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Abstract

This dissertation consists of three research papers on cheap talk game and sat-

isficing behaviour. The first chapter examines the potential for communication via

cheap talk between an expert and a decision maker whose type (preferences) is un-

certain. The expert privately observes states for each type of the decision maker

and wants to persuade the decision maker to choose an action in his favour by

informing her of the states. The decision maker privately observes her type and

chooses an action. An optimal action for the decision maker depends upon both

her type and type-specific states. In equilibrium the expert can always inform the

decision maker in the form of comparative statements and the decision maker also

can partially reveal her type to the expert or public. The second and third chapters

build a dynamic model of satisficing behaviour in which an agent’s “expected” pay-

o§ is explicitly introduced, where this expectation is adaptively formed. If the agent

receives a payo§ above her satisficing level she continues with the current action,

updating her valuation of the action. If she receives a payo§ below her satisficing

level and her valuation falls below her satisficing level she updates both her action

and satisficing level. In the second chapter, we find that in the long run, all players

satisfice. In individual decision problems, satisficing behaviour results in cautious,

maximin choice and in normal form games like the Prisoner’s Dilemma and Stag

Hunt, they in the long run play either cooperative or defective outcomes conditional

on past plays. In coordination games like the Battle of the Sexes, Choosing Sides

and Common Interest, they in the long run coordinate on Pareto optimal outcomes.

In the third chapter, we find that satisficing players in the long run play subgame

dominant paths, which is a refinement of subgame perfection, and identify condi-

tions with which they ‘always cooperate’ or ‘fairly coordinate’ in repeated Prisoner’s

Dilemma and Battle of the Sexes games, respectively, and truthfully communicate

in sender-receiver games. Proofs and simulations are provided in appendices.
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Preface

Economic agents are often assumed to have su¢cient knowledge about decision

problems they face: They know how each action is associated with determinis-

tic/stochastic outcomes and which outcomes are most preferred by them. They

are also assumed to have common knowledge of rationality so that they can form

precise beliefs about how their opponents would behave. With the help of these

knowledges, agents can find optimal or equilibrium actions. This dissertation tries

to answer how the agents would behave when those knowledges are not given.

The first chapter analyses cheap talk games in which information transmission

between players is required to achieve e¢cient outcomes. Specifically, it tries to

answer how critical the common knowledge of players’ preferences is to informative

communication. In literature, since the seminal work by Crawford and Sobel (1982),

subsequent models have been built on that both the expert and decision maker’s

types (or preferences) are common knowledge, in particular that the decision maker’s

preferences are clearly understood by the expert. Given this condition, although the

information and the decision making belong to two separate players, the common

knowledge that their preferences are not far apart from each other makes it possible

for the expert to tell the decision maker to choose an action favourable to the expert

as well as the decision maker. Here we try to identify what essentially makes possible

for them to communicate in equilibrium by examining whether and how the expert

and decision maker communicate each other when the decision maker’s preference

is not known to the expert.

This equilibrium analysis heavily depends on the “common” knowledge of the

environment and rationality. Rational players can calculate which action would

be chosen by rational counterparts given the belief that both have the common

knowledge. However, the information and cognitive capacity for processing it are

limited, and insuring the common knowledge held by all agents is normally too

costly to achieve in the real world outside researchers’ minds and laboratories.
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The second research agenda is how people would behave when they have mini-

mum knowledge of their decision environments: They know only what actions are

available and acquire information only through experiences of repeated decision

making and realised payo§s. They do not know how actions result in outcomes and

even whether they have opponents in case of games. Furthermore, they do not know

the nature of the decision problem, whether they are stationary or not. Given these

conditions, it could be optimal to take a practical strategy with which agents do

not try to find a best action, but guarantee a “good enough” payo§. Satisficing,

which was first introduced in economics by Herbert A. Simon, refers to the decision

making strategy that attempts to meet some acceptability threshold.

In this regard, the second chapter proposes a dynamic model of satisficing in

which the state of an agent, in any period, is given by the action she chooses, her

valuation of that action and satisficing level. It is the valuation of the action that

depends on the past payo§s it has received. The satisficing level, is thought of as the

payo§ the agent finds satisfactory. What is satisfactory, in turn, depends on what the

agent thinks is the payo§ she might get from best outside option. This is adjusted

whenever the agent receives any information on this. If the agent’s valuation of the

current action is above her satisficing level she chooses it again. If it falls below the

satisficing level she moves away from it, where her probability of shifting depends

upon the amount by which her valuation falls below the satisficing level.

In the second and third chapters, we apply the satisficing behaviour into various

decision environments and find that satisficing players in the long run choose max-

imin options in individual decision problems, play either cooperate only or defect

only profiles conditional on past plays in the Prisoner’s Dilemma and Stag Hunt

games, coordinate on Pareto optimal profiles in the Battle of the Sexes and Com-

mon Interest games, and develop languages through which they communicate each

other in signalling games.
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CHAPTER 1

Persuading Someone You Do Not Know

A lobbyist tries to persuade a government o¢cer to approve a government spend-

ing. If their interests coincide, the lobbyist will tell how much is required and the

o¢cer will approve as told without doubt. Unfortunately, however, it is usually

not the case: The lobbyist prefers more spending to less whereas optimal spending

size for the o¢cer di§ers by her political position as she faces a budget constraint.

In addition, the lobbyist and o¢cer both have their own private information. The

lobbyist is expert on the spending: He knows optimal amounts of spending for all

possible positions of the o¢cer, but does not know the o¢cer’s position. On the

other hand, the o¢cer is decision maker : She makes a decision on the spending, but

does not know the optimal amount for her.

Ironically, information about the o¢cer’s position (or type) does not help the

lobbyist. If the o¢cer’s position becomes common knowledge,1 it becomes clear to

both that their preferences are totally misaligned. This sort of dilemma between

information and communication is not peculiar to the lobbyist and o¢cer. Often,

sellers advertise their product without knowing which feature is most valued by

potential buyers. Once a buyer tells her most favorate feature, she must not expect

any honest explanation about that.

This chapter examines possibilities for informative communication through cheap

talk in these circumstances: We analyse two-sided incomplete information cheap talk

games between the expert and decision maker in one-way and two-way protocols.

When the decision maker remains silent about her private information, the game

is one-way and proceeds as follows. First, the expert privately observes states for

each type of the decision maker while the decision maker privately observes her own

type.2 Second, the expert sends a costless, non-verifiable message about the states

1We assume that there is no way for the lobbyist to identify the o¢cer’s preferences privately.
2The states for di§erent types of the decision maker is di§erent from the standard term state of
the world in literature. The state of the world resolves all uncertainty, but, in the current setup,
the type specific states and the decision maker’s type together constitute the state of the world.
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to the decision maker. Third, the decision maker updates her belief about the state

for her type, or her state, and chooses an optimal action. The action determines the

expert’s payo§ which does not depend on the realised states and decision maker’s

type.3 A two-way game is a one-way game augmented with the decision maker’s

pre-communication: After players observe their private information, the decision

maker talks before the expert does.

Since the seminal work by Crawford and Sobel (1982), most subsequent models

in literature have been built upon the assumption that both the expert and decision

maker’s preferences are common knowledge, in particular that the decision maker’s

preferences are clearly understood by the expert. Although the information and

decision making belong to two separate players, the common knowledge that their

preferences are not far apart from each other makes it possible for the expert to

convince the decision maker to choose an action favourable to the expert as well as

the decision maker.

An exception is the work of Seidmann (1990). He finds an example in which

informative communication takes place when the expert’s payo§ depends only upon

the decision maker’s action and the expert does not know how the decision maker’s

payo§ is determined. The present chapter generalises this finding. Furthermore,

we analyse pre-play communication from the decision maker to the expert. Other

related models are as follows: Two-sided incomplete information in Watson (1996)

and Chen (2009), Lai (2010), Moreno de Barreda (2010), Ishida and Shimizu (2011);

uncertain experts’ preferences in Sobel (1985), Morris (2001), Morgan and Stocken

(2003), Dimitrakas and Sarafidis (2005), Ottaviani and Sørensen (2006b), Li and

Madarasz (2008); and multi-dimensional state space in Battaglini (2002), Chakraborty

and Harbaugh (2007), Chakraborty and Harbaugh (2010).

Watson (1996), Chen (2009), Lai (2010), Moreno de Barreda (2010), and Ishida

and Shimizu (2011) assume that decision makers also have partial information about

the state of the world while their types are common knowledge.4 Chen (2009)

examines two-way communication where the decision maker talks before the expert

does, and finds that the decision maker cannot credibly reveal her information.

3The expert is said to have state-independent preferences.
4In their studies, since the expert does not know what the decision maker observes, partial infor-
mation functions as private information.
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Watson (1996) examines a two-sided incomplete information game where the expert

has state-independent preferences and the decision maker has partial information of

the state. He shows that partial information facilitates informative communication.5

Morgan and Stocken (2003), Dimitrakas and Sarafidis (2005) and Li andMadarasz

(2008) show that uncertainty over experts’ preferences facilitates informative com-

munication. Morgan and Stocken (2003) find that uncertainty can improve com-

munication compared to cases where the expert has a known, intermediate bias.

Dimitrakas and Sarafidis (2005) and Li and Madarasz (2008) show that revelation

of the expert’s bias can harm communication when the size of the possible bias is un-

certain. These results are based on that the expert’s preferences are uncertain, but

have a similar implication that incomplete information helps players communicate.

In Chakraborty and Harbaugh (2007) and Chakraborty and Harbaugh (2010),

an expert observes multiple issues or dimensions of an issue and reports complete

or partial rankings of them to a decision maker. Chakraborty and Harbaugh (2010)

find that combination of multi-dimensional information and state-independent pref-

erences is su¢cient for informative communication through comparative messages,

upon which the equilibrium strategy in the one-way game of this chapter is partially

based. Because of the type-specific property of his private information, the lobby-

ist’s messages consist of multi-dimensional states for types and how states and types

are associated. Chakraborty and Harbaugh (2010) address the first part of this.

We find, in both one-way and two-way games, players can communicate. When

only the expert talks, he can always send an informative message and both the

expert and decision maker benefit from the communication for most types of the

decision maker. And, when the decision maker talks first, she can partially reveal

her type without information loss. Furthermore, how the decision maker reveals her

type depends on how the expert informs the decision maker.

This chapter is organised as follows. Section 1 explains how communication

takes place in the preliminary lobbyist-o¢cer example. Section 2 formally presents

a one-way cheap talk game. Section 3 characterises how the expert informs the

decision maker in one-way game. Section 4 presents two-way game and constructs

5The same feature arises in Ottaviani and Sørensen (2006b), where the ex post realised state which
is publicly observed plays the role of this partial information obtained by the decision maker.
Ottaviani and Sørensen (2006a) briefly discuss this result.
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Figure 1.1. Representation of State and Message

equilibrium type-revealing strategies of the decision maker. Section 5 discusses some

future works that this study suggests. The Appendix A.1 and B contain proofs and

examples of equilibrium strategies.

1.1. The Preliminary Example

In this section, we explain how communication takes place in a simple envi-

ronment of government spending. The o¢cer’s position is represented in the unit

interval [0, 1], and optimal amounts of spending for each position are summarised

by two numbers θL and θH and a boundary position tθ: If the o¢cer’s position, say

t, is lower (resp. higher) than tθ, her optimal amount is θL (resp. θH). The optimal

spending profile is represented by a step function

θ(t) =

8
<

:
θH if t ≥ tθ

θL if t < tθ,

which is depicted in Figure 1.1. (a). The o¢cer and lobbyist privately observe t

and (θL, θH , tθ), respectively. All those variables are independently drawn from the

common uniform distribution on [0, 1]. The lobbyist’s payo§ is given as the square

of the spending approved by the o¢cer.

The lobbyist’s strategy consists of messages on two optimal amounts (θH , θL)

and how the two di§erent amounts apply to the o¢cer’s types (tθ). For simplicity,

14



for the moment we assume the expert talks nothing on tθ, or his message on it is

given as tθ 2 [0, 1].

Consider some messages that the lobbyist could send. First, if the lobbyist

sends meaningless messages to the o¢cer, his expected payo§ is 1/4 because the

unconditional expectation of optimal spending for all types are the same as 1/2.

Second, if the lobbyist sends a message that maps each position to a specific value

like “the optimal amounts are bθH for the right half of positions and bθL for the left

half.” This sort of messages cannot be credible because, if they are, the lobbyist

always would say “optimal amounts for all positions are 1” regardless of realised

profiles, and in turn this incentive to maximise the lobbyist’s payo§ makes the

o¢cer doubt any message from the lobbyist.

Now, consider two comparative messages: “optimal amounts for right political

positions are higher than for left positions” and “optimal amounts for right political

positions are lower than for left positions” without specifying how political positions

are classified into right and left positions. These messages can be visualised as the

upper and lower triangles in the state space of optimal amounts in Figure 1.1.

(b). Given E[(θL, θH)|θL ≥ θH ] = (2/3, 1/3) and tθ drawn from [0, 1], the o¢cer’s

estimate of her optimal amount given the first message is summarised as a function

of her type, E[θ(t)|θL ≥ θH ] = 2(1− t)/3+ t/3, and the lobbyist’s expected payo§ is

E[E[θ(t)|θL ≥ θH ]
2] =

R 1
0
(2(1− t)/3 + t/3)2dt, where the outer expectation is taken

over the o¢cer’s type t on [0, 1] and the value of the integral is 7/27. Similarly, when

the second message is sent, the estimate is (1− t)/3+2t/3 and the lobbyist’s payo§

is the same as with the first message. The lobbyist is indi§erent between these two

messages as long as the o¢cer believes both to be true.

Therefore, it is incentive-compatible for the lobbyist to send a true message

between the two messages “θL ≥ θH” and “θL < θH ,” and the o¢cer would believe

any message sent by this strategy.6 Furthermore, this communication makes the

lobbyist’s expected payo§ strictly increase. And, if the o¢cer’s type is not 1/2, her

estimate is di§erent from the unconditional estimate, that is, she is informed by the

lobbyist’s message. This result is formulated in Sections 2 and 3.

6The term “true” refers to that the sent message is consistent with the realised state, not that the
message is equivalent to the state.
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1.2. The Model

This section generalises the lobbyist-o¢cer example. We formally describe sources

of uncertainty and how the lobbyist sends messages to the o¢cer and how the o¢cer

responds to messages.

We have two players, an expert and a decision maker, and two sources of un-

certainty, the decision maker’s type and type-specific states, or simply state profile.

The decision maker’s type is represented as t 2 T ≡ [0, 1] and the state profile

as a step function θ(t) =
PN

i=1 θi1Ti(t) on T with N ≥ 2, where T1 = [0, t1),

T2 = [t1, t2), . . . , TN = [tN−1, 1] and 1Ti(t) is the indicator function defined on Ti

for i = 1, . . . , N.7 Nature chooses t, θ = (θ1, . . . , θN) and t = (t1, . . . , tN−1) accord-

ing to di§erentiable distributions G,F and H, respectively. F has full support on

Θ ≡ [−1, 1]N . t 2 T ⊂ [0, 1]N−1 is an (N − 1)-tuple of ordered statistics obtained

from a common uni-variable distribution H that has full support on T and ti is the

ith largest of N − 1 random variables that are identically and independently drawn

from H. Let Hi denote the marginal distribution of ti. The decision maker privately

observes t while the expert privately observes θ and t. Both players’ common prior

belief is summarised by G,H and F.

After observation, the expert informs the decision maker about a realised state

profile (θ, t) 2 Θ×T by sending a costless, non-verifiable messagem, which is chosen

by his informing strategyM : Θ×T −! Θ×T . Let Φ denote the state space Θ×T .

Suppose the expert strategy is represented by {Φj}j, a partition of Φ. If the partition

consists of one element, the state space itself, the strategy is babbling. Given such

a strategy, if the expert observes a state profile φ 2 Φj for some j ≥ 1, he randomly

draws a state φ0 2 Φj and sends it to the decision maker. With a little abuse of

notation, let M denote a message set {mj}j that has ono-to-one correspondence

to the partition. Then, this strategy is equivalent to an abstract strategy that the

expert sends a messagemj from the message setM given thatmj is well understood

7Many decisions made by economic agents result in discrete outcomes across individuals’ types. A
few examples include second-degree price discrimination, tier rankings by credit rating agencies and
discriminatory subsidies based on firm size or household income. And, if the e§ects are inherently
continuous, they might be approximated by a step function.
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to imply that the realised profile belongs to Φj.8 Then, a function m : Φ −! M

such that m−1(mj) = Φj for any j fully describes the strategy generated by {Φj}j.

The expert has direct preferences over the decision maker’s estimate of her state.9

His ex post payo§ u is a convex (or concave) and monotone function of the decision

maker’s estimate. Since the expert does not know the decision maker’s type, he

chooses m from M to maximise his expected payo§,
R
T
u(E[θ(t)|m])dG(t), where

E[θ(t)|m] is the decision maker’s updated estimate given the expert’s strategyM and

sent message m while E[θ(t)] denotes the decision maker’s unconditional estimate

of the state. The payo§ function is common knowledge.

Until we discuss two-way games in which the decision maker also talks, we post-

pone specifying the decision maker’s payo§ because it is the expert’s strategy that

characterises equilibrium outcomes in one-way games. Instead, we define informa-

tive strategy based on if it makes the decision maker update her prior belief in

(perfect Bayesian) equilibrium.

Definition 1. A strategy M is informative to type t if E[θ(t)] 6= E[θ(t)|m] for some

m 2M.

Accordingly, messages sent by informative strategies are informative messages

and, if an equilibrium strategy M is informative to a non-negligible set of types

with respect to G, the strategy is said to constitute an informative equilibrium. A

babbling equilibrium always exists in which the expert sends arbitrary messages and

the decision maker ignores them.

1.3. One-way Communication

In one-way games, only the expert talks to the decision maker about what he

observes, how the decision maker’s types are classified into distinctive groups and

8An expert in Crawford and Sobel (1982) uses a mixed strategy described here. If a realised state
belongs to an element of an equilibrium partition of state space, the expert draws and sends an
arbitrary state from the element according to a predetermined probability distribution. In perfect
Bayesian equilibrium, since the decision maker understands the expert’s whole strategy except for
the realised state, the sent message or state implies that a realised state belongs to the same element
of the equilibrium partition as the sent state. Thus, the equilibrium partition fully describes the
equilibrium strategy.
9In cheap talk literature, decision makers are assumed to take estimates of the true states as optimal
actions. Thus, it is usual that experts have direct preferences over estimates. For discussion of
cases where decision makers’ estimates and actions are di§erent, see Chen and Olszewski (2011).
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states for each group. We find the expert cannot at the same time truthfully an-

nounce how types are grouped and send informative messages. And, if the expert

is silent about types, he can always send informative messages.

A strategy that is truthful on types must be one-to-one on T . For simplicity, we

assume if it is truthful on types, the strategy is identity function on T .

Definition 2. A strategy M is truthful on types if M(θ, t) = (Mθ(θ), t) with some

function Mθ(θ) : Θ −! Θ for any (θ, t) 2 Θ× T .

A truthful strategy tells which states apply to each type of the decision maker.

Thus, as long as the decision maker is receiving the same message on states, she can

make a more precise estimate about her state from a truthful strategy. However,

the first result of this section says that an informative strategy cannot be truthful

on types.

Proposition 1. If the expert’s payo§ is strictly convex (or concave), his strategy is

either truthful on types or informative.

If the expert is truthful on types, his expected payo§ is bound to be the same

as the payo§ when there is no communication: If most types happen to belong to a

single group,10 the decision maker’s type is practically identified by the expert, thus

the expert cannot send informative messages without increasing or decreasing his

expected payo§.

If the expert is babbling on Θ, he can be truthful on types without any conflict

of interests, but this communication does not benefit either of players. And, if the

expert is truthful on types, his strategy cannot be informative. However, once the

expert becomes less informative on types, he can find a way to send informative

messages to the decision maker.

Proposition 2. An informative equilibrium always exists. In any informative equi-

librium, (1) if the expert’s preferences are convex (concave), he is ex ante better

(worse) o§ than without communication, and (2) the communication is informative

to almost all types of the decision maker.

10For example, in the preliminary example, it is when tθ is very close to 0 or 1.
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Figure 1.2. Decision Maker’s Estimates in Equilibrium under Di§er-
ent Strategies

Figure 1.2 illustrates two equilibria in terms of the decision maker’s estimates

e+(t) = E[θ(t)|m+] and e−(t) = E[θ(t)|m−] induced by a message setM = {m+,m−}

when E[θ(t)] is constant for all types. As long as the expert’s expected payo§s from

the two estimates are the same, it is incentive compatible for the expert to truthfully

choose a message fromM, thus the decision maker needs not doubt the message. In

both equilibria, two messages m+ and m− are constructed by partitioning a space

of states Θ into two convex subsets. The proof shows that for any priors we can

find a pair of messages such that the expert is indi§erent between them.

Though the equilibrium strategies are babbling on T , it is not always necessary.

In the preliminary example with the uniform priors, the expert can send informative

messages to the decision maker notifying whether the boundary type tθ is lower

than 1/2 or not. For both cases of tθ < 1/2 and tθ ≥ 1/2, the expert can construct

equilibrium strategies for each such that his expected payo§s from both cases are

the same.

Note that the decision maker’s types are divided into two groups according to

whether its informed estimate E[θ(t)|m] is higher or not than its unconditional

estimate E[θ(t)]. Accordingly, we define two sets of types T+m ≡ {t 2 T |E[θ(t)|m] >

E[θ(t)]} and T−m ≡ {t 2 T |E[θ(t)|m] < E[θ(t)]} for a message m from M. If the

decision maker whose type is in T+m receives message m and u is increasing, her

estimate is updated more favourably to the expert while for types in T−m , her estimate

is updated less favourably.
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As the proof of Proposition 2 shows, there are only finite number of types for

which the decision maker is not informed by the expert’s message.11 Actually, for

an equilibrium strategy M, there exist at least one type through which E[θ(t)|m]

crosses over the uninformed estimate E[θ(t)]. Given M, the set of those types is

denoted by TM ≡ cl(T+m)\ cl(T−m), where cl(T+m) is the smallest closed set containing

T+m , for some m 2 M. If a type belongs to this set, the strategy is not informative

to this type. This set, in particular the size of the set, characterises the expert’s

strategy.

Definition 3. A strategy M is first-order if TM has only one element, and second-

order if TM has exactly two elements.

A first-order strategy divides the decision maker’s types into two groups as {t|t <

t01} and {t|t > t01} in Figure 1.2. (a). Given a message from this strategy, the

direction to which the decision maker’s estimate is updated depends on whether her

type is to the left of the uninformed type or to the right. And, if a message is sent

from a second-order strategy, how the estimate is updated depends on whether her

type is in the centre, {t|t01 < t < t02} in Figure 1.2. (b).

If state profiles are determined in a symmetric way with respect to types, either

of first- and second-order strategies can be employed as an equilibrium strategy.

Proposition 3. If F is invariant under any permutation of θ1, . . . , θN and N ≥ 3,

the expert can employ either of first-order or second-order strategies.

In the lobbyist-o¢cer example, this result implies that, no matter how com-

plicated the optimal spending profile is, the lobbyist can persuade the o¢cer by

truthfully stating either “the optimal amounts of spending for right positions are

higher than for left positions” or “the optimal amounts for centre positions are

higher than for others.”

Lastly, it is noteworthy that equilibrium strategies developed in Proposition 2

convey very coarse information about state profiles: In equilibrium, sent messages

merely tell which element of two subsets in a partition contains a realised state.

This observation raises the question whether we can find a finer partition of the

11For example, in Figure 1.2. (b), type t01 and t
0
2 decision makers cannot make informed estimates

given the expert’s strategy and in Figure 1.2. (a), type t01 decision maker cannot make informed
estimate.
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state space. If possible, the partition could constitute an equilibrium strategy. The

following result shows that this is the case.

Proposition 4. If A 2k-message informative cheap talk equilibrium always exists

for every k ≥ 1. If the expert’s preferences are convex (concave), his ex ante payo§

increases (decreases) with k.12

Proposition 4 implies that, from any 2-message equilibrium strategy, we can find

an infinite sequence of equilibrium strategies with increasing number of messages,

and the expert’s expected payo§ increases (decreases) with the number of messages

if u is convex (concave).

1.4. Two-way Communication

Now, we examine whether and how the decision maker reveals her type to the

expert or the public in two-way games. For this purpose, first we specify the decision

maker’s payo§ given a strategy of the expert.

The decision maker is assumed to be rewarded for her estimate’s accuracy,

−(θ(t)− e(t))2, and maximise her expected payo§. The farther her realised state is

from her estimate, the lower her payo§ is. Note that the payo§ depends only upon

the expert’s strategy because the decision maker mechanically updates her belief

by Bayes’ Rule. Since revelation of private information could change the expert’s

strategy, we need to define the decision maker’s payo§ as a function of the expert’s

strategy. The decision maker’s interim expected payo§ is E[−(θ(t) − e(t))2|m] =

E[−(θ(t)− E[θ(t)|m])2|m] = −Var[θ(t)|m] and expected payo§ is E[−Var[θ(t)|m]].

We assume that the expert uses 2-message strategies constructed in Proposition

2. Let M = {m+,m−} be an equilibrium strategy in a one-way game and σ2(t)

denote the unconditional variance of θ(t) and µ(Θi) ≡ Pr(θ 2 Θi) given M for

i = +,−. Without loss of generality, let E[θi] = 0 for all i = 1, . . . , N . Then, the

12This result is comparable to Theorem 4 in Chakraborty and Harbaugh (2010). We can construct
a 22-message equilibrium strategy from a 2-message strategy as follows. Given a 2-message strategy
that is induced by a 2-element partition {Φ1,Φ2}, we can get four estimates, e1+(t) and e1−(t) from
Φ1 and e2+(t) and e2−(t) from Φ2 such that E[u(e1+)] = E[u(e1−)] and E[u(e2+)] = E[u(e2−)]. If
the expert is indi§erent to all four estimates, we have found a 22-message equilibrium strategy. If
not, we can make the messages that are more favourable to the expert a bit noisier so that the
resulting estimates become less favourable and the expert becomes indi§erent to all four estimates.
Repeating this, we can construct an equilibrium strategy with an arbitrary number of messages.
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decision maker’s expected payo§ conditional on the expert’s strategyM is increasing

in the square of her estimate e(t).

Lemma 1. E[−V ar[θ(t)|m]] = µ(Θi)ei(t)2/µ(Θj)− σ2(t) for i 6= j.

Suppose that the decision maker can reveal her type in a particular way or keep it

private. Since the revelation could change the expert’s prior belief about the decision

maker’s type, the expert’s equilibrium strategy also might change according to his

modified belief and send di§erent messages. If the revelation changes the expert’s

equilibrium strategy such that the decision maker’s estimate moves closer to the

uninformed for some type, the decision maker of this type will choose not to reveal

it. On the other hand, as long as her estimate remains the same for all types, she

might be willing to reveal her type.

We formulate the decision maker’s strategy as for the expert. The decision maker

reveals her type through a partition of T , say, {T k}k. If her realised type t is in

T k, she sends a message nk from a message set N = {nk}k, where nk is understood

to imply that a realised type belongs to T k. Then, a function n : T −! N such

that n−1(nk) = T k for any k fully describes a strategy of the decision maker. For

simplicity, we denote the strategy and a message by N and nk (or n), respectively.

We also characterise the decision maker’s strategy in a similar way to the expert’s

strategy. Suppose that the decision maker reveals her type through a partition of

size two, N = {T 1, T 2}.

Definition 4. A strategy N of the decision maker is first-order if T 1 and T 2 are

two intervals, and second-order if only T 1 is an interval.

Given N and M , a two-way game proceeds as follows. First, the decision maker

and expert privately observe her type and a state profile, respectively. Second,

the decision maker sends a message about her type according to N . Third, after

the revelation, the one-way game follows: The expert informs the decision maker

according to M , the decision maker estimates her state and the estimate finalises

both player’s payo§s.

In a two-way game, if a decision maker completely reveals her type, no communi-

cation can occur in a subsequent one-way game. However, if only partial information

is revealed so that the decision maker’s type is still uncertain, there exists room for
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Figure 1.3. Revelation Strategies

the expert to give informative messages to the decision maker. We define a type-

revealing equilibrium and show that such equilibrium always exists. Suppose that a

two-way game is played by strategies N and M of the decision maker and expert.

Definition 5. An equilibrium of a two-way game is type-revealing if N contains

more than one non-trivial, proper subsets of T .

If first- or second-order strategies of the decision maker constitute an equilibrium,

such equilibrium is type-revealing.

Proposition 5. For any informative equilibrium in one-way games, there exists a

type-revealing equilibrium in the two-way game in which the decision maker partially

reveals her type.

Since there always exists an informative equilibrium by Proposition 2 for any

priors, a type-revealing equilibrium also always exists.

Figure 1.3. (a) shows an equilibrium strategy in a two-way game. The decision

maker’s estimates e+(t) and e−(t) are derived by an equilibrium strategy M in a

one-way game. Given M , we can find t∗ 2 T such that E[u(e+(t))|t 2 [t0, t∗)] =

E[u(e−(t))|t 2 [t0, t
∗)] and E[u(e+(t))|t 2 [t∗, tN ]] = E[u(e−(t))|t 2 [t∗, tN ]]. Let

T 1 = [t0, t
∗), T 2 = [t∗, tN ] and N = {n1, n2} be a corresponding message set. If the

decision maker’s type is in T 1 (or T 2), she sends n1 (or n2). Then, message sets N

and M constitute a perfect Bayesian equilibrium and the decision maker’s ex ante

payo§ is the same as in the one-way game.
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In the proof of Proposition 5, we find that the size of TM plays a critical role

in forming a type-revealing strategy. The following result is immediate from the

observation.

Proposition 6. Suppose players are bound to use first- and second-order strate-

gies. If the expert’s strategy is first-order (resp. second-order), the decision maker’s

strategy must be second-order (resp. first-order).

The right panel of Figure 1.3 shows a type-revealing equilibrium strategy which

is second-order. As in the first-order strategy, the decision maker’s estimates in the

one-way game are e+(t) and e−(t), and TM = {t01}. We can find t∗1, t∗2 2 T such that

E[u(e+(t))|t 2 [t0, t∗1) [ [t
∗
2, tN ]] = E[u(e

−(t))|t 2 [t0, t∗1) [ [t
∗
2, tN ]]

and

E[u(e+(t))|t 2 [t∗1, t
∗
2)] = E[u(e

−(t))|t 2 [t∗1, t
∗
2)].

Let T1 = [t0, t∗1)[ [t∗2, tN ] and T2 = [t∗1, t∗2). Then, strategy N = {T1, T2} and strategy

M in the one-way game constitute a perfect Bayesian equilibrium.

The previous section shows that it is because the decision maker’s type is un-

known that informative communication can take place and benefit both the expert

and decision maker. This section shows, on the other hand, that decision makers

may partially reveal their types so that they form groups according to their revealed

types and cooperate for common interests without information loss.

1.5. Conclusion

We have examined how the expert and the decision maker communicate with

each other when the decision maker’s type is uncertain and the expert’s payo§ de-

pends only upon the decision maker’s action, regardless of the realised state and

the decision maker’s type. There are two main results: (1) the expert can always

inform the decision maker in the form of comparative statements; and (2) the deci-

sion maker may reveal her private type without loss of informative communication.

However, we have not fully exploited the potential for communication in this setup.

This study could be further developed in two directions.

The first is for refining equilibria. Studies in cheap talk games have paid much

attention to identifying equilibria which are optimal to the expert or the decision
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maker and to predicting a specific equilibrium in the real world among (infinitely)

many equilibria.13 This chapter has focused mainly on whether and how an expert

and a decision maker could talk to each other, but not on what messages would be

sent in an equilibrium in a certain environment. That is, there is no answer as to

which equilibrium strategies are optimal to players and more likely to be played.

Nevertheless, two results of this chapter are worth noticing for the prediction of

equilibrium outcomes.

One is that there exist infinitely many equilibria. In particular, there are infin-

itely many 2-message equilibria that can be constructed from an arbitrary interior

point in the state space and infinite sequences of equilibria starting from each 2-

message equilibrium. The latter infinity is more problematic than the former in

predicting an equilibrium outcome if the expert’s preferences are strictly convex.

Among 2-message equilibria, we can expect to find an equilibrium that is most

favourable to the expert under certain conditions, whereas the expert cannot find

an optimal equilibrium strategy from the sequences of equilibria because the expert’s

ex ante payo§ strictly increases with the number of messages if the preferences are

strictly convex.

The other is that the expert’s payo§ is state-independent. This allows him to

commit to an equilibrium strategy. Suppose that the expert can declare which

strategy he will choose among infinitely many equilibrium strategies before a one-

way cheap talk game starts. Then, if he finds an optimal strategy which maximises

his ex ante payo§, declaring that the optimal strategy will be used and sending a

message according to the strategy constitute an equilibrium. Thus, once the expert

finds his optimal strategy in a certain environment,14 we could predict that the

chosen strategy would be played in equilibrium.

The second direction requires examining the relation between priors and commu-

nication. This chapter does not fully discover the relation between players’ prior be-

liefs about their environment and equilibrium outcomes. As we have briefly shown in

the government spending example, the distribution function of the decision maker’s

13In an e§ort to refine cheap talk equilibria, Chen et al. (2008) identify a condition on equilibrium
payo§s, called NITS (no incentive to separate), which selects an equilibrium strategy induced by
the biggest partition among CS equilibria.
14For example, concave preferences, deliberation costs or conventional communication protocols
could restrict the number of messages available in communication.

25



type determines how well she is informed in equilibrium; if the population is con-

centrated around her type, she is less informed than otherwise.

This implies that the decision maker has preferences over the distribution of

types. That is, the decision maker prefers any distribution where the population is

more concentrated on other types than hers to the actual distribution. For example,

as shown in Section 4, if the decision maker is located in the left of the type space,

she prefers a distribution that has population concentrated on the right. Thus, she

has an incentive to disguise not her type but the distribution of types.15

15In this case, common knowledge among players should be with respect to the probabilities
assigned to several distributions of types not to each type itself.
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CHAPTER 2

A Model of Satisficing Behaviour

Satisficing, a word introduced into the lexicon of economists’ by Simon (1956),1

refers to a decision making strategy in which the agent stops searching for a better

alternative if she is satisfied with the current action and continues to explore if

not. Such an agent is, probably, the canonical boundedly rational agent. One who

does not optimize, or carefully forms beliefs about her environment, before making

a choice. An agent who (implicitly) recognizes that decision making, in single or

multi-agent environments, may be complex and di¢cult and adjusts her behaviour

suitably. In this chapter we seek to model and analyse the behaviour of such an

agent in decision problems and in games.

Satisficing does not preclude maximizing. It is mainly in complex environments,

in which there is considerable lack of information and uncertainty, when optimization

given beliefs appears to be implausible, that agents are thought to satisfice. That

is, an agent may choose to satisfice in some environments while maximizing in

other less complex ones. In simpler, better understood environments, maximizing is

probably a reasonable hypothesis. Whereas economists have a good understanding

of agents who optimize, there is still little understanding of how agents behave when

optimization is not a reasonable hypothesis. In this chapter, we study a particularly

suited behavioural hypothesis, when optimization does not seem plausible.

Two immediate challenges confront the modelling of satisficing agents. What is

the satisficing level of such an agent and how is it updated? Clearly, the behaviour

of any such agent will depend intricately upon her satisficing level. Where does this

satisficing level come from and how/when is it updated? We feel, an individual’s ini-

tial satisficing level probably depends closely on her upbringing and the environment

in which she was brought up in: her parents, their peer group or their aspirational

social group. However, these same influences are less likely to play a role in how

and when it is updated. The experiences of the agent and what she considers to be

1The idea was first suggested by Simon (1947).
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her “best” outside options at any time probably play a greater role in the updating

of what the agent finds to be satisfactory. This clearly depends upon other factors,

as well as the endogeneity of this process on that which leads to her choices.

The extant literature on satisficing has largely taken the satisficing level to be

exogenously given and fixed (e.g., Posch, 1999; Posch et al., 1999). The literature,

then, has studied the consequences of assuming various di§erent satisficing levels.

The limited literature which has modelled the satisficing level to be endogenous has

taken its level to be adjusted according to the payo§ experiences of the agent (e.g.,

Karandikar et al., 1998; Cho and Matsui, 2005; Chasparis et al., 2013). In particular,

the satisficing level is taken to be some average of the historical payo§s achieved

by the agent. That is, the satisficing level is often treated as the agent’s aspiration

level which also adjusts according to past payo§ experiences.2

In this chapter, we develop a model of satisficing in which the state of an agent,

in any period, is given by the action she chooses, her valuation of that action and

her satisficing level. It is the valuation of the action that depends on the past

payo§s it has received. The satisficing level is thought of as the payo§ the agent

finds satisfactory. What is satisfactory, in turn, depends on what the agent thinks is

the payo§ she might get from her best outside option. This is adjusted whenever the

agent receives any information on this. If the agent’s valuation of the current action

is above her satisficing level she chooses it again. If it falls below the satisficing level

she moves away from it, where her probability of shifting depends upon the amount

by which her valuation falls below the satisficing level. From time to time, the agent

experiences shocks or trembles on the action she chooses and on her satisficing level.

We study the long run choices of the agent in stochastic decision problems and

normal form games.

We show that, in decision problems or normal form games, if the agent never

experiences shocks, then she eventually converges to being satisficed. While it is

nice to know that players in the long run are satisficed, this still leaves open a

great many possible asymptotic outcomes. The addition of noise, which dies out

in the long run, helps select among the outcomes predicted for satisficing agents.

Additionally, we assume that the weight given to the current action’s valuation in

2In both cases, the satisficing level has been allowed to experience shocks.
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updating the satisficing level declines over time. In decision problems this leads

the agent to choose in a very risk averse manner. Specifically, the agent ends up

choosing only those actions for which minimum payo§ is highest. That is, the agent

converges to maximin actions.

Taking the same limit in games, in which the agents experience non-stationary

distributions over payo§s, leads to some surprising results in which non-maximin

profiles are often obtained in the long run. For instance, in the Prisoners’ dilemma

both the cooperate only and the defect only profiles have positive probability in

the long run. Players coordinate in coordination games and converge to Pareto

optimal equilibria in pure coordination games whenever they exist. However, in the

Stag-Hunt game both cooperate only and defect only emerge in the long run. And,

we generalise these results to broader classes of two-player games and to random

matching games in which a finite population of players are randomly matched each

period.

Lastly, we consider the long run outcomes which arise when we only send the

shocks to zero while not decreasing the amount of persistence in the satisficing

level. In this case, we find for example, only the defect only outcomes emerges in

the Prisoners Dilemma.

Section 1 introduces satisficing behaviour and Section 2 examines its long run

property. Section 3 and 4 analyse long run implications of satisficing behaviour in

individual decision problems and normal form games. Section 5 summarises the

results. All proofs are in Appendix A.2.

2.1. The Model

A finite game Γ = {I, A,π}, where I = {1, . . . , I} is the set of players,3 A =

Πi2IAi with finite Ai for each i is the set of possible action profiles with typical

member a 2 A and π : A ! RI is the payo§ function with player i’s payo§ πi, is

played in each period n ≥ 1. If Nature plays a role, she chooses her action w from a

finite set W with fixed probabilities each period, and π becomes a function of w as

well as a. With a little abuse of notation, we denote the whole set of payo§s that

decision maker i could receive by πi = {πi(a, w) 2 R|a 2 A,w 2 W}, and the set of

3Player, decision maker and agent are used interchangeably according to context.
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payo§s from decision maker i’s action ai 2 Ai by πi(ai) = {πi(ai, a−i, w) 2 R|a−i 2

A−i, w 2 W}.

2.1.1. Satisficing without Trembling

In period n, I decision makers’ states are given by their current action profile an 2 A,

the corresponding valuations vn 2 RI and satisficing levels sn 2 RI . Let φn denote

the state (an, vn, sn) with decision maker i’s state φn,i = (an,i, vn,i, sn,i) for each

i 2 I. φ0 is assumed given.

At the start of any period n 2 N, each decision maker i judges her current

action an,i by comparing its valuation vn,i with her ongoing satisficing level sn,i.

If valuation vn,i is greater than sn,i, she satisfices and continues with the current

action and satisficing level. If the valuation falls short of the satisficing level, she

switches to an alternative and updates her satisficing level towards the valuation.

Specifically, if player i satisfices with an,i, or vn,i ≥ sn,i,

an+1,i = an,i and sn+1,i = sn,i,

and if vn,i < sn,i,

an+1,i = αn,i and sn+1,i = (1− λn,i)sn,i + λn,ivn,i,

where αn,i 2 Ai and λn,i 2 [0,λ] for some λ 2 (0, 1) are random variables. Each

individual i, then, chooses the action so determined and receives a payo§ πi(an+1).

Before the end of period n, the decision makers revise their valuations by taking

weighted averages of their payo§s and valuations as follows. If an+1,i = an,i,

vn+1,i = (1− ρn,i)vn,i + ρn,iπi(an+1),

and, if an+1,i 6= an,i,

vn+1,i = πi(an+1),

where ρn,i 2 [0, 1] is a random variable. In the above αn,i, ρn,i and λn,i have probabil-

ity measures µα,i, µρ,i and µλ,i with full supports in Ai, [0, 1] and [0,λ], respectively,

for all i.4 We shall refer to µα,i as choice rule, which is continuous in v and s so that

4This assumption implies that µα,i({ai}) > 0 for all ai 2 Ai and any open set contained in [0, 1]
and [0,λ] have positive probabilities with respect to µρ,i and µλ,i.
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µα,i(a) # 0 as vn,i " sn,i for all a 2 Ai \ {an,i} and µα,i(an,i) is bounded away from

zero for any vn,i below sn,i. µρ,i and µλ,i are assumed to be absolutely continuous

with respect to the Lebesgue measure on the intervals and continuous functions of

the current state φn.
5

Some remarks are in order. First, notice that the satisficing level is updated only

when the individual does not satisfice with the current action. If the agent satisfices

she sees no reason to change. The urge to explore alternate actions only arises when

dissatisfaction with the current action occurs. In this case, the agent adapts to

her environment by choosing an alternate action. She also adapts by lowering her

satisficing level. This assumption is motivated by our belief that the satisficing level

can be regarded as the payo§ a decision maker “expects” from choosing the best

alternative action (di§erent from the current).6 Furthermore, the extent to which the

satisficing level adjusts is bounded by the persistence parameter λ 2 (0, 1).7 Since λ

is the same for all decision makers and states, it characterises how fast the decision

makers adjust their satisficing level towards their current actions’ valuations. We

think our interpretation of satisficing level as the expected value of alternatives

makes a reasonable economic sense: Satisficing agent satisfices because she does not

expect better alternatives.

Second, the weighting parameters λ and ρ are random variables. We assume

supp(µρ) = [0, 1] so that decision makers could base their valuations of actions on

some averages of its past payo§s. In literature, fixed ρ or declining ρ is often used and

it is common that decision makers are assumed to respond only to immediate payo§s,

or ρ = 1.8 Our choice of random weights is to allow for the bounded rationality our

satisficing decision makers exhibit. The actual weighting per period possibly varies

according to the attention or subjective importance the decision makers choose to

give the current payo§.

5These two conditions together make the satisficing behaviour continuous so that the state tran-
sition over time constitutes a weak-Feller Markov chain.
6This contrasts with the literature on the subject in which the common interpretation of satisficing
level (or aspiration value) is the (best) payo§ that a decision maker expects from a decision problem
itself (e.g. see Gilboa and Schmeidler (1996), Karandikar et al. and Cho and Matsui (2005)).
7Karandikar et al. (1998) use this term. Chasparis et al. (2010) have a parameter that plays a
similar role in their model, which they refer to as step size.
8See Karandikar et al. (1998), Cho and Matsui (2005) and Chasparis et al. (2010). Posch (1999)
considers a behaviour rule in which a decision maker switches to another action only if a weighted
sum of past payo§s is below an aspiration level.
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Lastly, decision makers have inertia to choose their current actions again with

some positive probability even when the strategy is not satisfactory. The choice rule

makes decision makers repeat actions with positive probabilities that depend on how

the valuations fall short of satisficing levels, and with probabilities close to 1 when

the valuations are slightly lower than satisficing levels. It makes the transition of

the decision maker’s states over time continuous and the analysis of the behaviour

more tractable.

Let Vi and Si both denote the convex hull of πi for all i 2 I, and V and S

the product spaces of Vi and Si across all players, respectively.9 Then, the decision

makers’ states governed by the above updating rule over time constitute a Markov

process {φn} on the compact space Φ ≡ A × V × S. To distinguish this process

from the behaviour with trembling described in the next subsection, we call this

unperturbed Markov process with transition probability function (hereafter t.p.f.)

P .10 We will refer to P as the Markov process as well as the t.p.f.

We close this subsection with a long run property of satisficing behaviour without

trembling: all players eventually settle on an action profile with which they satisfice.

Proposition 7. All satisficing decision makers without trembles eventually satisfice

and choose one action profile forever.

Given the property of satisficing level, as time goes to infinity, it gets lower and

lower until it becomes to support at least one action profile. However, such selected

actions are quite arbitrary because any action profile can be supported if initial

satisficing levels are su¢ciently low. And, even when the initial levels are not so

low, most action profiles can be selected with positive probabilities unless they are

associated with minimum payo§s.

2.1.2. Trembling Behaviour

In case they tremble, satisficing decision makers experience two types of shocks. The

first is trembling hands. When this shock occurs, a decision maker chooses an arbi-

trary action among all actions the next period, regardless of whether she satisfices

or not with the current action. The second shock directly a§ects satisficing levels

9The convex hull of a set is defined as the smallest convex set that contains the set.
10Transition probability function is defined in section 2.2.
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so that the levels are adjusted towards current actions’ valuations. In each period,

players independently experience the two shocks, each with positive probability ϵ,

which is referred to as trembling probability and the same for all satisficing players.11

Given φn,i, if decision maker i experiences only the first shock, which occurs with

probability ϵ(1− ϵ), her next period action is chosen at random, with

an+1,i = αϵn,i,

while her satisficing level and valuation of the action are updated according to the

unperturbed process described previously. αϵn,i is a random variable that has full

support in Ai. On the other hand, if the agent experiences only the second shock,

which occurs with probability ϵ(1 − ϵ), her next period satisficing level is updated

as

sn+1,i = (1− λϵn,i)sn,i + λϵn,ivn,i,

where λϵn,i is a random variable with probability measure µϵλ,i with full support in

[0, 1]. Her action and its valuation are updated as in the unperturbed process.

Lastly, if she experiences both shocks in the same period, which occurs with proba-

bility ϵ2, her state is updated as if only the first shock occurs, and then just before

the next period starts, her satisficing level trembles to be adjusted upwards current

valuation.

Let Qϵ denote the t.p.f. when at least one decision maker experiences one or both

shocks. Then, the unperturbed process P and Qϵ together constitute a perturbed

process Pϵ, which is the Markov process for satisficing behaviour that we examine

to characterise satisficing decision makers’ long run behaviour.

2.1.3. Satisficing with Additional Memory

Satisficing decision makers judge actions, choose actions and update satisficing lev-

els only based on latest action profiles and its valuations. This low information, or

limited memory, assumption naturally leads to a simple choice rule in which a deci-

sion maker assigns equal probabilities to all alternatives when she does not satisfice.

11The trembling probabilities may di§er across players and by whether the shocks occur on choice
of action or satisficing level. In particular, we denote the latter two probabilities by ϵa and
ϵs, respectively if required. And, for any sequence of the probabilities {(ϵan, ϵsn)}n≥1, we assume
ϵan/ϵ

s
n 2 (1/K,K) for some K 2 N for all n ≥ 1 and ϵn ! 0 implies max{ϵan, ϵsn} ! 0. Together

with the persistence parameter λ, the probability plays a critical role in the present model.
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One may suspect that this assumption is too restrictive in some environments. Here,

we model satisficing behaviour in which decision makers might keep track of past

actions and valuations so that their choice rules utilise this additional information.

Let a compact metric spaceΥ represent an auxiliary information, and the Markov

process φn of satisficing behaviour be augmented with a state ηn 2 Υ so that (φn, ηn)

is a Markov process defined on Φ × Υ. We assume that (1) ηn+1 is a continuous

function of (φn, ηn), and (2) ηn+1 = ηn if an+1 = an, i.e., the auxiliary state is

updated only when at least one decision maker changes her action.12 After decision

makers’ next period state φn+1 is determined by the perturbed process Pϵ with

(φn, ηn) in the place of φn, the auxiliary state ηn is updated to the next period ηn+1

by φn+1. To see how the current setup may change behaviour, we introduce an

example.

Suppose that each decision maker remembers her all actions’ latest valuations.

Then, in period n with state (φn, ηn), decision maker i can base her choice of next

period action on this additional information by assigning higher probabilities to

actions that are associated with higher valuations. Let ηn,i ≡ (v1n,i, . . . , v
|Ai|
n,i ) denote

decision maker i’s valuations for each action, where |Ai| is the number of actions

available to decision maker i. The auxiliary state is updated only when decision

makers change their actions. If an+1,i 6= an,i,

vjn+1,i =

8
<

:
vn,i, if an,i = aj

vjn,i, otherwise.

And, if an+1,i = an,i, ηn+1,i = ηn,i.

Accordingly, we can construct a choice rule µα that has the inertia and continuity

properties.13 In each period, satisficing decision makers are assumed to experience

positive, transitory shocks on her all valuations including the current action’s. Let

zj denote the shock on action j, then refer to vj + zj as perceived valuation of

action j, where zj is an action-specific valuation shock and its probability measure

is absolutely continuous w.r.t. the Lebesgue measure and has full support in R+. A

12The first condition is required for the process with the auxiliary state to be weak-Fellar and the
second condition is for Lemma 6.
13Recall that we require the choice rule, or the probability of choosing each action, is continuous
in the valuation of the current action and satisficing level and assigns positive probability to the
current action for any valuation and satisficing level.
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decision maker judges the current action by comparing its perceived valuation to her

satisficing level as modelled previously. The update rules for action, satisficing level

and valuation are exactly the same as before except for the perceived valuation.

When the decision maker does not satisfice with her current action, she chooses

an action with highest perceived valuation as modelled in Sarin and Vahid (1999).

Then, the choice rule induced by this procedure satisfies all required properties.14

Then, the auxiliary state ηn is a continuous function of φn+1 and ηn, and ηn+1 =

ηn if no decision maker changes her action. With the auxiliary state, we can make

choice rule µα (and other distributions of z, ρ and λ) depend on ηn so that the

actions with higher valuations are chosen more likely by players.15

In the next section and corresponding proofs, we show that the introduction of

the additional state does not a§ect asymptotic properties of the original Markov

process. Thus, for the expositional simplicity, we refer to the extensive Markov

processes also as P and Pϵ and the auxiliary state ηn is considered implicitly from

now on as if P and Pϵ are t.p.f.s for only φn without ηn.

2.2. Asymptotic Behaviour: Preliminaries

This section provides two asymptotic results of satisficing behaviour as the num-

ber of repetition n approaches infinity and the trembling probability ϵ vanishes while

the persistence parameter λ is fixed.

Some primitive notations and definitions are first introduced. Let Φ be a topo-

logical space, and B(Φ) denote the Borel σ-field. Then, P (φ, B) is a t.p.f. if (i) for

each B 2 B(Φ), P (·, B) is a non-negative measurable function on Φ and (ii) for each

φ 2 Φ, P (φ, ·) is a probability measure on B(Φ). A probability measure (hereafter

p.m.) µ is invariant with respect to P if µP (B) = µ(B) for all B 2 B(Φ).16 Thus, if

14If the shocks on actions are independent of each other, when an is not satisficing, the probability
of the decision maker choosing an alternative a is Pn(a) = Pr{zan−za

0

n < uan−ua
0

n for all a 6= a0, an}.
15If a decision maker has too many available actions to keep track of all actions’ valuations,
it might be more reasonable to assume that decision maker i remembers valuations of recently
chosen actions with the number limited by K ≤ |Ai|. Let the auxiliary state ηn have the form
of {(ak,i, vk,i)}k=1,...,K , i.e., the decision maker remembers actions she has chosen recently and
corresponding valuations. The state is updated as follows. If an+1,i 6= an,i,

(ak,i, vk,i) =

{
(ak−1,i, vk−1,i), if k 2 {2, . . . ,K}
(an,i, vn,i), if k = 1

And, if an+1,i = an,i, ηn+1,i = ηn,i. This also satisfies the required properties.
16µP (B) ≡

R
Φ
µ(dφ)P (φ, B).
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a Markov process has an invariant p.m. and once reaches it, thereafter the process’

state is fully predicted by the invariant p.m. Let P n denote the n-step t.p.f. of P

defined as P n = P n−1P , where multiplication of two t.p.f. P and Q is defined as

PQ(φ, B) ≡
Z

Φ

P (φ, dφ0)Q(φ0, B)

for any φ 2 Φ, B 2 B(Φ). P1 denotes the limit of P n as n approaches infinity.

Lastly, let Rϵ be the resolvent of P , defined as Rϵ ≡ ϵ
P1

n=0(1 − ϵ)nP n for some

ϵ 2 (0, 1).

The first asymptotic result is that the Markov process Pϵ generated by the satis-

ficing behaviour has a unique invariant p.m. and converges to it regardless of initial

choices and satisficing levels.

Proposition 8. Pϵ has a unique invariant p.m. µϵ, and for any φ, P nϵ (φ, ·) strongly

converges to µϵ as n grows.

The second result shows how the invariant p.m. changes as the trembling prob-

ability ϵ vanishes. Let Q denote the t.p.f. conditional on that only one decision

maker experiences only one shock, either the first or the second.17 Then, QP1 is

also a t.p.f. and has the same unique invariant p.m. with Pϵ as ϵ approaches 0.

Proposition 9. Any weak accumulation point of {µϵ}ϵ#0 is an invariant p.m. of

QP1.18

This result implies that, as the trembling probability decreases over time, satisfic-

ing decision makers’ long run behaviour can be approximated by some invariant p.m.

of QP1. In particular, if QP1 has a unique invariant p.m., µϵ weakly converges to

it. Therefore, as P nϵ (φ, ·) converges to µϵ over time, the satisficing decision makers

in the long run choose the action profiles that are associated with the invariant sets

most of the time.19 In the following sections, we analyse satisficing behaviour in

particular contexts of single person decision problems and normal form games by

identifying the invariant sets.

17The precise definition of Q is provided in Appendix A.2.
18These are derived by Chasparis et al. (2013) and KMRV di§erently. However, as Chasparis et
al. (2013) noted, KMRV wrongly assume that Q is strong-Feller. Here, we follow the approach
taken by Chasparis et al. (2013).
19In Appendix C, satisficing behaviour is simulated with ϵ,λ = 0.05 or 0.01 for various decision
environments.
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2.3. Individual Decision Problems

In this and next sections we analyse satisficing decision makers’ long run be-

haviour when they repeatedly face a decision problem or game as the trembling

behaviour dies out and the satisficing level gets more and more persistent. In indi-

vidual decision problems, in which each action returns random payo§s according to

a fixed distribution across periods, we find decision makers end up choosing maximin

actions.

First, we examine the long run implication of satisficing behaviour without trem-

bling. A decision maker has J actions, a1, . . . , aJ , which are indexed by their mini-

mum payo§s so that min π(ai) ≥ min π(aj) for any ai, aj 2 A if i ≤ j. All maximin

actions guarantee the highest minimum payo§ for any realised state.

Proposition 10. If the initial satisficing level is su¢ciently high, the satisficing

decision maker without trembling eventually chooses the maximin actions with prob-

ability 1 as λ tends to 0.

This result and proof are comparable to Sarin and Vahid (1999). If the satis-

ficing level is initially su¢ciently high and very persistent, the decision maker has

su¢ciently many chances to choose the maximin actions and satisfice before the

satisficing level gets too low so that she becomes to satisfice with non-maximin

actions.

Now suppose the decision maker is subject to both shocks and the trembling

probability ϵ and persistence parameter λ go to 0.20

Proposition 11. The satisficing decision maker in the long run chooses the max-

imin actions.

A satisficing agent’s choices are results of her initial choice (and satisficing level)

and payo§ experiences from the decision problem she faces. However, as experiences

accumulate, the e§ect of her initial state in the long run fades away and invariant

p.m. µϵ becomes to dominate her behaviour (Proposition 8).

20As discussed in the previous section, we analyse the satisficing agent’s long run behaviour by
characterising the limit of µϵ as ϵ goes to 0. Thus, if both ϵ and λ go to 0, the behaviour is
approximated by the limit invariant distribution of Pϵ when first ϵ goes to 0, then λ goes to 0.
This is the same for all subsequent analyses when both parameters go to 0.
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The proof consists of two arguments. First, by Proposition 10 once the deci-

sion maker happens to choose one of the maximin actions and her satisficing level

gets close to min π(a1), after any single tremble either on action or satisficing level,

she eventually returns to the maximin actions. In this regard, we say the maximin

actions are robust to any single tremble. Second, regardless of initial action and

satisficing level, trembling behaviour on action and satisficing level makes her ex-

perience the payo§s from the maximin actions and raise her satisficing level up to

min π(a1) through finite trembles.

This result contrasts the current satisficing behaviour model with previous ones.21

Since models with aspiration level require aspiration level to be updated toward re-

ceived payo§s every period, it works well in deterministic environments but not in

stochastic environments that we consider here. For example, suppose a decision

problem with two actions, in which one returns payo§s 3 and 2 with equal probabil-

ities and the other returns payo§s 1 and 0 with equal probabilities. Then, as long as

satisficing/aspiration levels are updated towards payo§s every period, agents choose

the second action as frequently as the first. In our model, they converge to choose

the first action with probability 1.

We look further how the agent of KMRV behave in this simple decision prob-

lem.22 The behaviour is modelled di§erently from the current in several aspects.

First, immediate payo§s are directly compared with satisficing levels, i.e., ρ is fixed

at 1. Second, satisficing levels are updated toward immediate payo§s every period

with constant weighting parameter λ, which directly plays the role of persistence

parameter. Third, agents experience shocks only to satisficing levels, which are per-

turbed within a range around the current value when shocks occur. In the current

stochastic decision problems, an unperturbed process induced by the satisficing be-

haviour in KMRV does not converge to any pure strategy state for any λ > 0, rather

21Gilboa and Schmeidler (2001) state, “Realism means that the aspiration level is set closer to
the best average performance so far experienced.” Most satisficing behaviour examined in single-
person decision problems are assumed to take an average of past (best) payo§s as aspiration level.
See Gilboa and Schmeidler (1996), Pazgal (1997), Kim (1999), Karandikar et al. (1998), Cho and
Matsui (2005), Posch (1999), Posch et al. (1999), Napel (2003), Bendor et al. (2009). For survey
for di§erent aspiration updating rules, see Bendor et al. (2001).
22The satisficing behaviour in Cho and Matsui (2005) is similar to KMRV except that agents in
CM experience shocks only to choice of actions instead of satisficing levels (aspiration level in
CM). However, the methodology used to model satisficing behaviour in CM cannot be applied to
stochastic decision problems. We review the satisficing behaviour in CM in the analysis of 2 × 2
games.
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it alternates between two actions forever because the agent never satisfices with the

first action as her satisficing level is raised above 2 infinitely often.

We close this section with short notes on probability matching behaviour and

dual risk attitudes induced by satisficing behaviour.

Proposition 11 predicts that, if there are multiple maximin actions, the decision

maker will choose any maximin action with positive probabilities. However, this does

not tell us the frequencies with which each action is chosen. Consider a decision

problem in which two actions a and b have a common minimum payo§, say 0, with

probabilities p and 1 − p, respectively, every period. And, as a limit of satisficing

behaviour, assume that the decision maker never trembles, the satisficing level is

fixed slightly above 0, ρ = 1 and does not show inertia behaviour. Then, the

frequency of choosing each action is given as the invariant distribution of a simple

2× 2 transition probability matrix P in which P (i, j) is the probability of switching

from action i to action j, and the long run probability of choosing action a (resp.

b) becomes 1− p (resp. p).23

March (1996) suggests that dual risk attitudes for gains and losses, risk averse

when outcomes are positive with respect to a fixed aspiration level and risk seeking

when outcomes are negative, could be better explained by learning rather than

human traits or utility functions. The same argument can apply to the current

satisficing behaviour when initial satisficing level is 0 and λ is su¢ciently small. In

Appendix C.1, we simulate satisficing behaviour in binary choice problems between

safe and risky options.

2.4. Normal Form Games

In this section, satisficing decision makers repeatedly play a normal form game

against other satisficing decision makers.

2.4.1. Two-Player Games

First, we analyse satisficing behaviour in two-player games with unilaterally com-

petitive action profiles. A class of (weakly) unilaterally competitive games were first

introduced and analysed by Kats and Thisse (1992) as a generalisation of strictly

23Börgers and Sarin (2000) shows reinforcement learning with endogenous aspiration level leads to
probability matching behaviour.
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competitive n-player games.24 For our analysis, we define the unilateral competi-

tiveness in terms of action profiles rather than games.

Definition 6. An action profile a 2 A of a game Γ is unilaterally competitive if

for any i and a0i 2 Ai,

(i) πi(ai, a−i) > πi(a
0
i, a−i) =) π−i(ai, a−i) ≤ π−i(a

0
i, a−i) and

(ii) πi(ai, a−i) = πi(a
0
i, a−i) =) π−i(ai, a−i) = π−i(a

0
i, a−i).

And, the game is unilaterally competitive if all action profiles are unilaterally com-

petitive.25

In unilaterally competitive games, if a single player deviates to increase her

payo§ from any action profile, all other players’ payo§s weakly decrease. And, if the

deviation does not change her payo§, all other players’ payo§s also do not change.

An action profile a 2 A is a Nash equilibrium if πi(ai, a−i) ≥ πi(a
0
i, a−i) for all

a0i 2 Ai and i 2 I, and a strict Nash equilibrium if all inequalities are strict. If a

Nash equilibrium is unilaterally competitive, it is called a unilaterally competitive

Nash equilibrium. If it is a strict Nash equilibrium, such equilibrium is unique. And,

if a game has more than one unilaterally competitive Nash equilibria, each player’s

payo§s from the equilibria are the same.26

For two action profiles a, a0 2 A, a is preferred to a0 if π(a) ≥ π(a0) and πi(a) >

πi(a
0) for some i 2 I, and a is strictly preferred to a0 if π(a)≫ π(a0). Then, Payo§

dominant profiles are defined as profiles that are strictly preferred to unilaterally

competitive Nash profiles.27

Definition 7. When a two-player game admits unilaterally competitive Nash equi-

libria, a set of action profiles are payo§ dominant if

(i) any two profiles within the set are not preferred to each other, and

(ii) all those profiles are strictly preferred to its unilaterally competitive Nash profile.

24In two-player games, any strictly competitive game is also unilaterally competitive.
25In Kats and Thisse (1992), a game is unilaterally competitive if

πi(ai, a−i) ≥ πi(a0i, a−i)() π−i(ai, a−i) ≤ π−i(a0i, a−i)

for all a 2 A, and the unilaterally competitive game defined here is weakly unilaterally competitive.
26This property of unilaterally competitive Nash equilibria is generalised for unilaterally competi-
tive games in Lemma 2.
27We do not require payo§ dominant profiles to be Nash.
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C D
C σ, σ 0, θ
D θ, 0 δ, δ

Table 2.1. Payo§s of 2 × 2 Game

Consider a 2 × 2 game with its payo§ matrix in Table 2.1. If 0 < δ < σ <

θ, the game becomes Prisoner’s Dilemma game, which is unilaterally competitive.

If 0 < δ < θ < σ, it is Stag Hunt game and not unilaterally competitive. In

terms of action profiles, (D,D) is unilaterally competitive Nash and (C,C) is payo§

dominant in both games. And, if δ = σ < 0 < θ or 0 = θ < δ < σ, it is

Battle of the Sexes or Common Interest game, respectively, and both games are not

unilaterally competitive. The last two games do not have a unilaterally competitive

Nash equilibrium, but (C,D) and (D,C) in the Battle of the Sexes and (C,C) in the

Common Interest game are defined as Pareto optimal profiles in the next subsection.

In the limit as trembling probability ϵ and persistence parameter λ tend to 0,

not all outcomes are supported by satisficing agents.

Proposition 12. For two-player games with unilaterally competitive Nash equilib-

ria, satisficing players in the long run play either unilaterally competitive Nash or

payo§ dominant profiles.

This result is given as the sum of probabilities assigned to states in which uni-

laterally competitive Nash and payo§ dominant profiles are played converges to 1

as the parameter values go to 0 in the order specified above.

As in the individual decision problems, the proof consists of two arguments:

First, the unilaterally competitive Nash and payo§ dominant action profiles are

robust to single trembles in the sense that once players satisfice with one of the

profiles and their satisficing levels are su¢ciently close to the corresponding payo§s,

any single tremble on either choice of action or satisficing level cannot make players

stay away from the initial profile permanently. Second, any other action profile is

absorbed into the robust profiles. That is, starting from any initial state in which

players satisfice with an action profile that is not robust, players can become to

choose and satisfice with one of the robust profiles with positive probability through

a finite sequence of single trembles and subsequent infinite plays without trembles.
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Since both KMRV and CM analyse Prisoner’s Dilemma game, we can directly

compare the current satisficing behaviour with theirs in this simple but famous

game. In Karandikar et al. (1998), regardless of relative sizes of θ and σ players

learn to play the cooperate only profile most of the time whereas in Cho and Matsui

(2005), only when the gain from deviation is moderate, i.e., θ − σ is small, players

learn to play the cooperate only profile, and otherwise players alternate among three

profiles, cooperate only, cooperate-defect (or defect-cooperate) and defect only. Our

result lies between them: Regardless of the relative sizes players learn to play both

cooperate only and defect only profiles most of the time. As Cho and Matsui

explain, the di§erence between their results is caused by their di§erent assumptions

on trembling behaviour. As long as aspiration level is not greater than payo§s from

cooperation, KMRV’s satisficing players satisfice in cooperation with probability

1 as trembling probability approaches 1. CM players, however, are assumed to

experience shocks to choice of actions, even when aspiration levels exceeds payo§s

from cooperation, thus players are not kept in cooperate only profile, rather pursue a

higher average payo§. Unlike these two, since satisficing levels are not symmetrically

updated when players are satisficing, defect only profile becomes robust to trembles

but the asymmetric profiles, cooperate-defect and defect-cooperate, do not.

Proposition 12 also predicts that if σ < δ in Table 2.1, i.e., payo§ dominant

profiles do not exist, players learn to play only the Nash equilibrium most of the

time. If we apply the satisficing behaviour models with aspiration levels, players in

both become to play the equilibrium profile. In the former, once a player chooses

the maximin action D, the other player’s aspiration level eventually falls to δ re-

gardless of initial level. Therefore, both players become to satisfice with the Nash

equilibrium. In the latter, once both players’ aspiration levels are below δ, their

action profiles converges to (D,D). If a player’s aspiration level is greater than δ

and the other’s is less than δ, the aspiration level above δ falls until both levels are

below δ, and then both players’ actions converge to (D,D).

If more than two satisficing players interact, the proposition partially holds.

The first argument of the proof still holds but the second does not. That is, profiles

other than unilaterally competitive Nash and payo§ dominant action profiles are not

guaranteed to be absorbed into those robust profiles. In Appendix C.4, we describe

42



public good provision games of Isaac et al. (1984), in which 4 or 10 satisficing players

simultaneously decide how much to contribute, and simulate satisficing behaviour

in the games. The satisficing players do not show clear tendency of convergence

to either full contribution or no contribution, which correspond to payo§ dominant

and unilaterally competitive Nash profiles, respectively.

Next we consider strategic interaction within finite populations in which ran-

domly matched players play two-player games like the Prisoners’ Dilemma and

Stage Hunt.28 In each period, only matched players play the game according to

their states, receive payo§s, and update their states while other non-matched play-

ers’ states stay the same to the next period. The matching is stationary in the

sense that each pair is matched with equal probabilities. The result of Proposition

12, which can be interpreted as satisficing behaviour in fixed matching setup, is

extended into this random matching environment.

Proposition 13. For two-player games with unilaterally competitive Nash equilib-

ria, if finite satisficing players are randomly matched to play the games, the whole

population in the long run play either unilaterally competitive Nash or payo§ domi-

nant profiles.

In evolutionary contexts, Nowak and Sigmund (1993), Nowak et al. (1995) and

Imhof et al. (2007) find that ‘Win-Stay, Lose-Shift,’ or shortly WSLS, with aspira-

tion level fixed between the payo§s from mutual cooperation and defection outper-

forms other strategies such as ‘Always Cooperate’, ‘Always Defect’ and ‘Tit-for-Tat’

in Prisoner’s Dilemma games. The dominance of the WSLS is analogous to the

convergence of the satisficing levels to the cooperative payo§.29

Battalio et al. (2001) provide experiment results in Stag Hunt games with various

treatments with a single-population (or cohort) random matching. For each treat-

ment, finite subjects in each population are randomly matched to play a game for

a number of periods. They find that all subjects in a population converge to either

payo§ dominant or unilaterally competitive Nash outcomes both with positive prob-

abilities. In particular, subjects choose the payo§ dominant action more frequently

28For equilibrium analysis of this setup, see Ellison (1994). He shows that a cooperation equilibrium
is supported by “contagious” punishments in the repeated Prisoners’ Dilemma game in a random
matching setup, which makes it di¢cult for players to observe opponents past behaviour, but they
are aware of themselves playing the game against anonymous opponents.
29For other WSLS strategies with fixed aspiration levels and the interpretations, see Posch (1999).
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when the payo§ di§erence between payo§ dominant and unilaterally competitive

Nash profiles is larger, which fits well the simulation result in Appendix C.2.30

2.4.2. Pareto Optimal Games

This subsection examines a class of coordination games. We define Pareto optimal

profiles as a refinement of Nash equilibria, and provide conditions under which only

Pareto optimal profiles are selected by satisficing agents.

Definition 8. A set of action profiles, AP 2 A, are Pareto optimal if

(i) any two profiles within the set are not preferred to each other, and

(ii) all those profiles are preferred to any profile that does not belong to the set.

As its name suggests, Pareto optimal action profiles return good enough payo§s

to all players compared to non-Pareto profiles, but it is not guaranteed for satisfic-

ing agents to choose only Pareto optimal profiles without further conditions. The

su¢cient condition is given with the help of the following definitions. First, for any

a, a0 2 A with s 2 S, we say (a, s) reaches a0 if P n((a, π(a), s),Φ(a0)) > δ for some

n < 1 and δ > 0, where Φ(a0) is a set of states in which all action profiles are the

same as a0. Second, for any a, a0 2 A, a0 is a unilateral deviation of a if there exists

a player, say i∗, such that a0i 6= ai if and only if i = i∗ and π(a0) ≥ π(a).

Definition 9. A game Γ is Pareto optimal if

(i) for any a 2 A and a∗ 2 AP , (a, π(a∗)) reaches the Pareto optimal profile a∗ and

(ii) for any a /2 AP , there exists a sequence of unilateral deviations that starts with

a and ends with a∗ 2 AP or there exists i and a∗i 2 Ai such that π(a∗i , a−i)≪ π(a).

The first condition makes all Pareto optimal profiles robust to single trembles.

Once players’ satisficing levels are set to payo§s of a Pareto optimal profile, they

visit the profile with certainty during infinite repetitions without trembles. And,

the second condition guarantees that all non-Pareto optimal action profiles become

absorbed into one of Pareto optimal profiles through finite trembles. Note that

the Prisoner’s Dilemma game does not have Pareto optimal profiles, and though the

30In the appendix, we also simulate satisficing behaviour in various 2 × 2 games under the fixed
and random matching setups. The results suggest that random matching helps players learn faster
and converge to a pure strategy profile.
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C D
C σ, σ 0, 0
D 0, 0 δ, δ

Table 2.2. Payo§s of Coordination Game

Stag Hunt game has one Pareto optimal profile (C,C), it does not satisfy the second

condition.

The Battle of the Sexes game in Table 2.1 is Pareto optimal with Pareto optimal

profiles, (C,D) and (D,C). Choosing Sides (σ = δ = 1) and Common Interest

games (σ = 2, δ = 1) in Table 2.2 are also Pareto optimal. In the Choosing sides

game, both diagonal profiles are Pareto optimal whereas in the Common Interest

game only (C,C) is Pareto optimal.31

Proposition 14. In Pareto optimal games, satisficing players in the long run co-

ordinate on Pareto optimal profiles.

This result can be interpreted as how convention, or equilibrium selection, arises

when there does not exist a mediator and players do not have proper knowledge

about the environment. Though satisficing players do not explicitly form a belief

about how the game is played, in the long run they find acceptable actions and

values of the game.

This interpretation makes better sense when we consider the interaction within

a large population. Suppose a I-player Pareto optimal game is played by players

who are each period randomly drawn from I separate, finite populations. Each

population corresponds to each role in the game and consists of finite satisficing

players, and players are selected to play the game with fixed probabilities. As in

the two-player games, only matched players receive payo§s from their action profile

and update their states while the others’ states stay the same to the next period.

Proposition 14 is generalised into this random matching environment.

31Chasparis et al. (2013) define a class of coordination games, which includes Network Formation
Games and Common-Pool Games, with a bit di§erent conditions. It can be easily verified that the
coordination games defined in Chasparis et al. (2013) are also games of Pareto optimality in the
current definition. For details about Network Formation Games, see Bala and Goyal (2000).
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Proposition 15. If finite satisficing players are randomly matched to play Pareto

optimal games, the whole population in the long run coordinate on Pareto optimal

profiles.

A similar result has been shown by Young (1993), who also considers environ-

ments in which players are randomly matched from a large finite population. He

finds that adaptive play, in which decision makers choose best actions given history

of plays like fictitious play but based on finite samples of past plays rather than

entire history, in coordination and common interest games selects stochastically sta-

ble equilibria, which are equivalent to risk dominant equilibria in the terminology of

Harsanyi and Selten (1988) in 2× 2 games.

2.4.3. Unilaterally Competitive Games

Lastly, we analyse unilaterally competitive games when λ is given constant, i.e.,

satisficing levels are moderately persistent. Since these games include Prisoner’s

Dilemma as a special case, this analysis helps understand the role of λ in the satis-

ficing behaviour.

A useful property of unilaterally competitive games is provided in Lemma 2 with-

out proof, which is given in De Wolf (1999). In short, if a satisficing decision maker

chooses one of equilibrium actions, her equilibrium payo§ is guaranteed regardless

of opponents’ choices.

Lemma 2. In a unilaterally competitive game Γ, any two Nash profiles a0, a00 2 A

satisfy πi(a0) = mina−i πi(a
0
i, a−i) = πi(a

00) for all i.

We consider two more properties that unilaterally competitive games might sat-

isfy. Let a∗ 2 A be an arbitrary Nash profile. (A.1) Any unilateral deviation

from a Nash equilibrium returns the same payo§ to the deviator, i.e., for any i,

πi(ai, a
∗
−i) = πi(a

0
i, a

∗
−i) < πi(a

∗) if ai, a0i 6= a∗i . (A.2) A single tremble of one

player’s (and, possibly, finite subsequent repetitions of the game without trembles)

can make any player receive a lower-than-Nash payo§ with positive probability, i.e.,

for any φ0 and i, QP
m(φ0, B) > 0 for some m 2 N and B ⊂ Φ with πi(a0) < πi(a

∗)

for any φ0 2 B.
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These somewhat strong conditions are su¢cient for more than two players to

converge to Nash equilibria in unilaterally competitive games when their satisficing

levels are moderately persistent.

Proposition 16. If a unilaterally competitive game satisfies (A.1) and (A.2), sat-

isficing players in the long run play Nash equilibria for any λ > 0.

This result is obtained by Proposition 12 and the observation that, if the persis-

tence parameter λ is fixed constant, payo§ dominant profiles in two-player games are

not robust to trembles any more: Regardless of how high agents’ satisficing levels

are, if agents repeatedly experience trembles in bad actions, their satisficing levels

get su¢ciently low to support a Nash profile, and this transition is not reversible as

Nash profiles are robust to trembles.

De Wolf (1999) provides examples of unilaterally competitive games. As exam-

ple, we provide two games that satisfy the hypothesis of Proposition 16.

The first is a public good provision game in which public good is produced by

means of private contribution by 3 agents i = 1, 2, 3. Each agent decides whether

to contribute a fixed amount of e§ort, say ai = 1, to the public good or not, ai = 0.

The total amount of the public good provided is a1 + a2 + a3 and agents’ payo§s

are given as πi(a1 + a2 + a3) = α(a1 + a2 + a3) − βai for all i with 0 < α < β.

Then, whenever an agent increases her e§ort from 0 to 1, her payo§ decreases while

all others’ payo§s increase. And, whenever an agent decreases her e§ort from 1 to

0, her payo§ increases while all others’ decrease. Thus, this game is unilaterally

competitive and has a unique Nash equilibrium, in which ai = 0 for all i.32

The second is a price competition model in which a continuum of customers, the

measure is normalised at 1, purchase a unit (per consumer) of a homogeneous good.

The good is sold by three producers. Each producer has to select a price at which

she wants to sell a unit of good. Only three di§erent prices are available, 89, 95

and 99. The consumers buy the good from the producers who o§er the minimum

price. If more than one producer o§er the same minimum price, equal number of

consumers purchase from the producers. The producers’ payo§ matrix is given in

Table 2.3. This game’s unique Nash equilibrium is (89, 89, 89).

32Simulation of public good provision game in a richer setup with bigger action sets and more
players is given in Appendix C.4.
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89 95 99
89 29.7, 29.7, 29.7 44.5, 0, 44.5 44.5, 0, 44.5
95 0, 44.5, 44.5 0, 0, 89 0, 0, 89 89
99 0, 44.5, 44.5 0, 0, 89 0, 0, 89

89 95 99
89 44.5, 44.5, 44.5 89, 0, 0 89, 0, 0
95 0, 89, 0 31.7, 31.7, 31.7 47.5, 0, 47.5 95
99 0, 89, 0 0, 47.5, 47.5 0, 0, 95

89 95 99
89 44.5, 44.5, 0 89, 0, 0 89, 0, 0
95 0, 89, 0 47.5, 47.5, 0 95, 0, 0 99
99 0, 89, 0 0, 95, 0 33, 33, 33

Table 2.3. Payo§s of Price Competition Model

In two-player games, the hypothesis of Proposition 16 can be loosened while the

result still holds. When only two players interact, the competitiveness is required

not for the game itself but for only Nash profiles. In the following two corollaries,

we consider two-player games with unilaterally competitive Nash equilibria.

Corollary 1. (i) If a two-player game satisfies (A.1), satisficing players in the long

run play unilaterally competitive Nash equilibria.

(ii) In any 2×2 game, satisficing players in the long run play unilaterally competitive

Nash equilibria.

The convergence to only unilaterally competitive Nash equilibria in 2× 2 games

is in contrast with Proposition 12, in which satisficing players converge to either

payo§ dominant or unilaterally competitive Nash profiles as λ approaches 0.33

This contrast is better illustrated by a simple Markov process that consists of

two state, C and D, and a transition probability P : P (C|C) = 1− p, P (D|C) = p,

P (C|D) = 0 and P (D|D) = 1 for some p 2 [0, 1], where P (D|C) denotes the

probability with which the state changes from C to D. This process has a unique

invariant p.m. µ = (0, 1) for some positive p, but as p ! 0, its invariant p.m. of

the limit process is given as µ = (1− q, q) for any q 2 [0, 1]. The process with fixed

p is analogous to the satisficing behaviour when λ is fixed positive so that players

who are satisficing with a payo§ dominant profile can switch and settle with the

33Beggs (2005) finds that reinforcement learning of Erev and Roth (1998) converges to expected
payo§ maximising action in individual decision problems and Nash outcome in the Prisoner’s
Dilemma game.
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Nash profile with positive probability.34 In this process, only the Nash profile is

played. On the other hand, the limit process as p! 0 is analogous to the satisficing

behaviour in which payo§ dominant profiles are robust to trembles as λ! 0. In this

process, both profiles are played.

The simulation results in appendices and the dominance of WSLS strategy with

fixed aspiration levels are consistent with these results.

2.5. Conclusion

We separated payo§ valuation (expected payo§ of action) and satisficing level

(expected payo§ of the best outside option) in satisficing behaviour. This modifica-

tion makes it possible for us to analyse satisficing behaviour in individual decision

problems and normal form games in a unified way. We also allow agents to tremble

in two ways, choice of actions and satisficing levels. Then, we analyse its long run

behaviour as trembling probability and persistence parameter decline over time.

We find that in individual decision problems with stationary but stochastic pay-

o§s, satisficing behaviour results in cautious, maximin choice. And, somewhat sur-

prisingly, the same behaviour results in mutual cooperation as well as defection

in the Prisoner’s Dilemma and Stag Hunt games. Though cooperation is not the

maximin action for a single player, satisficing agents cooperate as their satisficing

levels are co-evolving. This result applies to a broad class of two-player games that

have unilaterally competitive Nash equilibria. And, in Pareto optimal games, which

include Battle of the Sexes, Common Interest and Choosing Sides games, satisficing

players coordinate on Pareto optimal profiles. On the other hand, when the persis-

tence parameter is fixed, the players play only Nash equilibrium in the Prisoner’s

Dilemma game.

34The fixed λ > 0 makes the first argument in the proof of Proposition 12 invalid.
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CHAPTER 3

Satisficing Behaviour in Extensive Form Games

This chapter models satisficing behaviour, proposed in the previous chapter, in

extensive form games. In satisficing behaviour, decisions between continuing with

the current actions and switching to alternatives are made by comparing valuations

to satisficing levels. We apply this behaviour principle to environments in which a

single player might have more than one chances, or decision nodes, to choose actions

within a single decision problem. At all decision nodes, players evaluate their choices

by received payo§s and judge them with respect to satisficing levels.

The satisficing behaviour in extensive form games is the same as in normal form

games except that we additionally need to describe o§-the-path behaviour in the

former case. In normal form games, decision makers have only one decision node

so that every period their choices, valuations and satisficing levels are updated by

the realised outcomes. In extensive form games, however, decision makers’ states at

decision nodes o§ the path are not subject to period by period update.1

Compared to individual decision problems and normal form games, extensive

form games have hardly been analysed with adaptive learning models. To our knowl-

edge, in particular, satisficing behaviour in extensive form games is first formally

modelled and analysed here.2 A few works of adaptive learning in extensive form

games are as follows. Hendon et al. (1996) and Groes et al. (1999) find that fictitious

play converges to subgame perfect or sequential equilibrium paths, and Blume and

1However, we assume satisficing players experience shocks on choice of action and satisficing level
at all decision nodes o§ the path as well as on the path. This assumption turns out to exclude
unreasonable behaviours o§ the path. As Fudenberg and Levine (1993) noted, in extensive form
games, which outcome is played depends not only on the actions on the path but also the planned
actions o§ the path. Since Nash equilibrium does not provide precise predictions in extensive
form games, several equilibrium concepts like subgame perfection and sequential equilibrium were
introduced with purpose of imposing reasonable restrictions on players’ strategies and beliefs o§
the equilibrium path.
2Kim (1995) models “satisficing behaviour” proposed by Gilboa and Schmeidler (1995) and Gilboa
and Schmeidler (1996) in extensive form games. Though it is also modelled with endogenously
evolving aspiration level, players in the model choose actions that are associated with highest
values compared to aspiration level rather than satisfice with “satisfactory” actions. The second
chapter of this dissertation discusses the di§erence between aspiration and satisficing levels.
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Arnold (2004) find that fictitious play, defined as backward looking learning rule,

with long memory facilitates truthful communication in a sender-receiver game with

same interests. On the other hand, Jehiel and Samet (2005), Laslier and Walliser

(2005) and Jehiel and Samet (2007) analyse reinforcement learning in extensive

form games and find that agents converge to subgame perfect equilibrium paths in

perfect information games. Roth and Erev (1995) numerically analyse a cumula-

tive reinforcement learning model for normal form representations of Best Shot and

Ultimatum games.

We examine extensive form games such as perfect information and a special class

of imperfect information games, repeated games with observed actions and signalling

games.

In perfect information games, we introduce a refinement of subgame perfection,

subgame dominance. At each decision node along a subgame dominant path, every

player chooses a best action that returns the highest payo§ among all outcomes that

follow the decision node. Every subgame dominant path is supported by a subgame

perfect equilibrium, but the opposite does not generally hold true. Satisficing players

play subgame dominant paths most of the time. And, in 2× 2 games with outside

options, satisficing behaviour is consistent with what Forward Induction predicts.

And, we analyse finitely repeated 2 × 2 games.3 In finitely repeated Prisoner’s

Dilemma game, ‘always cooperate’ becomes the only behaviour taken by satisficing

players if the payo§ from mutual defection is worse enough compared to the payo§

from mutual cooperation. This result suggests how a game is perceived by play-

ers plays a critical role in predicting outcomes. In finitely repeated Battle of the

Sexes game, not only coordination is achieved but also the benefit from coordina-

tion is equally shared between players if payo§s from two coordination outcomes are

balanced.

Lastly, we analyse two-player signalling games in which both players’ payo§s are

perfectly aligned: Regardless of the realised type of the first mover, both players’

payo§s are the same and the common payo§ is determined by the second mover’s

3Players repeatedly play the finitely repeated games for infinite periods. For example, if satisficing
players face a twice repeated Prisoner’s Dilemma game, they make choices as if they recognise
whether they are at the first decision node, whether they have played mutual cooperation in the
first stage, and so on within each period, but do not know which outcome was played in the
previous periods.
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action. One interpretation of the game is whether communication via cheap talk

could arise spontaneously between players who benefit from common understanding

of the realised state of the world. We find that satisficing players in the long run

develop languages through which they fully communicate.

Section 1 introduces notations in extensive form games and formulate satisficing

behaviour. Section 2 defines subgame dominance and characterises satisficing be-

haviour in perfect information. Section 3 analyses 2×2 games with outside options.

Section 4 and 5 analyse repeated games and signalling games, respectively. Section

6 summarises. All proofs are collected in Appendix A.3.

3.1. The Model

Players repeatedly face an extensive form game G(I,N , a, h, ι, π) over periods.

I = {0, 1, . . . , I} is the set of indices of players that consist of Nature, indexed

by 0, and non-Nature players, 1, . . . , I. In particular I denotes the set of non-

Nature players. N is the collection of non-terminal and terminal nodes, N n and

N t, respectively. The nodes are partially ordered by an immediate predecessor

function p : N ! N [ ;. There exists one node n0 2 N such that p(n0) = ;, called

the root node. We denote a set of immediate successors of n by s(n) = p−1(n) and

n0 2 s(n) implies that n0 follows n, that is, n = p(n0). Each node except the root is

named by an action function a : N\{n0}! A, which is one to one on s(n) for each

non-terminal node n. c(n) ≡ {a 2 A|a = a(n0) for some n0 2 s(n)} is the choice

set at n, and h : N n! H is an information function such that for all n, n0 2 N n,

h(n) = h(n0) implies c(n) = c(n0), where H is a collection of information sets that

partition N n. We denote c(n) by c(h) if h = h(n). A function ι : H!I indicates

the player who moves at h. Hi ≡ {h 2 H|ι(h) = i} is the set of information sets

at which player i moves. For each non-terminal node n, ι(n) and ι(h(n)) are used

interchangeably. G has perfect recall.4 π ≡ {πi}i2I is a payo§ function that maps

N t to RI for non-Nature players, 1, . . . , I. The set of payo§s that player i would

receive in the game is denoted by πi ≡ {πi(n)|n 2 N t}. Sets of terminal nodes that

follow n and h are denoted by N t(n) and N t(h) = [n2hN t(n), respectively.

4Players remember any information they once knew, and actions they have chosen previously.
That is, (i) if h(n) = h(n0), then n 6= p(n0) and n0 6= p(n) and (ii) if h(n0) = h(n00), n = p(n0) and
ι(n) = ι(n0), then there exists a node n∗ such that h(n) = h(n∗), n∗ = p(n00) and a(n0) = a(n00).
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A behaviour of player i in the game is represented by a function bi : Hi ! A

such that bi(h) 2 c(h) for all h 2 Hi and i 2 I. Nature has a probability distribution

ν : H0 × A! [0, 1] such that ν(h, a) = 0 if a /2 c(h) and
P

a2c(h) ν(h, a) = 1 for all

h 2 H0. Nature’s behaviour b0 is chosen at random from the stationary distribution

at each repetition of the game. Bi denotes the set of all possible behaviours of player

i 2 I with B ≡ Πi2IBi for all players and B ≡ Πi2IBi for non-Nature players. A set

of nodes is called a path if it can be ordered, say n0, n1, . . . , nJ , so that n0 is the root,

nJ is a terminal node and nj follows nj−1 for all j = 1, . . . , J . A behaviour profile

b = (b0, b1, . . . , bI) 2 B specifies a path N (b) ⊂ N with a terminal node N t(b), a set

of non-Nature players who have turns to move along the path I(b) ≡ {i 2 I|i = ι(n)

for some n 2 N (b)} and a collection of information sets through which the path

passes H(b) ≡ {h 2 H|h = h(n) for some n 2 N (b)} with Hi(b) = H(b) \Hi. A set

of payo§s from b is denoted by π(b) ≡ π(N t(b)). With explicit notation of a path

p = N (b), we denote these sets by N t(p), I(p),H(p),Hi(p) and π(p).

3.1.1. Satisficing without Trembling

Non-Nature players satisfice rather than optimise in the extensive form games. In

period n, player i’s state is described by her current behaviour bn,i, valuations vn,i 2

R|Hi| and satisficing levels sn,i 2 R|Hi|, where vn,i and sn,i map Hi to R|Hi|. Shortly,

φn,i = (bn,i, vn,i, sn,i) is used for each i 2 I and the I players’ states are denoted by

φn = {φn,i}i2I with bn = {bn,i}i2I . φ0 is assumed given.

At the start of any period n 2 N, each player i judges her current actions

bn,i(h) by comparing its valuation vn,i(h) with her ongoing satisficing level sn,i(h) at

each information set h. If valuation vn,i(h) is greater than satisficing level sn,i(h),

she satisfices and continues with the current action and satisficing level at h. If the

valuation falls short of the satisficing level, she switches to an alternative and updates

her satisficing level towards the lower valuation. Specifically, if i /2 I(bn), bn+1,i = bn,i

and sn+1,i = sn,i. If i 2 I(bn), for h 2 Hi(bn) such that vn,i(h) < sn,i(h),

bn+1,i(h) = αn,i(h) and sn+1,i(h) = (1− λn,i(h))sn,i(h) + λn,i(h)vn,i(h),

where αn,i(h) is chosen at random from c(h) with positive probabilities for all alter-

natives in the choice set, and λn,i(h) is from [0,λ]. For all other h 2 Hi for i 2 I(bn),
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bn+1,i(h) = bn,i(h) and sn+1,i(h) = sn,i(h). Each individual, then, chooses the behav-

iour bn,i so determined and receives a payo§ πi(bn+1). Before the end of period n,

the players revise their valuations by taking weighted averages of their payo§s and

previous valuations as follows. If i /2 I(bn+1), vn+1,i = vn,i. For h 2 Hi(bn+1) with

i 2 I(bn+1), if bn+1,i(h) = bn,i(h),

un+1,i(h) = (1− ρn,i(h))vn,i(h) + ρn,i(h)πi(bn+1),

where ρn,i(h) 2 [0, 1] and otherwise vn+1,i(h) = πi(bn+1). For h /2 Hi(bn+1) with

i 2 I(bn+1), vn+1,i(h) = vn,i(h).

In the above αn,i, ρn,i and λn,i at each information set are random variables with

corresponding measures µα,i, µρ,i and µλ,i with full supports in c(h),[0, 1] and [0,λ]

for some λ 2 (0, 1), respectively, for all i. In particular, the distribution of the next

period action µα is referred to as choice rule and assumed to be continuous functions

of vn,i and sn,i so that at all h, µα,i(a) # 0 as vn,i " sn,i for all a 2 c(h)\{bn,i(h)}

and µα,i(an,i) is bounded away from zero for any vn,i below sn,i. The other two

probability distributions of ρ and λ reflect how players weigh recent information, on

which we do not put any specific condition. And, the upper bound on the weighting

coe¢cient on satisficing level λ is referred to as persistence parameter that deter-

mines how persistent players’ satisficing levels are. As λ gets lower, satisficing levels

are adjusted more slowly. Unless otherwise stated, the measures are assumed to be

absolutely continuous with respect to the Lebesgue measure on the intervals and

continuous in the current state φn.
5

3.1.2. Trembling Behaviour

In case they tremble, satisficing players experience two types of shocks as in the

second chapter with trembling probability ϵ. Given φn,i, if player i experiences only

the first shock, which occurs with probability ϵ(1 − ϵ) at each information set in

each period, her next period action at the information set is determined as follows.

For all i 2 I and h 2 Hi,

bn+1,i(h) = αϵn,i(h),

5For more discussion about the roles of the random variables and assumptions on these, refer to
the second chapter.
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while her satisficing level and valuation at h are updated as before. αϵn,i(h) is

similarly defined as αn,i(h). On the other hand, if the player experiences only the

second shock at an information set, which occurs with probability ϵ(1− ϵ), her next

period satisficing level at the information set is adjusted towards the valuation. For

all i 2 I and h 2 Hi,6

sn+1,i(h) = (1− λϵn,i(h))sn,i(h) + λϵn,i(h)vn,i(h)

where λϵn,i(h) is a random variable with probability measure µ
ϵ
λ,i(h) with full support

in [0, 1]. Her action and its valuation are revised by the satisficing behaviour without

trembling. Lastly, if she experiences both shocks at an information set h in one

period, which occurs with probability ϵ2, her state is updated as if only the first shock

occurs, and then just before the next period starts, her satisficing level trembles to

be adjusted towards valuations.

Let Vi(h) and Si(h) both denote the convex hull of {πi(n)|n 2 N t(h)} for all

i 2 I and h 2 Hi, and V and S the product spaces of Πh2Hi
Vi and Πh2Hi

Si across all

satisficing players, respectively. Then, the players’ states governed by the satisficing

behaviour with trembling constitutes a Markov process {φn} on the compact space

Φ ≡ A × V × S. Asymptotic properties of the Markov process are the same as in

the second chapter. And, we also can augment the satisficing behaviour in extensive

form games with additional memory by allowing player to keep track of valuations

of all actions at each information set without changing the asymptotic behaviour.

3.2. Perfect Information

Here, we analyse satisficing behaviour in perfect information games without Na-

ture playing a role, i.e., G(I,N , a, h, ι, π) with h (n) 6= h (n0) for any n 6= n0. We

first introduce a refinement of subgame perfection in terms of outcomes and prove

the refined outcomes are played most of the time by satisficing players. A path p is

said to be subgame perfect if there exists a subgame perfect equilibrium b of G such

that p = N (b).

6Unlike behaviour without trembling, we assume that all agents experience shocks at all information
sets even when they did not move in the previous round.
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Figure 3.1. Subgame Perfect and Dominant Paths

Definition 10. A path p is weakly dominant if for each n 2 p \ N n with ι(n) 2

I, πι(n)(p) ≥ max{πι(n)(n0)|n0 2 N t(n)\N t(p)}. It is subgame dominant if all

inequalities are strict.

Along a subgame dominant path, no player can increase her payo§ by deviation

at any information set. If a game admits a subgame dominant path, it is unique

but it might not exist in some games. Note that a subgame dominant path is also

subgame perfect, but a subgame perfect path might not be subgame dominant.

Consider two extensive form games in Figure 3.1. The left game is a stage game

of the Chainstore paradox. The first mover is the entrant and the second is the

incumbent. There are three paths in the game: the entrant does not enter the

market, the entrant enters and the incumbent fights, and the entrant enters and

the incumbent does not fight, (N, ·), (E,F ) and (E,N), respectively. The game

has two Nash paths (N,F ) and (E,N) while there exists only one subgame perfect

path (E,N). Among the two Nash equilibria, only the subgame perfect (E,N) is

subgame dominant.

The other game is a simplified Best Shot game. The first mover determines

whether to contribute to produce a public good, then observing the move by the

first, the second chooses whether to contribute. The public good is produced when

at least one player contributes. Contribution is equally costly for both players.

Two paths (C,N) and (N,C) are supported by Nash equilibria while only (N,C) is

subgame perfect and subgame dominant.
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Next, consider extensive form games that have a subgame perfect but not dom-

inant paths. In Figure 3.2, the left game has two Nash paths (C,N) and (N,C)

but only (N,C) is subgame perfect. Unlike the games in Figure 3.1, the subgame

perfect path (N,C) is not subgame dominant because the first mover can receive

the higher payo§, 3, from a non-equilibrium path (C,C). The Centipede game in

the right panel has a unique subgame perfect equilibrium in which the first mover

takes all stake and ends the game at the first decision node, but the equilibrium

path is not subgame dominant.

Figure 3.2. Subgame Perfect but not Dominant Paths

The first result of this chapter is that satisficing players will eventually play

subgame perfect outcomes only when it is also subgame dominant. This predicts

that subgame perfect but not dominant outcomes will be less likely observed than

subgame dominant ones if players satisfice rather than optimise.

Proposition 17. If a perfect information game has a subgame dominant path, sat-

isficing players in the long run play the path.

As in the second chapter, satisficing agents’ long run behaviours derived in the

current chapter are given in the limit as trembling probability ϵ and persistence

parameter λ tend to 0 in the order specified previously.7

The proof can be sketched by simple backward induction like solving subgame

perfect equilibrium. Movers at the last non-terminal nodes of any path would choose

actions which return highest payo§s and then raise their satisficing levels up to the

payo§s. Then movers at the second last non-terminal nodes would choose actions

7For more related discussion, refer to the note after Proposition 11.
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Figure 3.3. Weakly Dominant Paths

which return highest payo§s among the payo§s determined by the previous movers

and raise their satisficing levels up to the payo§s. If this process is rolled up to the

first non-Nature player, all players conform to a subgame dominant path. And, by

the property of the path, it is robust to single trembles. If only weakly dominant

paths exist, satisficing players play those paths with positive probabilities.

In the stage game of Chainstore paradox in Figure 3.1 if the entrant and incum-

bent are satisficing players, the entrant will enter and the incumbent will accommo-

date it. And, in the Best Shot game, the first mover does not contribute while the

second contributes. These two predictions are consistent with experimental results

of Schotter et al. (1994) and Harrison and Hirshleifer (1989).

It is noteworthy why satisficing players need not converge to subgame perfect

paths. In the Centipede game in Figure 3.2, suppose players have settled in with the

equilibrium path with satisficing levels (4,1). While the first mover satisfices with

‘Take’ at her first turn, the second (resp. the first) mover could tremble to “plan”

to choose ‘Pass’ (resp. ‘Take’) at his first (resp. her second) turn. Then, once the

first mover trembles to ‘Pass’, outcome (16,4) is reached and both players satisfice.8

If a subgame dominant path does not exist, both dominant and non-dominant

paths could be played by satisficing players. Consider the game in Figure 3.3, which

8In the long run, the second player’s satisficing level at the information set is strictly higher than
4 with probability 1 by the trembling behaviour. However, when λ is fixed above 0, the players
could become to satisfice with the path as we assume the probability of choosing the current action
converges to 1 as the valuation approaches satisficing level. For more details, see Karandikar et al.
(1998). Since we assume the weighting coe¢cient are random variable here, we require additional
assumption on the infinite sum of moments of λ. For experimental results, see McKelvey and
Palfrey (1992) and Palacios-Huerta and Volij (2009).
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Figure 3.4. Dominant Paths of Imperfect Information Game

has one weakly dominant path (R,A). Satisficing players will play not only the

dominant path but also (L,A) with positive probabilities in the long run: satisficing

with (R,A) with satisficing level (3, 5), once player 2 trembles to choose B, player 1

keeps switching between L andR until he satisfices with a non-dominant path (L,A).

Appendix C.5 provides simulation results of Best Shot and Ultimatum games.

3.3. Games with Outside Option

In Figure 3.4, player 1 is given an outside option which guarantees a fixed payo§,

and if he chooses the option, the game ends, and otherwise a 2 × 2 game follows.

The Subgame Perfection predicts that both ((P,A), A) and ((T,B), B) (and an

additional equilibrium with a mixed equilibrium in the subgame) would be played

whereas Forward Induction predicts that since the choice of P by player 1 signals

that he expects payo§ more than 2, both players in the subgame would play only

(A,A).9

The following result shows how satisficing players behave in such games. Without

loss of generality, we assume outside options return intermediate payo§s to both

players: e.g., between the payo§s from two coordination outcomes in the Battle of

the Sexes or from the mutual cooperation and defection in the Prisoner’s Dilemma.

If the guaranteed payo§s are above the ranges, satisficing players will always play

the outside options. And, if below the ranges, the options do not a§ect their choices.

9The right-hand game is used by Kohlberg and Mertens (1986) to introduce the idea of forward
induction. Brandts and Holt (1994) provide experiment results in the Battle of the Sexes with an
outside option.
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Proposition 18. In the Battle of the Sexes game with an outside option, satisficing

players in the long run coordinate so that player 1 receives the higher payo§ than

the option.

Proposition 19. In the Prisoner’s Dilemma with an outside option, satisficing

players in the long run play the cooperate only profile.

Without the outside option, players would play both mutual cooperation and

defection in the Prisoner’s Dilemma. However, once player 1 is given the option

of securing a payo§ higher than mutual defection, the defection outcome becomes

less likely to be played because otherwise player 1 takes the option. And, once the

option is chosen by player 1, nothing binds players to the mutual defection outcome,

thus both players can agree on the mutual cooperation with finite trembles o§ the

path.

3.4. Finitely Repeated Games

Next, we consider repeated games with observed actions. Payo§s are simply

summed up over stages without discount. The payo§matrix of a Prisoner’s Dilemma

game is given in Table 3.1. For simplicity, the payo§s are given by two parameters

b and c with b > c > 0, for mutual cooperation and defection, respectively. A single

defector receives b + c while leaves the other player 0. If players ‘always cooperate’

over two stages, both receive 2b. If players alternate between mutual cooperation

and defection, like (C,C) in the first stage and (D,D) in the second or (D,D) in

the first and (C,C) in the second, both receive b+ c. If player 1 always cooperates

and player 2 always defects, player 1 receives 0 and player 2 receives 2b+ 2c, which

is the highest payo§ that a player can achieve in the twice repeated game.

C D
C b, b 0, b+ c
D b+ c, 0 c, c

Table 3.1. Prisoner’s Dilemma

When satisficing players repeat the stage Prisoner’s Dilemma game, the second

chapter shows that both mutual cooperation and defection are played. However, if

they repeat a multi-stage game in which an earlier action a§ects players’ perception
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in later stages, cooperation over all stages could arise as a unique outcome. The

following result shows that cooperation can take place if the benefit from mutual

cooperation is significantly higher than mutual defection.

Proposition 20. In the n-times repeated Prisoner’s Dilemma game, satisficing

players in the long run ‘always cooperate’ if nc ≤ b.

The condition nc ≤ b, which is derived from (n − 1)b + nc ≤ nb, implies that

once both players satisfice with the ‘always cooperate’ path and their satisficing

levels are pushed up to the corresponding payo§s (nb, nb), none of them satisfices

with any path that starts with mutual defection in the first stage.10 In particular, if

this condition holds in the twice repeated game, ‘always cooperation’ returns higher

payo§s to both players than a single defection followed by mutual defection.

The other repeated game is the Battle of the Sexes. The payo§matrix is given in

Table 3.2. The payo§s are also determined by two parameters b and c for coordinated

outcomes with b > c > 0 and 0 for coordination failure. If players alternate between

two coordinated outcomes, like (F, F ) in the first stage and (O,O) in the second or

(O,O) in the first and (F, F ) in the second, both receive b+ c. If players repeat one

coordinated outcome twice, one player receives the highest payo§ 2b and the other

receives 2c, which is still better than that from coordination failures.

F O
F b, c 0, 0
O 0, 0 c, b

Table 3.2. Battle of the Sexes

In the stage game, satisficing players converge to one of two coordination out-

comes, which favours one player more than the other. That is, the benefit from

coordination is not equally shared between two players. However, if the game is

repeated over several stages, another behaviour may arise in which players share the

benefit in a fair way like alternating between two coordination outcomes (F, F ) and

(O,O) as if a mediator advises so.

10If players keep choosing (C,D) in every subgame after (D,D) in the first stage and choose (C,C)
(resp. (C,D), (D,C) and (D,D)), they receive (b+ c, (n− 1)b+ (n− 1)c) (resp. (c,(n− 1)b+ nc),
(b+2c, (n−2)b+(n−1)c) and (2c, (n−2)b+(n−1)c)). In this last subgame, player 1’s satisficing
level is greater than c. Thus, if the hypothesis of the proposition holds, whenever players reach
this subgame, both do not satisfice at the same time.
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Proposition 21. In the 2n-times repeated Battle of the Sexes, satisficing players in

the long run equally play both coordination outcomes if n+1
n
c ≤ b < n

n−12c.

This result says that satisficing players fairly coordinate in the finitely repeated

Battle of the Sexes game without any device or mediator if the payo§s from co-

ordination outcomes are balanced. On the other hand, it is implied that, if the

“balanced payo§” condition does not hold, one player could get the most of the

benefit from coordination as they do when the stage game is infinitely repeated.

3.5. Signalling Games

A special class of imperfect information games, which we analyse here, are sig-

nalling games in which Nature chooses an action (or type) with fixed probabilities

every period, player 1 (Sender) observes the type and chooses his action (or mes-

sage), then player 2 (Receiver) observes the message taken by Sender but not the

type chosen by Nature and chooses her action. Both Sender and Receiver’s payo§s

are the same at every terminal node and determined by whether the type chosen by

Nature and the action by Receiver match each other or not.11 If the type and action

are matched like rain and umbrella (probably via Sender’s message “it will rain”),

both players receive higher payo§s than otherwise. We assume that Sender’s (resp.

Receiver’s) choice sets are the same for each type (resp. message) and the numbers

of elements of both players’ choice sets are bigger than Nature’s.

Figure 3.5. A Signalling Game with Two States

11When players’ interests are not aligned, equilibrium strategies are normally given as mixed
strategies. Appendix C.6 provides simulation results of signaling games between players whose
interests misaligned.
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Consider a simple signalling game in which each choice set consists of two ele-

ments depicted in Figure 3.5 and its normal form representation in Table 3.3. Nature

chooses tomorrow’s weather between Rainy and Sunny. Sender, the row player in

the Table, chooses a message between R and S for each type, and Receiver, the col-

umn player, chooses an action between Umbrella and Sunglasses for each message.

The left table is the payo§ matrix when the type is Rainy and the other is when

the type is Sunny. Both players can receive a higher payo§ H regardless of the

realised type if both coordinate on either {(R, S), (U, S)} or {(S,R), (S, U)}, which

are defined as complete profiles below. We show that satisficing players eventually

develop complete communication strategies through which they achieve the highest

payo§s for any realised type.

t = R
U,U U, S S, U S, S

R,R H,H H,H L,L L, L
R, S H,H H,H L,L L, L
S,R H,H L,L H,H L,L
S, S H,H L,L H,H L,L

t = S
U,U U, S S, U S, S

R,R L,L L, L H,H H,H
R, S L, L H,H L,L H,H
S,R L,L L, L H,H H,H
S, S L, L H,H L,L H,H

Table 3.3. A Signalling Game with Two States

We formally describe the above signalling game GS. Let T, M and A denote

the choice sets of Nature, Sender and Receiver, respectively. The cardinalities of

M and A are not smaller than that of T . At the root node, Nature chooses a type

t 2 T with positive probabilities for all types. Then, Sender observes the type and

chooses a message m 2M . Lastly, Receiver observes only the message and chooses

an action a 2 A. There exists an injective function f : T ! N t such that for any

t 2 T , π1(p) = π2(p) = H if t 2 p implies f(t) 2 p and π1(p) = π2(p) = L otherwise,

where H > L. In words, for any type t, if Receiver chooses a unique corresponding

action a(f(t)) 2 A, both players receive H. Otherwise, both receive L. With a

little abuse of notation. let Nature and Sender’ actions represent the corresponding

information set, then t 2 T represents an information set ht ≡ {n 2 N|a(n) = t}

and m 2 M represents hm ≡ {n 2 N|a(n) = m}. The complete behaviour profiles

are defined as follows.

Definition 11. A behaviour profile b of GS is complete if b1 : T ! M and b2 :

M ! A are injective functions such that b2(b1(t)) = f(t) for any t 2 T .
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The above signalling game with two types has two complete behaviour profiles

{(R, S), (U, S)} or {(S,R), (S, U)}. In general, if Nature chooses a state from N

di§erent types and Sender chooses a message from M di§erent messages, there are

M !/(M −N)! complete behaviour profiles. However, under all complete behaviour

profiles, players’ payo§s are the same.

Proposition 22. In the signalling games, satisficing players in the long run play

complete profiles most of the time.

As the normal form representation suggests, the way players develop a complete

behaviour profile is similar to how players coordinate on Pareto optimal outcomes.

For any realised type, if Sender employs a new message and Receiver happens to

interpret the message correctly once, both satisfice and continue with the behaviour

at the type and message. And, as the proof in Appendix implies, in the long run

satisficing players are not stuck in a specific complete profile, rather they easily

switch from one to other between complete profiles.

3.6. Conclusion

This chapter models the satisficing behaviour, proposed in the second chapter, in

extensive form games. A player at each decision node is modelled as an independent

agent: A player satisfices with actions with respect to satisficing levels at each

decision node and experiences shocks independently across all decision nodes on

and o§ the path.

In perfect information games, we introduce a refinement of subgame perfection,

subgame dominance. Satisficing players play subgame dominant paths most of the

time in perfect information games. And, we identify conditions under which satis-

ficing players ‘always cooperate’ in repeated Prisoner’s Dilemma games and ‘fairly

coordinate’ in repeated Battle of the Sexes games. Lastly, we find that sender and

receiver with same interests develop complete communication strategies in signalling

games.
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APPENDIX A

Proofs

A.1. Persuading Someone You Do Not Know

Proof of Proposition 1 Without loss of generality, suppose the decision maker’s

types are classified into two groups, i.e., N = 2, with θ = (θ1, θ2) and t = (t1), and

u is strictly convex. If M is an equilibrium strategy, the expert must be indi§erent

between any two messages sent byM :
R 1
0
u(E[θ(t)|m])dG(t) =

R 1
0
u(E[θ(t)|m0])dG(t)

for any (θ, t) and (θ0, t0), where m = M(θ, t) and m0 = M(θ0, t
0
). And, since M is

truthful on T , the expert’s expected payo§ is
R 1
0
u(E[θ(t)])dG(t). To see this, assume

t1 approaches 1. Then, the decision maker’s type becomes identified, thus the expert

cannot send credible messages to the decision maker. And, the above equality implies

that
R 1
0
u(E[θ(t)|m])dG(t) =

R 1
0
u(E[θ(t)])dG(t) for any (θ, t). Now suppose that for

a non-negligible (with respect to G) set of types,M is informative. Let P denote the

probability measure of m that is induced by players’ priors F and H and strategy

M. Then, we have
Z 1

0

u(E[θ(t)|m])dG(t) =

Z 1

0

u(E[θ(t)|m])dG(t) ·
Z

Φ

dP (m)

=

Z

Φ

Z 1

0

u(E[θ(t)|m])dG(t)dP (m)

=

Z 1

0

Z

Φ

u(E[θ(t)|m])dP (m)dG(t)

>

Z 1

0

u

(Z

Φ

E[θ(t)|m]dP (m)
)
dG(t)

=

Z 1

0

u (E[θ(t)]) dG(t).

This contradicts. Thus, we can conclude that E[θ(t)|m] = E[θ(t)] for almost all

types. !

Receiving a message from the expert, the decision maker estimates θ(t) based

on her priors F and H, the expert’s strategy M , and sent message m according to
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Bayes’ rule. Let ej(t) = E[θ(t)|mj], e(t) = E[θ(t)|m], θj = E[θ|mj], θji = E[θi|mj],

and H0(t) = 1 and HN(t) = 0 for all t 2 T . Then, the decision maker’s estimate

given mj takes the following form.

Lemma 3. ej(t) =
PN

i=1 θ
j
i (Hi−1(t)−Hi(t)).

Proof 3 By the law of iterated expectation, we have

ej(t) = E[θ(t)|mj] = E[E[θ(t)|θ]|mj]

= E[
PN

i=1 θi(Hi−1(t)−Hi(t))|m
j]

=
PN

i=1 E[θi|m
j](Hi−1(t)−Hi(t))

=
PN

i=1 θ
j
i (Hi−1(t)−Hi(t)),

where we want to show that the second equality holds. Since a realised event is

either t < ti−1, ti−1 ≤ t < ti, or ti ≤ t, it holds that Pr(ti−1 ≤ t and t < ti) =

1 − Pr(ti−1 > t) − Pr(ti ≤ t) = Hi−1(t) − Hi(t). And, by definition, Pr(t < t1) =

1−H1(t) = H0(t)−H1(t) and Pr(t ≥ tN−1) = HN−1(t) = HN−1(t)−HN(t). Thus,

θ(t) equals to θji with probability Hi−1(t)−Hi(t) for all i = 1, . . . , N and the second

equality follows. !

To prove Proposition 2, we first introduce a few definitions and lemmas. Let

SN−1 denote the boundary of the N -dimensional unit ball BN ⊂ RN . Then a

hyperplane h(s, c) of orientation s 2 SN−1 passing through an interior point c 2 Θ

partitions Θ into two nonempty sets Θ+(s, c) and its complement Θ−(s, c),1 with

corresponding estimates θi(s, c) = E[θ|θ 2 Θi(s, c)] for i = +,−. Hereafter, we omit

c for notational simplicity. Let Θ+ be in the half-space that contains the point s+c.

As discussed above, a message set induced by a partition of the state space could

function as a strategy and each element of the partition is interpreted as a message.

Let πi be the coordinate map from Θ to Θi defined as πi(θ) = θi for all i =

1, . . . , N , and Π(N) be the set of all permutation functions defined on {1, . . . , N}.

The following lemma shows that there exists a hyperplane such that two correspond-

ing estimates of θ are identical except for one coordinate.

Lemma 4. There exists s 2 SN−1 such that for any p 2 Π(N), πp(i)(θ
+(s)) =

πp(i)(θ
−(s)) for i = 1, . . . , N − 1.

1This construction of a partition of the state space was originally used in Chakraborty and Har-
baugh (2010).
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Proof First, note that, since F has full support on Θ, θ+(s) 2 intΘ+(s) and

θ−(s) 2 intΘ−(s) so that θ+(s) 6= θ−(s). Note next that for any two opposite

orientations −s, s 2 SN−1, Θ+(s) = Θ−(−s) and Θ−(s) = Θ+(−s). It follows

that θ+(s) = θ−(−s), implying that a map ρ : SN−1 ! RN−1 which consists of

ρi(s) = πi(θ
−(s)) − πi(θ

+(s)) for i 2 {p(j)|j = 1, . . . , N − 1 and p 2 Π(N)} is a

continuous odd function of s for any p 2 Π(N).2 By the Borsuk-Ulam theorem,

there exists sp 2 SN−1 such that ρ(sp) = 0. !

From Lemma 4, we can find a hyperplane such that the expert is indi§erent

between two messages induced by the hyperplane. Let e+(t; s) and e−(t; s) denote

the estimate of θ(t) when the messages are Θ+(s) and Θ−(s), respectively.

Lemma 5. There exists s 2 SN−1 such that E[u(e+(t; s))] = E[u(e−(t; s))]. 3

Proof Consider a function ∆(s) ≡
R
T
[U(e+(t; s))−U(e−(t; s))] dG(t). We need to

find s∗ 2 SN−1 that satisfies ∆(s∗) = 0. By Lemma 4, there exist sN , s1 2 SN−1 such

that θ+i (sN) = θ−i (sN) for i 2 {1, . . . , N−1} and θ
+
i (s1) = θ−i (s1) for i 2 {2, . . . , N}.

Since θ+(s) 6= θ−(s) for any s 2 SN−1, θ+N(sN) 6= θ−N(sN) and θ
+
1 (s1) 6= θ−1 (s1).

Suppose that θ+N(sN) > θ−N(sN).
4 Then, since H has full support on the type

space, e+(t; sN) > e−(t; sN) for all t 2 intT and ∆(sN) > 0 as in the left panel of

Figure A.1. Similarly, suppose θ+1 (s1) < θ−1 (s1). Then e
+(t; s1) < e−(t; s1) for all

t 2 intT and ∆(s1) < 0 as in the right panel of Figure A.1. Consider a continuous

map s : [0, 1] ! SN−1 such that s(0) = sN and s(1) = s1. Then ∆(s(x)) is a

continuous function such that ∆(s(0)) > 0 and ∆(s(1)) < 0. By continuity, there

exists x∗ 2 (0, 1) such that ∆(s(x∗)) = 0. !

2It can be simply shown that θ+(s) and θ−(s) are continuous functions of s by the dominated
convergence theorem.
3Since E[u(e+(t; s))] − E[u(e−(t; s))] is a continuous odd function of s, this lemma can be proved
without Lemma 4 as in the proof of Theorem 1 of Chakraborty and Harbaugh (2010). However,
the current approach better illustrates the expert’s strategies and the proof of Proposition 3.
4If the inequality does not hold for sN , then the desired inequality holds for −sN .
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Figure A.1. Estimates Induced by Two Orientations sN and s1

Last, we can easily check that E[θ(t)] is a convex combination of e+(t; s) and

e−(t; s) with weights P+(s) and P−(s) for any t, where P i(s) ≡ Pr(θ 2 Θi(s)) for

i = +,−.5

Proof of Proposition 2 Choose any c 2 intΘ. Then, by Lemma 5, we can find

s∗ 2 SN−1 such that E[u(e+(t; s∗))] = E[u(e−(t; s∗))]. Consider a simple strategy

as follows. If the expert observes θ 2 Θ+(s∗) (Θ−(s∗)), the expert draws a state

from Θ+(s∗) (Θ−(s∗)) according to a probability distribution on the subset and

sends the decision maker the drawn state. This fully specifies the expert’s strategy

because Θ+(s∗) [ Θ−(s∗) = Θ. Given this strategy, the decision maker estimates

the expected θ(t) based on the sent message. The estimate is e+(t; s∗) (e−(t; s∗)) if

the alleged state is in Θ+(s∗) (Θ−(s∗)). Since E[u(e+(t; s∗))] = E[u(e−(t; s∗))], the

expert’s strategy maximises his ex ante payo§.

5For any t 2 T ,

P+(s)e+(t; s) + P−(s)e−(t; s) =

NX

i=1

(P+(s)θ+i (s) + P
−(s)θ−i (s))(Hi−1(t)−Hi(t))

=

NX

i=1

E[θi](Hi−1(t)−Hi(t))

= E[θ(t)].
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Upon the strategy, the expert’s expected payo§ is

E[u(e+(t; s∗))] = (P+(s∗) + P−(s∗))
R
T
u(e+(t; s∗)) dG(t)

=
R
T
[P+(s∗)u(e+(t; s∗)) + P−(s∗)u(e−(t; s∗))] dG(t)

≥
R
T
u(P+(s∗)e+(t; s∗) + P−(s∗)e−(t; s∗)) dG(t)

= E[u(E[θ(t)])],

where the inequality holds if u is convex, and the last term is the expert’s expected

payo§ without communication. Thus, the expert is not worse o§ with the communi-

cation for any realised state so long as u is convex. If u is strictly convex, the expert

is strictly better o§ with the equilibrium communication. The opposite holds if u is

(strictly) concave.

Now, consider a system of simultaneous equations e+(t) = E[θ(t)] or
PN

i=1(θ
+
i −

µi)(Hi−1(t) − Hi(t)) = 0 for t 2 T0 ⊂ T for some finite set T0. Since H has full

support on T , the problem consists of |T0| equations. Then, only when |T0| ≤ N ,

the system admits a solution {θ̂i}Ni=1 such that
PN

i=1(θ̂i − µi)(Hi−1(t) −Hi(t)) = 0

for t 2 T0. Thus, we have Pr[t 2 T0] = 0. Since e+(t) 6= E[θ(t)] whenever t /2 T0, the

decision maker can make an informed decision with probability 1. This completes

the proof. !

Proof of Proposition 3 An interior point c 2 intΘ and an orientation s 2 SN−1

are represented in coordinates by c = (c1, . . . , cN) and s = (a1, . . . , aN). Then, (c, s)

defines two subsets of the state space, Θ+ = {θ 2 Θ|
PN

i=1 ai(θi−ci) ≥ 0} and Θ
− =

{θ 2 Θ|
PN

i=1 ai(θi − ci) < 0} and corresponding estimates e
+(t; c, s) and e−(t; c, s).

Choose a > 0. Let ai = a for i = 1, . . . , n for some 1 < n < N and ai = −1 for

i = n+1, . . . , N and e+(t; a) and e−(t; a) denote the corresponding estimates. Since

F is invariant, we have θ+i = θ+a > E[θi] for i = 1, . . . , n and θ
+
i = θ+−1 < E[θi] for

i = n+1, . . . , N . Thus, we have e+(t; a) = θ+a +(θ
+
−1−θ

+
a )Hn(t), which is decreasing

in t with e+(t0; a) > 0 > e+(tN ; a). Similarly, e−(t; a) = θ−a + (θ
−
−1 − θ−a )Hn(t),

which is increasing in t with e−(t0; a) < 0 < e−(tN ; a). Suppose E[e+(t; a)] ≥

E[e−(t; a)]. If E[e+(t; a)] = E[e−(t; a)], we have found a strategy which is first-

order. If E[e+(t; a)] > E[e−(t; a)], we can find a0 2 (0, a) such that E[e+(t; a0)] =

E[e−(t; a0)]. For a second-order strategy, let ai = a for i = n, . . . , n + k for some

k 2 N[ {0} such that n+ k < N and ai = −1 for i = 1, . . . , n− 1, n+ k+1, . . . , N .
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Then, e+(t; a) = θ+−1 + (θ
+
a − θ+−1)(Hn−1(t) − Hn+k(t)) is a uni-modal function for

d
dt
(Hn−1(t)−Hn+k(t)) = (n+ k)H(t)n−2h(t)(n−1n+k

−H(t)k+1), where dH
dt
= h. Thus,

once we find a0 such that E[e+(t; a0)] = E[e−(t; a0)] in the previous manner, the

corresponding strategy is second-order. !

Proof of Proposition 4 The proposition is directly derived by Proposition 2

and the inductive argument used in the proof of Theorem 4 in Chakraborty and

Harbaugh (2010). !

Proof of Proposition 5 LetM be a 2-message informative equilibrium strategy in

a one-way cheap talk game, and messages in M lead to decision maker’s estimates

e+(t) and e−(t). Then, TM \ intT 6= ;. Otherwise, e+(t) > E[θ(t)] > e−(t) or

e−(t) > E[θ(t)] > e+(t) for any t 2 intT so that E[u(e+(t))] 6= E[u(e−(t))], which

contradicts that M constitutes an equilibrium.

Choose consecutive types p, q, r 2 TM [ {t0, tN} such that q 2 TM \ {t0, tN} and

p < q < r, where t0 and tN are the end points of T (Figure A.2), and the sign of

e+(t) − e−(t) reverses only at q in (p, r). Without loss of generality, suppose that

e+(t) > e−(t) for t 2 (p, q) and e+(t) < e−(t) for t 2 (q, r) and
Z

(p,r)

g(t)u(e+(t)) dt ≤
Z

(p,r)

g(t)u(e−(t)) dt.

Then, for any t∗1 2 (p, q), there exists t∗2 2 (q, r) such that
Z

(t∗1,t
∗
2)

g(t)u(e+(t)) dt =

Z

(t∗1,t
∗
2)

g(t)u(e−(t)) dt

because e+ and e− are continuous functions.

Repeating this procedure, we can find a finite set of exclusive intervals {T1, . . . , Tp}

such that
R
Ti
g(t)u(e+(t)) dt =

R
Ti
g(t)u(e−(t)) dt for i = 1, . . . , p, where 1 ≤ p ≤

|TM |. Consider a strategy N which consists of a partition {T1, . . . , Tp, T \[pi=1Ti} in

which a decision maker, whose type belongs to one element of the partition, draws

an arbitrary type from the subset according to a probability distribution and sends

it to the expert. Then, the expert is still indi§erent between two messages in the

original strategy M . Therefore, two strategies N and M constitute an equilibrium

in the two-way game. !
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Figure A.2. Construction of Revelation Strategy

Proof of Proposition 6 If TM = {t01} with t01 2 intT , the possible form of strategy

is {T1, T \ T1} where t01 2 T1 ⊂ T and t0, tN /2 T1. Therefore, if T1 6= T , the strategy

is not first-order.

If TM = {t01, t02} with t01, t02 2 intT , there exists t∗ 2 (t01, t02) such that
Z

(t0,t∗)

g(t)u(e+(t)) dt =

Z

(t0,t∗)

g(t)u(e−(t)) dt.

Thus, the decision maker’s strategy N = {[t0, t∗), [t∗, tN ]} is first-order and consti-

tutes an equilibrium. !

A.2. A Model of Satisficing Behaviour

Proof of Proposition 7 Given a transition probability function P for (φn, ηn) on

Φ×Υ, let (Ω,F ,Pφ,η) be the corresponding filtered space, where Ω is the canonical

sample space (Φ×Υ)1. Then, since a sequence {sn,i(!)} is monotone and bounded

for all i and ! 2 Ω, it has a limit s1,i 2 Si. Suppose the proposition does not hold,

or at least one satisficing decision maker infinitely often does not satisfice with her

actions. This implies that the sequence of the decision maker’s satisficing level does

not have a limit, which contradicts. !

We introduce definitions and results in Markov process literature that are es-

sential for the following proofs. A Markov process φn (or P ) is weak-Feller if P

maps the space of bounded and continuous functions on Φ into itself. A process
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φn is '-irreducible if there exists a non-trivial measure ' on B(Φ) such that, when-

ever '(B) > 0, U(φ, B) ≡
P1

n=1 P
n(φ, B) > 0 for any φ. Furthermore, a set

C 2 B(Φ) is called a small set if there exists m 2 N and a non-trivial measure ν

on B(Φ) such that for all φ 2 C and B 2 B(Φ), Pm(φ, B) ≥ ν(B). And, if φn is

'-irreducible, then by Proposition 4.2.2 in Meyn and Tweedie (1993) (henceafter

MT), there exists a maximal irreducibility probability measure  on B(Φ) such

that (i) φn is  -irreducible, (ii) for any other measure '
0, the process φn is '

0-

irreducible if and only if '0 is absolutely continuous with respect to  , and (iii) if

we let B+(Φ) ≡ {B 2 B(Φ)| (B) > 0} for the sets of positive  -measure, B+(Φ) is

unique. φ is called recurrent if it is  -irreducible and U(Φ, B) =1 for every φ and

every B 2 B+(Φ). Lastly, a set B 2 B(Φ) is Harris recurrent if Pφ(ηB = 1) = 1

for all φ 2 B, where ηB ≡
P1

n=1 1{φn 2 B}, and a process φn is Harris recurrent

if it is  -irreducible and every set B 2 B+(Φ) is Harris recurrent. If in addition

the process φn admits an invariant probability measure, then it is positive Harris

recurrent.

It is known that if a positive Harris recurrent Markov process is aperiodic and

has a unique invariant probability measure, its n-step t.p.f. strongly converges to

the measure: for any φ, P nϵ (φ, ·) converges to µϵ in the total variation norm.
6 A

process is periodic if there exists a minimum periods of time d > 1 such that once

the process leaves a subset, it takes multiples of d for the process to return to the

set.7 If n = 1, the process is aperiodic. Because of the trembling behaviour, if φn

returns to a subset in n periods, it also could return in n+1 periods. Therefore, φn

is aperiodic. The following proof shows that (φn, ηn) is positive Harris recurrent for

any positive ϵ and λ.

Proof of Proposition 8 Since the process (φn, ηn) is weak-Feller and Φ × Υ is

a compact metric space, Pϵ admits an invariant probability measure µ by Theorem

7.2.3. in Hernández-Lerma and Lasserre (2003) (henceafter HL). And, since both

shocks occur independently to all decision makers with positive probabilities and

the state space is compact, we can construct a non-trivial measure ' such that the

6The norm is defined as
||µ|| ≡ sup

A2B(Φ)
µ(A)− inf

A2B(Φ)
µ(A).

7For the formal definition and related properties, refer to Theorem 5.4.4 in MT.
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process (φn, ηn) is '-irreducible, and furthermore, the whole state space is a small

set with respect to '. Thus, the process is  -irreducible, which implies that µ is the

unique invariant probability measure for Pϵ by Proposition 4.2.2. in HL. And, by

Proposition 9.1.7. in MT, (φn, ηn) is positive Harris recurrent. Thus, by Theorem

4.3.4. in HL, we have the result. !

The next asymptotic result is when ϵ approaches 0. To characterise the limit

of the invariant p.m. µϵ as ϵ # 0, we decompose the perturbed process Pϵ into

components as

Pϵ = (1− ζ(ϵ))P + ζ(ϵ)Qϵ

where ζ(ϵ) is the probability that at least one player experiences a shock, and Qϵ is

the conditional t.p.f. And, Qϵ can be further decomposed as

Qϵ = (1− ξ(ϵ))Q+ ξ(ϵ) eQ

where 1 − ξ(ϵ) is the conditional probability of only one player experiencing only

one shock, either the first or the second, given that at least one player experiences

a shock, and Q is the conditional t.p.f.8 eQ is the t.p.f. when more than one shock

occur.

Before proceeding to characterise the limit of µϵ in the proof of Proposition 9,

we analyse the limit of P n as n grows.

Lemma 6. There exists a weak-Feller t.p.f. P1 such that, for any f 2 C(Φ ×

Υ), |Rϵf − P1f |! 0 as ϵ! 0.

Proof Consider a sequence of functions {P nf}n≥0 for f 2 C(Φ × Υ). Let An ≡

{!|sn ≤ min π(an)}. Eφ,η(·) is the expected value with respect to Pφ,η. For any

8With ϵa and ϵs for trembling probabilities on action and satisficing levels,

ζ(ϵ) = 1− (1− ϵa)I(1− ϵs)I

ξ(ϵ) = 1−
I(ϵa(1− ϵa)I−1(1− ϵs)I + ϵs(1− ϵa)I(1− ϵs)I−1)

ζ(ϵ)
.
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n,m ≥ 0,

|P 2nf(φ, η)− P 2n+mf(φ, η)|

= |Eφ,η[f(φ2n, η2n)− f(φ2n+m, η2n+m)]|

≤ |Eφ,η[(f(φ2n, η2n)− f(φ2n+m, η2n+m))1An ]|

+|Eφ,η[(f(φ2n, η2n)− f(φ2n+m, η2n+m))1Ω!An ]|

≤ sup
s≤u

|Eφ,η[f(φn, ηn)− f(φn+m, ηn+m)]|

+2Pφ,η(Ω!An)||f ||

= sup
s≤u

|P nf(φ, η)− P n+mf(φ, η)|+ 2Pφ,η(Ω!An)||f ||.

If s ≤ u, by the property of the satisficing behaviour and the second condition

imposed on the auxiliary state, the subsequent process reduces to the dynamics of

valuations {vn}n≥0 of a certain action profile a with a t.p.f. induced by µρ, and, if

applied, the distribution of w 2 W . Since the outcome is stationary conditional

on a, the reduced process is positive Harris recurrent and aperiodic. Thus, for any

(φ, η) with s ≤ u,

sup
s≤u

|P nf(φ, η)− P n+mf(φ, η)| ≤ ||f || sup
s≤u

|P n((φ, η), ·)− P n+m((φ, η), ·)|,

which approaches 0 as n approaches infinity. And, as shown in Proposition 7,

Pφ,η(An)! 1 as n!1 for any (φ, η) 2 Φ×Υ. Therefore, we have

sup
m>0

||P 2nf(φ, η)− P 2n+mf(φ, η)||! 0 as n! 0.

Since {P nf}n≥0 is a Cauchy sequence in C(Φ×Υ) equipped with the sup norm, and

hence converges in C(Φ × Υ), by Proposition 3.4 in Chasparis et al. (2013), there

exists a weak-Feller t.p.f. P1 such that for any f 2 C(Φ×Υ)

||P nf − P1f ||! 0 and ||Rϵf − P1f ||! 0 as n!1,

where Rϵ ≡ ζ(ϵ)
P1

n=0(1− ζ(ϵ))nP n. !

Proof of Proposition 9 (1) Post-multiplying both sides of Pϵ = (1 − ζ(ϵ))P +

ζ(ϵ)Qϵ by Rϵ, PϵRϵ = Rϵ− ζ(ϵ)I + ζ(ϵ)QϵRϵ, where I denotes the identity operator.

And, pre-multiplying an invariant p.m. µϵ of Pϵ, µϵRϵ = µϵRϵ−ζ(ϵ)µϵ+ζ(ϵ)µϵQϵRϵ,
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which is simplified to µϵ = µϵQϵRϵ. (2) For any f 2 C(Φ×Υ),

kQϵRϵf −QP1fk ≤ kQϵ(Rϵf − P1f)k+ kQϵP1f −QP1fk

≤ kRϵf − P1fk+ kQϵP1f −QP1fk,

where the first and second terms on the right hand side tend to 0 as ϵ # 0 by Lemma

6 and the definition of Qϵ. (3) Let µ0 be an accumulation point of {µϵ}ϵ#0, which

exists by Banach-Alaoglu theorem. For any f 2 C(Φ×Υ),

kµ0f −µ0QP
1fk ≤ kµ0f −µϵfk+kµϵ(QϵRϵf −QP

1f)k+kµϵQP
1f −µ0QP

1fk,

where the first and third terms tend to 0 as ϵ # 0 along some subsequence by the

weak convergence of {µϵ}ϵ#0 to µ0, while the second term is dominated by kQϵRϵf −

QP1fk which also tends to 0 as shown above. Thus, we have µ0 = µ0QP
1 by

Theorem 1.2 in Billingsley (1999). !

Proof of Proposition 10 Without loss of generality, we assume that a1 is

the unique maximin action and s0 ≤ min π(a1), which is guaranteed by Proposi-

tion 7. Let E1(aj) ≡ {!|an = aj for all n ≥ m for some m 2 N}. We show

Pφ0([
J
j=2E1(a

j)) ! 0 as λ ! 0 if s0 2 (min π(a2),min π(a1)]. If a0 = a1, the re-

sult is trivial. Suppose that a0 6= a1. Since µα assigns positive probabilities to

all alternatives, the maximum probability which the decision maker assigns to non-

maximum actions is bounded above by some constant lower than 1 at any time, that

is, δ ≡ maxφ{
PJ

j=2 µα({a
j};φ)} < 1. Let g(λ; s0) denote the minimum number of

switching actions required for the satisficing level to get as low as min π(a2) given φ0

and λ. Since the number can be minimised when the decision maker repeatedly re-

ceives the worst payo§, min π, g(λ; s0) =
⌈
(s0 −min π(a2))/(λ(s0 −min π))

⌉
, where

dxe is the ceiling function returning the smallest integer not less than x 2 R. Let

Cn ≡ \nm=0{!|am 6= a1} denote the event in which the maximin action is not chosen

for the first n + 1 times. Let D ≡ {φ|s ≤ min π(a2)} and τD ≡ {n ≥ 1|φn 2 D}.
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Then, for any λ > 0,

Pφ0([
J
j=2E1(a

j)) = Pφ0([
1
m=g(λ;s0)

{! 2 Ω|τD = m})

≤
1X

m=g(λ;s0)

Pφ0({!|τD = m})

≤ Pφ0(Cg(λ;s0))
1X

m=g(λ;s0)

Pφ0({!|τD = m}|Cg(λ;s0))

≤ δ
g(λ;s0)

,

which vanishes as λ ! 0 for any s0 2 (min π(a2),min π(a1)]. This completes the

proof. !

Proof of Proposition 11 Without loss of generality, we assume that there exists

a unique maximin action a1. First, we show that QP1 has a unique invariant p.m.

µ0. Let C ≡ {φ|a = a1, s ≤ min π(a1)} and D ≡ {φ|a = a1, s ≥ min π(a2)}. Then,

Q(φ, C [ D) ≥ δ1 for any φ for some δ1 > 0. And, for any φ 2 D, as shown

in the proof of Proposition 10, P1(φ, C) ≥ δ2 for some δ2 > 0. Thus, if we let

δ ≡ δ1 · δ2, QP1(φ, C) ≥ δ > 0 for any φ. This implies that QP1 is  -irreducible.

And, since QP1 is weak Feller, it admits an invariant probability measure. Then,

by Proposition 4.2.2 in HL, an invariant p.m. of QP1 is unique. Second, let

C∗ ≡ {φ|a = a1 and s 2 (min π(a2),min π(a1)]}. Then, QP1(φ, C∗) converges to 1

as λ ! 0 for any φ 2 C∗ as shown in Proposition 10 and QP1(φ, C∗) ≥ δ for any

φ for some δ > 0 as shown above. Therefore, µ0(C
∗)! 1 as λ! 0. !

Proof of Proposition 12 Let AC and AD denote the sets of unilaterally compet-

itive Nash and payo§ dominant profiles, respectively. Without loss generality, we

assume the unilaterally competitive Nash profile is strict, i.e., there exists a unique

such equilibrium. We show (i) for any a∗ 2 AC [ AD, Φ(a∗) ≡ {φ|ai = a∗i , si 2

(bπi(a∗), πi(a∗)] for i = 1, 2} becomes invariant in QP1 as λ ! 0, where bπi(a∗)

is defined as maxa0 6=a∗ πi(a0i, a
∗
−i) if a

∗ 2 AC and maxa02AC πi(a0) if a∗ 2 AD, and

(ii) if a state does not belong to one of the invariant sets, it enters Φ(a) for some

a 2 AC [AD with positive probability in finite repetitions of QP1, that is, for any
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φ with a /2 AC [ AD and s ≤ π(a), (QP1)n(φ,Φ(a∗)) ≥ δ for some a∗ 2 AC [ AD,

δ > 0 and n <1.

(i) If a∗ is unilaterally competitive Nash, it is trivial to show Φ(a∗) becomes

invariant as λ! 0 because any single tremble by a player cannot change the other’s

action. Suppose a∗ is payo§ dominant. It is enough to show that starting from any

state φ with ai 6= a∗i for some i the process enters Φ(a
∗) in finite repetitions of P

with positive probability as long as all players’ satisficing levels are fixed at π(a∗).

As long as the current action profile di§ers from a∗, at least one player, say player

1, does not satisfice by the definition of the payo§ dominance. Then, the following

period, with positive probability, player 1 could either switch to or continue with

an action a01 such that (a
0
1, a

0
2) 2 AC for some a02. If player 2’s action is not a02, she

does not satisfice thus either switch to or continue with a02 the following period while

player 1 chooses a01 again with positive probability. Then, both do not satisfice and

switch to a∗ with positive probability. This sequence of states shows that once a

state belongs to Φ(a∗), following any single tremble, players will return to the initial

action profile with probability 1 as λ −! 0.

(ii) Now suppose that players satisfice with an action profile a0 2 A, which

is neither unilaterally competitive Nash nor payo§ dominant.9 Without loss of

generality, we assume their satisficing levels are equal to its payo§s, i.e., s = π(a0).

We show that starting from these states the process enters Φ(a∗) for a∗ 2 AC[AD in

finite repetitions of QP1 with positive probability. First, suppose that a0 is strictly

preferred to any a 2 AC . If one player trembles to choose a unilaterally competitive

Nash action. Then, since both players do not satisfice, the process could enter Φ(a∗)

for some payo§ dominant profile a∗ with positive probability: in the first following

period, players sequentially switch to the payo§ dominant actions a∗1 and a
∗
2 and in

the subsequent repetitions of QP1, their satisficing levels are raised up to π(a∗) with

finite trembles. Second, suppose at least one player, say player 1, will satisfice with a

unilaterally competitive Nash profile a∗, that is, s01 ≤ π1(a
∗). If the player trembles

to choose the equilibrium action a∗1, through the subsequent infinite repetitions of

9If players satisfice with a 2 AC [ AD but the state φ0 does not belong to Φ(a∗), as each player
trembles to raise their satisficing levels sequentially, the state can enter the invariant set in 2
repetitions of QP1.
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P, if not, player 2’s satisficing level will decrease as low as π2(a∗) while player 1

satisfices with a∗1 for any level of λ. !

Proof of Proposition 13 Suppose players for each role, row and column, are ran-

domly drawn from two separated populations I = {1i, . . . , Ii} and J ={1j, . . . , Ij},

respectively.10 Without loss of generality, we assume each period only one pair of

players are picked, play the two-player game and update their states while the other

players’ states stay the same. Let φn ≡ (φn,1i , . . . ,φn,Ii ;φn,1j , . . . ,φn,Jj) 2 Φ denote

period-n state of all satisficing decision makers. We show (i) for any a∗ 2 AC [AD,

Φ(a∗) ≡ {φ|ai = a∗1, aj = a∗2, si 2 (bπ1(a∗), π1(a∗)], sj 2 (bπ2(a∗), π2(a∗)] for all i 2 I

and j 2 J } becomes an invariant set of QP1 as λ! 0 and (ii) if a state does not

belong to the invariant set, it enters into one of the sets with positive probability in

finite repetitions of QP1.

(i) If a∗ is unilaterally competitive Nash, it is trivial to show Φ(a∗) becomes

invariant as λ ! 0. Suppose that a∗ is payo§ dominant and all players’ satisficing

levels are fixed at π1(a∗) or π2(a∗) according to their roles. Then, consider a sequence

through which a pair of players whose action profile is not a∗ are picked consecutively

until they switch to a∗, then another pair of players whose action profile is not a∗

are picked until they switch to a∗, and so on. By Proposition 12, each pair can

switch to a∗ within finite repetitions of P with positive probability. Then, since the

populations are finite, the whole sequence can be completed with all players playing

a∗ within finite periods with positive probability.

(ii) The second argument is similar to the second part of the proof of Proposition

12. If all players’ satisficing levels are higher than the payo§s from the unilaterally

competitive Nash profiles, the same argument in the previous proof applies. Sup-

pose at least one player’s satisficing level is lower than or equal to a payo§ from a

unilaterally competitive Nash profile. If the player, say a row player, trembles to

choose a corresponding action of the Nash profile, in the infinite sequence of plays,

all column players will be matched with the row player infinitely often until their

10The following arguments equally apply to the case in which players are drawn from a single
population to play a symmetric game.
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satisficing levels get as low as the Nash outcome and satisfice with the Nash ac-

tion, during which all row players also get their satisficing levels as low as the Nash

outcome and satisfice with the Nash action. !

Since Proposition 14 is a special case of Proposition 15, we just prove the latter.

Proof of Proposition 15 We show that (i) only the sets that are associated with

Pareto optimal action profiles are invariant respect to QP1 in the limit as λ ! 0,

and (ii) any state in which the action profile is not Pareto optimal and all satisficing

decision makers satisfice enters one of the invariant sets with positive probability in

finite repetitions of QP1.

(i) Choose a Pareto optimal action profile a∗. We need to show that starting from

any state φ in which all players’ satisficing levels are very close to π(a∗) but their

some decision makers’ current actions are di§erent from a∗, the process returns to

Φ(a∗) in finite repetitions of P with positive probability. Suppose that for su¢ciently

long, but finite periods, the same I players are repeatedly selected and play the

game. Then, by the first condition of Definition 9, the player becomes to choose a∗

with positive probability in the repetitions without trembles. Since each population

is finite, this procedure applies to all other players so that the whole population

can become to choose a∗ with positive probability within finite repetitions without

trembles.

(ii) Consider a state φ in which all players satisfice but their action profile is not

Pareto optimal. This implies that there exists a non-Pareto optimal action profile

a1 with which all players satisfice and, furthermore, all players can move to a1

through finite trembles. Choose a Pareto optimal action profile a∗ of the game. By

the definition of Pareto optimality, there exists a sequence of unilateral deviations

(a1, . . . , aM = a∗) for some finite M . Then the whole population of players can

sequentially tremble to coordinate on a∗ = aM . !

Proof of Proposition 16 We show that unilaterally competitive Nash profiles

constitute an invariant set of QP1. First, we show Φ(AC) ≡ [a2ACΦ(a), where Φ(a)

is defined as in Proposition 12, is invariant. If player i deviates to ai /2 {ai|a 2 AC},

she never satisfices, thus keeps switching actions until she returns to the original
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action while other players keep choosing their initial action profile. Second, we

show that from any state φ with a /2 AC , the process enters Φ(a∗) for some a∗ 2 AC

with positive probability. Consider an initial state φ1 = (φ11, . . . ,φ
1
I) /2 Φ(a∗). By

(A.2), without loss of generality we can assume s1i ≤ πi(a
∗) for all i. If player i

trembles to choose a∗i , since her satisficing level is not higher than her equilibrium

payo§, she satisfices with a∗i regardless of others’ choices in the following periods

governed by P1 by Lemma 2. Other players also can tremble to their equilibrium

actions in this way. !

A.3. Satisficing Behaviour in Extensive Form Games

Since all satisficing players without trembles eventually satisfice and they expe-

rience upward perturbations in satisficing levels, when we characterise invariant sets

of QP1, we just need to consider states on the paths of which all players satisfice

and their satisficing levels are the same as the payo§s from the path if they are

following the path every repetition of a game. And, in the proofs, when a player

trembles on the path, we implicitly suppose some trembles o§ the path as required

in context have been made before the tremble occurs on the path.

Proof of Proposition 17 We show that if exists, only subgame dominant paths

are played by satisficing players, which also implies that weakly dominant paths are

played with positive probabilities. Let p∗ be a subgame dominant path and define

Φ∗ = {φ 2 Φ|p∗ = N (b), vi(h) = si(h) = πi(p
∗) for all i 2 I(p∗) and h 2 Hi(p

∗)}

and Φ
∗
= {φ 2 Φ|si(h) = πi(p

∗) for all i 2 I(p∗) and h 2 Hi(p
∗)}. We show that as

λ! 0, (QP1)(φ,Φ∗)! 1 for any φ 2 Φ∗ and (QP1)n(φ,Φ∗) > δ for some n <1

and δ > 0 for all φ 2 Φ.

(i) Suppose the current state is φ∗ 2 Φ∗. Without trembles, satisficing players

will stay with the path p∗ forever. Suppose player i 2 I(p∗) trembles on the path.

We show that for any φ 2 Φ∗, P1(φ,Φ∗) = 1 as λ −! 1. Pick an arbitrary path p0.

At n0, ι(n0) can choose a(n1) such that n1 2 p∗ and keep choosing the action for

the next finite repetitions of the game with some positive probability δ0, regardless

of whether the player satisfices or not. And, in the following period, ι(n1) may

choose a(n2) such that n2 2 p∗ at n1 and keep choosing the action for the following

repetitions of the game with some positive probability δ1, regardless of whether the
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Figure A.3. 2 × 2 Games with Outside Options

player satisfice or not. Since the game is finite, all players who have turns along

the path p∗ can become to choose actions on the path within finite repetitions of P

with some probability at least δ0 · · · δJ > 0 for some J <1.

(ii) For the second part, we show that from any state φ in which a path is played

and satisficing players who move along the path satisfice, players become to play the

dominant path p∗ in finite repetitions of QP1 with positive probability. Suppose

that players are satisficing with a path p0. And, let n0 be the first node of p0 from

which p∗ di§ers, i.e., there exists n00 such that n00 2 p∗ but n0 /2 p∗. While players are

satisficing with p0, with a finite sequence of trembles, their behaviours can change so

that at all nodes along the dominant path except those of p0 players choose actions

along the dominant path. Then, once player ι(n00) trembles to choose an action on

the dominant path, all subsequent moves will be determined by p∗ and all the players

who move along the path will satisfice. After then, if those players’ satisficing levels

are raised up to the payo§ π(p∗), the transition is completed. For weakly dominant

paths, the second argument applies. !

Proof of Proposition 18 Consider the Battle of the Sexes game with an outside

option in the left panel of Figure A.3. We show that only path ((P, F ), F ) is robust

to single trembles and attracts players on all other paths. (i) Suppose that both

players are satisficing with the path and their satisficing levels are 3 at player 1’s

two information sets and 1 at player 2’s information set. To show that any single

tremble cannot make player stays o§ the path permanently, it is enough to show

that from any state, they return to the path as long as their satisficing levels are

87



fixed at 3 and 1 in finite repetitions with positive probability. Suppose that they

happen to play ((P,O), O). Then, player 1 does not satisfice so that in the following

period they may play ((P, F ), O) and both players do not satisfice, which leads to

((P, F ), F ). At ((T, ·), ·), player 1 does not satisfice and choose P, then they will play

((P, F ), F ) again. (ii) Suppose both players satisfice with ((P,O), O) with satisficing

levels 1 and 3 at corresponding information sets. If player 1 trembles to choose T

at the first information set, player 1 satisfices with the outcome ((T, ·), ·) for the

following infinite repetitions of the game without trembles. Then, both players can

tremble to choose ((P, F ), O) or ((P,O), F ) so that player 2’s satisficing level at

her information set gets as low as 1 while player 1 keeps choosing T. Then, if both

players tremble to choose ((P, F ), F ), both satisfice. !

Proof of Proposition 19 Consider the Prisoner’s Dilemma game with an outside

option in the right panel of Figure A.3. We show only one profile ((P,C), C) is

robust to single trembles and attracts players on all other paths. As in the Battle of

the Sexes game, once players satisfice with ((P,C), C) with corresponding satisficing

levels 3 at all information sets, any single tremble cannot make players stay o§ the

path permanently. Thus, we only need to show that from any path with which

players satisfice, they become to play ((P,C), C) within finite repetitions of a single

tremble and subsequent infinite plays. From ((P,C), D) and ((P,D), D), players

could reach ((P,C), C) via ((T, ·), ·) as shown above in the Battle of the Sexes

game. Suppose that players satisfice with ((P,D), C) with satisficing levels 4 and 0

at corresponding information sets. If player 2 trembles to choose D, since player 2

satisfices with the action at her information set, player 1 keeps switching between

(T, ·), (P,C) and (P,D) until his satisficing level at his first information set gets

as low as 2 and player 1 satisfices with ((T, ·), ·). Then, if both players tremble to

choose ((P,C), C), both satisfice. !

Proof of Proposition 20 A two stage Prisoner’s Dilemma game with b = 3

and c = 1 is depicted in Figure A.4. We show that (i) ‘always cooperate’ path is

robust to single trembles and (ii) all other paths are not given the hypothesis of the

proposition.
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Figure A.4. Repeated Prisoner’s Dilemma

(i) It is enough to show that if players’ satisficing levels at all information sets

on the ‘always cooperate’ path are fixed at (nb, nb), in any subgame that has its

root node on the ‘always cooperate’ path, players choose mutual cooperation within

finite repetitions of the game with positive probability.11 In those subgames, if

players currently choose (C,D) or (D,C) and proceed to terminal nodes, at least

one player, player 1 in the case of (C,D) and player 2 in the case of (D,C) by

the condition of the proposition, does not satisfice, and the following period players

could proceed to (D,D) in the same subgame with positive probability. Then, again

by the condition both player do not satisfice and choose (C,C) in the subgame the

following period with positive probability.

(ii) Suppose that players are currently satisficing with a path from which both

receive payo§s lower than 2b, the payo§s from the ‘always cooperate’ path. Among

those, the highest payo§ for player 2 is (n − 1)b + 2c and player 1’s corresponding

payo§ is (n − 2)b + c, which can be achieved from a path, say p0, that involves

playing (D,D) in the first stage, (C,C) in n−2 stages and (C,D) in only one stage.

The same payo§s also can be received from a path, say p1, that starts with (C,D)

in the first stage. Then, a single tremble by player 1 can make players switch from

p0 to p1, where both satisfice, and another tremble by player 2 can make players

11For example, in Figure A.4, only the subgame that follows the mutual cooperation in the first
stage game is on the ‘always cooperate’ path but the other proper subgames are not and as long as
players’ satisficing levels are fixed at 6 at the information sets in the first stage and in the subgame
following (C,C) in the first stage, the probability of both players choosing (C,C) is positive in the
first stage and the subgame regardless of their current behaviour.
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Figure A.5. Repeated Battle of the Sexes

switch from p1 to the ‘always cooperate’ path. And, the second highest payo§ for

player 2 is (n − 1)b + c, which is also the payo§ for player 1 from a path of n − 1

times of (C,C) and one initial (D,D) in the case players choose (D,D) in the first

stage. For these payo§s, we also can find a path that starts with (D,C) in the first

stage. Then, the same argument applies. Similarly, we can show that starting from

any path that returns payo§s lower than (nb, nb), the process can reach the ‘always

cooperate’ path with finite single trembles.

(iii) Now suppose that players are currently satisficing with a path p0, from

which one player, say player 2, receives a payo§ higher than nb. This path must

start with (C,C) or (C,D) in the first stage given the hypothesis of the proposition.

We consider two paths p1 and p2: p1 (resp. p2) starts with (D,C) (resp. (D,D)) in

the first stage and both return payo§s (n − 1)b + 2c for player 1 and (n − 2)b + c

for player 2. Suppose that while players are satisficing with p0, finite trembles make

them choose and satisfice with p1 or p2 o§ the path. Then, a single tremble from p0

can make player 2 keep switching between C and D in the first stage infinitely until

player 2’s satisficing level at her information set in the first stage game gets as low

as (n− 2)b+ c while player 1 satisfices with p1 and p2. Then, (ii) applies. !

Proof of Proposition 21 A two stage Battle of the Sexes game with b = 2 and

c = 1 is depicted in Figure A.5. We show that if the game is repeated 2n times,

each of (F, F ) and (O,O) is selected n times and players’ payo§s are n(b+ c) most
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of the times given the hypothesis. The proof is similar to that of Proposition 20.

Let P ∗ denote the set of paths in which players receive the same payo§s n(b+ c).

(i) Suppose players’ satisficing levels at their information sets along a path p∗ 2

P ∗ are the same as n(b+c). Note that if players fail to coordinate in any single stage,

the maximum payo§ that a player can achieve is (2n − 1)b. Thus, the condition

b < n
n−1c implies that once they fail to coordinate on either (F, F ) or (O,O) in

any stage, no one can satisfice with respect to the satisficing level n(b + c). Also

note that no path exists such that both players receive higher payo§s than n(b+ c).

Now we construct a sequence through which starting from any path players return

to the path p∗ 2 P ∗ without trembles within finite repetitions of the game with

positive probability as long as their satisficing levels are fixed at n(b + c). Choose

an arbitrary path p0 /2 P ∗. Along the path, at least one player, say player 1, receives

a lower payo§ than his satisficing level n(b + c) at the information set in the first

stage. The following period in the first stage player 1 continues or switches to the

action on p∗ in the first stage. If player 2 chooses the other action in the first stage,

her payo§ will be lower than her satisficing level n(b+c) at the information set, thus

the following period she also choose the same action as player 1. This procedure

can be repeated downward along the path p∗.

(ii) Now consider the cases in which players satisfice with a path. First, suppose

players are satisficing with a path from which both players receive payo§s lower

than n(b+ c). Then, we can simply find a sequence of paths through which players

move to a path in P ∗ with finite trembles: in every subgame where players fail

to coordinate, they could tremble to coordinate so that both players’ payo§s are

not greater than n(b + c). This works because the Battle of the Sexes games has

Pareto optimal outcomes that can be reached with one single tremble from any

non-Pareto outcome. Second, suppose that players are satisficing with a path p0 in

which a player, say player 2, receives a payo§ higher than n(b+ c). Then, player 1’s

maximum payo§ is (n− 1)b+(n+1)c. Now consider two paths p1 and p2 that start

with (O,F ) (or (F,O)) and (O,O) in the first stage and return payo§s ((2n−1)b, c)

and (n(b + c), n(b + c)), respectively. While players are satisficing with p0, some

trembles can make players choose and satisfice with p1 and p2 once they reach the

paths. Then, because of the condition n+1
n
c ≤ b, a single tremble from p0 can make
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player 2 keep switching between F and O in the first stage infinitely until player 2’s

satisficing level at her information set in the first stage game gets as low as n(b+ c).

Then, the above argument applies. !

Proof of Proposition 22 Let GS be a signalling game and B∗ be the set of all

complete profiles. We show that starting from any profile, players become to choose

a complete profile within finite repetitions of QP1, and from any complete profile,

a single tremble and subsequent infinite repetitions of the game without trembles

lead to the initial or another complete profile with probability 1 as λ goes to 0.

(i) Let TH(b0) 2 T denote the set of states from which both players achieve

the higher payo§s H given a profile b0, i.e., b02(b
0
1(t)) = f(t) for t 2 TH(b0). We

show that starting from an arbitrary φ0 with b0 and TH(b0) 6= T in which both

players satisfice for all t 2 T , which does not mean their payo§s are H, through

finite repetitions of QP1, the process reaches a set of states in which a complete

profile is played and both players’ satisficing levels are higher than the lower payo§

L. Choose a Nature’s action t0 /2 TH(b0) from which both players receive the lower

payo§s according to their profile b0. Suppose Sender trembles to choose an action

m0 /2 {m 2 M |b01(t) = m, t 2 TH(b0)} at the information set t0. If b02(m) = f(t0),

the modified profile is referred to as b1 and t0 2 TH(b1). Otherwise, through the

infinite repetitions of P , both players satisfice with b0. Then, if Receiver trembles

to choose the action a = f(t0) at the information set m0, the modified profile is

referred to as b1, and t0 2 TH(b1). Subsequently, both players’ satisficing levels are

raised up to H from L by two consecutive repetitions of QP1. This process can be

repeated whenever TH(b0) 6= T for some incomplete profile b0.

(ii) For the second part, it is enough to show that starting from any state in which

both players’ satisficing levels at all information sets are fixed and higher than L,

the process will reach a state in which their profile is complete in infinite repetitions

of the game with probability 1. The first part of proof shows that it takes place with

finite repetitions of QP1. Similarly, if the satisficing levels are higher then L, the

players become to play a complete profile in finite repetitions of the game without

trembles with positive probability. Therefore, as long as their satisficing levels are

fixed above L, they eventually play a complete profile with probability 1. !
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APPENDIX B

Equilibrium Strategies of Informative Communication

B.1. Equilibrium Outcomes with Di§erent Distributions of Types

We construct equilibrium strategies under di§erent priors to see the relation

between equilibrium strategy and distribution of the decision maker’s type. Equi-

librium strategies for di§erent distributions of types are depicted in Figure B.1.

The distribution functions are Beta(α, β) with di§erent sets of parameters, such as

(1, 3), (2, 3) and (2, 2).1 In Beta(1,3), the population is concentrated on left types or

the distribution is skewed to the right. In Beta(2,2), the population is symmetrically

distributed and concentrated on centre types. All distributions are uni-modal.2 The

other priors F and H are fixed as U[0, 1]2 and Beta(2,2), respectively.

Each equilibrium has been solved numerically by searching for a slope∆ 2 [0, 2π]

such that the expert is indi§erent between two messages generated by the hyper-

plane with the slope when the interior point c is fixed at (1/2, 1/2). Thus, given

an equilibrium slope ∆∗, two messages m+,m− are “θL − 1
2
≤ tan∆∗(θH − 1

2
)” and

“θL − 1
2
> tan∆∗(θH − 1

2
),” respectively. The solutions are as follows. First, when

α = 1 and β = 3, ∆ ≈ 1
10
π, E[(θL, θH)|m+] = (0.4402, 0.7393) and E[(θL, θH)|m−] =

(0.5598, 0.2607). Second, when α = 2 and β = 3, ∆ ≈ 1
5
π, E[(θL, θH)|m+] =

(0.3785, 0.7057) and E[(θL, θH)|m−] = (0.6215, 0.2943). Last, when α = 2 and β =

2,∆ = 1
4
π, E[(θL, θH)|m+] = (0.3333, 0.6667) and E[(θL, θH)|m−] = (0.6667, 0.3333).

The estimates derived from these are shown in the right-hand column of Figure B.1.

Comparing the figures, a relation between the distribution of types and the

decision maker’s estimate induced by the equilibrium messages is noticeable. As

the population is more concentrated on left types, the estimates e+(t) and e−(t)

by the decision maker of left types move closer to the uninformed. For message

m, we can interpret the di§erence between estimates with and without the message

|E[θ(t)|m] − E[θ(t)]| as the amount of information contained in the message. This
1The beta distribution is flexible in representing various distributions on the unit interval such as
uni-/bi-modal, skewed to the left/right and symmetric distributions.
2See the graphs on the left in the figure.
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Figure B.1. Distributions of Types and Equilibrium Outcomes

suggests that a message from the expert is more valuable to the decision maker of

right types than left types if the population is skewed to the right. The opposite

also holds true when the population is skewed to the left.
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APPENDIX C

Simulation of Satisficing Behaviour

Here we describe the common simulation setup and provide simulation results

for individual decision problems, normal form games and extensive form games. All

simulations are calculated with the same distributions and parameter values except

where otherwise stated.

The trembling probabilities and persistence parameter are set to 0.05 or 0.01 and

the same parameter values are applied to all satisficing players in each simulation.

We let the persistence parameter have higher values, around 0.7, in early periods,

then decreases over time to 0.05 or 0.01. The distributions of weighting coe¢cients

ρ,λ and λϵ are the same at all states as ρn,i = p
γ,λn,i = q

γλ and λϵn,i = r
γ where

p, q and r are independently drawn from the Uniform distribution on [0, 1] and γ

is set to 1/2. Initial actions are chosen with equal probabilities for all actions,

initial satisficing levels are set to 0 or higher than maximum payo§s of the given

decision problems1 and initial valuations are 0. Satisficing players satisfice only

when valuations are not lower than satisficing levels.2

Each period satisficing players in games are matched with fixed or random oppo-

nents. In fixed matching, players play with the same opponents for all periods while

in random matching players are uniformly randomly matched within each cohort

each period. For example, in 2 × 2 games under random matching in Appendix

C.2, 500 satisficing players are generated and each period 250 pairs are randomly

matched and play the games. And, in Best Shot and Ultimatum games in Appendix

C.5, 6 players for each role within a cohort, in total 12, are generated and all players

are randomly matched according to their roles each period.

1Since the persistence parameter values are high in early periods, the high initial satisficing levels
generally do not have e§ects on the long run behaviour of satisficing players.
2We assume the choice rule allows agents to choose their current actions with probabilties close to
1 when valuations are slightly lower than satisficing levels. We do not explicitly incorporate the
property into the simulations but this does not violate the assumption because the simulations are
calculated only with finite precision.

95



Figure C.1. Proportions of Risky Choice for Gains

Satisficing players may have memory in the form of valuations of all actions as

described in the subsection 2.1.3. With the memory, valuations are updated with the

same distributions of random coe¢cients ρ and when players do not satisfice, they

choose actions, including the current, that are associated with highest perceived

valuations, which are given as vj + zj, where vj is valuation of action j and zj

is a shock on the valuation drawn from the normal distribution with mean 0 and

standard deviation 1/2. Shocks are independent across actions and players.

C.1. Individual Decision Problem

Following March (1996), we consider binary decision problems between safe and

risky options for gains or losses: the safe option returns payo§ 1 (or −1 for loss)

with certainty and the risky option returns payo§ 1/r (or −1/r for loss) and 0 with

probabilities r and 1−r, respectively. r is given as one of 0.01, 0.1, 0.5 and 0.9. Both

options have the same expected payo§, 1. The higher r is, the more risky the option

is for both gains and losses.

The proportions of risky options being chosen for gains and losses are given in

Figure C.1 and C.2. The left charts are with ϵ = λ = 0.05 and the right charts are

with ϵ = λ = 0.01, and the top charts are without memory and the bottom charts

96



Figure C.2. Proportions of Risky Choice for Losses

are with memory. The initial satisficing levels are set to 10. As noted in March

(1996), the simulated satisficing players seem to show dual risk attitudes, i.e., risk

aversion for gains and risk seeking for losses. For gains, the safe option is always

preferred to risky options and the less risky options are preferred to the more risky

options. In contrast, for losses, the more risky options are preferred to the less

risky options, but only the most risky option is clearly preferred to the safe option

when ϵ = λ = 0.05. And, as the parameter values lower or memory is augmented,

satisficing decision makers more prefer the safe option to the risky options.

C.2. Prisoner’s Dilemma, Stag Hunt and Common Interest

For simulation in normal form games, we first consider Prisoner’s Dilemma, a

modified Prisoner’s Dilemma, Stag Hunt and Common Interest games under fixed

and random matching setups. The payo§ matrices are given in Table C.1. In the

modified Prisoner’s Dilemma game, a single defector receives higher payo§, 5, than

the Prisoner’s Dilemma.

Under fixed matching, 500 pairs of satisficing players are simulated and each

player plays the games against the same opponent for 8,000 periods. Figure C.3

shows frequencies of mutual cooperation and defection under fixed matching. And,
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Figure C.4 shows frequencies of choosing ‘cooperate’ and ‘defect’ under random

matching setup. In both setups, initial satisficing levels are set to 0. In both figures,

the left is calculated with ϵ = λ = 0.05 and the right is with ϵ = λ = 0.01.

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 2, 2 0, 5
D 5, 0 1, 1

C D
C 2, 2 0, 2
D 2, 0 1, 1

C D
C 2, 2 0, 0
D 0, 0 1, 1

Table C.1. Payo§s of Prisoner’s Dilemma, Stag Hunt and Common
Interest Games

Under the fixed matching setup, players in the long run manage to coordinate on

mutual cooperation and defection. In particular, when ϵ = λ = 0.01, players choose

mutual cooperation or defection most of the time, above 95%, in all games. The

proportions of cooperate and defect di§er across games. In the Common Interest

game, ‘cooperate’ is played more often than ‘defect,’ 70% with ϵ = λ = 0.05 and

92% with ϵ = λ = 0.01. In other games, ‘defect’ is played more often. Among the

Prisoner’s Dilemma and Stag Hung games, ‘cooperate’ is played most often in the

Prisoner’s Dilemma and least often in the Stag Hunt game.3

Under the random matching setup, ‘cooperate’ is most preferred in the Common

Interest game, and among others the frequency of choosing ‘cooperate’ is highest in

the modified Prisoner’s Dilemma and lowest in the Stag Hunt, that is, as benefit

from a single defection from mutual cooperation increases, players more often choose

‘cooperate’ action rather than ‘defect’ action.

Next we simulate satisficing plays in three Stag Hunt games of Battalio et al.

(2001). The payo§ matrices are given in Table C.2 and the frequencies of choosing

X and Y in the first and last, 75th, period is in Table C.3. They define optimization

premium as the di§erence between the payo§s of two responses given opponent’s

action, which is highest in 2R treatment and lowest in 0.6R treatment. And the

experiment results conform to their predictions that “behaviour will converge to an

equilibrium more quickly the larger is the optimization premium” and “behaviour

3Higher frequency of cooperate in the Prisoner’s Dilemma than modified Prisoner’s Dilemma is
consistent with Cho and Matsui (2005). However, under random matching, the order reverses.
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Figure C.3. Proportions of Mutual Cooperate under Fixed Matching

Figure C.4. Proportions of Cooperate under Random Matching

is more likely to converge to the payo§ dominant equilibrium the smaller is the

optimization premium.”

X Y
X 45, 45 0, 42
Y 42, 0 12, 12

X Y
X 45, 45 0, 40
Y 40, 0 20, 20

X Y
X 45, 45 0, 35
Y 35, 0 40, 40

Table C.2. Payo§s of Stag Hunt games of Battalio et al. (2001): 0.6R,
R and 2R

X Y
0.6R 64% 36%
R 70% 30%
2R 53% 47%
Total 63% 37%

X Y
0.6R 44% 56%
R 25% 75%
2R 5% 95%
Total 24% 76%

Table C.3. Contingency Table of Stag Hung games: Period 1 and 75

In simulation, as in the experiments, 4 pairs of satisficing players are randomly

matched within each cohort of size 8. All other parameters are the same as before.
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Figure C.5. Proportions of Cooperate in Stag Hung games

The simulation results in Figure C.5 are averages of 30 cohorts. The simulation

results are also consistent with the experimental results as well as the predictions

of Battalio et al. (2001).

C.3. Matching Pennies

Goeree et al. (2003) consider a 2×2 game in Table C.4, which has a unique mixed

Nash equilibrium but its observed choice frequencies systematically di§er from the

Nash equilibrium. Furthermore, any quantal response equilibrium is far away from

the observed data: Quantal response equilibria predict the risky action, R, would be

played more than 50% of the time for any parameter value, but participants in the

experiment chose the safe action, L, about 65% of the time. Goeree et al. (2003)

show that if risk aversion is incorporated in the quantal response equilibrium, it

explains the data very well.

L R
U 200, 160 160, 10
D 370, 200 10, 370

Table C.4. Payo§s of Matching Pennies game of Goeree et al. (2003)
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Figure C.6. Simulation of Matching Pennies of Goeree et al. (2003)

The experiment was run with 6 cohorts of 10-12 participants each and they were

randomly matched for 10 periods with a fixed role. The observed choice frequencies

of the row player choosing U and the column player choosing L are 0.47 and 0.65,

respectively. The simulation results with cohort size fixed at 10 under the random

matching setup are given in Figure C.6. Initial satisficing levels are set to 10. The

top charts are without memory and the bottom charts are with memory. Satisficing

behaviour without memory fits the observed data relatively well in its magnitude

and direction, which could be explained by that the satisficing behaviour inherently

has risk aversion property as shown in the individual decision problems. It seems

that memory does not play a role in this 2× 2 game.

C.4. Public Good Provision

We simulate satisficing behaviour in public good provision games in the setup of

Isaac et al. (1984). They designed experiments in which each participant chooses how

much to contribute to public good for 10 periods with payo§ function πi = E− ci+

a(
PN

i=1 ci)/N, where E = 62, 25 or 10 are individual endowments, ci is the amount

of contribution made by player i, a = 1.2, 3 or 7.5 are total return from public good
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and N = 4 or 10 are cohort sizes. Return from public good per capita is defined as

M = a/N. For inexperienced and experienced participants, four experiments with

(N,M, a) = (4, 0.3, 1.2), (4, 0.3, 1.2), (10, 0.3, 3) and (10, 0.75, 7.5) were run. The

percentages of total contribution over the total endowment 100×
PN

i=1 ci/(N · E)

over all periods are given in Table C.5.

(%) M = .3 M = .75
N = 4 26.36 65.1
N = 10 32.88 65.1

(%) M = .3 M = .75
N = 4 12.08 49.6
N = 10 33.76 53.8

Table C.5. Observed Contributions by Inexperienced and Experienced
in Isaac et al. (1984)

In simulation, we allow satisficing players to choose an arbitrary integer between

0 and E as their contribution level each period. Thus, the size of players’ action sets

are E + 1. We simulate satisficing behaviour with four di§erent sets of (N,M, a) as

described above without distinguishing inexperienced and experienced players. For

details of each experiment setup, refer to Table 1 of Isaac et al. (1984). The initial

satisficing levels are set to 0. The simulation results without and with memory are

given in the top and bottom of Figure C.7.

Ledyard (1994) summarises the experiment results of Isaac et al. (1984) as (1)

increasing M from 0.3 to 0.75 increases the rate of contribution in all cases, (2)

inexperienced subjects contribute more and (3) repetition decreases and group size

increases contributions for low M = 0.3 but neither seem to have any e§ect if

M = 0.75. The simulation results seem to partially fit the experiment results: The

fitness depends on the set of parameter values, memory and the experimental setups.

Note that in the Public Good Provision game, convergence to either full contribution

or no contribution outcomes, which is the unique Nash outcome, is not guaranteed

by satisficing players unlike its two-player version, Prisoner’s Dilemma game.

C.5. Extensive Form Games: Best Shot and Ultimatum

We consider two extensive form games: Best Shot and Ultimatum. Best Shot

game is a sequential public good provision game in which player 1 chooses how

much to contribute, then after observing player 1’s choice, player 2 chooses how
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Figure C.7. Simulation of Public Good Provision of Isaac et al. (1984)

much to contribute. Their payo§s are given in Table 1 in Roth and Erev (1995).

The subgame perfect outcome is for player 1 to contribute nothing and for player 2

to contribute 4 units and in experiments most participants choose the equilibrium

outcome. We model satisficing players to choose x 2 {0, . . . , 9}. First, at his unique

decision node, player 1 chooses his contribution level x1, then at the decision node

following x1, player 2 chooses x2. Player 2 has 10 decision nodes. Thus, player

1’s behaviour is given as x1 2 {0, . . . , 9} with one satisficing level while player 2’s

behaviour is given as a function from {0, . . . , 9} to {0, . . . , 9} with satisficing levels

for each decision node.

In Ultimatum game, player 1 o§ers x 2 {1, . . . , 9} to player 2, then player 2

chooses whether to accept or reject the o§er. If the o§er is accepted, player 1 and

2’s payo§s are 10 − x and x, respectively, and otherwise both receive 0. Player 1

has one decision node and his behaviour is given as x 2 {1, . . . , 9} while player

2’s behaviour is given as a function from {1, . . . , 9} to {accept, reject}, which is

di§erent from the cut-o§ strategy used by Roth and Erev (1995).4 This assumption

4In a cut-o§ strategy, player 2 sets a threshold value and accepts player 1’s o§er only when the
o§er is not smaller than the value. This strategy transforms the Ultimatum game into a normal
form game.
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Figure C.8. Simulation of Best Shot

on player 2’s behaviours does not impose any restriction on player 2’s choices across

her decision nodes, thus the same player could accept x but reject y with x < y.

Initial satisficing levels are set to 5.

The simulation results are given in Figure C.8 and C.9. The top charts are under

fixed matching setup and the bottom charts are under random matching, and the

left charts are without memory and the right charts are with memory. In the Best

Shot game, series 1, 2, 3 and 4 represent the frequencies of player 1 contributing

0, 1, 2 and 3 units, respectively, and series 4|1,5|1 and 6|1 represent the frequencies

of player 2 contributing 3, 4 and 5 units after observing player 1 has contributed 0

unit. In the Ultimatum game, series x represents the frequencies of player 1 o§ering

x− 1 units. Cohort size is set to 6 and the results are averaged over 30 cohorts.

In both games, simulation results with memory fit well the observed behaviour:

subgame perfect outcome in the Best Shot game and non-subgame perfect outcomes,

intermediate shares being most frequently o§ered, in the Ultimatum game.
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Figure C.9. Simulation of Ultimatum

C.6. Extensive Form Games: Signalling

Following McKelvey and Palfrey (1998), we simulate three signalling games,

Game 2, 3 and 4 of Banks et al. (1994), who investigate refinements of Nash equilib-

rium in two-person signalling games like Bayes-Nash, sequential and intuitive, and

find experiment subjects select the more refined equilibria. In all games, Nature

chooses a type, Sender privately observes the type and sends a message, and Re-

ceiver chooses an action, which determines both Sender and Receiver’s payo§s as in

Table C.6. The observed frequencies of individual choice at all information sets are

summarised by McKelvey and Palfrey (1998) in Table C.7.

Figure C.10, C.11 and C.12 show the proportions of satisficing players’ individual

choices at all decision node. In figures, ‘m|t’ and ‘a|m’ denote choice ofm at decision

node t and choice of a at decision node m, respectively. In each simulation, 6

satisficing players for each role are simulated for each cohort, in total 30 cohorts,

and each period 3 pairs of players are randomly matched and play the signalling

games for 1,000 periods with memory and ϵ = λ = 0.05. Generally, the simulation

results seem to fit well the observed data.
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Table C.6. Payo§s of Signalling Games in Banks et. al. (1994), re-
produced by McKelvey and Palfrey (1998)

Table C.7. Observed Outcomes in Signalling Games in Banks et. al.
(1994), reproduced by McKelvey and Palfrey (1998)
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Figure C.10. Simulation of Signalling Game 2 of Banks et. al. (1994)

Figure C.11. Simulation of Signalling Game 3 of Banks et. al. (1994)
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Figure C.12. Simulation of Signalling Game 4 of Banks et. al. (1994)
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