Evaluation and Optimization of a Multi-Point Tactile Renderer for Virtual Textures

Matthew Philpott
Department of Physics
University of Exeter

Evaluation and Optimization of a Multi-Point Tactile Renderer for Virtual Textures

Submitted by Matthew Philpott, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, October 2013.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

(Signature)....

Matthew Philpott

October 21, 2013

Abstract

The EU funded HAPTEX project aimed to create a virtual reality system that allowed a user to explore and manipulate a suspended virtual textile with the thumb and index finger. This was achieved through a combination of a tactile renderer on the fingertips for surface textures and a force feedback system for deformation of the virtual material.

This project focuses on the tactile rendering component of this system, which uses a tactile display developed at the University of Exeter. The 24 pin display is driven by piezoelectric bimorphs. Each of the pins can be driven independently, allowing for a variety of different sensations to be transmitted to the fingertip.

The display is driven by rendering software that uses a spatial spectrum of the intended surface, in combination with the frequency response of touch receptors in the skin, position on the surface, and exploration velocity to produce a signal that is intended to recreate the sensation of exploring the surface texture. The output signal on each of the 24 contactors is a combination of high (320 Hz) and low (40 Hz) frequency sine waves.

In this project, the tactile renderer is initially evaluated based on its ability to recreate the sensations of exploring particular textured surfaces. The users were asked to rank virtual textures in order of similarity to a real target texture. The results of the initial test were disappointingly low, with a $38.1\pm3.1\%$ correct identification rate. However, feedback from this initial test was used to make improvements to the rendering strategy. These improvements did not give a significant improvement in identification ($41.3\pm1.6\%$).

Finally, the tests were repeated with a target virtual texture instead of the real one used in previous tests. This test yielded a higher identification rate $(64.1\pm5.5\%)$. This increase in identification suggests that the virtual textures are distinguishable but that they not always accurate recreations of the real textures they are mimicking.

Acknowledgements

When I started this project in 2009, having completed my MPhys in Astrophysics, I had minimal knowledge of haptics as an area of study. For me, the subject had mostly been an interesting curiosity but not something I had ever seriously looked into. However, when my PhD supervisor, Doctor Ian Summers, offered me the opportunity to work in this field, I found it hard to resist. The chance to dive into something almost completely new, connected to such a wide variety of subject areas such as Biology and Psychology, yet still not be completely out of my depth, thanks to my previous programming and scientific knowledge, was something I could not pass up.

Over the course of this project, Ian has been a great help to me. His ability to find solutions and new approaches to problems never ceases to impress me. I am grateful to him for the initial offer of this project and the support he is given me throughout.

Several other people also helped to make this project what it is today. My thanks go to Doctor Dennis Allerkamp, whose PhD work with the HAPTEX project created the original rendering software that was the starting point for this project. His help and documentation when I was first starting was a great help in my understanding of the renderer's code. I also want to thank Alasdair Allan for helping me while I was struggling with compiling the renderer's firmware. Without him, I would probably still be working on that now.

My mentor, Doctor Jenny Patience, has also been very helpful over the project's duration. While I may not have seen her as often as I possibly should have, she's always been ready to listen to what I have to say and help me sort through any issues I may have.

Many thanks go to the Biomedical Physics group and the staff and PhD students of the Exeter Physics department at large, who are always good company, regardless of their own pressures. Our conversations at tea-breaks and lunchtimes, scientific or otherwise, have helped make the day-to-day existence in the PhD lab far more enjoyable than I ever expected.

Outside of the lab, thanks go to my wider community of friends who have put up with me over the course of my undergrad, PhD and beyond. Members of the Science Fiction and Tolkien societies, both old and new, who've listened to my complaints about equipment not working or code not compiling and provided the diversions and discussions I've needed. You've kept me from driving myself mad over any challenges I've encountered.

Many thanks go to Amanda for listening to me vent my concerns and frustrations and encouraging me to stick with it even when I was most doubtful of my abilities. You have

more than made up for any help I gave you during your write up.

And, of course, I wouldn't be here without the love and support of my family. My thanks go to my parents, Clive and Gill, who gave me the freedom and encouragement to follow my desire for understanding and my brother, Adam, for reminding me what I'm aiming for. I also want to give thanks to my grandparents and other extended family members, who have always been supportive and happy to listen to what I've been doing, even if my explanations have left them somewhat perplexed at times.

"When you are studying any matter, or considering any philosophy, ask yourself only: What are the facts, and what is the truth that the facts bear out. Never let yourself be diverted, either by what you wish to believe, or what you think could have beneficent social effects if it were believed; but look only and solely at what are the facts."

(Bertrand Russell, BBC Interview on "Face to Face", 1959)

Contents

1	Intr	oducti	on	18
2	The	Sense	of Touch	2 1
	2.1	Psycho	pphysics	21
		2.1.1	Just-Noticeable Difference and Weber's Law	22
		2.1.2	Psychometric Measures	22
		2.1.3	Multi-Dimensional Scaling	23
		2.1.4	Perception of Objects	23
	2.2	Biolog	y of Touch	25
		2.2.1	Human Nervous System	26
		2.2.2	Mechanoreceptive Afferents	29
		2.2.3	Perception of Fine Textures	31
		2.2.4	Frequency Response	31
	2.3	Haptic	Perceptual Spaces	32
	2.4	Summ	ary	38
3	Tact	tile Re	endering Device	40
	3.1	Existin	ng Devices	40
		3.1.1	Electrostatic Display	41
		3.1.2	Piezoelectric Devices	42
		3.1.3	Rheological Fluid Display	43
		3.1.4	Electroactive Polymer Displays	43
		3.1.5	Ultrasound Display	44
		3.1.6	Surface Acoustic Waves	44
		3.1.7	Shape Memory Alloy Displays	45

		3.1.8	Electrocutaneous Display
		3.1.9	Pneumatic Display
		3.1.10	Electrovibration Display
		3.1.11	Shear Force Display
	3.2	The Ta	actile Rendering Setup
		3.2.1	Principles of Operation
		3.2.2	Tactile Display
		3.2.3	Driving Electronics
		3.2.4	Rendering Software
		3.2.5	Texture File Creation
	3.3	The H	APTEX Project
		3.3.1	Overview of System Development
		3.3.2	Physical Simulation
		3.3.3	Force Feedback
		3.3.4	Tactile Renderer
		3.3.5	Evaluation
	3.4	Improv	vements to Renderer
		3.4.1	Direction of Motion
		3.4.2	Textile Frequency Range
		3.4.3	Modifications to Amplitude Calculation
		3.4.4	Filter Modifications
		3.4.5	Amplitude Scaling Factors
		3.4.6	Buffering Calculated Amplitudes
		3.4.7	Contactor Surface Area
		3.4.8	Dynamic Range and Spectral Balance
		3.4.9	Summary of Modifications
	3.5	Summ	ary 98
4	Cha	racter	isation of Renderer 99
	4.1	Charac	cterisation Strategy
	4.2	Charac	eterisation of Experimental Renderer
	4.3	Compa	arison with HAPTEX Renderer

	4.4	Characterisation of Scaled Texture Files	. 111
	4.5	Summary	. 115
5	Pub	olic Demonstration	116
	5.1	Demonstration Environment	. 117
	5.2	Demonstration Setup	. 118
	5.3	Feedback	. 121
	5.4	Summary	. 127
6	Virt	tual Texture Evaluation	128
	6.1	Experimental Design	. 129
	6.2	Experiment 1	. 131
	6.3	Experiment 2	. 141
	6.4	Experiment 3	. 148
	6.5	Perceptual Dimensions	. 153
	6.6	Experienced Users	. 157
	6.7	Summary	. 157
7	Con	aclusions	161
	7.1	Summary of Thesis	. 161
	7.2	Overview of Project Conclusions	. 163
	7.3	Discussion and Future Work	. 164
	7.4	Potential Applications	. 166
Aı	pen	dices	168
Re	efere	nces	168
\mathbf{A}	Tex	ture Database	177
В	Spe	ctra of Texture Files	189
\mathbf{C}	Cha	nce Result Derivation	190
D	Eth	ics Application	193
${f E}$	\mathbf{Add}	litional Discriminability Plots	196

List of Tables

2.1	Comparison of different mechanoreceptor types based on their receptive field sizes and adaptation rates
2.2	The four mechanoreceptor populations, their sensitivity ranges, and their associated functions
2.3	List of the car seat material samples and their main characteristics 34
2.4	Co-occurrence matrix showing the number of participants who grouped specific pairs of stimuli together
2.5	Correlation coefficients between each adjective scale and each dimension of the MDS texture space
2.6	A comparison of the sensory perceptual spaces suggested in the literature . 38
3.1	The characteristic values that are output by the KES-F
5.1	Results of the survey conducted to gather feedback about the tactile renderer installation
5.2	Results of the survey conducted to gather feedback about the presented facsimiles
6.1	The recorded details of the eight subjects who participated in experiment 1 132
6.2	The sample set used in experiment 1
6.3	Cumulative scores for matching real and virtual textiles in experiment 1 135
6.4	The number of subjects that chose the virtual textiles as their first choice match to the target textile
6.5	The sample set used in experiment 2
6.6	The recorded details of the eight subjects who participated in experiment 2 141
6.7	Cumulative scores from experiment 2 for matching real and virtual textiles 143
6.8	Dissimilarity matrix generated from the results of the second experiment, measuring dissimilarity between each real textile and the 16 virtual textile . 145

6.9	The recorded details of the eight subjects who participated in experiment 3 149
6.10	Cumulative scores from experiment 3 for matching virtual textiles 149
6.11	Dissimilarity matrix generated from the results of the third experiment 151
6.12	The one- and two-dimensional solutions to the Multi-Dimensional Scaling $$. 154
6.13	Comparison of the correct identifications between the subjects in the experiments and more experienced users
A.1	Abbreviations of the fibre contents of the textiles
A.2	Database of the available textures
B.1	The spectral lines of the texture files
C.1	The number of microstates available for each number of subjects that selected the most popular choice, and the total number of microstates 192

List of Figures

2.1	Movement patterns associated with each of the exploratory procedures	24
2.2	The maximum-likelihood estimate integration of two hypothetical situations	25
2.3	Signal propagation in neurons	27
2.4	A schematic of a triggered action potential	28
2.5	The mechanorecptors in the glabrous skin	29
2.6	Micrograph of a Pacinian corpuscle	30
2.7	Locations of Pacinian corpuscles within the right index distal phalange	31
2.8	Threshold measurements for different populations of mechanoreceptors in the thenar eminence of the hand	32
2.9	Four dimensional MDS space presented as two two-dimensional planes $\ . \ . \ .$	36
3.1	An example of an electrostatic actuator, including structure and function .	41
3.2	Schematic diagrams of the piezoelectric display mechanism showing a cross-section side view and a top view	42
3.3	An example of an electrorheological actuator	43
3.4	A schematic of an electroactive polymer actuator	44
3.5	An example of an ultrasound display, consisting of an annular array of 91 ultrasound transducers packed in an hexagonal arrangement	44
3.6	A schematic of a surface acoustic wave tactile display	45
3.7	A side view of an example shape memory alloy actuator	46
3.8	A schematic of an electrocutaneous contactor	46
3.9	Schematic of the pneumatic circuit associated with an pneumatic actuator .	47
3.10	Schematic illustration of the electrode-skin interface	48
3.11	The ShiverPad generating a net rightward force	49
3.12	As the exploratory points move across the surface, they are displaced in a direction normal to the surface	49

3.13	A representation of the tactile workspace and how the spatial spectrum is mapped onto temporal frequency according to velocity of exploration	50
3.14	The spectrum of temporal frequencies is reduced to components at $40\mathrm{Hz}$ and $320\mathrm{Hz}$, and the output is specified by their amplitudes, A_{40} and A_{320} .	52
3.15	Schematic drawing of the Piezoelectric effect	54
3.16	Schematic of a parallel configuration Piezoelectric bimorph	54
3.17	Measured frequency response of a piezoelectric drive element with and without the mechanical load presented by the skin	55
3.18	The tactile display used in this project and the arrangement of the static and dynamic contactors	56
3.19	The driving electronics for the tactile display	57
3.20	A schematic of the operation of the drive electronics	58
3.21	The board that hosts the USB controller, data bus and variable voltage supply	58
3.22	The circuit galvanically isolating the USB controller from the rest of the system	59
3.23	Amplification stages of the variable voltage supply	60
3.24	The board hosting the DAC, address logic, and the amplifiers	60
3.25	Passive, first order low-pass RC filter	61
3.26	The two amplitude stages of each channel	62
3.27	An example of an output signal, as generated by the driving electronics $$. $$	62
3.28	The tactile rendering framework, showing the four threads within the software	63
3.29	The Kalman filter uses a predictor-corrector feedback loop	64
3.30	An example of the graphical display presented to the user	66
3.31	The schematic operation of the software's tactile rendering thread \dots	66
3.32	Average detection thresholds as a function of frequency of the tactile receptors in the skin for Pacinian and non-Pacinian channels used in this project	68
3.33	The filter functions H_{40} and H_{320}	
		71
		74
		75
		76
	Derivation of a set of spatial spectra from a Kawabata line profile	
	_	

3.39	The surface profiles recorded by the KES-F roughness tester while travelling across the right-side surface of textile 03, as well as the first 20 lines of the mean of the spectra	77
3.40	The surface profiles recorded by the KES-F roughness tester while travelling across the right-side surface of textile 20, as well as the first 20 lines of the mean of the spectra	79
3.41	The target virtual scenario for the HAPTEX project	80
3.42	Schematic of the concept of the proposed HAPTEX device	81
3.43	The different threads within the HAPTEX system	81
3.44	The development levels of the HAPTEX system	82
3.45	The GRAB system from PERCRO	83
3.46	A CAD model of the layout of the HandExos device	84
3.47	The tactile array used in the HAPTEX system	85
3.48	Finger positions and manipulations used to test the properties	86
3.49	Comparisons between mean ratings from subject 1 and subject 2 for the properties of tensile stiffness, surface roughness, surface friction, and bending stiffness	87
3.50	The relation between the average subjective ratings of the virtual textiles for both subjects and the corresponding physical values for tensile stiffness, surface roughness, surface friction, and bending stiffness	87
3.51	The relation between the average subjective ratings of the real textiles for both subjects and the corresponding physical values for tensile stiffness, surface roughness, surface friction, and bending stiffness	88
3.52	The relation between the average subjective ratings of the virtual textiles for both subjects and the corresponding average subjective ratings of the real textiles for both subjects for tensile stiffness, surface roughness, surface friction, and bending stiffness	88
3.53	The original band-pass filters that were used to highlight the fundamental frequency components for tactile rendering, compared to the new filter functions	91
3.54	The sum in both channels of the maximum amplitudes that were calculated for a $10\mathrm{cm}\mathrm{s}^{-1}$ exploration of the various surface textures	93
3.55	Without the buffer for the amplitudes, the output wave is updated when the new amplitudes are received by the firmware from the rendering software	94
3.56	The Exeter tactile display before and after the addition of caps to the contactors	95

3.57	Comparison between the sum of mean characteristic amplitudes of sample set 1, and the subjective best match to the real textiles, as established by the author, and the fitted scaling power law
4.1	The characterisation plots for the tactile renderer, based on the texture data used in the first experiment, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $10\mathrm{cms^{-1}}$ 102
4.2	Comparison between the root-sum-square of warp and weft geometrical roughness from the KES-F and the sum of the mean $40\mathrm{Hz}$ and $320\mathrm{Hz}$ amplitudes calculated for the characterisation plots
4.3	The characterisation plots for the tactile renderer, based on the texture data used in the first experiment, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $3\mathrm{cms^{-1}}$ 104
4.4	The characterisation plots for the tactile renderer, based on the texture data used in the first experiment, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $30\mathrm{cms^{-1}}$ 105
4.5	The mean amplitude values for the two channels as a function of exploration speed for $1\mathrm{cm}\mathrm{s}^{-1}$ to $30\mathrm{cm}\mathrm{s}^{-1}$
4.6	The CoV of the amplitude values for the two channels as a function of exploration speed for $1\mathrm{cm}\mathrm{s}^{-1}$ to $30\mathrm{cm}\mathrm{s}^{-1}$
4.7	A comparison of the anisotropy of the mean intensity experienced by a user travelling in each of the four directions of motion across a surface, between textures 37_R, 39_R, 03_R, and 54_R
4.8	Characterisation plots based on the tactile renderer and texture data that existed at the beginning of the project, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $10\mathrm{cms^{-1}}$ 112
4.9	A comparison of the mean intensity experienced by a user travelling in each of the four directions of motion, for texture 54_R, between the experiments renderer and the original HAPTEX renderer
4.10	A comparison of the sum of the mean amplitudes between the scaled and unscaled texture files, as well as the scaling that was used
4.11	The characterisation plots for the tactile renderer, based on the texture data used in the second and third experiments, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $10\mathrm{cms^{-1}}$. 114
5.1	The setup being used as part of "The Big Bang South West Fair" 116
5.2	Two other strategies presented at "Touching the Untouchable", allowing for physical and virtual explorations of a "Lewis Chessmen" piece 118
5.3	A replica of the queen "Lewis Chessmen" piece

5.4	Diagram of the ghost touch setup
5.5	Use of the ghost touch setup to explore the surface of the "Lewis Chessmen" piece
5.6	Diagram of the haptic pen setup
5.7	Use of the haptic pen setup to explore the surface of the "Lewis Chessmen" piece
5.8	The textile that was the subject of the recreation for "Touching the Untouchable" project: the original, archaeological, textile along with a modern recreation
5.9	Schematic of the installation used at the museum
5.10	The installed tactile renderer, featuring the Exeter tactile display and a visual overlay to navigating the virtual environment
5.11	Two facsimiles of the Falkirk tartan
5.12	A group of the facsimiles presented at the "Touching the Untouchable" event125
6.1	The tactile rendering setup used for the experiments
6.2	How the tactile display is held during use
6.3	Characterisation plots for the tactile renderer for the sample set of 16 textures used in the first experiment, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $10\mathrm{cms^{-1}}$
6.4	An example of one of the virtual workspaces presented during experiment 1, showing four virtual textiles that are to be ranked against the target textile 134
6.5	An example of the presentation of a real textile as a target
6.6	A breakdown of the results of experiment 1, showing the percentage of times each of the 8 subjects assigned the correct textile with a particular rank of similarity to the target
6.7	A breakdown of the results of experiment 1, showing the percentage of times each of the 16 correct virtual textiles was assigned a particular rank of similarity to the target
6.8	Mean scores from 5 subjects for matching real and virtual textiles, as a function of the number of textiles in the stimulus set
6.9	From experiment 1, breakdown of the percentages of how the "most popular" choice scored across all the test items, compared to what would be expected from chance
6.10	A comparison of the distribution of mode choices between cases where the mode is the correct choice and cases were it is not the correct choice 139

6.11	The error patterns obtained from the first choices of the subjects made during experiment 1
6.12	Characterisation plots for the tactile renderer for the sample set of 16 textures used in the second experiment, showing the mean and CoV values of A_{40} and A_{320} during exploration of texture surfaces at $10\mathrm{cms^{-1}}$ 142
6.13	A breakdown of the results of experiment 2, showing the percentage of times each of the 8 subjects assigned the correct textile with a particular rank of similarity to the target
6.14	A breakdown of the results of experiment 2, showing the percentage of times each of the 16 correct virtual textiles was assigned a particular rank of similarity to the target
6.15	From experiment 2, breakdown of the percentages of how the "most popular" choice scored across all the test items, compared to what would be expected from chance
6.16	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance in the mean characterisation space
6.17	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance in the CoV characterisation space147
6.18	An example of one of the virtual workspaces presented during experiment 3, showing four virtual textiles that are to be ranked against the target textile 148
6.19	Comparison of the results from the 3 experiments
6.20	Graph showing the relationship between the correlation coefficient between virtual textures from experiment 3 and the Euclidean distance in the mean characterisation space
6.21	Graph showing the relationship between the correlation coefficient between virtual textures from experiment 3 and the Euclidean distance in the CoV characterisation space
6.22	A plot comparing the dissimilarity scores for identifying target textiles, experiment 2 against experiment 3, along with a line of equality 152
6.23	Scree plots comparing the stresses of various multi-dimensional solutions 153
6.24	The two-dimensional MDS solution
6.25	Schematic of the mean characterisation space being compared to the calculated MDS space
6.26	Comparison of the mean characterisation space and the two-dimensional MDS solution, rotated through 193.1°
D.1	The first information sheet given to potential subjects

D.2	The second information sheet given to potential subjects
D.3	The consent form to be signed by individuals who agree to participate in the study
E.1	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance between mean 40 Hz amplitudes 196
E.2	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance between mean 320 Hz amplitudes197
E.3	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance between CoV 40 Hz amplitudes 197
E.4	Graph showing the relationship between the correlation coefficient between virtual textures and the Euclidean distance between CoV 320 Hz amplitudes 198

List of Acronyms

AHRC Arts & Humanities Research Council

CNS central nervous system

CoV coefficient of variation

DAC digital-analogue converter

EP exploratory procedure

EPSRC Engineering and Physical Sciences Research Council

FA fast adapting

FAST Fabric Assurance by Simple Testing

FFT Fast Fourier Transform

HAPTEX HAPtic sensing of virtual TEXtiles

integrated circuit

IDT interdigital transducer

jnd just-noticeable difference

KES-F Kawabata Evaluation System for Fabrics

MDS Multi-Dimensional Scaling

MLE maximum-likelihood estimate

NP non-Pacinian

P Pacinian

PNS peripheral nervous system

PZT Lead Zirconate Titanate

RAM random access memory

root-sum-square root of the sum of the squares

SA slowly adapting

SAW surface acoustic wave

SMA shape memory alloy

USB Universal Serial Bus

VR virtual reality

warp vertical

weft horizontal