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Dominance-Based
Multi-Objective Simulated Annealing
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Abstract— Simulated annealing is a provably convergent opti- there are several well developed genetic algorithms anlli-evo
miser for single-objective problems. Previously proposednulti-  tionary schemes to address such multi-objective probleges (
objective extensions have mostly taken the form of a single- [4], [5] for recent reviews), simulated annealing does it
objective simulated annealer optimising a composite fungon of - . ! . '
the objectives. We propose a multi-objective simulated arealer its usua! formulgtlop, pro_wde a method for optimising more
utilising the relative dominance of a solution as the systerenergy than a single objective. Simulated annealing has been ediapt
for optimisation, eliminating problems associated with conposite  to multi-objective problems by combining the objective®in
objective functions. We also propose a method for choosing g single objective function [6]-[10]; however, these meiho
perturbation scalings promoting search both towards and amss either damage the proof of convergence, or are limited (po-

the Pareto front. . . . -
We illustrate the simulated annealer's performance on a tentially severely) in their ability to fully explore theatde-off

suite of standard test problems and provide comparisons wit Surface.

another multi-objective simulated annealer and the NSGA- We propose a modified simulated annealing algorithm which
genetic algqrithm. The new simulated annealer is. shown to maps the optimisation of multiple objectives to a single-
promote rapid convergence to the true Pareto front with a god  gpiective optimisation using the true trade-off surfacaimn
coverage of solutions across it comparing favourably with he o . . Lo

other algorithms. taining the_ convergence propertle§ of the single-objectin-

An application of the simulated annealer to an industrial Nealer while encouraging exploration of the full trade-sff-
problem, the optimisation of a Code Division Multiple Acces face. A method of practical implementation is also desdkjbe
(CDMA) mobile telecommunications network’s air interface, is ysing the available non-dominated data points from theeoitirr
presented and the simulated annealer is shown to generate oimisation to overcome the limitation that the true trade
non-dominated solutions with an even and dense coverage tha . .
outperform single objective genetic algorithm optimisers surfacg IS unavallable.for most r_eal-world problemg.. .

In this paper, following some introductory material in sec-
tion 1, we start by briefly discussing methods that combine
objectives into a single composite objective. In sectidmi
describe our dominance-based SA algorithm and, in section

|. INTRODUCTION IV, methods are described for improving the quality of the

A popular and robust algorithm for solving single-objeetivoptimisation energy measure when the available data points
optimisation problems (those in which the user cares or@je few. Choosing an efficient scale for perturbations is an
about a single dependant variable of the system) is sintllaigportant component of scalar SA algorithms. The issue is
annealing (SA) [1], [2]. Geman & Geman [3] provided durther complicated in multi-objective algorithms becaus
proof that simulated annealing, if annealed sufficientbydy, Perturbation may not only move the current state closer to or
converges to the global optimum, and although the requirBi#ither from the Pareto front, but also transversally (a€ross
cooling rate is infeasibly slow for most purposes, simwlatghe front). In section VI we describe a method for setting the
annealing often gives well converged results when run withsgale of perturbations and other run-time parameters.|Resu
faster cooling schedule. Itis frequently the case in opstittion  Showing that the algorithm converges on a range of standard
problems, however, that there are several objectives of st problems are given in section VII, and we show that
system which the user is interested in optimising simultanthe algorithm compares favourably with both the popular
ously. Clearly, simultaneous optimisation of several otijes NSGA-Il multi-objective genetic algorithm [11] and a muilti
is usually impossible and the curve (for two objectives) dibjective simulated annealer suggested by Nam & Park [8].
surface (for three or more objectives) that describes #metr In section VIII we present results demonstrating the sitteda
off between objectives is known as the Pareto-front. Alftou annealer’s performance on the optimisation of the air fater

of a Code Division Multiple Access (CDMA) network in
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with the application to CDMA networks. Algorithm 1 Simulated annealing
Inputs:
Il. BACKGROUND {Lr}f, Sequence of epoch durations
A. Dominance and Pareto Optimality {Ti}i=, Sequence of temperatures, 11 < T},
X Initial feasible solution

In multi-objective optimisation we attempt to simultane-
ously maximise or minimiseD objectives,y;, which are

functions of P variable parameters or decision variables= f ofr okr Z: L 1 "V KL
. = goe ey k
(z1,22,...,2p): x' := perturk{x)
yi=filx), i=1,...,D. (1) VE(X',x) = E(x') — B(x)

u := rand(0,1)
i f u<min(l,exp(—dE(x',x)/Tk))
x:=x
end
end
end

Without loss of generality, we assume that the objectivesar
be minimised, so that the multi-objective optimisationigem
may be expressed as:

Minimise y = f(x) = (f1(x),..., fp(x)). (2)

The idea of dominance is generally used to compare two
solutionsf andg. If f is no worse for all objectives than
g and wholly better for at least one objective it is said that
dominates g, written f < g. Thusf < g iff: the simulation according to an annealing schedule. At dach

. the SA algorithm aims to draw samples from the equilibrium

fi<gi Vi=1,...,D and S =0
! (3) distribution7y(x) x exp{—FE(x)/T}. AsT — 0 sufficiently
fi <g; for at least onei. . . , o
slowly an increasing proportion of the probability massref
By a slight abuse of notation, dominancedhjective space is concentrated in the region of the global minimumifso
is extended tqparameter space; thus it is said that < b iff  eventually, assuming a sufficiently slow annealing schedul
f(a) < f(b). is used, any sample from; will almost surely lie at the
The dominates relation is not a total order and two solutiomsinimum of E.

aremutually non-dominating if neither dominates the other. A sampling from the equilibrium distribution,(x) at any

set F' of solutions is said to be a non-dominating set if n@articular temperature is usually achieved by Metropolis-

[
SCLINIORWNE

element of the set dominates any other: Hastings sampling [2], which involves making proposals
atbVabeF (4) that are accepted with probability
A solution is said to be globally non-dominated, or Pareto- A =min (1,exp{—0E(x',x)/T}) (5)

optimal, if no other feasible solution dominates it. The set

of all Pareto-optimal solutions is known as the Paretorogti \ynere

front, or the Pareto seR; solutions in the Pareto set represent

the possible optimal trade-offs between competing ohjesti SE(X,x) = B(x') — BE(x). (6)
A human operator can select a solution with a knowledge

of the trade-offs involved once this set has been reveal?rqtuitively whenT is high perturbations fronx to x’ which
Heuristic procedures, such as multiple objective evohaiy increase the energy are likely to be accepted (in addition

algorithms and the multi-objective simulated annealingpal to perturbations which decrease the energy, which are al-

rithms discussed here, yield sets of mutually non-dommgati\ s accepted) and the samples can explore the state space.
solutions which will be o_nly an _apprOX|_mat|on to the tr_u%ubsequently, ag" is reduced, only perturbations leading
Pare’_to frqnt. Some care with terminology is therefore rm_qm to small increases i are accepted, so that only limited
and in this paper the set produced by such an algorithmds,ration is possible as the system settles on (hopginéy
referred to as the estimated Pareto front, which we denote @Y)bal minimum. The algorithm is summarised in Algorithm
F. 1: during each of<” epochs, the computational temperature is
fixed atT}, and L, samples are drawn fromy, before the
B. Smulated Annealing temperature is lowered in the next epoch. Each sample is a
Simulated annealing, introduced by Kirkpatriek al. [1] perturbation (‘mutation’ in the nomenclature of evolution
may be thought of as the computational analogue of slowjgorithms) of the current state from a proposal densitye(i
cooling a metal so that it adopts a low-energy, crystallind); the perturbed state’ is accepted with probability given
state. At high temperatures particles are free to move arouhy (5), as shown in lines 4-8.
whereas as the temperature is lowered they are increasinglyAs already alluded to, convergence is guaranteed if and
confined due to the high energy cost of movement. It @nly if the cooling schedule is sufficiently gradual [3], but
physically appealing to call the function to be minimised thexperience has shown SA to be a very effective optimisation
energy, E(x), of the statex, and to introduce a paramet& technique even with relatively rapid cooling schedules],[13
the computational temperature, which is lowered throughdd4].
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C. Multi-Objective SA with Composite Objective Functions is re-seeded with another solution from the non-dominated

An attractive approach to multi-objective simulated aneg2fChive to promote a more even coverage. Suppapitrerm

ing (MOSA), adopted by several investigators [7]-[10], Jl45 al. promote exploration along the fror_1t by unconditionally
[18], is to combine the objectives as a weighted sum: accepting proposals that are not dominated by any member
of F, otherwise using (5).

D Of the multi-objective simulated annealing techniques in
E(x) = Zwifi(x)' () the current literature, perhaps the most promising is tliat o
=1 Nam & Park [8] due to their use of dominance in state
The composite objective is then used as the energy to &gange probabilities. In this algorithm the relative doarice
minimised in a scalar SA optimiser. An equivalent altew&ti of the current and proposed solutions is tested and when the
[6] is to sum log fi(x), and others (e.g., [8], [16]) haveproposed solution dominates the current solution the salpo
investigated a number of non-linear and stochastic cortoss accepted; this is analogous to the automatic acceptance
energies. of proposals with a lower state energy in single-objective
It is clear that simulated annealing with a composite energymulated annealing. In addition to the widespread practis
(7) will converge to points on the Pareto optimal front whergf employing a state change probability which guarantees
the objectives have ratios given ', if such points exist. acceptance of strictly superior perturbations, Nam & Park
However, it is unclear how to choose the weights in advanggodify the acceptance rule so that proposals are accepted
indeed, one of the principal advantages of multi-objectivgith probability given by (5) and (7) if they are dominated
optimisation is that the relative importance of the objexti by x, but unconditionally accepted i’ < x or if x' and
can be decided with the estimated Pareto front on hangd.are mutually non-dominating. This promotes exploration
Perhaps more importantly, parts of the front are inacckssilpf the search space and escape from local fronts but as the
with fixed weights [19]. Recognising this, investigatorséa dimensionality increases so does the proportion of all raove
proposed a variety of schemes for adaptingdheduring the which are accepted unconditionally. This limits the bebavi
annealing process to encourage exploration along the.frogt the algorithm to that of a random walk through the search
See for example [20]. space when dealing with problems with high dimensionality.
It is natural to keep an archivé; of all the non-dominated When the proposed solution is dominated by the current
solutions found so far, and this archive may be utilised ¥plution, Nam & Park define the energy difference contrgllin
further exploration by periodically restarting the anegdiom acceptance as the average difference in objective valus. N
a randomly chosen element 67 [10]. & Park also employ 100 separate agents during optimisation,
A proposalx’ in scalar SA is either better or worse thawhere each agent is an independent copy of the algorithe; thi
the current state depending on the sign ofE(x’, x); except serves a similar function to Suppapitnaenal’s return-to-
for pathological problems the probability théay = 0 is base approach to promoting diversity of the solutions kedtat
vanishingly small. In multi-objective SA, howevex, may by the algorithm.
dominatex or x’ may be dominated by or they may  Although it is clear that the assurance of a convergence
be mutually non-dominating: in fact, the probability that @roof can be provided for a multi-objective simulated arerea
pair of randomly chosen points il-dimensional space areysing a scalar objective function and fixed weights (7), such
mutually non-dominating i — 2 (%)D, so the mutually non- annealers are fundamentally limited in their coverage ef th
dominating case becomes increasingly common with moprareto front. On the other hand, it is difficult to see how
objectives. However, energies such as (7) may lead teeing proofs of convergence might be obtained with the heuristic
accepted unconditionallyd£ < 0) even thoughx’ 4 x, modifications designed to promote exploration transvesal
because a large negative energy change from one objective front. Given these difficulties, defining a multi-objeet
may outweigh small positive changes on the other objectivesmulated annealer which utilises a composite objective-fu
Each multi-objective simulated annealing algorithm whiction is undesirable. With this in mind, we investigate the
utilises a composite objective function must thereford déth  efficacy of an energy function based on the defining notion
this behaviour in some manner. of dominance. The aim is the definition of a single energy
A good example of a composite objective function apfunction appropriate to all cases of relative dominancevben
proach to multi-objective simulated annealing is given by andx’ without requiring special cases for whete< x, or
Suppapitnarmet al. [10]. Instead of weighting and summingwherex’ andx are mutually non-dominating, as has been the
the objectives to produce a composite energy difference ferise in previous algorithms.
the acceptance criteria, this algorithm uses a multiglieat
function with individual temperatures for each objectiazle
of which is adjusted independently by the algorithm. This
negates the need fam priori weighting of the objectives, In single objective optimisation problems the sign of the
and can be considered to function as a weighted compasfference in energy F(x’,x) tells us whether the proposal
ite sum approach with algorithmically controlled weiglggn x’ is a better, worse or (very rarely) equally good solution
This is vulnerable to the concentrated search properties asf the current solutiox. Likewise the dominance relation
other composite objective techniques and Suppapitretrak can be used to compare the relative meritxéfand x in
employ a return-to-base scheme whereby the current solutimulti-objective problems, but note that it gives esselytiahly

I1l. A D OMINANCE BASED ENERGY FUNCTION
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then E(x) = 0, and solutions more distant from the front are,
in general, dominated by a greater proportion7fand so

have a higher energy; in Figure 1 the solution marked by an

‘ open circle has a greater energy than the one marked by a

| filled circle.

! Clearly this formulation of an energy does not rely on

: an a priori weighting of the objectives and the assurances

| of convergence [3] for uni-objective SA continue to hold

; | in this case. Since all solutions lying on the front have
B e L equal minimum energy, we would anticipate that a simulated

“ annealer using this energy would, having reached the front,

perform a random walk exploration of the front.

We note that Fleischer [21] has proposed an alternative
measure of a non-dominated set, which may be loosely char-
acterised as being based on the volume dominated by the set
rather than the area of the dominating set.

Fig. 1. Energy from area of the true Pareto fr@htdominating a solution. Unfortunately, the true Pareto frofit is unavailable during

Sollations are marked by circles and lines indicate the regad 7 dominating the course of an optimisation. We therefore propose to use an

each one. energy defined in terms of the current estimate of the Pareto
front, ', which is the set of mutually non-dominating solutions

P ° found thus far in the annealing. Denote Bythe union of the

F, the current solutiox and the proposed solutiatd, that is

e F=Fu{x}u{x}. (10)

Objective 2

Objective 1

Objective 2

Then, in a similar manner to (8), &%, be the elements of
that dominatex:

Fy={ycF|y=<x} (12)

N DR PY We note that|Fy| is a quantity similar to one used in the

° ranking method proposed by Fonseca & Fleming [22], namely
e the number of solutions in a search population that dominate
x plus 1. UsingFy we obtain an energy difference between
the current and proposed solutions of

Objective 1 1 _ _
— (1Bl = I5]) . (12)

SE(x',x) = 7
Fig. 2. Energy from proportion of the estimated Pareto frBntlominating 5
points dominating a solution. Elements Bfare shown as small grey circles, Division by | F'| ensures thaiF is always less than unity and

solutions are shown as larger open or filled circles. provides some robustness against fluctuations in the number
of solutions inF. If F' is a non-dominating set the energy
difference between any two of its elements is zero. Note also

three values of quality—better, worse, equal—in contrast fhat SE(x',x) = —5E(x,x'). The inclusion of the current

th_e energy d_ifference in uni-objective problems which Uligua solution and the proposal i’ means thab E(x', x) < 0 if

glﬁfefha f[:ontllr;uuns. fronp ilabl d defi x’ < x, which ensures that proposals that move the estimated
ol € true arﬁe{ ° rt(;ln were avalfathe,fwetct(r)]ut d € '_netafront towards the true front are always accepted. Propdisats

?mp T_etn;rgg othas ?. mea;)u:ﬁ (: q € .ro? § a } omiNate3re dominated by one or more members of the current archive
(x). Let P be the portion o at dominates(x): are accepted with a probability depending upon the diffegen

Py={yePly <f(x)}. (8) in the number of solutions in the archive that dominate
and x. We emphasise that this probability does not depend
Then we define upon metric information in objective space; we putariori
E(x) = 1u(Px) 9) weighting on the objectives and the acceptance probalislity

unaffected by rescalings of the objectives.
wherep is a measure defined oR. We shall be principally A further benefit of this energy measure is that it encourages
interested in finite sets approximatirig and so shall take exploration of sparsely populated regions of the front.dma
1(Px) to be simply the cardinality oPx. If P is a continuous two proposals, each dominated by some solutiong’jrfor
set, we can take: to be the Lebesgue measure (informallygxample, the solutions illustrated by the filled and unfilled
the length, area or volume for 2, 3 or 4 objectives); we furtheircles in Figure 2. The solution that is dominated by fewer
discuss measures induced®rin section VII-E. As illustrated elements (the unfilled circle) has the lower energy and would
in Figure 1, this energy has the properties we desire:défP? therefore be more likely to be accepted as a proposal.
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Defining the energy in this manner, unlike some proA. Conditional Removal of Dominated Points

posed multi-objective enhancements to simulated anrgealin A straightforward method for increasing the size of the
discussed in section II-C, provides a single energy funatio-  5rchive is not to delete solutions known to be dominated
couraging both convergence to and coverage of the Pareto frp deleting them would reduceF| below some predefined
without requiring other modifications to the single-objeet minimum. However, the existence of old solutionsfin may
simulated annealing algorithm (beyond the obvious storaggq to desirable proposals (i.e., not non-dominated isoisit

of an archive of the estimated Pareto front). In particular 'being rejected. In addition the old solutions may bias the
additional rules are required for cases in which the cumedt gegrch away from regions of the front that were previously
proposed solutions are mutually non-dominating. well populated.

Convergence to the true Pareto front is no longer anA further disadvantage of this method is that the retained
immediate consequence of Geman & Geman’'s work [3plutions may be positioned so that they are dominated by the
because the energy based &his only an approximation archive and indeed by the current point and the vast majority
to (9). However, Greening [23] offers proof of convergencef proposals. In this case they serve to increase the résolut
albeit more slowly, even when the energy contains erroksf. the energy at the expense of the range. By contrast the
Current work is investigating the application of this work tinterpolation method using the attainment surface that we
MOSA and in section VII we offer empirical evidence of thepropose below insists that interpolating points are onlgakie
convergence. dominated by the archive.

An energy function based on (12) is straightforward to
calculate; counting the number of elementsothat dominate B. Linear Interpolation
x and x’ can be achieved in logarithmic time [24], [25]. Another apparently suitable method of augmentifigis
Our proposed multi-objective algorithm closely followseth |inear interpolation (in objective space) between the tamhs
standard SA algorithm (Algorithm 1), the only addition th&t ijn . |n this method, when the archive is smaller than some
necessary is to maintain an archive of the current estimate predefined size, new points in objective space are generated
of the Pareto front and to calculate the energy differengg the simplices defined by an element Bfand its D —
using (12). However, we postpone detailed description ef th nearest neighbours . This overcomes the limitations
algorithm until methods of increasing the empirical energyf the previous method: Since new solutions are generated
resolution have been discussed. ‘on’ the current estimated Pareto front, the problems which

could occur with using old, dominated elements Bfin

the energy calculations are avoided. The interpolatedtpoin
IV. |NCREASING ENERGY RESOLUTION generated can also be evenly distributed between the ¢urren

estimated Pareto-optimal solutions, which is beneficiaitas

As mentioned earlier, the true Pareto-optimal front of 5(9-0?3 not deter the glgqrithm from exploring any region of the
lutions is, in general, unavailable to us. While using thgStimated front which is not already densely populated. The
archive of the estimated Pareto froRitprovides an estimate Principal disadvantage of this method is that proposals beay
of solution energy, wherF is small the resolution in the dominated by an interpolated point, but not by any of the real

energies can be very coarse. In fact, the difference in gnegjements off", meaning that the proposal may erroneously be
|

between two solutions is an integer multiplelg F'| between sregarded.

0 and 1. Since the acceptance criterion (5) for new solutions _ )

is determined by the difference in energf(x, x') between C- Attainment Surface Sampling

the current solution and the proposed solution, low resolu-Consideration of the previous two methods of augmenting

tion of the energies leads to a low resolution in acceptantde estimated Pareto front suggests that the augmentingspoi

probabilities. At low computational temperatures and witbhould have the following properties.

small archives it will become increasingly likely that this 1) The augmenting points must be sufficiently close to the

granularity will make it almost impossible for even slightl current estimation of the Pareto front that they can affect

detrimental moves (i.e., moves that increaBéx)) to be the energy of solutions generated near to the current

made. This is undesirable as, at its most severe, this effect estimated Pareto front.

reduces the algorithm to behaviour similar to a greedy $earc 2) They must be evenly distributed across the currently esti

optimiser, and prevents the exploratory behaviour pravige mated Pareto front so as to not discourage the algorithm

detrimental moves. from accepting proposals in poorly populated regions of
For this reason, and because a limited archive may inhibit ~ the front.

convergence [24], [26], we do not constrain the size of the3) They must not dominate any proposal which is not dom-

archive. In fact, in order to increase the energy resolutien inated by any member af, so that potential entrants to
examine methods for using a larger set for energy calcuigtio the archive are not discarded. A consequence of this is
There are a couple of straightforward, but ultimately inade that they must all be dominated by at least one member
guate, methods for artificially increasing the sizefofvhich of F.

we now briefly discuss before describing a method using theThe attainment surface, which has previously been used
attainment surface. for estimated Pareto front visualisation [27] and is clgsel
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Obijective 2

0.4 0.6

ObjeCtlve 1 Objective 2

0.8 1 Objective 1

Fig. 4. 10000 samples from the attainment surface for aniarabf 10

Fig. 3. Attainment surfac&r is the boundary of the regiod/ dominated ggints, which are marked with heavy dots.

by the non-dominated sét whose elements are marked as dots. Dashed lin
denote H the minimum rectangle containing.

Algorithm 2 Sampling a point from the attainment surface Then, as illustrated in Figure 3, we interpoldtevith random
Inputs: samples unifprmly distributed o8r N HF.,_the attair!m_ent
(La}P, Elements of F, sorted by surface restrlgted taH r. From the def|n|_t|on ofSg it is
- increasing coordinate d apparent that interpolated points are dominated by an eieme
of F, thus satisfying the third criterion. Uniform random

1. fori=1,....D Generate a random point, v sampling ensures that the second criterion is met, as is the
2: v; = rand(min(L;), max(L;)) first criterion becaus€r interpolatest'.

3- end Sampling fromSr may be performed using Algorithm 2,
4: d:=randint(l,D) Choose a dimension, d which works by sampling a point from_ a_uniform distribption
5 fori:=1,...,|F]| Find smallest vy st. v is O the surface ofHr and then restricting one coordinate
6: u:= Ly, dominated by an element of F SO that the point is dominated by an elementraf This is

7 - ud’ facilitated by the use of listé4, d = 1, ..., D which comprise

8: if F<v the elements of sorted in increasing order of coordinate

9: return v Determining whether an element 6f dominatesv on line 8
10: end may be efficiently implemented using binary searches of the
11 end lists L4, in which case the algorithm requir€X| F'| log(|F|))

time for the generation of each sample. Figure 4 illustrates
the sampled attainment surface for a set of ten 3-dimenisiona
related to the attainment function [28], is an interpolgtinpo'nts_; 10000 sample_s are :'shown for visualisation. Ir_1 the
surface between the elements Bf that has the requisite experiments reported in section VR was augmented with
properties. The attainment surfacgy, corresponding taF 100 sample_s fromSp bgfor_e calculating the energy of the
is a conservative interpolation of the elementsfofso that Proposal. With more objectives the energy resolution can be
every point of Sy is dominated by an element df. The be_ngﬁmally increased by sampling more mterpolatmg oin
attainment surface for ai' comprising four two-dimensional It is |mportant to .note th_at the purpose of aFtalnment serfac
elements is sketched in Figure 3. More formally, the att@nim sampling is to uniformly increase the resolution of the gger

surface is the boundary of the region in objective space lwhig‘mc_tion across” and that, i_f performed extensively, this \_Ni_”
is dominated by elements of. If u,v € R”, we say that partially negate the benefit of the energy function guiding
u properly dominates v (denotedu ’< v) iff u’ < v Vi — search towards lesser-populated regiong'of-or this reason,

1. D.Thenif the number of sampled points should not be too high and it

Y is advisable to only sample when it is necessary to increase
F ={y|u=y for someu € F'} (13) the resolution. The results presented here, where 100 sampl

U= {y|u<y for someu € F} (14) from S are always taken, demonstrate that sampling when

_ _ not strictly necessary does not prevent convergence.
the attainment surface S = F \ U = 9U.

Let Hr be the minimum axis-parallel hyper-rectangle con-
taining F; that is, the hyper-rectangle defined by V. MULTI-OBJECTIVE SIMULATED ANNEALING

i ) . ALGORITHM
= a X ... X a .
F [ggg(yl), me x(y1)] [rynelg(yp), me x(yp)]

(15) Having discussed sampling from the attainment surface to

increase the energy resolution, we are now in a position to



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT UNDR REVIEW 7

summarise the main points of our proposed multi-objectigorithm 3 Multi-objective simulated annealing
simulated annealing algorithm. As shown in Algorithm 3, Inputs:

the multi-objective algorithm differs from the uni-obje&t {Ly}, Sequence of epoch durations
algorithm in that an archivég” of non-dominated solutions {T}K_ |, Sequence of temperatures, Ty11 < T}
found so far is maintained, and the energy difference batwee x Initial feasible solution

the proposed and current solution is calculated based on the
current archive or its attainment surface.

The archive is initialised with the initial feasible point
(line 1 of Algorithm 3). At each stage the current solution
x is perturbed to form the proposed solutigh In the work x' := perturlix)
reported here, in which the parametearsire continuous and if |F|<S If Fis small
real valued, we perturb each elementsofsingly, drawing Construct attainment surface
the perturbations from a Laplacian distribution centredfun Sp := interpolaté F")
current value. F:=SprUFU{x}U{x'}

F .= {x} Initialise archive
for k:=1,....K
for i:=1,...,Lg

VXN

If there are sufficiently many solutions i, the augmented el se
archiveF is constructed by adding andx’ (line 9) to I’ and F:=FuU{x}lu{x'}
the energy difference betweetd and x is calculated using 1 end
(12). If there are fewer thai$ solutions in then additional Energy difference base on I
samples are drawn from the attainment surfage using  11: SE(x',x) := E(x') — B(x)
Algorithm 2 (line 6); the energy difference is then calcatht 12- u := rand(0, 1)
based on the sampled attainment surfaceand x’. In the  13: i f u < min(1,exp(—=6E(x,x)/Ty))
work reported here, we always augméntwith 100 samples 14: x:=x Accept new current point
from Sr. As even when there are a large number of solutions If x is not dominated by any element of F'
in the archive of the estimated Pareto front it is worthwhileqs- ifzAx VzeF
sampling fromSyr as this samples evenly across the front, Remove dominated points from F
providing greater resolution in sparsely populated arédsed 16: F:={zc F|x £z}
front. 17: F:=FuUx Add x to F
If the proposal is accepted (line 14), the archive must be g end
updated. Ifx is not dominated by any of the archival solutions, 19: end
all archival solutions that are dominated kyare deleted from 20: end

the archive (line 16) ana is added to the archive (line 17). 21: end
Clearly F' is always a non-dominated set, although note that
x’ may be dominated by members bf

In the work reported here all epoclig are of equal length,
VI. REALTIME ALGORITHM PARAMETER OPTIMISATION L = 100 and we adjust the temperature accordind/}o=

k i i -5 i
. . . . Ty, whereg is chosen so thaf is 107> after two thirds
The performance of this algorithm, in common with othe@lc the evaluations are completed .

simulated annealing systems, depends upon parametetefor t
initial temperature, the annealing schedule and the size of _ _
perturbations made to solutions when generating new prop8s Perturbation Scalings
als. Here we give details of methods which permit automatic For simplicity a proposal is generated frooby perturbing
setting of the initial temperature, and which adjust thdescaonly one parameter or decision variable>af The parameter
of perturbations made to maximise the quality of proposed be perturbed is chosen at random and perturbed with
solutions. a random variables drawn from a Laplacian distribution,
p(e) o< e~lo¢l, where the scaling factor sets magnitude of
, the perturbation. The Laplacian distribution has tails thexa
A. Annealing Schedule relaﬁvely slowly, thus enr;uring that there is a high prdh’lag

If the initial computational temperature is set too highpf exploring regions distant from the current solutions.
all proposed solutions will be accepted, irrespective &irth We maintain two sets of scaling factors, since the per-
relative energies, and if set too low proposals with a hightrbations generating moves to a non-dominated proposal
energy than the current solution will never be acceptedstra within a front (we call thesdraversals) may potentially be
forming the algorithm into a greedy search. As a reasonablery different from those required to locate a front closer
starting point we set the initial temperature to achieve da P, which we calllocation moves. We maintain a scaling
initial acceptance rate of approximately 50% on derogatofgctor for each dimension of parameter space for each of
proposals. This initial temperaturg;, can be easily calculatedthe location perturbations and the traversal perturbatiand
by using a short ‘burn-in’ period during which all solutionsadjust these independently to increase the probabilityuohs
are accepted and setting the temperature equal to the avemgnove being generated. When perturbing a solution, it is
positive change of energy divided by(2). chosen randomly with equal probability whether the loagatio
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scaling set will be used, or the traversal scaling set. Siedi
are kept on perturbations generating traversal and I(1<|:atioo
moves; clearly these can be updated only after the proposa?
has been generated so that the type of move is known. The
scalings are adjusted throughout the optimisation, whemav

TABLE |

TEST PROBLEM DEFINITION OFDTLZ1 - DTLZ70OF[29] FOR3
JECTIVES(USING THE SUGGESTED PARAMETER SIZES (DEFINITION

OFDTLZ5 CORRECTED)

Definition

suitably large statistic set is available to reliably cédtel an Problem
appropriate scaling factor. These scalings are initiadlylarge
enough to sample from the entire feasible space. DTLZ1

1) Traversal Scaling: The traversal rescaling for a particu-
lar decision variable:; is performed whenever approximately
50 traversal perturbations have been made;tsince the last

fi(x) = gz122 (1+ g (x))
fa(x) = 521 (1 —22) (1 + g (x))
f3(x) =35 (1 —=z1)(1+g(x))
g (x) =100(]x| — 2
+3F . (2 —0.5)% — cos (207 (z; — 0.5)))
0<z;<1,fori=1,2,...,P,P=7

rescaling.
In order to ensure wide coverage of the front we wish to DTLZ2
maximise the distance (in objective space) covered by the

f1(x) = cos (z17/2) cos (z2m/2) (1 + g (x))
f2(x) = cos (z17/2) sin (x27/2) (1 + g (x))
f3(x) =sin(z17/2) (1 + g (x))

g(x) =5 (2 = 0.5)
0<z;<1,fori=1,2,...,P, P =12

traversals to ensure the entire front is evenly covered.-Gen
erating traversals travelling a small distance will corcae
the estimated front around the point at which the currenttfro
was discovered, an effect we aim to avoid.

We seek to generate proposals on approximately the scale

DTLZ3

f1(x) = cos (z17/2) cos (z27/2) (1 + g (%))
f2(x) = cos (z17/2) sin (zam/2) (1 + g (x))
f3(x) = sin (z17/2) (1 + g (x))
0.(0) = 100(| 2

+3°F . (2 — 0.5)% — cos (207 (z; — 0.5)))
0<az <1 fori=12..,P P=12

that has previously been successful in generating widghngn
traversals. To achieve this, the perturbations are sorted b
absolute size of perturbation in parameter space, and then
trisected in order, giving three groups, one of the smallest

DTLZ4

f1(x) = cos (x‘l‘ﬂ/Z cos (xgﬂ/Z) (14 g(x))
f2(x) = cos (x‘l‘ﬂ/Z sin (xgﬂ/Z) (149 (x))
f3(x) =sin (:v(fw/2) (149 (x))

g(x) = Xi_5 (2 = 0.5)°
0<z;<1,fori=1,2,...,P, P=12

third of perturbations, the largest third of perturbatioasd
the remaining perturbations. For each group the mean salver
size caused by the perturbations is calculated. The tralvers

f1(x) = cos (617/2) cos (62) (1 + g (x))
fa(x) = cos (617/2) sin (02) (1 + g (x))
fa(x) = sin (617/2) (1 + g (x))

g(x) = L5 (i —0.5)°

01 =1z

02 = 7m0y (1 + 29 (%) z2)
0<z;<1,fori=1,2,...,P,P=12

NANAY

size is measured as the Euclidean distance travelled irc-obje oS
tive space when the current solution and the proposed soluti

are mutually non-dominating. If a perturbation and the entr

solution are not mutually non-dominating, the traversaé 3§

counted as being 0. The traversal perturbation scalinghfiert  DTLZ6

decision variable is then set to the average perturbatigheof
group which generated the largest average traversal.
This heuristic is open to the criticism that it depends

fix)=x1
fa(x) = z2
f3(x) = (1 +g(x)h(f1, f2; f3,9)

P
g(x)= % 2 =3 Ti

h(f1, o fa09) = 3= 3 (1 (1+sin (3nfi)) )
0<z;<1,fori=1,2,...,P, P =22

upon measuring distances in objective space while thavelat
weighting of theD objective functions is unknown. To allevi-
ate this difficulty, however, the objectives may be renoiseal g ILZ?
during optimisation so the front has approximately the same s.t.
extent in each objective. We emphasise that, of course, thes:t

) =322 =

fa(x) = 1% 2;2211 Zi

fa(x) = 15 330 @i

g1(x) = f3(x) +4f1(x) —1>0

g2(x) = f3(x) +4f2(x) =1 >0

g3(x) = 2f3(x) + f1(x) + f2(x) —1>0

0<z;<1,fori=1,2,...,P,P=30

use of metric information for setting the approximate sadle

perturbations does not affect the dominance-based energy.
2) Location Scaling: Drawing from methods widely used

in evolutionary algorithms (see [30]-[32] for recent work i

and so the scalings are kept at the most recent valid value.

to keep the acceptance rate fo that have a higher energy Counting only moves generated from perturbations to a

. articular dimension of parameter space, the acceptanee ra
thanx to approximatelyl /3, so that exploratory proposals ar . :
of derogatory movesy is the fraction of proposals to a
made and accepted at all temperatures.

The location perturbation scaling is recalculated for eagﬂreater energy Wh'Ch are accgptedalﬁenotgs the Ioca’gon
parameter for which 20 proposals havis@(x',x) > 0 perturbation scaling for a particular dimension, the nevs

have been generated, after which the count is reset. Locatis® 25

perturbation rescaling is omitted in two cases: Firstlyewh

this area), we aim to adjust the scale of location pertuobati

the archive of the estimated Pareto frdnthas fewer than 10 o(1+2(a — 0.4)/0.6) ff a>0.4
members. Secondly, when the combined sizé'afugmented 7= | C if 0.3<a<04 (16)
by the samples from the attainment surface when multiplied o/(1+2(0.3—-«)/0.3) if «a<0.3

by the temperature does not exceed 1. This is because we

adjust the scalings to attempt to keep the acceptance ratelbis update works because, in general, smaller perturisatio
derogatory moves approximately a third; when this value is parameter space are more likely to generate small changes
too small, it becomes impossible to generate such a scalingpbjective space, resulting in smaller changes in energy.
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Fig. 5. Archives on test problem DTLZ1 after 5000 functioralerations for each of the three algorithms.
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Fig. 6. Left: Distance of current pointk, and archiveF' from the true Pareto frontP, versus iteration for DTLZ1. The dotted line shows medianrove
20 runs of distance ak from P; dashed lines show maximum and minimum (over the 20 rungartdiss at each iteration. The thick line shows the median
(over 20 runs) of the median distance of archive membefB.tRight: Archive growth versus iteration. Thick line shows mediamefo20 runs) archive size
and dashed lines show maximum and minimum.

TABLE Il

VII. EXPERIMENTS
ANNEALING SCHEDULES

We illustrate the performance of this annealer on some well-
known test functions from the literature, namely the DTLZ

Problem | Run Time to
test functions of Delet al. [29], [33], and compare them to length | Tp, = 10~°
the performance of the well established NSGA-II evolutigna DTLZ1 | 5000 3000
algorithm [11] (using the PISA reference implementatiof]}3 B%ﬁg 1%888 10%%%
and Nam & Park’s multi-objective simulated annealer [8] DTLZ4 | 5000 3000
which we discuss in section I. The benefit of using the DTLZ DTLZ5 | 1000 500
test functions is that the true Pareto froft,is known, so we Bpég 3888 2888

can discover how close our estimated arcHivis to P, as well

as compare results from each algorithm. Note that we rectify

a couple of minor typographical errors in the description ) . ) )

of DTLZ5 and DTLZ6 here, as the formulae published igccording toTy, = (5*Tp, where 3 is chosen so thaf}, is

[29], [33] do not yield the Pareto fronts describedsor 10-5 after approximately two thirds of the evaluations are

completeness we give the problem definitions in Table I; fPmpleted; run lengths and the exact number of evaluations
In the work reported here all epoclig are of equal length Parameter perturbations are controlled using the scheme de

for the annealersL, = 100 and we adjust the temperaturescribed in section VI-B. The perturbations for Nam & Park’s
annealer are performed using a scheme similar to that for

!In equation (25) of [29] onlyd, should be multiplied byr/2 when MOSA but without the automatic rescaling feature novel to

calculating f1,..., fas. In equation (27) the calculation of (xs) is . . . .
inconsistent with the results provided, meaning Al values in the figure MOSA,; the scallngs are fixed atl (determmed from a small

in [33] are halved. empirical study, although the results are only mildly degent
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on the scaling). The parameters for the NSGA-II algorithrivreaks through’ to a front closer t8 after which the annealer
used were those suggested as the default values in the PEflores the nearer local front, adding solutions on thositfr
[34] packagé We usel 00 simultaneous chains for the Nam &to the archive and removing solutions on the previous local
Park implementation and a population of siZ# for NSGA- front as they are dominated during the exploration. Figure 6
. shows the median, maximum and minimum (over 20 runs)
We first discuss the performance of the algorithms aof the distance of the current poist to the true frontP
each of the DTLZ test problems, after which we presenersus iteration, together with the median (over 20 runs) of
statistical results summarising the performance over 2@8.ruthe median distance of members of the archivérom P on
We use the non-parametric Mann-Whitney rank-sum testmuch longer set of runs. The presence of local fronts is
(at the 0.05 level) to test for significant differences beapparent from the ‘steps’ in the median archive distance. Th
tween the algorithms in the hypervolume and true fromurrent solution clearly leads the archive, particulatyater
distance comparison measures. Files containing the fiftarations when the computational temperature is low aed th
archives located by MOSA for each of these problensearch is effectively a greedy search.
are available online dt t p: / / ww. secam ex. ac. uk/
peopl e/ ki sm th/ mosa/results/tec/. B. DTLZ 2

Figure 7 presents the archive resulting from a represestati
A. DTLZ 1 run of the algorithms on problem DTLZ2 for 1000 function
\fevaluations and a plot of the distances from the true front,
pich is the eighth of a spherical shell of radiuscentred on
e origin, lying in the positive octant. As the figure shows,

Figure 5 shows views in objective space of the archi
obtained from a single run of each of the algorithms on te
problems DTLZ1 after 5000 objective evaluations, togeth Y :
with plots showing the distance of the members of each set! "’?fCh"’e “?S close to .the. _opt|mal front for each of the
the true Pareto front. For each algorithm, the plotted tesuk agor!thms, with MOSA significantly closer than the other
those which have the median distance of solutions to the tfﬁl%(\)/mhms' .
front out of a series of 20 runs; this ensures that the res tﬁ'Le remark that this problem, and several others of the

presented are representative of the series. The true foont Z suite W't_hOUt a p_Iethorq of local fronts, can be suceess
DTLZ1 is the segment of the plane passing throtgh on ully treated with a rapid cooling schedule, as used here Du

each of the objective space coordinate axes, and it can tBethe ease of convergence to the true front on this problem,

seen that the majority of solutions generated by MOSA e anticipate that any m_ulti-objective optimiser will belab
very close to the front. This test problem has a large numks rproduce a set of solutions close to the true front although
density and coverage may vary significantly, as is the

o e
(=~ 11°) of local fronts which lie as planes parallel to and ) : : .
further from the origin tharP; the existence of these frontsC25€ here. Figure 14 illustrates that, while all th.ree. ailg_uls

is evident from the histogram of the distances fréhwhich have converged close to the true front, MOSA is significantly

shows solutions clustered at two distinct distances for I)OlOSClOSer than NSGA-Il or Nam & Pgrks annealer. The volume
and several for NSGA-II (this effect is less marked on thg easure plot shows that the archive produced by MOSA also
I]%as a greater coverage/density of solutions; even after onl

%OOO evaluations, the archive size plot clearly illussateat

MOSA has already converged very close to the true front
nd is searching across the front improving the coverage and
ensity.

evenly across many fronts which are close in objective gpac
It seems likely that it is these local fronts which preventriNa
& Park’s annealer and NSGA-II from converging on the tru

front, since in later problems without this feature theefliénce While k led bout th licability of a short |
in performance between the three algorithms is, while still '€ knowledge about the applicability of a short anneal-

significant, much less extreme. Figure 14 provides, for eatly schedule would not .b? initially available for typicakte
test problem, box plots comparing the average distanceeof orld problems, we ant|C|pa_1te that, for r_eal-world_ probiem
archive to the true front, the volume measure of the archide at e annealer_would b_e run with a very rapid annealing s_ctaaed_ul
the number of solutions in the archive (which is a fixed valulé"tIally to discover if the problem were searchable in this
for NSGA-II due to the constrained nature of the algorithmy]anner'
For this DTLZ1 problem, the figure clearly illustrates that
MOSA has not only converged to a set very close to the trée DTLZ 3
front but that the front is also well covered as shown by the A striking example of the annealer’s performance is pro-
volume measure results; the number of solutions in the MOSAded in Figure 8, where its evaluation on DTLZ3 is shown for
archive is unconstrained, so the algorithm has been able1®000 function evaluations. The Pareto front here is again a
generate a large archive close to, and with good coverage @ifjhth of a spherical shell, preceded by multiple local fspn
the true front. We observe that the annealer on this probleshthe same order as DTLZ1. The computational archive is
converges to a local front, spreads across it until a peatioh  converged to withird.01 of the true front. Consistent with the
findings by Debet al. [33] NSGA-II had failed to converge
ZLThet t_Va'“eSb JP?_: ihe PISA d‘_’ﬁ‘_gag’lf Pafg‘_megers t?r%:'rt infi"io'(Debet al. comment that in their experiments that NSGA-II
\szri;nblfeargﬂ?;{gngréégbi"’ty:L mavia J;ﬁ:g?é&iéopiﬂrsa&";;go.5” had still failed to converge after 50000 function evaluasp
variablerecombinationprobability=1, etamutation=15, etaecombination=5. and Nam and Park’s annealer yields performance similar to
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Fig. 7. Top: Archives on test problem DTLZ2 after 1000 function evaloasi. Bottom: Histograms of archive member distances from the true Péretd

(the 5% most distant have been omitted to aid visualisation)
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NSGA-II (as illustrated in Figure 14). Consistent with théower volume measure; although visually the solutions from
previous problems, MOSA’s archive is shown to be largéhe NSGA-II runs seem superior to MOSA's, the performance
dense and well covering in Figure 14. metrics suggest that MOSA has produced a better estimation
of the true front. Debet al. [29] observe that each run of
NSGA-II in their experiments converged to a different péfrt o
hltﬁ'e Pareto front; either to thé -f, plane, thefs-f; plane,
or distributed across the curved region of the front between
H1ese planes. The reason for the improved coverage of the
PISA NSGA-II implementation is that the clustering close to
close to thef; — f5 and f, — f» planes together with a lessthe rims characteristic of the problem increases as solsitio

dense covering of the shell between them for MOSA alﬁpproach the true front. It is much more likely for S.OI.UtionS
Nam & Park’s algorithm, while NSGA-II achieves an eveﬁ'tuated mcrea_smgly far from the true Pareto front to bdmh_d
coverage. Though the distribution of points across thetfr(;g'e cent_ral region of the front, although also to be domiate
is more even with NSGA-Il than MOSA, MOSA produce y the rims.

solutions which were far closer to the true front. Figure 14

shows that the solutions generated by MOSA have a much

D. DTLZ 4

The true Pareto front for this problem is again an eig
of a spherical shell, but the solutions are unevenly disteitd
across it. Figure 9 shows the algorithms’ archives after050
function evaluations, showing that solutions are conedet
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Fig. 9. Top: Archives on test problem DTLZ4 after 5000 function evaloasi. Bottom: Histograms of the distance from the true Pareto front of tickiee
members (the 5% most distant have been omitted to aid véstiain).

E. Density of solutions on the front Likewise, the D columns of V. € R¥*P  denotedv;, (i =

MOSA solutions on the front located by the annealédr - - -» D) are orthonormalV-dimensional vectors forming a
for problem DTLZ4 are close to the true Pareto front, pdecal basis for theD-dimensional subspace of parameter space
they are clearly inhomogeneously distributed across thetfr that locally maps to objective space. The maffixc R”*”
Likewise, it is apparent from Figures 5, 7 and 8, for problenig diagonal, whose diagonal elements > 0 are known as
DTLZ1, DTLZ2 and DTLZ3, that the density of solutions isSingular values and are conventionally listed in descendin
greater close to th¢; — f» plane than distant from it. Here Order so thatry > o3 > ...op > 0. The singular valuer;

related work may be found in [35], [36]. in parameter space: thus a small perturbation alsoot ev;

As we alluded to in section Ill, whem and x’ both lie N parameter space yields a change in objective space from
on or very close tdP thendFE(x’,x) = 0 and all proposals f(x) to £(x) + eoiu.
lying on the front are accepted, so that the trajectory of thelf x lies on the Pareto front no parameter space perturbation
current solution is a random walk iparameter space. The can result in a change in objectives normal to the front,
density of solutions on this front iobjective space is governed implying that one of the singular values is zero and the renk o
by the mapping of area or volume from parameter spadeis at most(D — 1). Assuming for simplicity that the Pareto
to objective space. Assuming that thigx) are continuous front is (D — 1)-dimensional, the direction normal to the front
in a neighbourhood ok, the mapping is locally linear and corresponds taip andvp in objective and parameter spaces
is described by theD by N Jacobian matrix of partial respectively, andrp = 0. Perturbations lying in the span of

derivatives® vi,...,Vvp_1 result in traversal movements along the front
and the (infinitesimal) volume in parameter spagdying in
of; sparfvy,...,vp_1) is magnified to volume
Jij(x) = 5= (x). 17)
:E_] D—1
It is useful to writeJ in terms of its singular value decompo- Vo = Vp H gi- (19)
sition (SVD; see, for example, [38]): i=1
J=uxvT (18) on the Pareto front.

These ideas are illustrated in Figure 10, which shows the
volume magnification factor on the front for DTLZ1, DTLZ3
and DTLZ4. These were calculated by evaluating the Jacobian

3In real problems the Jacobian matrix may be estimated by fitifterences matrix at a Iarge number of points In parameter_ space_ us_lng
or computer-aided differentiation packages, e.g. [37] a symbolic algebra package and then numerically finding

Here U is a D by D matrix whose orthonormal columns
(t=1,...,D) form a local basis for objective spacefdk).



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT UNDR REVIEW 13

90

80

70

60

50

!
A

0.4

Fig. 10. Magnification factors on the Pareto frofop left: DTLZ1; Top right: DTLZ3; Bottom left: DTLZ4 with o = 2; Bottom right: DTLZ4 with
« = 10. Colour indicates the local volume magnification factomirparameter space to objective space.

the singular values. Comparison with Figures 5 and 8 fannealer (Figure 9) and greatest on the section of the front
DTLZ1 and DTLZ3 makes it apparent that the magnificatioclose to thef; — f3 plane where few solutions are located. We
factors correspond to the density of solutions generated ioyer that the annealer is locating and exploriag in this

the simulated annealer. ltp = f~1(P) is the (D — 1)- case, but we see few solutions on parts of the front because
dimensional manifold in parameter space that maps to tthee magnification factors are extremely high.

Pareto front, then this may be understood in terms of the

annealer performing a random walk d¥p» which it covers

fairly uniformly, producing a high density of solutions in

objective space where the magnification factor is low, but a These deliberations lead us to consider again the question
low density of solutions where the magnification factor igthi ©f what is an appropriate natural measure on the Pareto. front

because here solutions in parameter space are spread mbfRuUr formulation of a multi-objective simulated annealer
thinly in objective space. used an approximation to the Lebesgue measure, namely the

number of solutions in the archive, to evaluate the energy of

The bottom panels of Figure 10 show the local voluma solution (9). However, this measure is defined in objective
magnification factors for DTLZ4, but withh = 2 anda = 10, space and it might be argued that a more natural measure in
rather thana. = 100 as recommended by Dedi al. [29], objective space is the one induced by Lebesgue measure on
[33]. As the figure indicates, the magnification factor atg®i X’». In fact, as our experiments show, once the vicinity of the
on the front even fora = 10 is almost two orders of Pareto front has been located it is (approximately) this dedl
magnitude greater than the magnification factors for DTLZheasure that governs the density of solutions located. Giye m
and DTLZ3; whena = 100 the pattern of magnification envisage that the singular value decompositiord ahay be
factors is similar but the range of magnifications is too greased to counteract the inhomogeneity produced in objective
for sensible visualisation. The magnification is least elts space by the magnification factor by biasing the perturbatio
the f1 — fo and f; — f3 planes, corresponding precisely talong the singular vectors; associated with large singular
the regions in which plenty of solutions are located by thealuesco;. This is the subject of current research.
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Fig. 11. Top: Archives on test problem DTLZ5 after 1000 function evaloasi. Bottom: Histograms of the distance from the true Pareto front of tickiee
members (the 5% most distant have been omitted to aid véstiain).
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Fig. 12. Top: Archives on test problem DTLZ6 after 5000 function evaloms$i for each of the three algorithmBottom: Histograms of the distance from
the true Pareto front of the archive members (the 5% mosartistave been omitted in each of the 6 figures to aid visu@ligat

F. DTLZ 5 full two-dimensional surface. As the distance plots shde, t

. . .. annealer has successfully located the one-dimensionat fro
Figure 11 shows the archives generated by the algor'thWﬁile the other two algorithms generate sets which resideeso
after 1000 function evaluations on test problem DTLZ5 for, 9 9

which the front is a one-dimensional curve rather than da{stance behind this front; Dett al. [29] also report that
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MOSA - DTLZ7 Nam & Park — DTLZ7 NSGA-II - DTLZ7

Fig. 13. Archives on test problem DTLZ7 after 9000 functioralaations for each of the three algorithms.

NSGA-II had not fully located the curve and yields a surfacef the effect of the perturbation. However, this rendersrthe

a little above the curve even after 20000 function evaluatioineffective for this problem: a single solution on the frasit

in their experiments. Figure 14 shows that the MOSA archivapidly located, but the annealer is unable to explore tbetfr
dominates~ 90% of the volume which is dominated b%; because all perturbations result in infeasible propodats.

the true front is almost completely covered by the archivéhis reason the archive shown in Figure 13 was generated by
This is the only test problem in which MOSA’s archiveperturbing a randomly chosen number of parameters for each
does not grow larger (in the allowed iteration count) thaproposal; for simplicity the perturbation scales were lapt-
NSGA-II's (enforced) set of 100 results, this is not esplgcia stant at0.1 of the feasible region throughout the optimisation.
significant however, as the NSGA-II set is significantly les&/hile more efficient perturbation schemes could probably

well converged than MOSA's archive. be devised, the figure shows that the annealer is reasonably
successful in locating the central portion of the fronthailtgh
G. DTLZ 6 the extremities of the front have not been explored and there

) o remain some extraneous solutions close to constraintcasfa
The front for DTLZ6 consists of four disjoint Componeﬁts'bounding the front, but still quite distant from itself. We

As Figure 12 shows the annealer is able to successfully8ocajsy modified the single parameter perturbation scheme used
each of these components during a single run, that NSGAGll o, implementation of Nam & Park’s annealer to perform

is able to generate solutions close to each front and that N <5me multiple point perturbations as MOSA. NSGA-II
& Park’s annealer does not converge in the allowed numbergf, pisa implementation of which already used a (moré

evaluations. Figure 14 shows that, again, MOSA' coverdge 4y, anced) multiple parameter perturbation, did not need to
the front, as well as the distance from the true front, dote®a ,,, 1 ogified for this problem. Figures 13 and 14 show that
almost all the feasible search space. During optimisa@on ( | hile MOSA has again converged well, and generates the
once the archive is close to the true Pareto front) we obseR§) ;tions closest to. the true front. NSGA-1 demonstraites
that the current solutior of MOSA epr0f§s one componentyest coverage of solutions over the front towards the extsem
of the front for a few proposals before ‘jumping’ to anotheps the constraints. It should be noted that the need to adapt
component. If the regions of parameter space correspondigg, mytiple parameter perturbation scheme will be present
to each of the components of the front were widely separatgql || aigorithms which employ a specialised single paramne
then it might be considerably more difficult for the anneal%erturbation scheme (conversely, problems can be comatruc
to simultaneously locate all components. that would prevent a multiple parameter perturbation seéhem
from converging to the true front).
H. DTLZ 7

The DTLZ7 test problem is constructed using multiplé. Statistical performance measures
constraint surfaces to yield a Pareto front consisting of aunlike single objective problems, solutions to multi-
triangular planar section and a line segment. Figure 13 shogbjective optimisation problems can be assessed in several
the algorithm archives after 9000 function evaluationse Thyifferent ways. Therefore in order to quantify the conveige
particular way in which DTLZ7 is constructed means that &f the algorithms we measure two distinct properties. Kirst
perturbation of a single parameter of a solution lying on thge calculate the average distance of the archived solutions
front makes the perturbed parameter vector infeasibleusecadiscovered from the true front to ascertain how close on
it violates one of the constraints. Our schemes, describedaverage solutions found are to the true front. Rather thamgus
section VI-B, for adjusting the perturbation scalings rely the root mean square distance which is susceptible to mjtlie
perturbing a single parameter at a time in order to keep trajgkre we use the median distance of solutions in the archive:

4We use the formula given in [29], [33]; the figures in these ljpakions 7 _ -
appear to have been generated with fheobjective scaled by a factor of 2. d(F ) - mfed}arid(x)] (20)
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where d(x) is the minimum Euclidean distance betwern discussed above this could probably be improved by designin
and the true frontP. Clearly, this measure depends on thparticular perturbation strategies for this particulaolpem;
relative scaling of the objective functions, however, iglgs the NSGA-II implementation has a multiple point mutation
a fair comparison here because the objectives for the DTIseheme which performs very well on this problem.

test functions have similar ranges. Figure 14 also shows how the final archive size varies across

Secondly, since we are concerned with finding solutionise 20 runs for each of the DTLZ problems used here. For the
spread across the true Pareto front, we also use a varianM@SA results it is clear that even the fronts generated by
the volume)Y measure [24] which is conceptually similar tathe least well-covered runs for each problem contain a large
the performance measure used in [39]. The idea is to cagculguantity of solutions relative to the run length. Furtherenhe
the amount of objective space that is dominated by the trnamber of solutions generated for each problem is consisten
front, but not by the calculated archive. To make this pescisacross runs, although, as may be expected, problems with
let H be the minimum axis-parallel hypercube in objectivenultiple local fronts (DLTZ1 and DTLZ3) have a larger
space which contain®. ThenV (P, F) is the fraction ofH spread. The NSGA-II algorithm is constrained to a predefined
which is dominated by’ but not byF'. Clearly this measure is size (100 solutions in the work presented here) and Nam &
zero whenF' covers the entire Pareto front and it approach@sark’s annealer does not generate large sets of solutioits as
zero asF approachesP. Importantly however, an archivedoes not converge close to the true front.
comprised of a few solutions clustered together on the truein these comparisons we have allowed relatively small
front will have a largerV(P, F') than an archive of solutions numbers of evaluations to each algorithm in order to test
well spread across the front and therefore dominating a&targapid convergence. It could be claimed, however, that this
fraction of objective space. This measure is straightfotlya prejudices the results against the population based search
calculated by Monte Carlo sampling0f samples here) off  of NSGA-Il and in favour of MOSA, as it might be ex-
and counting the fraction of samples dominated exclusivghected that MOSA would demonstrate rapid convergence and
by P and notF’; see [24] for details. slow coverage, while NSGA-II would converge slowly but

Figure 14 shows box plots over 20 runs, from differerdemonstrate superiour coverage subsequent to convergence
randomly-selected initial solutions, of the median Eugid While the results presented earlier show that MOSA does
distance,d(F"), fractional volume measures and archive sizeot demonstrate this behaviour, additional experimentewe
of the results for each algorithm on each test problem. undertaken, allowing NSGA-Il 100,000 function evaluaton

The distance of? to the objective space origin (1) for for each of DTLZ1, DTLZ2 and DTLZ3 (DTLZ1 and DTLZ3
all of these problems, so it can be seen from Figure 14 thHading the two most difficult to converge to with multiple
the annealer is able to converge very close to the front for &cal fronts, and DTLZ2 being the least difficult). Over the
seven problems. In fact, MOSA is significantly closer to theourse of the experiments the archives generated by MOSA
front, (as described in section VII) than both NSGA-II andhown earlier for the low evaluation counts were signifiant
Nam & Park’s annealer. NSGA-II was able to converge to @oser to the true front than those of NSGA-II after 100,000
set near to the true front for five of the problems (with two aévaluations (this is unsurprising given the previouslylishied
those being very near) and Nam & Park’s annealer was ablerésults of NSGA-Il on these problems [33]) and also had a
generate an archive near the true front on one of the problemygeater dominated volume.

The middle row of Figure 14 showg(P, F), the fractional
volume dominated byP and not byF. As the figure indi-
cates the annealer both converges wellPtand also covers
it reasonably well for all the problems. MOSA dominates Mobile telephone subscribers are allocated to one of a
significantly more volume than NSGA-II for 6 of the 7 caseaumber of distinctcells or sectors comprising the telephone
although NSGA-II is significantly better on DTLZ7. NSGA-Il network. Cells may vary in extent from a few tens of metres
achieved a good coverage on those problems for which it coid a large office building) to several kilometres (in rural
converge near to the true front; the diversity maintainaince areas). Each cell is served by a single antenna and as the
the algorithm encourages this. NSGA-II performed paréidyl phone subscriber moves to a new location a ‘handover’ is
well on DTLZ7 where the coverage was better than MOSA'snade to a new cell in which the radio signal is stronger.
Nam & Park’s algorithm was unable to effectively cover th&he performance of the network whole and the quality of
true front for any problem. service enjoyed by individual subscribers is dependennupo

The results for DTLZ4 effectively demonstrate why it isnany operating parameters, some associated with the antenn
necessary to measure convergence in terms of both distaand radio interface itself (such as the antenna azimuth and
and coverage, with MOSA having converged closeéPtobut  downtilt) and others associated with the network as a whole,
yielding a poor coverage of the front (in objective space$uch as the handover policy [40]. In addition performance
an artifact of the large range of volume magnification fadtself may be evaluated in terms of several different mstric
tors, as discussed earlier, also demonstrating that thealiys for example: the network capacity (humber of simultaneous
appealing NSGA-II results were less well converged than galls); coverage (area served); and mean cell traffic cHhanne
seems upon inspection. Confirming the impression given ppwer. The simultaneous optimisation of all these competin
the single run depicted in Figure 13, on average the annealbjectives is generally impossible and here we use the MOSA
does not completely cover the true front for DTLZ7. Agdo investigate the trade-offs between them. We draw atienti

VIIl. CDMA NETWORK OPTIMIZATION
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Fig. 14. Top: Box plots of the average distand¢F) of the archive from the true Pareto front for 20 runs of each.DTest problems, using the documented
run lengths.Middle: Box plots of the volume measudé(P, F) of the archive for each rurBottom: Box plots of the size of the archive for each run. Each
figure shows the results for MOSA, NSGA-Il and Nam & Park’s eatar.

to recent work using multi-objective optimisation in thelpile  In this study there were 94 pilot powers as parameters and we
telecommunications domain: Ben Jarehal. [41] have used optimised three objectives: the pilot pollution factorfided
multi-objective genetic algorithms for cell planning inder as the number of pilots that each subscriber receives within
to optimise the cost and coverage of a network, and SzabdB of the dominant pilot; the mean downlink traffic channel
et al. [42] have used multi-objective evolutionary algorithm¢TCH) outage factor defined as the number of subscribers
for discovering the cost-interference trade-off whenadling attempting to exceed their TCH power limit; and the mean
transmitter placement and assigning transmission frezjgen reverse link server penalty which quantifies the unbalancin
in time division multiple access (TDMA) networks. of the reverse link. This is done by comparing the propagatio
loss between each subscriber and its serving cell and the
We treat as parameters to be optimised the pilot powersfallest propagation loss between that subscriber and any
a Code Division Multiple Access (CDMA) network. The pilotce|l—the average difference between these values acrbss al

power may be loosely thought of as the power with which thg pscribers is defined as the reverse link penalty.
cell transmits to establish initial communication with ples

in its cell. Pilot power is a particularly important paraeret Unlike optimisation of test problems, as in section VII,
in CDMA networks because cells transmit continuously arttie properties of the CDMA search space are not known in
if the pilot power is too great a cell may drown out itadvance. Particularly, it is not known if the problem extsbi
neighbours, but will not be heard if the pilot power is too lowlocal front behaviour, where an optimiser must make several
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successive movements out of a locally optimal region @fg. 16. Pareto-optimal central network configurationsregponding to the

parameter space in order to locate the globally optimalbregilabelled points on the Pareto front in Figure 15.

which corresponds to the Pareto front in objective space.
The results reported here are for an operational CDMA-1

network consisting of 94 sectors. Computational optintsat

is feasible for this system due to the employment of

proprietary mathematical model of the downlink air inteda

X . . .

provides important information about the network to a net-
\gork engineer, since some pilot powers seem to have single
optimal values, particularly those in the less populatezhgar

which permits rapid evaluation of new configurations. Irsthiof the network with fewer interaciions. However, as might be

study the pilot power of each sector was allowed to vary OVg}(pected, it can be seen that the configuration with low pilot

the range from 1.0W to 3W in 0.5W intervals. Initially thepOIIUtion (netvvor_k 3) re;tricts pilot powers in sectorstifae
pilot powers were set to their minimum feasible values a ch other. The interaction between pilot powers and theroth

the MOSA was initialised to a temperature that yielded a 509 ]eCt'Ve_S Is less clegr, but the MO.SA meth_odology provales
echanism for locating these optimal configurations. Gurre

acceptance rate for derogatory moves, as described imsect]’ K invol ing thi thodol o th timisati
VI-A. The computational temperature was then reduced evevy)?r ano ves "fllplto ying this me Otho ogyd (()j © toltp |m|slaa 10
Ly = 100 proposals by a factor of, = 0.958. The annealer of antennae priot powers, azimuins and downtilts In larger

was run for 100000 evaluations of the objective function. networks.

Figure 15 shows the estimated Pareto front obtained, which
consists of 965 solutions. We remark that a standard genetic IX. CONCLUSIONS

algorithm optimising a composite objective function la@sat \We have presented an energy measure for use in multi-
after 100000 function evaluations a single solution whigh bbjective SA which is based on the fundamental notion of
dominated by almost all of the non-dominated archive. Thgminance, rather than employing a weighted combination of
GA solution is distant from the archive but it is likely th&iet the objectives. Simulated annealers employing this measur
genetic algorithm would have located a point in the vicinityere shown to have good convergence properties on the
of the front generated by the simulated annealer if it haschbefirst seven DTLZ test functions [29], [33]. An extensive
permitted a greater number of objective evaluations. Ofs®u comparison with the evolutionary algorithm NSGA-II and the
the principal advantage of the annealer is not the reduaionmulti-objective annealer proposed by Nam & Park [8] on
the time taken to find a desirable solution (although this these problems shows that the annealer consistently gesera
considerable), but the frontal nature of the results geadraarchives closer to the true front than NSGA-II and Nam
by the simulated annealer. The front which has been locate®i Park’s annealer and that in all but one case produces a
clearly curved in objective space and displays to the nétwasignificantly better coverage (on DTLZ7 NSGA-II generates
engineer the range of trade-offs which may be made fronts with a fuller coverage of the front, possibly due te th
configuring the network. more specialised multiple point perturbations used).

The central portion of the network configuration corre- We emphasise that the MOSA algorithm was not ‘tuned’
sponding to each of the solutions circled in Figure 15 i®r each of these problems, but run from a randomly chosen
shown in Figure 16. In this figure, the pilot power for anitial condition. More rapid convergence on many of these
sector is indicated by the length of an arrow rooted at thmroblems can be achieved by careful tuning of the annealing
antenna location (antennae masts frequently support twosshedule but, of course, this requires many runs to discover
three antennae serving different sectors). It is intemgstd a reasonable schedule; while tuning the annealing schéslule
note that each of the network configurations is very similamportant in industrial applications where the annealetois
despite their extreme relative frontal locations. This fegu be run many times on similar problems (e.g., CDMA network
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optimisation), we have refrained from tuning the annealend additional objectives relating to the quality of seevior

to particular test problems; here we simply limit all the subscribers.

algorithms to an evaluation count approximately at whiah th Our E(x) is a measure of a portion of the dominating set,
first algorithm converges on the true front. The only inseimc namelyu(Fx), which is a close relation to Fleischer’s recently
which it was necessary to alter the annealers was for DTLZ*oposed measure [21]; loosely, our measure deals with the
for which single point perturbations of solutions close lte t area of the dominating surface—the attainment surface—
Pareto front result in infeasible proposals, however, @uth while Fleischer’s considers the dominated volume. It wdagd

be noted that the problem with single point perturbationsteresting to investigate the convergence of an anneatd
will afflict all stochastic searches (evolutionary algbnits, on Fleischer's measure but, as shown in [44], the complexity
GAs, etc) that perturb a solution to generate a new candidafethe calculation is polynomial in the number of archived
solution and that in this problem, MOSA performed almostolutions and exponential in the number of objectives; this
as well with a very basic multiple point perturbation schemmakes calculation for even 3 objectives infeasibly slow for
as NSGA-II did, which uses a more advanced scheme. Om&e as the energy calculation for an annealer. Although a
possible limitation of the MOSA scheme is that the repeatguioof of convergence for simulated annealers based on our
perturbation of the single solution might make it difficuit t measure remains to be completed, this is an area of current
explore a Pareto front which corresponds to several disjoimork, together with the application of the annealer to other
regions of parameter space (cf DTLZ6 in section VII-G)arge scale problems.

However, work on schemes that permit perturbations across

the front suggests that in general they do not converge mdveknowl edgements

rapidly [43]. The authors would like to thank Michelle Fisher and the
An advantage of the dominance based energy measurgggnymous reviewers for their useful comments. We would

that it is nota priori biased towards any part of the frontg|sg like to thank the authors of the PISA code [34] for making

Weighted sum optimisers implicitly use distance informati thejr implementation of the NSGA-II algorithm availabler fo

in objective space, which renders them sensitive to théivela ;ge by the academic community.

scalings of the objectives, whereas our algorithm is robust

rescalings of the objectives. Indeed, if the relative intaoce REFERENCES

or scales of the objectives were known in advance it might; s kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimidan by

be more straightforward to optimise a single, appropijatel  simulated annealing,Science, vol. 220, pp. 671-680, 1983.

weighted, sum of the objectives. Notions of dominance antl N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, A. H. Tl and
E. Teller, “Equation of state calculations by fast compgitmachines,”

Pareto optimality are well suited to handling competing 0b-  35rna) of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
jectives whose relative importanceaspriori unknown and it  [3] S. Geman and D. Geman, “Stochastic relaxation, Gibbgilligions,
is therefore natural to eschew metric information in favofir and the Bayesian restoration of image&EE Transactions on Pattern

d . ts | der t ide th h. Indeed Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.
ominance concepts In oraer 1o guide the search. Indeed, Vf‘iﬁ C. A. Coello Coello, “A comprehensive survey of evolutary-based

have argued that the dominance based energy tends to promotemultiobjective optimization techniquesKnowledge and Information
exploration in sparsely populated regions and in practiee w_, Sstems: An International Journal, vol. 1, no. 3, pp. 269-308, 1999.

h h h . df | d widel h[8] D. van Veldhuizen and G. Lamont, “Multiobjective evdbrary al-
ave shown that estimated fronts evenly and widely cover t gorithms: Analyzing the state-of-the-artEvolutionary Computation,

true front. An area of current investigation is to use thgusiar vol. 8, no. 2, pp. 125-147, 2000.
values and vectors of the Jacobian matrix to guide the seart& P- Engrand, "A multi-objective approach based on sirfedaannealing

. and its application to nuclear fuel management,’5th International
on the front towards areas that would otherwise be sparsely conference on Nuclear Engineering, Nice, France, 1997, pp. 416-423.

populated. [7] P. Czyzak and A. Jaszkiewicz, “Pareto simulated aringat a meta-
Determining an efficient scale on which to make proposals heuristic technique for multiple-objective combinatbraptimization,”

. . . . L . Journal of Multi-Criteria Decision Analysis, vol. 7, pp. 34-47, 1998.
is more complicated in the multi-objective case than the unig; 5k Nam and C. H. Park, “Multiobjective simulated anfieg: a

objective case, because some proposals work to advance thecomparative study to evolutionary algorithmésiternational Journal of
front, while others traverse the front. We have proposegiim Fuzzy Systems, vol. 2, no. 2, pp. 87-97, 2000.

h isti ¢ daot th turbati | d fut r[&] M. Hapke, A. Jaszkiewicz, and R. Slowinski, “Pareto siated anneal-
euristics to adap € perturbation scales and tuture wo ing for fuzzy multi-objective combinatorial optimizatidnJournal of

involves applying machine learning techniques to learn the Heuristics, vol. 6, no. 3, pp. 329-345, 2000.
local mapping between parameter and objective space im ortl€] A- Suppapitnarm, K. A. Seffen, G. T. Parks, and P. J. ian, “A simu-

- . . lated annealing algorithm for multiobjective optimizatjb Engineering
to more sensitively control the search direction. Optimization, vol. 33, pp. 59-85, 2000.

When applied to the optimisation of a CDMA network th€11] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Faditi& Non-

annealer is successful in generating a front with a Iargekmum Dominated Sorting Genetic Algorithm for Multi-Objectivep@mization:
f I d . - uti h .. f NSGA-II,” in Proceedings of Parallel Problem Solving from Nature -
of mutually non-dominating solutions, the vast majority of  ppgyvi’ springer, 2000, pp. 849-858.

which are superior to the single solution located by a geneti2] K. I. Smith, R. M. Everson, and J. E. Fieldsend, “Domicarmeasures

algorithm optimising a composite objective function. This for mqlti-objective simulated annealing,” roceedings of Congress on
I K . K inf d decisi Evolutionary Computation, CEC04, 2004, pp. 23-30.
allows a network engineer to make an informe €CISIgQNy) | Ingber, “Simulated annealing: Practice versus tigdVathematical

regarding network configurations with additional knowledg  Computation and Modelling, vol. 18, pp. 29-57, 1993.

of the costs of the trade-offs involved. Further work in thig4] P- Salamon, P. Sibani, and R. FroBcts, Conjectures, and Improve-

directi il be f d timisati . Vi both ments for Smulated Annealing, ser. Monographs on Mathematical Mod-
irection wi € focused on optmisations Iinvolving bo eling and Computation. Society for Industrial and Appliedthematics,

more parameters, such as antenna azimuths and downtilts, 2002, no. 7.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT UNDR REVIEW 20

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

P. Serafini, “Simulated annealing for multiobjectivptimization prob-
lems,” in Multiple criteria decision making. Expand and enrich the
domains of thinking and application, 1994, pp. 283—-292.

E. L. Ulungu, J. Teghaem, P. Fortemps, and D. TuytteMdOSA [35]
method: a tool for solving multiobjective combinatorialcigon prob-
lems,” Journal of Multi-Criteria Decision Analysis, vol. 8, pp. 221-236,
1999. [36]
D. Tuyttens, J. Teghem, and N. El-Sherbeny, “A particuhultiobjective
vehicle routing problem solved by simulated annealing,Metaheuris-

tics for multiobjective optimisation, ser. Lecture notes in economics and
mathematical systems, X. Gandibleux, M. Sevaux, K. S@ensnd [37]
V. T'’kindt, Eds. Springer, 2003, vol. 535, pp. 133-152.

M. Hapke, A. Jaszkiewicz, and R. Slowinski, “Pareto slated anneal-

ing for fuzzy multi-objective combinatorial optimizatidnJournal of  [38]
Heuristics, vol. 6, no. 3, pp. 329-345, 2000.

I. Das and J. Dennis, “A closer look at drawbacks of mizing [39]
weighted sums of objectives for Pareto set generation irtienitgria
optimization problems,Sructural Optimization, vol. 14, no. 1, pp. 63—

69, 1997. [40]
A. Jaszkiewicz, “Comparison of local search-basedametristics on

the multiple objective knapsack problenfundations of Computer and  [41]
Decision Sciences, vol. 26, no. 1, pp. 99-120, 2001.

M. Fleischer, “The measure of Pareto optima: Applizas to multi-
objective metaheuristics,” iBvolutionary Multi-Criterion Optimization,  [42]
Second International Conference, EMO2003, ser. Lecture Notes in
Computer Science, C. M. Fonseca, P. J. Fleming, E. ZitzlerD&b,

and L. Thiele, Eds., vol. 2632. Springer, 2003, pp. 519-533.

C. M. Fonseca and P. J. Fleming, “Genetic algorithmsnfotitiobjective  [43]
optimization: Formulation, discussion, and general@ati in Proceed-

ings of the Fifth International Conference on Genetic Algorithms, 1993,

pp. 416-423.

D. Greening, “Simulated annealing with inaccuratetsdanctions,” in
Proceedings of the IMACS International Congress of Mathematics and  [44]
Computer Science, Trinity College, Dublin, 1993.

J. E. Fieldsend, R. M. Everson, and S. Singh, “Using Uist@ined
Elite Archives for Multi-Objective Optimisation,1EEE Transactions
on Evolutionary Computation, vol. 7, no. 3, pp. 305-323, 2003.

M. Jensen, “Reducing the Run-time Complexity of Mibjective
EAs: The NSGA-Il and other Algorithms,TEEE Transactions on
Evolutionary Computation, vol. 7, no. 5, pp. 502-515, 2003.

T. Hanne, “On the convergence of multiobjective eviolmary algo-
rithms,” European Journal of Operational Research, vol. 117, pp. 553—
564, 1999.

E. Zitzler, “Evolutionary Algorithms for Multiobjedte Optimization:
Methods and Applications,” Ph.D. dissertation, Swiss Faldmstitute
of Technology Zurich (ETH), 1999, diss ETH No. 13398.

V. Grunet da Fonseca, C. M. Fonseca, and A. O. Hall, finigal
performance assessment of stochastic optimisers and thienagnt
function,” in First International Conference on Evolutionary Multi-
Criterion Optimization, E. Zitzler, K. Deb, L. Thiele, C. A. Coello
Coello, and D. Corne, Eds. Springer-Verlag. Lecture Nat€Samputer
Science No. 1993, 2001, pp. 213-225.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scakabinulti-
objective optimization test problems,” iCongress on Evolutionary
Computation (CEC'2002), vol. 1, 2002, pp. 825-830.

M. Laumanns, G. Rudolph, and H. P. Schwefel, “Mutati@mntcol and
convergence in evolutionary multi-objective optimisatfoin Proceed-
ings of the 7th International Mendel Conference on Soft Computing
(MENDEL 2001), R. Matousek and P. Osmera, Eds., Brno, Czech
Republic, 2001, pp. 24-29.

I. F. Sbalzarini, S. Miller, and P. Koumoutsakos, “kichannel op-
timization using multiobjective evolution strategiesyi Proceedings

of the First International Conference on Evolutionary Multi-Criterion
Optimization (EMO), ser. Lecture Notes in Computer Science, E. Zitzler
K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, Eds. 8ger,
2001, pp. 516-530.

D. Buche, S. D. Miller, and P. Koumoutsakos, “Self&pthtion

for multi-objective evolutionary algorithms,” irEvolutionary Multi-
Criterion Optimization, Second International Conference, EMO 2003,
Faro, Portugal, ser. Lecture Notes in Computer Science, C. M. Fonsec ,///
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., vol.326 *“
Springer, 2003, pp. 267-281.

!

it} I

in Evolutionary Multi-Criterion Optimization (EMO 2003), ser. Lecture
Notes in Computer Science, C. Fonseca, P. Fleming, E. ZitleDeb,
and L. Thiele, Eds. Berlin: Springer, 2003, pp. 494 — 508.

T. Okabe, Y. Jin, and B. Sendhoff, “On the dynamics ofletionary
multi-objective optimisation,” irProceedings of Genetic and Evolution-
ary Computation Conference, 2002, pp. 247-256.

T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff, “On teshdtions for
evolutionary multi-objective optimization,” ifarallel Problem Solving
from Nature, VIII, ser. Lecture Notes in Computer Science 3242.
Springer, 2004, pp. 792-802.

M. Berz, C. Bischof, G. Corliss, and A. Griewank, EdSamputational
Differentiation: Techniques, Applications, and Tools.  Philadelphia:
SIAM, 1996.

G. H. Golub and C. F. V. LoarMatrix Computations. Oxford: North
Oxford Academic, 1983.

M. Laumanns, E. Zitzler, and L. Thiele, “A Unified Modebrf Multi-
Objective Evolutionary Algorithms with Elitism,” ifProceedings of the
2000 Congress on Evolutionary Computation, 2000, pp. 46-53.

J. Korhonen,Introduction to 3G mobile communications, ser. Mobile
communications series. Norwood, MA: Artech House Publish2001.
S. Ben Jamaa, Z. Altman, J. M. Picard, and B. Fouresfidylti-
objective strategies for automatic cell planning of UMTSwueks,”
in Vechicle Technology Conference, Milan, 2004.

G. Szabb, K. Weicker, N. Weicker, and P. Widmayer, “Exionary
multiobjective optimization for base station transmitgacement with
frequency assignmentfEEE Transactions on Evolutionary Computa-
tion, vol. 7, pp. 189-203, 2003.

K. I. Smith, R. M. Everson, and J. E. Fieldsend, “Simethtannealing
and greedy searches for multi-objective optimisation f@mis,” School
of Engineering, Computer Science and Mathematics, The ddsily
of Exeter, Tech. Rep., 2006, available from http://wwweseex.ac.uk/
people/kismith/mosa/.

L. While, “A new analysis of the LebMeasure algorithnr fealculat-
ing hypervolume,” inEvolutionary Multi-Criterion Optimization: Third
International Conference, EMO 2005, ser. Lecture Notes in Cmputer
Science, vol. 3410. Springer-Verlag, 2005, pp. 326-340.

Kevin I. Smith graduated with a degree in Computer
Science from the University of Exeter in 2002 and
a PhD in computer science, studying simulated an-
nealing techniques for multi-objective optimisation,
in 2007.

He is currently employed by the University of
Exeter in a collaboration with the ai Corporation
investigating credit card fraud classification. His
current interests lie in multi-objective optimisation
and pattern recognition for classification.

Richard Everson graduated with a degree in
Physics from Cambridge University in 1983 and a
PhD in Applied Mathematics from Leeds University
in 1988. He worked at Brown and Yale Universities
on fluid mechanics and data analysis problems until
moving to Rockefeller University, New York to work
on optical imaging and modelling of the visual cor-
RS tex. After working at Imperial College, London, he
hill joined the Computer Science department at Exeter
University where he is now an Associate Professor
of Machine Learning. Current research interests are

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scakebinulti- in statistical pattern recognition, multi-objective opisation and the links
objective optimization test problems,” Institute fir heische Infor- between them.

matik und Kommunikationsnetze, ETH Zurich, Tech. Rep. 12001.
S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “RAIS— a platform
and programming language independent interface for sedgohithms,”



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DRAFT UNDR REVIEW

Jonathan E. Fieldsend (S'00-M’'02) received the
B.A. degree (with honours) in economics from the
University of Durham, Durham, U.K., in 1998 and
received an EPSRC studentship to receive the M.Sc.
degree in computational intelligence at the Univer-
sity of Plymouth. Plymouth, U.K. In November 1999
he obtained a further studentship at the University
of Exeter, Exeter, U.K., to undertake Ph.D. research,
completing a thesis on new algorithms for multi-
objective search and their application to evolutionary
neural network training in 2003.

He is currently a Lecturer in Computer Science at the SchédErmi-
neering, Computer Science and Mathematics, University x&tdt. He has
previously held Research and Business Fellowships at thee $astitution.
His current research interests include reversible jump MXkethods, multi-
objective optimisation, pattern recognition, and macHewning.

Dr. Fieldsend is a Member of the IEEE Computational Inteltige Society
and the IEEE Signal Processing Society.

has four filed patents.

UK.

Chris Murphy Chris Murphy earned his Ph.D in
Satellite Remote Sensing at Aston University in
Birmingham, during which time he was commis-
sioned by the European Space Agency to calibrate
satellite instrumentation. He subsequently spent two
years developing models of the human respiratory
system for clinical decision support tools. He has
been at Motorola for the last seven years where he
has defined and commercialised innovative services
for 3G and 4G cellular network operators. He is an
author of several conference and journal papers and

Rashmi Misra Rashmi Misra has been heading the
Seamless Mobility Consulting Services initiative in
EMEA and Asia PAC for Motorola Global Services
and has been working at the cutting edge of mobile
technology for almost 10 years. She has a doctor-
ate in Atrtificial Intelligence from the University of
Exeter, UK and has several patents to her name in
the area of mobile telecommunications. Dr Misra
has a track record of taking innovative and early
technology projects to market. Dr Misra has an MBA
with Distinction from the University of Warwick,

21



