 is based on tuning 1355 

between constraints provided by shipboard determination of depths to 1356 

paleomagnetochronozone boundaries (Expedition 306 Scientists, 2006). Age model 1357 

control for ~2.4-3.3 Ma and <2.4 Ma, respectively, come from Bolton et al. (2010) 1358 

and Naafs et al. (2012) and Expedition 306 Scientists (2006). The horizontal 1359 

black/white bars at the top and base of the figure denote paleomagnetic chronozone 1360 

boundaries (Cande and Kent, 1995): B = Brunhes, M = Matuyama, G = Gauss, K = 1361 

Keana, Ma  = Mammoth, Gil = Gilbert, C = Cochiti, N = Nunivak, S = Sidufjall and T 1362 

= Thvera. 1363 
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Click here to download Supplementary Data: Lang et al. supplementary information.pdf
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