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ABSTRACT 

INTRODUCTION: There have been few well controlled altitude and hypoxic 

training studies to date. This thesis investigated the effects of altitude and 

(sham controlled) intermittent hypoxic training (IHT) on exercise capacity, and 

the associated physiological adaptations. METHODS: Chapter 3 investigated 

how living and training at 2320 m or at sea level affected total haemoglobin 

mass (tHb) and race performance in highly trained swimmers. Chapter 4 

investigated how IHT or normoxic training affected cardiopulmonary variables 

and the incremental exercise limit of tolerance (T-Lim), in highly trained runners. 

Chapter 5 investigated how single-legged IHT or normoxic training affected 

phosphorus-31 nuclear magnetic resonance spectroscopy assessed muscle 

energetics. RESULTS: In Chapter 3, tHb increased significantly more after 

altitude (+0.6 ± 0.4 g·kg-1, or +4.4 ± 3.2%) than after sea level (+0.03 ± 0.1 g·kg-

1, or +0.3 ± 1.0%), but the changes in swimming performances were not 

different between groups, and there were no correlations between tHb and 

performance changes. In Chapter 4, submaximal heart rate in normoxia 

decreased significantly more after IHT than after normoxic training (-5 ± 5 vs. -1 

± 5 b∙min-1), and submaximal   O2 in hypoxia significantly decreased, only after 

IHT. T-Lim in hypoxia significantly increased post-IHT, but there were no 

between group differences. In Chapter 5, the phosphocreatine recovery time 

constant was speeded significantly more in the IHT compared to the normoxic 

trained leg, when tested in hypoxia (-25 ± 8% vs. -13 ± 6%), but not in normoxia 

(-16 ± 15% vs. -9 ± 10%). CONCLUSIONS: Altitude training likely increases 

tHb, but this is not necessarily associated with improved athletic performance. 

IHT may induce other non-haematological adaptations; potentially an enhanced 

skeletal muscle oxidative capacity, but evidence for exercise capacity gains is 

lacking. The precise underlying causes for these adaptations require further 

investigation, as does any translation to athletic performance.  
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INTRODUCTION 

Since the discovery of oxygen (O2) by the combined work of Joseph Priestly, 

Carl Wilhelm Scheele, and Antoine Laurent Lavoisier, during 1772-1777 (Jones 

& Poole, 2005), the role of this chemical element in metabolism has been the 

topic of much attention. One of the most prominent realisations has been the 

dependence of O2 by ‘respiratory pigments’ (McMunn, 1884), later termed 

cytochromes (Keilin, 1925), in the energy-producing biochemical process of 

oxidative phosphorylation (Keilin, 1966). While much of the focus has been on 

the fundamental biochemistry of these cellular pathways (see Papa et al. (2012) 

for a recent review), in vivo research into their functional significance has also 

markedly progressed. 

The maximal capacity of oxidative phosphorylation has most commonly been 

(indirectly) quantified as the maximum pulmonary O2 uptake (  O2max), which is 

determined by: a) factors that determine the rate of O2 transport from the 

environment to the mitochondria; and b) biochemical factors that are unrelated 

to O2 transport, involving substrate availability and enzymatic activity (Wagner, 

1996). In the exercising human,   O2max is primarily limited by the (mainly 

diffusive) delivery of O2 from the lungs to the exercising muscles (Bassett & 

Howley, 2000). As such, given that in endurance athletic sporting endeavours, a 

high   O2max is a key determinant of performance (Jones, 2006), strategies 

aiming to enhance O2 delivery have been adopted by athletes worldwide. When 

O2 availability is particularly low, for example upon exposure to altitude, it’s 

delivery to the exercising skeletal musculature becomes even more of a 

prominent endurance performance limitation (Wehrlin & Hallen, 2006). 

At the Mexico City 1968 Olympics, held at an elevation of 2420 m, it was 

overwhelmingly clear that those athletes who competed in endurance events, 

who had undertaken a phase of altitude pre-acclimatisation were the most 

successful (Waddell, 1970). As such, it was acknowledged that some form of 

adaptation that was beneficial to endurance performance at altitude had 

occurred (Stiles, 1974). Ever since, altitude training has been regularly used by 

athletes worldwide, sometimes as pre-acclimatisation for subsequent 

competition at altitude, but more often with the aim of enhancing subsequent 

sea level performances (Millet et al., 2010). The evidence to date is not 
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conclusive, but a comprehensive meta-analysis by Bonetti & Hopkins (2009) 

reported that when appropriately conducted, various altitude and hypoxic 

strategies result in maximal aerobic power output enhancements in non-elite 

athletes. Moreover, acclimatisation to physical altitude was reported to elicit 

maximal aerobic power output improvements of up to 4% in the elite athlete 

(Bonetti & Hopkins, 2009). Accordingly, there is general agreement that if well 

timed and practiced, altitude and hypoxic training strategies can result in small, 

but potentially meaningful performance gains, and that the magnitude of these 

gains likely depends on the participants’ baseline fitness status. 

In this respect, it is important to differentiate between fitness, training and 

competitive status. Throughout this thesis, participants of the discussed 

investigations are broadly separated into three categories: i) untrained (those 

who may undertake physical exercise in their leisure time, up to 4 

sessions·week-1, but do not participate in a structured exercise training 

program); ii) moderately trained (those who routinely undertake structured 

exercise training and competition for a specific sport, and may take part in 

competitions up to a regional level); or iii) highly trained (those who train 

specifically for a single sport, at a national or international level). 

Altitude and hypoxic interventions remain popular, both in terms of their use in 

the purported enhancement of athletic performance, and also in terms of the 

understanding of the physiological processes that underpin any such exercise 

capacity changes. While much has been learnt, a great deal of uncertainty still 

remains with regard to the wide array of physiological adaptations that take 

place; in particular the effects of altitude and hypoxia in highly trained athletes. 

Contribution made by papers in the context of the approved field of study: 

Chapter 3 is currently being peer-reviewed in an international journal. 

Chapter 4 was accepted for publication in the Journal of Strength and 

Conditioning Research in January 2014 (Holliss et al., 2014). 

Chapter 5 was accepted for publication in the Journal of Applied Physiology in 

January 2013 (Holliss et al., 2013) – see Appendix 8.  
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CHAPTER 1: 

Literature Review and PhD Rationale 

 

1.1 Physical effects of altitude and hypoxia 

At sea level, barometric pressure is ~760 mmHg (normobaria), and the fraction 

of inspired O2 (FIO2) is ~0.209, which results in a partial pressure of inspired O2 

(PIO2) of ~149 mmHg, in accordance with the below equation (Wilber, 2004): 

PIO2 = (P – 47 mmHg) · FIO2 

Where: PIO2 = partial pressure of inspired O2, P = barometric pressure, 47 

mmHg = the reduction in partial pressure of O2 (PO2) due to water vapour in the 

upper airways, and FIO2 = the fraction of inspired O2.  

By the time the O2 has diffused from the alveoli into the pulmonary arteries, this 

initial PIO2 of 149 mmHg has been reduced due to gas mixing to a partial 

pressure of arterial O2 (PaO2) of ~100 mmHg. This differs at altitude, as 

although the FIO2 remains at a constant 0.209, barometric pressure decreases 

with increasing elevation above sea level, termed hypobaria. For example, at 

2320 m above sea level, barometric pressure is reduced to ~582 mmHg, which 

results in a PIO2 of ~112 mmHg, and a PaO2 of ~64 mmHg (Wilber, 2004). This 

PIO2 reduction of ~75% can also be achieved at sea level by inhaling a 

normobaric hypoxic inspirate; in this instance air with an FIO2 of 0.157, thereby 

simulating altitude, at a barometric pressure of ~760 mmHg. 

Whether there are significant differences in the physiological effects of 

hypobaric hypoxia (i.e. physical altitude) or normobaric hypoxia (i.e. simulated 

altitude) is the topic of much debate (Millet et al., 2012a; Millet et al., 2012b; 

Millet et al., 2012c; Mounier & Brugniaux, 2012a; Mounier & Brugniaux, 2012b; 

Mounier & Brugniaux, 2012c), but in both circumstances, there is a reduced 

PIO2. This causes reduced diffusion differences at each step of the ‘O2 

cascade’, so the O2 diffusion rate is consistently lower then when exposed to 

normoxia, thus causing a reduction in arterial O2 content (CaO2) and a state of 

biological hypoxia (Wilber, 2004). 
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1.2 Physiological effects of altitude and hypoxia 

Human skeletal muscle mitochondrial oxidative capacity has been shown to 

exceed O2 delivery capacity by approximately 50% (Boushel et al., 2011). This 

is not the case for the majority of other mammals, as most are thought to 

conform to biological symmorphosis; that is, O2 delivery being matched to 

mitochondrial oxidative capacity (Taylor & Weibel, 1981). Thus O2 delivery 

capacity is one of the key limiting factors to human skeletal muscle maximal 

oxidative capacity (Wagner, 1996), which is further exaggerated in situations of 

biological hypoxia (Wagner, 2010). Under such circumstances, the human body 

adapts via a wide array of physiological mechanisms, to enhance O2 transport 

and/or utilisation, with the goal of re-establishing sea level CaO2. 

1.2.1 Hypoxia sensing and cardiorespiratory responses 

As the circulation time from the lungs to the carotid artery is ~6 s at rest, shorter 

than that to central areas (Prabhakar, 2001), the lower PO2 is first detected by 

chemoreceptors in the carotid bodies, as they can respond before central areas 

are even exposed (Prabhakar, 2001; Smith et al., 2006). Subsequent carotid 

body driven alterations in respiratory control provide the ‘first defence’ against 

biological hypoxia, resulting in elevated minute ventilation (  E). This 

phenomenon is quantifiable as the hypoxic ventilatory response (HVR) (Mou et 

al., 1995), which acutely increases the alveolar air O2 tension (PAO2), despite an 

unchanged hypoxic stimulus (Richard & Koehle, 2012; Townsend et al., 2005). 

In addition to the PAO2 increase, the elevated   E also causes respiratory 

alkalosis, due to the increased CO2 exhalation leading to a reduced alveolar air 

CO2 tension (PACO2), and therefore a reduced arterial blood CO2 tension 

(PaCO2). Renal reabsorption of filtered bicarbonate (HCO3
-) decreases, with the 

net result being an increased HCO3
- excretion, in an attempt to match the 

reduction in PCO2 and H+ (West et al., 2013). Nevertheless, with   E remaining 

elevated, the peripheral and central chemoreceptors’ sensitivity to CO2 

increases during the first few hours and days of acclimatisation to hypoxia, so 

this respiratory alkalosis does not acutely attenuate the hyperventilation 

stimulus (West et al., 2013). Thus, stimulation of the respiratory centre is 

maintained, termed the hypercapnic ventilatory response (HCVR) (Ainslie et al., 

2003). 
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A further near-immediate response to the hypoxic stimulus is the hypoxic 

pulmonary vasoconstriction response (HPVR), whereby the reduced PAO2 and 

mixed venous blood O2 tension (PmvO2) causes vasoconstriction of the 

pulmonary arterial and arteriole smooth muscle (al-Tinawi et al., 1994). The 

outcome is a redirection of blood flow to allow greater perfusion to better 

oxygenated areas of the lungs, for example in patients suffering from chronic 

obstructive pulmonary disease (Voelkel et al., 2013). However, at altitude the 

entire respiratory tract is hypoxic, so an overall increase in pulmonary vascular 

resistance occurs, resulting in pulmonary hypertension (Sylvester et al., 2012). 

This, in combination with enhanced sympathetic activity causing increased 

cardiac output (  ) and systemic blood pressure (BP), enables enhanced blood 

flow and thus O2 delivery to active tissues (Hainsworth et al., 2007). 

While the fast-acting HVR and the HCVR are effective at increasing   E, and the 

increases in    and BP due to the HPVR and elevated sympathetic activity are 

effective at increasing blood flow to active tissues, biological hypoxia still 

persists during sustained exposure to moderate to high altitudes, and thus other 

chronic adaptations are required in order to increase CaO2. 

1.2.2 Hypoxia-inducible factors 

Hypoxia-inducible factors (HIF’s) are transcription factors that respond to 

changes in PO2. In the presence of plentiful O2, hypoxia-inducible factor 1α 

(HIF-1α) is subjected to rapid proteasomal hydroxylation by prolyl hydroxylase 

domain proteins (PHD’s) and factor-inhibiting HIF (FIH), both involving O2-

dependant enzymatic reactions (Torbett & Friedman, 2009). As such, this 

ubiquitination and degradation of HIF-1α is inhibited by biological hypoxia 

(Wang et al., 1995). In these instances, HIF-1α stabilises and dimerises with the 

constitutively expressed hypoxia-inducible factor 1β (HIF-1β), to form the stable 

heterodimeric protein, hypoxia-inducible factor 1 (HIF-1) (Kaelin & Ratcliffe, 

2008). HIF-1 drives expression of a multitude of hypoxia-sensitive genes that 

encode numerous growth factors and hormones, for example; vascular 

endothelial growth factor (VEGF), hepcidin, transferrin, erythropoietin (Epo), 

and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) 

(Hochachka & Rupert, 2003; Semenza, 2009). As such, the sustained HIF-1 
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activity during periods of biological hypoxia results in a range of adaptive 

responses that enhance O2 delivery and/or utilisation (Wang et al., 1995). 

1.2.3 High altitude populations 

To understand the numerous physiological adaptations resulting from biological 

hypoxia and the associated HIF-1 transcriptional activity, it is useful to consider 

how high altitude populations have adapted to offset the stresses of chronic 

living in hypobaric hypoxic environments. Today’s residents of the Tibetan and 

Andean highlands (3,500-4,500 m) are descendants of colonisers who arrived 

at most 25,000 and 11,000 years ago, respectively. Interestingly, they have 

adapted to the hypoxic stress via different mechanisms, thus providing 

researchers with an informative ‘natural experiment’ (Beall, 2007). The main 

similarity is that both Tibetan and Andean highland natives have normal basal 

metabolic rates, implying that their functional adaptations do not require a 

greater O2 cost (Mazess et al., 1969). However, compared to Andeans, 

Tibetans have elevated resting ventilatory rates and a more vigorous response 

to O2 fluctuations, as depicted by a greater HVR (Beall, 2007). To compensate, 

even when controlling for confounding factors such as iron deficiency, abnormal 

haemoglobin, and differing recruitment and analytical methods, male Andeans’ 

haemoglobin concentrations ([Hb]) are significantly greater than that of Tibetans 

(19.2 g/dL vs. 15.6 g/dL, respectively) (Beall et al., 1998). This results in 

Andean’s having a CaO2, as assessed at 4000 m, of ~24 mLO2/100mL blood, 

which is higher than the CaO2 of ~21 mLO2/100mL reported for high altitude 

natives living at sea level (Beall, 2006). In comparison, even when accounting 

for the Tibetan’s increased ventilation, CaO2 is still low (~19 mLO2/100mL), as 

neither arterial O2 saturation (SaO2) or [Hb] are higher than their sea level 

counterparts (Beall, 2006; Beall et al., 1997). As such, Andeans are thought to 

have overcompensated in terms of resting CaO2 measurements, whereas 

Tibetans have undercompensated, so are considered to be in a state of 

consistent hypoxia; Tibetan’s must have adapted via different mechanisms 

(Beall, 2007). Indeed, the vasodilator, nitric oxide (NO) is known to be higher in 

the exhaled air of Tibetans, with the outcome being a higher blood flow through 

the pulmonary vasculature, and thus a faster rate of O2 delivery into the 

pulmonary capillaries (Beall et al., 2001). Similarly, Tibetans have a denser 

capillary network, allowing improved tissue perfusion compared with Andeans 
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(Hoppeler et al., 2003). Finally, there is evidence that Tibetans have fewer 

mitochondria than Andeans, and because there is no less an oxidative demand 

(Mazess et al., 1969), some authors argue that Tibetans’ mitochondria have 

evolved to use O2 more efficiently (Kayser et al., 1996). 

It is not the purpose of this text to further discuss such evolutionary physiology 

in altitude dwellers, but it is clear from these between-population differences 

that a range of adaptations to biological hypoxia occur, likely mediated to a 

great extent by innate genetic variation (Zoll et al., 2006). Therefore, in any 

case of adaptations to hypoxia, there will likely be significant inter-individual 

variation. 

1.2.4 Haematological adaptations 

In instances of biological hypoxia, assuming that renal O2 utilisation does not 

decrease, and that haemodynamics and renal blood flow are relatively constant, 

the CaO2 reduction causes a decrease in renal PO2 (Ge et al., 2002). This 

hypoxic state immediately causes sustained HIF appearance and transcriptional 

activity, with one outcome being elevated synthesis and release of the 

glycoprotein hormone Epo by peritubular capillary lining cells of the renal cortex 

(Klein et al., 2009). This causes detectable increases in blood Epo 

concentration ([Epo]) within 90-120 min of environmental hypoxic exposure 

(Eckardt et al., 1989), which peaks within 24-48 h and then declines thereafter 

(Abbrecht & Littell, 1972; Garvican et al., 2012). In this manner, the kidneys are 

the predominant Epo producer during adulthood, although the liver is also a site 

of Epo synthesis during foetal development (Eckardt et al., 1992) and in 

extreme hypoxia (Tan et al., 1992). 

This increase in Epo production leads to elevated circulating [Epo], detected by 

burst-forming unit-erythroids (BFU-E), located within the bone marrow. These 

are the most immature cells restricted specifically to the erythroid cell line, they 

are highly proliferative, and give rise to many colony-forming unit-erythroid cells 

(CFU-E) (Stephenson et al., 1971). The raised [Epo] inhibits apoptosis in these 

erythroid progenitor cells, which then differentiate into proerythroblasts, which 

are also highly sensitive to Epo (Koury & Bondurant, 1990). Further 

differentiation occurs, involving accumulation of haemoglobin (Hb), decreases in 

cell size, nuclear condensation and, finally, enucleation, before the erythroblasts 
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are released into the bloodstream as reticulocytes (Gifford et al., 2006). These 

immature cells circulate for 1-2 d, as they finally differentiate into mature fully 

functional RBC’s, which have a lifespan of ~120 d (Gifford et al., 2006). 

In conjunction with enhanced erythropoiesis, the importance of plasma volume 

(PV) contraction on total blood volume and CaO2 maintenance has been 

demonstrated. After eight healthy but untrained males underwent five weeks of 

oral iron supplementation and recombinant human Epo (rHuEpo) treatment at 

sea level, Lundby et al. (2007b) reported a significant ~11% [Hb] increase, and 

a significant ~16% CaO2 increase. Interestingly, these authors estimated that 

this CaO2 increase was 62% due to an increase in total haemoglobin mass 

(tHb), and 38% due to a reduction in PV, with the contribution from PV 

estimated at 54% after 11 weeks (Lundby et al., 2007b). Furthermore, this 

research group have also investigated the chronology of such adaptations: 

showing that elevated [Epo] firstly decreases the renal proximal tubular 

reabsorption rate and the glomerular filtration rate, causing a PV reduction, and 

then augments erythropoiesis, leading to tHb increases (Olsen et al., 2011). 

Furthermore, upon cessation of rHuEpo treatment, [Hb] is rapidly normalised, 

firstly due to a restoration in PV, then red cell mass (RCM) contractions (Lundby 

et al., 2008a; Olsen et al., 2011), likely as a result of Epo decreasing below a 

threshold, and in doing so initiating neocytolysis (Alfrey et al., 1997). Although 

these studies induced higher circulating [Epo] than would naturally occur at 

moderate altitude, and participants were non-athletic, the mechanistic findings 

remain valid, as a PV contraction during sustained exposure to moderate 

altitude in trained athletes is a well know phenomenon (Dill et al., 1974).  

In this manner, hypoxia induced elevations in circulating [Epo] result in 

significant haemoconcentration and a greater number of circulating RBC’s, 

which collectively increase the O2 carrying capacity of the blood, bringing CaO2 

back towards normative sea level values (Beall, 2007). This (haematological) 

downstream HIF-1 transcription pathway is the one to have received the most 

attention in the field of hypoxia research, largely due to: i) the aforementioned 

higher [Hb] in Andean highland natives compared to their lowland counterparts 

(Arnaud et al., 1979; Beall et al., 1998); ii) the obvious effects of rHuEpo 

administration and/or RBC infusions on exercise performance (Berglund & 
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Ekblom, 1991; Brien et al., 1989); and iii) the relative ease of tHb and/or RCM 

quantification (Schmidt & Prommer, 2005). 

In accordance with these mechanisms, the traditionally held theory is that 

exposure to 2000-2500 m altitude for at least 22 h·d-1, for four weeks or longer, 

results in a significant tHb increase in already well trained athletes (Levine & 

Stray-Gundersen, 1997; Wilber et al., 2007). Considering that total blood 

volume (BV) remains relatively stable during this phase of haemoconcentration 

and erythropoiesis (Lundby et al., 2007b), the elevated circulating Hb causes an 

enhanced CaO2. This results in a greater O2 diffusion gradient at the active 

tissues and a greater arteriovenous O2 difference, causing an increased 

  O2max, in accordance with the Fick principle (Mathews & Singh, 2008). 

In their classic study, Levine & Stray-Gundersen (1997) assessed 

haematological changes via the Evans blue dye dilution technique before and 

after 39 moderately trained middle distance runners spent four weeks’ living and 

training at either 2500 m altitude or at sea level. These authors reported 

significant increases in red cell volume (RCV) (~9%) and   O2max (~5%) in the 

altitude groups, but not in the sea level control group (Levine & Stray-

Gundersen, 1997), providing the basis for numerous further investigations. 

However, around this time issues with the quantification of erythropoiesis 

confounded results of many altitude training studies, for example Ingjer & Myhre 

(1992) drew firm conclusions regarding haematological adaptations in highly-

trained cross-country skiers who underwent three weeks of altitude training, 

solely based on RBC concentration indices, e.g. [Hb] and haematocrit (HCT). 

Even though these authors attempted to control for the effects of exercise, 

nutrition, posture and environmental temperature on PV (Kargotich et al., 1998), 

it is clear that significant haemoconcentration does occur in response to an 

altitude sojourn and/or increase in Epo. Indeed, even when these factors are 

carefully controlled, there is significant haemoconcentration, for example, a 9% 

PV reduction after 9 d at 4100 m altitude (Sawka et al., 1996). Lundby & 

Robach (2010) specifically investigated this notion by injecting eight untrained 

participants with Epo for 15 weeks, and found that while the treatment 

increased [Hb] in all participants, this increase was mainly due to an increased 

tHb in approximately half the participants, but in the remaining participants the 
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change was due to a decreased PV. Regardless, simple RBC concentration 

indices have commonly been used to quantify erythropoietic changes, which is 

problematic given simultaneous effects on PV. A solution to this problem is the 

use of dilution techniques to estimate RCM or tHb, using Evans blue dye (el-

Sayed et al., 1995), radio-labelled chromium (Wennesland et al., 1959), or 

carbon monoxide (CO) gas rebreathing. The CO-rebreathing technique was first 

described by Myhre et al. (1968), and later optimised by Burge & Skinner (1995) 

and Schmidt & Prommer (2005). Only studies having used these techniques to 

quantify haematological change should be considered in relation to altitude 

acclimatisation, due to their greatly enhanced reliability and validity in 

comparison to RBC concentration indices. 

Heinicke et al. (2005) found that when six highly trained male biathletes lived at 

2050 m for three weeks, [Epo] significantly increased until day four, and by the 

end of the three weeks, tHb had significantly increased, by ~9%. A similar RCV 

increase of ~9% was reported by Robach et al. (2006b) after highly trained 

swimmers underwent just two weeks of living in normobaric hypoxia for 16 h·d-1, 

while training at sea level. This considerable RCV increase is somewhat 

surprising, given the shorter intervention duration compared to many other 

similar studies, and the 8 h·d-1 spent in normoxia. This may be at least partially 

explained by the RCV assessment methods being somewhat erroneous, for 

example one participant appeared to have experienced a RCV increase of 

~32%, which would seem physiologically unlikely (Gore & Hahn, 2005). 

Nevertheless, the reported RCV increases may have been in part due to the 

relatively high simulated altitude of 2500-3000 m. Recently, Wachsmuth et al. 

(2013) performed one of the very few studies to have monitored haematological 

adaptations in response to repeated altitude sojourns. 21 highly trained 

swimmers lived and trained for 3-4 weeks at 2320 m, three times over two 

years, and overall there was a mean ~7% tHb increase, which showed 

reasonable repeatability (Wachsmuth et al., 2013). 

While results from these empirical studies provide important detail regarding 

individual responses and underlying adaptations to altitude and hypoxia, by 

combining results from numerous studies, some of the ‘noise’ from inter-

individual participant variation is reduced, and overall outcomes become 

clearer. In a review and analysis of the available literature, Schmidt & Prommer 
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(2008) estimated that on average, tHb gains of 6.5% occur when sea level 

residents are exposed to ≥2500 m altitude, for ≥14 h·d-1, for ≥3 weeks. 

However, with the optimised CO-rebreathing technique for tHb estimation only 

being publicised in 2005 (Schmidt & Prommer, 2005), as well as additional 

methodological developments since (Prommer & Schmidt, 2007; Steiner & 

Wehrlin, 2011; Ulrich et al., 2011), many of the more recent investigations into 

the haematological effects of altitude using these properly controlled methods in 

highly trained participants are showing more modest gains. 

Garvican et al. (2012) investigated Epo and tHb changes in 13 highly trained 

cyclists who performed three weeks of living at 2760 m and training between 

1000-3000 m for 2-6 h·d-1 (n = 8) or at sea level (n = 5). After 2 d at altitude, 

Epo had increased by 64 ± 19%, and after 19 d at altitude, tHb had increased 

on average by 3.5%; whereas Epo and tHb remained unchanged in the sea 

level group (Garvican et al., 2012). This rather modest tHb increase is a 

deviation from much of the previously published literature, especially given that 

participants spent 18-22 h·d-1 at this relatively high altitude of 2760 m, in 

addition to the training at 1000-3000 m (Garvican et al., 2012). Similarly, Gough 

et al. (2012) found that regardless of whether elite swimmers underwent three 

weeks of resting in normobaric hypoxia for 14 h·d-1 (altitude simulation of ~3000 

m), or living and training at a physical altitude of 2135-2320 m, on average both 

interventions induced ~4% tHb increases. And finally, Robertson et al. (2010b) 

found that in middle distance runners, three weeks of living and intermittently 

training at a normobaric hypoxic altitude simulation of ~2200 m elicited 

significant tHb increases, on average +3.6% (Robertson et al., 2010b). 

All the available literature suggests that hypoxia induced Epo increases are 

highly variable between individuals (Chapman et al., 1998). Furthermore, 

Friedmann et al. (2005) found that acute changes in Epo are not necessarily 

related to tHb changes. Indeed, even when Epo is elevated in response to brief 

repeated hypoxic exposures, increased red blood cell (RBC) production does 

not necessarily follow (Ashenden et al., 2000; Gore et al., 2006). This is likely 

because the ‘hypoxic dose’ of ≥2500 m altitude, for ≥14 h·d-1, for ≥3 weeks, as 

outlined by Schmidt and Prommer (2008), is not achieved by such intermittent 

exposures. The ‘hypoxic dose’ is defined as the exposure duration in terms of 
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the number of h·d-1 and the number of total days, as well as the altitude and/or 

hypoxia severity (Wilber et al., 2007). 

Gore et al. (1998) investigated the effects of 31 d at 2690 m altitude on 

erythropoiesis and performance in eight elite male cyclists. While there was a 

significant post-altitude improvement in cycling performance, these authors did 

not observe any changes in Epo or tHb, and suggested that this was likely due 

to initial tHb values being close to their natural physiological limits (Gore et al., 

1998). More recently, Siebenmann et al. (2012) also found no significant 

erythropoietic enhancement in a group of 10 elite cyclists or triathletes, after 

they spent 16 h·d-1 in normobaric hypoxia (altitude simulation of ~3000 m), for 

four weeks, compared to a normoxic control group. Both the interventions 

employed by Gore et al. (1998) and Siebenmann et al. (2012) surpassed the 

suggested required hypoxic dose (Schmidt & Prommer, 2008), and in both 

studies, participants were highly trained, elite athletes – all actively competing at 

national or international levels. As such, it may be that athletes with an already 

high tHb are less susceptible to further erythropoiesis, although caution must be 

adopted here, as it is clear that a course of rHuEpo treatment does induce 

significant erythropoiesis (Durussel et al., 2013). Therefore it is expected that 

erythropoiesis would ensue at some magnitude of altitude, but potentially not in 

response to the moderate altitudes that athletes tend to be exposed to (Wilber 

et al., 2007), especially if baseline tHb is already high (Robach & Lundby, 

2012). 

Furthermore, Pottgiesser et al. (2009) investigated whether three weeks of 

living and training at 1816 m resulted in enhanced erythropoiesis in seven elite 

male cyclists. After the altitude sojourn there were no significant differences in 

tHb (mean 2.6% increase), RCV, PV, BV, or any RBC concentration variables. 

Similarly, Saunders et al. (2004) found that after 10 elite male endurance 

runners underwent four weeks of living for 9-12 h·night-1 for 5 nights·week-1, at 

a simulated altitude of 2000-3100 m, tHb remained statistically unchanged 

(mean 1.6% increase), and was not different to normoxic control group 

participants (Saunders et al., 2004). Participants in both these studies were 

highly trained, elite athletes; German national cycling team under 23 y category 

in Pottgiesser et al. (2009), and national or international runners with a mean 

  O2max of 73.0 ± 2.8 mL∙kg-1∙min-1 in Saunders et al. (2004). As such, again, it 
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could be argued that the already high pre-intervention tHb values left minimal 

scope for further enhancement (Gore et al., 1998). However, it seems more 

likely that the lack of tHb change was due to an insufficient hypoxic dose. 

Indeed, Pottgiesser and colleagues (2009) broadly concurred with Schmidt and 

Prommer (2008) in their conclusion that an altitude at or above 2100 m is 

required to elicit significant erythropoietic responses. 

In another more recent comprehensive meta-analysis, Rasmussen et al. (2013) 

only assessed studies that directly measured blood compartments, then carried 

out a Monte Carlo Simulation on the pooled data set. These authors estimated 

that to elicit RCV increases of 5% and 10%, athletes would need to be exposed 

for 24 h·d-1 to 2500 m altitude for 29 and 37 d, respectively (Rasmussen et al., 

2013). These hypoxic doses are considerably greater than previous guidelines 

(Schmidt & Prommer, 2008; Wilber et al., 2007), and are in disagreement with 

Levine & Stray-Gundersen (1997), who reported a 9% RCV gain after 28 d at 

2500 m. Part of this discrepancy likely comes from the significantly worse 

coefficient of variation (CV) for RCV assessed via the Evans blue dye dilution 

technique (~7%), compared to tHb or RCM assessed via CO-rebreathing (~2%) 

(Gore et al., 2005). As such, Gore and colleagues recently published a similar 

meta-analysis, but which only included studies that directly measured blood 

compartments via the optimised CO-rebreathing technique (Gore et al., 2013). 

According to this latter meta-analysis and associated linear mixed modelling, a 

tHb increase of 5% on average requires ~20 d continuous altitude exposure 

(Gore et al., 2013), i.e. substantially less than the 29 d for a 5% RCV increase, 

as estimated by Rasmussen et al. (2013). 

In summary, although significant haematological adaptations to altitude and 

hypoxia are reported, the expected magnitude of any such change is still in 

question, and is perhaps less than reported by early studies, e.g. Levine & 

Stray-Gundersen (1997). This is likely because: i) RBC concentration indices 

have been replaced with more advanced haematological assessment 

techniques that have inherently lower error margins; ii) modern techniques are 

generally less complex and invasive (e.g. radio-labelled chromium vs. CO-

rebreathing), thus allowing more laboratories worldwide to undertake the 

technique, and more frequent assessments to be carried out, providing an 

enhanced overall understanding of haematological changes; and iii) instead of 
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investigating haematological responses in collegiate level and/or moderately 

trained individuals (Levine & Stray-Gundersen, 1997), much of the recent 

research has assessed highly trained athletes (Garvican et al., 2012; Gore et 

al., 1998; Pottgiesser et al., 2009; Siebenmann et al., 2012), who unsurprisingly 

seem to show less exaggerated haematological gains. Furthermore, cases 

where significant haematological adaptations are not apparent, but sea level 

athletic performance subsequently improves (Gore et al., 1998), and where tHb 

increases without a concomitant   O2max increase (Robach et al., 2012), 

suggest that factors other than erythropoiesis transpire. 

1.2.5 Non-haematological adaptations 

In an elegant study by Garvican et al. (2011), 11 highly trained female cyclists 

spent 16 h·d-1 living in normobaric hypoxia (altitude simulation of ~3000 m), 

while training in normobaric normoxia. After 14 nights, participants were split 

into either a response group (n = 5), in which tHb continued to be free to adapt, 

or a clamp group (n = 6), in which tHb was maintained at baseline levels by 

means of phlebotomy. At the end of the intervention, tHb increased by ~5% in 

the response group, and after blocking a ~4.5% increase in the clamp group, 

tHb was unchanged. While endurance cycling performance improved in the 

response group, but not in the clamp group, the (significant) improvements in 

anaerobic cycling performance were not different between groups (Garvican et 

al., 2011). This confirms that a) as per the traditional view, changes in tHb 

influence the aerobic contribution to high intensity exercise, and b) accelerated 

erythropoiesis is not the sole mechanism by which hypoxic exposure at rest 

improves athletic performance (Garvican et al., 2011). Therefore, other, non-

haematological, adaptations to altitude and/or hypoxia may be equally if not 

more important than accelerated erythropoiesis (Gore & Hopkins, 2005). Such 

adaptations, also mediated by HIF-1, may include enhanced angiogenesis 

(Berra et al., 2000), mitochondrial biogenesis (Geiser et al., 2001; Vogt et al., 

2001), H+ buffering capacity (Mizuno et al., 1990) and glycolytic capacity 

(Semenza, 2009), as well as other non-erythropoietic effects of Epo, such as an 

improved perception of physical condition (Ninot et al., 2006) and an increased 

mitochondrial oxidative phosphorylation capacity (Plenge et al., 2012). 
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1.2.5.1 Angiogenesis 

Angiogenesis, the expansion of the capillary network, enhances tissue 

vascularity, thereby improving exchange properties between blood and tissue, 

most notably concerning O2, CO2 and glucose (Prior et al., 2004). The hypoxic 

induced enhanced HIF-1 expression is thought to activate multiple genes that 

encode angiogenic growth factors and cytokines, the most established and 

seemingly potent of which is VEGF (Semenza, 2009). Indeed, VEGF 

messenger ribonucleic acid (mRNA) levels are dramatically increased within a 

few hours of exposing cell cultures to hypoxia, and return to baseline levels 

when normoxic conditions are resumed (Shweiki et al., 1992). 

In an early hypoxic training study, eight competitive cyclists trained for 60-90 

min, 4-5 sessions·week-1, for 3-4 weeks, in either normobaric normoxia, or at a 

hypobaric hypoxic altitude simulation of ~2300 m (Terrados et al., 1988). 

Although muscle biopsy derived morphology results did not show any 

statistically significant differences, probably due to the small participant 

numbers (n = 4 in each group) and the varied individual responses, the number 

of capillaries per unit muscle area increased in all participants in the hypoxic 

group (mean change +15%), whereas this was not the case in the normoxic 

group (mean change -8%) (Terrados et al., 1988). Similarly, in a larger scale, 

thorough training study, Vogt et al. (2001) had a group of 30 untrained males 

undertake five cycling sessions·week-1 for a total of six weeks, either at a high 

or low exercise intensity, in either normobaric normoxia or a normobaric hypoxic 

altitude simulation of 3850 m. In the high intensity hypoxic group, VEGF mRNA 

increased significantly, as did capillary density, assessed via muscle biopsy, but 

this was not the case in the low intensity hypoxic group, or in the normoxic 

groups. This is perhaps due to a combination of the (low) O2 sensing, as well as 

the high intensity exercise causing shear and/or mechanical stress, which are 

known to result in exaggerated angiogenesis (Prior et al., 2004). While these 

results are informative, unfortunately Vogt et al. (2001) did not report the 

capillary density per unit cross-sectional area, so it is difficult to estimate to what 

extent overall muscle vascularisation was altered. Nevertheless, these links 

between hypoxia, HIF-1, VEGF mRNA and enhanced angiogenesis have been 

repeatedly shown in vitro (Forsythe et al., 1996; Ladoux & Frelin, 1993; 

Terrados et al., 1988; Vogt et al., 2001). In vivo results are sparse though, and 
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the physiological implications of increased VEGF mRNA and capillary density 

has not been thoroughly investigated. 

Phosphorus-31 nuclear magnetic resonance spectroscopy (31P-MRS) can 

accurately estimate the phosphocreatine (PCr) concentration within skeletal 

muscle tissue (McMahon & Jenkins, 2002). Assuming that prior exercise 

intensity has not been severe enough to induce a reduction in intracellular pH, 

the rate of PCr resynthesis, quantified as the PCr recovery time constant ([PCr]-

τ), is considered to be a robust measure of mitochondrial respiration, thus 

representing maximal skeletal muscle oxidative capacity (Conley et al., 2000; 

McMahon & Jenkins, 2002; Taylor et al., 1983). Using 31P-MRS, Haseler et al. 

(1999) showed that [PCr]-τ was slower when O2 availability was restricted, and 

in contrast, [PCr]-τ was quicker in hyperoxia. Thus it appears that O2 delivery to 

the active tissue is inadequate in environmental hypoxia (albeit using a rather 

extreme simulated altitude of approximately 6000 m by Haseler and 

colleagues), so it would seem logical that, in agreement with Vogt et al. (2001), 

after a sufficient hypoxic dose, angiogenesis would occur to enhance O2 

delivery. In contrast, a similar study to that by Vogt and colleagues did not find a 

significant increase in VEGF mRNA after six weeks’ exercise training at a 

simulated altitude of ~3000 m, even though HIF-1α mRNA was significantly 

elevated (Zoll et al., 2006). Whether the augmenting effects of endurance 

exercise training on angiogenesis is further enhanced by hypoxic exposure, 

either at rest or during exercise, remains to be conclusively demonstrated. 

1.2.5.2 Mitochondrial biogenesis 

As well as enhanced O2 transport via erythropoietic and vascular pathways, the 

observed increases in   O2max after hypoxic exposures could also be at least 

partially attributable to an increased O2 utilisation by the active tissue. 

In the first study to assess muscle energetic responses to short-term hypoxic 

training, Kuno et al. (1994) reported a significantly shorter [PCr]-τ, assessed via 

31P-MRS, after a hypobaric hypoxic training intervention, indicative of an 

enhanced maximal oxidative capacity. The hypoxic dose of 60 min, twice per 

day, for four consecutive days (at a simulated altitude of ~2000 m), was well 

below any threshold by which erythropoiesis might occur (Rasmussen et al., 

2013). As such, this greater oxidative capacity was likely caused by either 
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enhanced angiogenesis, thereby increasing O2 transport to the mitochondria, or 

alternatively a greater utilisation of O2 by the mitochondria themselves, due to 

an increase in the total number or mass of skeletal muscle mitochondria. These 

suppositions were highlighted in the aforementioned investigation by Vogt et al. 

(2001), who found that subsarcolemmal mitochondrial density significantly 

increased after six weeks of high- and low-intensity hypoxic training (+130% 

and +100%, respectively), but not after high- or low-intensity normoxic training 

(+1% and -13%, respectively). Comparable results have been confirmed by the 

same Swiss research group, using a similar intermittent hypoxic training 

intervention (Geiser et al., 2001). In addition, PGC-1α, which stimulates 

mitochondrial biogenesis in response to physical exercise (Jornayvaz & 

Shulman, 2010), is likely more active in response to hypoxic exercise (Geiser et 

al., 2001; Vogt et al., 2001), and the subsequent increase in mitochondrial O2 

consumption has been shown to result in further intracellular hypoxia (O'Hagan 

et al., 2009). 

However, the physiological effects of sustained living in hypoxia are not 

consistent. Robach et al. (2012) found that in vitro muscle maximal oxidative 

capacity was not significantly improved after endurance trained athletes were 

exposed to a normobaric hypoxic altitude simulation of ~3000 m for ≥16 h·d-1 for 

four weeks, in comparison to a double blinded normoxic control group. In this 

circumstance, however, resting in hypoxia has been shown to result in 

enhanced muscle blood flow, that serves to counteract CaO2 reductions 

(Heinonen et al., 2010), and therefore total muscle O2 delivery and muscle PO2 

remain largely unaltered (Calbet et al., 2009; DeLorey et al., 2004). As such, it 

is then unsurprising that only resting in moderate hypoxia does not enhance 

skeletal muscle oxidative morphology (Robach et al., 2012); instead, an 

intensive (O2 demanding) exercise stimulus is likely required. 

In support of this view, Levett and colleagues from the Caudwell Xtreme 

Everest Research Group assessed muscle biopsy ultrastructure of lowland 

natives during a 10 week sojourn to high altitudes, including a Mount Everest 

summit attempt for some participants (Levett et al., 2011). After 19 d at 5300 m, 

there were no detectable changes in mitochondrial content, however, after 66 d 

at or above 6400 m, total mitochondria and subsarcolemmal mitochondria 

densities significantly decreased, on average by -21% and -73%, respectively. 
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Body mass also significantly decreased, on average by 9%, indicating a degree 

of lean muscle atrophy, but as mitochondria densities were calculated per 

muscle fibre volume, anthropometric changes would not have confounded these 

morphological results. Additionally, PGC-1α levels had significantly decreased, 

on average by -35%, suggestive of a down-regulation of mitochondrial 

biogenesis during this sustained 66 d hypoxic sojourn (Levett et al., 2011). 

Whilst this is a high altitude study, key findings may be applicable to the 

responses in athletes to moderate altitude. 

As Hochachka & Somero (2002) summarise, “hypo-metabolism is a widespread 

hypoxia defence response” (p.136), so it is perhaps unsurprising that prolonged 

exposure to extremely hypoxic conditions down-regulates mitochondrial 

biogenesis (Hoppeler et al., 2003; Levett et al., 2011; Robin et al., 1984). 

However, the effects of short-term and/or intermittent exposures to moderate 

degrees of hypoxia on mitochondrial biogenesis are not yet fully understood. 

1.2.5.3 H+ buffering capacity 

Although a variety of other influences exist, the accumulation of H+ during high 

intensity exercise poses one limiting factor to maintained skeletal muscle force 

production (Allen et al., 2008). Therefore, an improved capacity to buffer H+ has 

been proposed to enhance high intensity exercise performance (Messonnier et 

al., 2007). Furthermore, it is logical to postulate that the relatively reduced 

oxidative and greater anaerobic contribution during exercise in hypoxia 

compared to normoxia (Balsom et al., 1994), may elicit specific anaerobic 

adaptations, potentially related to the defence of acid-base balance. 

Juel et al. (2003) reported that RBC monocarboxylate transporter 1 (MCT1) 

content increased linearly with time spent at 4100 m altitude in healthy but 

untrained sea level natives. As MCT1 is a key transporter of lactate and H+ 

(Messonnier et al., 2007), this suggests a hypoxia induced enhanced capacity 

for lactate and H+ to be transported out of muscle cells to plasma, and from 

plasma into RBC’s, which may elicit enhanced H+ buffering (Juel et al., 2003). 

These results are further supported by Boning et al. (2001), who reported that 

the transport of lactate and H+ across cell membranes was positively influenced 

by altitude acclimatisation involving a Himalayan expedition to 2800-7600 m, 

and Ullah et al. (2006), who showed that monocarboxylate transporter 4 (MCT4) 
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gene expression was significantly increased in cell cultures that were incubated 

with a gas mixture of 1% O2, 5% CO2 and 94% N2. Taken together, these 

results suggest that hypoxic exposure can improve intracellular H+ buffering, 

which may be beneficial for maintaining skeletal muscle force production during 

high-intensity exercise. None of these studies investigated effects in trained 

athletes, however. 

The overwhelming methodological issue with this field of research is the 

invasive nature of quantifying H+ buffering capacity, especially in trained 

athletes, who are seldom at ease with taking time out of training to undergo 

muscle biopsies. As such, there is a paucity of data in athletes. Clark et al. 

(2004) reported that muscle MCT1 and MCT4 content remained unchanged 

after highly trained athletes spent 20 nights in normobaric hypoxia (simulating 

~2650 m altitude). However, participants only exercised in normoxia, and it may 

be that high intensity exercise is required to stimulate an improved H+ buffering 

capacity. Indeed, Zoll et al. (2006) reported a significant MCT1 mRNA 

expression increase after highly trained endurance runners exercised 

intermittently for six weeks in normobaric hypoxia. Additionally, Mizuno et al. 

(1990) found that H+ buffering capacity significantly improved in muscle biopsies 

of 10 highly trained cross-country skiers after they spent two weeks living at 

2100 m and training at 2700 m. This may have been due to direct MCT effects, 

but equally it should not be overlooked that Hb itself provides a potent buffer 

against H+ accumulation: the Bohr-Haldane effect allows deoxygenated Hb to 

carry dissolved CO2 as carbaminohaemoglobin, thereby acting to reduce tissue 

acidosis (Grant, 1982). As such, in addition to the previously discussed 

improved O2 transport, any tHb increase resulting from sustained hypoxic 

exposure will likely have beneficial effects on systemic H+ buffering capacity. 

Despite results from these few studies, given the limited research to date, and 

the relatively indirect assessment methods of the research that has occurred, 

whether altitude and/or hypoxic interventions influence H+ buffering capacity to 

a sufficient extent as to enhance exercise performance is currently unknown. 

1.2.5.4 Glycolytic capacity 

There is considerable evidence that chronic exposure to high altitude causes a 

decreased reliance on lipids, and an enhanced reliance on carbohydrate for 
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metabolic energy production. Using highly sensitive stable isotope tracer 

methods, Brooks et al. (1991) showed that acute exposure to 4300 m altitude 

causes increased resting glucose utilisation. Furthermore, both Brooks et al. 

(1991) and Roberts et al. (1996) showed that three weeks of continuous 

exposure to 4300 m caused decreased lipid and increased carbohydrate 

utilisation during submaximal exercise. Whether similar effects occur in highly 

trained athletes, who tend to have a greater capacity to oxidise fats during 

exercise compared to untrained individuals (Holloszy & Coyle, 1984), has been 

questioned. Roels et al. (2007) exposed endurance trained athletes to three 

weeks of intermittent training (15 sessions, each lasting 60 to 90 min) in either 

normobaric normoxia or hypoxia (altitude simulation of 3000 m), and found that 

the hypoxic training stimulus enhanced the mitochondrial preference for glucose 

metabolism. Taken together, these results suggest that hypoxic exposure may 

alter substrate preference, even in highly trained athletes who are only exposed 

to a moderate severity of hypoxia. Given that glucose is the most O2 efficient 

substrate (Brooks et al., 1991), it would seem logical that any such increased 

metabolic reliance on glucose would be of direct benefit to exercise efficiency 

and/or capacity. This may not be the case for events that significantly reduce 

liver and muscle glycogen stores, as a more preferential usage of glucose may 

lead to earlier glycogen depletion, but in any case this direct link has not been 

conclusively demonstrated (Roels et al., 2007). 

1.2.5.5 Non-erythroid effects of Epo 

As well as the erythropoietic actions governed by Epo, wider-reaching effects 

have recently been investigated, largely due to the potential for positive health 

consequences of rHuEpo dosages for numerous clinical conditions; see 

Arcasoy (2008) for a review. As well as the potential for physiological 

enhancement, Miskowiak et al. (2008) reported significantly improved cognitive 

function just 3 and 7 d after healthy males were administered a single 40,000 IU 

dose of rHuEpo. Considering that there was no detectable change in RBC 

concentration indices, this study suggests that rHuEpo has a direct neurological 

action (Miskowiak et al., 2008). Similarly, one study assessing the effects of six 

weeks of rHuEpo dosages in endurance trained males reported positive 

influences on perceived physical condition and strength, and increased clinically 

classified self-esteem (Ninot et al., 2006). Specifically in relation to sports 
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performance, while the effects of Epo on skeletal muscle has not shown any 

significant positive impact on angiogenesis (Lundby et al., 2008b), eight weeks 

of regular rHuEpo dosages have resulted in significant positive influences on 

muscle mitochondrial capacity (Plenge et al., 2012). 

Clearly the potentially positive effects of Epo for athletic performance reach far 

further than simply those of new RBC formation (Boning et al., 2011), and 

considering it is known that altitude and hypoxic training does increase 

circulating concentrations of Epo (Eckardt et al., 1989; Garvican et al., 2012), all 

adaptation pathways must be considered. That said, it is currently unconfirmed 

whether any non-erythropoietic effects of Epo may be responsible for increases 

in exercise performance in highly trained athletes (Lundby & Olsen, 2011). 

1.2.6 Summary of the mechanisms associated with altitude and 

hypoxic exposure 

Whilst the wealth of research interest, using numerous modern analytical 

techniques, are helping researchers to understand the key mechanisms, there 

is still much debate as to whether performance enhancement resulting from 

altitude and/or hypoxic exposure is primarily due to haematological (Levine & 

Stray-Gundersen, 1997; Levine & Stray-Gundersen, 2005) or non-

haematological adaptations (Gore et al., 2007; Gore & Hopkins, 2005). These 

questions warrant further investigation. 
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1.3 Methods and performance efficacy of altitude and hypoxia 

Given the above adaptive responses, there has been considerable interest in 

the potential for athletic performance enhancement resulting from hypoxic 

stimuli. However, when assessing the efficacy of an intervention in relation to 

performance enhancement, defining what is a meaningful change is a complex 

task (Gore, 2014), as highly trained athletes who are nearing their genetic 

performance limit may only experience marginal gains (Ahmetov & Rogozkin, 

2009). Perhaps the most striking and recent real world examples of this come 

from the London 2012 Olympic Games, when the sum of the differences 

between 1st and 2nd place in the men’s and women’s longest distance 

swimming, cycling and running races totalled just 0.35 s (0.3%). Additionally, 

Pyne et al. (2004) reported that in highly trained swimmers, the CV between 

major competitions during an Olympic year was just 0.8%, and suggested that 

interventions that enhance performance by as little as 0.4% would substantially 

increase the chances of winning an international standard medal (Pyne et al., 

2004). With margins as small as 0.3-0.4%, the rationale for performance 

targeted altitude and hypoxia interventions is clear. 

There are now a wide variety of altitude and hypoxic strategies in use, each 

targeting different mechanisms, with varying degrees of evidence supporting 

their performance efficacy. Strategies range in hypoxic dose (Wilber et al., 

2007) from living and training for 24 h·d-1 for numerous weeks at moderate 

altitude (Gore et al., 1998), to repeated 5 min exposures to normobaric hypoxia 

at rest, while living at sea level (Hamlin & Hellemans, 2007). Figure 1.1 

summarises the most commonly used altitude and hypoxic interventions, in 

order of their hypoxic dose. The subsequent text discusses the performance 

efficacy of each type of intervention, with tables at the end of each section 

acting to summarise all the discussed empirical research. 
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Hypoxic 
dose 

Type of exposure 

LARGE 

(24 h·d
-1

) 

Live high, train high (LH+TH) 

Traditional altitude camp, spending all day at moderate altitude (1500-3000 m), typically for 2-4 weeks. 

 Live high, train high and train low (LH+TH+TL) 

Traditional altitude camp; spending most of each day at moderate altitude (1500-3000 m), with some exercise 
performed at lower altitudes, or while breathing a hyperoxic inspirate to simulate being at lower altitudes. 

 

Live high, train low (LH+TL) 

Traditional altitude camp; spending most of each day at moderate altitude (1500-3000 m), with all exercise 
performed at lower altitudes, or while breathing a hyperoxic inspirate to simulate being at lower altitudes. 

 

Simulated live high, train low (simulated LH+TL) 

Sleeping in a normobaric or hypobaric hypoxic tent or room, typically simulating moderate altitude (1500-3000 m), 
while training at or near sea level (usually spending 10-16 h·d

-1
 in the hypoxic environment). 

 

Intermittent hypoxic training (IHT) 

Performing some exercise training in a normobaric or hypobaric hypoxic chamber, or while breathing a 
normobaric hypoxic inspirate, while living at sea level. 

SMALL 

(<1 h·d
-1

) 

Intermittent hypoxic exposure (IHE) 

Short phases of passive rest in a normobaric or hypobaric hypoxic chamber, or while breathing a normobaric 
hypoxic inspirate, while living at sea level. 

Figure 1.1: A summary of the most common altitude and hypoxia methods, in descending order of their ‘hypoxic dose’. 
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1.3.1 Performance efficacy of traditional altitude training camps 

Traditionally altitude training camps involved acclimatisation to moderate 

altitude, usually by living and undertaking normal exercise training at 1500-3000 

m, for 2-4 weeks, termed ‘live high, train high’ (LH+TH) (Wilber et al., 2007). 

Research interest in LH+TH interventions increased in the lead up to and after 

the Mexico City 1968 Olympic Games, as it was held at an elevation of 2420 m. 

Daniels & Oldridge (1970) investigated the effects of six weeks’ LH+TH at 2300 

m, spread intermittently over a 10 week period in highly trained middle distance 

runners, and reported impressive performance gains, including personal best 

times for all six participants, and a World Record in the one mile race. Similarly, 

Dill & Adams (1971) reported significant improvements in the limit of tolerance 

(T-Lim) during incremental treadmill tests, after six highly trained middle 

distance runners undertook LH+TH for 17 d at 3090 m. In the previously 

detailed study by Mizuno et al. (1990), two weeks of LH+TH (living at 2100 m 

and training at 2700 m) was reported to significantly improve T-Lim in 10 highly 

trained cross-country skiers. Beneficial effects on performance after altitude 

training were not universally reported in this era though. For example, Buskirk et 

al. (1967) found that after six highly trained middle distance runners undertook 

4-5 weeks of LH+TH at 4000 m,   O2max values were comparable, and running 

performances were worsened compared to pre-altitude. Similarly, Svedenhag et 

al. (1997) found that LH+TH at 1900 m for 29 d did not elicit any significant 

performance gains in highly trained cross-country skiers (mean   O2max = 77.9 

and 71.8 mL∙kg-1∙min-1 for males and females, respectively). Importantly, as all 

these studies were observational in their design (Buskirk et al., 1967; Daniels & 

Oldridge, 1970; Dill & Adams, 1971; Mizuno et al., 1990; Svedenhag et al., 

1997), they did not include control groups, so whether it was the hypoxic stimuli 

or simply an intensified period of training that resulted in performance changes 

is not known. 

Interestingly, Buskirk et al. (1967) suggested that after the 4-5 weeks of LH+TH 

at 4000 m the runners were relatively detrained as a result of the reduction in 

their (absolute) training intensity. Indeed, when undertaking all exercise training 

at altitude, absolute exercise intensity (power output or velocity) is reduced 

compared to the equivalent exercise at sea level, due to the lesser metabolic 
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contribution from oxidative sources; a lower “O2 flux” (Wilber, 2013a). As such, 

Levine & Stray-Gundersen (1992) proposed an original approach whereby 

athletes live at moderate altitude (1500-3000 m) and perform their exercise 

training at or near sea level, termed ‘live high, train low’ (LH+TL), or using a 

combination of exercise training at moderate altitude and near sea level, termed 

‘live high, train high and low’ (LH+TH+TL). These authors then carried out what 

is now the most commonly cited altitude training study to date (Levine & Stray-

Gundersen, 1997). 

After four weeks of sea level training, 39 collegiate level middle distance 

runners underwent four weeks of either LH+TH (living and training at 2500 m), 

LH+TL (living at 2500 m, training at 1250 m), or sea level living and training. 

5000 m time trial performance significantly improved after LH+TL (on average 

by 1.4%), and this performance improvement was significantly greater than that 

of both the LH+TH and the sea level control groups (Levine & Stray-Gundersen, 

1997). It was suggested that the LH+TL participants trained at a low enough 

altitude to maintain O2 flux and interval training velocity near sea-level values, 

thereby preserving muscle structure and function specific to 5000 m race pace 

(Chapman et al., 1998). It is somewhat perplexing though, that in addition to 

5000 m performances worsening in the LH+TH group, performances were on 

average ~3% slower after sea level training. Possible causes of this worsened 

performance could be a nocebo effect, due to these participants having not 

been selected for one of the assumed beneficial altitude groups, or that these 

participants were overly fatigued during post-intervention testing. Although the 

worsened performances were not significant, they would have contributed to the 

significant difference between groups. Nevertheless, this report provided the 

stimulus for numerous LH+TH and LH+TL investigations since. 

In their “double case study”, Wehrlin & Marti (2006) assessed two highly trained 

29 y old male runners who for 26 d lived at 2456 m for 18 h·d-1, while training at 

1800 m (LH+TH+TL). The first participant’s 5000 m time 1 d after altitude 

improved by 3.0%, and by 1.3% 27 d later at the World Championships, 

compared to his previous best time. In the second participant, marathon 

performance was 0.2% slower at the World Championships than his best time, 

although the authors argued that these performances were incomparable due to 

the differing relief of the routes and pacing strategies employed. Similarly, to 
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further investigate whether the LH+TL induced performance enhancement from 

their previous study (Levine & Stray-Gundersen, 1997) would apply to highly 

trained athletes, Stray-Gundersen et al. (2001) exposed 26 national and 

international standard runners to 27 d living and low intensity training at 2500 m, 

while performing high intensity interval training at 1250 m (a LH+TH+TL 

design). These authors reported significantly enhanced running performances 

post-altitude (on average by 1.1% during a 3000 m race), which was 

comparable to the 1.4% performance improvement during a 5000 m race in 

their previous study (Levine & Stray-Gundersen, 1997). These results are also 

in broad agreement with Wehrlin et al. (2006), who reported significantly 

improved 5000 m running performances (mean +1.6%) in moderately trained 

athletes after 24 d of living at 2500 m for 18 h·d-1 while performing low and 

medium intensity training at 1800 m, and high intensity training at 1000 m. 

Again, there were no control groups in Stray-Gundersen et al. (2001) or Wehrlin 

& Marti (2006), and the control group in Wehrlin et al. (2006) did not perform 

comparable exercise assessments. As such, although reports of (ecologically 

valid) race performance gains in the magnitude of 1.1-1.6% do constitute a 

meaningful change, it is difficult to discern to what extent the LH+TH+TL 

induced biological hypoxia caused these changes, as opposed to a training 

camp or placebo effect (Bonetti & Hopkins, 2009). 

To address this issue, Dehnert et al. (2002) carried out a well designed study 

whereby 21 moderately trained triathletes (baseline mean cycling   O2max of 

~61 mL∙kg-1∙min-1) undertook similar training at 800 m for 14 d, and either lived 

at this same altitude (control group), or at 1956 m for 13-15 h·d-1 (LH+TL 

group). While T-Lim during an incremental speed treadmill test improved in 6 of 

10 LH+TL participants, compared to only 2 of 10 in the control group, the 

between group differences did not reach statistical significance (P = 0.068). 

This lack of a significant performance change is perhaps not surprising though, 

as the hypoxic dose of 13-15 h·d-1 at 1956 m for just 14 d was considerably less 

than previous reports whereby participants spent most of each day at ~25000 m 

for 24-48 d (Levine & Stray-Gundersen, 1997; Stray-Gundersen et al., 2001; 

Wehrlin & Marti, 2006; Wehrlin et al., 2006). 

In order to maximise the hypoxic dose, as well as due to certain logistical 

constraints causing travel to lower altitudes for LH+TL to be problematic, 
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LH+TH interventions are still commonly used. Wachsmuth et al. (2013) 

controlled for a variety of covariates, and concluded that after highly trained 

swimmers undertook 3-4 weeks of LH+TH at 2320 m, competitive race 

performances were not significantly improved at 0-14 d or 15-24 d post-altitude, 

but after spending between 25-35 d at sea level, performance did significantly 

improve, on average by +0.8%. While this may seem a relatively small margin, 

the study’s statistical power was strong because data were included from three 

altitude camps over a 2 y period, in 45 highly trained swimmers (27 of which 

competed at the Beijing 2008 Olympic Games). Similarly, Bonne et al. (2014) 

found that swimming test performance (4 x 50 m anaerobic efforts and a 3000 

m aerobic time trial) improved by effectively the same extent immediately after 

3-4 weeks of LH+TH or sea level living and training. The intervention was 

somewhat complex, as 7 of the 10 LH+TH group participants spent an initial 7 d 

living at 3094 m (Leadville, Colorado, USA), before being joined by the 3 other 

LH+TH group participants for a further 21 d at 2130 m (Flagstaff, Arizona, USA). 

It would have been insightful to have also quantified performance in competitive 

races, and to have assessed any such performance changes at more time 

points post-altitude, for example in the 25-35 d period (Wachsmuth et al., 2013). 

Bailey et al. (1998) found that four weeks of LH+TH at 1500-2000 m resulted in 

slower maximum running speeds in a standardised training session (at 20 d 

post-altitude), and no improvement in maximum endurance performance, 

compared to a sea level control group. These results must be interpreted with a 

degree of caution though, as 10 participants were found to be iron deficient, 

despite daily oral iron supplementation, and the frequency of upper respiratory 

and/or gastrointestinal tract infections increased markedly during the altitude 

camps, whereas there were no reports of any such illness in the sea level 

control group (Bailey et al., 1998). 

In the study to have used perhaps the most highly trained group of participants 

to date, Gore et al. (1998) reported exercise test data of eight male cyclists 

(mean   O2peak = 81 mL∙kg-1∙min-1), all of whom had been Olympic or World 

gold medallists and/or senior or junior level World Record holders, before and 

after LH+TH for 31 d at 2690 m. While there was no single time point post-

altitude when total work during a 4000 m cycling time trial had significantly 

improved, when the best of the three time trials at 4, 9 and 21 d post-altitude 



 
 

Page 41 of 231 
 

were compared to pre-altitude, there was a significant performance 

improvement (mean +4.3%). Conversely, as the mean reduction for each 

individual’s worst post-attitude time trial performance was not significantly 

different from pre-altitude (mean -2.4%), Gore and colleagues took this to 

indicate meaningful performance gains. In this study, injuries and a 

gastrointestinal illness during the third and fourth week at altitude reduced the 

training load of most of the group for 3-4 d (Gore et al., 1998). Interestingly, 

Wachsmuth et al. (2013) demonstrated that in seven swimmers who reduced 

their training load due to illness or injury at altitude, tHb gains were significantly 

attenuated compared to those swimmers who remained injury and illness free 

(mean tHb increase of ~2% vs. ~7%, respectively). If a similar illness / injury 

mediated blunting of tHb occurred in participating athletes in the reports by 

Gore et al. (1998) and Bailey et al. (1998), this may partially explain the 

inconsistency or lack of post-altitude performance changes. 

In their meta-analysis, Bonetti & Hopkins (2009) concluded that for “elite 

athletes”, maximal endurance power output enhancement was “possible” after 

LH+TL, but that conversely,   O2max reductions were also “possible” after 

LH+TH. Specifically, these authors calculated that when appropriately 

conducted, acclimatisation to physical altitude elicits up to 4% maximal 

endurance power output improvements in elite athletes (Bonetti & Hopkins, 

2009). When this is considered in context with the premise that a meaningful 

change in competitive performance may be as small as 0.3% (see Section 1.3), 

it is clear why numerous athletes worldwide regularly undertake some form of 

altitude training. However, while some studies have been well planned and 

executed, using sea level control groups, very few have assessed post-altitude 

performances at important competitions, in highly trained athletes, when 

baseline physiological variables are already near optimum levels. The LH+TL 

paradigm in particular is lacking a sound evidence base, given that the original 

report by Levine and Stray-Gundersen (1997) is the only study that has 

included a sea level control group to have found a performance benefit from 

LH+TL to date (please see the above critique of this paper). This area of 

physical altitude training clearly warrants further research. 

Table 1.1 summarises the key research that has been discussed in this section 

in relation to the performance efficacy of traditional altitude training camps. 
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Table 1.1: Summary of the referenced literature concerning the performance efficacy of traditional altitude training camps. 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations and/or 
limitations 

Bailey et al. 
(1998) 

LH+TH (living and training 
at 1500-2000 m) or sea 
level living and training, for 
28 d. 

23 highly trained middle 
distance runners (14 in the 
LH+TH group and 9 in the 
sea level control group). 

Significantly slower mean running velocity 
during a standardised track training session 
after LH+TH than before (mean -2% 
change), compared to no such change in 
the sea level control group. 

In the LH+TH group, 10 were 
iron deficient, and the frequency 
of infectious illnesses 
increased. There were no such 
incidences in the control group. 

Bonne et al. 
(2014) 

LH+TH (living and training 
at 3094 m for 7 d, then at 
2130 m for a further 21 d) or 
sea level (training camp) 
living and training for 28 d. 

20 highly trained swimmers 
(10 in the LH+TH group, 7 
of which spent the first 7 d 
at 3094 m, and 10 in the 
sea level control group). 

Swimming performances during a repeated 
anaerobic test set (4 x 50 m at maximum 
effort, each interspersed by 10 s rest), and 
a 3000 m time trial improved within the 
LH+TH and the sea level control group, but 
did not significantly differ between groups. 

Performance was only 
assessed training test sets, and 
not via any race performances. 
The additional 7 d at 3094 m for 
certain participants adds 
confusion to the study design. 

Buskirk et al. 
(1967) 

LH+TH (living and training 
at 4000 m) for 28-35 d. 

6 highly trained middle 
distance runners. 

  O2max values were comparable, and 
running performances were worsened. 

No control group. 

Daniels & 
Oldridge 
(1970) 

LH+TH (living and training 
at 2300 m) intermittently for 
42 d as four separate 
camps over a 70 d period. 

6 highly trained middle 
distance runners. 

  O2max improved, on average by +5%, 
and all 6 participants improved their 
personal best 1 mile or three mile times, 
including a 1 mile World Record. 

No control group. 

Dehnert et al. 
(2002) 

LH+TL (living at 1956 m for 
13-15 h·d

-1
 while training at 

800 m) or near sea level 
living and training (at 800 
m) for 14 d. 

21 moderately trained 
triathletes (11 in the 
LH+TH group and 10 in the 
near sea level control 
group). 

T-Lim during an incremental treadmill test 
improved in 6 of 10 LH+TL group 
participants, compared to only 2 of 10 
control participants, but the between group 
differences were not significant (P = 0.07). 

Hypoxic dose may have been 
too small to induce significant 
erythropoiesis. 

Dill & Adams 
(1971) 

LH+TH (living and training 
at 3090 m) for 17 d. 

6 highly trained middle 
distance runners. 

  O2max improved, on average by +4%, 
and T-Lim during an incremental gradient 
and speed test significantly improved, on 
average by +24% (range 10% to 44%). 

No control group. 

Gore et al. 
(1998) 

LH+TH (living at 2690 m 
and training at 1850 m – 
4578 m) for 31 d. 

8 highly trained male track 
cyclists. 

The best of the 4000 m time trials at 4, 9 
and 21 d post-altitude were on average 4% 
better than pre-altitude. 

No control group. Injuries and 
illness during the 3rd and 4th 
week at altitude reduced the 
training load. 
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Table 1.1 (continued)... 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations and/or 
limitations 

Levine & Stray-
Gundersen 
(1997) and 
Chapman et al. 
(1998) 

LH+TH (living and training 
at 2500 m), LH+TL (living at 
2500 m, training at 1250 m) 
or sea level living and 
training, for 28 d. 

39 moderately trained 
runners (13 in each of the 
LH+TH, LH+TL and sea 
level control groups). 

Competitive 5000 m running performances 
were significantly faster after LH+TL, on 
average by +1.4%, and this improvement 
was significantly greater than that of both 
the LH+TH and the control groups. 

Control group 5000 m time trial 
performances got worse after 
training, which would have 
impacted the between-group 
statistical analyses. 

Mizuno et al. 
(1990) 

LH+TH (living at 2100 m 
and training at 2700 m) for 
14 d. 

10 highly trained cross-
country skiers. 

T-Lim during an incremental gradient 
treadmill test significantly improved, on 
average by +17%. 

No control group. 

Stray-
Gundersen et 
al. (2001) 

LH+TH+TL (living at 2500 
m, performing high intensity 
training at 1250 m) for 27 d. 

26 highly trained middle 
distance runners. 

Competitive 3000 m running performances 
were significantly faster, on average by 
+1.1%, after LH+TH+TL. 

No control group. 

Svedenhag et 
al. (1997) 

LH+TH (living and training 
at 1900 m) for 29 d. 

7 highly trained cross-
country skiers. 

Neither   O2max nor T-Lim during an 
incremental gradient and speed treadmill 
test significantly improved after LH+TH. 

No control group. 

Wachsmuth et 
al. (2013) 

LH+TH (living and training 
at 2320 m) for 21-28 d. 

25 highly trained 
swimmers. 

Competitive swimming race performances 
were significantly faster, on average by 
+0.8%. 

Results were converted to a 
scalar system (“FINA Points”), 
which adds greater uncertainty. 

Wehrlin & 
Marti (2006)  

LH+TH+TL (living and 
performing low intensity 
training at 2456 m, and 
performing high intensity 
training at 1800 m) for 26 d. 

2 highly trained distance 
runners (5000 m and 
marathon specialists). 

Competitive 5000 m running performance 
was faster (+3%) in one participant and 
marathon performance was relatively 
unaltered (-0.2%) in the other participant. 

No control group. 

Wehrlin et al. 
(2006)  

LH+TH+TL (living at 2500 
m, while performing low and 
medium intensity training at 
1800 m, and high intensity 
training at 1000 m) for 24 d. 

10 moderately trained 
orienteer athletes. 

Competitive 5000 m running performances 
were significantly faster, on average by 
+1.6%. 

Although they included a control 
group for haematological 
comparisons, they did not 
perform comparable pre- and 
post-altitude exercise tests. 

LH+TH = live high, train high; LH+TH+TL = live high, train high and train low; LH+TL = live high, train low; T-Lim = limit of 
tolerance.
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1.3.2 Performance efficacy of simulated altitude camps 

On the basis of reports of performance enhancement subsequent to traditional 

altitude training, a group of Finnish researchers led by Dr Heikki Rusko devised 

a novel approach to simulate LH+TL, without the logistical constraints of 

travelling up and down mountains. This was achieved by pumping controlled 

volumes of nitrogen gas into a closed room, thereby reducing the ambient FIO2, 

creating a normobaric hypoxic environment (Rusko et al., 1995). As the physical 

consequences of exposure to normobaric compared to hypobaric hypoxia are 

similar, i.e. a resultant CaO2 reduction, and that the human ability to sense this 

biological hypoxia is similar regardless of barometric pressure, it has been 

argued that the physiological effects are similar (Mounier & Brugniaux, 2012a; 

Mounier & Brugniaux, 2012b; Mounier & Brugniaux, 2012c). Most notably, the 

Epo response was shown to be similar between hypobaric and normobaric 

hypoxic exposure (Laitinen et al., 1995). However, this view is far from 

unanimous (Millet et al., 2012a; Millet et al., 2012b; Millet et al., 2012c), and it is 

clear that the degree of erythropoiesis is not the only important deciding factor 

by which to differentiate these two hypoxic methods. For example, 

Hemmingsson & Linnarsson (2009) showed that exhaled nitric oxide (NO) is 

lower in hypobaric hypoxia than in the equivalent degree of normobaric hypoxia. 

Given the possibility of raised NO levels enhancing oxidative function (Bailey et 

al., 2009; Larsen et al., 2011; Vanhatalo et al., 2011), this is one mechanism 

suggesting that outcomes from hypobaric hypoxic exposure may differ to 

outcomes from normobaric hypoxic exposure (Kayser, 2009), although this 

remains to be seen in highly trained athletes, and at moderate (1500-3000 m) 

as opposed to high (>3000 m) altitude simulations. 

In an early pilot study, Mattila & Rusko (1996) reported that simulated LH+TL 

for 11 d (18 h·d-1 at a normobaric hypoxic altitude simulation of ~3000 m) 

resulted in significant Epo increases and time trial performances in five 

competitive cyclists, although being a pilot study they did not have a control 

group. The more comprehensive study by Brugniaux et al. (2006) investigated 

the effects of simulated LH+TL for 26 d in highly trained male middle-distance 

runners (14 h·d-1 at a normobaric hypoxic altitude simulation of 2500-3000 m 

while training and spending the remaining 10 h·d-1 at 1200 m altitude). Both 



 
 

Page 45 of 231 
 

  O2max and T-Lim improved to a greater extent after LH+TL compared to a 

control group who spent 26 d living and training at 1200 m. It is noteworthy that 

baseline running   O2max assessed at 1200 m altitude (63 mL∙kg-1∙min-1) was 

rather low for these highly trained athletes, who were all capable of running 

within 9-24 s of the existing 1500 m World Record.   O2max increased by 

substantial margins (~4% in the control group and ~10% in the LH+TL group), 

thus indicating that simulated LH+TL resulted in a degree of acclimatisation, but 

which may or may not have shown such improvements at sea level. 

Investigators at the Australian Institute of Sport have consistently reported 

moderate beneficial effects of simulated LH+TL in highly trained athletes using 

normobaric hypoxia (Garvican et al., 2011; Robertson et al., 2010b; Saunders 

et al., 2004). Notably, as previously detailed (see Section 1.2.5), Garvican et al. 

(2011) found that despite blocking a 5% tHb increase, via phlebotomy, maximal 

4 min power output significantly improved in 11 highly trained cyclists after 26 

nights of simulated LH+TL, compared to a normoxic control group. This 

performance efficacy of simulated LH+TL is not undisputed though, even within 

this Australian group, as Gore et al. (2001) reported that 23 nights of simulated 

LH+TL (training at 600 m, living at a normobaric hypoxic simulation of 3000 m) 

resulted in statistically unchanged maximal cycling performance compared to 

normoxic living and training. Similarly, Clarke et al. (2009), Robach et al. 

(2006b) and Robach et al. (2006a) reported no significant performance gains 

after simulated LH+TL in highly trained athletes. 

Most recently, Neya et al. (2013) implemented a novel simulated LH+TL study 

design, whereby for 22 d collegiate level athletes (mean   O2max ≈ 68 mL∙kg-

1∙min-1) lived and trained at 1300-1800 m, and either spent night time (~10 h·d-1) 

at 1300 m (control group) or at 1300 m in normobaric hypoxic enclosures set at 

an altitude simulation of ~3000 m.   O2max after simulated LH+TL was reported 

to increase by ~9% more than in the control group, but this is somewhat 

misleading, as   O2max in the control group actually worsened by ~5% 

(compared to a ~4% improvement in the LH+TL group). These authors 

proposed that the   O2max gains were caused by the haematological 

enhancement in the LH+TL group. While this may have had an influence, it is 

likely that the lack of any FIO2 blinding resulted in placebo and/or nocebo effects 
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that influenced participants’ motivation to perform well after LH+TL or poorly 

after control training, respectively, during the post-intervention T-Lim tests 

(unfortunately T-Lim was not reported). The blinding of at least the participants, 

and ideally also the researchers, is clearly an important aspect of any simulated 

LH+TL investigation. The only simulated LH+TL study to have been performed 

in a double-blinded manner is that by Siebenmann et al. (2012), who had 16 

well trained athletes (mean baseline   O2max ≈ 70 mL∙kg
-1∙min-1) perform 

cycling training for four weeks at 1200 m while living at either 1200 m (control 

group) or at a normobaric hypoxic simulation of 3000 m. Cycling time trial 

performance and   O2max tended to increase, but neither significantly differed 

between groups. 

The literature review by Richalet & Gore (2008) concluded that simulated 

LH+TL is able to elicit maximal aerobic performance improvements when the 

exposure to hypoxia is at least over 18 d, whereas the meta-analysis by Bonetti 

& Hopkins (2009) calculated that in “elite athletes”, maximal endurance power 

output “possibly” improves by ~4.0% after traditional LH+TL, compared to an 

“unclear” change of only ~0.6% after normobaric hypoxic simulated LH+TL. 

These discrepancies, as well as results from the double-blinded investigation by 

Siebenmann and colleagues, indicate that the performance efficacy of 

simulated LH+TL in highly trained athletes requires further investigation. 

Table 1.2 summarises the key research that has been discussed in this section 

in relation to the performance efficacy of simulated altitude training camps. 
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Table 1.2: Summary of the referenced literature concerning the performance efficacy of simulated altitude camps. 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations 
and/or limitations 

Brugniaux et 
al. (2006) 

Simulated LH+TL for 18 
nights (14 h·d

-1
 at 2500-

3000 m, while training at 
1200 m), or living and 
training at 1200 m (control 
group).  

11 highly trained middle 
distance runners (5 in the 
LH+TL group and 6 in the 
control group). 

  O2max increased significantly more after LH+TL 
than in the control group (+10% vs. +4%), and the 
same was the case for T-Lim during a treadmill 
incremental gradient and speed test. 

Baseline running   O2max 
at 1200 m altitude was 
only 63 mL∙kg

-1
∙min

-1
, so 

changes were at least in 
part due to altitude 
acclimatisation. 

Clarke et al. 
(2009) 

Simulated LH+TL for 21 d 
(14 h·d

-1
 at 3000 m, while 

training and spending the 
remainder of each day at 
600 m). 

12 highly trained cyclists. No significant   O2max changes after LH+TL 
(mean change +0.4%). 

No control group, no 
blinding of the hypoxic 
living condition, and no 
performance data 
reported. 

Garvican et al. 
(2011) 

Simulated LH+TL for 26 
nights (living for ~16 h·d

-1
 at 

3000 m). 

11 highly trained cyclists 
(5 who’s tHb was free to 
respond, and 6 who’s tHb 
was “clamped” via 
phlebotomy. 

Despite a 5% tHb increase being prevented via 
phlebotomy, maximal 4 min power output 
significantly improved by an equal magnitude in 
both groups. 

 

Gore et al. 
(2001) 

Simulated LH+TL for 23 
nights (9.5 h·d

-1
 at 3000 m 

while training at 600 m), or 
living and training at 600 m 
(control group). 

13 highly trained multi-
sport endurance athletes 
(6 in the LH+TL group 
and 7 in the control 
group). 

Total work during a 2 min cycling TT was 
statistically unchanged in both groups throughout 
the intervention (mean -1.6% in the LH+TL group 
and -0.4% in the control group). 

No blinding of the hypoxic 
living condition. 

Mattila & 
Rusko (1996) 

Simulated LH+TL for 11 
nights (18 h·d

-1
 at 3000 m, 

while training at sea level). 

5 moderately trained 
cyclists. 

Mean cycling TT velocity increased significantly 
after LH+TL (on average by +4%). 

No control group and no 
blinding of the hypoxic 
living condition. 

Neya et al. 
(2013) 

Simulated LH+TL for 21 
nights (resting and training 
for ~14 h·d

-1
 at 1300-1800 

m), and spending the 
remaining 10 h·d

-1
 at 3000 

m or at 1300 m (control 
group). 

14 moderately trained 
middle distance runners 
(7 in the LH+TL group 
and 7 in the control 
group). 

  O2max increased by ~4% after simulated 
LH+TL, and decreased by ~5% in the control 
group were comparable, and running 
performances were worsened. 

T-Lim was not reported. 
No blinding of the hypoxic 
living condition. 
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Table 1.2 (continued)... 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations 
and/or limitations 

Robach et al. 
(2006a) 

Simulated LH+TL for 18 
nights (11 h·d

-1
 at 2500-

3500 m while training at 
1200 m), or living and 
training at 1200 m (control 
group). 

11 highly trained Nordic 
skiers (6 in the LH+TL 
group and 5 in the control 
group). 

There was a trend for a worsened fixed velocity 
T-Lim, but changes were not significantly different 
within or between groups (mean change -15% in 
both groups). 

tHb decreased by ~12% in 
the control group (who 
ingested lower iron 
dosages, and whose 
serum ferritin decreased). 

Robach et al. 
(2006b) 

Simulated LH+TL for 13 
nights (16 h·d

-1
 at 2500-300 

m while training at 1200 m), 
or living and training at 
1200 m (control group). 

18 highly trained 
swimmers (9 in the 
LH+TL group and 9 in the 
control group). 

Changes in performance and   O2max during a 
controlled incremental speed swimming test were 
not significantly different within or between groups 
(P > 0.05). 

Step test and aerobic 
performance measures 
were not specific or 
relevant to competition 
performances. 

Robertson et 
al. (2010b) 

Simulated LH+TH+TL for 21 
nights (training for 4 
sessions·week

-1
 at 2200 m 

while living at sea level 
(IHT), or at 3000 m for 14 
h·d

-1
). 

17 moderately trained 
middle distance runners 
(8 in the LH+TH+TL 
group and 9 in the IHT 
group). 

3000 m TT performance substantially improved 
after LH+TH+TL (mean -1.1%), but not after IHT 
(mean -0.1%). 

No blinding of the hypoxic 
living condition. 

Saunders et al. 

(2004) 
Simulated LH+TL for 20 
nights (9-12 h·d

-1
 at 2000-

3100 m, with 2 normoxic 
nights·week

-1
), or living and 

training at sea level 
(control). 

23 highly trained runners 
(10 in the LH+TL group 
and 13 in the control 
group). 

Within one month of the intervention, all 
participants in the LH+TL who raced ran personal 
or season best times over distances ranging from 
1,500 m to 10,000 m, compared to only three of 
the 13 participants in the control group. 

Small hypoxic dose (~53 
h·week

-1
 in hypoxia, so 

~115 h·week
-1

 in 
normoxia). 

Siebenmann et 
al. (2012) and 
Nordsborg et 
al. (2012) 

Simulated LH+TL for 28 
nights (16 h·d

-1
 at 3000 m 

while training at 1200 m), or 
living and training at 1200 m 
(control group), in a double 
blinded design. 

16 highly trained cyclists 
(10 in the LH+TL group 
and 6 in the control 
group).  

Cycling performances during a simulated TT 
tended to increase in all participants (on average 
by ~5%), but there were no significant difference 
within or between groups (P > 0.05). 

Double-blinded, placebo 
controlled intervention. 

LH+TH+TL = live high, train high and train low; LH+TL = live high, train low; IHT = intermittent hypoxic training, T-Lim = limit of 
tolerance; TT = time trial; tHb = total haemoglobin mass. 
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1.3.3 Performance efficacy of intermittent hypoxic training 

Intermittent hypoxic training (IHT) is when exercise is performed within a 

hypobaric or normobaric hypoxic chamber, or while breathing a normobaric 

hypoxic inspirate via a mouthpiece / face mask. It is not a new concept; 

originating from a 1930’s requirement for Soviet Union pilots to be pre-

acclimatised prior to flying in open cockpits to altitudes of up to 6000 m 

(Serebrovskaya, 2002; Streltsov, 1939). Scientists at the “secret depressurised 

underground training facility” within the German Democratic Republic’s 

Kienbaum Training Centre were also investigating potential athletic 

performance enhancement resulting from IHT long before the concept became 

internationally popular (Houston & Harris, 2005). Although findings have seldom 

been published, and in any case many of the results would have been 

confounded due to extensive doping regimes (Franke & Berendonk, 1997), 

these reports formed a foundation for subsequent research interest. 

IHT is now most commonly performed using normobaric hypoxia, so in addition 

to any differences in the physiological responses to normobaric compared to 

hypobaric hypoxia (Hemmingsson & Linnarsson, 2009; Millet et al., 2012a; 

Millet et al., 2012b; Millet et al., 2012c), the lesser overall hypoxic dose (Wilber 

et al., 2007), as well as the skeletal muscle being in an active rather than 

resting state, mean that different mechanisms are targeted compared to chronic 

hypoxia acclimatisation interventions. Indeed, resting in moderate hypoxia does 

not significantly reduce muscle O2 delivery – instead, moderately intensive 

exercise is required to do so (Calbet et al., 2009). On this basis, an early 

investigation by Terrados et al. (1988) found that work capacity was significantly 

increased, on average by 33%, after competitive cyclists performed IHT for ~2 

h·d-1, 4-5 sessions·week-1, for 3-4 weeks, at an altitude simulation of ~2300 m. 

This compared to a mean increase of 22% in a normoxic control group, but 

performance change after IHT was only significantly greater when both groups 

were tested in hypoxic conditions. This was similarly the case in another study 

by Vogt et al. (2001), who found that maximal cycling power output increased 

significantly more after six weeks of IHT (+16%) compared to normoxic training 

(+11%), only when tested in hypoxic conditions and when results from both the 

high and low intensity groups were combined. As such, although these authors 
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commented that IHT may be a useful athletic performance enhancing tool, 

neither of these two studies found performance to be enhanced at sea level. 

In contrast, Dufour et al. (2006) reported significant performance gains in both 

hypoxia and normoxia, after nine moderately trained runners incorporated IHT 

into their usual training schedules for six weeks (24-40 min·session-1, twice per 

week, at an altitude simulation of ~3000 m). Specifically, in normoxic test 

conditions, T-Lim at the pre-intervention velocity that elicited   O2max 

significantly improved, on average by 35%, compared to a non-significant 

increase of +10% in a normoxic control group (n = 9). This was also the case for 

results during an incremental speed test to exhaustion, whereby   O2max 

significantly increased after IHT (mean +5%), but not after normoxic training 

(mean ~1% increase). However, normoxic test results for individual participants 

are perplexing – for example, one IHT participant improved his   O2max by 

~15%, and another improved his T-Lim by ~65%, whereas T-Lim and   O2max 

worsened in one of the normoxic trained participants, by ~20% and ~7%, 

respectively. Clearly there was a substantial degree of inter-individual variability 

after IHT and normoxic training (Dufour et al., 2006). 

In a particularly well designed and implemented study, Faiss et al. (2013b) had 

40 moderately trained cyclists complete four weeks of repeated sprint training in 

normoxia (n = 20) or normobaric hypoxia (n = 20) (FIO2 0.146, equivalent to 

~3000 m altitude). Participants were blinded to the training session FIO2. In a 

repeated sprint test to exhaustion, the IHT group performed significantly more 

sprints (9 vs. 13 sprints) compared to the normoxic trained group (9 vs. 9 

sprints). Using a similar single-blinded study design, Galvin et al. (2013) also 

reported a significantly improved repeated running sprint ability after 33 

academy rugby players completed 12 repeated sprint training sessions over 

four weeks in either normoxia or normobaric hypoxia (FIO2 0.130, equivalent to 

~3900 m altitude). This area of high intensity IHT is a relatively new concept, 

and warrants further research. 

Aside from these results, most investigations to date have found that IHT does 

not result in performance enhancement when tests are performed in normoxic 

conditions. For instance, Morton & Cable (2005), Lecoultre et al. (2010) and 

Messonnier et al. (2004) found that cycling IHT for four weeks did not cause any 
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greater performance gains than in normoxic control groups. Similarly, the 

previously detailed study by Robertson et al. (2010b) exposed moderately 

trained runners to three weeks of either IHT or IHT and simulated LH+TH+TL, 

and while there were significant   O2max improvements in both groups, 3 km 

time trial performance only improved in the LH+TH+TL group, and not in the 

IHT group (-1.1% vs. -0.1%, respectively). Roels et al. (2005) found that four 

weeks of interval training induced significant endurance performance 

improvements in moderately trained male athletes, but the inclusion of twice 

weekly IHT sessions did not elicit any greater performance gains. Lastly, while 

some of the highly trained cyclists who participated in the study by Ventura et 

al. (2003) may have experienced a level of over-reaching, as indicated by 

performance remaining unchanged after six weeks of training, there were no 

signs that IHT led to any more favourable adaptations than normoxic training. 

Aside from the recent investigations by Faiss et al. (2013b) and Galvin et al. 

(2013), none of these studies (Dufour et al., 2006; Lecoultre et al., 2010; 

Messonnier et al., 2004; Morton & Cable, 2005; Robertson et al., 2010b; Roels 

et al., 2005; Terrados et al., 1988; 2003; Vogt et al., 2001) reported that 

participants were blinded to the FIO2 during training sessions. That IHT 

participants were the only ones to either train in a hypoxic chamber or to receive 

the inspirate via face masks, while normoxic control group participants did not, 

is a fundamental study design flaw, and undoubtedly will have resulted in 

placebo and/or nocebo effects in at least some of these otherwise well executed 

investigations. The precise influence of the placebo effect is difficult to assess in 

relation to hypoxic strategies, for example Saunders et al. (2010) attempted to 

quantify how placebo and nocebo effects impacted the performance efficacy of 

simulated LH+TL, but by the end of the intervention the placebo group had 

identified their experimental condition. In a broader, sense, Clark et al. (2000) 

demonstrated the power of the placebo effect, by reporting that that in 

moderately-trained cyclists, mean power output during a 40 km time trial was on 

average 4% higher in those who were told that they were receiving a 

carbohydrate drink, compared to those who were told they were receiving a 

zero calorie placebo drink, regardless of the actual drink they ingested. 

Table 1.3 summarises the key research that has been discussed in this section 

in relation to the performance efficacy of intermittent hypoxic training. 
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Table 1.3: Summary of the referenced literature concerning the performance efficacy of intermittent hypoxic training. 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations 
and/or limitations 

Dufour et al. 
(2006) 

IHT for 6 weeks; 2 
sessions·week

-1
, 24-40 

min·session
-1

, at an altitude 
simulation of ~3000 m, or 
normoxic training (control 
group). 

18 moderately trained 
middle distance runners 
(9 in the IHT group, 9 in 
the control group). 

T-Lim significantly improved in the IHT group 
(mean +35%, P < 0.05), but not in the control 
group (mean +10%. P > 0.05). 

Between group interaction 
statistics were not 
reported, and participants 
were not blinded to the 
training FIO2. 

Faiss et al. 

(2013b) 
IHT for 4 weeks; 2 
sessions·week

-1
, 3 x (5 x 10 

s with 20 s active recovery), 
5 min between sets, at an 
altitude simulation of ~3000 
m, or normoxic training 
(control group). 

40 moderately trained 
cyclists (20 in the IHT 
group, 20 in the control 
group). 

The maximum number of sprints performed 
during a repeated sprint test improved 
significantly more in the IHT group (9 vs. 13 
sprints) compared to the normoxic trained control 
group (9 vs. 9 sprints). 

To the authors knowledge 
this is one of only two IHT 
studies that has 
successfully blinded the 
participants to the training 
FIO2. 

Galvin et al. 
(2013) 

IHT for 4 weeks; 3 
sessions·week

-1
, 10 x 6 s 

sprint efforts with 30 s 
passive recovery), at an 
altitude simulation of ~3900 
m, or normoxic training 
(control group). 

30 moderately trained 
academy level rugby 
players (the numbers in 
each group were not 
reported). 

The distance completed during a repeated sprint 
test (Yo-Yo Intermittent Recovery Level 1 test) 
improved significantly more in the IHT group (+33 
± 12%) compared to the normoxic trained group 
(+14 ± 10%) (P = 0.002). 

To the authors knowledge 
this is one of only two IHT 
studies that has 
successfully blinded the 
participants to the training 
FIO2. 

Hendriksen & 
Meeuwsen 
(2003) 

Daily IHT for 10 d, 120 
min·session

-1
, at an altitude 

simulation of ~2500 m, or 
normoxic training (control 
group). 

16 moderately trained 
triathletes (8 in the IHT 
group, 8 in the control 
group), 12 of which 
‘crossed-over’ one year 
later. 

Mean and peak power output during a 30 s 
Wingate test were significantly improved after IHT 
(on average by +4%), and these changes were 
significantly different to the non-existent changes 
after normoxic training. 

It is not clear whether 
participants were blinded 
to the training FIO2 or not. 

Lecoultre et al. 
(2010) 

IHT for 4 weeks; 3 
sessions·week

-1
, 66-100 

min·session
-1

, at an altitude 
simulation of ~3000 m, or 
normoxic training (control 
group). 

14 moderately trained 
cyclists (7 in the IHT 
group, 7 in the control 
group). 

Mean power output during a cycling TT and 
maximal power output during an incremental 
cycling test to exhaustion significantly increased 
in the IHT group (+7% and +4%, respectively) 
and the control group (+6% and +7%, 
respectively), but there were no significant 
differences between groups. 

Participants were not 
blinded to the training 
FIO2, so placebo and 
nocebo effects likely 
occurred in the IHT and 
control groups, 
respectively. 
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Table 1.3 (continued)... 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations 
and/or limitations 

Messonnier et 
al. (2004) 

IHT for 4 weeks; 6 
sessions·week

-1
, 120 

min·session
-1

, at an altitude 
simulation of 3800 m, or 
normoxic training (control 
group). 

13 untrained participants 
(5 in the IHT group, 8 in 
the control group). 

T-Lim during a cycling TT significantly improved 
in both the IHT and control groups, but there was 
no significant difference between groups (mean 
change IHT +43% vs. control +63%, P > 0.05). 

Whether participants were 
blinded or not to the 
training condition was not 
reported. 

Morton & 
Cable (2005) 

IHT for 4 weeks; 3 
sessions·week

-1
, 30 

min·session
-1

, at an altitude 
simulation of ~2750 m, or 
normoxic training (control 
group). 

16 moderately trained 
team sport players (8 in 
the IHT group, 8 in the 
control group). 

During an incremental cycle test, both work 

capacity (+16% vs. +18%) and   O2max (+7% vs. 
+8%) significantly increased in the IHT and 
control group, respectively, but differences 
between groups were not significant. 

Only the IHT participants 
trained in a normobaric 
hypoxic chamber, so they 
were not blinded to the 
training condition. 

Robertson et 
al. (2010b) 

IHT for 3 weeks; 4 
sessions·week

-1
, ~65 

min·session
-1

, at an altitude 
simulation of ~2200 m, 
while living at sea level (IHT 
group) or at simulated 2200 
m (LH+TH+TL group). 

17 moderately trained 
middle distance runners 
(9 in the IHT group and 8 
in the LH+TH+TL group). 

3000 m TT performance substantially improved 
after LH+TH+TL (mean -1.1%), but not after IHT 
(mean -0.1%). 

No blinding of the hypoxic 
living condition, so placebo 
and nocebo effects likely 
occurred in the LH+TH+TL 
and IHT groups, 
respectively. 

Roels et al. 
(2005) 

IHT for 7 weeks; 2 
sessions·week

-1
, ~60 

min·session
-1

, at an altitude 
simulation of ~3000 m, or 
normoxic training (control 
group). 

19 moderately trained 
cyclists and triathletes 
(11 in the IHT group, 8 in 
the control group). 

  O2max significantly increased in the IHT group 
(mean +9%), but not in the control group (mean 

+5%). There were no significant   O2max or 
performance differences between groups. 

Whether participants were 
blinded or not to the 
training condition was not 
reported. 

Terrados et al. 
(1988) 

IHT for 3-4 weeks; 4-5 
sessions·week

-1
, ~120 

min·session
-1

, at an altitude 
simulation of ~2300 m, or 
normoxic training (control 
group). 

8 highly trained cyclists 
(4 in the IHT group, 4 in 
the control group). 

Incremental cycle test work capacity was 
significantly increased after IHT (mean +33%, P < 
0.05), but not in the control group (mean +22%, P 
> 0.05), although the difference between groups 
was only significant during the hypoxic tests. 

Only the IHT participants 
trained in a hypobaric 
chamber, so they were not 
blinded to the training 
condition. 
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Table 1.3 (continued)... 

Study Hypoxic exposure type 
and dose 

Participant no. and 
training status 

Key performance outcomes Key considerations 
and/or limitations 

Terrados et al. 
(1990) 

IHT for 4 weeks; 3-4 
sessions·week

-1
, 30 

min·session
-1

, at an altitude 
simulation of ~2300 m, or 
normoxic training (control 
leg). 

10 untrained participants, 
who exercised each leg 
separately, one in 
hypoxic (IHT leg) and 
one in normoxia. 

T-Lim during constant submaximal load single-
legged cycling improved significantly more after 
IHT (28 to 117 min; +313%) compared to 
normoxic training (28 to 97 min; +242%). 

Whether participants were 
blinded or not to the 
training condition was not 
reported. 

Ventura et al. 
(2003) 

IHT for 6 weeks; 3 
sessions·week

-1
, 30 

min·session
-1

, at an altitude 
simulation of ~3200 m, or 
normoxic training (control 
group). 

12 moderately trained 
cyclists (7 in the IHT 
group, 5 in the control 
group). 

Maximum power output during an incremental 
cycle test to exhaustion remained statistically 
unchanged in both the IHT and the control group 
(mean change IHT +0.8% vs. control -3.6%, P > 
0.05). 

Whether participants were 
blinded or not to the 
training condition was not 
reported. Maximum HR 
was significantly lower 
after training in both 
groups, which may 
indicate a state of over-
reaching. 

Vogt et al. 
(2001) 

Low or high intensity IHT for 
6 weeks; 5 sessions·week

-1
, 

30 min·session
-1

, at an 
altitude simulation of ~3850 
m, or equivalent normoxic 
training. 

30 untrained participants 
(8 in the low and high 
intensity control groups, 
7 in the low and high 
intensity IHT groups). 

Incremental cycle test power output increased 
significantly more when results from both the low 
and high intensity IHT groups were combined 
(+16%), compared to the normoxic groups 
(+11%), but this was only the case for the tests 
conducted in hypoxia, not normoxia. 

Participants were not 
blinded to the training 
condition (face masks 
were worn only by IHT 
participants). 

LH+TH+TL = live high, train high and train low; IHT = intermittent hypoxic training, T-Lim = limit of tolerance; TT = time trial. 
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1.3.4 Performance efficacy of intermittent hypoxic exposure 

Intermittent hypoxic exposure (IHE) is when individuals rest while inspiring 

normobaric hypoxic air, or while residing within a hypobaric hypoxic chamber for 

short durations, and perform all other daily tasks, including exercise training, in 

normoxia. As participants do not exercise during IHE,   O2 is at baseline, so it is 

possible to expose them to more severe degrees of hypoxia than during IHT 

interventions, without risking extreme biological hypoxia. For example, Hamlin & 

Hellemans (2007) had 22 moderately trained runners perform IHE for three 

weeks, which consisted of 5 min intervals of breathing either normoxic air 

(single blinded control group) or normoxic air and normobaric hypoxic air, that 

decreased in FIO2 over the three weeks from 0.130 (~3900 m) to 0.100 (~6000 

m). The IHE group improved their 3 km performance on average by 2.2%, 

compared to an average 0.6% improvement in the control group, but 

considering that the standard error for this time trial performance was 2.3% in 

the IHE group and 1.7% in the control group, these results are inconclusive. 

Aside from the potential to enhance the HVR (Faulhaber et al., 2012; Garcia et 

al., 2000; Townsend et al., 2002), which does not appear to be a useful 

adaptation for athletic performance (Racinais et al., 2010), other studies have 

found no benefits of IHE (Hinckson et al., 2007; Humberstone-Gough et al., 

2013; Tadibi et al., 2007). In particular, Truijens et al. (2008) reported no 

beneficial physiological changes, including in the velocity at   O2max, within or 

between an IHE group or a normoxic control group. This was a comprehensive 

double-blinded study in 23 well trained swimmers and runners, who undertook 

either IHE at a hypobaric hypoxic altitude simulation of 4000-5500 m, or 

normobaric normoxia, for 3 h·d-1, 5 d·week-1, for four weeks in total (Truijens et 

al., 2008). As such, while IHE has been commonly marketed as providing a 

performance enhancing stimulus (Hinckson et al., 2007), this does not appear 

to be justified. It is likely that the duration of hypoxic exposure is simply too 

short to elicit any beneficial adaptations (Levine, 2002).  
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1.4 Summary of the limitations of the research to date and the key 

remaining research questions 

In summary, while there have been numerous insightful studies carried out in 

the field of athletic performance focused altitude and hypoxic training, there are 

also some major limitations common to much of this research, notably: 

 A lack of control groups – while case studies of highly trained participants 

provoke interesting discussion, these reports do not substantially add to 

the understanding of altitude and hypoxic interventions. For example, it is 

unclear whether the participating athletes in the report by Fudge et al. 

(2011) benefited from the LH+TH exposure, or simply that they 

completed a favourable phase of endurance training. Similarly, a lack of 

an appropriate control group can confound results. For example, Robach 

et al. (2006a) reported that control group participants ingested 

significantly less dietary iron than those in the LH+TL group, and suffered 

a ~12% tHb reduction. 

 Interventions being implemented without blinding of the experimental 

condition – this is crucial. For example, the ~4%   O2max improvement in 

the simulated LH+TL group and the ~5%   O2max reduction in the control 

group reported by Neya et al. (2013), were likely at least partially due to 

placebo and nocebo effects, respectively. In addition, while the IHT 

induced performance enhancements reported by Faiss et al. (2013b) and 

Galvin et al. (2013) are in contrast to much of the related literature, they 

are the only reports to have successfully blinded the participants to the 

experimental condition. 

 An insufficient hypoxic dose being used, with conclusions being 

extrapolated to the wider context. For example, the lack of any 

measurable erythropoiesis after LH+TH for three weeks at 1816 m as 

reported by Pottgiesser et al. (2009) should not be taken out of context to 

mean that LH+TH does not result in haematological changes. The 

hypoxic dose was simply too small (Rasmussen et al., 2013; Schmidt & 

Prommer, 2008). 
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 The effects of altitude or hypoxia being assessed in untrained or 

moderately trained participants, who respond to any training intervention 

to a far greater extent than highly trained athletes would. For example, it 

is unsurprising that performance changes equivalent to the +15% 

  O2max and +65% T-Lim improvements in moderately trained IHT 

participants in the report by Dufour et al. (2006) were not equalled in 

world-class cyclists who took part in the LH+TH study by Gore et al. 

(1998). As highly trained athletes may have reached a natural 

physiological limit in terms of certain physiological variables (Gore et al., 

1998), what constitutes a worthwhile performance change is largely 

governed by participant’s baseline competitive level. 

 Methodologies to assess physiological adaptations to altitude or hypoxia 

being inappropriate, for example, Czuba et al. (2011) and Ingjer & Myhre 

(1992) proposing haematological alterations after IHT and LH+TH, 

respectively, evidenced only by RBC concentration indices, even when it 

is clear that PV is highly variable during hypoxic exposure (Sawka et al., 

1996). Similarly, investigative methodologies being not sufficiently 

sensitive, or reliant on in vitro techniques, for example Robach et al. 

(2012) concluding that neither maximal capacity of oxidative 

phosphorylation nor mitochondrial efficiency occur in response to LH+TL, 

evidenced only by a single post-intervention muscle biopsy. In order to 

establish whether meaningful functional changes within skeletal muscle 

have occurred, multiple biopsy samples (Elder et al., 1982), or alternative 

techniques that allow a greater sample frequency are required, such as 

the 31P-MRS measurements used by Kuno et al. (1994). 

The challenges of undertaking any such applied scientific research should be 

acknowledged, especially when using a particularly select cohort of participants, 

such as highly trained athletes. By addressing as many of the above limitations 

as possible, future experiments in this field of altitude and hypoxic training will 

be better placed to answer the key remaining questions. 
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1.5 Overall PhD rationale and aims 

With too few properly controlled studies having been carried out, there is still 

debate as to whether traditional LH+TH or LH+TL, simulated LH+TL, or IHT can 

enhance athletic performance capacity. Given this research inconsistency, and 

suggestions that this has been due to a lack of appropriate control groups and 

participant blinding, relatively untrained participants being assessed, insufficient 

hypoxic doses, and inappropriate analytical methodologies, this thesis takes 

such factors into consideration. The overall aim is to assess the performance 

efficacy of traditional LH+TH and IHT interventions, in highly trained athletes, 

using proper control conditions wherever possible. 

Additionally, there is much still to learn as to which mechanisms are primarily 

responsible for any performance enhancements with LH+TH and IHT; for 

example it is still debated whether performance changes are primarily due to 

haematological (Levine & Stray-Gundersen, 2005) or non-haematological 

adaptations (Gore et al., 2007; Gore & Hopkins, 2005). 

Therefore, to further the understanding of the mechanisms associated with 

traditional LH+TH and IHT, both haematological and non-haematological 

adaptations are assessed. While highly trained participants are investigated 

wherever is practically possible (Chapters 3 and 4), due to their strict training 

regimes and a lack of available time for more thorough assessments, this is not 

always possible. Therefore, the effects of IHT in healthy but untrained 

participants is investigated in Chapter 5, thus enabling more time intensive 

measurements to be taken. 
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The specific aims of each experimental chapter are: 

 Chapter 3 – Using a parallel group design, to assess changes in 

competitive race performance and tHb in response to three weeks of 

traditional LH+TH in highly trained swimmers. It was hypothesised that 

traditional LH+TH of an appropriate hypoxic dose, similar to that used by 

Wachsmuth et al. (2013), would result in significantly greater 

haematological adaptations, and improved race performance, compared 

to a sea level control group. 

 Chapter 4 – Using a blinded parallel group design, to assess changes in 

incremental exercise performance, and submaximal and maximal 

physiological variables in response to eight weeks of IHT in highly trained 

runners. It was hypothesised that an IHT intervention of an appropriate 

hypoxic dose, similar to that used by Dufour et al. (2006), would result in 

an improved   O2max and enhanced incremental running performance, 

compared to a blinded normoxic trained control group. 

 Chapter 5 – Using a blinded single-legged design, to assess changes in 

incremental exercise performance and skeletal muscle energetics in 

response to three weeks of IHT in healthy but untrained participants. It 

was hypothesised that a single-legged IHT intervention of an appropriate 

hypoxic dose, similar to that used by Terrados et al. (1990), would result 

in improved 31P-MRS assessed skeletal muscle oxidative function and 

incremental exercise performance, compared to a (blinded) normoxic 

trained leg.  
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CHAPTER 2: 

General Methods 

 

The methodologies employed specific to each investigation are detailed within 

the relevant experimental chapter, but there are some procedures that require 

further detail, especially when common to two or three of the investigations. 

These consist of the ethical approval process (Chapters 3, 4 and 5), heart rate 

monitoring (Chapters 3, 4 and 5), venepuncture and venous blood analysis 

(Chapters 3 and 4), normobaric hypoxia production (Chapters 4 and 5), and the 

measurement of pulmonary O2 uptake in a normobaric hypoxic environment 

(Chapter 4). Further detail regarding these general experimental methodologies 

is now provided. 

2.1 Ethical approval process 

Common to all experimental chapters was the requirement for ethical approval 

prior to the commencement of participant recruitment or testing. The process for 

ethical approval by the University of Exeter Ethical Approval Committee 

distinguishes all applications into Path A or Path B applications, namely: 

Path A applications will: 

 Involve low ethical risk procedures and participants (i.e. ≥18 y, and 

healthy). 

 Not involve children or vulnerable adults.  

 Not involve novel exercise protocols or substantially modified protocols.  

 Include only non-invasive procedures for human test subjects. 

Path B applications will: 

 Include all studies not covered by Path A.  

As such, all three experimental chapters in this thesis followed the University of 

Exeter Ethical Approval Committee Path B application pathway, and all were 
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granted ethical approval prior to commencement of any procedures. Appendix 1 

comprises the formal ethical approval certificates that were specific to each 

chapter, Appendix 2 comprises the participant information sheets that were 

specific to each chapter, Appendix 3 comprises the informed consent forms that 

were specific to each chapter, and Appendix 4 comprises an example of the 

physical activity readiness questionnaire that was used in all three chapters. 

2.2 Heart rate monitoring 

Common to all experimental chapters was the assessment of participants’ heart 

rate (HR) during exercise, for the purpose of monitoring exercise training 

intensity, as well as to assess any changes pre- to post-training. 

In Chapters 3 and 4, HR was estimated using a coded chest strap transmitter 

(T31, Polar Electro, Kempele, Finland), which detected the R-R time interval of 

the electrocardiogram signal, and transmitted this as a single heart beat signal 

in real-time, via telemetry. This signal was received by a wrist watch (FT1 or 

S610i, Polar Electro, Kempele, Finland), which was held within a ~3 m 

transmission range of the chest strap. The accuracy of HR measurement using 

this equipment, as stated by the manufacturer, is ± 1 b∙min-1, with a measurable 

range of 15-240 b∙min-1. 

In Chapter 5, HR (as well as SaO2) was estimated using a fingertip optical 

sensor (Nonin PureLight® 8000FC-30, Nonin Medical Inc., Plymouth, MN), 

connected via a ~9 m fibre-optic cable to a pulse-oximeter (Nonin 7500FO, 

Nonin Medical Inc., Plymouth, MN). This apparatus transmitted red and infra-

red light across the fingertip to a photodetector. The surge of arterial blood 

during each heart beat caused expansion and contraction of arterial vessels, 

detected as brief light absorption increases. In this manner, a wave-form was 

created, with the time interval between peaks used to estimate individual heart 

beats (Jubran, 1999). This table-top pulse-oximeter is designed specifically for 

use within the magnetic resonance environment, and was situated at a safe 

distance away from the magnetic field of the superconducting magnet 

(Gyroscan Clinical Intera, Philips Medical Systems, Best, Netherlands). The 

accuracy of HR measurement using this equipment, as stated by the 

manufacturer, is ± 3 b∙min-1, with a measurable range of 18-300 b∙min-1. 
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2.3 Venepuncture and venous blood analysis 

Common to Chapters 3 and 4 was the withdrawal and analysis of venous blood, 

for the purpose of assessing haematological adaptations to the altitude and 

hypoxic interventions, and to screen for illness. 

Time of day, the timing of any preceding exercise, nutrition and hydration 

status, and ambient conditions were standardised for every test. Participants 

rested supine for 10 min, before venous blood samples were taken from an anti-

cubital vein via venepuncture (Vacutainer®, BD Diagnostics, Oxford, UK), by a 

National Association of Phlebotomists trained and certified practitioner. 

Samples were transported to a local hospital laboratory where they were 

analysed within 2 h for RBC count, [Hb], HCT and total white blood cell count 

and differentials, by an automated cell counter (ADVIA 120, Siemens AG, 

Erlangen, Germany). From these variables the mean corpuscular haemoglobin 

(MCH) and mean corpuscular haemoglobin concentration (MCHC) were 

calculated. Serum ferritin concentration ([sFe]) was quantified by a 

chemiluminescent microparticle immunoassay (ARCHITECT Ferritin Assay, 

Abbott Point of Care Inc, Birmingham, UK). 

2.4 Normobaric hypoxia production 

Common to Chapters 4 and 5 was the production of normobaric hypoxic air 

during training and testing protocols. 

In Chapter 4, the reduced ambient FIO2 was produced by a custom built hypoxic 

generator that was installed within the architecture of the St Mary’s University 

College Physiology Laboratory (S3 Hypoxic System, Sporting Edge UK Ltd, 

Basingstoke, UK). This apparatus consisted of an air compressor which, after 

multiple filters removing particles down to 0.01 µm in diameter, forced ambient 

(normoxic) air under ~6 bar into a hollow ‘sieve’ type fibre membrane. This 

pressure was created by a variable flow restrictor situated at the membrane 

output. The membrane was formed by a polymer, acting as a molecular filter, 

allowing O2 molecules to leak out through the membrane walls, but retaining 

most N molecules. The system pressure was adjusted by the flow restrictor to 

produce an N enriched output gas, with an O2 content of 0.100. The ambient O2 

content in the room was automatically monitored every 5 s, and the control 
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system alternated the air supply between N enriched air that had an O2 content 

of 0.100, and normoxic air (O2 content 0.209), to allow any user defined FIO2 to 

be maintained within an operational range of 0.130 to 0.209. In this manner, the 

desired ambient FIO2 was achieved without the need for participants to wear 

face masks, thus they remained unaware of the FIO2. 

In Chapter 5, the reduced FIO2 inspirate was produced by a smaller, portable 

hypoxic generator (Cloud 9, Sporting Edge UK Ltd, Basingstoke, UK). The unit 

also used an air compressor, operating at ~1 bar, which fed into one of two 

alternatively cycled cylinders, which instead of a polymer membrane, contained 

zeolite crystals. As the compressed air was applied to the cylinder, some N 

molecules were trapped in the crystalline structure, while some O2 molecules 

passed freely through into a waste exhaust. The pressure built within the first 

cylinder until a switch valve diverted the supply to the second cylinder. The 

cylinder that was pressurised released the air to produce an N enriched gas, 

which formed the hypoxic inspirate, and these cyclic bursts of N enriched air 

continued to be produced. An adjustment feature allowed a user defined FIO2 to 

be maintained within a range of 0.145 to 0.155, and a ‘sham’ unit was modified 

that had an output of 0.209, but was identical in appearance. The output from 

either unit was connected via a series of valves and a reservoir to the face 

mask from which participants breathed through during all the exercise training 

and pre- and post-intervention tests, thus they remained unaware of the FIO2. 

The accuracy of FIO2 production from both the installed S3 Hypoxic System 

(Chapter 4) and the portable Cloud 9 generator (Chapter 5), as stated by the 

manufacturer, was ± 0.001, and this was regularly checked using a high 

accuracy paramagnetic O2 analyser (Servomex 5200, Servomex, Crowborough, 

UK). Whether the FIO2 was set at 0.160 (experimental condition in Chapter 4), 

0.145 (experimental condition in Chapter 5) or 0.209 (control condition in both 

Chapters 4 and 5), the hypoxic generators were switched on during all training 

and testing to ensure complete blinding of the environmental condition. 

Additionally, the control panels of these generators were blocked from the view 

of the participants, and also from the view of the researcher who supervised the 

exercise testing protocols during Chapter 5. 
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2.5 Estimation of pulmonary O2 uptake in a normobaric hypoxic 

environment 

During the pre- and post-training tests in Chapter 4 the ability to accurately 

measure   O2 in a normobaric hypoxic environment was required. In order to 

use an open-circuit breath-by-breath analyser, it required adaptations of certain 

calibration and normal usage procedures. At the time the manufacturer of the 

Jäeger Oxycon-Pro® (VIASYS Healthcare, Höechberg, Germany) were unable 

to advise on this matter, as they themselves had never used it within a reduced 

FIO2 environment. As such, a phase of pilot testing, and then a short study was 

carried out to assess the reliability and validation of these novel procedures. 

The results were presented as an e-poster at the 2011 Congress of the 

European College of Sport Science in Liverpool (see Appendix 5 – ‘The Jäeger 

Oxycon Pro® provides a reliable estimate of pulmonary oxygen uptake in 

normobaric hypoxia’), and form the following brief report. 

2.5.1 Abstract 

AIMS: To investigate the validity of   O2 estimations by the Jäeger Oxycon Pro® 

(OXYCON) expired air analyser in normobaric hypoxia (NH), compared with the 

Douglas bag method (DBM). METHODS: The OXYCON calibration procedures 

were adjusted to assess   O2 in NH. 10 recreationally trained male cyclists 

completed two identical submaximal cycling tests, in NH (FIO2 = 0.160 ± 0.001) 

and normobaric normoxia (SHAM), in a single blinded design. Tests consisted 

of 4 x 4 min stages at 120 W, and 4 x 4 min stages at 160 W, during which   O2 

was estimated by the OXYCON and DBM. RESULTS: Statistical comparisons 

between the two methods in SHAM gave a CV of 5.0% at 120 W, and 3.3% at 

160 W, and in NH a CV of 4.3% at 120 W, and 3.1% at 160 W. The OXYCON 

provided   O2 estimates that were on average 3.6 and 2.5% higher than the 

DBM in NH (P > 0.05), whereas estimates in SHAM were 6.6 and 3.4% higher 

than the DBM (P < 0.05), at 120 and 160 W, respectively. CONCLUSIONS: The 

OXYCON is capable of estimating breath-by-breath   O2 in ambient NH, and 

while results are at least as reliable as when used in SHAM, the validity is 

questionable as the OXYCON tends to over-estimate submaximal   O2 

compared to the criterion DBM. 
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2.5.2 Introduction 

The closed-circuit Douglas bag method (DBM) for estimating   O2 was initially 

designed to assess patients at rest, but even in the early 20th Century, the DBM 

pioneer Claude Gordon Douglas confirmed it was equally suitable for 

assessments during “violent muscular work, such as running” (Douglas, 1911). 

Since then, the DBM has been widely used during exercise testing. When 

human and technical error is minimised, and used in combination with a precise 

O2 analyser, the DBM provides arguably the ‘gold standard’ approach for whole 

body   O2 measurement (Macfarlane, 2001). 

However, more recently open-circuit breath-by-breath analysers have allowed 

greater insights into the physiological conditioning of athletes, for example, the 

assessment of   O2 kinetics (Jones et al., 2006). One such analyser, the Jäeger 

Oxycon-Pro® (OXYCON; VIASYS Healthcare, Höechberg, Germany) provides 

both valid and reliable estimates of   O2 in normobaric normoxia (NN) (Carter & 

Jeukendrup, 2002; Foss & Hallen, 2005; Rietjens et al., 2001), but to date its 

reliability and validity in normobaric hypoxia (NH) has not been reported. 

Numerous investigations have estimated   O2 under NH conditions by 

administering the inspirate directly through a face mask (Dufour et al., 2006; 

Holliss et al., 2013), but with the ever increasing research and applied sport 

science interest in NH exposure, specifically in quantifying exercise economy 

and maximal aerobic capacity in athletes while exercising in NH, there is a need 

for breath-by-breath   O2 estimations in ambient NH. As the OXYCON is 

renowned for providing quality   O2 estimates in NN, there is a clear 

requirement to clarify how valid its   O2 estimates are in NH. 

Therefore, the aim of this study was to investigate the reliability and validity of 

  O2 estimations by the OXYCON in NH, compared with the DBM. Additionally, 

this document serves to communicate the bespoke calibration adaptations to 

use the OXYCON in NH, which have not been reported elsewhere.  
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2.5.3 Materials and methods 

Following institutional ethical approval, 10 male cyclists (age: 29.4 ± 7.1 y, body 

weight: 74.9 ± 5.2 kg), who routinely undertook exercise training for ≥ 5 h·week-

1, gave their written informed consent, then participated in this study. 

Three identical exercise tests were performed, using an SRM cycling ergometer 

(SRM International, Jülich, Germany): firstly a familiarisation test, then two 

exercise testing protocols, in either NN (SHAM) or NH. Each test was separated 

by at least 48 h, and they were performed in a randomised order. The exercise 

testing protocol started with a 6 min warm up at 120 W, followed by 4 x 4 min 

stages at 120 W, 2 min at 160 W (to achieve a new   O2 steady state), and 4 x 4 

min stages at 160 W, as illustrated in Figure 2.1. These relatively low work rates 

were selected in order to avoid any participant from exercising above their 

critical power, as if this had occurred the   O2 slow component would have 

caused an increased O2 cost of exercise (Poole et al., 1988), and therefore may 

have resulted in a less stable steady state. 

Participants initially self-selected their cycling cadence, then maintained this 

constantly throughout all testing. The SRM ergometer was set in ‘hyperbolic 

mode’, thus achieving a constant work rate throughout all testing, regardless of 

small fluctuations in cycling cadence. Expired air was analysed during the final 

60 s of each stage with the OXYCON or DBM, in a counterbalanced order. 

Environmental conditions were controlled by an S3 Hypoxia, Temperature & 

Humidity System (Sporting Edge UK Ltd, Basingstoke, UK) allowing single 

blinding of the FIO2. During NH tests FIO2 was 0.160 ± 0.001, temperature was 

19.9 ± 0.2 °C, and humidity was 43.5 ± 2.3%, and during SHAM tests FIO2 was 

0.209 ± 0.001, temperature was 19.8 ± 0.3 °C, and humidity was 43.0 ± 2.7%. 

Environmental conditions were factored into all   O2 analyses. 

Prior to all testing, to enable its use in NH, the OXYCON calibration was 

achieved using an adapted procedure (Figure 2.2). Briefly, during gas 

calibration and background zero phases of the automated OXYCON calibration, 

the ambient air intake and sample line were connected to a bottled normoxic air 

supply (BOC Special Gasses, Guildford, UK). Once calibration was completed, 

the gas supply was removed, and the remainder of the volume calibration and 
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subsequent   O2 estimations were carried out according to the manufacturer’s 

instructions (i.e. drawing in ambient air). An alternative method whereby a 

capillary tube was vented to the outdoors ambient air was trialled, but the 

OXYCON intake pump was not powerful enough to achieve a sufficient flow 

rate, hence the bottled gas was required. 

During DBM analyses, the fraction of expired O2 (FEO2) was measured using a 

Servomex 5200 paramagnetic O2 analyser (Servomex, Crowborough, UK), from 

the air collected via a Hans Rudolph face mask and two-way valve into 150 L 

Douglas Bags (Cranlea & Co, Birmingham, UK). During FEO2 analyses the 

sample air was constantly returned to the Douglas bag using a closed system, 

and the expired 60 s volume (VE) was measured using a dry gas meter 

(Harvard Apparatus, Edenbridge, UK). The method used in NH was identical to 

that in SHAM, in both cases ensuring that the ambient FIO2 was measured with 

the Servomex 5200, and adjusted accordingly in the following calculation: 

  O2 = (  I · FIO2) – (  E STPD · FEO2). 

Where:   O2 = pulmonary O2 uptake,   I = inspired minute volume, FIO2 = 

fraction of inspired O2,   E = expired minute volume, STPD = standardised for 

temperature (equivalent to 0 ˚C) and pressure (equivalent to 760 mmHg), and 

desaturated (equivalent to 0% relative humidity), and FEO2 = fraction of expired 

O2. 

The Servomex 5200, S3 Hypoxia, Temperature & Humidity System, and SRM 

Ergometer were calibrated according to the manufacturer’s instructions prior to 

all testing. 

Calibration equations and correlation coefficients were calculated using linear 

regression analyses in Excel (Microsoft UK, Reading, UK), and standard error 

of the estimate (SEE) and CV were computed (Hopkins et al., 2009). Two-tailed 

students’ paired t-tests were used to assess differences between the two 

analysers using PASW Statistics (v18.0, IBM SPSS, Portsmouth, UK), with the 

probability level of P < 0.05 being accepted as statistically significant. 
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Figure 2.1: Experimental protocol; participants warmed up at 120 W, then after a rest period during which the apparatus was 

fitted, the 120 W and 160 W test stages commenced. The two “steady” stages were designed to achieve a steady state   O2 

prior to analysis. The analyser order was alternated and evenly matched between each test. 

 

Stage 
Warm 

Up 

Passive 

Rest 
Analysis Stage One Analysis Stage Two 

Analyser N/A N/A N/A OXYCON DBM OXYCON DBM N/A DBM OXYCON DBM OXYCON 

Power (W) 120 0 120 120 120 120 120 160 160 160 160 160 

Duration 

(mm:ss) 
06:00 06:00 02:00 03:30 03:30 03:30 03:30 02:00 03:30 03:30 03:30 03:30 



 
 

Page 69 of 231 
 

 

Figure 2.2: Adapted configuration to supply the OXYCON ambient air intake 

and sample line with bottled normoxic gas, thus allowing subsequent calibration 

according to the manufacturer’s instructions. 

2.5.4 Results 

Figure 2.3 illustrates the degree of   O2 estimate agreement between the 

‘criterion’ DBM with the OXYCON. Statistical comparisons between the two 

analysers in SHAM gave a CV of 5.0% at 120 W (95% likely range: 3.4 to 

9.8%), R2 = 0.70, and 3.3% at 160 W (95% likely range: 2.2 to 6.3%), R2 = 0.85. 

In NH the CV was 4.3% at 120 W (95% likely range: 2.9 to 8.4%), R2 = 0.74, 

and 3.1% at 160 W (95% likely range: 2.1 to 6.0%), R2 = 0.82. 

Table 2.1 shows that the OXYCON   O2 estimates were significantly higher than 

the DBM in SHAM at 120 and 160 W (P < 0.05), but not in NH (P > 0.05). The 

OXYCON provided   O2 estimates in NH that were on average 3.6 and 2.5% 

higher than the DBM, whereas in SHAM the OXYCON   O2 estimates were 6.6 

and 3.4% higher than the DBM, at 120 and 160 W, respectively. 
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Figure 2.3: OXYCON vs. DBM in (A) SHAM, and (B) NH (○ 120 W; ● 160 W). This illustrates the agreement between 

OXYCON and DBM in both environments, at both work rates, and the regression equations and R2 linearity slope for each. 

 

Table 2.1: Mean OXYCON and DBM   O2 estimations at 120 and 160 W, in SHAM and NH. 

*Significant difference between the OXYCON and DBM   O2 estimations (P < 0.05). 

Environment / Work Rate Mean OXYCON   O2 (mL/min) Mean DBM   O2 (mL/min) 

SHAM at 120 W 1951 ± 143 * 1831 ± 158 

SHAM at 160 W 2430 ± 161 * 2351 ± 181 

NH at 120 W 1804 ± 163 1742 ± 144 

NH at 160 W 2269 ± 209 2214 ± 148 
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2.5.5 Discussion 

The C ’s between analysers in both environments are within those reliability 

C ’s reported during SHAM trials by Carter & Jeukendrup (2002), where at 100 

W C ’s were 5.1 ± 2.1% for the DBM, and 6.5 ± 2.0% for the OXYCON, and at 

150 W C ’s were 3.3 ± 2.5% for the DBM and 4.7 ± 1.2% for the OXYCON. In 

both the present study and that by Carter & Jeukundrup (2002), higher work 

rates elicited more reliable estimates than lower work rates. 

Data linearity in the present study were somewhat lower than the R2 = 0.96 

reported from NN trials by Rietjens et al. (2001), but much of this is likely due to 

the differing methodologies employed. Specifically, Rietjens and colleagues 

measured   O2 via the OXYCON and DBM simultaneously using a modified 

volume transducer housing, whereas the same face mask was used in the 

present study, using two separate collection devices, during two separate 

exercise stages. While the methods of the present study may have introduced 

greater variation in   O2 estimates, they were more ecologically valid, because 

in ordinary daily usage only one of the analysers is ever used at any one time. 

Furthermore, the fact that Rietjens et al. (2001) had highly trained participants is 

likely to have resulted in more consistent cadence and less variable pedalling 

technique, so potentially less variable   O2. 

As observed in the present study, and as has been reported by others, higher 

work rates tend to improve the   O2 agreement between OXYCON and DBM, 

which may partially explain the more favourable R2 seen by Rietjens et al. 

(2001), who used a step test to volitional exhaustion. In the present study higher 

work rates were purposefully avoided, due to the fact that above an individual’s 

critical power, the   O2 slow component results in an increasing O2 cost of 

exercise (Poole et al., 1988), which would probably add to the variability in 

analyser agreement as assessed by the protocols in the present study. Again, 

this is in line with usual laboratory procedures, whereby exercise economy is 

usually assessed at exercise intensities below critical power. 

In contrast to the finding that the OXYCON overestimated   O2 in both 

environments (see Table 2.1), Foss & Hallen (2005), in a particularly well 

controlled study using a step test protocol, found the OXYCON to slightly 
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underestimate the DBM in SHAM, but by only 0.8% (P < 0.05). The more 

favourable variability between analysers reported by Foss & Hallen (2005) was 

again probably due to more robust methodologies being employed, most 

notably as they used a computerised DBM collection system that was able to 

precisely control the DBM sampling time with end ventilation. This was also 

connected to the OXYCON to allow simultaneous   O2 assessments by both 

analysers, meaning that the exact same air was analysed. 

Unfortunately there are no studies with which to compare the present study’s 

OXYCON validity results in NH, but it is clear that compared to SHAM trials, the 

OXYCON functioned at least as reliably in NH. While this novel investigation 

was strengthened by the homogenous group of participants, it would be useful 

to further assess the validity of the OXYCON in NH with more participants, 

during exercise requiring higher ventilatory rates, and at a higher metabolic 

cost. The latter may prove problematic due to the   O2 slow component 

introducing further variability, therefore future related investigations in NH may 

use more highly trained participants with inherently high ventilatory rates, or 

alternatively a ‘pulmonary simulator’, as used by Gore et al. (1997). These 

pulmonary simulators are useful in providing detailed information regarding 

whether   O2 estimation errors are due to the volume transducer or gas 

concentration probe, thereby shedding further light on precisely how such 

analysers are performing. By employing these methods, confidence will be 

gained when estimating breath-by-breath   O2 under NH conditions, in order to 

calculate an athlete’s   O2 kinetics, exercise economy, and   O2max. 

In conclusion, when adopting the modified calibration procedures described 

herein, the Jäeger Oxycon-Pro® provides a somewhat higher estimation of   O2 

compared to the gold-standard Douglas bag method, but most importantly, the 

resultant breath-by-breath   O2 results are reliable. Therefore, the Jäeger 

Oxycon-Pro® provides a suitable means of assessing   O2 in normobaric 

hypoxia, as part of a repeated measures trial. 
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CHAPTER 3: 

Three Weeks Of Traditional Altitude Training at 2320 m Increases Total 

Haemoglobin Mass But Does Not Improve 200 m Race Performance In 

Highly Trained Swimmers 

 

Chapter 3 is currently being peer-reviewed in an international journal. 

3.1 Abstract 

PURPOSE: To investigate tHb and performance changes after altitude training 

in highly trained swimmers. METHODS: 11 highly trained swimmers undertook 

altitude training (ALT; three weeks at 2320 m), or formed a control group 

(CONT; three weeks at sea level). Weekly swimming volumes, categorised into 

four training zones, were compared between ALT and CONT. tHb was 

assessed via CO-rebreathing immediately before and 1, 14 and 28 d 

afterwards. 200 m race performances were assessed before and 25 d 

afterwards. RESULTS: Training volumes and proportions of training in each 

training zone were not significantly different between ALT and CONT (P > 0.05). 

The tHb change immediately post-ALT was significantly greater than the 

change immediately post-CONT (+0.6 ± 0.4 g·kg-1, or +4.4 ± 3.2% vs. +0.03 ± 

0.1 g·kg-1, or +0.3 ± 1.0%, P = 0.04), but the tHb change within the ALT group 

was only a (non-significant) trend (P = 0.08). 200 m swimming race 

performances were faster post-intervention across both groups (P = 0.01), but 

there were no significant differences in the performance changes between the 

ALT and CONT groups (-0.8 ± 1.5 s, or -0.6 ± 1.2% vs. -0.4 ± 0.4 s, or -0.3 ± 

0.3%, P = 0.76). CONCLUSIONS: Traditional altitude training resulted in some 

positive haematological adaptations, but this did not lead to significantly 

improved 200 m race performances over and above that observed after sea 

level training.  
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3.2 Introduction 

A sufficient ‘hypoxic dose’ is required to elicit an increase in the tHb or RCV 

when athletes spend time at altitude (Wilber et al., 2007). In a two year 

assessment of highly trained swimmers, Wachsmuth et al. (2013) reported that 

3-4 week LH+TH altitude camps at 2320 m resulted in a mean ~7% tHb 

increase. Similarly, Gough et al. (2012) also reported a significant mean ~4% 

tHb increase after highly trained swimmers undertook three weeks of LH+TH at 

2135-2320 m. However, even when erythropoietin is elevated, this is not always 

followed by increases in tHb or RCV (Friedmann et al., 2005; Gore et al., 2006; 

Siebenmann et al., 2012). Accordingly, some researchers have found no 

significant tHb changes after sustained hypoxic exposure (Gore et al., 1998; 

Robach et al., 2012; Saunders et al., 2004; Siebenmann et al., 2012). 

Given that the altitude training studies to date have all varied in terms of the 

subtleties of their design, it is difficult to predict the likely erythropoietic effects. 

As such, two recent related meta-analyses provide useful resources: 

Rasmussen et al. (2013) assessed RCV results from studies that used CO-

rebreathing, plasma dye dilution, or radio-labelled albumin methods, and Gore 

et al. (2013) assessed tHb results from studies that used CO-rebreathing. The 

haematological responses predicted to occur after LH+TH for 21 d at 2320 m 

are a ~2.5% RCV increase according to Rasmussen et al. (2013), and a ~5% 

tHb increase according to Gore et al. (2013), both with a probability of >95%. 

The likely reason for these differences is the disparity in the error margins of the 

RCV and tHb methods. Nevertheless, given that these predictions are markedly 

lower than the mean tHb increase of ~7% reported by Wachsmuth et al. (2013), 

it is important that they are thoroughly tested, in highly trained athletes. 

Moreover, the functional importance of any post-altitude haematological 

changes is also uncertain. While Schmidt & Prommer (2010) reported that a 1 g 

tHb increase results in a ~4 mL∙min-1   O2max increase, Saunders et al. (2013) 

assessed numerous data sets (n = 145), and found that post-altitude tHb 

changes explained less than one-sixth of the variations in   O2max. 

In terms of competitive race performance, a recent study by Chapman et al. 

(2014) reported significant 3000 m time trial improvements (mean change 
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~+3%) after moderately trained runners lived at 2085 m, and trained between 

1250 - 3000 m, for four weeks. In this same investigation, another evenly 

matched group undertook the same training, while living at 2800 m, but did not 

experience any performance improvements (mean change ~+0.1%), despite 

both groups achieving indistinguishable RCV increases (mean change ~+6%). 

As such, these authors concluded that erythropoiesis is necessary, but not 

alone sufficient, to improve post-altitude performance (Chapman et al., 2014) 

However, the study by Gough et al. (2012) found that performances improved 

more in swimmers who remained at sea level, than those who undertook 

altitude training. It should be noted that these “quasi-control group” participants 

were not physically part of this study, so there were no assessments of training 

loads. Similarly, although Wachsmuth et al. (2013) found that tHb was positively 

related to swimming performance over a competitive season, its role after return 

from altitude was unclear – performance only improved 3-4 weeks later 

(Wachsmuth et al., 2013). One issue with this latter study is that race times 

were converted to Fédération Internationale de Natation (FINA) Points, to allow 

analyses between different strokes and races in 25 m and 50 m pools. This 

scalar system which gives 1000 points for the current World Record time, and 

greater or fewer points for proportionally faster or slower times, respectively, 

results in highly variable outcome data, mostly dependant on World Record 

progression. As such, the time-course of post-altitude competitive swimming 

performance changes requires further investigation. 

The first aim of this study was to assess tHb and absolute race performance, 

and the relationship between these variables, in a group of highly trained 

swimmers before and after a three week LH+TH altitude camp at 2320 m, 

compared to a sea level control group. A second aim was to assess tHb and 

race performance in one highly trained female swimmer undertaking a second 

LH+TH altitude camp in preparation for the World Championships, held 24 d 

post-altitude. It was hypothesised that after the three week LH+TH intervention 

at 2320 m: i) tHb would increase, on average by 3-5%, and more so than in the 

sea level control group (Gore et al., 2013; Rasmussen et al., 2013), ii) race 

performances would improve more so than in the sea level control group 

(Wachsmuth et al., 2013), and iii) that changes in race performance would be 

related to tHb changes. 
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3.3 Methods 

3.3.1 Participants 

After being granted approval from the University of Exeter Ethical Approval 

Committee, nine male (age: 24.6 ± 3.4 y, body weight: 76.1 ± 5.6 kg) and four 

female (age: 21.2 ± 1.7 y, body weight: 66.0 ± 6.0 kg) highly trained swimmers 

provided written informed consent, completed a physical activity readiness 

questionnaire, then participated in this study (mean baseline FINA Points = 817 

± 37). Participants’ habitual weekly swimming durations ranged from 16-20 h, 

over 9-10 sessions, and 2-4 h of land exercises. 

3.3.2 Experimental design 

Following a three week break from training, to screen for illness and any iron 

deficiencies, [sFe] and FBC were measured. All participants then completed 

three months of sea level training. 

Race performances in the participants’ best 200 m event was assessed at an 

international standard competition within two weeks before participants were 

split into an altitude group (ALT; six males and two females), or a control group 

(CONT; three males and two females). Baseline tHb, [sFe], and FBC were 

measured within 48 h before the ALT group travelled to Sierra Nevada, Spain 

(2320 m), where they lived and trained for 21 nights, while the CONT group 

lived and trained at sea level. tHb, [sFe], and FBC measurements were 

repeated at 1, 14, and 28 d after the ALT or CONT intervention, and race 

performances in the same 200 m events were again assessed after 25 d. 

3.3.3 Training intervention 

During ALT and CONT, the total accumulated swimming distances for each 

training session were recorded for each participant, within four ‘training zones’: 

1) aerobic (<3 mM blood [lactate] ([BLa])), 2) anaerobic threshold (3-5 mM 

[BLa]), 3) between 400 m to 100 m race pace, and 4) maximal speed. To help 

differentiate between these first two categories, capillary [BLa] was regularly 

measured during swimming training from an earlobe using a hand-held portable 

analyser (Lactate Pro, Akray Ltd, Kyoto, Japan). 
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3.3.4 Resting haematology 

Time of day, hydration status, and ambient conditions were standardised. 

Participants rested supine for 10 min, before venous blood samples were taken 

from an anti-cubital vein. Samples were analysed within 3 h for FBC using an 

automated cell counter (ADVIA 120, Siemens AG, Erlangen, Germany) and 

[sFe] using a chemiluminescent microparticle immunoassay (ARCHITECT 

Ferritin Assay, Abbott Point of Care Inc, Birmingham, UK). 

tHb was tested using the optimised CO-rebreathing method as described by 

Schmidt & Prommer (2005). Briefly: participants rested while seated for 15 min, 

after which capillary blood samples were taken in duplicate from an earlobe, 

and immediately analysed for carboxyhaemoglobin percentage (COHb%) 

(OSM-3, Radiometer Medical, Copenhagen, Denmark). Participants fully 

exhaled through the nose, which was then immediately closed, and then fully 

inhaled as a syringe filled with pure medical grade CO (BOC Special Gases, 

Guildford, UK), at a dose of 1.0 mL·kg-1 for males, and 0.8 mL·kg-1 for females, 

was emptied into the spirometer, with 3.0 L of medical grade O2 (BOC Special 

Gases, Guildford, UK). Participants held this first breath for 10 s, and then 

breathed normally through the spirometer for 1 min 50 s. After this 2 min 

rebreathing phase, participants exhaled maximally to residual volume into an 

anaesthetic bag to enable quantification of unabsorbed CO. Quadruple COHb% 

measures were again taken from the earlobe at both 4 and 6 min post-CO 

exhalation, and mean values were calculated. 

3.3.5 Data analyses 

tHb was calculated using the optimised CO-rebreathing equations (Schmidt & 

Prommer, 2005) and software (SpiCO® Calculation Software, Blood tec, 

Bayreuth, Germany). The CV for this tHb methodology in the experimental 

laboratory during the time of this study was 2.2%. tHb was measured in 

duplicate (24-48 h interval) at baseline. The mean from the two tests was 

recorded, unless the variance was >2.2%, in which case a third test was 

conducted, and a mean between the two measures in closest agreement was 

recorded. 
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3.3.6 Statistical analyses 

Independent samples t-tests were used to assess differences between the total 

and the intensity categorised weekly swimming distances. Analysis of 

covariance (ANCOVA) was used to assess race performance and tHb changes 

pre- to post-training between ALT and CONT, with the absolute pre-training 

values entered as covariates, to account for any baseline differences. 

Bonferroni pairwise comparisons were used to assess at which time point any 

tHb differences occurred. Pearson product-moment correlation coefficients were 

calculated between the changes in race performance times and tHb values. 

All statistical analyses were performed using PASW Statistics (v18.0, IBM 

SPSS, Portsmouth, UK), with the probability level of P < 0.05 being accepted as 

statistically significant. Data sets were checked for normality of distribution prior 

to analyses. All data were reported as mean ± standard deviation (SD).  

3.4 Results 

Of the 13 participants, 11 finished the study, and two participants dropped out 

due to illness during the training intervention (one male from ALT, and one 

female from CONT). Neither the total or the intensity categorised weekly 

swimming training volumes were significantly different between the ALT vs. 

CONT groups: total 53.8 ± 2.7 vs. 51.1 ± 1.8 km·week-1 (P = 0.51); aerobic 45.8 

± 5.1 vs. 41.8 ± 0.9 km·week-1 (P = 0.09), anaerobic threshold 3.6 ± 1.7 vs. 4.5 

± 0.7 km·week-1 (P = 0.13), race pace 3.9 ± 0.8 vs. 4.1 ± 0.4 km·week-1 (P = 

0.17), maximal speed 0.6 ± 0.1 vs. 0.7 ± 0.1 km·week-1 (P = 1.00). 

3.4.1 Haematology 

During ALT and CONT, [sFe] remained above 40 μg·L-1 in all participants, and 

the medical team had no concerns regarding the FBC red or white blood cell 

differential variables, which did not significantly differ from baseline. Baseline 

tHb relative to body weight was 13.7 ± 0.9 g·kg-1 (males) and 11.6 ± 0.4 g·kg-1 

(females). 

The ANCOVA revealed a significant tHb and time interaction, with the tHb 

change immediately post-ALT being significantly greater than the change 

immediately post-CONT (+4.4 ± 3.2% vs. +0.3 ± 1.0%, P = 0.04; see Figure 
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3.1). However, the within group ANCOVA only showed a (non-significant) trend 

for this tHb increase within the ALT group (P = 0.08). The only significant within 

group tHb changes were the decreases during the two week periods from 

immediately post-ALT to 14 d (P = 0.01) and 28 d (P = 0.02) post-ALT. 

3.4.2 Race performance 

Of those who completed the study, 200 m race performance improved in five of 

the seven ALT participants, and similarly in three of the four CONT participants 

(Table 3.1). The between-group ANCOVA revealed a significant main effect for 

time, i.e. when all participants were grouped together, race performances were 

faster post-intervention, independent of the training condition (P = 0.01). 

However, although this race performance improvement was significant within 

the ALT group (-0.6 ± 1.2%, P = 0.02), and not within the CONT group (-0.3 ± 

0.3%, P = 0.94), there were no significant differences between the ALT and 

CONT groups (P = 0.76; see Table 3.1). 
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Figure 3.1: tHb percentage change from baseline to 1, 14, and 28 d post-ALT (upper panel) and CONT (lower panel). Grey 

lines represent individual swimmers, and black lines represent the mean change ± SD. Dotted lines represent the CV of ±2.2% 

for tHb. #Significant difference from baseline to immediately post-ALT (P < 0.05). *Significant difference between the ALT and 

CONT groups (P < 0.05). The tHb change immediately post-ALT was significantly greater than post-CONT (P = 0.039), but 

this within ALT group increase was not significant (+4.4 ± 3.2%, P = 0.08). tHb then reduced thereafter to +2.9 ± 3.0% after 14 

d (P = 0.01) and to +0.5 ± 2.1% after 28 d (P = 0.02) post-ALT. There were no significant tHb changes within the CONT group. 
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Table 3.1: Performance changes for 200 m races, pre- to post-ALT and CONT. 

#Significant difference from pre- to post-ALT (P < 0.05). The mean performance 

improvement within the ALT group was significant (P = 0.02), whereas there 

was no such performance change within the CONT group (P = 0.94), but there 

was no significant difference between the performance changes in the ALT and 

the CONT groups (P = 0.76). 

Group 
Participant ID 

(gender) 
Event 

Time (pre) 
(mm:ss.00) 

Time (post) 
(mm:ss.00) 

Δ Time (%) 

ALT 1 (♂) 200 BF 01:59.87 01:59.53 -0.3% 

ALT 2 (♂) 200 BF 01:56.58 01:58.16 +1.4% 

ALT 3 (♂) 200 BR 02:14.92 02:13.60 -1.0% 

ALT 4 (♂) 200 BR 02:16.16 02:13.89 -1.7% 

ALT 5 (♀) 200 IM 02:15.60 02:13.23 -1.7% 

ALT 6 (♂) 200 FC 01:48.36 01:49.05 +0.6% 

ALT 7 (♀) 200 FC 02:01.50 01:59.96 -1.3% 

MEAN ± SD -0.6 ± 1.2%
#
 

CONT 9 (♂) 200 FC 01:54.90 01:54.38 -0.5% 

CONT 10 (♂) 200 BF 02:02.45 02:02.58 +0.1% 

CONT 11 (♂) 200 FC 01:52.89 01:52.62 -0.2% 

CONT 12 (♀) 200 FC 02:04.41 02:03.65 -0.6% 

MEAN ± SD -0.3 ± 0.3% 

♂ = male, ♀ = female, BF = butterfly, BR = breaststroke, IM = individual medley, 

FC = front crawl. 

 

3.4.3 tHb and race performance correlations 

There were no significant correlations between the changes in 200 m race 

performance and the tHb changes at 1 d or 28 d post-ALT (Figure 3.2). 

Likewise, when results from both the ALT and CONT groups were combined, 

there were no significant correlations between the changes in 200 m race 

performance and the tHb changes at 1 d or 28 d post-intervention (Figure 3.3). 
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Figure 3.2: Relationship between the tHb percentage changes from baseline to 1 d post-ALT (left panel) and from baseline to 

28 d post-ALT (right panel), with the 200 m race performance changes pre- to post-ALT. Data points represent the ALT group 

participants only. The relationships between these variables were not significant (tHb 1 d post-ALT: R2 = 0.20, P = 0.31, tHb 

28 d post-ALT: R2 = 0.04, P = 0.67).  
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Figure 3.3: Relationship between the tHb percentage changes from baseline to 1 d post-intervention (left panel) and from 

baseline to 28 d post-intervention (right panel), with the 200 m race performance changes pre- to post-intervention. Data 

points represent both the ALT and CONT groups combined. The relationships between these variables were not significant 

(tHb 1 d post-intervention: R2 = 0.05, P = 0.49, tHb 28 d post-intervention: R2 = 0.01, P = 0.82). 
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3.5 Discussion 

This study is one of very few to have investigated the effects of traditional 

altitude or sea level training on tHb and race performances in highly trained 

swimmers. Both groups completed training that was indifferent in terms of the 

total and the intensity categorised weekly volumes, with aerobic swimming 

being the only training zone to approach a statistically significant between group 

difference (ALT 45.8 ± 5.1 vs. CONT 41.8 ± 0.9 km·week-1, P = 0.09). This 

mean 4 km (non-significant) difference is inconsequential (≤ 60 min of easy 

swimming spread over 7 d). The key findings were that three weeks of LH+TH 

resulted only in a trend for a tHb increase, which then declined to circa baseline 

values after 28 d at sea level (see Figure 3.1). After 25 d post-altitude there 

were no significant differences in the changes in 200 m race performance 

between the altitude and sea level groups (see Table 3.1). There were no 

significant correlations between the changes in tHb and the changes in 200 m 

race performances (see Figure 3.2 and Figure 3.3). tHb and race performance 

results showed considerable variability between individuals, as illustrated in 

Figure 3.1 and Table 3.1, respectively. 

3.5.1 Haematology 

At baseline, tHb was 13.7 ± 0.9 g·kg-1 for males and 11.6 ± 0.4 g·kg-1 for 

females, which is higher than reported for highly trained male swimmers (12.7-

13.2 g·kg-1) (Heinicke et al., 2001; Wachsmuth et al., 2013), and female 

swimmers (10.7 g·kg-1) (Wachsmuth et al., 2013), respectively. The mean 4.4% 

tHb increase observed immediately after ALT was significantly more than 

observed in the CONT group, although likely due to the inter-individual 

variability and the relatively small sample size (n = 7), the tHb change within the 

ALT group was not statistically significant (P = 0.08). These group values are 

comparable to data from Garvican et al. (2012), who reported a mean 3.5% tHb 

increase after 19 d at 2760 m in highly trained cyclists, and similarly to Gough et 

al. (2012), who reported a mean ~4% tHb increase after 21 nights at 2135-2320 

m in highly trained swimmers. tHb changes in the present studies’ ALT group 

were variable between individuals (-0.3 to +9.0%), which is also consistent with 

Garvican et al. (2012) (~-1 to ~+8%), and Gough et al. (2012) (~-3 to ~+8%). 
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Using a similar design to the present study, Wachsmuth et al. (2013) reported a 

mean tHb increase of ~7% after highly trained swimmers spent four weeks at 

2320 m. It is plausible that the extra week at altitude was the cause of this 

considerably larger tHb change than observed in the present study and those 

detailed above (Garvican et al., 2012; Gough et al., 2012), but this is more likely 

due to results from participants that became ill or injured being excluded from 

the mean values. Similarly, Bonne et al. (2014) reported a mean tHb increase of 

6 ± 4% after 10 highly trained swimmers undertook 3-4 weeks of LH+TH at 

2130-3094 m. This greater tHb gain than observed in the present study was 

likely due to 7 of the 10 LH+TH participants having spent an initial 7 d at 3094 

m, before a further 21 d at 2130 m; i.e. a greater hypoxic dose than in the 

present study (Wilber et al., 2007). 

Furthermore, tHb results from the present study are substantially lower than the 

meta-analysis derived predictions by Gore et al. (2013), who estimated that a 

4.3% tHb gain would require only ~16 d at or above 2100 m (see Figure 6.2). 

However, in disagreement with these estimations, and with results from the 

present study, Gore et al. (1998) reported that traditional altitude training (31 d 

at 2690 m) did not increase tHb or any other indicators of erythropoiesis. 

Participants in this study were arguably some of the highest calibre of athletes 

to have been documented in any such intervention (World Champion track 

cyclists), so these authors proposed that they had reached their natural tHb 

physiological limit (Gore et al., 1998). Importantly, all eight of these participants 

succumbed to illness during or immediately after the altitude exposure, and as 

Wachsmuth et al. (2013) demonstrated, training load reductions due to illness 

or injury at altitude result in significantly attenuated tHb gains. 

Nevertheless, none of the participants in the present study suffered from illness 

or injury, yet 2-3 of the ALT group participants showed no signs of increased 

erythropoiesis after the LH+TH camp (i.e. tHb changes remained within the test 

CV of ±2.2%; see Figure 3.1). Similarly to participants in Gore et al. (1998), 

these swimmers were already highly endurance trained pre-altitude, as verified 

by the higher baseline tHb relative to body weight than previously reported: 

males 13.7 ± 0.9 g·kg-1 vs. 12.7-13.2 g·kg-1 (Heinicke et al., 2001; Wachsmuth 

et al., 2013); females 11.6 ± 0.4 g·kg-1 vs. 10.7 g·kg-1 (Wachsmuth et al., 2013). 
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It therefore remains a possibility that there was not scope for further tHb gains 

in response to this altitude of 2320 m (Robach & Lundby, 2012). 

3.5.2 Race performance 

Even though there was a significant 200 m race performance improvement after 

three weeks of LH+TH, this improvement was not significantly different to the 

performance changes in the sea level control group (see Table 3.1). 

Furthermore, the correlations between the changes in tHb and 200 m race 

performance were not significant. This lack of a post-altitude performance 

change over and above the effect of sea level training is consistent with Gough 

et al. (2012), whereby the mean ~4% tHb increase did not transfer into 

performance gains in highly trained swimmers, at 1, 7, 14 and 28 d post-

altitude. Additionally, the recent very thorough experiment by Bonne et al. 

(2014) showed no greater benefit of LH+TH than sea level training on aerobic 

(3000 m) and anaerobic (4 x 50 m) time trial performance, assessed within 7 d 

post-altitude. However, Wachsmuth et al. (2013) found that the mean ~7% tHb 

gains after LH+TH at 2320 m corresponded to significantly improved swimming 

performances (on average +0.8%) after 25-35 d at sea level. 

Although participants in the present study were highly motivated to compete at 

the post-intervention competitions, this was not the primary competition of the 

year, so they did not complete a 2-4 week taper, as would be the case for a 

major international competition. If this had been the case, different performance 

outcomes may have occurred (Thomas et al., 2008). Considering the link 

between tHb and   O2max (Schmidt & Prommer, 2010), it is possible that had 

race performances of longer duration events been assessed (that are more 

dependent on   O2max), performance effects may have been different. 

However, the 3000 m time trial results in the study by Bonne et al. (2014) do not 

support this concept. Assessing performance in the same 200 m event for all 

participants allowed direct comparisons of race times, whereas Wachsmuth et 

al. (2013) used results from events of a variety of distances, and then converted 

all results to FINA Points for comparative purposes. This arguably inappropriate 

scalar method is a potential reason for the disparity in results, in that 

Wachsmuth et al. (2013) reported significant swimming performance gains after 

LH+TH, whereas most other authors have not. 
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Interestingly, there were some swimmers who achieved performance 

improvements in excess of 1%, despite showing no signs of increased tHb after 

the LH+TH altitude intervention (see Figure 3.1 and Table 3.1), in a similar 

manner to the report by Gore et al. (1998). The lack of a significant correlation 

between tHb and performance changes supports the notion that non-

haematological factors were likely involved in performance changes, at least in 

some of participants (Gore et al., 2007). While early investigations in untrained 

males (Geiser et al., 2001) and in trained cyclists (Terrados et al., 1988) 

highlighted beneficial skeletal muscle oxidative adaptations to hypoxic training, 

such mechanisms in response to sustained hypoxic exposure at rest were 

recently disputed (Robach et al., 2012). Nevertheless, strong evidence is 

provided by Garvican et al. (2011), who found that four minute cycling 

performance significantly improved after 26 nights of simulated altitude 

exposure, despite the researchers blocking a ~5% tHb increase. 

There are a number of experimental considerations associated with the present 

study. Firstly, there is a risk of Type I and Type II errors for tHb and race 

performance, due to the relatively small sample size. Secondly, it would have 

been beneficial to measure erythropoietin and   O2max, to ascertain how much 

of a direct impact the altitude intervention had on erythropoiesis and aerobic 

capacity, respectively. These assessments were not possible due to the nature 

of collecting this data in highly trained participants, as well as the logistical 

challenges of doing so at an international location. And finally, although the 

design of the present study was based on previous published data (Wachsmuth 

et al., 2013), it would have been insightful to have quantified race performances 

over a range of event durations, and more frequently post-altitude. 

3.6 Conclusion 

The first hypothesis, that tHb would increase more in response to altitude 

compared to sea level training, is accepted, as tHb increased significantly more 

after LH+TH compared to the control group. The second hypothesis, that 

changes in swimming race performance would improve to a greater extent in 

the altitude compared to the control group, is rejected, as no such significant 

difference was observed between the two groups. And the third hypothesis, that 
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performance changes would be related to the changes in tHb, is also rejected, 

as none of these correlations were significant. 

This study demonstrates that three weeks of traditional LH+TH altitude training 

is not an efficacious means of enhancing 200 m swimming performance. In 

terms of the haematological adaptations to three weeks of LH+TH, while an 

increased tHb occurs in most athletes, this is not a universal adaptation. 

Accelerated erythropoiesis is not the sole mechanism by which altitude 

exposure may improve performance; non-haematological adaptations are likely 

to occur, and are worthy of further investigation. Furthermore, as race 

performance changes are not necessarily related to tHb changes, it is 

suggested that when identifying athletes as “responders” or “non-responders” to 

altitude training, classifications should not be based on haematology results, but 

instead solely on race performances. 

 

Link between Chapter 3 and Chapter 4 

Given that Chapter 3 showed that changes in 200 m swimming performance 

after LH+TH altitude exposure were not necessarily due to erythropoietic gains, 

it is plausible that non-haematological adaptations took place. Chapter 4 further 

investigated this possibility by exposing highly trained athletes to an IHT 

intervention. In this manner, the hypoxic dose was too small to induce any 

substantial erythropoietic gains, so the effects of hypoxic exercise on a range of 

other physiological variables and maximal exercise capacity were investigated.  
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CHAPTER 4: 

Eight Weeks of Intermittent Hypoxic Training Improves Submaximal 

Physiological Variables in Highly Trained Runners 

 

Chapter 4 was accepted for publication in the Journal of Strength and 

Conditioning Research in January 2014 (Holliss, B. A., Burden, R.J., Jones, A. 

M., & Pedlar, C. (2014). Eight weeks of intermittent hypoxic training improves 

submaximal physiological variables in highly trained runners. J Strength Cond 

Res (In Press). 

4.1 Abstract 

INTRODUCTION: It is unclear whether IHT results in improvements in 

physiological variables associated with endurance running. METHODS: 12 

highly trained runners (  O2peak 70.0 ± 3.5 mL∙kg-1∙min-1) performed 

incremental treadmill tests to exhaustion in normobaric normoxia and hypoxia 

(0.160 FIO2) to assess submaximal and maximal physiological variables and the 

T-Lim. Participants then completed eight weeks of moderate to heavy intensity 

normoxic training (CONT) or IHT (twice weekly 40 min runs, in combination with 

habitual training), in a single blinded manner, before repeating the treadmill 

tests. RESULTS: Submaximal HR decreased significantly more after IHT (-5 ± 5 

b∙min-1; P = 0.001) than after CONT (-1 ± 5 b∙min-1; P = 0.021). Changes in 

submaximal   O2 were significantly different between groups (P < 0.05); 

decreasing in the IHT group in hypoxia (-2.6 ± 1.7 mL∙kg-1∙min-1; P = 0.001) and 

increasing in the CONT group in normoxia (+1.1 ± 2.1 mL∙kg-1∙min-1; P = 0.012). 

There were no   O2peak changes within either group, and while T-Lim improved 

post-IHT in hypoxia (P = 0.031), there were no significant differences between 

groups. CONCLUSIONS: IHT resulted in a degree of enhanced cardiovascular 

fitness that was evident during submaximal, but not maximal intensity exercise. 

PRACTICAL APPLICATIONS: These results suggest that moderate to heavy 

intensity IHT provides a means of improving the capacity for submaximal 

exercise, and may be a useful tool for pre-acclimatisation for subsequent 

exercise in hypoxia, but there is a lack of evidence for the improvement of 

endurance athletic performance at sea-level.  
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4.2 Introduction 

Under hypoxic conditions, the reduced cellular PO2 results in an increased 

activity of the ‘oxy-gene’ HIF-1 (Kallio et al., 1999). Several HIF-1 target genes 

have been identified, including those encoding Epo, glucose transporters, 

glycolytic enzymes, and VEGF (Semenza, 1999), and there is some evidence 

for direct effects on mitochondrial function (Melissa et al., 1997; Terrados et al., 

1990). As such, interventions that expose athletes to altitude and/or hypoxia for 

varying durations are commonly used. The traditional approach involving 

spending 20 h·d-1 or more for three weeks or more, at physical altitude, may 

enhance subsequent sea level endurance performance via haematologically 

and/or non-haematologically mediated improvements in O2 transport and 

utilisation (Gore & Hopkins, 2005; Levine & Stray-Gundersen, 2005). An 

alternative approach is for athletes to breathe a hypoxic inspirate during some 

of their usual exercise training, while living in normoxia, termed IHT. While IHT 

does not provide a sufficient exposure required for complete acclimatisation 

(Millet et al., 2010), there have been some noteworthy adaptations reported. 

In an early study using highly trained cyclists, Terrados et al. (1988) found that 

3-4 weeks of moderate and heavy intensity IHT at an altitude simulation of 2300 

m resulted in significantly lower submaximal exercise [BLa] and significantly 

enhanced capillarisation, compared to a normoxic trained control group 

(CONT). Furthermore, cycling work capacity improved significantly more after 

IHT than CONT, when tested in hypoxia. Although work capacity improved in 

the IHT group on average by 33% in normoxia, this was not significantly 

different to the 22% improvement in CONT (Terrados et al., 1988). Similarly, 

Roels et al. (2005) exposed moderately trained cyclists to seven weeks of 

heavy intensity IHT at an altitude simulation of ~3000 m.   O2max significantly 

increased by ~9% after IHT, compared to a mean increase of ~5% after CONT, 

but this between group difference was not statistically significant. Moreover, the 

increased   O2max after IHT did not correspond to a greater endurance cycling 

performance improvement than after CONT. 

Another study, by Dufour et al. (2006), involved 18 moderately trained males 

completing six weeks of moderate intensity IHT or CONT, at the speed 

corresponding to the second ventilatory threshold (Beaver et al., 1986). Despite 
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the similar training load, the IHT group experienced a significant ~5%   O2max 

increase, which did not change in CONT, and time to exhaustion at the   O2max 

velocity also improved significantly more after IHT (+35%) compared to CONT 

(+10%) (Dufour et al., 2006). Given that hypoxic doses of <2 h·d-1 (Roels et al., 

2005) and <1 h·d-1 (Dufour et al., 2006) are too small for erythropoiesis to have 

occurred (Rasmussen et al., 2013), it is likely that the   O2max improvements 

were due to non-haematological adaptations (Gore & Hopkins, 2005). 

The frequency of IHT sessions is important, with participants in the earlier study 

by Terrados et al. (1988) dedicating the majority of their training to the 4-5 IHT 

sessions·week-1, compared to just 2 sessions·week-1 in Dufour et al. (2006) and 

Roels et al. (2005). The ecological validity of the design of any such IHT 

intervention is paramount, in that experimental treatments aimed at enhancing 

athletic performance should match what is likely possible to incorporate into an 

athlete’s training schedule. 

While participants in Roels et al. (2005) were “well trained cyclists”, with a mean 

baseline cycling   O2max of 66 mL∙kg
-1∙min-1, and participants in Dufour et al. 

(2006) were moderately trained runners, with a mean baseline running   O2max 

of ~63 mL∙kg-1∙min-1, Terrados et al. (1988) are the only authors to date to have 

assessed the effects of IHT in highly trained athletes (international standard 

cyclists with a mean baseline cycling   O2max of 70 mL∙kg
-1∙min-1). Moreover, 

IHT participants trained in a hypobaric chamber in Terrados et al. (1988), and 

wore face masks in Dufour et al. (2006), whereas CONT participants trained in 

normoxic laboratories, without masks, and Roels et al. (2005) did not report 

whether participants were blinded to the environmental treatment. A lack of 

blinding in these studies may have resulted in influential placebo and/or nocebo 

effects, which must be controlled for in order to ascertain the efficacy of IHT as 

a worthwhile intervention. 

The purpose of this study was to investigate cardiopulmonary physiological 

adaptations resulting from IHT or CONT, in highly trained endurance runners, 

using a single-blinded research design. It was hypothesised that eight weeks of 

IHT would elicit greater improvements in submaximal and maximal physiological 

variables, and would lead to an enhanced incremental exercise T-Lim, 

compared to CONT. 
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4.3 Methods 

4.3.1 Experimental approach to the problem 

After a competition phase, a group of runners completed six weeks of routine 

training to ensure stability of basic fitness, and were then randomly allocated 

into an IHT group (n = 9) or a CONT group (n = 9), in a single-blinded manner. 

In Weeks 1 and 10 participants completed incremental exercise tests to quantify 

a range of submaximal and maximal physiological variables, as well as T-Lim, 

in a controlled laboratory environment. In between, during Weeks 2-9 

participants undertook their habitual training, with two ‘anaerobic threshold’ runs 

each week replaced by 40 min IHT or CONT running sessions (16 x 40 min 

sessions in total over the eight weeks) (Table 4.1). These ‘anaerobic threshold’ 

runs would ordinarily be 20-60 min, between the speed corresponding to the 

[BLa] threshold (LTspeed) and [BLa] turnpoint (LTPspeed) (Jones, 2006; Smith & 

Jones, 2001) (see Section 4.3.3). 

Table 4.1: Typical running training week during the eight week intervention. 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

IHT / CONT in 

lab (40 min) 

and easy run 

(30 min) 

Intense 

intervals 

(60 min) 

IHT / CONT in 

lab (40 min) 

and threshold 

run (50 min) 

Intense 

intervals 

(50 min) 

Easy run   

(30 min) 

Intense 

race       

(15-35 min) 

or rest day 

Easy 

run    

(75 min) 

The “IHT / CONT in Lab” sessions replaced two of the participants’ normal 

outdoors runs, thus maintaining comparable total training volumes. 

4.3.2 Participants 

Following approval by the University of Exeter Ethics Committee, the 

participating athletes were instructed as to the details of the study, and then 

provided written informed consent. Initially there were 18 highly trained male 

endurance runners who volunteered for this study. Descriptive data for the 12 

participants that finished the study are detailed in Table 4.2. They were all part 

of the same training group, they lived in the same accommodation, and ate in 

the same canteen. These participants regularly competed at a national and 
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international level in track events ranging from 1500 m to 10,000 m, as well as 

in a variety of cross-country races. 

4.3.3 Procedures 

Incremental step test to volitional exhaustion 

Tests were performed at the same time of day, on the same days of the week, 

in normobaric normoxia (FIO2 = 0.209) and hypoxia (FIO2 = 0.160, equivalent to 

~2150 m), each separated by one day. Participants wore a chest harness for 

safety, due to the high speed running, and completed a discontinuous 

incremental test on a treadmill (ELG, Woodway, Waukesha, USA) set at a 

gradient of 1% to compensate for the lack of air resistance (Jones & Doust, 

1996) – this was also the case for all the IHT and CONT training sessions. Each 

stage lasted 3 min, followed by a 15 s rest interval while a capillary blood 

sample was taken from the earlobe for [BLa] determination (Biosen C_Line, 

EKF, Magdeburg, Germany). The first stage was at 10 km∙h-1, with subsequent 

increments of 1.5 km∙h-1 each stage. SaO2 and HR were quantified continuously 

via finger tip pulse-oximetry (BCI-Autocorr®, Smiths Medical, Waukesha, US) 

and telemetry (S610i, Polar Electro, Kempele, Finland). These variables, as well 

as breath-by-breath   O2 (Oxycon-Pro®, VIASYS, Höechberg, Germany) were 

averaged over the final 60 s of each stage, when Rating of Perceived Exertion 

(RPE) was also recorded using the Borg 6-20 scale (Borg, 1998). Running 

economy (submaximal   O2, relative to body weight) was measured at 14.5 

km∙h-1, which was below the LTspeed for all participants. The running speed that 

elicited 4.0 mM [BLa] and the LT (LTspeed) were derived using the Lactate-E 

Software (Newell et al., 2007). The LTspeed was defined as the final running 

velocity before the first sustained increase in [BLa] above baseline (Jones, 

2006; Smith & Jones, 2001). In addition, for the purpose of setting the initial 

training treadmill speeds, the running speed that elicited the LTP (LTPspeed) was 

determined by two independent reviewers, defined as the final running speed 

before the observation of a sudden and sustained rise in [BLa], at approximately 

2-5 mM (Jones, 2006; Smith & Jones, 2001). Minimum SaO2 and maximal HR 

(HRmax) were calculated as the lowest and highest 5 s rolling average, 

respectively, and   O2peak was calculated as the highest 30 s rolling average. 

Throughout all tests the participants were verbally encouraged to perform 
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maximally, and the treadmill was only stopped at volitional exhaustion, when the 

participant placed his feet either side of the treadmill belt or lifted his legs up 

and became suspended from the chest harness, at which time T-Lim was 

recorded to the nearest s. Based on the investigators experience of testing 

these calibre of athletes, maximal [BLa] ([BLa]max) was assessed at 2 min 

post-exhaustion. 

Table 4.2: Descriptive characteristics of participants who completed the study. 

 
CONT group 

(n = 7) 

IHT group 

(n = 5) 

Combined groups 

(n = 12) 

Age (y) 19.3 ± 0.6 20.2 ± 0.7 19.7 ± 0.8 

Body weight (kg) 67.3 ± 6.1 66.5 ± 6.7 67.0 ± 6.1 

Stature (cm) 179.0 ± 7.2 181.3 ± 8.0 180.1 ± 7.3 

  O2peak in normoxia 70.7 ± 3.1 69.2 ± 4.0 70.0 ± 3.5 

  O2peak in hypoxia 58.3 ± 3.7 58.2 ± 4.2 58.3 ± 3.8 

Participants were split into a CONT or an IHT group.   O2peak in normoxia was 

measured in the laboratory at a FIO2 of 0.209, and   O2peak in hypoxia was 

measured in the same laboratory at a FIO2 of 0.160. Participants were 

successfully blinded to the environmental condition during the pre- and post-

intervention tests and all training sessions. 

 

Environmental control and calibrations 

Ambient FIO2 and humidity were controlled by an installed S3 Hypoxic & 

Humidity System (Sporting Edge UK Ltd, Basingstoke, UK), switched on during 

all training and testing, to allow complete participant blinding. This system was 

accurate to within ± 0.1%, and was checked prior to and during all tests 

(Servomex 5200, Servomex, Crowborough, UK). During the treadmill tests, 

participants wore a face mask for breath-by-breath   O2 determination using the 

Oxycon-Pro®, which required adapted calibrations for use in hypoxia, as 

previously described (Holliss et al., 2011) (see Section 2.4 and Appendix 5). 

Face masks were not worn during any of the training sessions.  
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IHT and CONT sessions 

Each treadmill training session lasted 40 min, comprising a 5 min moderate 

intensity warm up at the LTspeed, a 30 min heavy intensity core phase at the 

LTPspeed, and a 5 min moderate intensity cool down at 1.0 km∙h-1 slower than 

the LTspeed. All speeds were set according to the pre-training test in the specific 

FIO2 environment. HR, RPE and [BLa] were recorded every 10 min during the 

30 min core phase, to relativise the exercise intensity between the IHT and 

CONT groups. The aim was to achieve a steady state [BLa], with a rise of <2.0 

mM from 10 to 30 min. Treadmill speed was adjusted within the session after 

any 10 min period using the following criteria: if RPE <13 or there was a [BLa] 

decrease, speed was increased by 0.5 km∙h-1. If RPE >17 or there was an 

increase in [BLa] >2.0 mM, between 10 to 30 min, speed was decreased by 0.5 

km∙h-1. Participants were obstructed from viewing their exercising HR, [BLa] and 

treadmill speeds, to minimise the chances of them guessing the training and/or 

testing FIO2. When asked, after the final supervised exercise session, 46% of 

participants were correct and 54% were incorrect in their guess of which 

environmental FIO2 they had exercised in (50% of the IHT group and 43% of the 

CONT group were correct in their judgement, respectively), so the blinding was 

judged to have been successful. 

Training monitoring 

The running speeds during the final 10 min of each of the supervised laboratory 

sessions were recorded and used to assess any differences in the progression 

between the IHT and CONT groups over the eight week intervention. In 

addition, all participants wore a GPS equipped watch (Forerunner 405, Garmin 

Ltd, Southampton, UK) during all runs completed outside the laboratory, in 

order to quantify running distances. Data were analysed to investigate any 

differences in total running distances between groups. Table 4.1 illustrates a 

typical training week. 

Resting haematology and nutrition 

Venous blood samples were drawn from an anti-cubital vein via phlebotomy 

during Weeks 1, 5 and 10, to screen for illness and to ensure adequate iron 

stores ([sFe] ≥30 μg·L-1). Within 2 h, samples were analysed for FBC using an 
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automated cell counter (ADVIA 120, Siemens AG, Erlangen, Germany) and 

[sFe] using a chemiluminescent microparticle immunoassay (ARCHITECT 

Ferritin Assay, Abbott Point of Care Inc, Birmingham, UK). Furthermore, to 

stress the importance of adequate dietary iron and other nutrient intake, all 

participants attended a 45 min nutrition seminar by an experienced sports 

dietician during Week 1. 

4.3.4 Statistical analyses 

In order to assess changes pre- to post-training, absolute changes in each 

dependent variable were compared between IHT and CONT groups using 

repeated measures analyses of covariance (ANCOVA) with mixed measures. 

Pre-training values for all exercise test variables were entered as covariates, to 

control for any baseline differences between the IHT and CONT groups. 

Analyses were performed using PASW Statistics (v18.0, IBM SPSS, 

Portsmouth, UK), with the probability level of P < 0.05 being accepted as 

statistically significant. Data sets were checked for normality of distribution prior 

to analyses. All data were reported as mean ± SD. 

4.4 Results 

Of the 18 participants who started the study, four dropped out due to illness 

(IHT Group n = 3, CONT Group n = 1), and two qualified for international 

competitions so ceased their involvement (IHT Group n = 1, CONT Group n = 

1). Baseline descriptive data is detailed in Table 4.2 for the 12 ‘finishers’ who 

completed all 16 supervised treadmill sessions within the planned eight week 

period. The mean running speed during all 16 of the laboratory training sessions 

was significantly slower in the IHT group compared to the CONT group (15.6 ± 

0.8 vs. 17.1 ± 0.8 km·h-1, P = 0.007). There was a significant increase in the 

mean running speed during Week 1 to Week 8 when results from both groups 

were combined (16.1 ± 1.1 to 16.9 ± 1.0, km·h-1, P = 0.033), but there was no 

difference in this running speed progression between the IHT and the CONT 

groups (IHT 15.2 ± 0.7 to 16.0 ± 0.7 vs. CONT 16.8 ± 0.9 to 17.5 ± 0.7 km·h-1, P 

= 0.565). Total weekly running distances were also not different between 

groups (IHT 85.1 ± 5.1 km vs. CONT 84.6 ± 5.6 km; P = 0.776). 

  



 
 

Page 97 of 231 
 

4.4.1 Submaximal variables 

The changes in submaximal   O2 were significantly different after IHT compared 

to CONT, in both normoxia (P = 0.003) and hypoxia (P = 0.010) (Figure 4.1). 

During normoxic tests, submaximal   O2 increased in five of the seven CONT 

participants (54.1 ± 2.9 to 55.2 ± 1.5 mL∙kg-1∙min-1, P = 0.012) and showed a 

tendency to decrease post-IHT, with submaximal   O2 decreasing in four out of 

the five IHT participants (52.0 ± 3.6 to 50.5 ± 2.7 mL∙kg-1∙min-1, P = 0.052). In 

hypoxia, submaximal   O2 did not change post-CONT (49.0 ± 1.7 to 50.3 ± 1.7 

mL∙kg-1∙min-1, P = 0.296), but decreased in all five of the IHT participants (48.6 

± 3.5 to 46.0 ± 1.8 mL∙kg-1∙min-1, P = 0.001). Submaximal HR when tested in 

normoxia decreased significantly after both IHT (154 ± 13 to 148 ± 8 b∙min-1; P 

= 0.001) and CONT (160 ± 10 to 159 ± 7 b∙min-1; P = 0.021), with this difference 

being statistically greater after IHT (P = 0.001) (Figure 4.1). There were no 

significant submaximal HR changes within or between groups in hypoxia, and 

there were no significant changes within groups or differences between groups 

in the speed at 4.0 mM [BLa] or in submaximal SaO2 (Figure 4.1). 
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Figure 4.1: Changes in submaximal variables in the IHT group (black bars) and CONT group (grey bars). Data are presented 

as mean change values, with SD error bars. #Significant training effect within the IHT or CONT group (P < 0.05). *Significant 

difference between the IHT and CONT groups pre- to post-training (P < 0.05).   O2 at 14.5 km∙h-1 significantly decreased post-

IHT in hypoxia, and increased post-CONT in normoxia. HR at 14.5 km∙h-1 decreased significantly more so post-IHT compared 

to post-CONT, when tested in normoxia. 
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4.4.2 Maximal variables 

T-Lim remained unaltered after both CONT and IHT in normoxic conditions. 

During hypoxic tests there was a significant T-Lim improvement after IHT (25.0 

± 1.9 to 25.6 ± 1.1 min; P = 0.031), but not after CONT (23.7 ± 1.7 to 23.8 ± 1.9 

min; P = 0.836). However, T-Lim changes were not statistically different 

between the IHT and CONT groups when tested in either normoxia (P = 0.463) 

or hypoxia (P = 0.214) (Figure 4.2). 

While   O2peak in normoxia increased to a greater extent after CONT than after 

IHT, HRmax in hypoxia decreased to a greater extent after IHT than after 

CONT, and SaO2min in normoxia increased to a greater extent after IHT than 

after CONT (Figure 4.3), such changes were not significant within either group, 

in either normoxic or hypoxic test conditions. Similarly, while in hypoxic 

conditions there was a significant decrease in [BLa]max post-IHT (13.0 ± 4.1 to 

11.4 ± 2.1 mM; P = 0.007), but not post-CONT (11.0 ± 1.9 to 10.5 ± 2.3 mM; P 

= 0.372) there were no significant between group differences (Figure 4.3). 

4.4.3 Resting haematology 

[sFe] remained above 30 μg·L-1 in all participants who completed the study, and 

the medical team had no concerns regarding the FBC red or white blood cell 

differential variables, which did not significantly differ from baseline, and did not 

differ between groups. 
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Figure 4.2: Absolute changes in T-Lim pre- to post-IHT and CONT; black lines represent individual participants, while grey 

bars are mean values. T-Lim in hypoxia significantly increased post-IHT. #Significant training effect within the IHT group (P < 

0.05).  
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Figure 4.3: Comparisons of the changes (Δ) in maximal variables between the IHT (black bars) and CONT (grey bars) groups. 

Data are presented as mean values, with SD error bars. #Significant training effect within the IHT or CONT group (P < 0.05). 

*Significant difference between the IHT and CONT groups pre- to post-training (P < 0.05). 
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4.5 Discussion 

This study investigated whether eight weeks of IHT would elicit improvements in 

submaximal and maximal physiological variables and incremental running T-Lim 

compared to CONT. The main findings were that i) submaximal HR reduced 

more after IHT, compared with CONT, ii) submaximal   O2 tended to increase 

after CONT and to decrease after IHT, and iii) although T-Lim after IHT 

improved in hypoxic test conditions, there were no T-Lim changes within either 

group in normoxic test conditions. 

4.5.1 Submaximal variables 

The greater submaximal HR reductions that were observed post-IHT (mean -

4%) compared to post-CONT (mean -1%) indicate a greater cardiovascular 

fitness gain post-IHT. In a similar manner, Vallier et al. (1996) reported that 

submaximal HR was on average 4% lower after highly trained triathletes 

performed three weeks of IHT. While consistent with results from the present 

study, these authors used a more extreme altitude simulation (~4000 m), 

hypobaric rather than normobaric hypoxia, and did not include a CONT group, 

so it is impossible to judge to what extent the changes were due to the hypoxia, 

per se, or to enhanced cardiovascular fitness after exercise training. Moreover, 

Terrados et al. (1990) found that constant submaximal load HR was reduced 

significantly more after highly trained cyclists undertook 3-4 weeks of IHT (at an 

altitude simulation of ~2300 m) compared to CONT (mean -16% vs. -12%, 

respectively). 

In the present study, five out of the seven CONT participants showed 

submaximal   O2 increases, which reached statistical significance in normoxia. 

On the contrary, of the five IHT participants, submaximal   O2 decreased in four 

of them in normoxia, and all five of them in hypoxia, which reached statistical 

significance in hypoxia. These results in conjunction with the decreased 

submaximal HR indicate a lower energetic cost of exercise post-IHT, and an 

increased energetic cost of exercise post-CONT, the latter being rather 

surprising, as an increase in submaximal   O2 would not be expected after eight 

weeks of training. 
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However, in the similarly designed study by Roels et al. (2005), these authors 

also reported a trend for submaximal   O2 to decrease after IHT (n = 11, -3%, 

tested in hypoxia), and increase after CONT (n = 11, +2%, tested in normoxia), 

although these differences were not statistically significant. Furthermore, 

Robertson et al. (2010b) found that submaximal   O2 remained unchanged in 

moderately trained middle distance runners who performed three weeks of 

either IHT, or IHT while living in normobaric hypoxia (3000 m simulated 

altitude). This study also had a number of withdrawals, meaning that there were 

only 12 ‘finishers’, thus in a similar manner to the present study, the statistical 

power was reduced. Finally, although the aforementioned study by Dufour et al. 

(2006) showed impressive gains in maximal physiological variables and T-Lim 

after IHT (n = 9) compared to CONT (n = 9), these authors also reported no 

significant submaximal   O2 changes in either group. Given the larger sample 

sizes, the power of statistical analyses in Roels et al. (2005) and Dufour et al. 

(2006) would have surpassed that of the present study. Together with results 

from Robertson et al. (2010b), these investigations question whether the 

submaximal   O2 changes observed in the present study were physiologically 

meaningful. While the lower submaximal HR may suggest that IHT is a useful 

means of improving submaximal exercise endurance capacity, this has not 

been categorically proven, so this area warrants further research. 

4.5.2 Maximal variables 

It is reasonable to suggest that any reduction in the energetic cost of exercise 

post-IHT would likely lead to an improved T-Lim. Indeed there was a significant 

T-Lim increase post-IHT, when participants were tested in hypoxia. Although 

the measure of T-Lim in the present study can only provide a surrogate 

estimate of athletic performance, and changes were not statistically different 

between groups, the within IHT group change shows a clear trend (Figure 4.2). 

Based on this finding, and that from another of our recent IHT investigations, 

whereby muscle oxidative capacity improved in active men when tested in 

hypoxic conditions (Holliss et al., 2013) (see Chapter 5 and Appendix 8), it is 

possible that IHT elicits adaptations within skeletal muscle that result in a 

degree of acclimatisation to subsequent hypoxia. Although a (resting) 

intermittent normobaric hypoxic exposure intervention has been reported not to 
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enhance subsequent exercise tolerance at moderate altitude (Faulhaber et al., 

2010), to the knowledge of the authors this has not been trialled using a similar 

IHT intervention to the present study, in highly trained athletes. 

Results from the similar study by Dufour et al. (2006) differ to the present study, 

as after six weeks’ training, T-Lim in normoxia improved in all nine IHT 

participants (mean +35%, approximate range +5% to +63%) compared with 

only five out of nine CONT participants (mean +10%, approximate range -18% 

to +51%). Some variability is to be expected in duration-blinded time to 

exhaustion tests, perhaps ~15% (Laursen et al., 2007), but the changes 

reported by Dufour and colleagues are considerably greater, so it is suggested 

that the lack of FIO2 blinding and the resulting placebo and/or nocebo effects, 

were partially responsible. These researchers found no in vitro maximal 

oxidative capacity improvements after IHT compared to CONT, and concluded 

either that the participants had reached a mitochondrial adaptation plateau, or 

that IHT does not improve mitochondrial content (Ponsot et al., 2006). 

In contrast, studies in untrained participants by Vogt et al. (2001) and Geiser et 

al. (2001) reported significantly greater increases in mitochondrial and capillary 

densities after IHT compared to CONT. Similarly, Terrados et al. (1990) and 

Melissa et al. (1997) reported significant citrate synthase activity increases in 

the hypoxic trained legs compared to normoxic trained legs of untrained 

participants (using the same absolute work rates), thus indicating enhanced 

mitochondrial function post-IHT. Results from these studies being largely 

different to results in moderately trained participants (Ponsot et al., 2006) 

indicate that baseline training status likely has an important impact on adaptive 

outcomes. In the present study, the participants’ pre-intervention   O2peak of 

70.0 ± 3.5 mL∙kg-1∙min-1 was already high, so the scope for further maximal 

aerobic improvements via an eight week intervention was likely to be limited. 

Nevertheless, in another investigation using single-legged exercise, Bakkman et 

al. (2007) had eight untrained participants undertake IHT and CONT, at 65% of 

the maximal attained work rate in the specific FIO2 that each leg was to be 

trained in. Maximal power output improved similarly in both legs, regardless of 

training condition, and in contrast to Terrados et al. (1990) and Melissa et al. 

(1997), citrate synthase activity increased significantly more in the CONT leg 
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than in the IHT leg, in which there was no such change. These authors 

suggested that the lower absolute work rate in the IHT leg likely caused a 

reduced stimulus for mitochondrial biogenesis (Bakkman et al., 2007). 

Furthermore, Heinonen et al. (2010) demonstrated that during submaximal 

exercise in normobaric hypoxia, elevated cardiac output provides adequately 

increased muscle blood flow to counteract reductions in arterial O2 content, thus 

total muscle O2 delivery remains largely unaltered. It is only during high intensity 

whole body exercise in hypoxia that muscle O2 delivery is significantly reduced 

(Calbet et al., 2009). 

On this basis, the recent studies by Faiss et al. (2013b) and Galvin et al. (2013) 

found that repeated sprint performance improved significantly more after IHT 

compared to CONT, when equal absolute (maximal effort) workloads were 

used. As such, the IHT stimulus in the present study, whereby the relative 

training intensity was essentially ‘clamped’, meaning that IHT participants 

underwent lower absolute exercise workloads than CONT participants, may 

simply not have been sufficiently intense to stress O2 delivery. So the lack of 

observed T-Lim gains in the present study, and similarly by others that used 

moderate to heavy intensity training (Lecoultre et al., 2010; Robertson et al., 

2010b; Roels et al., 2005; Terrados et al., 1988), is perhaps not all that 

surprising. In the case of the moderate intensity IHT study by Dufour et al. 

(2006), again, it is suggested that the performance gains were at least in part 

due to placebo and nocebo effects. Moreover, these authors did not report any 

between group statistical analyses, meaning that the effects within the IHT and 

CONT group were not shown to be different. 

In agreement with the present study, Ventura et al. (2003) also reported no 

significant performance improvements after six weeks’ IHT in moderately 

trained cyclists. However, their IHT sessions were in addition to participants’ 

habitual training, and these authors suggested that the lack of performance 

change could have been a result of over-training (Ventura et al., 2003). 

Reductions in submaximal HR, [BLa]max, and maximal exercise capacity are 

commonly observed during over-training (Meeusen et al., 2010), and it is 

possible that a similar effect occurred in the present study. The experimental 

design of the present study meant that training loads were maintained 

consistently over the eight weeks, so participants were not able to take 
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additional rest when feeling fatigued, as they may have done under normal 

circumstances. It is therefore likely that some participants experienced 

accumulated fatigue by the end of the intervention, which was confirmed 

anecdotally by the athletes and their coach, and is evidenced by the lack of T-

Lim changes, the high proportion of withdrawals due to illness, and by trends 

towards a post-IHT reduction in normoxic   O2peak and HRmax. 

It should be acknowledged that there is a risk of a Type I ‘false-positive’ error for 

submaximal HR and VO2, due to potential issues associated with multiplicity. 

Equally, given the relatively small sample size and the rather wide inter-

individual variation in responses (see Figure 4.2), there is also a risk of Type II 

‘false-negative’ errors. Additionally, the discontinuous combined submaximal 

and maximal intensity exercise test may not have provided the most sensitive 

means of assessing maximal exercise capacity. Instead of using T-Lim as the 

sole estimate of performance, future similar studies should include a range of 

exercise capacity tests, including extended submaximal protocols to establish 

whether any changes in submaximal HR and/or   O2 lead to greater aerobic 

exercise tolerance, and also using more ecologically valid assessments of 

maximal performance capacity (i.e. actual races). 

4.5.3 Practical applications 

 The results of this study do not support the use of moderate intensity IHT 

to enhance athletic performance at sea level. The concept of using IHT 

as a pre-acclimatisation tool for subsequent training at altitude or in 

hypoxia is interesting, but requires more direct assessments. 

 It is recommended that those professionals who supervise IHT 

interventions closely monitor individual athlete fatigue and wellbeing, and 

that research is carried out into the fatigue consequent to IHT in more 

depth, especially if equal absolute workloads are used for IHT as they 

would be for normoxic training. 

 Recent literature suggests that IHT using severe or supra-maximal 

intensity exercise may provide an additional benefit on for repeated sprint 

athletic performance than normoxic training, but these claims must be 

further substantiated. In particular future research should comprise 



  

 
 

Page 107 of 231 
 

rigorously designed, double-blinded assessments of the effects of whole 

body severe or supra-maximal intensity IHT in highly trained athletes, as 

there is a scarcity of data in this population. 

4.6 Conclusion 

In conclusion, while eight weeks of IHT resulted in some seemingly beneficial 

adaptations assessed during submaximal exercise, there were no greater 

exercise capacity improvements detected after IHT compared to (blinded) 

normoxic training. 

Link between Chapter 4 and Chapter 5 

The practical challenge of researching the effects of a training intervention in 

highly trained participants was highlighted in Chapter 4, notably the numerous 

withdrawals due to illness and injury, and in some cases due to performance 

enhancement. Aside from the training FIO2, attempts were made to maintain 

equality in the other training that participants undertook, as well as in general 

lifestyle factors, between the IHT and control groups, but inevitably there would 

have been some differences that may have impacted performance results. 

Nevertheless, there were signs of some (non-haematological) adaptations 

apparent during submaximal exercise that warranted further research. Chapter 

5 utilised 31P-MRS methods to assess muscle specific adaptations to IHT, in a 

highly controlled laboratory based study, with participants being completely 

blinded to the training and testing FIO2, and the researcher who administered 

the exercise tests also being blinded to the FIO2. Additionally, Chapter 5 took 

into account a relatively recent suggestion that equal absolute workloads should 

be used for high intensity IHT and normoxic training (Faiss et al., 2013b), and 

also followed the trend in the current literature for using a lower FIO2 compared 

to that used in Chapter 4 (0.145 vs. 0.160).  
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CHAPTER 5: 

Influence Of Intermittent Hypoxic Training On Muscle Energetics And 

Exercise Tolerance 

 

Chapter 5 was accepted for publication in the Journal of Applied Physiology in 

January 2013 (Appendix 8: Holliss, B. A., Fulford, J., Vanhatalo, A., Pedlar, C. 

R., & Jones, A. M. (2013). Influence of intermittent hypoxic training on muscle 

energetics and exercise tolerance. J Appl Physiol, 114(5), 611-619). 

5.1 Abstract 

IHT is used by some athletes to elicit ‘non-haematological’ physiological 

adaptations to simulated altitude. This study investigated whether IHT would 

result in greater improvements in muscle energetics and exercise tolerance 

compared to work-matched intermittent normoxic training (INT). Nine physically-

active males completed three weeks of intensive single-leg knee-extensor 

exercise training. Each training session consisted of 25 min of IHT (FIO2 = 

0.145 ± 0.001) with the experimental leg and 25 min of INT with the alternate 

leg which served as a control. Before and after the training intervention, the 

participants completed a test protocol consisting of a bout of sub-maximal 

constant-work-rate exercise, a 24 s high-intensity exercise bout to quantify the 

[PCr]-τ, and an incremental test to the T-Lim. The tests were completed in 

normoxia and hypoxia, in both the INT and IHT legs. Muscle metabolism was 

assessed non-invasively using 31P-MRS. Improvements in the T-Lim during 

incremental exercise were not significantly different between training conditions 

either in normoxia (INT: 28 ± 20 vs. IHT: 25 ± 9 %, P = 0.86) or hypoxia (INT: 21 

± 10 vs. IHT: 15 ± 11 %, P = 0.29). In hypoxia, [PCr]-τ was speeded slightly but 

significantly more post-IHT compared to post-INT (-7.3 ± 2.9 vs. -3.7 ± 1.7 s, P 

< 0.01), but changes in muscle metabolite concentrations during exercise were 

essentially not different between IHT and INT. Under the conditions of this 

investigation, IHT does not appreciably alter muscle metabolic responses or 

incremental exercise performance compared to INT. 
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5.2 Introduction 

IHT, whereby athletes live at or near sea level while undertaking a portion of 

their training under normobaric or hypobaric hypoxia, has been suggested to be 

a worthwhile strategy to enhance athletic performance (Fudge et al., 2012; 

Millet et al., 2010). However, there is controversy surrounding the mechanisms 

of physiological adaptations to IHT, and the extent of the potential performance 

advantages (Levine, 2002). 

Under physiological hypoxia, the O2 homeostasis regulating transcription factor, 

HIF-1, is activated, initiating a range of adaptations to preserve O2 delivery 

(Kallio et al., 1999; Semenza, 2009), of which the best documented is the 

hepatic and renal release of Epo. Given sufficient ‘hypoxic dose’, this will result 

in a sustained increase in the circulating Epo concentration, and consequently 

increased erythropoiesis (Levine & Stray-Gundersen, 1997). This response 

timeline is still in question but, for example, it has been reported that after a 

four-week phase of resting IHE (3 h·d-1, 5 d·week-1, at a simulated altitude of 

4000-5500 m), there were no significant changes in tHb, RCV or other RBC 

indices in comparison to a placebo group (Gore et al., 2006). It is therefore not 

surprising that studies have failed to measure an increased tHb following IHT 

interventions, which use relatively short duration total hypoxic exposures 

(Hoppeler et al., 2008; Levine, 2002; Wilber et al., 2007). 

A sustained high level of HIF-1 is also known to be associated with a range of 

other non-haematological adaptations that enhance muscle O2 availability 

(Semenza, 2009). These adaptations are suggested to include enhanced tissue 

perfusion linked to angiogenesis (Toffoli et al., 2009), improved mitochondrial 

efficiency and control of mitochondrial respiration (Ponsot et al., 2006; Roels et 

al., 2007), and enhanced H+ buffering capacity (Gore et al., 2001). Due to the 

invasive nature of assessing these variables, most studies have been restricted 

to low sample sizes or measures taken only during rest, such that the influence 

of IHT on skeletal muscle metabolism during dynamic exercise has not been 

comprehensively investigated. 

The non-invasive technique, 31P-MRS, has been utilised to assess muscle 

energetics during exercise in response to a range of interventions (Baguet et 
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al., 2010; Conley et al., 2000; Forbes et al., 2008; Haseler et al., 1999; Jones et 

al., 2008; Jones et al., 2007; Jones et al., 2009; Takada et al., 2011; Vanhatalo 

et al., 2011). Greater muscle oxidative capacity is reflected in faster post-

exercise PCr resynthesis (Tomlin & Wenger, 2001); when muscle acidosis is 

avoided, the speed of [PCr] recovery provides a valid estimate of in vivo 

oxidative capacity (Conley et al., 2000; Haseler et al., 1999; McMahon & 

Jenkins, 2002; Taylor et al., 1983). 

To the authors knowledge, only one study has used 31P-MRS to investigate the 

effects of IHT on the muscle metabolic responses to exercise (Kuno et al., 

1994). In that study, four combination skiers trained for 60 min, twice a day, for 

four consecutive days, at a simulated altitude equivalent to 2000 m (Kuno et al., 

1994). The [PCr]-τ was significantly faster post-IHT (mean change of -19%), but 

remained unchanged in the eight control participants, who undertook no training 

(Kuno et al., 1994). The IHT modality (running/cycling) was different to the 31P-

MRS test exercise modality (repeated right knee extensions), and as the control 

group remained sedentary, it was not possible to assess the effect of the 

hypoxic stimulus, per se, compared to the effects of normobaric normoxic 

running/cycling. However, the faster [PCr]-τ suggests enhanced muscle 

oxidative capacity following just 8 h of IHT. If confirmed, this would provide an 

evidence base for the use of IHT by athletes. 

The purpose of this study was therefore to investigate the muscle metabolic 

responses to exercise following a short, intense period of IHT. A study design 

was used in which participants trained one leg in normoxia (as a control; INT) 

and the other in hypoxia (IHT). The same exercise modality (knee extension) 

was used for all training and 31P-MRS tests. The hypotheses were that: 1) 

muscle metabolic perturbation (as assessed by changes in [PCr], pH and 

inorganic phosphate concentration ([Pi]) would be attenuated during sub-

maximal exercise); 2) [PCr] recovery kinetics following exercise would be faster; 

and 3) the T-Lim during incremental exercise would be extended following both 

IHT and INT in both normoxia and hypoxia, but that the effects would be greater 

following IHT. 
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5.3 Methods 

5.3.1 Participants and experimental design 

After institutional ethical approval, nine physically-active, healthy males 

participated in this study (age: 21.5 ± 3.7 y, body weight: 75.5 ± 11.7 kg, 

stature: 1.79 ± 0.03 m). Prior to testing, each participant completed a physical 

activity readiness questionnaire and provided written informed consent. The 

participants’ reported habitual exercise ranged from four sessions of 45 min per 

week to five sessions of 90 min per week. The participants were engaged in 

training for a variety of recreational sports (soccer, cycling, running, rowing and 

hockey) and could be best described as moderately-trained.  

The participants’ legs were randomly allocated into the normoxic or hypoxic 

training group, i.e. one leg was trained while they inhaled normoxic gas (INT), 

and the other while inhaling hypoxic gas (IHT). All participants completed: i) one 

single-leg knee-extension exercise test protocol practice (described below) and, 

after a 48 h break, one incremental test to volitional exhaustion under hypoxic 

conditions, for familiarisation purposes; ii) pre-training testing, consisting of four 

31P-MRS test protocols, two for each leg in each of normoxia and hypoxia, iii) 

three weeks of intensive IHT (experimental leg) and INT (control leg); and iv) 

post-training testing in which the pre-training test protocols were repeated. 

5.3.2 31P-MRS testing 

All testing took place with the participants in a prone position inside the bore of 

a 1.5 T superconducting magnet (Gyroscan Clinical Intera, Philips Medical 

Systems, Best, Netherlands). Participants had Velcro straps securely fastened 

around the thighs, hips, and lower back, and the foot of the test leg was 

fastened to a pulley system via a padded sling. The 31P-MRS test protocol then 

commenced. Knee-extension exercise was performed using a custom-built non-

ferrous ergometer, over a distance of ~0.22 m, in time with a visual queue 

which coincided with MR pulse acquisition (40 pulsesmin-1). The protocol 

included a 4 min moderate-intensity exercise bout; 6 min rest; two 24 s high-

intensity bouts, separated by 3 min 36 s rest; 5 min 36 s rest; and finally an 

incremental test to the T-Lim. The work rates applied were calculated from pilot 

testing undertaken during the familiarisation period. The moderate-intensity 
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work rate was performed at a load of 1 kg lower than that eliciting the pH 

threshold, and the 24 s high-intensity bouts were performed at the peak work 

rate achieved during the familiarisation incremental test. The duration and 

intensity of this 24 s exercise bout was based on a phase of pilot testing to find 

the optimal exercise intensity and duration to elicit a drop to 50-60% of baseline 

[PCr], without a concomitant reduction in intracellular pH. It is known that PCr 

recovery is not sensitive to differences in end-exercise [PCr] when pH is not 

altered (Thompson et al., 1995). For the incremental exercise test, the initial 

resistance was 0.5 kg and this was increased by 0.5 kg every 30 s until 

volitional exhaustion. The [Pi]/[PCr] and pH during the incremental tests was 

plotted against work rate, and a pH threshold was identified, as described by 

Barker et al. (2006). Pulmonary gas exchange was not measured during the 

31P-MRS tests due to restrictions related to the magnetic environment and the 

small   O2 amplitude (and low signal-to-noise ratio) during single-legged knee-

extension exercise performed in the bore of the magnet.  

5.3.3 Training intervention 

The participants completed three weeks of intensive IHT (experimental leg) and 

INT (control leg). Participants trained five times per week and thus completed 

15 sessions in total over the three week training intervention. Each training 

session consisted of two identical 25 min phases, one in which the IHT leg was 

trained, and one in which the INT leg was trained (in a randomised, alternating 

order). In the IHT condition, the training program totalled 316 min of active IHT 

or 375 minutes of hypoxia inspiration including rest intervals. The training 

intervention was based on previous studies which have shown that: three 

weeks of IHT significantly improved peak power output compared to normoxic 

training during incremental exercise in hypoxia (Roels et al., 2007); and 384 min 

of IHT (over six weeks) improves mitochondrial function,   O2max and 

endurance exercise performance compared to normoxic training (Zoll et al., 

2006). The training program particularly emphasised high-intensity interval 

training because this has been shown to be particularly effective in invoking 

rapid muscle metabolic adaptations and improvements in endurance fitness 

(Gibala & McGee, 2008; Truijens et al., 2003). Indeed, Forbes et al. (2008) 

have reported that just six sessions of high-intensity training results in 
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significant speeding of [PCr]-τ. It was therefore anticipated that an intense, well-

controlled three week training intervention would result in significant muscle 

metabolic adaptations which would underpin an enhanced incremental exercise 

test performance and that these adaptations may be greater in IHT compared to 

INT (Roels et al., 2007; Zoll et al., 2006). 

After being securely fastened to the exercise apparatus, as previously 

described, the single-leg knee-extension exercise training commenced with 2.5 

min at the work rate corresponding to the pH threshold in the IHT leg as 

measured in hypoxia. This was immediately followed by 2.5 min at a work rate 

10% higher than that of the pH threshold, then a further 5 min at a work rate 

20% above the pH threshold. After 30 s rest, high intensity interval exercise 

commenced. During Week One of training, this consisted of 10 x 60 s exercise 

bouts (with 30 s passive recovery intervals), while during Weeks Two and Three 

of training, this consisted of 10 x 70 s exercise bouts (with 20 s passive 

recovery), with the work rate being the mean of the pH threshold and the peak 

work rate attained during incremental exercise in the IHT leg in hypoxia. SaO2 

and HR, which were assessed using pulse-oximetry (Nonin 7500FO, Nonin 

Medical Inc., Plymouth, MN), and the RPE, which was assessed with the Borg 

scale (Borg, 1998), were recorded after the initial 5 and 10 min of continuous 

exercise, and then after the 5th and 10th bout of interval exercise. Work rates 

were identical for each leg, regardless of FIO2, and were increased by 0.5 kg 

when RPE ≤ 15 after the 5th interval. The inspirate FIO2 (0.145 ± 0.001 for IHT; 

0.209 ± 0.001 for INT) was checked before, during and after each training 

session using a Servomex 5200 Paramagnetic Analyser (Servomex, 

Crowborough, UK), as described below. 

5.3.4 Inspired gases 

The inspirate was generated by a Cloud 9 hypoxic generator (Sporting Edge UK 

Ltd, Basingstoke, UK), placed in the MR control room, connected to a 10 m 

extension pipe, which fed into a 150 L Douglas Bag (Cranlea & Co, 

Birmingham, UK). This acted as a reservoir and mixing chamber, and had a 

separate output pipe, feeding into a Hans Rudolf one-way valve (Cranlea & Co, 

Birmingham, UK), connected to a facemask for the participant to breathe from, 

with an expired air exit. Thus, the flow rate was maintained constant, and no 
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rebreathing of expired air occurred. The O2 and CO2 concentration of the 

inspirate was checked by a researcher in the MR control room during every test 

using the Servomex 5200, taking samples via a 10 m capillary tube. This 

analyser was calibrated prior to each use with a 16.0% O2, 8.0% CO2 and 

76.0% N gas mix (BOC Special Gases, Guildford, UK). For all normoxic tests 

and training sessions, the O2 filters were inactivated, yielding an FIO2 of 0.209 ± 

0.000, and an FICO2 of 0.0005 ± 0.0000, whereas during hypoxic tests and 

training sessions, an FIO2 of 0.145 ± 0.001, and an FICO2 of 0.0004 ± 0.0000 

were produced (simulating ~3000 m altitude). During testing, both the 

participant and the researcher administering the test were blinded to the FIO2, 

with only the researcher in the MR control room being aware of the FIO2. 

Moreover, participants were blinded to the FIO2 during all training sessions. 

5.3.5 31P-MRS procedures 

Prior to the exercise test beginning, absolute baseline concentrations of 

metabolites were established via a technique similar to that described by Kemp 

et al. (Kemp et al., 2007) using a 6 cm 31P transmit / receive surface coil. 

Participants were positioned within the scanner with the coil placed within the 

scanner bed and positioned such that the participant’s quadriceps muscle was 

cantered directly over it and a phosphoric acid source was directly beneath it. 

After initially acquiring images to confirm the m. rectus femoris was positioned 

correctly relative to the coil, spatially localised spectroscopy was undertaken to 

determine the relative signal intensities obtained from the phosphoric acid 

source and Pi from the participant’s quadriceps. On completion of the exercise 

protocol, and after the participant had been removed from the scanner, 

subsequent scans were obtained, comparing the signals obtained from the 

same phosphoric acid standard and an external Pi solution of known 

concentration. The localised voxel sampled within the external solution was of 

the same dimensions and distance from the coil as from the muscle previously, 

allowing the calculation of muscle [Pi] following corrections for relative coil 

loading. Absolute concentrations of PCr and adenosine triphosphate (ATP) 

were subsequently calculated via the ratio of [Pi]:[PCr] and [Pi]:[ATP], 

respectively. 
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Following metabolite concentration determinations, the phosphoric acid source 

was removed from the scanner bed and the participants were securely fastened 

to the exercise apparatus, as previously described. Images were acquired to 

confirm the quadriceps muscle was positioned directly above the 6 cm 31P coil, 

and participants commenced breathing the inspirate, which was continued for 

30 min prior to the commencement of 31P data acquisition. Initially, a number of 

pre-acquisition steps were carried out to optimise the signal from the muscle 

under investigation. Matching and tuning of the coil was performed and an 

automatic shimming protocol undertaken within a volume that defined the 

quadriceps muscle. A baseline spectrum before exercise was then acquired 

with long repetition time (TR = 20 s) in which the relative unsaturated peak 

amplitudes could be determined. Two min of further rest then followed, to 

acquire baseline MR sequences, after which the single-legged knee-extension 

exercise test protocol commenced, as previously described. During the 2 min 

resting baseline and the subsequent exercise protocol, 31P data were acquired 

every 1.5 s, with a spectral width of 1,500 Hz and 1K data points. Phase cycling 

with four phase cycles was employed, leading to a spectrum being acquired 

every 6.0 s. 

5.3.6 Data analyses 

The acquired spectra were quantified via peak fitting, assuming prior 

knowledge, using the jMRUI (version 3) software package employing the 

AMARES fitting algorithm (Vanhamme et al., 1997). Spectra were fitted 

assuming the presence of the following peaks: Pi, phosphodiester, PCr, α-ATP 

(2 peaks, amplitude ratio 1:1), γ-ATP (2 peaks, amplitude ratio 1:1), and β-ATP 

(3 peaks, amplitude ratio 1:2:1). Intracellular pH was calculated using the 

chemical shift of the Pi spectral peak relative to the PCr peak (Taylor et al., 

1983). [ADP] was calculated via knowledge of [Pi], [PCr], and pH values, as 

described by Kemp et al. (2001), taking into account the dependency of rate 

constants on pH. The oxidative ATP turnover rate (ATP-Ox) was determined 

based on the hyperbolic relationship between [ATP] production rate and free 

cytosolic [ADP], and calculated using the PCr recovery time constant 

determined from the 24 s bout (Lanza et al., 2006; Layec et al., 2009). 
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The 4 min moderate-intensity exercise bout values of [PCr], adenosine 

diphosphate ([ADP]), [Pi], [Pi]/[PCr], ATP-Ox and pH were calculated as the 

mean between 90 s and 210 s of exercise (i.e. 120 s total sample time, omitting 

the first 90 s and final 30 s). End-exercise values were quantified as the mean 

of the final three data points (i.e. final 18 s) prior to volitional exhaustion. 

For the [PCr] values following the 24 s high-intensity exercise period, [PCr] 

recovery was fitted with Prism 5 software (GraphPad Software Inc, La Jolla, 

California) by a single exponential of the form: 

[PCr]-τ = [PCr]end + [PCr](0)(1-e(-t/)) 

Where [PCr]end is the value at the end of exercise, [PCr](0) is the difference 

between the [PCr] at end-exercise and when fully recovered, t is the time from 

exercise cessation, and τ is the time constant for the exponential recovery of 

[PCr]. The [PCr]-τ from each of the two 24 s exercise bouts was determined 

separately and the mean of the two values was then calculated. 

5.3.7 Statistics 

Separate repeated measures ANCOVA with mixed measures were used for 

each of the two test conditions (normoxic vs. hypoxic), to assess differences in 

changes of each 31P-MRS variable ([PCr], [ADP], [Pi], [Pi]/[PCr], ATP-Ox, and 

pH), during the moderate-intensity exercise bouts and the incremental exercise 

tests to exhaustion, between the two training conditions (INT vs. IHT). The pH 

threshold and the T-Lim during the incremental tests were compared in the 

same way. Before calculating the mono-phasic [PCr]-τ from the 24 s high-

intensity exercise bouts, paired samples t-tests were used to assess any 

differences between resting baseline and end 24 s pH. Differences between 

pre-training [PCr]-τ under normoxic and hypoxic conditions were also assessed 

using paired samples t-tests, and differences in [PCr]-τ resulting from INT vs. 

IHT were assessed by ANCOVA. Pre-training values were used as covariates 

for all ANCOVA’s. Results were expressed as mean ± SD. All t-tests and 

ANCOVA’s were performed using PASW Statistics (v18.0, IBM SPSS, 

Portsmouth, UK). Data sets were checked for normality of distribution prior to 

analyses. The probability level of P < 0.05 was considered to represent a 

significant difference. 
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5.4 Results 

5.4.1 SaO2 in normoxia and hypoxia 

Prior to training, during moderate intensity exercise, the hypoxic inspirate 

resulted in a SaO2 of 91 ± 1 %, compared to the normoxic inspirate which 

resulted in a SaO2 of 98 ± 1 %. There were no significant changes in these SaO2 

values after training (P > 0.05). 

5.4.2 31P-MRS variables during moderate-intensity exercise 

The moderate-intensity exercise test results are summarised in Table 5.1 and 

Table 5.2. Significant overall training effects existed for most end-exercise MR 

variables when IHT and INT data were combined (see Table 5.1 and Table 5.2 

for ANCOVA derived F and P values). However, there were no significant 

interactions; that is, changes resulting from IHT were not significantly different 

from INT. The absolute [PCr] at rest and over the final 30 s of moderate-

intensity exercise were significantly reduced after both IHT and INT training 

(Figure 5.1), but there was no difference between the two training conditions. 

However, ∆[PCr] (i.e. the magnitude of PCr degradation) during exercise was 

reduced by both types of training and there was an interaction in hypoxia, such 

that IHT spared PCr utilisation to a greater extent than INT. The end-exercise 

pH was higher following training when participants breathed hypoxic gas but not 

normoxic gas (Table 5.1 and Table 5.2). 
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Table 5.1: 31P-MRS variables measured during the moderate intensity exercise bout, while breathing the normoxic inspirate. 

 Pre-training Post-training Pre-training Post-training Main effect for time Interaction effect 

 Normoxic trained leg Hypoxic trained leg F P F P 

Baseline [PCr] (mM) 32.2 ± 3.8 31.2 ± 2.5 33.1 ± 3.8 31.8 ± 3.6 8.39 0.01 <0.001 0.95 

End-exercise [PCr] (mM) 27.2 ± 5.0 26.5 ± 2.3 27.5 ± 3.8 27.2 ± 3.6 16.93 0.001 # 0.27 0.61 

∆[PCr] (mM) 5.1 ± 2.0 4.7 ± 2.6 5.5 ± 2.0 4.5 ± 1.8 1.47 0.25 3.38 0.09 

End-exercise PCr (%) 83.5 ± 7.3 85.0 ± 7.7 83.2 ± 5.9 85.6 ± 4.8 5.38 0.04 # 0.08 0.78 

End-exercise ATP-Ox (mMs-1) 0.38 ± 0.08 0.46 ± 0.17 0.44 ± 0.12 0.50 ± 0.14 <0.001 0.96 0.33 0.58 

End-exercise [ADP] (µM) 15.3 ±7.1 15.3 ± 7.4 16.4 ± 5.9 12.4 ± 3.5 6.65 0.02 # 2.28 0.15 

End-exercise [Pi] (mM) 7.9 ± 2.3 7.2 ± 2.8 9.0 ± 2.8 6.6 ± 1.7 4.39 0.05 2.91 0.11 

End-exercise [Pi]/[PCr] 0.31 ± 0.13 0.28 ± 0.13 0.34 ± 0.12 0.25 ± 0.06 9.97 0.01 # 1.96 0.18 

End-exercise pH 7.03 ± 0.04 7.04 ± 0.04 7.03 ± 0.03 7.05 ± 0.03 2.40 0.14 0.01 0.94 

# Significant training effect across both training conditions (P < 0.05). 

∆[PCr] indicates the difference in [PCr] between baseline and end-exercise.  
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Table 5.2: 31P-MRS variables measured during the moderate intensity exercise bout while breathing the hypoxic inspirate. 

 Pre-training Post-training Pre-training Post-training Main effect for time Interaction effect 

 Normoxic trained leg Hypoxic trained leg F P F P 

Baseline [PCr] (mM) 34.1 ± 4.4 32.5 ± 3.1 34.4 ± 4.2 32.0 ± 4.3 6.12 0.03 0.19 0.672 

End-exercise [PCr] (mM) 28.5 ± 4.4 27.4 ± 3.1 28.4 ± 5.0 27.4 ± 4.6 6.54 0.02 # <0.001 0.995 

∆[PCr] (mM) 5.6 ± 3.5 5.1 ± 1.9 6.0 ± 2.8 4.6 ± 1.6 14.20 0.002 36.07 <0.001 * 

End-exercise PCr (%) 83.7 ± 9.2 84.4 ± 5.6 82.1 ± 7.9 85.2 ± 5.6 20.12 <0.001 # 0.86 0.37 

End-exercise ATP-Ox (mMs-1) 0.31 ± 0.08 0.37 ± 0.13 0.32 ± 0.12 0.45 ± 0.10 2.13 0.17 2.01 0.18 

End-exercise [ADP] (µM) 16.1 ± 8.0 14.1 ± 6.5 16.3 ± 5.6 16.0 ± 3.4 11.32 0.01 # 1.21 0.29 

End-exercise [Pi] (mM) 8.2 ± 2.9 6.5 ± 2.8 8.7 ± 2.5 7.1 ± 1.6 7.22 0.02 # 0.13 0.72 

End-exercise [Pi]/[PCr] 0.30 ± 0.14 0.24 ± 0.12 0.32 ± 0.10 0.26 ± 0.05 12.54 0.003 # 0.15 0.70 

End-exercise pH 7.05 ± 0.06 7.07 ± 0.04 7.03 ± 0.05 7.06 ± 0.03 23.61 <0.001 # 0.03 0.87 

* Significant difference between INT and IHT legs (P < 0.05). 

# Significant training effect across both training conditions (P < 0.05). ∆[PCr] indicates the difference in [PCr] between baseline 

and end-exercise. 
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Figure 5.1: Mean ± SD muscle [PCr] during two minutes passive rest (baseline values), the four minute moderate-intensity 

exercise bout, and three subsequent minutes passive rest, pre- (●) and post-training (○). Note that absolute [PCr] at rest and 

over the final 30 s of exercise were significantly reduced after both IHT and INT, i.e. there was a training effect when tested 

under normoxia (P = 0.001) and under hypoxia (P = 0.023), but there were no significant differences between the two training 

conditions (no interaction effect). 
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5.4.3 PCr recovery kinetics 

The results for PCr recovery kinetics are summarised in Table 5.3. There were 

no significant differences between resting pH and the pH measured after the 24 

s high-intensity exercise bout, with a mean change of only -0.01 ± 0.01 units. 

There were no significant [PCr]-τ differences pre-training between the legs that 

had been selected for INT and the legs that had been selected for IHT, whether 

tested in normoxia (21 ± 3 vs. 20 ± 4 s, t = 0.81, P = 0.44) or hypoxia (28 ± 4 vs. 

29 ± 5 s, t = -0.53, P = 0.61). As expected, before training, [PCr]-τ was 

significantly faster in normoxia compared to hypoxia, in both the leg that had 

been selected for INT (21 ± 3 vs. 28 ± 4 s, t = -4.74, P = 0.001) and the leg that 

had been selected for IHT (20 ± 4 vs. 29 ± 5 s, t = -5.43, P = 0.001). The [PCr]-τ 

was significantly reduced after both INT and IHT, under both normoxic and 

hypoxic test conditions (Table 5.3 and Figure 5.2). In hypoxia, the [PCr]-τ 

reduction was significantly greater after IHT (-7 ± 3 s) compared to after INT (-4 

± 2 s) (F(1,14) = 14.46, P = 0.002). Although [PCr]-τ in normoxia tended to 

decrease more after IHT (-3 ± 3 s) compared to INT (-2 ± 2 s), this was not 

statistically significant (F(1,15) = 2.98, P = 0.11). 
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Table 5.3: [PCr]-τ measured following the 24 s severe intensity exercise bout. 

 Pre-training Post-training Pre-training Post-training Main effect for time Interaction effect 

 Normoxic trained leg Hypoxic trained leg F P F P 

[PCr]-τ (s) while breathing the 
normoxic inspirate 

20.9 ± 2.9 19.1 ± 3.2 20.1 ± 4.2 16.6 ± 3.4 3.90 0.07 2.98 0.11 

[PCr]-τ (s) while breathing the 
hypoxic inspirate 

27.8 ± 4.3 24.1 ± 3.7 28.6 ± 4.5 21.2 ± 2.7 12.55 0.003 # 14.46 0.002 * 

* Significant difference between INT and IHT legs (P < 0.05). 

# Significant training effect across both training conditions (P < 0.05). 
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Figure 5.2: [PCr]-τ after the 24 s severe-intensity exercise bout, pre- and post-training. Grey bars illustrate mean values; black 

lines illustrate individual responses. * Significant difference between INT and IHT (P < 0.05). # Significant effect across both 

training conditions (P < 0.05). Note that under hypoxic conditions, all tests revealed a significant overall training effect, i.e. a 

faster [PCr]-τ after training, and under hypoxic conditions there was a significant interaction (P = 0.002), showing that the IHT 

group realised a greater [PCr]-τ reduction than the INT group. 
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5.4.4 31P-MRS variables and exercise tolerance during incremental 

exercise 

The incremental exercise test results are summarised in Table 5.4 and Table 

5.5. There were no significant differences between the improvements in T-Lim 

post-IHT compared to post-INT, regardless of whether participants were tested 

in normoxia (122 ± 41 vs. 128 ± 67 s) or hypoxia (78 ± 54 vs. 106 ± 45 s). There 

was only a significant overall training effect for T-Lim under normoxic test 

conditions when INT and IHT data were combined (Table 5.4 and Table 5.5). 

There were significant overall training effects when both IHT and INT data were 

combined for absolute and relative [PCr] at the T-Lim in both normoxia and 

hypoxia (Figure 5.3), and for [ADP] and [ATP-Ox] at the T-Lim in hypoxia. There 

were no other significant differences in MR variables measured at the T-Lim, or 

at the pH threshold, during the incremental tests, between IHT and INT (Table 

5.4 and Table 5.5). 
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Table 5.4: 31P-MRS variables and exercise tolerance, measured during the incremental test while breathing the normoxic 

inspirate. 

 Pre-training Post-training Pre-training Post-training Main effect for time Interaction effect 

 Normoxic trained leg Hypoxic trained leg F P F P 

pH threshold (s) 424 ± 74 485 ± 57 441 ± 88 488 ± 76 6.58 0.02 # 0.20 0.66 

[PCr] @ T-Lim (mM) 16.4 ± 5.2 11.3 ± 3.4 16.2 ± 5.0 10.8 ± 3.0 23.66 <0.001 # 0.16 0.70 

PCr @ T-Lim (%) 49.9 ± 11.8 36.0 ± 9.8 48.4 ± 13.2 33.9 ± 8.7 12.33 0.003 # 0.16 0.69 

[ADP] @ T-Lim (µM) 42.4 ± 20.7 56.4 ± 30.7 45.7 ± 19.3 59.0 ± 24.7 2.20 0.16 0.01 0.95 

[Pi] @ T-Lim (mM) 15.4 ± 5.7 19.6 ± 6.0 18.5 ± 6.6 18.3 ± 6.5 2.19 0.16 2.85 0.11 

[Pi]/[PCr] @ T-Lim 1.10 ± 0.72 1.95 ± 0.97 1.33 ± 0.81 1.90 ± 0.98 0.70 0.42 0.41 0.53 

pH @ T-Lim 6.86 ± 0.11 6.71 ± 0.15 6.85 ± 0.19 6.76 ± 0.19 3.55 0.08 0.43 0.52 

ATP-Ox @ T-Lim (mMs-1) 0.67 ± 0.13 0.90 ± 0.20 0.76 ± 0.14 1.10 ± 0.19 2.42 0.14 0.27 0.12 

T-Lim (s) 488 ± 63 616 ± 42 505 ± 59 627 ± 57 10.31 0.006 # 0.03 0.86 

# Significant training effect across both training conditions (P < 0.05). T-Lim indicates limit of tolerance. 



  

 
 

Page 126 of 231 
 

Table 5.5: 31P-MRS variables and exercise tolerance, measured during the incremental test while breathing the hypoxic 

inspirate. 

 Pre-training Post-training Pre-training Post-training Main effect for time Interaction effect 

 Normoxic trained leg Hypoxic trained leg F P F P 

pH threshold (s) 457 ± 76 486 ± 74 438 ± 79 474 ± 76 1.45 0.25 0.08 0.78 

[PCr] @ T-Lim (mM) 16.5 ± 4.9 10.2 ± 2.7 17.7 ± 7.7 11.1 ± 3.7 62.0 <0.001 # 0.24 0.63 

PCr @ T-Lim (%) 48.3 ± 10.7 31.1 ± 7.5 50.1 ± 17.4 34.4 ± 9.1 35.82 <0.001 # 1.02 0.33 

[ADP] @ T-Lim (µM) 44.9 ± 12.5 65.9 ± 19.5 42.1 ± 16.2 67.0 ± 16.5 5.86 0.03 # 0.04 0.85 

[Pi] @ T-Lim (mM) 15.9 ± 3.8 19.2 ± 7.9 17.9 ± 7.3 19.5 ± 5.9 3.48 0.08 0.04 0.85 

[Pi]/[PCr] @ T-Lim 1.06 ± 0.45 2.09 ± 1.11 1.23 ± 0.86 1.98 ± 1.02 <0.001 0.98 0.63 0.44 

pH @ T-Lim 6.88 ± 0.10 6.76 ± 0.13 6.85 ± 0.17 6.76 ± 0.21 0.86 0.37 0.10 0.75 

ATP-Ox @ T-Lim (mMs-1) 0.54 ± 0.06 0.81 ± 0.13 0.52 ± 0.19 0.88 ± 0.15 6.91 0.02 # 1.36 0.26 

T-Lim (s) 509 ± 40 615 ± 45 518 ± 41 595 ± 57 2.45 0.14 1.18 0.29 

# Significant training effect across both training conditions (P < 0.05). T-Lim indicates limit of tolerance.  
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Figure 5.3: Mean [PCr] during the incremental test to exhaustion, pre- (●) and post-training (○). Circles without error bars are 

the mean [PCr] until a participant reached the T-Lim; circles with error bars are the mean (± SD) [PCr] and time at the T-Lim. 

#Significant effect across both training conditions (P < 0.05). Note that absolute [PCr] at the T-Lim significantly decreased 

post-training, under both normoxic and hypoxic test conditions (P < 0.001), but regardless of these overall training effects, 

there were no significant differences between the two training conditions (no interaction effect) 
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5.5 Discussion 

To the knowledge of the authors, this is the first study to investigate the 

influence of IHT, compared to INT, on muscle energetics during exercise in 

normoxia and hypoxia. Overall, IHT had only limited effects on the muscle 

metabolic responses to exercise. During moderate-intensity exercise, the 

effects of training were similar between IHT and INT although, in hypoxia, 

∆[PCr] was reduced to a slightly greater extent by IHT. Similarly, there were no 

significant differences in the effects of training on the pH threshold or any of the 

other 31P-MRS-derived variables between IHT and INT during incremental 

exercise. Compared to INT, IHT resulted in a slightly but significantly faster 

[PCr]-τ in hypoxia and there was a tendency for there to be a similar effect in 

normoxia. However, changes in T-Lim during incremental exercise were not 

significantly different between IHT and INT either in normoxia or hypoxia. 

5.5.1 PCr recovery kinetics 

The pre-training differences in [PCr]-τ between normoxic and hypoxic test 

conditions of 7-9 s (34-42% slower) confirm that, in hypoxia, recovery from high-

intensity exercise is substantially impaired. These results are similar to those of 

Haseler et al. (1999) who reported a 34% difference between [PCr]-τ measured 

in 0.209 FIO2 compared to 0.100 FIO2. 

The reduction in [PCr]-τ in hypoxia following IHT was significantly greater than 

the reduction following INT (26% vs. 13%), suggesting that adding a hypoxic 

stimulus to normal training may augment the physiological adaptations that 

modulate the [PCr]-τ in hypoxia. The [PCr]-τ reduction of 17% post-IHT in 

normoxia is similar to the significant 19% change reported by Kuno et al. (1994) 

following four consecutive days of IHT (~480 min exposure). Unfortunately, that 

study did not include an INT control condition, such that it is not possible to 

determine to what extent hypoxia per se influenced the training adaptation 

above and beyond normal exercise training. However, collectively, these two 

studies suggest that IHT speeds muscle [PCr]-τ, which has been proposed to 

reflect muscle oxidative capacity (Harris et al., 1976). 
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The high-intensity training stimulus employed in the present study is similar to 

that used in the study of Vogt et al. (2001), in which participants completed 

either high- or low-intensity INT or IHT for six weeks. These authors reported a 

significant gain in subsarcolemmal mitochondria density in the high- (+130%) 

and low- (+100%) intensity IHT groups, but not in the high (+1%) or low (-13%) 

intensity INT groups (Vogt et al., 2001). Similarly, Geiser et al. (2001) reported 

that total and subsarcolemmal mitochondrial densities increased by +54% and 

+105%, respectively, following high-intensity IHT compared with +24% and 

+13%, respectively, following high-intensity INT. The results of the present 

study are consistent with these findings: assuming a sufficient muscle O2 

supply, an increase in mitochondrial volume would be expected to result in 

faster [PCr]-τ (Harris et al., 1976; Haseler et al., 1999; McMahon & Jenkins, 

2002; Taylor et al., 1983; Tomlin & Wenger, 2001), as was observed post-IHT. 

It is important to note, however, that the improvement in [PCr]-τ post-IHT was 

only different to that observed post-INT when participants were tested in 

hypoxia. If IHT had promoted mitochondrial biogenesis to a greater extent than 

INT, a significantly faster [PCr]-τ might also have been expected in normoxia. 

Therefore, it is likely that the faster [PCr]-τ observed after IHT was not solely 

due to enhanced mitochondrial biogenesis. It is known that post-exercise PCr 

recovery is heavily influenced by the muscle oxygenation status (Harris et al., 

1976; Haseler et al., 1999). It may be speculated therefore that, compared to 

INT, IHT caused physiological adaptations that resulted in a greater 

enhancement of muscle O2 delivery in hypoxia. 

In hypoxia, the mitogen-activated protein kinase pathway is stimulated, 

enhancing the activity of HIF-1α. A range of molecular and structural changes 

subsequently take place (Hoppeler et al., 2003) including enhanced 

transcriptional activation of VEGF (Ookawara et al., 2002). Geiser et al. (2001) 

reported that capillary density increased significantly (by +12%) following high-

intensity IHT, whereas there was no significant change following high-intensity 

INT. Vogt et al. (2001) also reported significant increases in VEGF mRNA and 

capillary density after high-intensity IHT by +52% and +19%, respectively, with 

no significant changes after low-intensity IHT, or high-intensity or low-intensity 

INT. Although not consistently found (Zoll et al., 2006), these differences in 

capillary density changes between high-intensity IHT and INT (Geiser et al., 
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2001; Vogt et al., 2001) suggest that IHT may result in enhanced muscle 

oxygenation. If so, this would contribute to the reduced [PCr]-τ observed post-

IHT in hypoxia (Haseler et al., 1999). Faster [PCr]-τ following IHT would be 

expected to result in less fatigue and to enable better maintenance of 

performance during intermittent high-intensity exercise (Tomlin & Wenger, 

2001). It may therefore be speculated that athletes competing in sports 

requiring repetitive sprints might obtain an advantage from performing IHT prior 

to competition, especially competitions at altitude (Faiss et al., 2013a; Faiss et 

al., 2013b; Galvin et al., 2013; Millet et al., 2010). It should be emphasised, 

however, that the faster [PCr]-τ following IHT was only statistically significant in 

hypoxia and that, in absolute terms, the effect was small, such that it is not 

certain to have functional relevance (see Section 5.5.3). 

5.5.2 Muscle metabolic responses during moderate-intensity 

exercise 

There were essentially no differences in the muscle metabolic response to 

moderate-intensity exercise resulting from IHT compared to INT. The only 

difference between conditions was that ∆[PCr] was reduced to a greater extent 

following IHT compared to INT when participants exercised in hypoxia. This 

sparing of the extent of PCr degradation suggests a lower muscle metabolic 

perturbation in hypoxia following IHT. The mechanistic basis for this effect is 

uncertain but might be linked to enhanced local muscle oxygenation (Haseler et 

al., 1999; Wilson, 1994). However, although there were differences in ∆[PCr] 

following IHT and INT, the end-exercise [PCr] was not different and thus the 

functional significance of this change is questionable. 

5.5.3 Muscle metabolic responses to incremental exercise and time-

to-exhaustion 

There were essentially no differences in the muscle metabolic response to 

incremental exercise following IHT and INT. Participants performed better in the 

post-training exercise tests in both normoxia and hypoxia, but there were no 

additional T-Lim improvements detected following IHT compared to INT. 
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The results from the present study are consistent with several previous studies 

(Geiser et al., 2001; Roels et al., 2005; Vogt et al., 2001) in showing that, 

despite seemingly favourable adaptations in indices of mitochondrial function 

and/or capillarisation, IHT does not result in a greater improvement in exercise 

performance in normoxia compared to INT. Similar to the present study, using a 

double-blind placebo-controlled design, Truijens et al. (2003) added high-

intensity interval training (three sessions per week for five weeks) to the 

programmes of trained swimmers and found that IHT was no more effective 

than INT in improving 100 m or 400 m time trial performance. Results from the 

present study contrast with those of Terrados et al. (1988) and Zoll et al. (2006) 

who reported that exercise tolerance was significantly increased after IHT but 

not INT in well-trained athletes. It is possible that differences in the reported 

effectiveness of IHT reflect inter-study differences in participant training status 

and the hypoxic ‘dose’ administered. It should be noted that, in the Zoll et al. 

(2006) study, face masks were used to administer the inspirate in the IHT group 

only, so the lack of blinding may have resulted in a performance-enhancing 

placebo effect. In the present study, participants remained blinded to the FIO2 

during both training and testing (at the end of the study, only four out of the nine 

participants correctly guessed which leg had been trained in hypoxia) and the 

performance tests were conducted in a double blind manner. 

5.5.4 Experimental considerations 

This study employed an incremental exercise test to exhaustion to assess 

maximal aerobic performance, but incremental tests are less sensitive than 

constant-work-rate tests for assessing changes in exercise tolerance following 

an intervention (2009). The training intervention was relatively short (15 

sessions spread over three weeks), so the hypoxic dose was rather small, so it 

cannot be excluded that IHT might have more effectively enhanced 

performance if it had been practiced for longer. The moderate training status of 

the participants is also an important consideration. Previous studies have 

suggested that differences in performance changes between INT and IHT may 

be more likely in highly-trained (Terrados et al., 1988; Zoll et al., 2006) 

compared to less well-trained (Geiser et al., 2001; Vogt et al., 2001) 

participants. The statistical power would have been stronger if more than the 18 
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treatment conditions (i.e. two legs from nine participants) was included in the 

study. Nevertheless, the only other IHT investigation to date to have assessed 

skeletal muscle adaptations via 31P-MRS only had four participants (Kuno et al., 

1994), thus highlighting the challenge of obtaining large samples when using 

this resource intensive approach. 

It should also be noted that the IHT and INT training sessions were completed 

at the same absolute intensity such that the IHT leg was trained at a slightly 

higher relative intensity. It is possible that this contributed to the minor 

differences (for example in [PCr]-τ) observed between IHT and INT. The 

localised muscle mass engaged by the present studies’ single-legged exercise 

training and testing modality precluded the measurement of   O2max and did 

not simulate the oxidative energy demand that would be experienced during 

whole-body exercise. However, studies that have used separate training groups 

or cross-over designs are subject to the normal daily variations in participants’ 

activities outside of the controlled training and test environments. One of the 

key strengths of the present investigation is the single-legged study design, 

which ruled out any placebo effects and allowed non-invasive interrogation and 

comparison of the muscle metabolic adaptations to IHT compared with INT in 

the same participants. 

5.6 Conclusion 

In conclusion, compared to INT, IHT resulted in no meaningful changes in the 

muscle metabolic response to moderate-intensity constant-work-rate exercise 

or exhaustive incremental exercise. IHT resulted in a significant reduction of 

[PCr]-τ in the recovery from high-intensity exercise, in hypoxia only. While the 

reduced [PCr]-τ in hypoxia may reflect increased muscle oxidative capacity 

following IHT, the practical importance of this is questionable, given that IHT 

was no more effective than INT in enhancing incremental exercise performance 

either in hypoxia or normoxia.  
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CHAPTER 6: 

General Discussion and Conclusion 

 

6.1 General discussion 

The aims of this thesis were to investigate changes in competitive race 

performance and tHb in response to a three week LH+TH intervention in highly 

trained swimmers, to investigate changes in physiological variables during 

submaximal and maximal exercise in response to an eight week IHT 

intervention in highly trained runners, and to investigate changes in skeletal 

muscle energetics and incremental exercise performance in response to a three 

week single-legged IHT intervention in healthy but untrained participants. 

When designing these investigations consideration was given to the limitations 

within the existing altitude and hypoxia research to date, namely that: 

 Control groups are often not appropriately matched to experimental 

groups, or are not used at all. Appropriate control groups were used in 

Chapters 3 and 4, and the single-leg design in Chapter 5 allowed the 

normoxic trained leg to be used as the ‘control’ condition. 

 Participants are often not blinded to the experimental condition, meaning 

that influential placebo and/or nocebo effects may occur. While it was not 

possible to blind participants to the LH+TH in Chapter 3, participants 

were completely blinded to the FIO2 during all training sessions in 

Chapters 4 and 5. Furthermore, both the participants and the 

researchers were blinded to the FIO2 throughout all exercise testing in 

Chapters 4 and 5. 

 Some interventions expose participants to an insufficient hypoxic dose. 

Although the ~500 h at 2320 m altitude in Chapter 3 equals or surpasses 

the hypoxic dose of noteworthy studies in this field (Chapman et al., 

2014; Gore et al., 2013; Robach et al., 2006b; Wachsmuth et al., 2013), 

some recent reports suggest an increase in the required hypoxic dose 

(Rasmussen et al., 2013), compared to conventional views (Schmidt & 
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Prommer, 2008; Wilber et al., 2007), and certainly this requirement is far 

from being universally accepted. Similarly, the hypoxic dose of any IHT 

intervention is arguably very small, and while the 640 min spread over 

eight weeks in Chapter 4 was primarily based on the study by Dufour et 

al. (2006), this IHT ‘dose’ is a highly contentious topic. 

 The results in untrained participants or recreational athletes are 

extrapolated to suggest implications for highly trained athletes, whereas 

participants in Chapters 3 and 4 were highly trained athletes, and while 

participants in Chapter 5 where not highly trained, the results were not 

suggested to specifically relate to highly trained athletic populations. 

 Inappropriate or not sufficiently sensitive methodologies are often used, 

whereas: i) Chapter 3 is one of very few investigations to have assessed 

tHb (using the optimised CO-rebreathing protocol) in highly trained 

athletes (see Section 3.3.4); ii) novel methodologies were developed to 

assess breath-by-breath   O2 in a hypoxic environment in Chapter 4 (see 

Section 2.5); and iii) the 31P-MRS techniques used in Chapter 5 provided 

detailed in vivo quantification of skeletal muscle energetics, at an 

effective sample frequency of 6.0 s, during moderate and severe 

exercise and recovery – which had never been previously assessed in 

relation to IHT (see Section 5.3). It is important here to acknowledge that 

all such assessments of physiological, biochemical or haematological 

variables are essentially limited by issues of day-to-day biological 

variation. However sensitive a particular test may be, if the variable of 

interest changes a great deal on a daily basis, the ability to detect a true 

change is limited. Novel means of overcoming these issues are 

suggested in Section 6.2. 

The common theme throughout the preceding experimental chapters was the 

exposure of participants to varying degrees of hypoxia. In Chapter 3, LH+TH for 

three weeks at an altitude of 2320 m resulted in highly trained swimmers 

experiencing significant tHb increase compared to a sea level control group, but 

did not result in a greater 200 m race performance gain as assessed 28 d later. 

Importantly, this was not the case for all swimmers – some swimmers did not 
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show any tHb changes, yet swimming performances improved, and there were 

no correlations between the changes in tHb and 200 m race performances. 

Therefore, these results suggest that non-haematological adaptations likely 

occurred in at least some of these swimmers. As such, Chapter 4 sought to 

investigate these non-haematological adaptations, by exposing highly trained 

runners to two IHT sessions·week-1 for eight weeks, at an altitude simulation of 

~2100 m. This IHT intervention elicited some physiological adaptations 

observed during submaximal exercise, but there were no more beneficial 

changes at maximal intensity exercise compared to that in a normoxic control 

group. Then, Chapter 5 also investigated non-haematological adaptations to 

IHT, and in order to specifically target the hypoxic stimulus on skeletal muscle, 

a single-legged IHT intervention was used (15 IHT sessions spread over three 

weeks, at an altitude simulation of ~3000 m). The 31P-MRS techniques 

employed in this final experimental chapter had never before been applied to an 

environmental condition-blinded sham-controlled IHT study. While this regular 

IHT may have enhanced the muscle oxidative capacity, as evidenced by a 

faster [PCr]-τ during hypoxic tests, the practical importance is questionable, 

given that there were no greater improvements in incremental exercise 

performance or other 31P-MRS variables compared to the normoxic trained leg. 

By acknowledging and rectifying some of the aforementioned limitations with 

past research, the experimental designs of the preceding chapters were 

strengthened, in particular by using properly blinded control groups / conditions, 

using novel and sensitive techniques, and by assessing responses in trained 

athletes where possible. The resultant data is therefore more robust, so findings 

regarding the physiological effects due to altitude and hypoxic exposure can be 

discussed with a greater degree of certainty than in many studies to date. 

6.1.1 Physiological effects of altitude and hypoxia 

The experimental chapters quantified a range of variables that have been 

proposed to be influenced by varying degrees of hypoxic exposure. As stated, 

these are broadly categorised as being related to haematological or non-

haematological adaptations, both of which are now discussed. 
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6.1.1.1 Haematological adaptations 

Chapter 3 illustrated that LH+TH altitude training for three weeks at 2320 m 

resulted in a significant tHb increase, on average a 4.1% greater increase 

immediately after altitude compared to sea level training. The inter-individual 

response was extremely varied though; increasing in five of the seven 

participants, but remaining unchanged in two others. The within group mean 

change was +4.4%, range -0.3 to +9.0% (see Figure 3.1). These responses are 

similar to those reported by Garvican et al. (2012), whereby LH+TH+TL for 

three weeks at 2760 m (living) and 1000-3000 m (training) resulted in a greater 

tHb increase than in a sea level control group (mean difference between groups 

± 90% confidence limits (CL) = +3.3%, ± 3.4%). However, these changes are 

substantially less than results reported by Levine & Stray-Gundersen (1997), 

whereby LH+TH for four weeks at 2500 m resulted in a significant ~9% RCV 

increase. Importantly, both of these studies also reported significant [Epo] 

increases; peaking after 24-48 h at altitude (Garvican et al., 2012; Stray-

Gundersen et al., 1995). Unfortunately it was not possible to quantify [Epo] in 

Chapter 3, so it cannot be ruled out that the altitude of 2320 m elicited an 

insufficient degree of biological hypoxia (in particular renal tissue hypoxia) to 

induce the erythropoietic response. 

To investigate this concept, Ge et al. (2002) exposed untrained volunteers to a 

variety of simulated altitudes, from 1780 m to 2800 m, using a hypobaric 

hypoxic chamber. [Epo] was significantly elevated after 6 h at all altitude 

simulations, but only continued to increase up until 24 h at simulated altitudes of 

2454 m and 2800 m, and not at 1780 m or 2085 m (Ge et al., 2002). These 

results indicate that short-term acclimatisation (involving the HVR, HCVR and 

HPVR, as detailed earlier in Section 1.3.1) may restore renal tissue oxygenation 

and attenuate the rise in Epo at lower altitudes, but that at altitudes of ~2454 m 

and higher, these responses are inadequate. Clearly there will be a substantial 

degree of inter-individual variation, and the altitude threshold for more sustained 

Epo elevations will not be exact, but the altitude of 2320 m used in Chapter 3 

does fall within this lower boundary. If the biological hypoxia was insufficient to 

induce any significant erythropoietic response, this would explain why some 

individuals did not respond haematologically to the LH+TH stimulus. 
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However, even when six highly trained male athletes lived at 2050 m, i.e. a 

~12% lower altitude than used in Chapter 3, Heinicke et al. (2005) reported that 

[Epo] significantly increased up until day 4, and tHb significantly increased after 

three weeks, on average by ~9%. More specifically to the experimental design 

of the present study, Wachsmuth et al. (2013) investigated the effects of LH+TH 

for 3-4 weeks, also in highly trained swimmers, at the same location as used 

during Chapter 3 (Centro Alto Rendimiento Deportivo in Sierra Nevada, Spain, 

at an altitude of 2320 m). These authors reported a significant [Epo] increase up 

until the 10th day at altitude (which diminished thereafter) and a significant tHb 

increase by the end of the intervention (on average +7%). In accordance with 

these results, assuming that the hypoxic dose in Chapter 3 was sufficient, the 

question still remains as to why some individuals did not experience tHb 

increases after the altitude exposure. 

As previously detailed, the LH+TH investigations by Gore et al. (1998) and 

Pottgiesser et al. (2009), and the double-blinded placebo controlled simulated 

LH+TL investigation by Siebenmann et al. (2012), also failed to show any 

haematological increments in highly trained, elite athletes who were actively 

competing at international levels. This fitness status of participating athletes 

may be fundamental to the reasons as to why some athletes do not respond 

haematologically to LH+TH altitude exposure. Accordingly, even the results 

from the most commonly cited altitude training study by Levine & Stray-

Gundersen (1997) have recently been questioned. Robach & Lundby (2012) 

calculated the tHb of the participating athletes using the PV and [Hb] data from 

Levine & Stray-Gundersen (1997) and the HCT data from the same experiment, 

reported by Chapman et al. (1998). BV and tHb were thus calculated using the 

below equations (see Figure 6.1): 

BV = PV / HCT  (Thomsen et al., 1991) 

tHb = BV · [Hb]  (Thomsen et al., 1991) 

Where: BV = blood volume, PV = plasma volume, HCT = haematocrit, tHb = 

total haemoglobin mass, and [Hb] = haemoglobin concentration. 
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Robach & Lundby (2012) reported that the participant’s baseline tHb relative to 

body weight was only ~9.8 g·kg-1 in the study by Levine & Stray-Gundersen 

(see Figure 6.1). Importantly, it must be considered that the mean RCV results 

used to estimate these tHb results encompassed data from both males (n = 9) 

and females (n = 4), and also that there may be a degree of error involved with 

these retrospective calculations, especially given the reliance of a stable HCT, 

so the real tHb values could have been marginally higher. Nevertheless, this 

estimation of ~9.8 g·kg-1 is the lowest of any publication to have been cited in 

this thesis, and is substantially lower than the combined baseline results for 

males (n = 8) and females (n = 3) of 13.1 g·kg-1 in Chapter 3. According to a 

comprehensive meta-analysis encompassing the tHb results of 611 participants, 

a similarly low baseline tHb (~9.9 g·kg-1) was established for “moderately 

trained” females (with a   O2max range of just 48 – 57 mL∙kg-1∙min-1). These 

recent calculations highlight that despite the 4-6 week lead in phase of sea level 

training, it would appear that the collegiate level athletes recruited by Levine & 

Stray-Gundersen (1997) did not possess the haematological characteristics 

associated with a highly developed endurance capacity. Therefore the 

significant ~9% RCV increase is largely unsurprising, but such substantial 

adaptations are less likely to occur in more highly trained athletes. 

As such, it could be that tHb gains only occur in those “athletes” with an initial 

low baseline tHb (Robach & Lundby, 2012), and much of the literature 

confusion as to whether haematological gains do (Levine & Stray-Gundersen, 

2005) or do not (Gore & Hopkins, 2005) occur is mostly due to the wide range 

of baseline performance and fitness level of the participants (see Figure 6.1). 
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Figure 6.1: The relationship between baseline body weight adjusted tHb and 

the percentage tHb increase after various LH+TL interventions (Brugniaux et 

al., 2006; Clark et al., 2009; Garvican et al., 2011; Levine & Stray-Gundersen, 

1997; Robach et al., 2006b; Robertson et al., 2010a; Saunders et al., 2010; 

Siebenmann et al., 2012; Wehrlin et al., 2006). This figure has been adapted 

from Robach & Lundby (2012) with permission from the authors. Note that the 

relationship is significant (R2 = 0.74, P < 0.01), such that those participants who 

have lower baseline tHb are most likely to experience the greatest tHb gains. 

With this in mind, in relation to the results from Chapter 3, it must be considered 

that the participants’ tHb relative to body weight of 13.7 ± 0.9 g·kg-1 (males) and 

11.6 ± 0.4 g·kg-1 (females) were substantially higher than the means of 12.7-

13.2 g·kg-1 and 10.7 g·kg-1 as reported for other highly trained male and female 

swimmers, respectively (Heinicke et al., 2001; Wachsmuth et al., 2013). 

Furthermore, some of the participants in Chapter 3 were previous 

Commonwealth and World Champions. These factors illustrate that these 

swimmers were highly trained, elite athletes, with well developed endurance 

capacities. As such, it is perhaps unsurprising that some of these participants 

did not experience any further haematological gains; in agreement with Gore et 

al. (1998), probably due to initial tHb values being close to the natural 

physiological limit, with little scope for further change, at least not in response to 

this moderate altitude of 2320 m. Although the meta-analysis based guidelines 

for RCV and/or tHb expansions at altitude may provide a useful resource (Gore 

et al., 2013; Rasmussen et al., 2013), it is imperative that attention is given to 

the highly variable responses for each individual athlete (see Figure 6.2). 
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Figure 6.2: Estimated median and between-participant ‘true’ tHb changes in 

response to LH+TL and traditional altitude training. The solid line depicts the 

meta-analysis-based quadratic fitted model, and the dashed lines represent the 

upper and lower 95% individual response limits (where the lower limit was 

estimated to be negative, it has been truncated at zero). Adapted from Gore et 

al. (2013) with permission from the authors. Note that the tHb change from 

baseline depicted by the lower 95% individual response limit is consistently 

<2%, in agreement with the tHb results for some participants in Chapter 3 of 

this thesis (see Figure 3.1). 

If the occurrence of a substantial haematological gain is dependent on the 

baseline tHb and state of aerobic conditioning (Robach & Lundby, 2012), it is 

imperative that when identifying athletes as “responders” or “non-responders” to 

altitude or hypoxic training, classifications should be based not on 

haematological variables, but instead on competitive race performance. It is 

plausible that those athletes with an already high tHb at baseline would require 

a more severe hypoxic stimulus (Ge et al., 2002), or indeed that these athletes 

simply will not experience substantial tHb gains (Gore et al., 1998), and instead 

alternative adaptations may occur. 
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6.1.1.2 Non-haematological adaptations 

Given the lack of an association between the change in performance and tHb in 

Chapter 3 (see Figure 3.2 and Figure 3.3), it is suggested that non-

haematological changes may have occurred, which positively influenced 

performance after the LH+TH intervention, at least in some participants. 

Similarly, the IHT interventions employed in Chapters 4 and 5 would not have 

induced any significant haematological alterations, due to an insufficient hypoxic 

dose (Gore et al., 2013; Rasmussen et al., 2013; Schmidt & Prommer, 2008; 

Wilber et al., 2007). As such, an array of non-haematological adaptations to 

altitude and hypoxia must be considered in relation to results from these 

experimental chapters. 

6.1.1.2.1 Angiogenesis and mitochondrial biogenesis 

As previously discussed (Section 1.2.4), an increased tHb is suggested to 

augment maximum cardiac output (  max) and/or arteriovenous O2 difference 

(Schmidt & Prommer, 2010), resulting in an enhanced O2 delivery to the 

exercising skeletal muscles, and a greater O2 utilisation, evident as an improved 

  O2max (Levine & Stray-Gundersen, 1997; Levine & Stray-Gundersen, 2005). 

Alternatively, a greater peripheral vascular network may also enhance muscle 

O2 delivery (Terrados et al., 1988), and a greater mitochondrial mass may also 

enhance overall O2 utilisation (Geiser et al., 2001; Vogt et al., 2001). 

Chapter 5 exercised and tested energetic adaptations within quadriceps 

muscles of moderately trained participants, and owing to the single-legged 

design, it was possible to specifically isolate the hypoxia induced adaptations at 

the peripheral level. On average, [PCr]-τ was speeded up approximately twice 

as much in the IHT leg compared to the control leg, when tested in both hypoxia 

(IHT -26% vs. control -13%), and normoxia (IHT -17% vs. control -9%), but 

these differences only reached statistical significance in hypoxic test conditions 

(P = 0.002), not in normoxia (P = 0.11) (see Figure 5.2). Using 31P-MRS (and 

without skeletal muscle biopsies) it was not possible to discern precisely how 

these [PCr]-τ changes occurred after IHT; only that PCr recovery was speeded 

up, indicating an overall increased muscle oxidative capacity (Harris et al., 

1976). Nevertheless, the differences between the results of tests while 



  

 
 

Page 142 of 231 
 

participants breathed an FIO2 of 0.209 and 0.145 provide some further insight. 

While chronic exercise causes an increased skeletal muscle mitochondrial 

mass (Hood, 2009), if an enhanced mitochondrial biogenesis had occurred in 

the IHT leg compared to the control leg, a similarly significant [PCr]-τ reduction 

under normoxic test conditions would have likely been measured. 

It is noteworthy that Hoppeler et al. (1990) reported significant decreases in 

muscle fibre cross-sectional area (-10%) and mitochondrial volume (-25%) after 

an eight week mountaineering expedition to high altitudes, but this was mirrored 

by a sparing of muscle capillary density, leading to a significant reduction in the 

muscle fibre volume per capillary. This finding of a decrease in mitochondrial 

mass but a relatively improved O2 supply after prolonged altitude expeditions 

has also been shown in response to simulated (high) altitude exposure 

(MacDougall et al., 1991). It is important to note that the pronounced muscle 

atrophy reported after many such extreme hypoxic interventions may not solely 

be due to the hypoxia-induced down-regulated oxidative metabolism 

(Chaudhary et al., 2012), but at least partially due to sustained periods of 

relative inactivity or low absolute intensity exercise (Edwards et al., 2010), and 

changes in habitual nutritional intake (Rose et al., 1988). 

With more application to athletic populations, Robach et al. (2012) reported that 

neither mitochondrial content (quantified as CS activity) nor mitochondrial 

function (quantified as O2 flux per unit of mitochondrial content) was altered 

when highly trained cyclists undertook four weeks of simulated LH+TL or 

normoxic living and training, in a double-blinded, placebo-controlled manner. 

These results should be considered in relation to findings that in untrained 

humans, the skeletal muscle mitochondrial oxidative capacity exceeds O2 

delivery capacity by ~50% during normoxic cycling exercise (Boushel et al., 

2011), indicating that O2 delivery limits muscle oxidative capacity. It therefore 

seems illogical that mitochondrial mass would increase in response to an even 

more restricted muscle O2 supply than normal, i.e. a state of “hypo-metabolism” 

(Hochachka & Somero, 2002; Howald & Hoppeler, 2003). At the other end of 

the spectrum, enhanced (cerebral) mitochondrial biogenesis has been observed 

when rats were exposed to plentiful O2 (Gutsaeva et al., 2006). 
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In relation to Chapter 5, while severe changes such as those observed after 

sustained hypoxic exposures (Hoppeler et al., 1990; MacDougall et al., 1991; 

Robach et al., 2012) would not be expected after three weeks of IHT, a less 

exaggerated response may have occurred. The reduced PaO2 during the 

hypoxic training sessions may have attenuated the typical (normoxic) exercise-

induced mitochondrial mass increase (Hood, 2009). This theory is in opposition 

to conclusions by Kuno et al. (1994), who proposed that the quicker [PCr]-τ after 

8 h of IHT over 4 d was due to an enhanced mitochondrial function. However, 

as was also the case in Chapter 5, these authors had no way of categorically 

distinguishing between changes in mitochondrial mass and capillarisation. 

Certainly the reduced PaO2 and therefore muscle O2 extraction under hypoxic 

conditions would have exaggerated the O2 delivery requirement to the skeletal 

muscle (Heinonen et al., 2010). As the hypoxic dose was too small to initiate a 

tHb change (Gore et al., 2013), and indeed any such systemic adaptation would 

have equally influenced the normoxic trained legs, it is speculated that the 

reduced [PCr]-τ may have been achieved via a greater degree of angiogenesis 

after IHT compared to normoxic training, rather than via an increased 

mitochondrial mass. In order to be more definitive, results from studies that 

have assessed muscle ultrastructure directly via biopsies must be considered. 

The experimental design by Terrados et al. (1990) is comparable to Chapter 5, 

as untrained participants undertook single-legged IHT (while in a hypobaric 

hypoxic or normobaric normoxic chamber), exercising each leg for 30 min, 3-4 

d·week-1, for four weeks. The key findings were that CS activity increased 

significantly more in the IHT leg compared to the control leg, but capillary 

density remained unaltered in both legs (Terrados et al., 1990). This CS 

increase may reflect an enhanced oxidative capacity, but the lack of a 

capillarisation change is in contrast to the angiogenesis linked speculations 

based on the results from Chapter 5. These capillarisation results also conflict 

with the study by Geiser et al. (2001), who reported a significant capillary 

density increase (mean change +12%) after six weeks of IHT, but not after 

normoxic training (mean change -0.3%). Such findings were also replicated in a 

separate study by the same Swiss research group (Vogt et al., 2001), who 

reported that HIF-1 and VEGF mRNA, and capillary density (mean change 

+19%) significantly increased after high-intensity whole body IHT, but not after 
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equivalent normoxic training (mean change -4%). As increases in VEGF mRNA 

correlate with HIF-1 mRNA changes (Gustafsson et al., 1999), these results 

suggest that the capillary density changes were likely caused by HIF-1 and 

VEGF increases. Furthermore, in contrast to their single-legged study (detailed 

above), Terrados et al. (1988) reported that CS activity was unchanged, and the 

number of capillaries per muscle fibre tended to increase after 3-4 weeks of 

whole body IHT (mean change +15%), but not after normoxic training (mean 

change -8%), in competitive cyclists. 

Although the studies by Vogt et al. (2001) and Geiser et al. (2001) also both 

reported that subsarcolemmal mitochondrial mass increased significantly more 

after IHT (+130% and +105%, respectively) compared to normoxic training 

(+1% and +13%, respectively), no such changes have been reported in 

moderately or highly trained participants. Indeed, the study by Terrados et al. 

(1990) used male participants without any prior history of regular physical 

training. Conversely, the investigation by Ponsot et al. (2006) (for details see 

the discussion in Section 1.3.3 regarding Dufour et al. (2006), which was part of 

the same study) showed that after moderately trained runners completed six 

weeks of IHT, the in vitro estimate of muscle maximal oxidative capacity 

remained unaltered. Similarly, after moderately trained cyclists exercised in 

normobaric normoxia, or hypoxia at an altitude simulation that matched that 

used during Chapter 5 (~3000 m / FIO2 ~0.146), Faiss et al. (2013b) reported 

significant decreases in the mRNA concentrations of PGC-1α and mitochondrial 

transcription factor A (mtTFA), indicating an attenuated stimuli for mitochondrial 

biogenesis (Faiss et al., 2013b). 

Taken together, findings from the available literature suggest that IHT may 

result in mitochondrial biogenesis only in untrained individuals, and may result 

in enhanced angiogenesis in those individuals who are more highly trained. 

Importantly though, although the [PCr]-τ results from Chapter 5 are suggestive 

of enhanced angiogenesis or mitochondrial mass, the magnitude of these 

changes is questioned by the fact that there were no other 31P-MRS derived 

variables to respond. If extensive angiogenesis or mitochondrial mass 

enhancements had occurred, a significantly greater improvement in the rate of 

oxidative ATP turnover would also have been expected, but this was not the 
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case, whether tested in normoxia (IHT leg +14% vs. control leg +21%, P = 0.58) 

or hypoxia (IHT leg +41% vs. control leg +19%, P = 0.18). 

Although the findings reported in Chapter 5 are in agreement with the majority 

of the literature, i.e. that IHT can augment oxidative capacity changes within the 

skeletal muscle, likely caused by angiogenesis, and perhaps also by a degree 

of mitochondrial biogenesis, there is not a unified agreement as to the key 

mechanisms. Further detailed investigation is required into the responses in 

highly trained participants, using ecologically valid training interventions (i.e. 

interventions that would be possible for highly trained athletes to use), with 

outcome variables being assessed via reliable methodologies (see Section 6.2). 

6.1.1.2.2 Submaximal exercise economy 

Results from Chapter 4 showed a significantly lower submaximal HR after IHT, 

thus indicating an enhanced cardiovascular fitness. These results are consistent 

with Vallier et al. (1996), who reported a 3-4% submaximal HR reduction in 

highly trained triathletes after three weeks of IHT, and also with Terrados et al. 

(1990), who reported that submaximal HR was reduced significantly more after 

highly trained cyclists undertook 3-4 weeks of IHT, compared to a normoxic 

control group (mean -16% vs. -12%, respectively). However, further 

comparisons are not possible, as other analogous IHT studies did not report 

submaximal HR data (Dufour et al., 2006; Geiser et al., 2001; Melissa et al., 

1997; Robertson et al., 2010b; Roels et al., 2005; Terrados et al., 1988; Ventura 

et al., 2003; Vogt et al., 2001). 

Regardless of any submaximal HR change, the submaximal   O2 (exercise 

economy) changes observed in Chapter 4 were highly variable; decreasing after 

IHT when tested in hypoxia (mean change -5.7 ± 3.4% or -2.6 ± 1.7 mL∙kg-

1∙min-1; P = 0.001), but increasing after normoxic training when tested in 

normoxia (mean change +1.9 ± 3.9% or +1.1 ± 2.1 mL∙kg-1∙min-1; P = 0.012) 

(see Figure 4.1). This lack of a consistent exercise economy change following 

IHT is common across much of the comparable literature. Roels et al. (2005) 

found that after seven weeks of IHT there was a trend for a submaximal   O2 

decrease when tested in hypoxia (n = 11, mean change -2.9%), whereas after 

normoxic training there was a trend for a submaximal   O2 increase when tested 
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in normoxia (n = 11, mean change +2.1%), but these differences were not 

statistically significant within or between groups. Unfortunately these authors did 

not conduct submaximal exercise tests in normoxia for the IHT group, but in any 

case these results are in agreement with Chapter 4. Similarly, in their six week 

IHT intervention, Dufour et al. (2006) found that submaximal   O2 measured in 

normoxia did not significantly change within their IHT group (n = 9, mean 

change -3.4% at 12 km∙h-1 and -0.2% at 18 km∙h-1) or their control group (n = 9, 

mean change -2.2% at 12 km∙h-1 and -2.8% at 18 km∙h-1), and there were no 

significant between group differences. Lastly, in the particularly well controlled 

study by Robertson et al. (2010b), the changes in submaximal   O2 were not 

significantly different between the highly trained runners who undertook three 

weeks of IHT (n = 9, mean change +2.8%) or three weeks of IHT while sleeping 

in normobaric hypoxia (n = 8, mean change +2.9%). Thus, it would appear that 

there is minimal, if any, evidence that IHT positively influences exercise 

economy, at least in terms of submaximal   O2. 

However, the economy results from the study by Robertson et al. (2010b) 

conflict with most other LH+TL studies (i.e. sustained hypoxic exposure) from 

this Australian research group, which have shown significant improvements 

(submaximal   O2 reductions). Saunders et al. (2004) found that 20 d of 

simulated LH+TL (sleeping at a simulated altitude of 2000-3100 m, training at a 

physical altitude of 600 m) resulted in significantly reduced submaximal   O2 

(mean change -3.3%) in a group of highly trained middle distance runners (see 

Table 1.2). These results compared to no such change in a group who lived at a 

physical altitude of 1570 m and trained at 1500-2000 m (mean change -0.3%), 

or in a sea level control group (mean change +0.6%). This (significant) running 

economy change would appear to be meaningful, especially in such a highly 

trained cohort (mean pre-intervention   O2max = 73 ± 4 mL∙kg-1∙min-1). 

As part of Chapter 3 it would have been insightful to have also assessed 

submaximal   O2 during swimming, but unfortunately this was not possible due 

to the technological and logistical challenges of doing so in a swimming pool. 

Largely because of these challenges, the only study to have measured exercise 

economy in highly trained swimmers in relation to a hypoxic intervention is that 

by Truijens et al. (2008), who found that submaximal   O2 did not change pre- to 
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post-intervention, but they used IHE (at rest), for only 3 h·d-1, so results should 

not be extrapolated to hypoxic exercise (IHT) or sustained LH+TL. As such, 

further research would be informative in establishing the effects, if any, of 

traditional and simulated altitude training on swimming economy. 

While similar results have been reported in other studies by this Australian 

research group, i.e. ~3% submaximal   O2 decreases after sustained LH+TL 

(Gore et al., 2001; Humberstone-Gough et al., 2013; Saunders et al., 2009), 

Lundby et al. (2007a) pooled together results from three similar studies from a 

US based research group (Levine, 2002; Levine & Stray-Gundersen, 1997; 

Stray-Gundersen et al., 2001), and concluded that exercise economy remains 

unchanged following sustained hypoxic exposure. Although the meta-analysis is 

statistically powerful, it should be noted that the methodologies employed by the 

Australians are particularly stringent (e.g. triple repeats of submaximal exercise 

tests to ensure low typical error of measurement), so their results cannot be 

discounted. One key difference is the sample population heterogeneity: the 

Australian studies consistently assessed highly trained athletes, whereas the 

US studies included moderately trained (collegiate level) participants, which 

may have resulted in different adaptations to the hypoxia. With these leading 

research groups being at a clear disagreement, the effects of sustained LH+TL 

on exercise economy in highly trained athletes is presently uncertain. 

These above discussed studies (Dufour et al., 2006; Gore et al., 2001; 

Humberstone-Gough et al., 2013; Levine, 2002; Levine & Stray-Gundersen, 

1997; Lundby et al., 2007a; Robertson et al., 2010b; Roels et al., 2005; 

Saunders et al., 2004; Saunders et al., 2009; Stray-Gundersen et al., 2001), as 

well as the incremental exercise tests in Chapter 4, only assessed exercise 

economy via pulmonary   O2 estimations, whereas more direct measures of 

skeletal muscle energetics should also be considered. This is especially the 

case, considering that Chapter 5 (see Section 5.5.1 and Figure 5.2) and others 

(Geiser et al., 2001; Kuno et al., 1994; Terrados et al., 1990; Terrados et al., 

1988; Vogt et al., 2001) suggest an IHT induced enhanced oxidative capacity, 

potentially due to altered angiogenesis and/or mitochondrial biogenesis (see 

Section 6.1.1.2.1). 
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During the moderate intensity exercise tests in Chapter 5, Δ[PCr] (i.e. the 

magnitude of PCr degradation) decreased significantly more in the IHT leg 

compared to the normoxic trained control leg, when tested in hypoxic conditions 

(mean changes: IHT -23%, control -9%, P < 0.001) (see Table 5.2), and 

showed a tendency to do the same when tested in normoxic conditions (mean 

changes: IHT -18%, control -8%, P = 0.09) (see Table 5.1). With the absolute 

exercise test intensities being equal for both legs, these results show that IHT 

spared PCr utilisation to a greater extent than normoxic training. Thus it could 

be argued that this PCr sparing is representative of an enhanced energetic 

economy, at least in hypoxic test conditions. If so, changes in at least some of 

the other 31P-MRS derived variables would have been expected, in particular 

variables related to oxidative phosphorylation. However, while trends were 

apparent, as previously detailed (see Section 5.4.2 and Section 5.4.4, and 

Table 5.1 and Table 5.2), there were no significant between-leg differences in 

the reduction in the rate of oxidative ATP turnover. This was the case in both 

the hypoxic tests (mean changes: IHT +41% vs. control +19%, P = 0.18) and 

the normoxic tests (mean changes: IHT +14% vs. control +21%, P = 0.58), 

indicating that Δ[PCr] changes were unlikely caused by ameliorations in 

oxidative metabolism. 

Ponsot et al. (2006) reported skeletal muscle morphology and ultrastructure 

data of those participating athletes who underwent biopsies after six weeks of 

IHT. This intervention (twice per week IHT, 24-40 min·session-1, at an altitude 

simulation of ~3000 m) significantly increased the sensitivity of mitochondrial 

respiration (oxidative adenosine triphosphate (ATP) production) to adenosine 

diphosphate (ADP), which represents an improved coupling between ATP 

demand and supply pathways (Hochachka et al., 2002). This is known to 

improve homeostasis of glycolytic metabolites, such as lactate, adenosine 

monophosphate, ADP and PCr (Matheson et al., 1991), and may have delayed 

the dominance of anaerobic energy production during incremental exercise 

(Ponsot et al., 2006), thus resulting in more efficient and fatigue resistant 

submaximal exercise. Conversely, Robach et al. (2012) found that highly 

trained cyclists’ mitochondrial efficiency (respiratory control ratio and leak 

control coupling) was unaltered in response to four weeks of LH+TL. However, 

unlike the duplicate tHb measurements carried out by Robach et al. (2012), 
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conducted in order to minimise analytical error, these changes in mitochondrial 

metabolism reported by Ponsot et al. (2006) and Robach et al. (2012) were 

quantified via single post-intervention muscle biopsy samples. This is 

problematic, particularly as 3-5 biopsy samples are required to achieve 

acceptable error margins when differentiating between type I and type II fibres 

(Elder et al., 1982), which given their different morphological properties, will 

have substantial implications on in vitro energetic assessments. 

The recent investigation by Faiss et al. (2013b) performed all muscle biopsies 

and analytical techniques in triplicate, and in agreement with Ponsot et al. 

(2006), also reported no signs of any mitochondrial oxidative capacity gains 

post-IHT (on the contrary, these authors reported decreased PGC-1α and 

mtTFA mRNA). Moreover, these authors did report an enhanced capacity for 

pH regulation and glycolysis after IHT, exemplified by significantly increased 

carbonic anhydrase 3 (CA3) and MCT4 mRNA, but not after normoxic training 

(Faiss et al., 2013b). The participants in this study undertook a repeated sprint 

protocol, so the exercise intensity was substantially higher than the majority of 

the previously discussed IHT studies (Dufour et al., 2006; Geiser et al., 2001; 

Kuno et al., 1994; Ponsot et al., 2006; Robertson et al., 2010b; Roels et al., 

2005; Terrados et al., 1990; Terrados et al., 1988; Vogt et al., 2001), as well as 

Chapter 4 and Chapter 5, which used longer duration exercise intervals. In this 

respect, it is possible that if the exercise intensity is sufficiently high, IHT may 

induce an enhanced capacity for anaerobic metabolism (Faiss et al., 2013b), 

and perhaps a sparing of anaerobic energy reserves (Ponsot et al., 2006). 

In summary, given that the mechanistic results from Chapters 4 and 5 were 

highly variable, and these studies detailed above (Dufour et al., 2006; 

Robertson et al., 2010b; Roels et al., 2005) showed no obvious signs of a 

beneficial effect of IHT on whole body oxidative exercise economy, it could be 

concluded that any such effects are negligible, at least in highly trained athletes. 

The suggestion by Faiss et al. (2013b) that high intensity IHT may induce 

specific skeletal muscle adaptations that are beneficial to anaerobic exercise 

metabolism, certainly warrants further investigation. 

One common limitation with all these investigations, including Chapters 4 and 5, 

is the relatively small experimental group sample sizes, which may have 
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resulted in inadequate statistical power – for example, in Chapter 5 there was a 

trend for a greater oxidative ATP turnover after IHT (mean change +41%) vs. 

normoxic training (mean change +19%), but the differences were not 

statistically significant (P = 0.18). Whether a greater statistical power would 

have resulted in a significant difference remains unknown, so it is important that 

larger scale studies are conducted. It would be sensible for a unified 

intervention design to be agreed in order for a valid meta-analysis to be 

calculated, specifically focussing on IHT. The debate continues as to whether 

utilising a greater hypoxic dose than IHT (i.e. LH+TH, LH+TL and LH+TH+TL) 

elicits significant and meaningful exercise economy changes. In a similar 

manner to the IHT research, an experimental design must be arranged, 

importantly including a measurement of the fitness status of participants, such 

as aerobic capacity or performance, before any conclusions may be drawn. 

6.1.1.2.3 H+ buffering 

During intense exercise, the lactate dehydrogenase catalysed conversion of 

pyruvate into lactate concomitantly accepts H+, thereby reducing the pool of free 

H+ that results from elevated anaerobic glycolysis (Robergs et al., 2004). As 

such, an increased [BLa] appearance may indirectly represent an enhanced 

capacity to buffer H+ (Kayser et al., 1993). As part of Chapter 4, the effects of 

eight weeks of IHT on [BLa] during submaximal and exhaustive exercise was 

assessed. While there were no significant changes in the running speed at the 

[BLa] threshold, or at a fixed [BLa] of 4.0 mM, there was a significant reduction 

in the peak [BLa], as assessed 2 min post-exhaustion, in the IHT group in 

hypoxic conditions only (13.0 vs. 11.4 mM, P = 0.01), compared to no such 

change in the control group (11.0 vs. 10.5 mM, P = 0.86). This may suggest 

either a trend for reduced [BLa] production or an impaired ability to buffer [BLa] 

after IHT, but the between group difference was not statistically significant, so 

results are inconclusive. Terrados et al. (1988) reported a similar outcome in 

that [BLa] at near maximal exercise capacity decreased after highly trained 

cyclists completed 3-4 weeks of IHT or normoxic training, but the difference 

between groups was only significant when these cyclists were tested in hypoxic 

conditions. There are clearly a multitude of other factors acting on these 
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processes, so these rather indirect and arguably invalid estimations of H+ 

buffering require more detailed assessment, using more precise markers. 

It should be noted, that during the data collection phase of Chapter 4 the 

researchers attempted to quantify capillary blood pH, via biosensor 

potentiometry assessed H+ concentration, using a hand-held analyser (i-STAT®, 

Abbott Point of Care Inc., Maidenhead, UK). However, even though the 

researchers sought to induce localised earlobe hyperaemia via means of a 

tetracaine cream (Ametop Gel, Smith & Nephew Healthcare Ltd, Hull, UK), in 

order to sample arterialised capillary blood (Pitkin et al., 1994), due to the 

participants being in an exhausted state, and the cold laboratory conditions, 

obtaining a sufficient sample volume in a timely manner was not possible. As 

such, the capillary blood pH data set was incomplete, so could not be included 

in any analysis. Instead, studies that have specifically assessed arterial blood 

and/or muscle H+ and/or pH, or measurements of skeletal muscle ultrastructure 

and morphology must be considered. 

Zoll et al. (2006) found that six weeks of IHT resulted in increased expression of 

skeletal muscle CA3 (mean change +74%) and MCT1 (mean change +44%) 

mRNA. These mRNA variables were not significantly altered within the 

normoxic trained group (CA3 mean change ~+10%, MCT1 mean change 

~+5%), but unfortunately the between group statistical comparisons were not 

reported. Furthermore, these results are weakened by the fact that only one 

biopsy sample was analysed per participant. Nevertheless, Faiss et al. (2013b) 

also reported that after four weeks of high intensity IHT, a significant 74% 

increase in the expression of skeletal muscle CA3 mRNA occurred, compared 

to a non-significant ~15% reduction after normoxic training. Unlike the 

investigation by Zoll et al. (2006), these researchers conducted skeletal muscle 

biopsies and analyses in triplicate, which substantially strengthens their results. 

While these mRNA results demonstrate that IHT may elicit a greater potential 

for pH regulation, compared to normoxic training, they did not directly asses H+ 

buffering capacity. 

The 31P-MRS techniques used in Chapter 5 allowed the estimation of 

intracellular pH every 6.0 s during exercise and post-exercise recovery, 

calculated using the chemical shift of the Pi spectral peak relative to the PCr 
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peak (Taylor et al., 1983). None of the pH related variables (pH during 

moderate intensity exercise, pH threshold during incremental exercise and pH 

at volitional exhaustion) were altered significantly more by hypoxic training (7.5 

h total hypoxic exposure spread over 21 d), compared to normoxic training. 

Conversely, Kuno et al. (1994) reported that 8 h of IHT spread over four 

consecutive days (2 h·d-1) led to significantly higher 31P-MRS assessed 

intracellular pH during fixed intensity exercise. Similarly, Mizuno et al. (1990) 

reported that the in vitro H+ muscle buffering capacity (βm) significantly 

improved in 10 highly trained cross-country skiers, after two weeks of living at 

2100 m and training at 2700 m. Caution must be adopted here, as the results 

from Chapter 5 are in clear agreement with these studies (Kuno et al., 1994; 

Mizuno et al., 1990), as a significant intracellular pH threshold improvement was 

apparent in both legs after the three week intervention, but, importantly, this 

was irrespective of the training FIO2. As neither Kuno et al. (1994) or Mizuno et 

al. (1990) included normoxic control groups, their suggestions of enhanced H+ 

buffering capacity are unsubstantiated – these results may simply demonstrate 

that exercise training, per se, improves pH regulation. 

Using a more sustained hypoxic intervention, Gore et al. (2001) reported that in 

13 moderately trained participants, 23 nights of simulated LH+TL significantly 

increased duplicate assessed βm (mean change +18%), compared to a non-

significant change in a normoxic control group (mean change +1%). While 

these results may imply an enhanced in vivo H+ buffering capacity (βin-vivo), the 

muscle biopsy samples taken immediately after 2 min of severe intensity cycling 

showed no significant [H+] or βin-vivo changes (Gore et al., 2001). This is in 

agreement with part of the double-blinded, placebo-controlled study by 

Siebenmann et al. (2012), detailed earlier (see Section 1.2.4 and Table 1.2). 

These authors reported that βm remained unchanged in highly trained cyclists 

after both 28 nights of 16 h·d-1 simulated LH+TL, as well as in a normoxic 

control group (Nordsborg et al., 2012). In accordance with a lack of βin-vivo 

enhancement, both of these studies reported a lack of short-duration high-

intensity exercise performance improvements: mean and peak power output 

during 30 s sprint cycling was unaltered in Nordsborg et al. (2012), and total 

work during 2 min maximum effort cycling was unaltered in Gore et al. (2001). 
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Given that contrary to traditional belief, intracellular lactate and H+ accumulation 

may not be the most influential factor limiting skeletal muscle force generation 

(Allen et al., 2008), it is perhaps unsurprising that Gore et al. (2001) reported an 

18% βm improvement, but 2 min maximum effort (anaerobic) performance 

remained unaltered. Taken together, results from Chapters 4 and 5, and 

findings from the literature to date, do not support the hypothesis that IHT or 

sustained hypoxic exposure result in significantly enhanced H+ buffering 

capacity. Whether the increased expression of skeletal muscle CA3 mRNA after 

the novel repeated sprint IHT intervention used by Faiss et al. (2013b) causes 

concurrent βin-vivo improvements remains to be seen. 

6.1.2 Efficacy of altitude and hypoxia to enhance performance 

In addition to the above detailed physiological adaptations, exercise 

performance was assessed in relation to traditional LH+TH altitude training 

(Chapter 3), and indirect estimates of performance (incremental time to 

exhaustion) were assessed in relation to whole body IHT (Chapter 4), and 

single-legged IHT (Chapter 5). 

6.1.2.1 Performance efficacy of traditional altitude training 

In Chapter 3, the three week LH+TH intervention resulted in 200 m swimming 

race performance changes that were on average 0.3% faster than in the control 

group. However, the ANCOVA statistics showed that LH+TH did not elicit an 

additional benefit on 200 m race performance over and above that caused by 

sea level training (see Section 3.4.2 and Table 3.1). This is logical, as the mean 

performance difference of -0.3% is within the typical within-participant race-to-

race SD for highly trained swimmers of ± 0.8% (Pyne et al., 2004). 

A comparable study to Chapter 3 is that of Wachsmuth et al. (2013), in which 25 

highly trained swimmers lived and trained for 3-4 weeks at 2320 m, on three 

separate occasions over a 2 y period. After 25-35 d at sea level, race 

performances significantly improved, on average by +23 FINA Points, or in 

terms of race time, an improvement of approximately -0.8% (Wachsmuth et al., 

2013). Importantly, there were no such performance changes detected at 0-14 d 

or 15-24 d post-altitude. Compared to Chapter 3, this study was based on a far 
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greater number of participants and training camp / competition repetitions, but 

the conversion of race times to FINA Points is problematic, due to it being a 

scalar system, based on the current World Record, so could have at least 

partially confounded the results. Another investigation to have assessed the 

effects of LH+TH at similar altitudes to Chapter 3, also in highly trained 

swimmers, is that by Gough et al. (2012), who reported that competitive race 

performances did not change following three weeks at 2135-2320 m. 

Specifically, 28 d after return to sea level, race performances in the LH+TH 

group were on average (± 90% CL) 0.2 ± 0.9% slower, leading the authors to 

conclude that any performance effects were “unclear” – see Appendix 7 for an 

explanation of some of the statistical techniques used by Gough et al. (2012). 

Although the assessments of swimming performance capacity in the study by 

Bonne et al. (2014) only included ‘in training’ test sets, and no actual race 

results, the outcomes are supportive of the findings from Chapter 3 and those 

by Wachsmuth et al. (2013) and Gough et al. (2012), i.e. swimming 

performance does not improve immediately upon return from LH+TH altitude 

training to a greater extent than after sea level training. A common feature with 

Chapter 3 and these three other studies (Bonne et al., 2014; Gough et al., 2012; 

Wachsmuth et al., 2013), is that performance was assessed during the middle 

of the competitive season, at relatively low priority competitions and/or during 

training sessions, without participants undertaking a prior taper. While the 

complexities of a taper may add to performance variances (Mujika et al., 1995), 

assessing race performances at the targeted competition for that season would 

minimise alternative sources of error such as an accumulation of fatigue, and 

varying levels of effort and motivation to succeed. 

In addition to these four swimming investigations, a number of others have 

assessed the effects of traditional altitude training on alternative endurance-

based linear sports, although surprisingly most have not included control groups 

(see Table 1.1). The comprehensive investigation reported by Levine & Stray-

Gundersen (1997) and Chapman et al. (1998) showed that 5000 m running 

performance was significantly faster after four weeks of LH+TL (mean 5000 m 

time decrease of 1.4%). However, race performances got worse in both the 

LH+TH group and the sea level control group (mean 5000 m time trial increases 
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of ~0.6% and ~2.9%, respectively). As such, it is unsurprising that the between 

group difference was statistically significant, but this may be more influenced by 

the worsened performance in the non-LH+TL groups rather than the improved 

performance in the LH+TL group, per se.  

The finding that LH+TH may result in attenuated competitive race performances 

remains a concern for any athlete undertaking such an intervention, as a 

decrease in absolute training intensity and/or an increase in accumulated 

fatigue and incidences of illness are clearly undesirable. This latter problem has 

been widely observed: two of the seven LH+TH participants in Svedenhag et al. 

(1991) withdrew from the study due to being diagnosed with gastroenteritis, 

Bailey et al. (1998) found that the frequency of infectious illnesses significantly 

increased during LH+TH, whereas there were no such incidences during sea 

level living and training, and Gore et al. (1998) reported that all their participants 

became ill during or immediately after a four week LH+TH intervention, so 

training load was substantially reduced (see Table 1.1). Whether the altitude is 

the cause of any such increased illness incidence is debatable, but this is 

certainly a factor to be considered when implementing altitude interventions. 

Contrary to popular belief, there is a dearth of rigorously designed studies to 

have investigated the effects of physical LH+TH or LH+TL altitude exposure. 

Aside from the one study by Levine and Stray-Gundersen (1997), there are no 

other experiments to have found beneficial performance effects of LH+TL using 

physical altitude, when compared to a sea level control group. A recent ‘pro/con’ 

debate well summarises the key arguments in this field (Jacobs, 2013a; Jacobs, 

2013b; Wilber, 2013a; Wilber, 2013b). It is fundamental to note that even in the 

‘pro’ argument by Wilber (2013a), aside from the Levine and Stray-Gundersen 

(1997) publication (see the above critique), the cited studies in support of 

LH+TL having a beneficial impact on performance either: i) did not include a 

control group (Stray-Gundersen et al., 2001; Wehrlin & Marti, 2006), ii) included 

a control group which did not complete post-intervention performance tests 

(Wehrlin et al., 2006), or iii) was based on a duplicated data set from the three 

years of data collection (1994, 1995 and 1996) during the Levine and Stray-

Gundersen (1997) experiments (Chapman et al., 1998). These studies must be 
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appropriately cited, in order for the risk to be minimised of perpetuating a 

concept that may in fact not turn out to be based on sound evidence. 

Given the continued reliance on these training paradigms, additional research 

attention is clearly warranted. As blinding participants to the environmental 

treatment is impossible, the most useful means of investigating the effects of 

LH+TH is to assess competitive race performances at competitions that are 

deemed important by the athletes themselves (to avoid any nocebo effects of 

sea level control training). Wehrlin & Marti (2006) did so in their case study of a 

male runner, who undertook 26 d of LH+TH+TL, and subsequently improved his 

5000 m personal best time by -1.3% at the World Championships. In a similar 

manner, Appendix 6 details a case study of one female participant from the 

LH+TH intervention in Chapter 3, illustrating clear performance gains after three 

weeks of LH+TH (-2.3% (-22.8 s) in a 1500 m front crawl race and the gold 

medal at in the 10 km open water race at the FINA World Championships). 

Much of the continued interest in the use of traditional altitude training for 

athletic performance enhancement is because of these types of case study 

results. In order for properly controlled studies to provide meaningful answers 

as to the associated performance efficacy, highly trained participants must 

complete repeated cross-over interventions, thus acting as their own sea level 

control groups, and again, with performance assessed after the usual taper, at 

major international competitions. 

In addition, a novel statistical approach, as described by Allen et al. (2014), that 

derives individual quadratic trajectories from a mixed linear model, may prove 

useful in establishing whether any intervention (e.g. altitude training), has 

improved athletic performance over and above what would ordinarily be 

expected. Other novel statistical techniques have been used to assess changes 

in relatively small samples of highly trained athletes. For example the above 

discussed study by Gough et al. (2012) used an approach that involved 

magnitude based inferences; founded on the location of the confidence interval, 

in relation to threshold values for a (pre-defined) substantial effect (Hopkins et 

al., 2009). This alternative statistical approach allows dictation of the ‘smallest 

worthwhile change’ for the specific variable and population in question, so has 

been suggested to prove useful when assessing effects in highly trained 
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athletes (Hopkins et al., 2009). As such, this approach was also computed for 

the tHb and performance results from Chapter 3 (see Appendix 7), but 

(encouragingly) the interpretation and outcomes were essentially indifferent 

regardless of the statistical method, so the traditional null hypothesis-based 

approach was used for consistency throughout this thesis. 

6.1.2.2 Performance efficacy of IHT 

The effects of IHT and blinded condition normoxic training on incremental 

exercise performance (T-Lim) were assessed in Chapters 4 and 5. The 

interventions were dissimilar with regard to: a) the study design – a placebo 

controlled group trial in Chapter 4, and single-legged trial in Chapter 5; b) the 

hypoxic dose – 640 min spread over eight weeks at an altitude simulation of 

~2100 m in Chapter 4, and 450 min spread over three weeks at an altitude 

simulation of ~3000 m in Chapter 5; and c) the participants’ training status – 

highly trained athletes in Chapter 4 and physically active but non-trained 

participants in Chapter 5. The resultant T-Lim changes were similar in both 

Chapters 4 and 5 though – neither IHT intervention resulted in enhanced 

maximal exercise capacity compared to (blinded condition) normoxic training: 

 In Chapter 4 there was a significant T-Lim increase within the IHT group 

when tested in hypoxia (mean ± SD: +2.4 ± 4.3%), but there were no 

significant differences between the groups in either test condition. 

 In Chapter 5, although T-Lim improved in all participants and conditions, 

in the hypoxic and normoxic trained legs (range +2% to +76%), there 

was only a significant training effect in normoxic test conditions when the 

IHT and control leg results were combined. There were no significant T-

Lim differences between the hypoxic and normoxic trained legs. 

This finding of a lack of an IHT induced endurance performance enhancement 

is common (see Table 1.3). Robertson et al. (2010b) reported that 3000 m 

running performance was not significantly improved after nine moderately 

trained runners completed three weeks of IHT. Lecoultre et al. (2010) reported 

that mean power output during cycling tests to exhaustion improved by similar 

magnitudes after moderately trained cyclists completed four weeks of IHT 



  

 
 

Page 158 of 231 
 

(+7%) or normoxic training (+6%). Morton & Cable (2005) reported that work 

capacity during incremental cycling to exhaustion improved similarly after 

moderately trained team sport players completed four weeks of IHT (+16%) or 

normoxic training (+18%). And finally, while mean power output during a 10 min 

cycling time trial significantly improved after 19 moderately trained athletes 

undertook four weeks of moderate to high intensity IHT (+5.2 ± 3.9%), Roels et 

al. (2005) reported that equivalent normoxic training provided an indifferent 

ergogenic effect (+5.0 ± 3.4%). 

On the contrary, some authors have reported beneficial endurance performance 

effects of IHT, at least in untrained participants (Terrados et al., 1990; Vogt et 

al., 2001). However, such effects should not be assumed to occur in highly 

trained athletes, as far less pronounced performance changes would likely 

manifest when baseline training status is already high. For example, one study 

reported a mean T-Lim improvement of +313% post-IHT (Terrados et al., 1990). 

These authors also investigated the effects of combined sustained moderate 

and high intensity interval IHT in highly trained cyclists, and concluded that 

performance improved in the IHT group to a greater extent than after normoxic 

training (Terrados et al., 1988). When the results are assessed in depth though, 

the performance increments after IHT were only statistically different to the 

normoxic trained control group when tested in hypoxic conditions. 

More recently, Dufour et al. (2006) reported noteworthy performance gains in 

moderately trained endurance runners, after an IHT stimulus similar to that used 

in Chapter 4 (see Table 1.3). However, as discussed in Section 1.3.3, the more 

than 3-fold greater T-Lim improvement in the IHT compared to the control group 

was in part due to a ~65% increase in one of the IHT participants, and a ~20% 

decrease in one of the control group participants. This variability is more than 

expected (Laursen et al., 2007), for example the range for incremental exercise 

T-Lim in highly trained runners during Chapter 4 was -9% to +8%. Potential 

reasons for this variability were not discussed by these authors, but in addition 

to the lack of FIO2 blinding resulting in placebo and/or nocebo effects, which are 

known to be highly influential (Bonetti & Hopkins, 2009), there are a range of 

other factors that are seldom reported, that may significantly influence each 

individual’s performance, for example: diet quality and calorific intake, sleep 
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quality and quantity, psychological well-being and the intrinsic desire to continue 

the study, the volume and intensity of training outside the laboratory, over-

reaching, and illness / infections. In addition to these variances, unlike the 

ANCOVA statistics reported in Chapters 4 and 5, Dufour and colleagues failed 

to report any ‘between group’ statistics; only the significance of changes within 

the IHT and control groups were detailed. As such, it is impossible to judge the 

performance efficacy of the Dufour et al. (2006) IHT intervention. 

The overwhelming limitation with these studies is that they all failed to blind the 

participants to the training FIO2, as either face masks were used in the IHT 

groups only (Dufour et al., 2006; Lecoultre et al., 2010; Vogt et al., 2001), or 

participants in IHT groups were the only ones to exercise within a hypoxic 

chamber (Morton & Cable, 2005; Terrados et al., 1988). Furthermore, authors 

commonly fail to report whether participants were blinded to the FIO2 

(Hendriksen & Meeuwsen, 2003; Messonnier et al., 2004; Roels et al., 2005; 

Terrados et al., 1990; 2003), and given the logistical challenges of doing so, it is 

therefore assumed that in these instances, successful participant blinding did 

not occur. Specifically in relation the study by Robertson et al. (2010b), IHT 

participants may have experienced influential nocebo effects, as in addition to 

the IHT stimulus, other participants were also exposed to a LH+TH+TL 

intervention. This lack of FIO2 blinding considerably diminishes the value of 

performance results from these otherwise well executed investigations, and 

may be a key reason for many of the discrepancies between studies. Indeed, 

when participants were successfully blinded to the FIO2 during Chapter 4 and 5, 

the results showed no significant performance gains. Furthermore, the rather 

misleading report of significant endurance performance gains after moderate 

intensity IHT, as reported by Dufour et al. (2006), have not been replicated 

elsewhere. Specifically, the investigation by Ventura et al. (2003) used an 

almost identical IHT intervention to that used by Dufour and colleagues (see 

Table 1.3), and found that maximum power output during an incremental cycling 

test to exhaustion was not statistically improved in the IHT group (mean change 

+1% in normoxia and -2% in hypoxia). Furthermore, in the normoxic trained 

control group, maximal power output tended to decrease in normoxic tests 

(mean change -4%), and was significantly decreased in hypoxic tests (mean 

change -8%), and maximum HR during the post-intervention exercise tests was 
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also significantly lower than pre-intervention (Ventura et al., 2003). In a similar 

manner to the postulation in Chapter 4 (see Section 4.5.2), these authors 

suggested that the training stimuli induced an accumulation of fatigue that 

prevented performance gains. Participants in Ventura et al. (2003) had just 

finished their competitive season, whereas participants in Chapter 4 had only 

completed six weeks of training after a summer break, but both scenarios 

appeared to have resulted in an accumulation of fatigue. Participants may not 

have been sufficiently accustomed to the sustained moderate to high intensity 

laboratory based training sessions. 

There have been reports of anaerobic performance gains post-IHT, first 

documented using a well-controlled parallel group study by Meeuwsen et al. 

(2001), then 1 y later in the subsequent ‘cross-over’ using the same group of 

moderately trained triathletes (Hendriksen & Meeuwsen, 2003). These authors 

found that IHT for 120 min·session-1, 1 session·d-1, for 10 d, resulted in 

significant ~4% increases in mean and peak power attained during a maximal 

effort 30 s Wingate cycling test, compared to no such changes after normoxic 

training (Hendriksen & Meeuwsen, 2003). These anaerobic gains occurred 

despite the relatively low intensity training; just 60-70% of the HR reserve. Thus, 

in absolute terms, the normoxic trained participants undertook a higher training 

intensity, so it is somewhat surprising that the Wingate test data showed a 

mean 0% change for mean and peak power after normoxic training. Again, the 

lack of proper blinding of the training condition likely led to influential nocebo 

effects, but unfortunately as anaerobic performance tests were not conducted in 

Chapter 4 or 5, the results are not comparable. 

As far as the author is aware, aside from Chapter 4 and 5, only two other IHT 

studies to date have successfully blinded the participating athletes to the 

training FIO2 (Faiss et al., 2013b; Galvin et al., 2013). Faiss et al. (2013b) had 

40 moderately trained cyclists undertake four weeks of high intensity interval 

training within a normobaric hypoxic chamber (15 x 10 s maximum effort sprints 

with 20 s to 5 min active recovery intervals, twice per week), while breathing a 

0.146 (IHT group) or 0.209 (normoxic control group) FIO2 inspirate. Even though 

participants were successfully blinded to the training FIO2 (95% of the IHT group 

participants and 85% of the control group participants thought that their training 
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was performed in hypoxia), the maximum number of sprints achieved during a 

repeated sprint ability test improved significantly more in the IHT group (9 vs. 13 

sprints) compared to the normoxic group (9 vs. 9 sprints). As this performance 

test involved a 1:2 work:rest ratio (repetitions of 10 s maximum effort, followed 

by 20 s rest), the outcome of an enhanced exercise tolerance post-IHT may be 

due to an enhanced [PCr]-τ, as observed in hypoxic tests during Chapter 5. In 

the study by Galvin et al. (2013), all participants breathed from face masks 

during high intensity interval training (12 sessions spread over four weeks, each 

consisting of 10 x 6 s efforts interspersed with 30 s of passive recovery), but 

while the IHT group participants breathed a 0.130 FIO2 inspirate, the single-

blinded control group breathed normoxic air (FIO2 0.209). In a similar manner to 

findings by Faiss et al. (2013b), repeated sprint ability (YoYo Intermittent 

Recovery Test Level 1) improved significantly more so in the IHT compared to 

the control group (mean +33% vs. +14%, P = 0.002). 

Considering the above discussed lack of evidence for the performance efficacy 

of moderate intensity IHT (Lecoultre et al., 2010; Morton & Cable, 2005; 

Robertson et al., 2010b; Roels et al., 2005), if athletes choose to undertake IHT 

as part of their routine training, they are advised to experiment with a repeated 

sprint protocol such as those used by Faiss et al. (2013b) and Galvin et al. 

(2013). In particular, those athletes who compete in sports that rely on a 

superior repeated sprint ability may benefit from such an intervention. 
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6.1.3 Experimental considerations 

As with all empirical research, the three studies that comprise this thesis are 

subject to a number of experimental considerations. Some limitations have 

been highlighted within each chapter, but there are a number of issues common 

to multiple chapters that warrant further detail. 

Sample size 

A common limitation across all three experimental chapters is the relatively 

small sample size for each of the experimental treatments. While 13, 18 and 10 

participants started Chapters 3, 4 and 5, respectively, there were some drop-

outs during the training interventions, resulting in only 11, 12 and 9 ‘finishers’, 

respectively. Importantly though, as Chapter 5 used a single-legged training 

intervention, the normoxic trained leg effectively acted as a control group, so the 

statistical power was arguably equal to having 18 participants complete a 

parallel group trial. Nevertheless, these relatively small sample sizes would 

have reduced the statistical power of each investigation. Here, it is important to 

note that these experimental chapters were all longitudinal training studies, and 

in order to achieve the above samples, each experiment was repeated twice, 

using the same methodological protocols, with different participants. As such, 

the data collection phases (particularly the supervised training) of each chapter 

were both logistically challenging and time consuming; lasting 16 weeks, 20 

weeks and 10 weeks, for Chapters 3, 4 and 5, respectively. Furthermore, the 

participants in Chapters 3 and 4 were highly trained athletes, i.e. a specialist 

population, and hence it was difficult to recruit more numbers. 

Performance tests 

Part of the strength of Chapter 3 was the ecologically valid assessment of 

performance via competitive swimming races in these highly trained athletes. 

This differed to Chapter 4, whereby performance in highly trained runners was 

only estimated via treadmill-based incremental tests to exhaustion. While such 

tests in laboratory conditions provide a reliable estimate of exercise capacity 

(Weltman et al., 1990), constant load tests have been shown to be somewhat 

more reliable: C ’s of 0.9% vs. 0.6%, respectively (Hopkins et al., 2001), and in 
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particular when testing highly trained runners, field-based performance tests are 

even more reliable (Hopkins et al., 2001). A combination of field-based and 

laboratory-based performance assessments, similar to those used previously 

for swimmers (Robach et al., 2006b) and runners (Chapman et al., 2014), in 

both Chapters 3 and 4, would have provided more detailed information 

regarding the performance efficacy of LH+TH and IHT, respectively. 

Furthermore, in addition to the aerobic requirement during an incremental 

exercise test to exhaustion, there is a substantial anaerobic contribution 

(Bertuzzi et al., 2013), with the relative aerobic/anaerobic contribution being 

largely dependent on the specifics of the protocol, for example the increment 

and total test duration, the increment intensity, and the proportion of total 

muscle mass being exercised. This was exemplified in Chapter 5, as there was 

only a significant training effect for T-Lim under normoxic test conditions when 

the IHT and normoxic trained leg data were combined (see Section 5.4.4). A 

more informative means of quantifying performance would have been to use 

two distinct tests: i) a constant moderate or heavy intensity test to exhaustion, to 

quantify aerobic fitness; and ii) a severe or supra-maximal intensity test, to 

quantify anaerobic and/or repeated sprint capacity. This latter high intensity test 

is especially warranted given suggestions of an IHT induced improved mean 

power output during 30 s efforts (Hendriksen & Meeuwsen, 2003) and a skeletal 

muscle shift from aerobic to anaerobic glycolytic activity (Faiss et al., 2013b). 

Training specificity 

Apart from the twice weekly supervised laboratory sessions, the running training 

intervention in Chapter 4 was prescribed by the athlete’s coaches (6 or 7 

sessions·week-1), resulting in varying exercise intensities being practiced, from 

moderate to supra-maximal efforts. The twice weekly laboratory training 

involved sustained submaximal effort (heavy intensity) running, while breathing 

a hypoxic or normoxic inspirate, whereas performance was assessed by means 

of an incremental speed test to exhaustion. Thus, the performance outcome, T-

Lim, required participants to tolerate running speeds that were substantially 

faster than all the supervised treadmill training speeds. Similarly, the training 

intervention in Chapter 5 consisted of a combination of sustained moderate 

intensity and repeated very heavy to severe intensity efforts, whereas 
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performance was also assessed by means of an incremental resistance based 

test to exhaustion. Again, the performance outcome, T-Lim, was determined by 

the participants’ ability to tolerate the high intensity loads for substantially longer 

durations than used during training efforts. In contrast, the blinded IHT studies 

by Faiss et al. (2013b) and Galvin et al. (2013) used identical repeated sprint 

based protocols for the training intervention as used during performance tests, 

and reported favourable adaptations after IHT. The lack of specificity between 

the training and testing intensity in Chapters 4 and 5 may have limited the ability 

to detect any beneficial performance outcomes. However, results from both a 

submaximal and maximal test would be expected to improve if aerobic power 

increases, due to a delayed onset of anaerobic metabolic contribution. 

Intravascular compartments 

The key mechanistic focus of Chapter 3 was the effect of moderate altitude on 

haematological variables, which required a sufficient frequency of tHb data to 

ensure proper reliability (a minimum of five CO-rebreathing tests per 

participant). In order to minimise the degree of invasive testing, venepuncture 

was not performed at all of these laboratory visits. Accordingly, to avoid the 

results being confounded by spurious data generated by the only available 

hand-held analyser (HemoCue®, HemoCue Ltd, Dronfield, UK), recently 

reported to vary by ~5% from gold-standard measurements (Rudolf-Oliveira et 

al., 2013), it was not possible to calculate intravascular compartments (RCV, PV 

and total BV). Quantifying these additional variables could have been insightful, 

especially given the known marked effects of Epo on plasma volume (Lundby et 

al., 2007b).  
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6.2 Future research 

Taking into consideration the results, implications and limitations of the three 

experimental chapters, as well as those of the discussed related literature, there 

are a number of key questions that warrant further research: 

i. What effect does sustained living in hypobaric or normobaric hypoxia 

have on tHb and sea level athletic performance? With normobaric 

hypoxic apartments becoming increasingly accessible, it is now possible 

to expose athletes to 12-16 h·d-1 of normobaric hypoxia throughout entire 

training seasons. In addition, while long-term living at physical altitudes is 

common in endurance athletics, particularly in East African runners 

(Wilber & Pitsiladis, 2012), it is uncommon in other sports. Whether an 

endurance swimmer, for example, would benefit from living and training 

at moderate altitudes for entire training seasons, is an important area for 

future research. Would these athletes acclimatise enough to be able to 

exercise at race pace velocities without becoming overly fatigued? 

ii. Does a whole body severe or supra-maximal intensity IHT intervention 

improve sprint or repeated sprint performance in highly trained athletes? 

Faiss et al. (2013b) demonstrated this effect in moderately trained male 

cyclists, as did Galvin et al. (2013) in academy level rugby players, but 

there have been no similar studies in highly trained athletes. 

iii. Do hypoxic or altitude interventions improve specific factors that are 

known to limit muscle force production? If lactate and/or H+ buffering are 

not the most influential causes of fatigue during high intensity exercise 

(Allen et al., 2008), more relevant variables should be assessed in 

relation to altitude and hypoxic interventions, for example the failure of 

sarcoplasmic reticulum Ca2+ release (Lamb, 2009) and a reduced 

sarcolemmal K+ gradient (Sejersted & Sjogaard, 2000). 

iv. What are the effects of LH+TH or IHT on skeletal muscle energetics in 

highly trained athletes? By using modern methods such as 31P-MRS, it is 

possible to assess muscle energetics without the invasive procedures 

that may have previously limited athlete’s involvement in such studies. 
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v. Instead of only using conventional physiological / biochemical / 

haematological markers, which are inherently susceptible to substantial 

day-to-day variation, alternative more sensitive approaches should also 

be implemented. Since the completion of the Human Genome Project in 

2003, much research attention has been given to the discovery of 

genetic variants associated with athletic performance (Bray et al., 2009). 

While the majority of this research to date has been restricted to the 

candidate gene approach, more recently genome wide association 

studies have been conducted, thus allowing simultaneous testing of 

multiple genes (Pitsiladis et al., 2013). Indeed the micro-array technology 

based assessments of genomics, transcriptomics, proteomics and 

metabolomics, collectively termed the ‘omics’ cascade (Reichel, 2011), 

are providing exciting new progressions for the detection of rHuEpo 

abuse and blood doping (Pitsiladis et al., 2014). There is a wealth of 

ongoing research attempting to identify the specific gene variants of an 

elite athlete (Ahmetov & Rogozkin, 2009), and while single nucleotide 

polymorphisms specifically related to beneficial adaptations in response 

to altitude and hypoxia have not yet been discovered, attempts have 

begun (Jedlickova et al., 2003). Undoubtedly this field of research will 

bring a wealth of new insights in the very near future. 

In addition to these above research questions, the following key principles 

should be considered when planning future altitude and hypoxia research: 

i. Quantify performance at competitive events or by means of ecologically 

valid field tests, rather than by means of laboratory based assessments. 

By doing so the participant’s motivation and desire to succeed will be 

greater (Hopkins et al., 2001), and the issue of estimating the effect of 

alterations in exercise test results on real sports performance is avoided. 

ii. Wherever possible ensure that the mode and intensity of the training 

intervention is sufficiently specific to the performance test protocol. 

iii. Although it is challenging to assess the effects of hypoxia on highly 

trained athletes in a double-blinded manner, this design is imperative in 

the generation of unbiased results. As far as the authors are aware, 
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Chapter 4 of this thesis is the only investigation to date that has exposed 

highly trained athletes to a single-blinded IHT intervention (Faiss et al. 

(2013b) and Galvin et al. (2013) used double- and single-blinded 

designs, respectively, but participants were only moderately trained). 

iv. To reduce the issue of individual athlete variability leading to Type I and 

Type II statistical errors, mainly due to small sample sizes, alternative 

study designs to parallel group trials should be used. For example, cross-

over studies such as that by Hendriksen & Meeuwsen (2003), single 

legged training studies such as Chapter 5 of this thesis and those studies 

by Bakkman et al. (2007) and Terrados et al. (1990), and large scale 

studies, for example Brothers et al. (2007), who assessed acclimatisation 

to moderate altitude in 2147 military recruits. For traditional altitude 

interventions, repeated cross-over designs should be used, with 

performance assessed at international competitions, thus avoiding 

placebo and/or nocebo effects (Bonetti & Hopkins, 2009). 

v. As the optimised CO-rebreathing protocol involves numerous stages 

(see Section 3.3.4), the possibility of calculating erroneous tHb data is 

substantial, so all assessments should be performed in duplicate. 

vi. As per the above point, more sensitive ‘precision medicine’ biomarkers 

that are less influenced by day-to-day variation should be adopted 

(Pitsiladis et al., 2013), instead of only assessing traditional physiological 

/ biochemical / haematological variables.  
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6.3 Practical implications 

The outcomes from all three of the experimental chapters within this thesis have 

implications that inform recommended practices regarding the use of altitude 

and hypoxic strategies in athletic populations. 

From Chapter 3, it is clear that traditional altitude training (LH+TH) for 21 d at 

2320 m is sufficient to elicit a substantial tHb increase in highly trained athletes, 

at least in terms of the group response. According to these results, assuming no 

illnesses or injuries occur, ~70% of highly trained athletes who undertake such 

a LH+TH intervention should expect to realise a tHb increase, whereas ~30% of 

highly trained athletes will likely experience either no tHb change or a tHb 

decrease (see Figure 3.1). Importantly, changes in tHb and competitive race 

performances are not firmly related, so when identifying athletes as 

“responders” or “non-responders” to altitude training, in particular when making 

decisions as to their participation in any future altitude training interventions, 

judgements should not be based on haematology results, but instead on 

performance during training and racing. 

The results from Chapter 4 do advocate using moderate to heavy intensity IHT 

interventions to aid subsequent normoxic athletic endurance performance. 

Alternatively, some recent related literature (Faiss et al., 2013b; Galvin et al., 

2013) suggests that IHT involving severe or supra-maximal intensity exercise 

may provide an additional benefit for repeated sprint performance (see Section 

6.1.2.2), but these claims must be further substantiated in relation to 

competitive sporting events. An additional implication from Chapter 4 is that 

coaches and support staff should closely monitor individual athlete’s fatigue and 

wellbeing during any IHT interventions. 

One further potential use for IHT interventions is as a pre-acclimatisation tool for 

subsequent exercise in hypoxia: in Chapter 4, T-Lim was increased in hypoxia 

after IHT. Moreover, in Chapter 5, [PCr]-τ was speeded up in hypoxia following 

IHT, which reflects an improved muscle oxidative capacity. Accordingly, this 

would be expected to result in less fatigue and to enable better maintenance of 

performance during intermittent high-intensity exercise in hypoxia or at altitude. 

It may therefore be speculated that athletes competing in sports requiring 
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repetitive sprints might obtain an advantage from performing IHT prior to 

competitions at altitude (see Section 5.5.1). 

In addition, the results from Chapter 5 demonstrated that when non-specifically 

trained but healthy males breathed air at an FIO2 of 0.145 (simulating ~3000 m 

altitude), [PCr]-τ was 34-42% slower compared to when they breathed normoxic 

air. Although these exact [PCr]-τ data should not be equally applied to highly 

trained athletes, the basic premise remains. When individuals perform repeated 

bouts of severe or supra-maximal intensity exercise in a hypoxic environment 

(e.g. during an altitude training camp or during IHT), additional recovery 

durations should be allowed in order to maintain peak forces or velocities. 

Overall, this thesis advises that: 

a) For those sports where aerobic capacity is a key performance 

determinant, traditional altitude training should be used as an out-of-

competition season aerobic stimuli. This specific purpose of any such 

intervention must be stated in advance (i.e. if the aim is an aerobic 

stimuli, ensure that coaches and athletes do not expect anaerobic gains). 

b) Unless an array of valid and reliable methods of assessing non-

haematological adaptations to altitude training are also employed (see 

Section 6.1.1.2), in addition to the more commonly discussed 

haematological changes, the justification for measuring tHb is lacking. If 

only RBC haematology is quantified, coaches and athletes may 

overemphasise the importance of these values, then question why 

performance has not improved, when tHb has increased. 

c) For athletes who are due to compete at altitude, high-intensity IHT is 

applicable as a pre-acclimatisation strategy. The exercise modality 

should be specific to their competitive event, as should the absolute 

exercise intensity (power output or velocity). 

d) For repeated-sprint dominant sports that are contested either at sea level 

or at altitude (e.g. football, rugby, hockey and tennis), high intensity 

interval type IHT should be used to enhance the recovery between 

competitive bouts, and therefore improve overall power or velocity. 
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6.4 General conclusions 

Although cases of individuals having experienced substantial performance 

gains after traditional LH+TH altitude training and IHT were observed, none of 

the parallel group assessments within the three experimental chapters of this 

thesis support the performance efficacy of traditional LH+TH altitude training or 

IHT. This was the case for competitive race performance assessed in highly 

trained participants (Chapter 3), and for indirect estimates of performance in 

both highly trained participants (Chapter 4) and in relatively untrained 

participants (Chapter 5). 

In terms of the physiological adaptations caused by traditional altitude training, 

Chapter 3 demonstrated that three weeks of LH+TH was sufficient to elicit a 

significant haematological increase in highly trained swimmers. On the contrary, 

tHb and performance changes were not correlated, with some participants 

experiencing performance improvements despite no tHb changes, and vice-

versa. In accordance with these results and the related literature, it is suggested 

that baseline endurance fitness status likely has a substantial impact on the 

degree of haematological gains in response to traditional altitude training, and 

therefore only race performance results (and not haematological variables) 

should be used to classify whether an athlete has “responded” to the 

intervention. 

In terms of the physiological adaptations caused by IHT, Chapter 4 

demonstrated that in highly trained runners, IHT resulted in a reduced 

submaximal HR, representative of an improved cardiovascular fitness, but that 

running economy and   O2max remained largely unaltered. Also in relation to 

IHT, this time in relatively untrained participants, Chapter 5 demonstrated that 

skeletal muscle oxidative capacity was improved by IHT (depicted by a faster 

[PCr]-τ), at least when tested in hypoxic conditions. However, this was not the 

case during normoxic exercise tests, and as the numerous other 31P-MRS 

assessed variables did not show significantly different responses to IHT 

compared to normoxic training, any functional impact is questionable. 

Although the experimental chapters within this thesis were well controlled, it is 

clear that numerous studies, even some that are highly cited in the literature, 
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have substantial limitations in their experimental designs (e.g. a lack of blinding 

of the experimental condition and/or a lack of comparable control groups), 

analysis (e.g. non-sensitive analytical methods being used), and reporting (e.g. 

a lack of between group statistics being communicated). Future altitude and 

hypoxic research should: i) ensure that wherever possible participants are 

blinded to the experimental condition; ii) use at least single-blinded, but ideally 

double-blinded parallel group or cross-over research designs; iii) employ 

precise analytical techniques that are sufficiently sensitive and robust enough to 

overcome day-to-day variation; and iv) investigate the effects in highly trained 

participants, with performance being assessed at competitions with substantial 

intrinsic worth. 

This thesis contributes to the understanding of the athletic performance efficacy 

and some of the associated physiological mechanisms related to altitude and 

hypoxic interventions. 
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APPENDICES 

Appendix 1: University of Exeter certificate of ethics approval (Chapter 3) 
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Appendix 1: University of Exeter certificate of ethics approval (Chapter 4) 
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Appendix 1: University of Exeter certificate of ethics approval (Chapter 5) 
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Appendix 2: Participant information sheets (Chapter 3) 
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Appendix 2: Participant information sheets (Chapter 4) 
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Appendix 2: Participant information sheets (Chapter 4, continued) 
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Appendix 2: Participant information sheets (Chapter 5) 
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Appendix 2: Participant information sheets (Chapter 5, continued) 
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Appendix 3: Informed consent forms (Chapter 3) 

 

  



  

 
 

Page 181 of 231 
 

Appendix 3: Informed consent forms (Chapter 4) 
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Appendix 3: Informed consent forms (Chapter 5) 
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Appendix 4: Example physical activity readiness questionnaire 
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Appendix 4: Example physical activity readiness questionnaire (continued) 
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Appendix 4: Example physical activity readiness questionnaire (continued) 
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Appendix 5: Conference abstract 

(Congress of the European College of Sport Science, Liverpool, 2011) 

The Jäeger Oxycon Pro® provides a reliable estimate of pulmonary oxygen 

uptake in normobaric hypoxia (see Section 2.5 for the full manuscript). 
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APPENDIX 6: Case study of a female World Champion swimmer 

BACKGROUND / METHODS 

As part of the experiments involved in Chapter 3, one female member of the 

altitude group (‘Swimmer 7’) competed in a 1500 m front crawl race within two 

weeks before and at 25 d after the three week LH+TH intervention at 2320 m (in 

addition to the 200 m races that all participants performed). Six months later, 

Swimmer 7 undertook a second LH+TH camp, which was identical in design to 

the first. Swimmer 7 was an open water swimmer, so comparing finish times 

between the main races of interest was inappropriate due to varying 

environmental conditions. Instead, finish position in the 10 km open water race 

at the FINA World Championships, performed 24 d after the second altitude 

camp, was compared to finish position at the previous year’s FINA World Open 

Water Swimming Championships, when Swimmer 7 did not use altitude 

training. To further quantify changes in swimming cardiovascular fitness, 

Swimmer 7 completed an aerobic swimming test twice per week for two weeks 

before, during, and for four weeks after the second altitude camp. This 

comprised 4 x 100 m front crawl with 75 s allowance for each repetition, 

targeting 71 s per 100 m (if either the third or fourth repetition was >0.5 s 

outside the range of 70.5-71.5 s, results were void). HR was recorded after the 

fourth 100 m (FT1 & T31, Polar Electro, Kempele, Finland). 

RESULTS 

Swimmer 7 experienced a -1.3% (-1.5 s) and -2.3% (-22.8 s) improvement in 

200 m and 1500 m front crawl races, respectively, from before to after the 

second altitude camp. After 24 d at sea level following the second altitude 

camp, Swimmer 7 won the 10 km open water race at the FINA World 

Championships, out of 50 race finishers, in a time of 2:01:58. As the below 

figure illustrates, this was an improvement of +7 finish positions compared to 1 

y earlier, at the FINA World Open Water Swimming Championships. This 

improvement was only equalled by one other ‘world top 10’ competitor, and not 

surpassed by others. In addition, Swimmer 7’s HR during the submaximal 

swimming test set significantly decreased from pre to post-altitude (151 ± 3 

b∙min-1 to 135 ± 3 b∙min-1, P = 0.01). 
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The change in 10 km race finish positions in the top 10 finishers at the FINA 

World Open Water Swimming Championships, to the FINA World 

Championships, held 1 y later. The +7 position improvement by Swimmer 7 

(solid black line) was equalled by only one of the other top 10 finishers, but not 

surpassed. The mean change (dashed line) in this group was -3 ± 5 positions. 

 

Swimmer 7’s baseline tHb relative to body weight was 11.1 g·kg-1 before the 

first, and 11.5 g·kg-1 before the second altitude camp. The below figure 

illustrates that at no time did Swimmer 7’s change in tHb exceed the 2.2% C . 

 
 
tHb percentage change from baseline in the case study of Swimmer 7, who 

completed two separate three week altitude training camps (ALT and ALT-2), 

interspersed with six months of sea level training. Data are the mean of 

duplicate tHb tests (± SD). “Pre-ALT-1” and “Pre-ALT-2” were time points within 

48 h of travelling to altitude. It is clear that at no point did Swimmer 7’s tHb 

change by a greater margin than the CV of 2.2% (depicted by the dotted lines). 
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DISCUSSION 

Swimmer 7 is an example of one participant whose race performances 

improved after the LH+TH interventions. This swimmer achieved -1.3% (-1.5 s) 

and -2.3% (-22.8 s) improvements in 200 m and 1500 m front crawl race times, 

respectively, 25 d after the first altitude camp. In addition, six months later, 24 d 

after the second altitude camp, Swimmer 7 won the 10 km open water race at 

the FINA World Championships, having finished in 8th place the previous year 

(this progression compared favourably to the other competitors). 

These performance improvements occurred despite Swimmer 7 showing no 

signs of increased tHb after either altitude camp, in a similar manner to 

participants in Gore et al. (1998). Similarly to participants in that study, 

Swimmer 7 was already highly endurance trained pre-altitude, as verified by her 

higher baseline tHb relative to body weight than previously reported (11.5 g·kg-1 

vs. 10.7 g·kg-1) (Wachsmuth et al., 2013). Therefore, it is probable that there 

was not scope for further tHb gains in response to this hypoxic dose of three 

weeks at 2320 m altitude (Robach & Lundby, 2012). 

A placebo effect cannot be ruled out, but the significant reduction in submaximal 

HR during the swimming test sets indicated an improved overall cardiovascular 

fitness, and thus it can be speculated that non-haematological adaptations 

favouring improved post-altitude race performances likely took place, in 

accordance with findings by Garvican et al. (2011). 

CONCLUSIONS 

One highly trained female swimmer did not experience tHb changes after two 

similar LH+TH altitude training camps, yet cardiovascular fitness and race 

performances were substantially improved, culminating in a victory at the FINA 

World Championships. This case study demonstrates that physiological 

adaptations to altitude training likely occur that are undetectable via 

haematological assessments, and overall highlights the importance of closely 

assessing results in individual athletes, as well as group effects.  
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APPENDIX 7: Alternative statistical analyses of data from Chapter 3 

BACKGROUND 

On the advice of a reviewer from an international journal, an alternative to 

traditional probability-based statistics was computed for the results from 

Chapter 3. For consistency of techniques within this thesis, traditional statistics 

were presented in Chapter 3, but this alternative approach is shown below, as 

computed for the tHb and race performance data before and after three weeks 

of LH+TH at 2320 m (see Section 3.3). 

STATISTICAL METHODS 

This contemporary statistical approach involved the use of magnitude-based 

inferences to detect effects of practical importance in highly trained athletes 

(Hopkins et al., 2009). Analysis of the effects between the altitude and sea level 

control groups were performed with log-transformed race performance and tHb 

data, to account for non-uniformity of error (Hopkins et al., 2009). Threshold 

values for assessing magnitudes of differences between groups were: trivial 

<0.2; small 0.2-0.6; moderate 0.6-1.2; large >1.2 (Hopkins et al., 2009). 

Standardised effects between groups were expressed as mean ± 90% CL, with 

percentage probabilities calculated to establish whether the true effect was 

substantially positive or negative. These probabilities were used to make a 

qualitative probabilistic mechanistic inference about the effect, using the scale: 

<0.5%, almost certainly not; <5%, very unlikely; <25%, unlikely, probably not; 

25-75%, possibly; 75-95%, likely; 95-99.5%, very likely; >99.5%, most likely 

(Hopkins et al., 2009). 

The smallest worthwhile change for tHb was ± 2.73%, calculated as Cohen’s 

smallest standardised effect size (0.2 x the between-participant SD) (Hopkins et 

al., 2009). The smallest worthwhile change for race performances was ± 0.24%, 

calculated as 0.3 x the typical race-to-race SD of 0.8% (Pyne et al., 2004).  

Within group results are reported as mean ± SD, while between-group results 

are reported as mean ± 90% CL. 
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RESULTS 

Haematology: The mean (± SD) within group tHb change immediately after 

altitude training was +4.3 ± 2.7% (“small”), which reduced to +2.9 ± 2.7% after 

14 d (“trivial”), and +0.6 ± 1.9% after 28 d (“trivial”) at sea level. The mean within 

group tHb change immediately after sea level training was +0.4 ± 0.5% 

(“trivial”), then +0.4 ± 1.4% after 14 d (“trivial”), and -1.1 ± 0.5% after 28 d 

(“trivial”). The net effect of altitude on tHb was (mean ± 90% CL) +4.0 ± 2.2% 

immediately post-intervention (“likely, small”), then +2.5 ± 2.4% after 14 d at sea 

level (“possibly, trivial”), and +1.7 ± 1.5% after 28 d at sea level (“likely, trivial”). 

Race performance: The mean (± SD) 200 m race performance changes of -0.6 

± 1.2% after altitude training, and -0.3 ± 0.3% after sea level training were 

deemed “unclear”. The net effect of altitude training on 200 m race performance 

was (mean ± 90% CL) -0.3 ± 0.9% (“unclear”). 

DISCUSSION AND CONCLUSIONS 

While the above contemporary statistical approach may be useful when trying to 

establish the value of a particular intervention in terms of ‘real-world’ effects, 

specific to that population, encouragingly the outcome statistics in this example 

did not particularly differ to the traditional statistical assessment. 

The 200 m race performance changes were considered to be “unclear” (i.e. no 

substantial effect) by the contemporary approach, and the ANCOVA showed no 

significant difference between the altitude and sea level groups (P = 0.76). 

Similarly, the “likely small” tHb increase after altitude compared to sea level 

training was considered a significant effect (P = 0.04).The only difference 

between the two statistical techniques, is that the tHb increase within the 

altitude group was considered to be “small” by the contemporary approach, 

whereas the within group ANCOVA reported a non-significant effect (P = 0.08). 

The contemporary approach was able to compare the effect size (+4.4 ± 3.2%) 

to what was pre-determined to be the smallest worthwhile change (± 2.73%), 

and therefore judged that there was a small effect, whereas the traditional 

statistical approach simply labelled this effect as being non-significant. 

See Hopkins et al. (2009) for a description of this contemporary approach.  
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Appendix 8: Published version of Chapter 5 

Holliss, B. A., Fulford, J., Vanhatalo, A., Pedlar, C. R., & Jones, A. M. (2013). 

Influence of intermittent hypoxic training on muscle energetics and exercise 

tolerance. J Appl Physiol, 114(5), 611-619. 
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