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Abstract 

Recent researches on the effects of environmental degradation on food security 

suggest that a better understanding of the relationship between agricultural 

intensification and pollutant transfer is urgently required to support the 

implementation of sustainable agricultural policies, globally. Poor understanding 

of the hydrological behaviour of clay-rich soils in intensively managed 

agricultural regions is highlighted as an important problem. The study therefore 

evaluated precipitation-soil water chemistry relationships, soil variability and 

concentration-discharge relationships at the farm-scale based on datasets from 

the North Wyke Farm Platform between 2011 and 2013. The three main 

hypothesis were that (1) precipitation and soil water chemistry are significantly 

related (2) significant relationships exists between the distribution of soil 

physiochemical characteristics and the managments of the fields, and that (3) 

hydrological behaviour of fields underlain by certain dominant soils in the study 

area are different from that of other fields. The basis of this work was to 

elucidate links between sources of pollutants and water quality, further 

understanding of the effect that management of the soil may have upon the 

quality of the water and improve understanding of the pathways of pollutants 

within intensively managed landscapes.  

Precipitation chemistry of the study area was chemically different from 

that of the other regions in the United Kingdom, and was influenced by 

contributions from sea salts and terrestrial dusts. The soil chemistry was rich in 

organic matter which contributed significantly (r2>0.60; p<0.05) to the 

distribution of total carbon and total nitrogen in the fields. Mean total carbon and 

nitrogen stocks ranged 32.4 - 54.1 t C ha-1, and 4 - 6.2 t Na ha-1, respectively in 

the entire farm platform while runoff coefficient at four selected fields 

(Pecketsford, Burrows, Middle and Higher Wyke Moor, and Longlands East) 

varied between 0.1 and 0.28 in January and November, 2013. The study 

rejected the first and third hypotheses, and concluded that the study area is 

largely influenced by contributions from the surface runoff mechanisms. The 

study also noted that sodium and chloride ions were dominant in the 

precipitation chemistry, and therefore suggests their further investigation as 

conservative tracers in the soil and runoff chemistry.    
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CHAPTER 1 

INTRODUCTION 

1.1 Background to the Study 

Agricultural intensification is widely recognised as one of the most significant 

human alterations to the global environment because of its on–site and off–site 

consequences (Matson et al, 1997; Donald et al, 2001; Tscharntke et al, 2005; 

Tscharntke et al, 2012). Total cultivated area has increased between 1700 and 

1980 by 466%, globally (Meyer and Turner, 1992), and although the rate of the 

increase has slowed down in the last few decades, agricultural intensification 

through the use of high-yielding farm varieties, chemical fertilisers, irrigation and 

mechanisation, has increased (Matson et al, 1997; Tilman et al, 2002; Withers 

and Haygarth, 2007; Cordell et al, 2009; Figure 1.1).      

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.1a-c. Global trends of agricultural intensification; (a) increased gross   
production value in agriculture at global and continental levels (Data from 
FAOSTAT (Statistics Division of the Food and Agriculture Organisation) 
database of the UN Food and Agriculture Organisation). b - c. Increased use of 
inorganic fertilisers and pesticides, respectively (Tilman et al, 2002). 
 
 

Agricultural intensification is evident in both developing and developed 

countries. In developing countries, it occurs under the general perception of ‘the 

Green Revolution’ which started in most of these countries in the 1960s, 

involving transfer and dissemination of high-yielding crop seeds (Naylor, 1996). 

In developed countries, agricultural intensification can be demonstrated (for 

example) by the 400–500% increase in cotton and wheat yields, in the eastern 
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Colorado in the United States of America (Matson et al, 1997), the 1947 

Agriculture Act in the UK and treaty of Rome for Europe in 1957 (Latacz-

Lohmann and Hodge, 2003; Wilson and Rigg, 2003; Martin and Langthaler, 

2009). Programmes aimed at promoting agricultural intensification have 

successfully resulted in increasing agricultural yields in most regions.  

Concerns for the long-term sustainability and environmental 

consequences of agricultural intensification have also increased in recent years 

(Matson et al, 1997). Studies of the intensive cultivation systems of rice and 

wheat farms (for example) in Asia have shown serious concerns for decline in 

crop yield due to loss of soil quality and increased crop health problems 

(Nambiar, 1994; Yadav et al, 2000).  Agricultural intensification has also been 

linked with increased erosion, reduced soil fertility and reduced biodiversity 

(Singh, 2000; Tilman et al, 2002; Swift et al, 2004). Across Europe, studies 

have associated the significant decline in the population of farmland birds since 

the last quarter of the 20th century to agricultural intensification (e.g. Donald et 

al, 2002). Donald et al (2002) also reviewed the impact of different provisions of 

the European Union’s Common Agricultural Policy (CAP), and showed that 

consequences of agricultural intensification when environmental quality is not in 

the focus of the agricultural development initiatives (Table 1.1). In general, 

studies have shown that while it is necessary to meet the increasing global food 

needs (United Nations Population Fund, 2007), it is also important to 

understand how ecosystems are altered by intensive agriculture, and develop 

new strategies that take advantage of the ecological interactions within 

agricultural systems (Latacz-Lohmann and Hodge, 2003; Sutherland et al, 

2006; Swinton et al, 2007). 
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Table 1.1. Some provisions of the Common Agricultural Policy (CAP) and their effects on the environment  

  (Modified from Donald et al, 2002).  
 

Type of Support Role under the CAP Explanation Effects on the environment 

Price support It is the main form of agricultural support 
under the CAP. Price support was cut by the 
1992 and 1999 CAP reforms, with farmers 
compensated through direct payments. 

Prices of main farm commodities are supported above 
world market price. Export subsidies, intervention buying, 
import tariffs, supply controls for maintaining high EU price 
and dispose of surpluses.  

It is the main stimulus for agricultural 
intensification under CAP, and has encouraged 
increase in yield, higher use of inputs, use of 
marginal land, destruction of unfarmed habitats 
and loss of unfarmed features and land use 
changes (mainly grassland converted to arable). 

Direct area 
payments 

Introduced for cereals, oilseeds and proteins. 
It is a major part of CAP budget, and of 
incomes for arable farmers. 

Introduced in 1992 for arable crops, to compensate farmers 
for price cuts. Paid on area basis, linked to previous 
regional yields, subject to set-aside. 

The effect on the environment is not clear. It is 
however linked to land which were previously 
used for arable production, and therefore 
discourages reversion to other habitats. Large 
subsidy cheques could be used to fund 
damaging capital projects or environmentally 
beneficial activities. 

Headage 
livestock 
payments 

It is the main form of subsidy in ‘sheapmeat 
regime’, and it became important in beef 
regime as a compensation for price cuts in 
1992 and 1999. 

This is paid per ewe or eligible beef animal. It is subject to 
quota, however, and premium payment on ewe is linked to 
lamb prices. 

This support has substantially encouraged a 
large increase in stocking rates, especially of 
sheep, causing environmental damage (soil 
erosion by overgrazing and degradation of 
grassland).  

Less favoured 
area payments 

It is used to support farming in marginal 
areas. Reforms now recognise 
environmental benefits of extensive farming 
systems. 

Before Agenda 2000, this was paid per unit area of 
livestock or area of arable crops. It is however now paid on 
an area basis, with attached environmental conditions.  

 This may have helped to prevent abandonment 
of margin areas and increase reseeding of 
pastures, the effect of Headage payment has 
nullified its significance.  

Capital grants This was introduced under Structures 
Regulations 1972, and some members of EU 
still fund agricultural development under 
structural funds. 

Wide range of grants have been available in the past for 
agricultural development and growth in production. 

This has caused direct environmental impacts 
such as; removal of hedgerows, loss of wetlands 
by drainage and irrigation of dry habitats. 

Afforestation 
payments 

This was introduced in 1992 as an 
accompanying measure, and it is now 
included in the rural development regulation. 

The payment is made to transfer agricultural land to 
forestry and to enhance and protect existing woodland. 

This is noted to cause direct environmental 
damage, by influencing afforestation of peat 
bogs and heather moorland, afforestation on 
rocky soils and planting of alien species. 

Agri-environment 
schemes 

Introduced in 1992 under the Agri-
Environment Regulation 2078 and now part 
of Rural Development Regulation. It is 
growing in significance but it still has less 
than 5% of CAP budget. 

This schemes pay farmers to implement environmentally 
beneficial management regimes such as organic farming, 
habitat restoration and land management of boundary 
features, and maintaining extensive systems.  

This is a beneficial scheme as some have shown 
to benefit biodiversity. The uptake is however 
poor in intensive regions with uncompetitive 
rates of payment, and its benefits are poorly 
monitored over many parts of Europe. 
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The negative regional consequences of agricultural intensification include 

pollution of surface and groundwater, and eutrophication of lakes and rivers 

systems (Matson et al, 1997; European Environment Agency, 2003). Table 1.2 

provides a list of the negative effects of agricultural intensification to water 

quality and users of water. The recent realisation of the negative effects of 

agricultural intensification is probably the main reason for the establishment of 

agri-environment schemes and sustainability policies in many countries, and the 

continuous agitation for such in the developing countries, where efficient 

environmental monitoring systems have been a challenge (Li and Zhang, 1999; 

European Environment Agency, 2003).  

In the United Kingdom, efforts have been made to ensure sustainable 

agricultural practices recently, these are documented in the Catchment 

Sensitive Farming Programme, CSFP (DEFRA, 2008), Code of Good 

Agricultural Practice for Farmers, Growers and Land Managers, CGAPF 

(DEFRA, 2009) and other recommendations on sustainable farming systems 

(Braden et al, 1989; Agrawal et al, 1999; Pretty et al, 2000; Ewald and 

Aebischer, 2000; Tilman et al, 2002; Withers and Lords, 2002; European 

Environment Agency, 2003; Carabias-Martinez et al, 2003; Horsey, 2006). The 

CSFP, for example, documents direct technical advice to farmers of prioritised 

or pollution-vulnerable regions, such as Nitrate Vulnerable Zones (Lane et al., 

2006). The CGAPF also documents advice to farm users on environmental 

protection and enhancement of farm quality for sustainable management and 

development practices. The Code of Good Agricultural Practice (CGAPF) 

encouraged to farm with the following objectives (DEFRA, 2009):  

i. careful management of livestock to reduce losses of ammonia and 
other gases to the atmosphere; 

ii. limiting nitrate leaching to groundwater;  
iii. avoiding excessive build-up of nutrients and contaminants in soil,  
iv. preventing micro-organisms from being washed into surface 

waters and reaching bathing waters; 
v. following a nutrient management plan that will ensure efficient use 

of fertilisers (and organic manures)  
vi. limit nitrate leaching to surface and groundwater; 
vii. preventing unnecessary accumulation of phosphorus in the soils 

which will also reduce impact on the water environment; and 
viii. reducing the risk of greenhouse gas emission to the atmosphere. 
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Table 1.2. Effects of water pollution from agricultural practices. 

 

Farming Component Problems associated with concentrations higher than recommended limits References 

 
 
 
 
 
 
 
 
Farm’s organic and 
inorganic matters 
  

Ecological disruption. This, according to Kapp (1970) is a term still in search of 
precise definition. Here, it is used to refer to the impairment beyond certain normal 
threshold levels of the aggregate of all external conditions and influences affecting 
the life and development of the natural aquatic and terrestrial ecological organisation.  
 
Significantly high concentrations of ions such as nitrate (>45 mgl-1) and sulphate 
(>250 mgl-1) in drinking water are known to cause health hazards, (excess nitrogen 
causes cyanosis and methamoglobinaemia or blue baby syndrome in infants; excess 
sulphate causes catharsis, dehydration and gastro-intestinal irritation in humans).  
 
Organically polluted beach water can be source of bacteria (e.g. Escherichia coli) 
contact for beach swimmers and tourists.  E. coli and Staphylococci were found to be 
significantly correlated to skin, respiratory and general illness among beach 
swimmers in polluted beaches in Hong Kong between 1986 and 1987. Magnesium 
and calcium cause hardness in water and increase laundry costs. 
 
Phosphate with nitrogen cause eutrophication and increase biological oxygen 
demand (reduce dissolved oxygen) in water bodies, and can endanger aquatic 
ecosystem and severely impact tourism; it can also encourage epidemic. 
 
Sediments pollution is associated with water quality deterioration, reservoir 
sedimentation and increased turbidity. Sediment pollution can inhibit reproduction of 
coral reefs in marine region and can trap toxic hydrocarbons in oil spill areas. 

Reijnders, 1986; Croll and Hayes, 
1988; Kapp, 1970; Rosenberg et al, 
2000; Moss, 2008; Chen, 2013; 
Bowmer, 2013. 

Bruning-Fann and  Kaneene, 1993;  
Fan and Steinberg, 1996;  
Carpenter et al, 1998;  Bouraoui 
and Grizzetti, 2014. 
Cheung et al, 1990; Pruss, 1998; 
Fujioka, 2001; Carr and Blumenthal, 
2004; Amorim et al, 2014; Limayem 
and Martin, 2014. 
Turner and Rabalais, 1994; 
Heathwaite, 1996;  Correll, 1998; 
Sims et al, 1998; Bricker et al, 1999;  
Blumenthal et al, 2000; Howarth et 
al, 2002. 
Lijklema et al, 1983; Guzman and 
Holst, 1993; Bilotta and Brazier, 
2008; Rickson, 2014. 

Toxic wastes from farm 
machinery and input  
 

Toxic substances such as pesticides and herbicides used in agriculture systems can 
increase the heavy metal concentrations in the ecosystem; cause health hazards to 
living organism; pollute water bodies and the food web, and can be lethal to 
vegetation, animal and humans. 

Holcombe et al, 1976; Wauchope, 
1978; Moore and Ramamoorthy, 
1984;  Marzadori  et al, 1996;  
Richards and Baker, 1993  

Ecosystem 
management 

High cost of pollution control and costs of negative externalities associated with 
pollution.  

Shortle and Dunn, 1986; Pretty et 
al, 2000; Conway and Pretty, 2013. 
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1.2. Research Problems 

Moss (2008) described the relationship between land-use and water resources, 

especially surface water, as similar to that of a house and its waste bin. Figure 

1.2 is an illustration of a land use-environment relationship; farm additives and 

by-products of farm activities using machinery are sources of chemical 

substances which are often mobilised by rainfall. Monitoring of hydrological 

fluxes of diffuse pollutants has demonstrated severe impacts on adjacent on 

adjacent water bodies (Van der Weijden and Middelburg, 1989; Eludoyin et al, 

2004; Miller and Miller, 2007; Moss, 2008). Agricultural land use changes such 

as vegetation change, forestry (both deforestation and afforestation), intense 

grazing, hedgerow removal, fertiliser/pesticide/herbicide inputs and land 

drainage can affect the soil properties, and influence the rate at which the 

chemical substances are transferred into the adjacent receiving water bodies, 

and therefore the rate at which the adjacent water bodies are polluted (Williams 

et al., 2004; Tsegaye et al., 2006; Arias-Estaevez, 2008; Packett et al., 2009).  

 

 

 
Figure1.2: Some pollutant-generating activities processes of runoff 

mobilisation and possible environmental impact of a typical 
grassland farm (modified from Withers and Haygarth, 2007).  
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The relationship between agricultural land-use and surface water 

systems has interested researchers for ages (Biggar and Corey, 1969; Loehr, 

2012; Wicke et al, 2012; Conway and Pretty, 2013). Research interests have 

often borne out of the quests for sustainable development (World Commission 

Environment and Development, WCED, 1987; Lele, 1991). Sustainable 

development of agriculture is targeted at meeting the food needs of the present 

population without compromising the future sustenance needs (WCED, 1987). 

Research concerns for sustainable agriculture have suggested the need to 

understand how the chemical substances, which eventually pollute adjacent 

bodies, are transferred from farmland into water bodies because it is this 

knowledge of pollutant transfer that can provide clues to how water pollution 

can be controlled at source (Van der Weijden and Middelburg, 1989; 

Heathwaite, 1996, Calamari, et al., 1995, Correll, et al., 1999, Di Natale, et al., 

2000, Sonneveld, et al., 2006; Yevenes-Burgos and Mannaerts, 2011). 

Consequently, many studies have evolved to explore the understanding of how 

chemical substances are transferred from different fields under different climate, 

soil and topographic conditions, in most parts of the world; and these are 

discussed in the literature review section (Chapter 2) of this thesis. Despite the 

increase in research, increased complexity of conceptual and theoretical 

models, and improved understanding of water and material transfer in 

catchment systems, a significant amount of grey areas exist, especially in the 

intensively cultivated clay soil environment (Granger et al, 2010a; Granger et al, 

2010b) and as soil, geology, climate and land-use and land cover vary with 

locations (McDonnell, 1990, 1991, 2003; Jenkins et al, 1994; Sivapalan et al, 

2003; Beven et al, 2005: Bilotta et al 2008; McDonnell et al, 2010; Macleod and 

Haygarth, 2010; Pilgrim et al, 2010).   

Hydrologists, biogeochemists and, more broadly, catchment scientists 

study hydrological losses of macronutrients and sediments from agricultural 

land (Haygarth et al, 2004; Andrea et al, 2006; Bilotta et al, 2008; Bilotta and 

Brazier, 2008; Fenicia et al, 2008, 2013). For example, the hydrological 

question, ‘what happens after the catchment caught the storm?’ (Penman, 

1961; Hewlett and Hibbert, 1967; McDonnell, 2003; Uhlenbrook et al, 2005) is 

useful for understanding the field- or farm–adjacent water body, hydrological 

connectivity. The hydrological energy associated with precipitation events has 

been shown to mobilise particulate (Crawford, 1991; Zeigler et al, 2004; Beven 
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et al, 2005; Bilotta and Brazier, 2008; Bilotta et al, 2008) and soluble chemical 

substances (Agrawal et al, 1999; Bishop et al, 2004; Bowes et al, 2005; Biggs 

et al, 2006; Granger et al, 2010a, Granger et al, 2010b). Flowpaths of mobilised 

chemical substances are often complex to decipher because of certain 

uncertainties or complexity, including misapplication of hydrological models as a 

result poor understanding of the spatial scale, parameterisation and differences 

in catchments physiography (McDonnell, 2003; Kirchner, 2003; Wallender et al, 

2014; Cibin et al, 2014; Singh et al, 2014). The poor understanding of the 

hydrological flow paths, due to the complexity, especially in the humid climate 

has been the concerns for many hydrological researchers, who have 

subsequently recommended the need for more case-specific researches 

(Hewlett and Hibbert, 1967; Jones and Swanson, 2001; Beven, 2002; 

McDonnell, 2003; Kirchner, 2003). For example, although many areas occupied 

by clay soils (Cambisols) are known to favour agriculture intensification and are 

often grasslands, the hydrology of the clay soils, as well as their transfer of 

chemical substances under grazing and other agriculture land uses are still 

poorly understood. Existing studies on the clay soil environment have also 

shown that it is still unclear if fields underlain with different clay soil series can 

respond differently to the same storm conditions or how much would the 

variation in material inputs through rainfall and soil wetness condition and field 

properties (such as topography and scale) affect the hydrological responses in 

the clay-soil environment (Gifford and Hawkins, 1978; Neuzi, 1994; McCartney 

et al, 1998; Bilotta et al, 2008; Granger et al, 2010a; Klaus et al, 2013). Granger 

et al (2010a) concluded that better understanding of the hydrology of the heavy 

clay grassland soils was needed, and suggested that the ‘current perception of 

clay soil systems as being event water driven may be wrong’. 

Recent research has revisited the use of the hysteretic relationships 

between concentrations (c) of substances, such as suspended solids (Wood, 

1977; William, 1989) and solutes (Whitfield, 1981), and their corresponding 

discharge (q) rates to decipher hydrological pathways (Evans and Davies, 1998; 

Rice and Hornberger, 1998; Rice, et al., 2004; Krueger et al, 2010; Burt et al, 

2014). Significant inferences about temporal variability, hydrological health 

status of catchments, source areas of targeted pollutants, flow pathway and 

resident time of targeted substances have been made from concentration-

discharge patterns, and as such, informed land management strategies have 
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been advised (e.g. Walling and Webb, 1980; Johnson and East, 1982; William, 

1989; Davies and Evans, 1998; Chanat et al, 2002; Rose, 2003; Haygarth et al, 

2004; Krueger et al, 2010; Murphy et al, 2012). This study will therefore 

advance knowledge in the scientific field of hydrological modelling, and improve 

understanding of hydrological behaviour of intensively managed, heavily clayed-

drained soils.   

 
1.3. General Aim and Approach   

The present study aims at improving the understanding of the hydrologic 

responses of a humid grassland region that is underlain by heavy clay soils of 

the Stagni-vertic or Stagni-eutric Cambisols soil groups (Harrod and Hogan, 

1981). Cambisols soil groups are regarded as one of the most widespread soils, 

covering some 1.57 billion ha or 12.5 % of the earth’s land surface, where they 

have been found to support intensive agriculture (Toth et al, 2008).  

 Studies have shown that complexity exists in explaining hydrological 

processes in agricultural fields, across spatio-temporal scales and wetness 

conditions (Dunne, 1978; Anderson and Burt, 1970; McGuire et al, 2007), 

mainly due to poor understanding of hydrological connectivity of flow pathways 

(Bulling et al, 2006; Norberg and Cumming, 2013; Kandziora et al, 2013; 

Bracken et al, 2013). A novel approach to understanding hydrological 

connectivity in agricultural fields and other environments (including urban 

landscapes) is to examine the relationship between the concentration of 

dissolved and suspended materials, and the rate of transfer of corresponding 

runoff from the fields (Johnson and East, 1982; Miller and Denver, 1977; Hill, 

1993; Rose, 2003; Andrea et al, 2006) with a view to assessing the controlling 

factors, effects and uncertainties. Subsequently, this study considers the 

system approach to environmental investigations a relevant framework. The 

systems approach visualises the ecosystem as containing an integrated 

components of the atmosphere, lithosphere and hydrosphere (Vemuri and 

Vemuri, 1970; Kirchner, 2009; Simonovic, 2012). The system approach as used 

in this study involves an investigation into the rainfall characteristics, land 

surfaces, land use, and runoff at farm scale. Rainfall characteristics (rainfall 

type; heavy or light storm, duration of events, antecedent level and chemical 

properties) are considered to be significant factors for understanding the nature 

of the runoff from the fields (Figure 1.3).  
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Figure 1.3. A schematic conceptualisation of transfer of chemical constituents at 

a drained field-scale (modified from Meybeck, 1982).  

 
1.4. Aims and Hypotheses 

This study is undertaken to address three aims, to ensure that the rainfall, land 

surface and runoff components of the system conceptualised in Figure 1.3 are 

examined. Specific hypotheses investigated under each aim are also presented. 

 
Aim 1: To assess the temporal variability in precipitation chemistry and its 

contributions to the soil chemistry at the farm-scale.  Two hypotheses are tested 

for this aim: (1) rainfall chemistry does not exhibit significant temporal variability, 

and (2) the variability in the rainfall chemistry is directly proportional to the 

variability in the soil chemistry in the farm area. To address these hypotheses, 

precipitation chemistry data obtained from the Environment Change Network 

(ECN) platform were analysed, and compared with the soil chemistry (obtained 

from same source) for the study area. This study was motivated by previous 

ecohydrological studies (such as Soriano-Soto et al, 1995 and Fraser et al, 

2001), which established a significant relationship between rainfall chemistry 

and biogeochemical cycles.  

 
Aim 2. To quantify the spatial variability of the soil physiochemical properties for 

hydrological analysis. The main hypothesis to be tested is that the physio-

chemical characteristics of the soils in the investigated farms reflect the land 

use systems. To achieve this hypothesis, soil samples were obtained from the 
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top soil (0-10cm) at the 15 fields of the North Wyke Farm Platform and tested 

for bulk density, pH, organic matter nitrogen and carbon contents, and nitrogen-

15 ((𝛿15N) and carbon-13 (𝛿13C)).  

 
Aim 3. To examine the patterns of concentration-discharge (c-q) hysteretic 

relationships of different chemical constituents at the farm scale. The main 

hypothesis is that the c-q relationship of same variable under similar land use 

condition is not significantly different. Hydrological behaviour of different clay 

soil series can be different, especially with different field size, topography, 

location and land use (Croft et al, 2013; Berhanu et al, 2013). The study area is 

covered by at least four major clay soil series, namely the Halstow (Hydrology 

of Soil Type, HOST 21), Hallsworth (HOST 24), Denbigh (HOST 17) and 

Fladbury (HOST 9)) (Ragg et al, 1984; Boorman et al, 1995; Harrod and Hogan, 

2008; White, 2008).  

 
1.5. Structure of the Thesis  

This thesis comprises five chapters.  

Chapter 1. Introduction: This section provides the background information, 

justification, aims and research questions for the research. The aims and 

objectives have been derived after an evaluation of the review of relevant 

concepts and literature which is later presented in Chapter 2.  

 
Chapter 2: Concepts and Literature Review. The objectives of this chapter are 

(a) to provide a review of the basic concepts and literature on flow generation 

and transfer mechanisms within the understanding of catchment hydrology, and 

(b) to evaluate the different approaches (with emphasis on the concentration-

discharge hysteresis approach) for the study of flow transfer mechanisms.  

 
Chapter 3: Study Area and Field Instrumentation. This chapter describes the 

climate, soil, topography and land cover and land use of the North Wyke Farm 

Platform (NWFP) in the Southwest England used as a case study. Information 

of the instrumentation of the fields is also described. The NWFP has been 

considered as a case study being a major agri-scheme project in the United 

Kingdom with extensive use of the state-of-the-art field instrumentation. The 

facilities for monitoring in the field as well as the methodology with which each 

aim of this study was achieved are reported in the chapter. 
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Chapter 4: Results and Discussion. In this chapter, the results of the statistical 

and other inferential analyses of the aims (Aims 1 and 2) are presented and 

discussed. Aims 1 and 2 are considered to be relevant to the hypothesis of 

water material transport structures of Lewis et al (2007). The hypothesis 

considers the spatial arrangement and relative abundance of flow path types 

within a catchment to influence material retention by the entire catchment, and 

assumes that the flowpaths are biogeochemically distinct. Aim 3 is focused on 

the patterns of concentration-discharge relationship for water pH, temperature, 

conductivity, dissolved oxygen, turbidity and nitrate. Concentration-discharge 

relationships of the parameters are interpreted to provide information about 

runoff pathways in the study area.  

 
Chapter 5: A synopsis of the entire research is presented in this short chapter. 

The chapter also highlighted the limitations of this study and suggest areas 

requiring further investigations.  
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CHAPTER 2 

LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

2.1. Introduction  

Investigations into how runoff is generated and how water mobilises and 

transports chemical substances from different sources into the stream channels 

have become important to researchers, probably because their understanding 

can be useful for predicting and controlling aquatic pollution, and for diagnosing 

the health (quality) of the ecosystem for sources and characteristics of pollution 

(Christophersen et al, 1993; Elsenbeer et al, 1994; Elsenbeer, 2001; Liu et al, 

2004; Sonneveld et al, 2006; Granger et al, 2010 a-b). Many studies (e.g. 

Penman, 1961; Hewlett and Hibbert, 1967; McDonnell, 2003; Fenicia et al, 

2013) have however shown that the investigations into the runoff processes can 

be daunting because of the many uncertainties that surround the complexity of 

the hydrological systems. For example, an attempt to conceptualise a simple 

field-scale hydrological cycle suggested that such conceptualisation can vary 

with dominant soil, vegetation and land use, precipitation intensity and 

chemistry, among other factors (Figure 2.1).  

For the typical clay-soil rich field, Figure 2.1 indicates that although 

groundwater can be rare, water can still flow through the hillslope as surface 

runoff and drain flow, such that the runoff chemistry can be altered. It also 

suggests that the precipitation chemistry can interact with the vegetation and 

soil properties, and the consequences of such interactions can be inferred in the 

runoff chemistry. Studies have shown that consensus about the approach and 

processes of runoff generation was also made difficult because of differences 

(and in some regions, complexity) in the dominant climate, topography, 

vegetation, soil characteristics and the underlying geology across the world 

(Dunne and Black, 1970; Bonell and Gilmour, 1978; Anderson and Kneale, 

1980; Mack, 1989; Church, 1997; Averis, et al., 2004; Bilotta et al., 2007; 

Kechavarzi, et al., 2010). Other causes of complexity in the understanding of 

the runoff processes and generation are poor understanding of catchments’ 

hydraulic and hydrologic processes, and the scale of investigations (Hewlett 

and Hibbert, 1967; Klemes, 1983; Elsenbeer, et al, 1995; Elsenbeer and 

Vertessy, 2000; Jones and Swanson, 2001; Pringle, 2003; Sivapalan, 2005).   
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Figure 2.1. A simplified hydrological cycle for a clay-rich grassland farm: surface 

runoff (Hortonian Overland Flow, Saturation Overland Flow and Return Flow) 

and drain flow are identified. Unshaded arrow shows direction of flow of water, 

and shaded arrow indicate direction of runoff flow.  

 

2.2. Flowpaths and the Generating Mechanisms 

Runoff mechanisms can generally be grouped into the surface and subsurface 

processes as explained below: 

 
2.2.1. Surface runoff 

Studies generally accept two main hypothesis for explaining the concept of 

surface runoff, and they are the Hortonian concept of infiltration-excess flow 

(Horton, 1933) and the Hewlett’s hypothesis of saturation-excess flow (Hewlett 

and Hibbert, 1967) (the other concepts such as the partial-area hypothesis, are 

not as acceptable as the two are). Both hypotheses are however selectively 

applicable because a range of processes can generate runoff from specific 

parts of the field, depending on many factors, including the soil type and relief 

characteristics, landuse, incident rainfall intensity and antecedent field wetness.  

In general, surface runoff can occur in either of two broad processes; infiltration-

excess overland flow and saturation-excess overland flow. Dominant runoff in a 

location is usually a factor of physical factors (such as the dominant soil type, 
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topography, soil permeability and soil wetness) and certain human factors, 

including land use and management (Verheye, 1991; Al-Khudhairy et al, 1999; 

Western et al, 2002; Güntner et al, 2004; Liang and Uchida, 2014).  

 
2.2.1.1. Infiltration-excess overland flow 

The Hortonian overland flow (HOF) was proposed by R.E. Horton (Horton, 

1933) to occur when rainfall intensity exceeds the infiltration capacity of the soil, 

leading to substantial surface runoff (Figure 2.2). Subsequent studies showed 

that the HOF can occur in paved and concrete surfaces, cultivated or heavily 

grazed areas underlain by heavy clayey soils, catchments with extensive rock 

outcrops and fields with high rate of organic matter decomposition (Pearce, 

1976; Dunne, 1978; Anderson and Kneale, 1980, Church, 1997; Bryan, 2000; 

Ziegler et al, 2001; Kirkby, 2002; Ziegler et al, 2004; Bilotta, et al., 2007; 

Kechavarzi, et al., 2010). Runoff generated through the HOF mechanism 

acquires the chemical signature of the top soil only, but can be affected by land 

use and vegetation (Kirkby, 2002; Ziegler et al, 2004; Bilotta, et al., 2007; 

Kechavarzi, et al., 2010).  

 

Figure 2.2. The Hortonian infiltration-excess flow occurs where the soil is 
impermeable and water is forced to flow downslope due to gravity. Water is 
represented with blue colour, and the impermeable soil with thick black. 
 

Early studies on the partial-area infiltration-excess flow, PAF 

(Moldenhauer et al, 1960; Amorocho and Orlob, 1961; Betson, 1964) showed 

that small, localised part of a field may have actually contributed to overland 

flow (Figure 2.3), as against the notion of the HOF that overland flow is 

generated as a result of low soil permeability. The partial area is usually a small, 

but relatively consistent, part of the field that should only vary (expand or shrink) 

under ‘unusual’ complex land use change, change in soil’s moisture storage 
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capacity and significant change in rainfall intensity (Betson, 1964). The 

assumption of the relatively consistent partial area was however challenged by 

subsequent studies, hence its ambiguity when subsequent studies showed that 

partial areas can respond to the effect of field wetness, contrasting topography 

and soil-boring organisms (Hewlett and Hibbert, 1967; Bonell et al, 1984; Van 

de Griend and Engman, 1985), and to the (Weyman, 1970; Bonell et al 1984). 

The idea of a ‘flexible’ partial area led to the development of the variable source 

area (VSA) concept that has been used to explain the saturation-excess runoff 

generating mechanism (Hewlet and Hibbert, 1967).   

 

 

Figure 2.3. Partial area infiltration-excess flow. The partial area is usually a 
small and relatively consistent, part of the field that should only expand or shrink 
under ‘unusual’ complex land use change, change in soil’s moisture storage 
capacity and significant change in rainfall intensity (Beston, 1964). Water is 
represented with blue colour and the impermeable soil with thick black. 
 

2.2.1.2. Saturation-excess overland flow (SOF)  

Investigation by many authors in the humid region (especially Hewlett and 

Hibbert, 1967; Kirkby, 1969; Dunne and Black, 1970) expanded the Hewlettian 

concept of the SOF. The SOF is known to occur as excess water after the soil is 

saturated, probably as a result of antecedent wetness, intense rainfall, near-

surface water table or near-stream regions (Loague, 1992; Grady, 2001). As the 

soil saturates, new water mixes with the pre-event water, and once the soil 

becomes saturated and the water table reaches the earth surface, additional 

water flows as SOF. The process of SOF generation is explained by the VSA 

concept (Hewlett and Hibbert, 1967; Dunne and Black, 1970; Dunne, 1983, 

Loague, 1992; Grady, 2001; Schneiderman, et al., 2007). The VSA concept 

explains that runoff is generated by the expansion of small, locally variable 

water table (known as ‘contributing areas’) during storm condition (Figure 2.4). 



 

28 
 

 

 

Figure 2.4. Simplified descriptions of saturation-excess overland flow (a) 
and the variable area concept (b). In (a) the arrow indicates the flow path 
while (b) shows the growing (expansion of saturated soils) of the 
contributing areas due to a storm event (1-4). Rate and extent of 
saturation is a subject of many factors including antecedent soil wetness, 
storm and field characteristics. 
 

The SOF as runoff generating mechanism also include translatory flow and 

return flow. Translatory flow is generated when previously stored water in the 

soil (old or pre-event water) is released due to a push from the event (new) 

water (Hewlett and Hibbert, 1967).  Return flow occurs when infiltrated water re-

emerges at the surface before the water flows downslope due to the push by 

the event water or an encounter with a perched water table or an impermeable 

layer (Musgrave and Holtan, 1964; Sklash and Farvolden, 1979; Church, 1997; 

Chappell, et al., 2006). Determination of whether the water that finally emerges 

at the stream channel is a new water or old water, and therefore its transit time 

of the water has been major concerns of researchers in hydrochemistry for long 

(Hewlett and Hibbert, 1967; McDonnell, 1990; McGuire and McDonnell, 2006; 

McGuire et al, 2007; McDonnell et al, 2010; Soulsby et al, 2014). McGuire and 

McDonnell (2006) reviewed more than 32 studies on more than 50 catchments 

and in a conceptualised lumped parameter transit time modeling approach, and 

indicated that transit time modeling will provide significant advances in 

catchment hydrology and improvement in understanding physical runoff 

generation processes and solute transport through catchments.  In general, the 

factors that can determine the dominant runoff mechanisms in any environment 

are conceptualised in Figure 2.5. These factors range from soil and slope 

conditions to the intensity of the storm.  
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Figure 2.5. Conditions for the surface runoff generation (after Dunne, 1983). 

 
In drained fields as in the present study area, and other regions across the 

world, the subsurface (including soil flow, drain flow and in some regions, 

groundwater) can be important. The subsurface flow in the heavy clay region 

can be mainly the preferential flow, and it is therefore explained below with 

other kinds of subsurface flow.  

 
2.2.2. Subsurface flow (SSF) 

Subsurface flow (SSF) is known to comprise the part of rainwater that infiltrates 

into the soil and flows underground into a stream channel. This includes the 

groundwater and soil water. The soil water can flow rapidly as lateral flow, when 

water encounters a less permeable layer at some depth in the soil or when 

near-stream water table rises and groundwater increases during a rainfall event 

(Bear, 1972; Dunne, 1983; Church, 1997; Hagedorn and Bundt, 2002). When 

SSF occurs in the soil layer, it is often referred to as interflow or throughflow. 

Hewlett and Hibbert (1967) describe the interflow as the part of the rainwater 

that moves rapidly as subsurface water into the stream channel. Water can 

move rapidly through the subsurface layer either as matrix flow or as 

preferential flow. Matrix flow refers to the relatively slow and even movement of 

water and solutes through saturated or unsaturated fine soil matrix pores 
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(Tsuboyama et al, 2010) while the uneven, rapid and saturated flow through a 

series of connected macropores, soil pipes, fractures and finger flow is referred 

to as the preferential flow (Beven and Germann, 1982; Dunne, 1983; Haria, et 

al., 1994; Hagedorn and Bundt, 2002).  

The effect of macropores is attributed to the following conditions (Kneale, 

1986; Hagedorn and Bundt, 2002; Beven and Germann, 1982; Figure 2.6): 

 Pores (usually less than 0.5 mm in size) formed by soil micro fauna 

within the first 1 m of the soil profile; 

 Pores caused by vegetation roots (with sizes varying with type and 

stage of vegetation growth), dead vegetation, including buried organic 

matter and rotten wood; 

 Naturally occurring macropores caused by varying soil hydraulic 

conductivity, cracks and fissures (including those caused by 

desiccation, chemical weathering, soil weathering, drying and wetting of 

clays, freezing and thawing and pressure release); 

  Artificial flowlines such as mole or tile drains which have been used on 

heavy soils to improve productivity of pastures and crops by removing 

excess water; underground drainage networks in peat soils (Hallard, 

1988; Haria et al, 1994; Averis, et al., 2004, Fraser, et al., 2001, 

MacEwan, et al., 1992; Simard et al., 2000; Stone and Wilson, 2006). 

 

Figure 2.6 a-e. Preferential flow mechanisms (a) and (b): diagrammatic 
expressions of some preferential pathways. c-d are terrestrial images 
of a  drain flow (c), macropores in a clay soil as traced with a dye (d), 
and decayed root channel within soil (e). 

  (Source: USGS North Carolina Water Centre). 
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2.3. Chemical Characteristics of Hydrological Flowpaths  

When water passes through and interacts with flowpaths, it is known to acquire 

chemical characteristics of the flowpaths, and as such can be distinguished 

(Whitfield and Schreier, 1981; Hooper et al., 1990; Church, 1997; McGlynn et 

al, 2003; Bishop et al, 2004; Burns et al, 2001; Zhang, et al., 2009; Brown, et 

al., 2010; Botter et al, 2011). The conditions encountered by water originating 

from different catchment sources while flowing to the stream control 

biogeochemical transformations that ultimately determine stream water 

chemistry (Bishop et al., 1990; Bonell, 1993; Ali et al, 2012). Runoff chemistry is 

therefore often partitioned by how high or low its chemical constituents are 

when it emerges at the stream channel or point of sampling to provide insights 

into its flowpaths and source areas. Water is generally classified as ‘old’ and 

‘new’ or ‘pre-event’ and ‘event’ waters (Sklash and Farvolden, 1979; Dewalle, et 

al., 1988; Turton et al, 1995; Davies and Evans, 1998; Collins et al, 2000; Lee 

and Krothe, 2001; Shanley et al, 2002). The old or pre-event water is the soil 

water (and groundwater, (where it exists)), which is considered to be chemically 

conservative and makes up the contribution of runoff at baseflow, or water 

stored in the soil prior to a storm-event that is considered to exhibit higher 

concentration of certain chemical constituents than the new or event water while 

the new or event water is the most recent water in the catchment, typically 

water contribution from precipitation or throughfall (Evans and Davies, 1998; 

Rose, 2003).  

 Many studies on hydrochemistry have noted that it is important to 

understand flow sources within a field for adequate understanding of its 

dominant hydrological pathways (Cirmo and McDonnell, 1997; Holko and 

Lepisto, 1997; Perakis, 2002; Liu et al, 2004; Freeman et al, 2007; Pringle, 

2003; Stieglitz et al, 2003; Bracken et al, 2013; Lofts et al, 2013). Most of these 

studies (especially Freeman et al, 2007; Stieglitz et al, 2003; Bracken et al, 

2013; Lofts et al, 2013) have showed that the link between the precipitation 

chemistry and soil stores can be significant to the understanding of flow 

connections. Certain precipitation (such as intensity, rate, volume and 

chemistry) and soil characteristics (especially the physio-chemical) (invariably 

accounted for by land use) have been used (explicitly or implicitly as variations 

in soil moisture or soil rewetting) to provide quantitative explanations to nutrient 

runoff in the predominantly rain-fed soils (Krueger et al, 2010) of the study area 
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(North Wyke), in drained fields and some other clayey soil fields in England 

(Elliott et al, 1990; Heathwaite and Burt, 1991; Armstrong et al, 2005; McDowell 

et al, 2001; Chatskikh  et al, 2005; Morecroft et al, 2009; Blackwell et al, 2009; 

Blackwell et al, 2013).  

 
2.3.3. Precipitation chemistry 

Changes in precipitation chemistry often occur within and between storm 

events, and runoff chemistry varies frequently with discharge (Cresser et al, 

1987; Rees et al, 1989; Reiter et al, 2013; Ulrich et al, 2013). Precipitation 

chemistry is regarded as significant in hydrochemical studies because 

precipitation impacts significantly on the mobilisation of chemical ions in the 

ecosystem and can cause important changes in the water quality of adjacent 

streams (Reynolds et al, 1984, 1997; Cerny et al., 1994; McDowell et al, 2013; 

Miller and Zegre, 2014; Evans et al, 2014). Recent studies have attributed the 

acidification of surface water and decrease in the population of wet heathlands 

species (Erica tetralix by about 10% in a 5-year period) in northern England to 

the negative effects of precipitation deposition in the area (Damgaard et al, 

2014; Evans et al, 2014). Cresser and Edward (1987) also showed (in a study 

of podzol soils in Scotland) that the runoff pH can be altered during a storm 

event by the mobilized chemical ions in the field. Previous studies on 

precipitation chemistry in the United Kingdom showed that rainfall chemistry 

exhibits spatial variation caused by effects of industrialisation, urbanisation, 

commercialisation, meteorology and atmospheric transport patterns (Cape and 

Fowler, 1984; Irwin and Williams, 1988; Reynolds et al, 1984, 1997; Beverland 

et al., 1998; Avila and Alarion, 1999; Irwin et al., 2002; Fowler et al, 2004, 

2009). Some of these studies also showed that the knowledge of the 

relationship between the rainfall chemistry and runoff chemistry can be useful in 

the understanding of contributing sources chemical variables in field hydrology 

(Smart et al., 1998; Hutchins et al, 1999; Curtis et al, 2014).  

 
2.3.4. Soil physio-chemical characteristics 

 Many reasons have been advanced for determining the spatial variability 

of the soil’s physiochemical properties, and these include seeking to understand 

the pattern of variations of these properties with change in land use and various 

effects of different land management (Goovaerts, 1991; Conant et al, 2001; 



 

33 
 

Kellman and Hillaire-Marcel, 2003; Diekow et al, 2005; Peukert et al, 2012). It is 

also important to understand the sources of various contaminants under a 

specified land use (Arnold and Allen, 1996; Arnold et al, 1998; Kellman and 

Hillaire-Marcel, 2003), and rate of targeted or potential material fluxes from 

agricultural fields (Glendell and Brazier, 2014; Glendell et al, 2014). In addition, 

the spatial variability of soil properties is still poorly understood (Bilotta et al, 

2007; Peukert et al, 2012), probably because many physiochemical properties 

vary continuously over space; such that only variability over short distances is 

low (Marriott et al, 1997). Adequate understanding of contamination sources 

and solute transfer in agricultural fields therefore requires knowledge of the 

spatial variability of the material loads, and studies showed that analytical 

procedures such as geostatistics (Webster and Butler, 1976), multivariate 

analysis and geoinformation-based descriptive mapping (Goovaerts, 2001) can 

be useful to achieve this. 

 
2.4. Development in Hydrograph Separation Techniques 

Investigators have adopted the classification of runoff based on its 

chemical properties as a development over the earlier method of graphical 

delineation of flow (Sherman, 1932; Singh, 1976) that is fraught with challenges 

of being arbitrary and significantly subjective (Hewlett and Hibbert, 1967). 

Studies that have adopted the graphical delineation technique (known as 

graphical hydrograph separation technique) assumed that the overland flow 

was dominant in all catchments (Hooper and Shoemaker, 1986) whereas 

studies under some other catchments where climate is more humid and soil is 

permeable have shown that water that have been stored in the near-stream 

region of the catchment prior to rainfall get displaced and reach the stream 

channel first before the overland flow (Hewlett and Hibbert, 1967). While the 

method of delineating the flow components was immersed in controversies, the 

principle of the hydrograph as the graphical illustration of the variation of water 

flow over a period of time and at a particular point of measurement is well 

accepted in the literature (Information about a hydrograph is presented as Box 

2.1). Table 2.1 shows a simple classification of existing approaches to 

hydrograph separation (including the graphical, chemical and modelling 

(mathematical) approach), as provided in literature.  
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Box 2.1. A hydrograph and its structure.  

What is a hydrograph? 
The hydrograph is a graphical illustration of the variation of water flow over a 
period of time at a particular point of measurement (Figure 1). 
 

 
 

Box 1. A hydrograph. Above (bar graph) is the rainfall intensity graph of the 
corresponding part of the hydrograph.  
 
A hydrograph shows how flow changes in response to a rainfall event, for 
single or cumulative events, and can provide information on the integration of 
climate and catchments’ physiographic characteristics. The structure or 
shape of a hydrograph can reflect the processes and activities within the 
catchment for which, and as at the time, is recorded (Sherman, 1932; 
Hewlett and Hibbert, 1967; Robert and Klingeman, 1970; Black, 1997; 
Jakeman et al, 1990; Yue and Hashino, 1999; Sujono et al, 2004; Tetzlaff et 
al, 2010; Hoeg et al, 2010). Black (1977) noted that a hydrograph can reflect 
the size and activities of source area, such as increase or decrease in soil 
saturation and saturation-excess flow, as well as landuse change within the 
catchment. In addition, using a laboratory experiment of simulated rainfall, 
Roberts and Klingeman (1970) had showed that the shape of a hydrograph 
can be affected by certain hydrologic and geomorphic factors, especially 
rainfall intensity, rainfall duration, storm movement, permeability and 
antecedent moisture conditions. In general, basin or catchment’s size, soil, 
vegetation, landuse, topography and drainage characteristics, climate 
elements and time are factors that can affect the shape of a hydrograph 
(Robert and Klingeman, 1970).   
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Table 2.1: Basic hydrograph separation techniques and their descriptions. 

The arrow shows direction of development, sophistication and complexity. 

   Approach Explanation  

Graphical technique The graphical technique was one of the earliest methods of hydrograph 
separation techniques and it prevailed between 1930 and 1960s. It involved 
arbitrarily separating the flow components into quick-response runoff and base 
flow. The quick-response runoff or quick flow is a mixture of the overland flow and 
lateral flow or interflow. Hewlett and Hibbert (1967) regarded the graphical 
technique as ‘one of the desperate analysis techniques use in hydrology’ and 
Freeze (1972) argued that the technique ‘appears to be a little more than a 
convenient fiction’. The graphical technique is also limited because the 
delimitation of quick flow and base flow is often subjective, and can infer very 
limited water components. The concept of interflow using this graphical technique 
has also been questioned (Hewlett and Hibbert, 1967; Kuusisto, 1982). The 
method is still nonetheless used by engineers, and can be a basis for comparing 
catchments (Burns and Vitvar, 2001). 

Mass-balance 
equation and 
End-Member 
Mixing 
Analysis 
approaches 

Chemical 
hydrograph 
separation 

Consequent on the inability of the graphical technique to capture most flow 
components, and its subjective approach to delimiting the one that can be 
captured, the use of chemical tracers was advanced. This technique is based on 
the mass-balance equation 
𝑄𝑡𝐶𝑡 = 𝑄1𝐶1 + 𝑄2𝐶2 … 𝑄𝑛𝐶𝑛 (2.1). Where 𝐶𝑡, 𝐶1 … 𝐶𝑛 are concentrations of solutes 

or any chemical variable in the total storm runoff and its assumed components, 
𝑄𝑡, 𝑄1 … 𝑄𝑛 are the corresponding discharge rates (Ogunkoya and Jenkins, 1993). 

The approach assumes that (a) the chemical tracer used is conservative; meaning 
that tracer does not change its chemical identity during the course of its journey 
down slope (downstream) and (b) that the tracer must be uniquely attached to a 
source (atmosphere, soil and groundwater) (Ritchie and McHenry, 1990; 
Christophersen et al, 1992; 1993). Solutes are however, often, not truly 
conservative- and can at best be ‘quasi-conservative’ (Richey et al, 1998). Solutes 
can be affected by vegetation influence, evaporation and dilution- and within-
storm’s flushing effects. Subsequently, the search for truly conservative tracers 
has resulted to the use of isotopes and artificial tracers. 

Isotope 
Hydrograph 
separation 

Delimiting flow compositions and providing insights into sources of runoff have 
made significant progress with the use of isotopes. The use of isotope has made it 
possible to detect the origin of runoff (Kuusisto, 1982; Payne, 1988). The use of 
isotope showed that (a) soil water composition can be distinct from the  chemistry 
of groundwater (Ogunkoya and Jenkins, 1983), (b) Isotopes can be combined, 
complementarily, with solute; such that one can be effective when conditions for 
the other is uncertain (Hooper and Shoemaker, 1986), and (c) age of water can be 
determined to infer how long the water has remained in the soil before it is 
released (Kuusisto, 1982; Richey et al, 1998). However, isotopes can be 
fractionated by temperature change and vegetation influence, and are therefore 
not conservative in the real sense (Ball and Trudgill, 1997; Burns et al, 2001). 
Isotopes can also be expensive to determine in many catchments, especially in 
developing countries. Both solutes and isotopes have also raised further 
questions as on how best to conceptualise a catchment’s response to rainfall, the 
effect of stores and reservoirs and implications on the mass-balance equation 
(input-output response) assumption (McDonnell, 2003). Other issues that have 
been raised include the Kirchner (2003)’s double paradox questions on the 
contrasting behaviour of catchment concerning water storage and release during 
storm event; heterogeneity in catchment properties and location, and effect of 
model assumptions.  

Mathematical models of rainfall-
runoff relationship 
 
 

Many mathematical models of rainfall-runoff relationship have evolved as attempts 
to understand catchment behaviour improves, especially from runoff hydrographs 
and as accessibility to computing improve (Todini, 1988; Hromadka, 1990; Singh, 
1995; Singh and Woolhiser, 2002). These models are many but the fact that there 
is currently no universally accepted approach to model catchment behaviour 
(Hrodmaka, 1989) or provide a scientific holy grail model (Beven, 2006a) shows 
that a purely deterministic solution has not been found. Technology employed in 
the past few decades with computer models have also increased, and the models 
have become increasingly complex in detail of describing the catchment’s 
hydrologic and hydraulic processes; and in terms of accuracy too (Lischeid, 2008; 
Beven, 2006b; Krueger et al, 2010).   

Coupling of existing models with 
advances field knowledge offer 
by improved technology  

As a result of the modelling difficulties of the older approaches, it has been 
suggested that previous approaches can be coupled with advanced knowledge of 
catchment behaviour that is offered by the current advances in information 
technologies for better confidence (Hromadka, 1990; Sign and Woolhiser, 2002).   
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2.4.1. Chemical and isotopic hydrograph separation techniques 

The use of the certain chemical and isotopic models to infer information 

on flowpaths from hysteresis in concentration-discharge relationship for many 

catchments have suggested that the models can be important to hysteretic 

modelling (Evans and Davies, 1998; Chanat et al, 2002; Hornberger et al, 

2001). The most commonly investigated models are the mass balance and end 

-member mixing analysis (EMMA), and these are explained below. Many 

models are also case-specific, and most of these have been classified as 

mathematical modelling approaches because of their nature.    

 
2.4.1.1. The mass balance model 

One of the earlier techniques by which runoff chemistry was investigated was a 

hydrograph separation based on the mass balance model (Pinder and Jones, 

1969). Pinder and Jones (1969) had used a mass balance equation (equations 

2.2 and 2.3) to relate total, direct, and groundwater runoff from pre-event and 

event water samples in three small catchments in Nova Scotia.   

𝑄𝑡𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 = 𝑄𝑝𝑟𝑒−𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟 +  𝑄𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟       (2.2) 

𝑄𝑝𝑟𝑒−𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟

𝑄𝑡𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟
=

(𝐶𝑡𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟−𝐶𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟)

(𝐶𝑝𝑟𝑒−𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟–𝐶𝑒𝑣𝑒𝑛𝑡 𝑤𝑎𝑡𝑒𝑟)
                                    (2.3) 

Where Q is discharge and C is the concentration of some tracer.  

 
Using this approach, ‘event’ water is generally represented by 

precipitation or throughfall and ‘event’ water by groundwater assumed 

equivalent to the resident water prior to an event (Dewalle et al, 1988). The 

mass balance approach to hydrograph separation was found applicable to 

many catchment studies (Hooper and Shoemaker, 1986; Caine, 1989; 

Hendershot et al, 1992; Elsenbeer et al, 1995). The mass balance approach 

assumes that selected tracers behave conservatively; that is they do not 

participate in any chemical reactions along their flow paths (Elsenbeer et al, 

1995). The mass balance model was also known as a two-component model 

because it assumes pre-event and event water as the main components of the 

total water, and combines soil and groundwater into pre-event (or old) water 

component by assuming that soil water contribution is minor or chemically 

equivalent to groundwater (Sklash and Farvolden, 1979; Dewalle et al, 1988; 

Ogunkoya and Jenkins, 1993).  
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Investigations from a number of catchments encouraged the mass 

balance approach to be expanded to three or more components, in which either 

the discharge of one of the components is known or when two tracers are used 

simultaneously (Dewalle et al, 1988; Ogunkoya and Jenkins, 1991; Hinton et al, 

1994; Merot et al, 1995; Richey et al, 1998; Lee and Krothe, 2001). A three-

component model distinguishes the water into different sources, such as soil 

water, groundwater and channel precipitation (equations 2.4 and 2.5). 

 
Qtotal water = Qch.precipitation + Qsoil + Qgroundwater           (2.4) 

Qsoil

Qtotal water
=

(Ctotal water−Cgroundwater)

(Ctotal water–Csoil)
−

Qch.precipitation

Qtotal water
×

(Cch.precipitation−Cgroundwater)

(Csoil–Cgroundwater)
   (2.5)   

 

Where Q and C are discharge and chemical concentrations, and 

ch.precipitation, soil and total water are channel precipitation, soil water and 

total flow, respectively (Dewalle et al, 1988)  

The mass balance approach is capable of identifying the sources of the 

water in the catchment, but it is known to be limited in the capacity to identify 

the mechanisms of runoff generation or elucidate the flow paths of the water 

(Elsenbeer et al, 1995). The limitation apparently led to the credence for 

another method. The end-member mixing analysis which evolved thereafter is 

described below: 

 
2.4.1.2. End-member mixing analysis  

The end-member mixing analysis (EMMA) technique evolved in the 1990s 

(Christophersen et al, 1990; Hooper et al, 1990) to predict proportions of 

contributing sources (Elsenbeer et al, 1995; Ali et al, 2012). The EMMA 

assumes a mixing model, which suggests the stream water is a mixture of 

sources, such as soil water from various depths and groundwater. The 

contributing sources that eventually mix to constitute the stream water 

chemistry are called the ‘end-members’ (Elsenbeer et al, 1995). The mixing 

model assumes that chemical signatures of end-members are time-invariant; 

that is, the output does not explicitly depend on time (Hooper, 2001; James and 

Roulet, 2006).  

Unlike the mass balance approach, EMMA relies on the solution of a 

constrained linear least squares estimation problem, and its estimation is based 

on the principle of the principal component analysis (PCA) (Christophersen et 
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al, 1990). The PCA was primarily formulated by Pearson (Pearson, 1901) to find 

‘lines and planes of closest fit to systems of points in space’, and has for a long 

time been found useful to provide approximation of multivariate datasets (Wold 

et al, 1987; Abdi and Williams, 2010). The PCA has also been found applicable 

to water quality analysis, and the proponents of EMMA approach have found it 

applicable to analyse their data (Hooper and Shoemaker, 1986; Hooper, 2003). 

Hooper (2003) provided a diagnostic tool for EMMA for a general mathematical 

formulation in which eigenvector and residual analyses of observed stream 

water chemistry can be used to estimate the appropriate number of contributing 

end-members. The diagnostic EMMA tool therefore enables end-members, 

sampled in the field, to be screened for their ability to fit into the PCA mixing 

space (the multidimensional space obtained from the PCA of observed stream 

water chemistry) (Hooper, 2003; James and Roulet, 2006). 

Both mass balance and EMMA approaches share the assumption that 

selected tracers are conservative. Other known assumptions of the EMMA are 

that the chemistry of different end-member are distinguishable; and that the 

chemical identity of each water course is maintained throughout an event (in 

transit from the source to the discharge point), but is only altered during mixing 

in the channel (Hooper and Shoemaker, 1986; Gremillion et al, 2000; Ladouche 

et al, 2001). Studies have also shown that both mass balance and mixing model 

approaches are useful in catchment hydrology, because  as they allow the 

relative contributions of different sources to streamflow to be inferred and 

quantified by using small-scale, internal catchment measurements (e.g. 

groundwater and soil water chemistry) to explain complex catchment responses 

(Ogunkoya and Jenkins, 1993; Elsenbeer et al, 1995; Genereux and Hooper, 

1998; Hooper, 2001, 2003; James and Roulet, 2006; Ali et al, 2010).  

Nonetheless, the mass balance and EMMA approaches are at best 

described as ‘black-box’ models which do not require explicit understanding of 

the internal conditions of the catchment (Todini, 1988; Elsenbeer et al, 1995). 

On the other hand, the internal system of a catchment can be complex, and the 

complexity may cause sufficient heterogeneity in what can happen to water 

after rainfall or the mechanisms of water flow in the catchment  (Hromadka, 

1990; Beven, 2001, Kirchner 2003; Krueger, et al., 2012).  

 
 



 

39 
 

2.4.1.3. Mathematical modelling approaches 

A number of models have evolved over the years to explain the rainfall-runoff 

relationship in catchments. These are well documented in literature, including 

Singh, 1995; Arnold et al, 1998; Singh and Woolhiser, 2002; Hromadka, 1990). 

A number of criteria have been used to classify the models; these include 

complexity (difficulty or reliability of model calibration; Beard and Chang, 1979; 

Hromadka, 1990), assumptions of linearity (or non-linearity), scale of application 

and amount of data required for model calibration (Hromadka, 1990; Singh and 

Woolhiser, 2002).  

While models can vary in their complexity in terms of parameters, 

Hromadka (1990) noted that it is not well established whether complex models 

provide an increase in accuracy or not. A study of six models and three variants 

of two of the models in an urban catchment in Califonia, USA concluded that 

‘the more complex models did not produce better results than the simple 

models...’(Abbott, 1978; Krueger et al, 2010). In addition, the tendency to 

increase uncertainties with too small or too large parameters in models have 

been a  subject of focus in Bayesian statistics (Reichert and Omlin, 1997). It has 

been noted that over-parameterisation of models does not guarantee their 

success or better performance than the models that are not over-

parameterised, but much information can be lost when the number of 

parameters is too few (Gaume and Gosset, 2003; Kirchner, 2006). In addition,  

Pilgrim (1986) argued that ‘simple nonlinear models fitted by data from events 

covering the whole range of flow may give gross errors when used to estimate 

large events’ and that ‘only relatively high flows are generally considered in the 

derivation of unit hydrographs or other response parameters, and this is the 

region of approximate linearity’.  

In summary, the problems associated with the poor understanding of 

catchment behaviour have been addressed by trying to understand the 

complexity of the catchment system. The catchment system is a complex one, 

and this complexity has undermined the ability to conceptualise it  appropriately 

or find an an all-emcompasing model (‘scientific Holy Grail’; Beven, 2006 a-b) 

for predicting its behaviour (Bloschl, 2006, Tetzlaff et al, 2008; Fenicia et al, 

2013). The space- and time-scales in which investigations are carried out in 

catchment hydrology are also diverse. Tetzlaff et al (2008) described the 

catchment as a bio-physical system with a history of constantly evolving and 
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changing transient features in the landscape. The catchment has also been 

regarded as a complex adaptive system, which can exhibit self-organising 

structures. The structure of the catchment can be influenced by the flows of 

water and state of its storage (Sivapalan, 2005; Wagener et al, 2007). In 

addition, the methodological challenges to modelling the catchment are still not 

sufficiently met, especially because of the aforementioned problems of 

complexity and diverse timescales of investigations (Hewlett and Hibbert, 1966; 

Todini, 1988; Arnold et al, 1998; Beven et al, 1995; Beven, 1997; Singh and 

Woolhiser, 2002; Sivapalan, 2009; Fenicia et al, 2013).  

 
2.4.2. Hysteresis modelling 

Hysteresis occurs when the state of an ecosystem depends strongly on its 

previous history, such that the critical condition under which a system switches 

from one stable state to another is different from the condition that will allow the 

system to return to the original state (Prowse, 1984; Andrea et al, 2006; 

O'Kane, 2005; Moravcová et al, 2009; Eder et al, 2010). It is important in the 

analysis of concentration-discharge (c-q) relationships because such 

relationships are rarely linear, and any form or pattern the relationship exhibit 

can also provide information about the prevailing hydrological processes and 

flowpaths (Johnson and East, 1982; Prowse, 1985; William, 1989; Evans and 

Davies, 1998; House and Warwick, 1998; Blackwood et al, 2012). Hysteresis 

has been long noted in concentration-discharge (c-q) relationship when solute 

and sediments concentrations vary systematically with respect to rising and 

falling limb discharge on the storm hydrograph (Toler, 1965; Arnborg et al, 

1967; Johnson and East, 1982; Prowse, 1985). It results to an occurrence of a 

non-unique solute concentration for a given value of discharge, often due to 

factors, including variation in rain intensity, nature of runoff, nature of targeted 

transported (physical or chemical) materials, interactions between the targeted 

material, precipitation, soil, vegetation and other components of the 

environment (William, 1989; Evans and Davies, 1998; House and Warwick, 

1998; Rose, 2003; Bowes et al, 2005; Andrea et al, 2006; Krueger et al, 2010; 

Eder et al, 2010; Jiang et al, 2012).  
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2.4.2.1. Applications of concentration-discharge hysteresis models 

  Hysteresis loop patterns have been used, often in conjunction with 

supporting evidence, to delineate source area contributions of dissolved and 

solid materials to stream flow, to infer geochemical processes that affect storm 

water quality, to discern mixing processes as they occur before, during, and 

after storm events, assess field or catchment’s hydrological behaviour and 

examine different runoff processes, among other applications (Prowse, 1984; 

William, 1989; Evans and Davies, 1998; House and Warwick, 1998; Rose, 

2003; Haygarth et al, 2004; Hornberger et al, 2001; Andrea et al, 2006; Eder et 

al, 2010; Krueger et al, 2012). Ebel et al (2010) from a study of the 3D variably 

saturated subsurface flow simulation of the Coos Bay 1 experimental catchment 

in the Oregon Coast Range, USA examined hysteretic effects on hydrologic 

response along a slope and showed that hysteresis occurred as a result of 

wetting and drying of the soil water. Ebel et al (2010) concluded that slope 

conditions and prediction of slope stability can be underestimated without 

considering hysteresis. Ivanov et al (2010) provides an extensive review of 

hysteresis in soil water response, and investigated soil moisture spatial 

variability resulting from varying topography and vegetation using the Biosphere 

2 facility (a large-scale Earth science facility with a variety of opportunities for in 

situ experiments at Tucson in the USA). Their study showed that hysteresis is 

inherent in mean state of the soil moisture distribution system, and that 

variability in soil properties caused by variation in the soil hydraulic property 

may account for a significant proportion of the spatial heterogeneity of soil 

moisture and hydrological response. Ivanov et al (2010) attributed the 

occurrence of hysteresis in the temporal variability of soil moisture to the soil’s 

initial state of wetness, rainfall magnitude, wetting and drying controls. In 

addition, Bowes et al (2005) studied the phosphorus (phosphorus, particulate 

phosphorus and soluble reactive phosphorus) concentration–discharge 

hysteresis from 10 storm events at 3-h intervals for three points along the River 

Swale in North Yorkshire, UK. Bowes et al (2005) showed that most 

phosphorus-discharge hysteresis changed down the river continuum, with the 

upland catchment producing ‘anticlockwise hysteresis’ and the downstream 

producing ‘clockwise hysteresis’, and attributed this pattern to the effect of 

intensifying land use and reduced sediment particle and change in phosphorous 

source, downstream.  
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 Earlier studies (such as Walling and Foster, 1975; Walling and Webb, 

1980; Hill, 1990) also showed that a ‘lag effect’ (where changes in solute 

concentrations do not directly coincide with the dilution effects of storm runoff) 

can produce anticlockwise hysteresis loops. Walling and Webb (1980) 

explained the clockwise pattern of the specific conductance-discharge 

hysteresis in the River Exe in England in terms of variable source area 

contributions during the course of a storm, and inferred that ‘clockwise 

hysteresis’ was the result of groundwater contributions from distal tributaries. In 

general, most published studies on concentration-discharge hysteresis have 

either focused on suspended solid concentrations (Wood, 1977; Walling and 

Webb, 1982; Klein, 1984; Williams, 1989; Asselman, 1999; Lenzi and Marchi, 

2000; Jansson, 2002) or on solutes in streams (Bond, 1979; Walling and Webb, 

1980; McDiffett et al., 1989; House and Warwick, 1998; Evans and Davies, 

1998; Andrea et al, 2006), while only a few have been undertaken at farm scale 

level (Kronvang et al, 1997; Krueger et al, 2009; Krueger et al, 2012).  

 
2.4.2.1. Hysteresis models and interpretations 

Hysteresis modelling has been approached with different methods by many 

authors. For example, studies (e.g. Ebel et al, 2010; Ivanov et al, 2010) have 

assessed retention curves of soil water at different wetting and drying stage to 

examine hysteresis while some others (e.g. Foster, 1978; Walling and Webb, 

1980, 1986) have used derived regression relationships (power functions) 

between solute concentration and discharge, and sometimes distinguished 

seasonal trends. Some of these approaches, especially the use of regression, 

have been challenged, especially that it is generally recognised that different 

hydrological responses occur because of variations in storm characteristics 

(rainfall amount and intensity) and antecedent soil moisture conditions 

(O'Connor, 1979; Muscutt et al., 1990; Avila et al., 1992; Jenkins et al., 1994; 

Soulsby, 1995; Biron et al, 1999; Brown et al, 1999; Welsch et al, 2001; Weiler 

and McDonnell, 2006), which often occur with different storm event conditions. 

Johnson and East (1982) identified other causes of variations in concentration-

discharge hysteresis to include variations in the antecedent accumulation of 

dissolved materials, dissolved materials in precipitation, meteorological 

conditions and conditions affecting the hydrological flow (also Taylor and 

Pierson, 1985; McDonnell et al, 1991; Wheater et al, 1991; Coulthard et al, 
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2005; Fryirs et al, 2009; Sorriso-Valvo et al, 1995; Garcia-Ruiz et al, 2005; 

Luce, 2003; Lewin et al, 2005; Van der Velde et al, 2010; van Balen et al, 

2010).  

 Review of studies published since year 1998 suggests that studies on 

concentration-discharge hysteresis are often hypothesised based on 

hydrograph separations and mixing model assumption (Evans and Davies, 

1998’s hypothesis) (e.g. Evans et al, 1999; Hornberger et al, 2001; Rose, 2003; 

Andrea et al, 2006), mathematical modelling-based mass-balance equations 

(House and Warwick, 1998 hypothesis) and its modified form with analysis of 

data uncertainties (Krueger et al, 2009; Krueger et al, 2010; Eder et al, 2010) or 

farm-focused concentration-discharge relationship based on a simple decision 

tree (Haygarth et al, 2004). Although these concentration-discharge hypotheses 

were formulated on specific dissolved or solid loads (phosphorus; Haygarth et al 

(2004); phosphorus, Krueger et al (2009); sediments and phosphorus, Davies 

and Evans (1998); dissolved solids), their applications are not limited to these 

variables. Evans and Davies (1998)’s hypothesis ‘benchmarked’ (Rose, 2003) 

the interpretation of concentration-discharge plots by modeling variable 

contributions of ideal two-component (‘pre-event’ and ‘event’ water) and three 

component (ground water, soil water and event water, where applicable) 

mixtures and devised a nomenclature describing the rotation, curvature, and 

trend of the resulting hysteresis loops (Figure 2.7). 
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Figure 2.7. Concentration-discharge hysteresis plots (below) and its episodic 
hydrograph (above). CSO represents concentration in soil water, CSE represents 
concentration in surface event and CG represents concentration in groundwater 
(where applicable). In terms of variations in plot patterns, C represents 
‘Clockwise direction’ while A represents ‘anticlockwise direction’. In terms of 
plot’ slope, C1, C3 and A1 exhibit convex slope while C2, C3, A2 and A3 exhibit 
concave slope (Evans and Davies, 1998). 

 

 Concentration-discharge relationships based on Figure 2.7 accept the 

assumptions of concepts of the mixing model and mass balance equation for 

chemical and isotope hydrograph separation technique (see Table 2.1). 

assumptions of the mixing model as provided in studies (e.g. Sklash et al, 1976; 

Sklash and Farvolden, 1979; Moore, 1989; Buttle,1994; Klaus and McDonnell, 

2013) are  that (i) the chemical or isotopic content of the event and the pre-

event water are significantly different, (ii) the event water maintains a constant 

chemical or isotopic signature in space and time, or any variations can be 
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accounted for, (iii) the chemical or isotopic signature of the pre-event water is 

constant in space and time, or any variations can be accounted for, (iv) 

contributions from the vadose zone must be negligible, or the chemical or 

isotopic signature of the soil water must be similar to that of groundwater, and 

(v) surface storage contributes minimally to the streamflow. Klaus and 

McDonnell (2013) provides a critical examination of the isotope hydrograph 

separation studies, the mixing model and the various studies on them since 

1960 to their publication, and showed that at least three of the aforementioned 

assumptions of the mixing models (assumptions ii-iv) have been vigorously 

challenged by recent studies.  

 Krueger et al (2009) introduced an empirical hysteresis concept 

(equations 2.1-2.3) to estimate sediment-discharge relationship. Equations 2.1-

2.3 were previously explored by House and Warwick (1998) to describe solute 

dynamics in rivers (Eder et al, 2010). 

𝑦 = 𝑓1(𝑥) + 𝑓2(𝑥′)            (2.1) 

Where 𝑦 is the function of x and of the rate of change of x (e.g. over time). To 

describe the hysteresis between concentration (C) and discharge (Q) observed, 

Krueger et al (2009) developed equation 2.2.  

𝐶 = 𝜃1𝑄𝜃2 + 𝜃3
𝑑𝑄

𝑑𝑡
      (2.2) 

with the local slope of the hydrograph 
𝑑𝑄

𝑑𝑡
 and parameters 𝜃1, 𝜃2, and 𝜃3. All 

variables in equation 2.2 were treated as uncertainty intervals, with the Q 

intervals for slope at timestep i as equation 2.3.  

𝑑𝑄

𝑑𝑡
[

(inf(𝑄𝑖+∆𝑡) − inf(𝑄𝑖−∆𝑡))/2∆𝑡,

(sup(𝑄𝑖+∆𝑡) − sup(𝑄𝑖−∆𝑡))/2∆𝑡
]     (2.3) 

inf () and sup () are lower and upper interval bounds, respectively, and ∆𝑡 = 1 

for data.  

The importance of Krueger et al (2009)’s approach can be attributed to the 

increasing recognition of uncertainty in modelling, especially since the study by 

Beven and Binley (1992) on the Generalized Likelihood Uncertainty Estimation 

(GLUE) (Krueger et al, 2010; Beven and Binley, 2013). Beven and Binley 

(2013) noted that there is still no agreement on the solution to the problem of 

epistemic uncertainties other than adequate knowledge of the nature of the 

sources of uncertainties.  
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 In addition, Haygarth et al (2004) estimated and classified the 

(phosphorus) concentration-discharge relationship using a simple decision tree 

shown in Figure 2.8.  

 

Figure 2.8. Decision tree for classifying the concentration-discharge hysteresis 

proposed by Haygarth et al (2004). 

 

According to Haygarth et al (2004), ‘Type 1’ hysteresis can occur from a steady-

state situation between the dissolution kinetics of a relatively homogenous soil 

and discharge, and in areas with not so fast drainage to prevent ions exchange 

between the soil and solution. ‘Type 2’ hysteresis can occur where rapid water 

discharge results in physical entrainment of particulate and colloidal matters, or 

when solute pathway is different from the normal route during saturated base 

flow, or due to the alternating soil drying and wetting due to fluctuation in soil 
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moisture, or as a result dilution and depletion of material source. Type 3 

hysteresis, on the other hand reflects enriched material supply to the system. In 

general, concentration-discharge relationships are known to exhibit various 

forms (Johnson and East, 1982; Stall and Fok, 1967; Webb and Walling, 1986; 

Evans and Davies, 1998; Evans et al, 1999; Chanat et al, 2002; Haygarth et al, 

2004; Krueger et al, 2009; Eder et al, 2010; Murphy et al, 2012),  which can be 

different due to the effects of different components of the chemical-transfer 

system earlier conceptualised (Figure 1.3).  

2.4.2.2. Concentration-discharge patterns and attributes 

 Most studies on concentration-discharge relationships showed that 

hysteresis plots are usually cyclical and they follow either a clockwise or an 

anticlockwise direction, or both as in a ‘figure-of-eight’ (8) plot. Concentration-

discharge relationships can also exhibit a straight line, or in combination with a 

loop (which may be clockwise or anti-clockwise) or just in a complicated random 

form (Stall and Fok, 1967; Foster, 1978; Foster and Grieve, 1982; Prowse, 

1984; Olive and Rieger, 1985; Webb and Walling, 1986; William, 1989; Evans 

and Davies, 1998; Evans et al, 1999; Chanat et al, 2002; Haygarth et al, 2004; 

Krueger et al, 2009; Eder et al, 2010).  

 A number of explanations have been offered for the different patterns 

observed in many studies, and generalised perceptions on them are 

documented in Table 2.2. Most of these studies have explained that clockwise 

pattern hysteresis occur when the concentration peaks prior to peak discharge, 

and associated anti-clockwise patterns to when concentration peaks in the 

falling limb of the hydrograph.  
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Table 2.2. Basic patterns of solute concentration-discharge hysteresis, their 
interpretations and causes   

 
 
Clockwise hysteresis pattern is associated with flushing of dissolved or 

sediment materials in the rising limb of the hydrograph, and can therefore be 

characterised as a more rapid flow of materials from the ground, vegetal and 

near surface regions (Bishop et al, 2004; Hornberger et al, 2004; Holden, 2005; 

Weiler and McDonnell, 2006) or as a result of quick displacement of previously 

held water in the soil by the infiltrating rainwater (McHale et al, 2002). Anti-

clockwise hysteresis pattern can be attributed to the prevalence of prefential 

flow such as caused by the lateral displacement of the soil (pre-event) water by 

infiltrating rainfall or flushing by the vertical-lateral preferential flow (Klein, 1984; 

Shape of C–Q 
plot 

Explanation of occurrence Cause Reference 

Clockwise When the concentration is higher on 
the rising limb of the storm 
hydrograph compared with the falling 
limb. 

Flushing of materials from ground 
and vegetation surfaces at the start 
of storm event. 

Holden, 2005 

Concentration peaks prior to peak 
discharge and rapidly fall during 
rainfall cessation or snow melt 
decline. 

Lateral flushing of ready availability 
of excess nutrients in the near 
surface soil horizons. 

Bishop et al, 2004 

Transmissivity feedback flushing.  
Nutrients are leached from near-
surface layers by a rising water 
followed by a quick lateral transport 
of these leached nutrients via near-
surface subsurface storm flow on 
the hillslope or surface, saturation 
excess runoff in the riparian zone. 

Hornberger et al, 
2004; Weiler and 
McDonnell, 2006 

Antecedent soil content; quick 
displacement by infiltrating 
rainwater. 

McHale et al, 2002 

Anti-clockwise  
(Counter-
clockwise) 

When the concentration is higher on 
the falling limb of the storm 
hydrograph compared with the rising 
limb. 

Lateral displacement of the soil (pre-
event) by water infiltrating rainfall.  

Holden, 2005 

 
Flushing by the vertical-lateral 
preferential flow. 

Weiler and 
McDonnell, 2006 

High concentrations in the O-horizon 
soil waters. 

Brown, 1999 

 
Time lag associated with the onset 
of streamflow, which displaced 
solute-rich waters via macropores. 

Hangen et al, 2001 

Straight line 
 

Concentration and discharge 
increase and peak simultaneously. 

Uninterrupted supply of materials 
throughout a storm event. 

Wood,1977 

Straight line 
plus loop 

Combines the straight line with either 
clockwise or anticlockwise loop. 

Causes are same for both straight 
line and either clockwise or 
anticlockwise loop, in sequence. 

William, 1989 

‘Figure-eight’, 
‘figure of 8’ or 
Cross-over 

This combines parts of the clockwise 
and anticlockwise loops, which 
sequentially go in opposite directions. 

Causes are same for a clockwise 
loop at high flows and an 
anticlockwise loop at low flow. 

Arnborg et al, 1967;  
 William, 1989 

Random, 
Complicated or 
indeterminable 

This occurs when rotation or shape 
of C–Q plot does not vary 
systematically with flow. 

Spatial variability of solute 
concentrations along the flow 
channel reach. 

Jeje et al, 1991;  
Krueger et al, 2010; 
Murphy et al, 2012 
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Holden, 2005; Weiler and McDonnell, 2006). Prowse (1984) showed that 

complexities, however, occurred in the interpretations of the clockwise and anti-

clockwise hysteresis observed in some of the early studies. For example, Figure 

2.9 shows that the clockwise concentration-discharge relationships may be 

difficult to interprete based on whether there is lag (Figure 2.9 ai-ii), lead (Figure 

2.9 ci-cii) or neither lag nor lead response (Figure 2.9 bi-ii). Late flush is often 

associated with a lead response (Figure 2.9 di-ii). Klein (1984), while studying 

the Holbeck catchment, Yorkshire, United Kingdom established a relationship 

between the travelling time, location of solute or sediment materials and type of 

hysteresis formed (Figure 2.10). According to Klein (1984) clockwise hysteresis 

patterns can occur in the concentration-discharge relationship, when the solute 

or sediment material load travel a short to medium distance and the discharge 

is relatively low while anti-clockwise hysteresis occurs when material 

transported arrived from farther distance and the flow velocity is high (Figure 

2.10). In between the two main hysteresis patterns (clockwise and 

anticlockwise) are other forms of concentrations relationships, including straight 

line (which can occur when there is uninterrupted supply of solute or sediment 

loads throughout an event (Figure 2.11 ai-bii)), straight line plus loop (2.11 ci-ii), 

‘figure-of-8’ (2.11 di-ii) and random, complicated or just indeterminate (Arnborg 

et al, 1967; William, 1989; Krueger et al, 2010; Murphy et al, 2012).  
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Figure 2.9. Main causes of clockwise and anti-clockwise concentration-
discharge hysteresis, and associated hydro-chemographs (modified after 
Prowse, 1984).  
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Figure 2.10. Hysteresis pattern as a function of travelling time and location of 
           material (solute or sediment) (modified after Klein, 1984). 
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Figure 2.11. Other patterns of concentration-discharge hysteresis in-between 

the clockwise and anticlockwise patterns’ formation region in Figure 2.10. 

 

2.4.2.3. Uncertainties in concentration-discharge (c-q) relationships as 

 elucidators of hydrological pathways 

 There is generally little or no agreement among scholars on the nature of 

the materials and nutrients whose c-q relationships exhibit clockwise or 

anticlockwise loops. Whilst studies (such as Klein, 1984, House and Warwick, 

1998; Steegen et al, 2000) have argued that anticlockwise hysteresis observed 

in some solutes (such as phosphorus, nitrate and ammonium) and suspended 

solids occurred as a result of the mobilization of loosely bound materials by 

surface runoff in fields, other studies (including Walling and Foster, 1975; 

Walling and Webb, 1980; Hill, 1993; Rose 2003) observed that clockwise c-q 

hysteresis may also result from such mobilization of materials. Materials whose 
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concentrations typically increase at high discharge have been mobilized by 

surface runoff from topsoil, where they had been stored prior to rainfall events 

or snow melt conditions (McDiffett et al, 1989; House and Warwick, 1998; Rose, 

2003; Inamdar et al, 2004; Andreas et al, 2006; Bowes et al, 2005; Rusjan et al, 

2008; Kopáček et al, 2014). Materials that are mobilized at high discharge may 

rapidly decline when rain ceases or soon after the melt declines when they have 

been exhausted from their sources in the fields, and thereby result in c-q 

relationships that exhibit clockwise hysteresis loops (Hornberger et al, 1994; 

Creed and Band, 1998; Inamdar et al, 2004; Rusjan et al, 2008). The 

concentrations of the majority of mobilized materials which exhibit anticlockwise 

hysteresis are increased after discharge has peaked (MicDiffett et al, 1989; 

William, 1989; House and Warwick, 1998; McHale et al., 2002). Materials which 

exhibit anticlockwise c-q relationship are those whose concentrations are 

delayed with peak discharge, probably because their concentrations in the soil 

surface are low or they are derived from a source that is mobilized slowly (such 

as a subsoil layer) or they are distant from the sampling point (MicDiffett et al, 

1989; William, 1989; House and Warwick, 1998; McHale et al., 2002; Bowes et 

al, 2005).  

 Differences in the prevailing climate conditions, basin characteristics, soil 

wetness and land use are some of the factors that have been identified to cause 

variations in c-q relationships. Studies (such as Johnson and East, 1982; 

Prowse, 1984; Olive and Rieger, 1985; Walling and Foster, 1995; Rose, 2003) 

have indicated that clockwise and anticlockwise c-q relationships may occur 

whether or not discharge peaks before concentrations. Concentration-q 

relationships can also be linear, irregular, complex (such as ‘figure of 8’, straight 

line with a loop) or just complicated (Arnborg et al, 1967; Wood, 1977; William, 

1989; Krueger et al, 2010; Murphy et al, 2012), all of which can be used to infer 

hydrological behaviour in fields. Similarly, except for the studies of Granger et al 

(2010 a-b), Krueger et al (2010), Haygarth et al (2012), few studies have 

investigated c-q relationships in heavily clay soils used for intensive agriculture 

in temperate regions.  
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2.5. Conclusions  

 Basic runoff generating models in hillslope hydrology and relevant 

methodological approaches for hydrochemical studies have been reviewed in 

this chapter. The review showed that investigations into hydrologic flow paths 

are diverse in scope and approaches. Research efforts are still continuous to 

understand adequate way of correctly interpreting hydrologic pathways and 

understanding hydrological behaviour. Uncertainties in this were linked to the 

natural complexity of a field and catchment system, as well as the integrating 

biogeochemical principles of the field ecosystem (Fahle et al, 2013; Perks et al, 

2013). The review of the concentration-discharge relationships shows that the 

hysteresis approach can provide useful information about the internal workings 

of the catchment. Hysteresis can provide information on changes in flow and 

occurrences within the catchment such as variable sources, redox and 

sorption/desorption, soil wetting and drying, vegetation, slope, as well as an 

alteration in the dominant hydrologic paths during storm events. Comparison of 

the causes of different hysteresis patterns can however be complex (and 

contradictory) to make because they can vary with location, season, and 

antecedent field condition on the biogeochemical complexity. The rest of this 

study is devoted to explanations on the study area and research methodology 

(Chapter 3), and the presentation of the results of this study, as well as the 

discussion of the results.  
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CHAPTER 3 

STUDY AREA, FIELD INSTRUMENTATION AND RESEARCH 

METHODOLOGY 

 
3.1. Study Area 

3.1.1. Location and details of the North Wyke Farm Platform (NWFP) 

The Rothamsted Research-NWFP Project is a 67.27 ha experimental farm of 15 

hydrologically separated fields situated in the county of Devon in south west 

England, United Kingdom. The NWFP is funded by the Biotechnology and 

Biological Science Research Council (BBSRC) to address grassland 

agriculture's most pressing challenges, including the protection of natural 

resources and sustenance of the rural economy, especially in grassland regions 

(http://www.northwyke.bbsrc.ac.uk/), using the Code of Good Agricultural 

Practice (Granger, et al., 2010 a-b; Naden et al, 2010; Orr et al. 2011; Hatch et 

al. 2011). The farm platform is located on 50.77°N, 3.90°W (Figure 3.1).  

 

 
 

Figure 3.1. North Wyke Farm Platform in the southwest England. The colour 
(red, green and blue) of the fields are to distinguish them into 
different land use experiments as noted in the legend. Red, green 
and blues field occupy about 21, 24.7 and 20.5 ha, respectively.  

 
 

http://www.northwyke.bbsrc.ac.uk/
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3.1.2. Land use history and future farm management strategies 

 The fields of the NWFP have undergone different uses which can affect 

their physiochemical properties (Table 3.1). The management history of the 

fields is considered to be representative of normal management cycles of 

intensive grassland (Peukert et al, 2012). Five large fields (Pecketsford (1), 

Poor Field and Ware Park (3), Burrows (4), Middle and Higher Wyke Moor (8) 

and Dairy South (9)) have been subdivided into at least two subfields, and 

separately managed before the present use. For example, while the southern 

Great Field region was cultivated with barley, the northern region was grazed. 

Burrows, on the other hand, was previously managed as three distinct fields. 

The fields were also managed differently between 1995 and 2011 after which 

they were all treated to lime and fertilisers to improve soil nutrients levels to a 

targeted level (such as pH between 6 and 6.5). 

 
Table 3.1. Field management prior sampling. Fields (1, 3, 4, 8 and 9) with more 
than one symbolised columns were divided into 2 or more regions before the 
present management (Information used were obtained from the Farm Platform 
records). 
 

 

*Fields not ploughed and reseeded in 1995-2007 were cut for silage at the 
period 
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The soil tests conducted by the farm management revealed that the fields were 

subsequently characterised by pH (mean±standard deviation, minimum-

maximum in parenthesis) values 5.9± 0.3 (5.7-6.1). Lime and fertilisers 

applications in grasslands are known to impart both long and short term effects 

on the soil structure and mineralogy. Lime-induced increases in productivity will 

enhance build-up of soil organic matter and soil biological activity that can 

improve aggregate stability and increase soil porosity (Haynes and Naidu, 

1998). Haynes and Naidu (1998) summarised the short and long-terms effects 

of lime and fertiliser applications in a conceptual framework described in Figure 

3.2.  

 

Figure 3.2. A framework to describe the major effects of lime and fertiliser 
applications, and how they can improve soil aggregation and structural 
conditions (Haynes and Naidu, 1998). 
 

The fields were managed similarly from 2012 as permanent pastures 

predominately used for grazing. While smaller fields (< 2 ha i.e. Fields 10, 11, 

12, 13, 14 and 15 were grazed with sheep (about 40 ewes and 3 rams on 

rotational grazing), the larger fields were grazed on a rotational basis between 

sheep (average of 110 ewes and 3 rams) and cattle (an average of 32 cattle). 

Farm management from 2012 is intended to focus on the three plans of 

permanent grassland, planned reseeding and increased use of legumes (Table 

3.2).   
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Table 3.2. Proposed (and emerging) field management at the North Wyke Farm Platform (Sources: Orr et al, 2011; Griffith et 
al, 2013).

Farmlet Field Area  
(ha) 

Planned farm use and management 

Code Previous local name Name in this study 

Red FP 1 
  

Pecketsford 
Barn Field/Peck 

Pecketsford 
  

4.8 Sustainable intensification of permanent 
grassland. This, according to the Rothamsted 
Research Bulletin on the North Wyke Farm 
Platform, involves sward improvement through 
increased fertilisation. The approach includes the 
use of industrially produced fertiliser and a 
corresponding increase of the carrying capacity 
of grazed animals. 
 

FP 2 
  

Barn Field/ Great Field 
Great Field 

Great Field 
  

6.5 

FP 3 
  

Poor field 
Ware park 

Poor Field/Ware Park 6.5 

FP10 Lower Wheaty Lower Wheaty 1.8 

FP15 Longlands East Longlands East 1.5 

Total area of Red Farmlets 21.0 

Green FP 4 
  
  

Bottom Burrows 
(Middle) Burrows 
Top Burrows 

Burrows 
  
  

10.9 Planned reseeding; a landuse management 
approach that involves sward improvement 
through reseeding. Reseeding on the Farm 
Platform is expected to involve collaborations 
with industrial partners  and cultivation of cereals. 

FP 5 Orchard Dean Orchard Dean 6.5 

FP 6 Golden Rove Golden Rove 3.8 

FP12 Dairy North Dairy North 1.7 

FP13 Longlands South Longland South 1.7 

Total area of Green Farmlets 24.7 

Blue FP 7 Lower Wyke Moor Lower Wyke Moor 2.6 Increased use of legumes, involving sward 
improvement through introduction of legumes. 
Clover based systems will be supplemented with 
manures and low level use of inorganic fertilisers. 

FP 8 
  

Higher Wyke Moor 
Middle Wyke Moor 

Higher and Middle 
Wyke Moor 

6.9 

FP 9 Dairy South  Dairy South 7.7 

FP11 Dairy East Dairy East 1.7 

FP14 Longlands North Longland North  1.7 

Total area of Blue Farmlets 20.5 

 Total area of Farm Platform 66.2  
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When not grazed, the grasses in the fields were usually cut for silage twice a 

year. All the sheep and cattle were removed from the land and housed in winter 

to protect them from weather hazards and to prevent damage to the soil 

structure.  

 
3.2. Physical Characteristics of the North Wyke Farm Platform  

3.2.1. Climate  

Harrod and Hogan (2008) gave the 1961-2000 mean annual rainfall total as 

1055.7mm. Data from a meteorological station sited by the Ecological Change 

Network (ECN) at North Wyke showed that the 1982-2011 mean annual rainfall 

is 1041.7mm. The summary statistics of daily rainfall, sunshine, temperature 

wind speed and relative humidity measured between 1982 and 2011 at the 

North Wyke station are shown in Table 3.2. Daily mean temperature range is 

between 5.97 and 12.16 °C. Daily mean wind speed, rainfall, sunshine and 

relative humidity are 4.69 m s-1, 4.30 mm, 4.43 hours and 77.33%, respectively 

(Table 3.3).  

 
Table 3.3. Summary of some climate elements at North Wyke (1982-2011).  

Statistics   Sunshine 
(hours) 

Rainfall 
(mm) 

Temperature (°C) Wind 
Speed  
(m s-1) 

Relative 
Humidity 
(%) Minimum Maximum 

Mean 4.43 
 

4.30  5.97 12.16 4.69 77.33 

Coefficient of 
Variation  

0.82 1.35 0.78 0.53 0.75 0.33 

Minimum 0.10 0.10 -11.30 -6.20 0.13 1.0 

1st quartile 1.40 0.50 2.10 7.75 2.23 77.25 

Median 3.69 2.0 5.93 12.68 3.77 85.35 

3rd quartile 6.67 5.70 9.30 16.78 6.13 91.83 

Maximum 23.0 73.70 38.50 138.0 29.28 99.96 

Standard 
deviation 

3.61 5.81 4.66 6.48 3.53 25.45 

(Data source: Meteorological data archive at the North Wyke Station). 
 

Table 3.3 also shows that rainfall was the most varied (as determined by the 

values of the coefficient of variation) of the climatic elements shown, exhibiting 

more than 100% coefficient variation; relative humidity (with 33% percentatage 

coefficent of variation) was the lowest. The average temperature and rainfall at 

North Wyke also exhibited significant seasonal differences. Seasonal variations 

also occur, with average temperatures of 4.9 ± 0.6°C (winter), 8.2 ± 2.3°C 

(spring), 14.8 ± 1.1°C (summer) and 10.5 ± 3.0°C (autumn) while rainfall varied 
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seasonally as 119.3 ± 21.1, 101.0 ± 18.3, 72.0 ± 10.6 and 59.7 ± 7.64 mm in 

winter, autumn, spring and summer, respectively. Daily rainfall distribution from 

1982 to 2010 indicated extreme rainfall events in the study area (largest rainfall 

extreme between these years occurred in October 2000, with 74 mm rain event 

in a day (Figure 3.3).   

 

Figure 3.3. Boxplots of daily rainfall events at North Wyke between 1982 and 

2000. Months with daily extreme rain events are labelled (1-12 as January-

December).  

 

The summary of the rain event and records of dry days in the study area 

indicated high summer rain events in May and June (50 and 44 mm, 

respectively) despite low rainfall as shown in 2000 and 2011 (in the 30 year 

means) (Table 3.4). More number of years in the 2000s years also exhibited 

shortest (between 1982 and 2011; 2000, 2003, 2007, 2008) number of dry days 

(day will less than 0.2mm of rainfall), than the number of years with the longest 

number of dry days since for same period. In general, Table 3.4 suggests a 

significant temporal variation in the rainfall of the study area, which may 

influence the hydrology of the study area.   
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Table 3.4. Lengths of dry days, range of rain events and 30 year (1982-2011) means, median and peaks of rain events at the 

North Wyke Farm Platform (dry days are defined as days without at least 0.2mm of rainfall) (Data was obtained from the 

North Wyke Meteorological records) . 

Month 
 
 

Longest dry 
days  (number 
of dry days in 
parenthesis*) 

Shortest dry 
days (number of 

days in 
parenthesis) 

Highest 
rain 

events 

Lowest rain 
events 

1982-2011 
mean 
(mm) 

1982-2011 
median 
(mm) 

1982-2011 
Peak rain 

events 
(mm) 

January 1987 (28) 1988 (8) 1999 1987 3.86 1.10 41 

February 1986 (27) 1995 (9) 2009 1986 3.17 0.60 39 

March 1993 (29) 2001 (11) 1984 1995 2.60 0.40 36 

April 1984, 2007  
(29 each) 

2000, 2001  
(14 each) 

1987 2006, 2007 2.18 0.20 38 

May 1989 (29) 1983 (14) 2002 2011 2.16 0.1 50 

June 1996 (29) 1991, 2007 (16) 1993 2000 1.90 0.10 44 

July 1996 (29) 2003 (13) 1982 1996 1.89 0.2 40 

August 1995 (29) 1986 (13) 2004 1996 2.11 0.2 35 

September 2003 (27) 1998 (15) 1993 1996,2003 2.42 0.2 48 

October 2007 (27) 1987, 2007 (11) 2000 2006 3.77 0.9 74 

November 1983 (26) 2008 (4) 1986 1985 3.97 1.30 43 

December 1996 (26) 1993 (8) 1999 1987, 1991, 
2001 

4.17 1.05 55 
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3.2.2. Geology 

The region occupied by the Farm Platform is underlain by the Carboniferous 

Crackington Formation, which is part of the ‘Culm Measures’ geology (Harrod 

and Hogan, 2008). The ‘Culm Measures’ is a geologic term for the sandstone 

and shale sequence of the extensive outcrop of Carboniferous strata (Laming 

and Roche, 2006) in the Millstone Grit (Warrington et al, 2012). The Millstone 

Grit is characterised by small fragments of plants that have been washed into 

the river deltas (Page and Chamberlin, 1996). The Carboniferous strata in the 

region (and other part of the southwest England) were deposited around 360-

300 million years ago, but its succession is dominated by marine shales and 

sandstones (Laming and Roche, 2006). Soils produced from this geology 

(Crackington Formation) are usually clay-rich (Lestlie at al., 2007) with dark 

grey, black or weathered pale shales and thin subsidiary sandstone bands. The 

soils characteristically would readily breakdown to form clay, when waterlogged. 

They include deposits of grey or black fine-grained sandstones and sandy 

alluvium in stream valleys (Harrod and Hogan, 2008).   

 
3.2.3. Soils  

Table 3.5 shows the classifications and properties of the soil series in the North 

Wyke Farm Platform. The soils in the Farm Platform is generally the heavy clay 

soils of the Cambisols soil group containing the Stagni-vertic Cambisols 

(Halstow and Hallsworth soil series) and Stagni-eutric Cambisols (Denbigh 

series) of the Halstow Association, as well as the Fladbury soils (Gleyi-eutri 

fluvisol or pelo-alluvial gley) series of the Fladbury 1 Association (Avery, 1980; 

Harrod and Hogan, 2008; Farewell, 2008). The Halstow soil association covers 

280 km2 of England and Wales and accounts for 0.19% of the landmass in the 

region (Farewell, 2008). Soil series in the association are slowly permeable 

clayey soils that have developed over carboniferous shale. Halstow soil series 

can also include some well-drained loamy soils but the overall potential 

groundwater movement is low (Hogan and Harrod, 2008). The Fladbury soil 

series are generally described as clayey river alluvium found in places that are 

calcareous and can be variably affected by groundwater (Farewell, 2008). 

About 821 km² or 0.54% of the entire landmass of England and Wales is 

covered by Fladbury 1 association (Farewell, 2008).  
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Table 3.5: Some characteristics of soils series at the North Wyke Farm Platform.  
 

Soil Properties Halstow soil Hallsworth soil Denbigh soil Fladbury soil  

Classification  Stagni-vertic Cambisols or typical non-calcareous 
Pelosols. 

Stagni-eutric Cambisols or typical 
brown earths. 

Gleyi-eutri fluvisol or pelo-alluvial gley 
soils. 

Description 
 
 
 
 

Slowly permeable clayey 
soils often over shale. The 
major land use is defined 
as permanent and short 
term grassland with 
dairying and stock rearing.  

It is a soil series within the 
Halstow soil association. It 
is described as clayey 
pelostagnogley soil in 
head from clay shale.  

A fine loamy, typical brown earth 
soil, and often occur in mixture with 
Cherubeer soil series.  
 
 
 

Clayey river alluvium; stony, pelo-
alluvial gley soils. 
 
 

Profile 
 

Topsoil is clay, silty-clay 
loam or clay loam. 
Immediate subsoil is more 
clayey, with clay content 
declining below about 60 
cm as weathering 
decreases. 

It is characterised by 
mottled greyish-coloured 
mottled clayey throughout. 

Topsoil is silty-clay loam with fine 
macropores. Subsoil is 
characterised by micaceous 
sandstone and shale stones. Entire 
profile is brown, brightly coloured 
subsoil can be a field indicator of a 
podzolic B horizon. 

Top soil is dark grey-brown clay loam 
with reddish yellow; yellow-red mottles 
along root channels. Subsoil is clay to 
silty- clay; bouldery gravel, fine-
grained dark grey siliceous sediments 
with roots concentration around 
stones. 

Hydrology of 
Soil Type 
(HOST)  

‘HOST 21’, ‘slowly 
permeable soils with slight 
seasonal water-logging and 
low storage capacity over 
slowly permeable 
substrates and negligible 
storage capacity. 

‘HOST’24’, ‘slowly 
permeable, seasonally 
waterlogged, and overlain 
by slowly permeable 
substrates with negligible 
storage capacity. 

‘HOST 17’, free draining permeable 
soil on hard (slate and shale) 
substrates with relatively low 
permeability and low storage 
capacity. 

 

‘HOST 9’, slowly permeable and 
seasonally waterlogged, occurring in 
unconsolidated clays with 
groundwater at less than 40cm from 
the surface. 

Particle size 
information 
(above 15cm) 

22% Sand, 31% Clay and 
47% Silt, pH is 5.0. 

31% Sand, 26% Clay and 
43% Silt, pH is 6.8. 

18% Sand, 32% Clay and 50% Silt, 
pH is 5.0. 

19% Sand, 32% Clay and 42% Silt, pH 
is 5.6. 

Bulk density 1.04 -1.51 gcm-3. 0.99-1.55 gcm-3. 0.91-1.29 gcm-3. Information is not available. 

 
(Sources: Avery, 1980; Boorman et al, 1995; Harrod and Hogan, 2008; Farewell, 2008) 
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The NWFP relationship distribution of the soils on the Culm shales geological 

underlain is shown in Figure 3.4. Figure 3.4 shows that soil series varies with 

difference in elevation, with the Halstow soil occupying the relatively higher 

altitude than the Denbigh and Hallsworth. The distribution suggests that fields 

with greater proportions of Halstow, Denbigh and Hallsworth soil series may 

have different hydrological responses.  

 

 

Figure 3.4. Distribution of the Halstow, Hallsworth, Denbigh and Fladbury soil 
series across the slope at the North Wyke Farm Platform (modified 
from Harrod and Hogan, 1981). 

 

The Halstow soil series is the most extensive on the Farm Platform, and 

it occupies 12 of the 15 fields of the Farm Platform, although in different 

proportions (Figure 3.5). The next abundant soil series is the Hallsworth soil 

series, found in most fields in the southern and western part of the Farm 

Platform. The Fladbury soil series covers the western edge of the Fields 1 and 

3, along the River Taw flood plain (not shown in Figure 3.5), and in association 

with other soil series. The Denbigh soil series also occupies parts of the 

western and southern fields. In all, only the small fields (Fields 10–15) are 

homogeneously covered by the Halstow series, and only Field 8 is 

homogeneously covered by the Hallsworth series. Fields 1–9 are large fields 

and are covered by at least two of the soil series (Figure 3.5). The specific 

characteristics of the identified four soils series across their profiles are 

compared in Figure 3.5. Figure 3.6 shows that the soils series are different, but 

these differences can be difficult to observe with small scale study, it therefore 
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will be interesting to see if the differences can be revealed with the semi-

qualitative approach use by this study. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 Figure 3.5. Distribution of soil series across the farm platform (modified from 

Harrod and Hogan, 2008). 
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Figure 3.6. Cross-sections of dominant soil series in the North Wyke Farm Platform 
(Modified after White, 2008). 
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3.2.4. Elevation and Slope 

Based on the Global Positioning System (GPS) surveys conducted on the farm 

platform, the elevation range of the entire fields is 128 - 189.1 m above sea 

level (Ordnance Survey, OS) (Figure 3.7a). Altitude increases from the 

northwest towards the south-eastern part of farm platform, and the slope varied 

between 0 and 25%; highest slope occurs in Fields 4 and 9 (Figure 3.7 a-b). 

The small fields expectedly exhibit relatively more homogeneity than most large 

fields. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 a-b. Elevation (a) and slope (b) characteristics  of the North Wyke 

Farm Platform: (a) was produced with sperical kriging model; range 
= 698.1, nugget = 210.6, sill = 17.44, accounting for 99.1% variance 
estimate as computed from a variogram estimate before kriging was 
achieved. (b) was produced by Bruce Griffiths (North Wyke Farm 
Platform).  

  

 
 

(a) 

(b) 



 

68 
 

Since four fields (1, 4, 8 and 15) are selected for hydrological 

investigations under Aim 3, it is considered necessary to describe their 

topography in this section. Figures 3.8, which shows the relief (overlaid with 

vector grid diagram) and corresponding 3 dimensional (3D) frame for each field, 

indicate that the four fields that have been selected for hydrological 

investigation under Aim 3 are different in terms of their sizes, gradient and 

altitude. The most expansive is the Burrows (Field 4) with about 11 ha, and the 

largest of the entire fields in the Farm Platform (refer to Table 3.1). Barrows is 

also characterised by elevation ranging from about 143 to 180 m, and gradient 

value of 0.3-0.19. The Middle and Higher Wyke Moor (8) exhibited a relatively 

more complex terrain structure, because of its undulating pattern in about the 

middle of the field. Its elevation varied from 148 to 184 m. Pecketsford (1) and 

Longland East exhibit fairly similar gentle sloping landscape (129 - 145 m and 

128.6 - 132.4 m, respectively), Pecketsford also exhibits more range of gradient 

than obtained with the Longlands East (Figure 3.8). 
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Figure 3.8: Relief information and the corresponding 3D (wireframe) for 
Pecketsford (1), Burrows (4), Middle and Higher Wyke Moor (8) and 
Longlands East (15). Eastings, northings and elevation points for individual 
fields were plotted at the 50 by 50 m using Surfer software. Arrow indicates 
direction of declining elevation at the specified gradient on the colour legend. 
Length of arrow indicates the size of the declining elevation.  



 

70 
 

3.2.5. Land cover and landuse  

A compilation of the British Plant Communities (Rodwell, 1992) classified the 

plant community at North Wyke as ‘MG7’, which consists of Lolium perenne 

leys and related grasslands. MG7 plant community includes ‘highly productive 

short term agricultural grassland for grazing or mowing in rotation with arable 

farming and permanent amenity and recreational swards developed for heavy 

use’ (Rodwell, 1992). Lolium perenne may occur dominantly or in association 

with L. multiflorum or L. hydridum (Stace, 1997). Dominant vegetative land 

cover of the North Wyke Farm Platform is the perennial ryegrass (Lolium 

perenne) pasture and some fields in association with buttercup (Ranunculus 

repens) and white clover (Trifolium repens). Identified vegetation at the period 

of this study includes the following:   

 Lolium perenne (Ryegrass) pasture: a species of tufted grasses, important 
for grazing and hay because of its highly nutritious stock feed (Bond et al., 
2007).  
 

 Trifolium repens (White clover): a procumbent perennial grass in clay soils 
environment preferred for its nitrogen fixing ability (Mosquera-Losada et al, 
2005).  

 

 Holcus lanalus (Yorkshire fog), Agrostis stoloniforaum (Brown Bent), Poa 
trivialis (Royal Meadow grass) and Phleum pratense (in Great Field, Field 
2).  

 

 Stretches of woodland around some fields.  
 

 Ranunculus repens (creeping buttercup): an invasive species, usually 
avoided by animals because they produce bitter taste and cause mouth 
blistering if eaten (Rutter, 2006) 

 

 Cirsium vulgare (spear tissue), a common invasive weed (Bond and Turner, 
2004) (Figure 3.9).  
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Figure 3.9: Some identified land cover plants on the North Wyke Farm Platform; Lolium perenne (A) is the most dominant but 
sometimes occur in a mixture with other grass species such as Ranunculus repens (B) and Trifolium repens (C). 
Ranunculus repens and Cirsium vulgare (E) are invasive species. Hedges (D) separate some of the fields. Areas 
occupied by woodland (F) are outside the Farm Platform.  
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Dominant landuse in the farm platform is sheep and cattle grazing. The planned 

management options require that the farmlets are grazed by yearling male and 

female beef cattle, ewes, rams and lambs at differently planned periods, 

especially during the baseline year (April 2012 - March 2013). In each of the 

fields is a ‘drinking trough’ where the animals (cattle, sheep) usually 

congregate, excete and physically alter the soil texture  (Figure 3.10).  

 

 

Figure 3.10 a-c: Grazing activities at the North Wyke Farm Platform (a, b) cattle 
drinking from a water trough- sited in all the fields, and the altered 
soil structure as a result of their congregation (c) sheep in one of the 
smaller fields. Grazed cattle and sheep exhibit different impact on the 
soil of the fields; soil structure is more altered where sheep are 
grazed.  
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Water pollution, euthrophication, sedimentation and bacterial contamination, as 

well as increased runoff have been linked to the level of grazing by animals or 

stock density (Bilotta et al, 2007). Specifically, activities of animals, such as 

treading, feeding and excretion during grazing produce negative effects on the 

fields, and many of these have been reported in literature (e.g. Milchunas et al, 

1988; Bilotta et al, 2008; Zhou et al, 2010). Some of the effects are summarised 

in Table 3.6. 

 
Table 3.6. Some effects of animal grazing on field ecosystem (The significance 
of the effect can vary with stock density, age of animals, soil and climate of an 
area).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2.6. Previous studies on the North Wyke fields 

 Many studies have been conducted on the soils, farm management, 

hydrochemistry and transformation of nutrients, especially phosphorus and 

nitrogen, in the North Wyke. Most of these studies have indicated that losses 

and transformation of nutrients from soil in this area are influences by a number 

of factors, including land use (whether intensively grazing, arable cropping or 

Animals activities  Description References 

Treading and 
trampling. 

Facilitate crushing, bruising and shearing of plant 
tissues and vegetative cover. 
 
Deformation of soil structure through soil 
compaction, soil pugging and poaching by the 
hoofs of grazed animals can increase the bulk 
density, reduce porosity and infiltration capacity. 
 
Causes decline of fauna biodiversity and pasture 
productivity.  

 
 
 
 
 
Liddle, 1975; Duncan 
and Holdaway, 1989; 
Bilotta et al, 2008. 
 
 
Andrew, 1988; Schulz 
and Leininger, 1990; 
Jeffries and Klopatek, 
1987; Rickard, 1985; 
Belsky, 1987; 
Milchunas et al, 1988. 

Feeding The rumen and digestive track of agricultural 
livestock contains microflora which are pathogenic, 
and could pose threat to health, especially during 
regurgitation.  

Excretion Livestock wastes are a rich source of nutrients 
especially N and P, which if abnormally high can 
cause enrich adjacent water bodies and cause 
eutrophication. 
 
Livestock wastes are sources of pathogenic 
(bacteria, e.g. E. coli, Samonella spp; viruses, e.g. 
Rotavirrus spp; and protozoa, e.g. Crypstoporidium 
spp contamination which is capable of impairing 
adjacent water bodies, including recreational 
surface waters. These could be of grave 
consequences to humans and animals. 

Overall grazing activity Grazing facilitates increases soil carbon storage.  Milchunas and 
Lauenroth, 1993; 
McSherry and Ritchie, 
2013; Raiesi and 
Riahi, 2014; Newton et 
al, 2014. 

Invasion of exotics in areas around watering tanks 
and heavily grazed and trampled areas. 

Causes disturbance or changes in ecosystem 
community structure and diversity. 

 



 

74 
 

less intensive grazing is practiced), drying and rewetting of soils, rate of 

application of N fertilizers and farmyard manure (pig or cattle slurry) among 

others (Jarvis and Barrachough, 1991; Scholfield et al, 1991; Scholefield and 

Stone, 1995; Hatch et al, 2000; Bhogal et al, 1999; 2000; Brown et al, 2001; 

Webb et al, 2004; Smith et al, 2012; Blackwell et al, 2012, 2013). These studies 

have noted that intensively grazed soils tend to release more leachates than the 

less intensively managed fields because the less grazed fields are often 

characterised by richer fungal communities that are capable of retaining the 

nutrients under drying and wetting stress (e.g. Blackwell et al, 2013). The 

experiment by Scholefield and Stone (1995) indicated that although nitrate loss 

varied with the intensity of storm events, they were released in small 

proportions, relative to the amount applied because of the fine texture of the 

heavy clayey soils in the area.  

 Other studies (including Granger et al, 2010a, 2010b; Old et al, 2012) 

have also investigated the hydrological processes in the study area using 

isotopes, such as deuterium (δ 2N), oxygen 18 (18O) and carbon-13 (δ13C), and 

natural fluorescence. Their results indicated that hydrological process in the 

study area is influenced by the contributions from the surface flow.  

  
3.3. Field Instrumentation  

3.3.1. The NWFP drainage system  
 
All the fields of the NWFP are drained because of the heavy clay soils and 

characteristically poor drainage (Granger et al, 2010a). Around each field is a 

network of French drains to collect runoff from the entire circumference of the 

field and release it into a flume at a monitoring station in the field (Total length 

of drainage = approximately 9203 m). A French drain (named after the designer 

of the earliest version, Robert French) is a trench covered with gravel or rock or 

containing a perforated pipe that redirects surface and groundwater away from 

an area (Orser Jr, 1997). The French drain used in the fields can collect runoff 

from within the first 0.6m of the soil profile across the field, and the velocity of 

the runoff and water chemistry can be determined before it is released to the 

environment, outside the field (Figure 3.11).   
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Figure 3.11 a-e. French drains layout at the North Wyke Farm Platform: a and c 

shows the dimension of the drain and soil trench; b, d-e are the 
various stages of the drain installation. 

  
 

The sizes of the drain for a particular field can vary (Figure 3.11c), depending 

on the engineering estimates of predicted runoff established at the beginning of 

the entire project. Each drain network was cautiously constructed to prevent 

runoff escape and groundwater (in case there is any when water table rises) 

ingress by lining the trench with polyethylene drape. Blockage of the drains is 

also avoided by first covering the plastic drains with gravels, before drape and 

sand were added to cover (protect from exposure) the drains (Figure 3.11d-e).  

In each field, the drain network finishes with an H-Flume in which the 

probes for water quality and runoff velocity measurements are inserted for 

continuous reading at a pre-determined time-step (15 minutes) (Figure 3.12). 

There is a standby universal power system (UPS) to ensure uninterrupted 

measurement and data- logging.  
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Figure 3.12 a-d: Images of the H-Flume and the mixing chambers in each field: 

a. is the water (effluent) space where runoff is collected before it is 

discharged through the H-notched weir at the outlet, b. is where the 

probes for runoff chemistry are, c. is the ‘elbow joint’ where drains 

from different parts of a field are intersected (the point of intersection 

are well protected against leakage).    

3.3.2. Determination of runoff parameters (chemistry and discharge) 

Indicators of water quality assessed in the runoff from each field at the 

North Wyke Farm Platform are managed using the sensor-based technology 

that was provided by Adcon Advantage (Adcon, 2013) Water temperature, pH, 

turbidity and dissolved oxygen are measured in all the fields using Multi-

parameter water quality sonde (6600 V2 model; accuracy: ±0.15oC (water 

temperature), ±0.3NTU (turbidity) and ± 0.2 unit (pH)). Nitrate-nitrogen is 

determined with ‘Nitratax plus sc’ (accuracy = ± 3%), and dissolved organic 

carbon, DOC (mg l-1) is measured with ProPS-UV process (photometer Zeiss, 

Germany; accuracy = 0.05 mg l-1). Runoff velocity or discharge is measured at 

the V-notch part of the ceramic weir of the H–Flume in each field with a 

Teledyne ISCO 4230 bubbler flow meter (Figure 3.13 a-g). All the monitoring 

instruments are protected from weather effects in spacious metallic (green) 

chambers located close to the outlet of each field (Figure 3.13h) and are 

monitored to prevent theft, animal interaction or measurement errors, when 
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necessary. In addition, rainfall, soil temperature and moisture are measured on 

the farm platform as described in the next section. 

 
 

 

 
 
Figure 3.13 a-g: Sensors for monitoring the runoff chemistry and flow in each 

field of the North Wyke Farm Platform: (a). is the Nitratax plus sc’ 
for nitrate determination, (b). is the Multi-parameter water quality 
sonde for determination of temperature, pH, turbidity, dissolved 
oxygen and conductivity; it is fixed in the flow cell (i), (c) and (d) are 
Phosphax Phosphate analysers for Ortho-P and Total-P, 
respectively. Phosphate analyser is installed in FP2, FP5 and FP8 
only but their data were not used in this study; (e) is ProPS-UV 
process photometer for determination of dissolved organic carbon; 
(f) is a sequential or composite sampler for event-based grab 
samples; (g) is the Bubbler flow meter for discharge measurement; 
and (h) is the chamber that houses the monitoring equipment.  
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3.3.3. Measurement of rainfall 

Rainfall is measured by a tipping bucket automated rain gauge (Adcon RG1 

model). The Adcon RG1 rain gauge is a double tipping bucket system designed 

as a universal rain gauge, capable of measuring to ± 5% accuracy level per 

mm. It consists of a funnel with an orifice of 200 cm² and operates with 0.2 mm 

resolution. Figure 3.14 shows the Adcon RG1 rain gauge and the protective 

metallic bar emplaced to prevent animal invasion. In each catchment, the rain 

gauge is mounted on 1 m pipe. The funnel is attached to the body (of the rain 

gauge) with a bayonet-style lock, which prevents the funnel from being shaken 

off in heavy winds. It is protected from leaves and bird droppings by a 

removable and cleanable aluminium filter. The gauge (except the container) is 

constructed from anodised aluminium. Anodizing increases corrosion resistance 

and wear- resistance, and provides better adhesion for paint primers and glues 

than bare metal (Adcon, 2013). 

 

 

Figure 3.14 a-b: Adcon RG1 double tipping bucket system rain gauge; (b) 
shows the protective metallic housing from animals’ attacks . 

 
 
Additionally, an automatic weather station (AWS) of the United Kingdom 

Environmental Change Network (ECN) (http://www.ecn.ac.uk/) is sited in one of 

the fields (Field 4 or Burrows) to provide longer (from 1980) term data on rainfall 

and its chemistry. The weather station is managed by a Protocol of the United 
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Kingdom Joint Code for research for data quality assessment and maintenance 

of weather instruments (http://www.ecn.ac.uk/technicalnotes/AWS.pdf). Rainfall 

is measured with a tipping bucket rain gauge while water samples for chemical 

analysis (bulk precipitation) is collected at the station using continuously open 

funnel bulk collector (NERC, 1996). Samples of both dry and wet deposition are 

therefore collected from this site, fortnightly, for laboratory analysis.  

The bulk collector is designed and constructed as described by Hall 

(1986) (Adamson, 1996a), consisting a conical polythene funnel that rests on a 

polythene collecting bottle. The funnel is made up a 63o cone with 115 or 152 

mm diameter. The upper surface of the collector is 1.75 m above the ground 

level (Figure 3.15).  

 

 

 

 Figure 3.15. The UK Environmental Change Network’s bulk precipitation 
collector in Field 4 (Burrows) of the North Wyke Farm 
Platform. 

 

The collecting bottle is protected, from coarse debris and leaves falling into it, 

with a removable filter of 1 mm mesh Teflon which is surrounded by a jacket of 

polished steel; from which it is also separated by a 25 mm gap. The collector is 

bird deterrent, and problems with birds have not been recorded since the station 

has become operational. Local sources of contamination are also avoided by 

placing the collector upwind of any of such sources, apart from being situated 

http://www.ecn.ac.uk/technicalnotes/AWS.pdf
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away from vehicle tracks, animal house and obstructions such as a building or 

tree. It is also firmly secured to the ground. Water sample is collected at 0900 

GMT Wednesdays of every week, by removing the bottle containing the 

precipitation sample (Beaumont, 2012, pers comm; Adamson, 1996a). The 

bottle and the sample are labelled and subsequently taken to the laboratory, 

where the volume of precipitation is first determined to the nearest 1 ml. The 

used funnel is subsequently cleaned with de-ionised water and shaken to 

remove any droplets or replaced with another funnel that has been cleaned in 

the laboratory. The bottled that contained the precipitation is also replaced by a 

clean bottle fitted with a clean filter.  

The UK Environmental Change Network’s laboratory at North Wyke 

determines conductivity and pH of the unfiltered water samples within 7 hours of 

collection with pH/conductivity meter (Jenway Model 3320) while dissolved Na+, 

K+, Mg2+, Fe2+, Al3+, NH4
+-N, Cl-, NO3

--N, SO4
2--S, PO4

3--P and alkalinity are 

determined in filtered samples, using the procedure itemised in Table 3.7 

(Adamson and Sykes, 1996). When not immediately analysed, samples were 

stored in freezer at 1-4°C (Beaumont, 2012, pers comm.; Adamson, 1996a).  
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Table 3.7: List of variables and associated procedure for the analysis of bulk 

precipitation water samples.  

 

(Source: UK Environmental Change Network). 
 

3.3.4. Soil Water Chemistry 

Soil water (solution) chemistry data for 0-10 cm and 10-20 cm soil depths 

was examined in relation to the precipitation chemistry in Aim 1 because the 

relationships (and with that of land use discussed in Aim 2) can affect important 

ecosystem processes and be affected by the physical and chemical changes in 

the environment (Adamson, 1996b). The soil solution chemistry data were the 

results of the soil water samples at the Environment Change Network (ECN) 

station at North Wyke (in the same field (4: Burrows) that the bulk precipitation 

collector is also sited). Soil solution samples were collected at this site (targeted 

sampling site, TSS) using the Prenart 'super quartz' soil water suction samplers. 

The TSS is a paddock of old bio-diverse permanent grassland, which receives 

no nitrogen fertilizer input but are since 1984 been under controlled grazing 

(Tyson, 1995; Adamson, 1996b). Sykes and Lane (1996) provides the detailed 

protocol for soil water sampling and analysis in the entire ECN sites, and this is 

included as appendix 3.1.  The Prenart 'super quartz' soil water samplers are 

cylindrical, 21 mm in diameter and 95 mm in length, conical at one end and with 

a tube attachment at the other. The tubing links the sampler to a 1 L glass 

Variable Sample 
condition 

Procedure  Reference 

pH Unfiltered  Combination electrode. HMSO, 1988. 

Conductivity Platinum electrodes. HMSO, 1978. 

Alkalinity Filtered  
 

 
 
 
 

 

Discrete analyser.  
 
 
 
 
 
 
Heyes et al, 
1985. 

Sodium Induction-coupled plasma 
emission spectroscopy. 
 

Potassium 

Calcium 

Magnesium 

Iron 

Aluminium 

Phosphate Discrete analyser. 
 Nitrate 

Ammonium 

Chloride 

Sulphate 

Dissolved 
organic carbon 

Combustion and infrared 
detection of CO2. 

Total nitrogen Segmented flow auto analyser. 
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collecting bottle with a Prenart screw cap. The collecting bottles are placed in 

an insulated box to protect the samples from extremes of temperature and are 

evacuated using a portable pump. Samplers are located within a 6 m by 6 m 

plot (which is itself located within a 10 m by 10 m plot) in the Field 4 (Burrows) 

at North Wyke (Figure 3.16). Samplers are usually emptied into plastic bottles 

where water volumes are recorded before samples for chemical analysis are 

taken. 

 

 

Figure 3.16. Soil water sampling procedure of the Environment Change 
Network. (a) shows the  setting for the installation of the Prenart 'super quartz' 
soil water suction samplers (Cells in which samplers are installed are 
systematically selected within a 5-year period based on the condition of the 
sampler), (b) image of a typical Prenart 'super quartz' soil water suction sampler 
in the soil, (c) shows the operation of a suction sampler. 
 
3.3.5. Measurement of the soil temperature and moisture 

Soil temperature and moisture are determined at each field at 15 cm (for soil 

temperature) and 10, 20 and 30 cm depths (for soil moisture), respectively, 

probably because the top soil temperature and moisture are considered more 

significant to grassland farming than the deep soil layer, especially in thick 
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clayey soil as the study area. Soil temperature and moisture are measured by 

an Adcon SM1 model of a soil moisture and temperature sensor (Figure 3.17).  

 

Figure 3.17. Adcon SM1 soil temperature and moisture sensor (calibrated to 
measure soil temperature at 15cm and soil moisture at 10, 20 and 
30 cm in the study area). 

 
The sensor integrates the measurement of both soil temperature and 

moisture, and determines the values of these parameters at the differently 

calibrated soil profiles (15cm for soil temperature and 10, 20 and 30 cm for soil 

moisture). The sensor is made up of a capacitance probe, with two sensor 

boards; a 30cm long with 3 sensors or 50cm long with 5 sensors, and a 

centrally located temperature sensor for 0-100% soil moisture and minus 20 to 

60°C soil temperature (Adcon, 2013).  

 
3.3.6. Data management and quality assurance  

All the farm monitoring components are linked remotely by Adcon advantage 

Pro 6.1 software. The Adcon Advantage software is a sensor-based technology 

which requires conventional radio transmitters, government license (for use of 

the radio frequency), and extensive cabling, and managed by an administrator 

who provides guided access to users to minimise potential corruption of the 

databases (Adcon, 2013). All the instruments are checked for malfunctions and 

calibrations problems weekly by a dedicated member of the North Wyke Farm 

Platform (Bruce Griffiths). All data were first subjected to the quality assurance 

with an in-house program, DISCREPANCY-FLUMES. The soil moisture, rainfall 
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and soil temperature data were also treated with DISCREPANCY-PROBES, an 

in-house quality assurance program, and those that are approved are made 

available for use through the Rothamsted archive at 

http://www.era.rothamsted.ac.uk.  Only approved datasets were used in this 

study. The entire ECN data used in this study were the approved ones 

(received after completed paperwork between the researcher and the ECN 

contacts). 

 

3.4. Research Methodology 

The different aims of this research are approached in differently, for simplicity. 

The approaches are described as follows:   

3.4.1. Methodology for Research Aim 1  

3.4.1.1. Data sourcing 

Two sets of data were used to accomplish this aim. The first set comprises 16 

(1993-2011) years’ monthly rainfall chemistry, daily rainfall, humidity and 

temperature data, and the second is the biweekly (once in 2 weeks) 

precipitation and soil water chemistry (for 0 - 10 cm and below 10 cm soil depth) 

for the ECN (http://www.ecn.ac.uk/) terrestrial site on the Field 4 (Burrows) in 

the North Wyke Farm Platform. The quality of the data records were assured by 

the managers of the ECN data and North Wyke Centre (Lorna Sherrin, Centre 

for Ecology and Hydrology, Lancaster; Deborah Beaumont, Rothamsted 

Research–North Wyke, and Anita Shepherd, North Wyke Farm Platform) before 

use.  

The protocol for quality control for water chemistry during data collection is 

documented in www.ecn.ac.uk/measurements/terrestrial/pc.   

 
3.4.1.2. Statistics and inferential analysis 

Both temporal variations and precipitation-soil chemistry relationship 

were investigated in this aim. Consequently, time series statistics including 

linear regression and correlation analyses were used to investigate the 

variations over time and examine the relationships of parameters in both the 

precipitation and soil chemistry (at 0 - 10 cm and below 10 cm soil depths), 

respectively. Principal Component Analysis (PCA) and the percentage 

contributions of the investigated parameters was examined for precipitation, 

http://www.era.rothamsted.ac.uk/
http://www.ecn.ac.uk/
http://www.ecn.ac.uk/measurements/terrestrial/pc
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topsoil (0 - 10 cm depth) and subsoil (below 10 cm depth) to establish a 

relationship between the contributions of the chemical ions among the three end 

members (precipitation, topsoil and subsoil). The PCA explains the variance-

covariance structure of data, using a choice rotational model (Kaiser’s Varimax 

rotation) to maximally group variables into distinct clusters (Kaiser, 1958; Wold 

et al, 1987; Bengraine and Marhaba, 2003; Xu et al, 2008).   

 Data quality assessment using the ion-balance equations (equations 3.1 

- 3.2) indicated that the balance estimate for the water samples was less than 

10% (see appendix 3.1). Ion balance analysis doubles as is used to for quality 

assessment (Kulshrestha et al, 2003, 2014; Jawad et al., 2006), and acceptable 

limit is usually fixed for less than 15% (Lara et al, 2001; Irwin et al, 2002).  

  𝑋 𝑚𝑔𝑙−1 𝑜𝑓 𝑖𝑜𝑛 𝑌 =
𝑋

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑜𝑛 𝑌
  𝑚𝑒𝑞𝑙−1  (3.1)  

 

  % 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 
|∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠−∑ 𝑎𝑛𝑖𝑜𝑛𝑠|

∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠+∑ 𝑎𝑛𝑖𝑜𝑛𝑠
    (3.2) 

Where X is the concentration of an ion Y 

 
3.4.2. Methodology for Research Aim 2  

3.4.2.1. Data sourcing 

Two hundred and sixty four soil samples obtained on a regular interval of 

50 by 50 m (Figure 3.18) between June and July 2012 from the North Wyke 

Farm Platform were analysed. The entire farm platform was sampled at 25 by 

25 m interval by five students (refer to Box 3.1 for the specific role of the author 

in the sampling and analysis) from the Universities of Exeter and Bristol but only 

samples obtained from 50 by 50 m grids were analysed because of the 

significantly high time and cost implications. 
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Figure 3.18: Locations (50 x 50m) of soil samples, and number of samples 
analysed in each field. Sample sites were obtained from a gridded 
map of the farm platform with a Global Positioning System (GPS) 
(Source: North Wyke Farm Platform Group at Rothamsted 
Research). 

 
 
  Box 3.1. Direct contribution of the author to data used in this Aim (Aim 2) 

  

As a participant in the sampling and analysis procedures, I was involved in 
the sampling of the entire 15 fields, an activity that was completed in about 3 
weeks. As a result of my previous knowledge of the use of GPS, I was fixing 
the positions to sample (after the farm manager had demonstrated it), and 
my first responsibility was to fix pegs on sited positions and record their 
coordinates (x, y, z) on the GPS, while the remaining students took samples 
for either bulk density administration or soil chemical analysis from the fixed 
points (these activities were shared on our agreements). We interchanged 
these roles to make sure everyone partook in all of them. We also prepared 
the samples together for subsequent laboratory analysis (refer to Appendix 
3.2 for some photographs showing my involvement). 
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Sampling positions or points were pre-determined by overlaying a 25 by 

25 m interval grid on a 1:50m map of the farm platform on a Global Positioning 

System (GPS, Trimble R6 model). The positions were physically fixed on the 

fields with the GPS using a detachable precision antenna and radio receiver 

that was radio-linked in Real-Time Kinematic (RTK) geodetic surveying mode to 

a base station as described in Trimble (2003) (Figure 3.19 a-b). Two sample-

sets were obtained from each location; the first (Set A) was for bulk density 

analysis, and was collected by hammering the cutting head of a 5.5 cm 

(diameter) by 10 cm (height) cylindrical core (Figure 3.19c) into the soil as 

described by many studies (Black and Hartge, 1986; Rogers and Carter, 1987). 

Set B samples were obtained in 10 replicates with a 2 cm (diameter) by 10 cm 

(immersed depth) grass plot sampler (Figure 3.19d). All the samples were taken 

to the Soil and Herbage Laboratory (SHL) in the Rothamsted Research, North 

Wyke (www.rothamsted.ac.uk/northwyke/Facilities.php) for storage, until 

analysed.  

 

Figure 3.19 a-d. Equipment used for soil sampling. a) Antennae with the 
detachable receiver Trimble GPS for siting where sample should be taken, b) 
the GPS base station which is radio-linked with the receiver for the real time 
kinematic site location (survey). c) A 5.5 by 10 cm cylindrical core and sample 
for bulk density determination, and d 2 by 10 cm grass plot samplers.  
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3.4.2.2. Laboratory analysis  

Samples were stored in the SHL at 5 - 7°C immediately they were returned from 

the fields, after each sampling session (morning or evening) for a maximum of 

24 hours before they were prepared for analysis. All samples were weighed. 

The pH of the soil samples was determined by STM 219 method of the 

Rothamsted Research Laboratory Protocol, RRLP) using pH meter (Jenway 

3320 Model). The RRLP analyses a sample pH as equation 3.3. 

𝑝𝐻𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑝𝐻𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 +
(𝐸𝑠𝑎𝑚𝑝𝑙𝑒−𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑘𝑇
   (3.3) 

Where 𝑘 = constant, 𝑇 = absolute temperature (oK), and 𝐸 = measured ‘emf’ 

output of the electrochemical cell used for the test. 

The process of determination of bulk density and the organic matter 

content in the soil samples is summarised in Figure 3.20 a-c. Bulk density (in 

Set A) was determined as described by the International Organisation for 

Standardisation, ISO 11272 (ISO, 1998) as the ratio of oven-dried (after 24 

hours at 105°C) soil samples to volume of the core (after the volume of 

materials greater than 2 mm and other organics that were removed had been 

subtracted) (equation 3.4):   

𝐵𝐷𝑑 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑜𝑣𝑒𝑛−𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑀𝑠 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑟𝑒 (𝑉𝑡)− 
(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟>2𝑚𝑚 𝑎𝑛𝑑 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛),   (𝑊𝑡))

  (3.4) 

Where 𝑊𝑡 was determined by water displacement method, such that volume of 

materials larger than 2 mm and removed organics were estimated from the 

volume of water displaced, in a water cylinder as described in Throop et al 

(2012).  

Set B samples were also crumbled on a polyethylene spread supported 

by a foil during which organics and stones were removed (Figure 3.20 b), before 

they were sieved to 2 mm particle size, re-labelled and divided into three (about 

10 g, each) polyethylene as Subsets B1, B2 and B3 for different chemical 

analysis. Subset B1 was meant for determination of total nitrogen (TN) and total 

carbon (TC), and were finely ground in a clean and deionised mortal mill 

(Retsch RM200 model) before taken to an Elemental Analyser (NA2000, Carlo 

Erba model) where the concentrations of TN and TC were determined. Subset 

B2 was also finely ground and were analysed for Nitrogen-15 (𝛿15N) and 

Carbon-13 (𝛿13C) isotopes with an Isotope Ratio Spectrometer (SerCon 20-22 

model) linked to the Elemental Analyser used for the analysis of Subset B1 (The 
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structure and procedure of operation of an elemental analyser is documented in 

Thomson, 2008). Only subset B3 was later oven-dried as required for the 

determination of the soil organic matter content by the loss-of-weight-on-ignition 

(or loss on ignition, LOI) method described by Motsara and Roy (2008).  

 

Figure 3.20 a-c: Storage and laboratory preparation of soil samples. All 
materials were cleaned with deionised water before use for a new sample. 
Transparent hand gloves were worn before samples were handled.    
 
 
3.4.2.3. Statistics and inferential analysis 

The entire data were first examined with different semi-variogram models in 

Genstat software (Discovery version, Rothamsted Research, Harpenden, UK), 

and the model which accounted for the highest percentage of variance in the 

distribution of data along with the positions (x, y) was selected for the spatial 

analysis of each variable. The parameters of the variogram models and the 

percentage variance are explained with the results. The derived values of 

nugget, sill and range effects for each variable were considered (substituted for 

the default values) in the generation of the kriging interpolation maps in the 

Integrated Land and Water Information System (ILWIS, 3.3 version, ITC, 

Eschende, Netherlands) software. Kriging interpolation is known to be efficient 

for soil evaluation, and the ‘ordinary kriging’ which is often preferred because of 

its assumption of constant localised neighbourhood, rather than the constant 

overall neighbourhood assumption of most other variants of kriging (Hendrikse, 

2000; Mueller et al, 2001; Bohling, 2005), and is adopted for this study. The 

assumption of constant localised neighbourhood suggests that close regions 
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can be correlated but tendency for variation occurs with distances away from a 

point. Carbon and nitrogen stocks were derived as described by Kiely et al 

(2010) with equations 3.5 and 3.6: 

                       C𝑑 = BD𝑑 × %TC𝑑 × d𝑑                            (3.5) 

  N𝑑 = BD𝑑 × %TN𝑑 × d𝑑                       (3.6) 

Where 

C𝑑 and N𝑑  = soil carbon and nitrogen stock, respectively (t C ha−1, t N ha−1, 
respectively) for depth interval d (m) 

%C𝑑 and %N𝑑 = percentage of carbon and nitrogen content, respectively, for 
depth interval d (m) 

BD𝑑 = Bulk density (kg m-3) at depth interval d (m) 
d𝑑 = soil depth (0.1 m was used in this study) 

Effects of soil organic matter, elevation and bulk density on the 

distribution of total nitrogen, total carbon, carbon-to-nitrogen ratio (C: N), as well 

as carbon and nitrogen stocks, were assessed with regression models. Many 

measures of variability exist, and among the common ones is the Coefficient of 

variation (CV), which is used in this study to evaluate the variations among the 

fields. The CV can however be meaningless for data whose mean or standard 

deviation is close to zero (0), and negative values, thus the Gini coefficient of 

inequality and Lorenz curve is used in this study to evaluate the homogeneity of 

heterogeneity in the soil characteristics across the fields. The Gini coefficient of 

inequality, and Lorenz curve was proposed by Weiner and Solbrig (1984) to 

overcome the inadequacies of statistical descriptors of dispersion in plant 

population, but have more recently been found adequate in soil mapping, 

classification and general pedo-diversity (Shepherd and Walsh, 2002; Wiegand 

et al, 2005; McBratney and Minasny, 2007; Stahr et al, 2013) (The original Gini 

coefficient had originated from Gini, 1912). The Gini coefficient G quantifies the 

area between the Lorenz curve and the line of perfect equality expressed as a 

fraction of the area under the 𝑦 = 𝑥 line (Sadras and Bongiovanni, 2004). The G 

coefficient ranges 0–1 (G=1 if there is absolute heterogeneity, and G=0 in case 

of absolute homogeneity; the range between 0 and 1 indicates varying level of 

heterogeneity) (e.g. Weiner and Solbrig, 1984).  

 
3.4.3. Methodology for Research Aim 3 

3.4.3.1. Data sourcing 

The objectives of this Aim (Aim 3) are to (1) examine the spatial and 

temporal variations in discharge and chemical effluents from selected fields in 
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the North Wyke Farm Platform; and (2) examine the patterns of concentration-

discharge (c-q) hysteretic relationships of different chemical constituents at the 

farm-scale. Selected chemical constituents are; water temperature, pH, 

dissolved oxygen (DO), conductivity, turbidity and nitrate (NO3
-). The chemical 

parameters have been selected because of their importance in water monitoring 

(Chapman, 1992). Conductivity and turbidity have been extensively used as 

surrogates for dissolved and suspended solids (Packman et al, 1999; Pellerin et 

al, 2008; Kim and Furumai, 2013; Viviano et al, 2014) while water temperature, 

pH and dissolved oxygen are known to provide insights into water quality and 

solute behavioural patterns (Foster, 1978; Shanley and Peters, 1988; 

Chapman, 1992; Rose, 1994; Webb and Nobilis, 1994; Cirmo and McDonnell, 

1997; Packman et al, 1999; Chapman, 1992; Davies-Colley and Smith, 2001; 

Webb et al, 2003; Pavanelli and Bigi 2005; Gippel, 2006; Bilotta and Brazier, 

2008; Minella et al, 2008; Oeurng et al, 2010; Siwek et al, 2011). Nitrate is also 

an important limiting nutrient, and is an important element since the study area 

is within the nitrate-vulnerable zone in the United Kingdom (Figure 3.21).  

 

Figure 3.21. North Wyke Farm Platform in the area classified as nitrate 
 vulnerable zone in the United Kingdom. 

(Source: environment-agency.gov.uk) 
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3.4.3.2. Selected fields and their characteristics 

 Four fields (Pecketsford (Field 1)), Burrows (Field 4), Middle and Higher 

Wyke Moor (Field 8), and Longlands East (Field 15)) were selected for the 

investigation of the concentration-discharge that this aim proposed. The fields 

have been selected because of their varying attributes (Table 3.8 and Figure 

3.22 a-b). Selected fields were all ploughed and grazed in 1995-2005 (except 

for southern Pecketsford which was cultivated with rye grass within the period). 

Three of the fields (except Longlands East) were also fertilized with farm yard 

manure (FYM) in 2011. The three fertilized fields (except Longlands East) have 

also been grazed with both cattle and sheep on a rotational pattern since 2005. 

Only sheep has been grazed on Longlands East since 2005.  

Average proportions of areas occupied by the dominant soil series and 

the sizes of the fields showed that Burrows contains four different soil series; 

Pecketsford has three while Middle and Higher Wyke Moor and Longlands East 

are relatively homogenous (Hallsworth soil series dominates the Middle and 

Higher Wyke Moor while Longlands East is covered by Halstow soil series) 

(Figure 3.22 a).  Burrows is the largest of the selected fields (Figure 3.22 b), 

and its average slope varies between 0 and 25% while the smallest field is the 

Longlands East with average slope varying between 2-6%. Pecketsford and 

Middle and Higher Wyke Moor are 0-12% and 2-8%. 
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Figure 3.22 a-b: Elevation (a) and soil series (b) 
information about the selected fields. The values of their sizes 
are written closed to the elevation map. Elevation maps were 
plotted with the GPS coordinates and respective heights 
obtained for each field, in Surfer software. 



 

94 
 

Table 3.8. Some attributes of selected fields for investigation on concentration-discharge relationships (Aim 3). 

Field 
No 

Field Name Soil  Series 
distribution 

Field 
size 
(ha) 

Land management Average 
slope 
(%) 

1995-2005 2005-2011 

1 Pecketsford 52% Halstow 
28% Hallsworth, and 

20% Denbigh-
Cherubeer. 

4.7 Ploughed, 
reseeded and 
cultivated with 

rye grass. 

Grazing of sheep 
and cattle. Farm 

yard manure (FYM 
was added to the 
southern section 
part of the field in 

2011. 

0-12. 

4 Burrows 65% Hallsworth, 
14% Denbigh-

Cherubeer 
11% Halstow and 

11% Fladbury. 

11.0 Ploughed, 
reseeded and 

grazed. 

Grazing of sheep 
and cattle. FYM 

was added, except 
the northern section 
(top Burrow) of the 

field in 2011. 

0-25%. 

8 Middle & 
Higher 

Wyke Moor 

100% Hallsworth. 6.9 Ploughed, 
reseeded and 

grazed 

Grazing of sheep 
and cattle. FYM 

was added to part 
(Middle Wyke 
Moor) in 2011. 

2-8%. 

15 Longland 
East 

100% Halstow. 1.5 Ploughed, 
reseeded and 

grazed. 

The field was 
grazed with sheep 
since 2011, and 

unlike other fields, 
FYM was not 

added to this field 
in 2011. 

2-6%. 
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3.4.3.3. Event sampling 

Selected storm events occurred in the 2013 hydrological year (January and 

November, 2013, which are typical winter and autumn period of a hydrological year 

were selected). January 2013 was characterised by a mild weather and little rainfall 

in most parts of England, and average temperature (3.3 -12 oC) was significantly 

above average for the time of year, until 18th of the month (UK Met Office, 2013). 

Significant snowfalls (around 25 cm in some locations) however began on 18th 

January as frontal systems attempted to push across the UK from the west. Rapid 

thaw and heavy rains also occurred in this month, causing flood and disruptions to 

the transport network. November (2013) was characterised by westerly weather type 

with mean temperature of about 5.5 °C, across the United Kingdom and a maximum 

of about 16.5 °C around Exeter (Airport). January and November receive an average 

(1981-2010) of 110 mm of rainfall and maximum temperature of 7 °C (more rainfall 

and less temperature in January) (Appendix 3.3).   

An event, as used in this study, starts when runoff begins to increase after the 

start of a rainfall event that triggers it (or when runoff is increasing after a rainfall 

event), and it ends when the flow rescinds to its initial pre-event level. If runoff does 

not return to its initial level, however, the event is assumed to end when the runoff 

reaches the lowest value before it again increases (Deasy et al., 2006). Thirteen 

events were selected in both January and November (8 in January and 5 in 

November) out of the 17 events that were observed. Selected events include low 

and high, single and multiple peaks events, and are considered to be representatives 

of the entire events in the study period. Events were selected by with the steps 

indicated in the flow chart presented as Figure 3.23.  

 Event-based hydrographs, chemographs and corresponding concentration-

discharge (c–q) plots were plotted with the Microsoft Excel, and patterns of both 

single and multiple events were observed. Event based temporal and spatial 

variations (across the four selected fields-Pecketsford (Field 1), Burrows (Field 4), 

Middle and Higher Wyke Moor (Field 8) and Longlands East (Field 15)) in the 

concentrations of targeted chemical parameters were investigated with analysis of 

variance. The linearity of the peak discharge, runoff coefficient and runoff chemistry 

(in terms of selected chemical parameters) was investigated with logarithmic and 

linear regression analysis. Runoff coefficient, the ratio of total streamflow volume to 

the total precipitation over a certain area and time was estimated in this study from 
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the Rational Method (Kadioglu and Sen, 2001), and compare across fields. Patterns 

of c-q relationship observed in the investigated events were visually compared for 

inferences about the slope and direction before they were classified into different 

types.  

 

   

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Flow chart of the procedure used for selecting the rainfall-runoff 

   events in this study.   

Arrange the data (Date and time, 
rainfall, flow and corresponding 

chemical data) in separate 
column in a Microsoft Excel page 

Visually inspect the hydrographs 
to select the events (consider an 
event to start when runoff begins 

to increase after the event that 
triggers it, and to end when flow 

recinds to an initial pre-event 

level 

Are there 
corresponding 
chemical (pH, 

temperature, nitrate, 
etc) data available? 

YES 

NO 

YES 

Is there a form of 
single or multiple 

event occurrence? 

NO 
Don’t 
Select 

 

Don’t 

Select 

Start 

Select the time, flow and rainfall 
columns to plot the hydrograph 

for the entire period (month) 

Select 

event 

End 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1. AIM 1: Temporal variability in precipitation and soil water chemistry 

4.1.1 Introduction  

 This section of the thesis (Aim 1) is focused on the interaction of atmospheric 

deposition, through rainfall events, with the soil in the study area. Specific objectives 

are to examine (i) the temporal variations in the precipitation and soil water 

chemistry, and (ii) relationships between the precipitation and soil chemistry. The 

main hypothesis is that the precipitation chemistry and soil chemistry are directly 

related in the study area. Two sets of data were analysed based on their availability, 

and they include (i) a 16 (1993-2011) year monthly precipitation chemistry dataset 

which was analysed for the relatively long term temporal variability, and (ii) a 2010-

2012 biweekly (once in 2 weeks) precipitation and soil chemistry dataset, used in this 

study to establish whether there are relationships between the chemical variables 

observed in the two sources (i.e. precipitation and soil). The soil chemistry data 

comprises those of 0-10cm and below 10cm (depth) water solution, and these are 

subsequently referred to as topsoil and lower soil layers.     

 
4.1.2. Summary of precipitation and soil water chemistry distribution 

A summary of chemical variables in the bulk precipitation and soil solution (topsoil 

and lower soil layer) samples between 2010 and 2012 (and 1993-2011 for bulk 

precipitation) at the North Wyke Farm Platform (NWFP) (North Wyke station of the 

Environment Change Network) is presented in Table 4.1. Mean values of the 

chemical variables in the 1993-2011 precipitation samples were not statistically 

different from those of 2010-2012 (Table 4.1), suggesting relative stability in the 

atmospheric chemistry since 1993, despite the larger variability in the longer term 

(1993-2010) data. The summary for the 2010-2012 biweekly data showed that both 

soil water and precipitation were slightly acidic (mean pH is 5.2 - 6.4). The 

concentrations of cations (Mg2+, Ca2+, Na+, K+ and NH4
+) were generally low, and 

except from Na+ (mean concentration in precipitation was 2.3 mg l-1, and was 6.1 

and 6.7 in top and below soils, respectively) they were all below 1mgl-1. Most anionic 

concentrations (NO3
-, PO4

3- and SO4
2-) were also generally low, being less than 1 mg 

l-1, except the SO4
2- in the soil waters, and Cl-. Mean concentration of dissolved 

organic carbon (DOC) was fairly equally distributed, varying 2.1-2.4 mg l-1 in both 
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precipitation and soil waters (Table 4.1). The dominant ionic components of the 

precipitation and soil waters are illustrated in Figure 4.1. Except for K+, NH4
+ and 

NO3
-, the mean concentrations of the investigated chemical variables were higher in 

the precipitation than the soil waters.  

 

Table 4.1. Mean concentrations ± standard deviation, and range of the 
concentrations (in parentheses) of investigated chemical variables in the bulk 
precipitation and soil water at the North Wyke Farm Platform in Devon County, 
United Kingdom (Data were sourced from the Environment Change Network). 
 
 Chemical Variable Bulk Precipitationa Soil water solution 

1993-2011 2010-2012 Topsoil 
(2010-2012) 

Lower soil layer  
(2010-2012) 

pH 5.4±0.57 
(4.3-7.3) 

5.2±0.35 
(4.5-6.0) 

6.3±0.24 
(5.5-6.7) 

6.4±0.26 
(5.4-6.8) 

Alkalinity (mgl-1) 3.8±4.12 
(0-28.9) 

4.3±3.51 
(0.1-12.4) 

6.3±4.42  
(1.0-19.2) 

8.3±5.67  
(0-21.6) 

Conductivity (µScm-1) 27.8±14.21 
(6.5-103.4) 

23.0±9.65 
(9.3-49.6) 

58.4±8.88  
(40.7-74.1) 

56.1±7.18  
(41.8-69.4) 

Na+ (mgl-1) 3.3±1.91 
(0.5-17.3) 

2.3±1.36 
(0.5-6.6) 

6.1±0.51 
(5.3-7.4) 

6.6±0.48 
(5.7-7.8) 

K+ (mgl-1) 0.6±0.75 
(0-9.4) 

0.3±0.28 
(0.01-1.3) 

0.2±0.28 
(0.01-1.2) 

0.2±0.20 
 (0-0.8) 

Mg2+ (mgl-1) 0.4±0.4 
(0-5.1) 

0.3±0.18 
(0.1-0.8) 

1.1±0.29 
(0.4-1.6) 

1.1±0.20 
(0.6-1.4) 

Ca2+ (mgl-1) 0.6±1.21 
(0-6.51) 

0.4±0.49 
(0.1-2.7) 

3.0±1.01 
(1.1-4.9) 

2.1±0.59  
(0.9-3.4) 

NH4
+ (mgl-1) 0.3±0.89 

(0-4.9) 
0.3±0.27 
(0.1-1.54) 

0.04±0.13 
(0-0.6) 

0.01±0.01 
(0.001-0.03) 

NO3
- (mgl-1) 0.3±0.61 

(0-2.1) 
0.3±0.17 
(0.1-1.1) 

0.1±0.06 
 (0-0.3) 

0.1±0.05 
 (0.0-0.3) 

Cl- (mgl-1) 5.5±3.21 
(0.6-25.7) 

4.4±2.47 
(0.7-12.1) 

8.0±1.4  
(4.5-9.9) 

9.6±1.11  
(6.3-11.7) 

PO4
3- (mgl-1) 0.02±0.04 (0-

0.3) 
0.02±0.03 
(0-0.2) 

0.01±0.02 
(0-0.09) 

0.02±0.04 
(0.001-0.27) 

SO4
2- (mgl-1) 0.3±0.81  

(0-7.9) 
0.3±0.22 
(0.01-1.2) 

2.1±0.46 
(0.2-2.8) 

1.9±0.40  
(0.3-2.4 

DOC (mgl-1) *2.3±1.81 
(0.5-12.1) 

2.1±1.26 
(1.3-4.4) 

2.4±0.72 
(1.7-3.9) 

2.1±0.54 
(1.4-3.2) 

*Asterisked value was only for 2006-2011. a the monthly (2010-2012) and biweekly 

(1993-2009) did not exhibit significant difference (Pearson r ≥ 0.62) 
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Figure 4.1. Distribution of the chemical variables based on their relative dominant 
mean concentrations in the precipitation and soil waters. Note that mean 
distributions is based on Table 4.1.  
 
 
4.1.3. Temporal Variations in precipitation and soil chemistry 

Most of the chemical variables exhibited smaller variability (except NH4
+) in 

the soil water than in the precipitation (Figure 4.2). Conductivity, Na+, Mg2+, Ca2+, Cl-, 

SO4
3- and DOC chemical variables exhibited smaller (<50%) variability in the soil 

water than observed in the precipitation, and NH4
+, PO4

3- and K+ exhibited relatively 

larger variability than other chemical variables  in the soil water. In general, both the 

earlier results (Table 4.1) and Figure 4.2 showed that the longer time series of 

precipitation chemistry (1993-2011) revealed larger variation than the shorter 

dataset. When the solute variability in the same time-scale precipitation and soil data 

(2010-2012) were compared, PO4
3-, NH4

+, K+ and alkalinity exhibited the largest 

variability (≥ 100% in both precipitation and soil waters) while pH was the least 

varied in all the waters. Conductivity, Na+, Mg2+, Cl-, SO4
2- and DOC were less varied 

(<50%) in the soil waters than the rest variables.  
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Figure 4.2. Coefficients of variations of the investigated chemical variables in the 

bulk precipitation and soil water solution at the North Wyke Farm Platform (Note that 

bulk precipitation is in two sets; 1993-2011 and 2010-2012. Segregation into these 

sets is to compare same chemical variable for soil solution for same period of 

dataset). 

One of the values of the 1993-2011 data in the study is in the examination of 

the annual and monthly variations in the precipitation chemistry over time. All the 

chemical variables showed significant temporal variation, both annually and monthly 

(Figure 4.3a and 4.3b). The range (minimum-maximum) in both the annual and 

monthly distribution graphs suggests that variability was larger at one period than the 

other. For example, extreme concentrations of K+ in the bulk precipitation samples 

occurred in 2010 (Figure 4.3a) in October (Figure 4.3b) while the high concentrations 

in conductivity, PO4
3- and Cl- (in year 2011), and Na+, NH4

+ and Mg2+ (2002-2004) 

also showed extreme concentrations in the precipitation (Figure 4.3a). Figure 4.13b 

showed that Mg2+, conductivity, Na+, Ca2+ and pH were generally higher in October-

February while NO3
-, SO4

2-, DOC, PO4
- and alkalinity showed extreme cases in 

March-September.   
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Figure 4.3 a: Annual (1993–2011) mean and range (minimum–maximum) of investigated 
chemical variables in the bulk precipitation at North Wyke Farm Platform. Note that annual 
variation in DOC is not presented here because of its 1993-2005 missing data gap.  
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Figure 4.3 b: Monthly (1993–2011) mean and range (minimum–maximum) of investigated chemical 
variables in the bulk precipitation at North Wyke Farm Platform. Note that the mean monthly 
variation for conductivity and DOC is for 1998-2011 and 2005-2011, respectively. 
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4.1.4 Relationship between the bulk precipitation, topsoil water and the lower 

soil water chemistry 

The results of the Pearson correlation and regression analyses that were 

used to relate each of the investigated chemical variables in the precipitation and soil 

(top and lower soil layers) chemistry in the study area with the biweekly (2010-2012) 

datasets are presented in Table 4.2. Fairly strong and significant (p≤0.05) 

correlations between the precipitation and topsoil chemistry occurred only with pH (r 

= -0.45), alkalinity (r = 0.54), Ca2+ (r = -0.45) and NH4
+ (0.46). The coefficient of 

determination (R2) for the linear regression of the relationships between these two 

sources (precipitation and soil) showed that less than 30% of the variance in the 

chemistry of the topsoil solution was explained by the variance in the precipitation 

chemistry (Table 4.2). The relationship between precipitation and the lower soil 

layer’s solution also showed fairly strong relationship with alkalinity, (r = 0.54), Ca2+ (r 

= -0.45) and DOC (r = 0.43), and about 16-30% (R2 = 0.16-0.30; p<0.05) variance of 

the total variance of these variables in the lower soil were only explained by their 

variations in the precipitation.  In general, approximately 30% (or less) of the 

variance in the distribution of the investigated chemical variables in the soil water 

solution were explained by their variance in the precipitation in the study period. The 

relationship between the chemistry of the top and lower soil solution was stronger 

(than either of the soil layers with precipitation) for most of the investigated variables 

(r = 0.47-0.80; p<0.05), except for chloride and phosphate. Neither chloride nor 

phosphate exhibited significant correlation with any of the identified sources (Table 

4.2). Variance in the distribution of alkalinity, conductivity, Mg2+, Ca2+ and SO4
2- in 

the topsoil explained at least 60% (R2 = 0.60-0.65; p<0.05) of the total variations of 

same variables in the in the lower soil layer, and other variables, except DOC, PO4
3- 

and Cl- explained between 36 and 49% (R2 = 0.36-0.49; p<0.05) of their variance in 

the lower soil layer.       

 

 

  



 
 

104 
 

 

Table 4.2: Results of the Pearson correlation (r) and regression of the concentration of each chemical variable in bulk 

precipitation and soil (top soil and lower layer) water (the coefficient of determination R2 is in parenthesis in the 

‘regression’ column). Corresponding graphs are provided in Appendix 4.1. 

  
 
Chemical 
Parameter 

Bulk Precipitation Topsoil (< 10cm depth) 

(<  Top soil 10cm 
depth) 

Lower soil layer (> 
10 cm depth) 

Lower soil layer 
(< 10cm depth) 

r Slop
e (b) 

R2 r Slop
e (b) 

R2 r Slope 
(b) 

R2 

pH -0.5 -3.5 0.2 -0.2 -1.4 0.02 0.65 5.1 0.4 
Alkalinity (mgl-1)* 0.5 0.3  0.2 0.5 0.4 0.3 0.79 1.0 0.6 
Conductivity (µScm-1) 0.4 0.2 0.03 0.2 11.3 0.04 0.78 36.2 0.7 
Na+ (mgl-1) 0.2 3.6 0.03 0.3 4.3 0.1 0.67 4.0 0.5 
K+ (mgl-1)* 0.2 0.2 0.03 -0.01 0.02 0.02 0.54 0.1 0.5 
Mg2+ (mgl-1) 0.1 0.1 0.02 0.2 0.13 0.1 0.79 0.6 0.6 
Ca2+ (mgl-1) -0.5 -0.9 0.3 -0.5 -0.7 0.3 0.79 1.3 0.6 
NH4

+ (mgl-1)* 0.5 15.9 0.2 0.03 0.1 0.001 0.62 0.3 0.4 
NO3

- (mgl-1)* 0.2 0.6 0.04 0.2 0.5 0.03 0.60 0.6 0.4 
Cl- (mgl-1) -0.2 -0.7 0.001 0.1 1.5 0.01 0.23 1.3 0.1 
PO4

3- (mgl-1)* 0.2 0.1 0.04 0.1 0.1 0.01 0.02 0.1 0.0004 
SO4

2- (mgl-1) 0.3 0.2 0.06 0.3 0.1 0.1 0.80 0.7 0.6 
Dissolved organic 
carbon (mgl-1) 

0.1 0.1 0.0004 0.4 2.1 0.2 0.47 1.3 0.2 
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4.1.5. Relationships among chemical variables in the different source areas 

Relationships among the chemical variables in the precipitation, topsoil and 

lower soil solution investigated via the Principal Component Analysis (PCA) showed 

significant differences in the relative distribution of the chemical variables around a 

Varimax rotated scale (Figure 4.3ai-cii). Whilst Cl, Na+, Mg2+, conductivity, alkalinity 

and Ca2+ were similarly distributed in the precipitation and lower soil water, SO4
2- 

was similarly relatively positioned as with the topsoil. In addition, PO4
3-, NO3

-, NH4
+, 

K+ and DOC were similarly rotated in the topsoil and lower soil waters (Figure 4.3ai-

ci). In general, all the investigated variables exhibited closer relationship in the 

precipitation than observed in the soil solutions. The percentage contributions of 

each chemical variable in the sources suggests NO3
- was the least (of all the 

investigated variables) contributor to the overall water chemistry in the lower soil 

layer, and DOC was also comparatively less significant in the soil solution from both 

top and lower soil layers (Figure 4.3bii-cii).  

  In addition, the results of the Pearson correlation coefficient of the 

relationship among the chemical variables are presented in Table 4.3a-c. More 

variables exhibit strong and significant relationship in the precipitation samples more 

than either the topsoil or lower soil solution. For example while conductivity in the 

precipitation chemistry showed strong and positive correlation (r ≥ 0.60; p<0.05) with 

all other variables, except alkalinity and DOC, conductivity in the soil waters 

correlated positively with only K+ (r = 0.93) and Na+ (r = 0.78) in the topsoil and only 

fairly strongly with pH (r = 0.60) and DOC (r = 0.48) in the lower soil water (Table 

4.3c). Na+ and Cl- were also strongly correlated in all the sources, although the ions 

were most strongly correlated in the precipitation (r = 0.97 in precipitation; r = 0.53 in 

the topsoil and r = 0.68 in the lower soil layer). The anions were more significantly 

correlated in the precipitation than in either of the soil waters (Table 4.3a-c). 
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Figure 4.4 ai-cii. Principal components’ distributions and the corresponding percentage contributions of the investigated 
chemical variables in the precipitation and soil (0-10cm and below 10cm depths) water at North Wyke from 2010-2012 
(bimonthly data). Results presented have all been rotated by Varimax rotation and Kaiser Normalisation procedures in 
XLSTAT. The correlation matrix for each spatial result is presented as Appendix 4.2 a-c. 
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Table 4.3 a: Correlation matrix of the investigated chemical parameters in the bulk precipitation at North Wyke. 
 

Variables 
 

Alkalinity Ca2+ Cl- Cond. K+ Mg2+ NH4
- NO3

- Na+ pH PO4
3- SO4

2- DOC 

Alkalinity 1             

Ca2+ 0.328 1            

Cl- -0.573 -0.232 1           

Cond. -0.296 0.520 0.662 1          

K+ 0.004 0.649 0.373 0.778 1         

Mg2+ -0.416 -0.027 0.941 0.779 0.444 1        

NH4
+ -0.236 0.723 0.177 0.802 0.663 0.287 1       

NO3
- -0.160 0.814 0.080 0.767 0.645 0.224 0.977 1      

Na+ -0.455 -0.199 0.968 0.651 0.493 0.912 0.161 0.047 1     

pH -0.248 0.378 0.496 0.723 0.757 0.510 0.518 0.550 0.491 1    

PO4
3- -0.339 0.174 0.495 0.583 0.814 0.426 0.429 0.366 0.605 0.791 1   

SO4
2- -0.010 0.697 0.321 0.901 0.723 0.495 0.892 0.884 0.320 0.644 0.435 1  

DOC 0.749 0.746 -0.258 0.254 0.614 -0.108 0.272 0.353 -0.134 0.346 0.198 0.453 1 

Values in bold are significant at p=0.05.  
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Table 4.3 b. Correlation matrix of the investigated chemical parameters in the topsoil (0-10cm) water solution at North Wyke. 
 
  

Variables 
 

Alkalinity Ca2+ Cl- Cond. K+ Mg2+ NH4
- NO3

- Na+ pH PO4
3- SO4

2- DOC 

Alkalinity 1             

Ca2+ 0.196 1            

Cl- 0.232 0.487 1           

Cond. 0.227 0.950 0.522 1          

K+ -0.474 -0.356 -0.156 -0.343 1         

Mg2+ 0.331 0.902 0.658 0.934 -0.219 1        

NH4
+ -0.372 -0.445 0.270 -0.430 0.304 -0.358 1       

NO3
- 0.545 -0.308 -0.313 -0.308 -0.242 -0.367 -0.010 1      

Na+ -0.055 0.719 0.537 0.779 0.033 0.765 0.093 -0.286 1     

pH -0.206 -0.136 -0.224 -0.172 -0.031 -0.294 -0.068 0.112 -0.271 1    

PO4
3- -0.031 -0.588 0.048 -0.482 0.219 -0.267 0.365 -0.102 -0.250 -0.087 1   

SO4
2- 0.237 0.272 -0.039 0.364 -0.309 0.403 -0.229 -0.117 0.279 -0.546 0.116 1  

DOC -0.120 0.097 0.058 0.279 -0.159 0.113 -0.029 -0.074 0.255 0.456 -0.086 0.047 1 

Values in bold are significant at p=0.05.  
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Table 4.3 c. Correlation matrix of the investigated chemical parameters in the below 10cm soil (depth) water solution at 
North Wyke. 
 

Variables 
 

Alkalinity Ca2+ Cl- Cond. K+ Mg2+ NH4
- NO3

- Na+ pH PO4
3- SO4

2- DOC 

Alkalinity 1             

Ca2+ 0.311 1            

Cl- -0.336 -0.119 1           

Cond. 0.340 0.632 0.150 1          

K+ -0.527 -0.189 -0.181 -0.616 1         

Mg2+ 0.055 0.173 0.684 0.229 -0.348 1        

NH4
+ -0.099 -0.072 -0.717 -0.529 0.679 -0.732 1       

NO3
- 0.523 -0.235 -0.107 -0.358 -0.238 0.020 0.072 1      

Na+ -0.334 -0.287 0.684 -0.147 0.208 0.628 -0.494 -0.019 1     

pH 0.275 0.474 0.402 0.597 -0.785 0.514 -0.607 0.182 -0.046 1    

PO4
3- -0.370 -0.729 0.037 -0.632 0.590 -0.392 0.385 0.275 0.357 -0.593 1   

SO4
2- -0.139 -0.254 0.574 -0.312 -0.076 0.754 -0.537 0.324 0.759 0.152 0.078 1  

DOC -0.281 -0.042 0.373 0.483 -0.260 -0.085 -0.201 -0.258 -0.059 0.374 0.107 -0.364 1 

Values in bold are significant at p=0.05.  
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4.1.6. Discussion 

The objectives of this study are to examine the temporal variations in the 

precipitation and soil water chemistry, as well as the relationship between the 

precipitation and soil chemistry. The main hypothesis was that precipitation and 

soil chemistry in the study area are significantly related. Results of the analysis 

showed significant temporal variations in the precipitation of the study area. The 

mean pH of the precipitation samples were fairly acidic (5.2-5.4), and slightly 

more acidic than those of the soils (topsoil and lower soil layer) solution (6.3-

6.4). Whilst the precipitation samples contained more NH4
+, K+ and NO3

- in the 

study period (2010-2012) than existed in the soil solutions, the topsoil was 

comparatively richer in the dissolved organic carbons, Ca2+, Mg2+, conductivity 

and SO4
2-, alkalinity, pH unit, Na+ and Cl- occurred in comparatively higher 

concentrations in the lower soil solution. In addition, the coefficient of 

determination (R2) of the relationship between the tested chemical variables in 

the precipitation and soil solutions were less than 30%, and there were only 

fairly strong correlations (r = ±0.45 - ±54) between both the precipitation 

chemistry and the topsoil solution or and the lower soil solution. Relationships 

among the investigated variables were also different in the precipitation from the 

soil sources. 

 

4.1.6.1 Temporal variations in the precipitation and soil water chemistry 

The mean pH obtained in this study is considered to be fairly 

representative of the study area because it is fairly close to the median pH 

reported (5.6) by Porteous and Barratt (1989) for the Devon County area in 

which the present study is situated. The pH value is also within the range (4.5-

5.6) described by Charlson and Rodhe (1982) that cannot be attributed to acid 

rain but to be a consequent of the removal of  some naturally occurring acids 

(such as H2SO4) from the air by rainfall (Bravo et al, 2000). Naturally occurring 

acids such as H2SO4 are often introduced into the earth’s biogeochemical 

cycles through the sea or ocean bodies as a result of the activities of sulphate-

reducing bacteria otherwise known as sea-salt sulphates, and non-sea salt 

sources (Redfield, 1958; Irwin et al, 2002). Irwin et al (2002) in a study of the 

trends in sulphate and nitrate wet deposition over the United Kingdom 

associated sulphate wet deposition with westerly or cyclonic flow because the 
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sulphate concentration gradient often reflects the origin of cloud-forming air 

masses. 

The effect of climate in the present study cannot be overestimated, 

especially when the time-series analysis of the 1993-2011 period of chemical 

variables in the precipitation exhibited significant temporal variations. This effect 

was also established when the correlation between common meteorological 

element (rainfall, temperature and relative humidity) and the investigated 

precipitation chemistry produced significant trends with different levels and 

directions of association of major chemical variables, as presented in Figure 

4.5. Many studies (Eriksson, 1960; Stevenson, 1968; Reid et al, 1981; Irwin et 

al, 2002) have also linked the distribution of conductivity, Mg2+, Cl-, Na+ and 

SO4
2- to sea spray enrichment, especially in regions under the influence of 

maritime climate as the present study area.   

 

 

Figure 4.5. Significant correlations (Pearson) between common 
meteorological elements and precipitation chemistry (1993-2011) (the 
entire relationship is provided as appendix 4.2. 
 

Another reason that links the major source of the precipitation chemistry in the 

study area is the results of the comparison of the ratio of some ions to those of 

the standard seawater (Reid et al, 1981; Bravo et al, 2000; Norman et al, 2001; 

Thimonier et al, 2008; Wang and Han, 2011). In this study, the Na+/Cl and 

Mg2+/Na+ ratio values are close to those of seawater (Table 4.4) and therefore 

indicate a maritime source for these ions. The Na+/K+ and Na+/Ca2+ ratios are, 

however much lower in the precipitation and are highly variable; Cl-/SO4
2- ratio 

in precipitation is also higher than its corresponding seawater ratio. This 

suggests that potassium, calcium and sulphate can still be allocated to other 

sources apart from the sea sprays. Sugawara (1967) attributed the sources of 
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potassium, calcium and sulphate to the influence of terrestrial dusts. Reid et al 

(1981) also noted that sulphuric acid in the atmosphere often reacts with air-

borne particles of silicate minerals to release soluble cations including calcium 

and potassium.  

 
Table 4.4. Comparison of the ratio values of precipitation ions (coefficient of 

variation in parentheses) with the corresponding values for sea water. 

Ratio Sea water Precipitation mean 
(Coefficient of 
variation is in 
parenthesis)  

Reference for seawater ratio 

Na+/Cl- 0.86 0.87 (6) Moller (1990); Bravo et al (2000);  
Norman et al (2001); 
Thimonier et al (2008). 

Mg2+/Na+ 0.23 0.22 (7) Berner and Berner (1987). 

Na+/K+ 27.63 7.34 (80) Krauskopf (1967), Reid et al (1981). 

Na+/Ca2+ 26.25 4.61 (51) Krauskopf (1967), Reid et al (1981). 

Cl-/SO4
2- 21.47 25.4 (63) Krauskopf (1967), Reid et al (1981). 

SO4
2-/Na+ 0.25  Wang and Han (2011). 

SO4
2-/NO3

- – 1.23 (26) Al-Khashman (2009); 
Wang and Han (2011). 

NO3
-/Na+ 0.00002 0.04 (30) Al-Khashman (2009);  

Wang and Han (2011). 
NH4

+ /NO3
- – 3.25 (25) Lang and Elliott (1991). 

  

4.1.6.2. Relationship between precipitation chemistry and soil solution 

The relationships between the precipitation and soil chemistry in this study were 

examined, and the results of the correlation of the precipitation with soil 

chemistry, and PCA suggest minimal relationship between the two source 

areas. In other words, the chemistry of the precipitation is not significantly 

related to that of the soil in the study area. The reason for the poor precipitation-

soil chemistry relationship can be linked with the level of acidity in the study 

area, which has been shown to be minimal, since the results have not shown 

that the precipitation in the study area is acidic. Acidification of grassland 

through atmospheric deposition is known to be associated with irreversible 

reduction in cation exchange capacity (CEC) and the mobilization of chemical 

ions in toxic concentrations (Van Breeman et al, 1984; Blake et al, 1999; Blake 

and Goulding, 2002). The concentrations of all the investigated chemical 

variables in the soil solution in this study do not show that the soil is chemically 
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impaired. The strong relationship between the topsoil and lower soil solutions 

suggests mixing of the materials in the two soil profiles, and this can be 

interpreted to infer capability for water retention by the soil in this soil region. 

Another explanation for the strong relationship may be because the topsoil in 

the study area may have actually extended beyond 20cm soil depth. Food and 

Agriculture Organisation, (FAO, 1998) defined the topsoil’s lower limit as 30cm 

depth, or at a root growth inhibiting layer (whichever is shallower). The cross-

sections of the dominant soils in the North Wyke Farm Platform, NWFP 

(Halstow, Hallsworth, Denbigh and Fladbury, refer to Figure 3.6) also showed 

that lower limits of the topsoil are not the same for the entire region (White, 

2008).    

 

4.1.7 Conclusions 

The main hypothesis of this chapter is that the precipitation chemistry is 

significantly related to the soil chemistry in the study area. The study has shown 

that temporal variability exists in the precipitation chemistry but did not show 

that either the soil or the precipitation was chemically impaired. Temporal 

variations in the precipitation chemistry were attributed to climatic effects and 

anthropogenic sources as informed by the trends and results of the comparison 

to the seawater ion ratio. The study accepts the hypothesis that precipitation 

chemistry is related to the soil chemistry in the study area because the 

constituents of the soil reflected the relatively slightly acidic nature of the 

precipitation. Strong relationships that existed in the investigated chemical 

variables (except Cl- and PO4
3-) between the top (0-10cm soil depth) and lower 

(below 10cm depth) soil layers may suggest significant mixing of the topsoil and 

subsoil waters. The finding of this study may have significant implication on the 

hydrological flowpaths of the various chemical variables.  

The next aim investigates the chemical variability of the soil in the fields 

of the NWFP, and relates this to the existing and previous land use and land 

management, such that the inference that will be made from the concentration-

discharge relationship in Aim 3 can be well interpreted.  
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4.2. Aim 2: Quantification of the spatial variability of the soil 

physiochemical properties  

 
4.2.1. Introduction 

    Distinguishing characteristics of the fields in the present study area 

(North Wyke Farm Platform) include previous land management, farm size, soil 

series and terrain. Shepherd et al (2014) showed that the agricultural fields that 

were previously used for dairy farming generally contained higher 

concentrations of total nitrogen and carbon, and their discussion focussed on 

five parameters (bulk density, pH, total nitrogen, total carbon and soil organic 

matter) in the entire fields in the study area. Puekert et al (2012) reported 

results of a detailed examination of the soils physiochemical properties of one of 

the 15 fields attributed the observed spatial variability in the properties to the 

effect of previous land use and land management (Great Field at North Wyke). 

The present study examines the in-field and between-field variability in the 

distribution of the soils’ bulk density, pH, total nitrogen, total carbon, organic 

matter and 𝛿15N, 𝛿13C isotopes. Specific objectives are to quantify spatial 

variability in the distribution of the afore-mentioned physiochemical variables, 

and seek explanations for their variability. The measures of carbon and nitrogen 

stocks from the farm platform were also assessed and compared for each field. 

The main hypothesis is that the distributions of soil parameters are directly 

related to land use and farm management. The implications of the spatial 

variability for the investigated parameters are also discussed.  

 
4.2.2. Characterisation and spatial variability of the soil  

Descriptive analysis (mean ± standard deviation) of the overall soil 

samples shows that the 0-10cm soil depth is generally slightly acidic (pH = 

5.6±0.3), exhibited bulk density, organic matter, nitrogen and carbon of 0.9±0.1 

gcm-3, 10.2±2.0 %, 0.5±0.1 % and 4.6±0.9 %, respectively.  Mean (±standard 

deviation) concentrations of carbon-13 (δ13C) and nitrogen-15 (15δN) isotopes 

were 28.8±0.7 ‰ and 6.0±0.5 ‰. C: N ratio, carbon and nitrogen stocks were 

8.5±0.6 ratio, 411.5±85.1 kgm-2 and 48.3±9.2 kgm-2, respectively (Table for the 

descriptive statistics is provided as appendix 4.3). Coefficients of variation of the 

selected parameters were generally low (being below 20 % and below, except 

for the carbon stock) (Figure 4.6).   
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Figure 4.6. Overall coefficients of variations of selected physiochemical 

parameters in the North Wyke Farm Platform. 

 

The results of the kriging interpolations (maps), corresponding error maps and 

semi-variograms for the investigated parameters showed that they exhibit 

significant spatial variability (Figure 4.7-4.12) (Note that the values are plotted in 

different colour scale (blue through green and yellow to red), based on the value 

range of each variable, and that areas in the kriging maps interpolated as ‘non-

represented’ or ‘uncertain’ are areas for which estimates based on the semi-

variogram model may be ambiguous). The kriging interpolation for the pH, bulk 

density, organic matter and other investigated parameters show their status 

while the error maps reflect the level of uncertainty associated with each sample 

points. The semi-variogram describes the lag or range at which sample values 

are independent of one another, and the proportion of the total variance that 

occurs at a distance less than the minimum sampling interval. Gini coefficient 

typically varies from 0 to 1; departure from 0 suggests increasing heterogeneity.  
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Figure 4.7: Spatial variations in the soil pH at the North Wyke Farm Platform; (a) 

‘ordinary kriging’ interpolation (b) error map (c) semi-variogram with value 

estimates that were used to produce map (a) and Lorenz curve to ascertain the 

estimate (Gini coefficient, G) of the spatial variability across the entire farm 

platform.   
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Figure 4.8: Spatial variations in the soils bulk density at the North Wyke Farm 

Platform; (a) ‘ordinary kriging’ interpolation (b) error map (c) semi-variogram 

with value estimates that were used to produce map (a) and Lorenz curve to 

ascertain the estimate (Gini coefficient, G) of the spatial variability across the 

entire farm platform.   
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Figure 4.9: Spatial variations in the soil organic matter at the North Wyke Farm 
Platform; (a) ‘ordinary kriging’ interpolation (b) error map (c) semi-variogram 
with value estimates that were used to produce map (a) and Lorenz curve to 
ascertain the estimate (Gini coefficient, G) of the spatial variability across the 
entire farm platform. 
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Figure 4.10: Spatial variations in total carbon at the North Wyke Farm Platform; 

(a) ‘ordinary kriging’ interpolation (b) error map (c) semi-variogram with value 

estimates that were used to produce map (a) and Lorenz curve to ascertain the 

estimate (Gini coefficient, G) of the spatial variability across the entire farm 

platform.  

  

Total carbon 
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Figure 4.11: Spatial variations in the total nitrogen at the North Wyke Farm 

Platform; (a) ‘ordinary kriging’ interpolation (b) error map (c) semi-variogram 

with value estimates that were used to produce map (a) and Lorenz curve to 

ascertain the estimate (Gini coefficient, G) of the spatial variability across the 

entire farm platform.  
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Figure 4.12: Spatial variations in nitrogen-15 isotope at the North Wyke Farm 

Platform; (a) ‘ordinary kriging’ interpolation (b) error map (c) semi-variogram 

with value estimates that were used to produce map (a) and Lorenz curve to 

ascertain the estimate (Gini coefficient, G) of the spatial variability across the 

entire farm platform.  

 

Nitrogen-15 
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Figure 4.13: Spatial variations carbon-13 isotope concentration  in the North 

Wyke Farm Platform; (a) ‘ordinary kriging’ interpolation (b) error map (c) semi-

variogram with value estimates that were used to produce map (a) and Lorenz 

curve to ascertain the estimate (Gini coefficient, G) of the spatial variability 

across the entire farm platform.  
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 Soil pH status across the fields varied from 5.1 to 6.1 units, and was 

generally slightly homogeneous (as suggested by the relative smoothness, low 

value range and the results of the Lorenz curve and Gini coefficient G (0.33)). 

Error map across the farm platform shows that uncertainties in the interpolation 

are higher at the edges than close to the sampling points of the fields (Figure 

4.7a-d). Bulk density status across the farm platform exhibited variations from 

0.16 to 1.61 g cm-3. The error map for the bulk density values shows very 

minimal spots with uncertainty, probably because the variance explained by the 

model is very high (99.1%). The Gini coefficient is 0.06, and this shows relative 

homogeneity across the farm platform (Figure 4.8 a-d). Figure 4.9a-d shows 

that organic matter varied markedly between 19.8 and 189.4 g kg-1, and 

exhibited relatively larger heterogeneity (G = 0.11) than the other investigated 

variables. Both total nitrogen and total carbon exhibited similar range of 

heterogeneity (G = 0.95 and 0.11, respectively) with organic matter. Total 

nitrogen and carbon ranged about 20-70 g kg-1 and 0.82-9.02 g kg-1 but the 

error distributions varied across the fields (Figures 4.10 d and 4.11 d). Nitrogen 

15 and carbon 13 isotopes generally exhibited low ranges of mean 

concentrations (5.42-7.41 ‰ and -29.61- (-28.4) ‰, respectively). Field 13 

(Longlands south) showed high Nitrogen 15 concentration (about 6.61-7.01‰) 

than most other fields in the farm platform, although the relatively higher 

concentrations like that occurred some less prominent spots in other fields, 

such as the Ware Park part of Field 3 (Poor Field) and at the Longlands South 

and Longland East. Ranges of difference shown in the error maps for these 

parameters were generally low, and both exhibited low level of heterogeneity 

across the fields (G = 0.05 and 0.04, respectively for Nitrogen 15 and Carbon 

13) (Tables 4.12-4.13).  

In general, the ratio of nugget to sill (
𝑁𝑢𝑔𝑔𝑒𝑡

𝑠𝑖𝑙𝑙
) (%) of the semi-variogram 

were low (9.6 and 0.42 %) for soil pH and bulk density distribution across the 

farm platform, but was significantly higher for organic matter (845%), total 

carbon (239 %), total nitrogen (1167 %) δ15C (125 %) and δ13C (96.4 %).  

 
4.2.3. Intra- (between) field variations   

Comparative analysis of the coefficients of variation (CV) of the investigated 

parameters for all the fields shows that the concentrations of organic matter, 
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total carbon and total nitrogen exhibited relatively higher spatial variability than 

other parameters (Figure 4.14). Highest coefficient of variations showed 

occurred with the distribution of organic matter concentration in Fields 14 

(Longlands North) and 4 (Burrows) (21.2 and 20.7%, respectively) while Field 6 

(Golden Rove) and 10-12 (Lower Wheaty, Dairy East and Dairy North) exhibited 

the much lower percentage variation (less than 10%). Carbon-13 isotope, on 

the other hand, showed generally exhibited uniformly lower variation (< 4%) in 

all the fields, than all other parameters. The results of the descriptive statistics 

for the parameters in the fields (Appendix 4.3) showed that their (investigated 

parameters) values were lower than the overall means (except bulk density and 

nitrogen 15) at Fields 2 (Great Field) and Fields 13-15 (Longlands South, North 

and East). In general, spatial variability was less than 25% for all the 

parameters. The relationship between all the parameters showed that organic 

matter, total carbon and total nitrogen were highly correlated (R2≥0.61; p<0.05) 

(Figure 4.15), and this may account for the similar exhibited by the three 

parameters (relatively higher than other parameters). 

    Four fields (Fields 1, 4, 8, 13-15; Pecketsford, Burrows, Higher and 

Middle Wyke Moor, and Longlands South, North and East, respectively) were 

randomly selected for intra-field variability using the 3D interpolation and vector 

(grid) map of the parameters (Figures 4.16a-d shows the 3D interpolation and 

the results of the vector maps are included as appendix (4.4 a-d). The results 

show that except for the elevation, where changes (lowlands and highlands) 

can be regionally (southern or northern) classified, other parameters exhibited 

undulating patterns that is more rapid in the middle of the fields in at least three 

of the randomly selected fields (except Pecketsford).      
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Figure 4.14. Coefficient of variation in selected soil parameters across the 15 fields of the North Wyke Farm Platform.  
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Figure 4.15: Some relationships among selected physiochemical parameters from samples of the North Wyke Farm Platform. Note that 

other relationships are presented as Appendix 4.3 a-c, and only the relationships between the organic matter, total carbon and 
total nitrogen distributions (ai, aii and aiv).  
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Figure 4.16 a: Patterns of spatial variability in selected physiochemical 

parameters across Field 1: Pecketsford. 3D (wireframe) were produced 

from kriging interpolations of coordinate based values in Surfer software. 
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  Figure 4.16 b: Patterns of spatial variability in selected physiochemical parameters across 

Field 4: Burrows. 3D (wireframe) were produced from kriging interpolations of coordinate 

based values in Surfer software. 
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Figure 4.16 c: Patterns of spatial variability in selected physiochemical parameters 

across Field 8: Higher and Middle Wyke Moor. 3D (wireframe) were produced 

from kriging interpolations of coordinate based values in Surfer software. 
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Figure 4.16 d: Patterns of spatial variability in selected physiochemical 

parameters across Field 13-15: Longlands South, Longlands North and 

Longlands East, respectively. 3D (wireframe) were produced from kriging 

interpolations of coordinate based values in Surfer software. The thick black line 

separates the Longlands South, North and East. 
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4.2.4. Carbon and Nitrogen stocks across the fields 

Means (standard deviation on parenthesis) of carbon and nitrogen stocks from 

the fields were 41.7(5.1) t C ha-1 and 4.9 (0.53) t N ha-1. Both carbon and 

nitrogen stocks varied (minimum-maximum) as 30.7– 54.1 t C ha-1 as 3.7-6.2 t 

N ha-1, respectively, and their coefficients of variations were similar across the 

fields (Figure 4.17).  
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Figure 4.17: Spatial variability in Carbon and Nitrogen stocks across the North Wyke Farm 
Platform. Carbon or Nitrogen stock per ha (for each field) is the average of product of total 
carbon or nitrogen (%), bulk density (g cm-3) and soil depth at which sample was taken (10 
cm). Note that spatial distribution of the stocks in each field is provided as appendix 4.6 a-d. 
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The results of stepwise regression that was analysed to establish a relationship 

among the investigated parameters in the entire fields show that both carbon 

and nitrogen stocks varied significantly with the distributions of organic matter, 

bulk density and elevation in decreasing order of importance (74%, 46% and 

15% (eq. 4.1), and  61%, 54% and 7% (eq. 4.2) respectively).  

 
𝐶𝑎𝑟𝑏𝑜𝑛𝑠𝑡𝑜𝑐𝑘 (𝑡 𝐶 ℎ𝑎−1) = −455.29 + 0.74𝑂𝑀 + 0.46𝐵𝐷 + 0.15𝐸  (r2=0.74)    (4.1) 

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛𝑠𝑡𝑜𝑐𝑘(𝑡 𝑁 ℎ𝑎−1) = −42.87 + 0.67𝑂𝑀 + 0.54𝐵𝐷 + 0.07𝐸 (r2=0.71)               (4.2) 

Where: OM=organic matter (%), BD=bulk density (gcm-3), E= Elevation (m). 

 
4.2.5. Discussion  

Specific objectives of this aim were to assess the inter- and intra-fields 

distribution of soil bulk density, pH, total nitrogen, total carbon, (including carbon 

and nitrogen stocks), organic matter, 𝛿15N and 𝛿13C with the intention of seeking 

explanations to their variability with relevance to hydrological pathways. The 

study area has undergone different stages and processes of land use 

management that are considered influential to the variability in the investigated 

parameters (refer to Table 3.1).  

 
Table 3.1 (re-presented). Field management prior sampling. Fields (1, 3, 4, 8 
and 9) with more than one symbolised columns were divided into 2 or more 
regions before the present management (source: Farm Platform records) 
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Although the management history of the fields shows that they (the fields) were 

used differently, the history is considered to be representative of normal 

management cycles of intensive grassland (Peukert et al, 2012). Studies have 

shown that different land management approaches (grazing methods-rotational, 

continuous and buffer, grassland burning, permanent or rotational grass 

cultivation, and in case of grazing; varying stock densities and nature of 

animals) can be proportional to their effects on the bulk density and 

concentrations of chemical parameters including carbon and nitrogen (Fynn et 

al, 2003; Vesterdal and Leifeld, 2006; Butley and Haygarth, 2007; Perie and 

Ouimet, 2008; Bilotta et al, 2008; Throop et al, 2012; Loveland et al, 2014; 

Evangelou et al, 2014; Silveira et al, 2014).   

 
4.2.5.1. Variability in bulk density, carbon and nitrogen constituents  

The soils in the study area were characterised by slightly acidic pH (5.1–

6.1), low bulk density (0.6–1.6 g cm-3), low organic matter content (2.0–18.6 %), 

and low carbon and nitrogen (2.7–7.4 and 0.3–0.7 %, respectively). Carbon and 

nitrogen stocks, δ13C and δ15N were 30.7– 54.1 t C ha-1 as 3.7-6.2 t N ha-1, -

30.5- -25.0 ‰ and 4.5-7.2 ‰, respectively. The ratios of nugget to sill 

(expressed as percentage) of the semi-variogram plots of the soil parameters 

suggested that pH and bulk density exhibited strong spatial dependence in their 

distributions across the farm platform (9.6 and 0.42 %) while the distributions of 

organic matter, total carbon, total nitrogen, δ13C and δ15N exhibited weak spatial 

dependence.   

Studies have shown that nugget to sill ratio as low as 25 % shows strong 

spatial dependence (Liu et al, 2013; Glendell et al, 2014) and that the spatial 

variability in soils exhibiting such ratio can be attributed to the effect of ‘intrinsic 

factors’ (soil formation factors, such as soil parent materials) while more than 

75% nugget to sill ratio suggests weak spatial dependence that can be 

attributed to the effects of ‘extrinsic factors’ (soil management, such as variable 

fertilisation during growing season, cultivation or grazing practice) (Cambardella 

et al, 1994; Chien et al, 1997; Ruth and Lennartz, 2008). The nugget to sill 

ratios therefore suggest that the variations (as shown by the kriging maps and 

Gini coefficients) obtained in the values of most of the investigated parameters 

(except pH and bulk density) in the Farm Platform can be attributed to different 

land management practices, including fertilization and grazing) which have 
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been earlier noted to be within the normal intensive grassland management 

practices (Peukert et al, 2012).  

Land management practices in the study area from 1995 till the period 

under study also indicated that farm yard manure (FYM) were periodically 

spread on the fields to improve the organic matter content in form of slurries, 

and faeces from grazed animals (Table 4.5). Addition of the FYM across the 

field (to improve their organic matter contents) can also be attributed to the 

variation in the concentrations of total nitrogen and carbon, especially because 

these three parameters (organic matter, total nitrogen and total carbon) have 

been shown to be significantly related (R2 > 60 %; p < 0.05) in this study. 

Studies elsewhere (Chambers et al, 2001; Bot and Benites, 2005; Schimel, 

1995; Conant and Paustian, 2002) indicated that the decomposition of the soil 

organic matter is a major supply of both carbon and nitrogen in soils, and 

therefore, interactively involved in ammonification, mineralisation of nitrogen, 

and decomposition of carbon minerals explained by the carbon and nitrogen 

cycles (Bot and Benites, 2005). The variability in the soil pH and bulk density in 

the study area has been linked to the variability in the intrinsic factors, which 

include also soil structure, mineralisation and elevation (Chien et al, 1997; Ruth 

and Lennartz, 2008). The range of bulk density in the entire farm platform 

indicated that fields were not severely compacted (being less than 1.6 g cm-3), 

and the values are within the range for soils with high organic matter contents 

(1.0 g cm-3) (Guo and Cifford, 2002; Bellamy et al, 2005). Soils have shown that 

bulk density primarily depends on parent material, soil aggregate, climate and 

soil formation processes (Wilding and Drees, 1983; Muhs, 1984; Don et al., 

2007; He et al., 2010), which are intrinsic factors.  

The clear lead with the nugget to sill ratio for spatial dependence results, 

notwithstanding, studies (Bot and Benites, 2005; Don et al., 2007) showed that 

while tillage and different land management can influence soil bulk density and 

pH, soil temperature, soil moisture and texture (intrinsic factors) can affect 

spatial dependence in organic matter. Lime was added to the soil in the entire 

farm platform to adjust the soil acidity, and this may have altered the variability 

of soil pH.    
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4.2.5.2. Inter-field variability 

The results of the variations within the fields indicated that spatial 

variations occurred at different dimensions; being higher with organic matter, 

total carbon and total nitrogen at most fields than other parameters. The 

patterns exhibited by the selected fields (1, 4, 8, 13, 14 and 15; Pecketsford,   

Burrows, Middle and Higher Wyke Moor, Longlands South, North and East) 

suggest that concentrations of the investigated parameters (except elevation) 

varied more around the middle and edges of the fields rather than follow a strict 

pattern that can be adduced to previously segregated farms. Studies have 

shown that effects of grazed animals in intensively managed grassland can vary 

within a field and such variation can occur when grazed animals congregate in 

parts of field to create hotspots for above-average bulk density and organic 

matter (Mueggler, 1965; Wilcox and Wood, 1988; Bilotta et al, 2007; 

Houlbrooke et al, 2009; Zhou et al, 2010). Figure 4.18 shows examples of 

cases of preferential associations by grazing animals and some of their impact 

that can cause within field variations in the study area in the course of this 

study.  

The variability observed in the distribution of organic matter may also 

explain the variability in the total carbon and total nitrogen, especially because 

strong relationships occurred between their concentrations. Both bulk density 

and elevation exhibited significant relationship with the carbon and nitrogen 

stocks (R2  ≈ 0.7), and the two soil physical parameters are therefore believed to 

affect the concentrations of carbon stocks in the study area. Studies (such as 

Jobbagy and Jackson, 2000; Janssens et al., 2005; von Lutzow and Kogel-

Knabner, 2009; Schrumpf et al, 2011) indicated that soil carbon and nitrogen 

stocks can be affected by many factors, including changes in vegetation and 

plant growth, removal of biomass by harvest, mechanical soil disturbances such 

as plowing and nitrogen deposition. While there is yet little or no agreement on 

the effect of elevation on bulk density in grazed lands, grazing can influence 

bulk density and concentrations of soil organic matter, carbon and nitrogen 

(Mueggler, 1965; Post et al, 1982; Wilcox and Wood, 1988; Zhou et al, 2010).  
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Figure 4.18a-e: Example of how congregation of grazed animals can explain the 
within-field variability in the concentrations of physical and chemical parameters 
in the study area. a. shows cattle gathering to drink water, b-c show what can 
be left after such congregation, d and e exemplifies a distinct effect of hoof that 
can alter bulk density, and the field hydrology (d), and remnant of faeces that 
can influence organic matter and nitrogen ions exchanges (e).   
     

Concentrations of δ13C and δ15N are usually low in soils as obtained in 

this study (δ13C varied from -30.5 to -27 ‰ while δ15N varied from 4.5 to 7.2‰ 

(Steele and Daniel, 1978; Schlten and Schnizer, 1998; Boutton et al, 1998; 

Amundson et al, 2003). Variations in the concentrations of δ13C can be 

associated with land use change (Bouton et al, 1998), and since the variations 

in δ13C occurred very slightly throughout the fields (less than 3% coefficient of 
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variation and G = 0.01), it indicates that the effect of land use changes across 

the fields in the North Wyke Farm Platform is very minimal. Concentrations of 

δ15N on the other hand are usually used to quantify the amount of nitrogen 

fixation, use and release to the environment (Amundson et al, 2003). The 

relatively higher concentrations and variability (Coefficient of Variation ≤ 8.7% 

and G=0.05) than that of δ13C in this study indicated that the effect of nitrogen 

ions exchange (probably as organic-N compounds, ammonia and nitrate as 

described in the nitrogen cycle; O’Connor, 1983) can be more important than 

specific land use change in the study area (Steele and Daniel, 1978; Amundson 

et al, 2003). In addition, Chambers et al (2001) indicated that about 60% of 

typical fresh livestock manure is made up of nitrogen.  

 
4.2.6. Conclusions 

The study indicated that the concentrations of organic matter, total carbon, total 

nitrogen bulk density and pH across the investigated fields exhibited variability 

that can be linked with land management, further investigation will however be 

required to confirm this. Variability in the carbon and nitrogen stocks across the 

farm platform showed significant correlations with the concentrations of soil 

organic matter (74 and 67%, respectively) and bulk density (46 and 54%, 

respectively). The importance of anthropogenic sources of most of the 

investigated soil parameters (except elevation) therefore premised the 

acceptance  of the main hypothesis that states that the distribution of the 

investigated soil parameters are related to farm management in the study area. 

The main land use activities that indicated significant patterns were 

associated with grazing activities. Variability in the soils physiochemical 

parameters that are associated with grazing activities possesses significant 

hydrological implications (Bilotta et al, 2007). Studies have shown that the hoofs 

of grazed animals can affect infiltration when they by break up hard surface 

crusts and algae, lichen, and moss communities (Rauzi and Hanson, 1966; 

Thompson, 1968; Thurow et al, 1986; Abdel-Magid et al, 1987; Bilotta et al, 

2007). The third and the final aim of this study is therefore to assess the 

hydrological behaviour of the farm platform from a case study analysis of four 

(1: Pecketsford, 4: Burrows, 8: Middle and Higher Wyke Moor and 15: Longland 

East) out of the six fields that were selected for intra-field spatial variability 

analysis in this Aim (Aim 2).  
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4.3. Aim 3: Assessment of concentration-discharge (c-q) hysteretic 

relationships at the farm-scale 

4.3.1. Introduction 

The main objectives of this Aim are to (1) examine the spatial and 

temporal variations in discharge and chemical effluents from selected fields in 

the North Wyke Farm Platform; and (2) examine the patterns of concentration-

discharge (c-q) hysteretic relationships of different chemical constituents at the 

farm-scale. Selected chemical constituents are; water temperature, pH, 

dissolved oxygen (DO), conductivity, turbidity and nitrate (NO3
-).  

 

4.3.2. Spatial variations in discharge and chemical variables across 

 selected fields 

Hydrographs for the investigated storm events for the same period in the four 

fields indicated different patterns of response across the different fields and in 

the periods investigated (January and November). Most hydrological responses 

from the fields were flashy but the volumes of flow were different (Figure 4.19). 

More runoff was generated at Burrows (size is 11 ha) and Middle and Higher 

Wyke Moor (size is 6.9 ha) than the smaller (Pecketsford (4.7 ha) and 

Longlands East (1.5 ha)) fields. Runoff from Longlands East was lowest 

throughout the events (Figure 4.19).  

 The summary statistics of selected storm events (E.1 - E.13; Figure 4.21) 

show that for the same storm conditions (in terms of total rainfall and rainfall 

intensity), discharge parameters (mean, peak and total) and corresponding 

runoff chemistry varied across the selected fields (Table 4.5). Mean (standard 

deviation in parenthesis) values of peak discharge (Qp) was 15.9 (16.3) m3 s-1 

at Pecketsford, 42.8 (38.9) m3 s-1 at Burrows, 33.3 (24.9) m3 s-1 at Middle and 

Higher Wyke Moor, and 7.1 (6.2) at Longlands East, indicated significant 

variability across all of the fields. The peak discharge was also significantly 

different between Pecketsford, Burrows and Longlands East (Table 4.5). Mean 

runoff coefficient varied between 0.01 and 0.28, and does not exhibit significant 

spatial differences (p>0.05) (Table 4.5).  

 Significant variations in the concentrations of nitrate and conductivity 

occurred at Pecketsford, Burrows and Middle and Higher Wyke Moor with 

Longlands East (p<0.05). Dissolved oxygen and turbidity were, however, not 
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significantly different across the fields. Mean distribution of the investigated 

chemical parameters in the study area shows that runoff from the fields within 

the study period was generally of very low acidity (pH = 6.6), at 8.8 °C water 

temperature, and contains about 1778.9 µScm-1, 94.1% dissolved oxygen, 1.7 

mgl-1 of nitrate and 22.9 NTU of turbidity. The distribution of the data for all the 

parameters also showed that except pH and water temperature that were 

mostly negatively skewed, other investigated parameters were positively 

skewed (Table 4.5).  

 

 
Figure 4.19: Storm hydrographs for January and November, 2013.   Note that 
(1) January and November events are plotted on different scales good 
visualisation, and (2) Storm events labelled (1) – (12) are selected for event 
based analysis. 
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Table 4.5. Summary Statistics (mean ± standard deviation) of selected events in January and November 2013 at Longlands East, North 
Wyke Farm Platform. Note: Mean (±standard deviation) values with similar superscript (a,b,c) across each column are significantly 
different at p≤0.05. 
 

 Fields Statistics   Peak 
discharge 
(m3s-1) 

Mean 
discharge 
(m3h-1)  

Total 
discharge 
(m3h-1) 

Runoff 
coefficient 

pH Water 
Temperature 
(oC) 

Conductivity 
(µScm-1) 

Dissolved 
Oxygen (%) 

Nitrate (mgl-
1) 

Turbidity 
(NTU) 

Field 1 
(Pecketsford) 
  
  
  
  

Mean 15.9±16.3a 6.4±5.8 309.7±197.5 0.1±0.05 6.5±0.3 a 8.8±2.9 164.7±28.4 a 87.3±5.1 0.4±0.2 a 18.5±15.5 

Min-Max 1.4-49.6 0.9-20.8 85.7-707.4 0.01-0.18 5.9-6.8 3.0-12.2 119.6-212.4 77.1-93.2 0.1-0.6 0.5-59.9 

Skewness 1.1 1.6 0.7 -0.1 -0.7 -0.6 0.06 -0.6 -0.09 1.5 

Field 4 (Burrows) 
  
  
  
  

Mean 42.8±38.9 12.6±11.8 a 615.8±438.2 a 0.09±0.05 6.8±0.3 a,b 8.6±2.6 175.7±27.1 95.39±2.61 0.6±0.4 b 16.5±11.4 

Min-Max 2.3-102.5 1.4-44.7 131.3-1520.0 0.02-0.2 6.5-7.9 4.5-11.7 124.4-237.8 90.3-100.2 0.01-1.3 4.3-37.6 

Skewness 0.4 1.7 0.8 0.36 2.0 -0.19 0.4 -0.5 0.45 0.8 

Field 8 (Middle 
and Higher Wyke 
Moor) 
  
  

Mean 33.3±24.9 b 7.9±7.1 392.3±314.5 b 0.3±0.7 6.6±0.09 9.2±4.6 145.1±73.7 b 104.2±34.4 1.3±1.2 c 20.44±8.3 

Min-Max 1.4-69.7 0.7-25.1 58.9-1063.5 0.02-0.28 6.4-6.7 2.9-23.1 70.2-257.6 88.8-223.1 0.2-3.8 7.7-38.1 

Skewness -0.05 1.1 0.9 3.70 -1.1 2.1 0.4 3.7 0.70 0.6 

Field 15 
(Longlands East) 
  
  
  
  

Mean 7.1±6.2 a,b 2.1±1.8 a 106.1±61.1 a,b 0.1±0.07 6.4±0.09 a 8.6±2.4 230.2±78.3 a,b 89.7±3.0 4.4±4.5 a,b,c 35.6±40.5 

Min-Max 0.6-17.9 0.3-6.8 33.4-231.9 0.02-0.23 6.3-6.6 4.2-11.4 114.1-339.2 85.2-94.6 0.2-10.9 1.7-165.6 

Skewness 0.5 1.6 0.62 -0.4 0.7 -0.4 0.2 0.05 0.5 2.9 

Overall 
  
  
  
  

Mean 24.8±27.9 7.3±8.2 355.9±335.9 0.16±0.4 6.6±0.3 8.8±3.2 178.9±64.1 94.1±18.2 1.7±2.8 22.9±23.6 

Min-Max 0.6-102.5 0.3-44.7 33.4-1520.0 0.01-0.28 5.9-7.9 2.9-23.1 70.2-339.2 77.1-223.1 0.01-10.9 0.5-165.6 

Skewness 1.3 2.3 1.6 7.2 1.8 1.4 0.6 6.6 2.4 4.3 
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4.3.3. Relationships between discharge and runoff chemistry 

 The analysis of relationships between peak discharge, runoff coefficeints 

and the investigated chemical parameters indicated different patterns of 

variation (Figure 4.20). While nitrate and conductivity exhibited a significant 

inverse relationship with peak discharge (this means that nitrate and 

conductivity decreased as large discharge), pH slightly increased (between 6 

and 7.5) with peak discharge. The relationship between peak discharge, runoff 

coefficient, turbidity, dissolved oxygen and water temperature was not 

significant (Figure 4.20). 

 
Figure 4.20. Relationship between peak discharge, runoff coefficient and the 
investigated chemical parameters at four selected fields (Pecketsford, Burrows, 
Middle and Higher Wyke Moor and Longlands East) at the North Wyke Farm 
Platform from January and November 2013 storm events. Data were obtained 
at 15 minute intervals.  
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4.3.4. Temporal variations in discharge and runoff chemistry 

 The analysis of variance tests to distinguish temporal change indicated 

significant differences in the mean and peak discharge values with the 

investigated chemical parameters in all the investigated fields between January 

and November 2013 (Table 4.6). More parameters (runoff temperature, pH, 

conductivity dissolved oxygen, nitrate and turbidity) exhibited significant 

differences in their concentrations between January and November at 

Pecketsford than observed with other fields. Turbidity and dissolved oxygen 

were not significantly different in January and November at Longlands East. 

Discharge at the Longlands East did not significantly change within the two 

months. Nitrate concentration varied significantly in all the fields (Table 4.6). 

Turbidity and dissolved oxygen level of the investigated storm event waters 

were consistent in both periods.  

 

4.3.5 Concentration-discharge relationships  

 The event based hydrographs, chemographs and corresponding c-q 

plots for the 13 selected events were plotted and visually inspected for their 

patterns and directions. Figure 4.21a-f is the summary of the concentration-

discharge patterns observed. Anticlockwise patterns dominated the pH-

discharge relationship in three of the fields (except Longlands East), most of the 

temperature-discharge relationships exhibited the ‘figure of 8’ hysteresis pattern 

and nitrate-discharge showed a complex pattern, except at Longlands East. 

Dissolved oxygen-discharge relationships however varied with events (refer to 

Appendix 4.7).  
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 Table 4.6. Summary (means ±standard deviation) of the sampled events (according to month, January/November) and 
runoff chemistry in selected farms at the North Wyke Farm Platform. Note that the mean values with similar superscript 
(a,b,c) across each row are significantly different at p≤0.05. 

Total rain per event and rain intensity are assumed to be similar for the entire fields  
 
 
 
 
 
 
 

Parameters  Pecketsford Burrows Middle and Higher Wyke 
Moor 

Longlands East 

January       November January       November January       November January       November 
Total rain per event (mm) 8.1±4.5a 6.0±4.6a 8.1±4.5b 6.0±4.6b 8.1±4.5c 6.0±4.6c 8.1±4.5d 6.0±4.6d 
Rain intensity (mm h-1) 0.6±0.3a 0.1±0.1a 0.6±0.3b 0.1±0.1b 0.6±0.3c 0.1±0.1c 0.6±0.3 0.1±0.1 
Peak discharge (m3 s-1) 24.2±17.2a 5.0±4.7a 67.3±33.5b 10.1±11.7b 42.6±22.0 20.8±24.6 10.2±6.0 3.1±3.8 
Mean discharge (m3 s-1) 8.9±6.4a 3.0±2.6a 18.5±12.3b 4.9±4.5b 11.1±6.9c 3.9±5.3c 2.8±1.9 1.3±1.4 

Runoff coefficient  0.09±0.06 0.11±0.05 0.10±0.06 0.08±0.03 0.11±0.06 0.34±0.12 0.12±0.07 0.16±0.06 
Water temperature (°C) 6.8±2.0a 11.5±0.7a 6.7±1.5b 11.2±0.6b 8.6±6.2 9.8±0.5 6.8±0.1c 6.5±0.1c 

pH 6.7±0.1a 6.2±0.2a 7.0±0.4b 6.6±0.1b 6.6±0.1 6.6±0.01 6.4±1.5 10.9±0.5 

Conductivity (µScm-1) 144.7±17.7a 191.3±13.2a 169.0±34.3 184.7±9.4 84.7±12.1b 225.7±16.9b 171.7±35.1c 308.3±37.6c 
Dissolved oxygen (%) 90.8±2.3a 82.6±3.7a 96.4±1.6 94.1±3.2 96.6±0.5 98.8±10.2 90.9±2.2 88.1±3.4 

Nitrate (mgl-1) 0.2±0.1a 0.6±0.01a 0.4±0.2b 0.8±0.3b 0.3±0.1c 2.4±0.8c 0.6±0.3d 8.7±2.2d 

Turbidity (NTU) 26.6±15.3a 7.8±7.5a 19.1±9.4 12.4±14.2 22.9±5.6 17.2±10.8 33.7±14.3 38.2±63.0 



 
 

144 
 

 
Figure 4.21 a-f: Summary of the distribution of concentration-discharge patterns at the 
four selected fields in the North Wyke Farm Platform. Data used were 13 storm events 
in January (8) and November (5 events), 2013.  
 
 
4.3.5.1. pH-discharge relationship 

 The pH-discharge relationship across the fields exhibited anticlockwise patterns, 

and in many cases the relationship is complex or unclear. Corresponding chemographs 

of anticlockwise pH-discharge patterns indicated that anticlockwise occurs when pH 

rises at high discharge and peak after discharge had peaked (Figure 4.22 a). Clockwise 

pH-discharge relationships are produced in some fields (especially Longlands East; 
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Events 9, 11 (refer to Appendix 4.7 for the Table showing the pattern of c-q at each 

storm event, and Appendix 4.8 for details of rainfall, discharge and runoff chemistry at 

each event) when pH was lowest at peak discharge (Figure 4.22 b). The ‘figure of 8’ 

pattern occurs when pH peaked at the same time with discharge and declined early in 

the falling limb of the hydrograph (Figure 4.22 c). In general, pH-discharge relationships 

become less meaningful (sometimes forming almost a straight-line curve), when pH 

does not exhibit clear variation (when variations was less than 1 unit) across the event 

period.  

 

Figure 4.22 a-c. Representative pH-discharge relationship at selected fields in the North 
Wyke Farm Platform. Individual plots and their patterns are included as Appendix 4.7 
and 4.8, respectively.   
 
4.3.5.2. Temperature-discharge relationship 

 The ‘figure of 8’ pattern generally dominated the temperature-discharge 

relationship in all the investigated fields (Figure 4.23 b). In most cases, the ‘figure of 8’ 

pattern was upward facing, and the associated chemographs show that temperature 

was declined from the start of the event but it rises immediately after peak discharge 

(Figure 4.23 a). In the events where temperature rises during an event and peaked just 
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after peak discharge (Burrows and Pecketsford at Event 4), a downward facing ‘figure of 

8’ pattern occurs (Figure 4.23 b). Temperature-discharge relationship however becomes 

unclear or complex when the variation is very small (such as less than 0.5°C). 

Temperature-discharge relationship also exhibited a clockwise pattern when 

temperature peaked before discharge and declined thereafter through the falling limb of 

the hydrograph (Figure 4.23 c). 

 

  Figure 4.23 a-c. Representative temperature-discharge relationship at selected fields 
 in the North Wyke Farm Platform. Individual plots and their patterns are included 
 as Appendix 4.7 and 4.8, respectively.   
 
4.3.5.3. Conductivity 

 Conductivity-discharge relationship exhibited upward-facing clockwise pattern at 

most of the studied effects for all the fields. The chemographs for the pattern indicated 

that conductivity was low at high discharges and rises at the falling limb of the 

hydrograph (Figure 4.24 a). In few cases, fluctuations in the conductivity during high 

runoff resulted in a ‘figure of 8’ pattern (Figure 4.24 b) while the patterns become 

unclear or complex under multiple-peaks events (Figure 4.24 c).  
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Figure 4.24 a-c. Representative conductivity-discharge relationship at selected fields in 
 the North Wyke Farm Platform. Individual plots and their patterns are included as 
 Appendix 4.7 and 4.8, respectively.   
 
4.3.5.4. Turbidity-discharge relationship 

 The turbidity-discharge relationship exhibited patterns that are similar to those of 

conductivity, in terms of direction, being dominated by a clockwise direction but the 

slope of the turbidity-discharge relationships were generally convex; unlike the concave 

shaped conductivity-discharge patterns (compare Figure 4.24 and 4.25). Chemographs 

of conductivity-discharge relationship are also different from those of turbidity-discharge 

because turbidity generally peaked before the discharge to produce their clockwise 

directional loops (Figure 4.25 a). In some events that turbidity peaked at (or about) the 

same time with discharge, ‘figure of 8 loop’ or a more complicated form was formed 

(Figure 4.25 b).  
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Figure 4.25 a-c. Representative turbidity-discharge relationship at selected fields in 
 the North Wyke Farm Platform. Individual plots and their patterns are included as 
 Appendix 4.7 and 4.8, respectively.   
 
4.3.5.5. Dissolved oxygen-discharge relationship 

 Dissolved oxygen-discharge relationship generally produced concave loops that 

can be classified as ‘loop with a line’ because projected line merged with to form a loop 

at mid-way (Figure 4.26 a). In some cases of DO-q relationships, the line merged at the 

point of curvature, and thereby forming a ‘figure of 8’ pattern or more complex unclear 

patterns. Chemographs for most of the ‘loop with a line’ pattern indicate that this pattern 

(loop with a line) in DO-q relationship occurred because dissolved oxygen and 

discharged peaked at the same time during an event. In the events that DO did not 

peaked at the same time with discharges (such as most events in November), DO-q 

relationship exhibited clockwise directional loops or anticlockwise (in case of more than 

one peak in hydrograph (Figure 4.26 b-c). The general patterns of the plots for 

individual event indicated that dissolved oxygen concentration in runoff was more 

affected by the monthly pattern of event distribution than the other investigated chemical 

parameters (refer to Appendix 4.7).  
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Figure 4.26 a-c. Representative dissolved oxygen-discharge relationship at selected 
fields in the North Wyke Farm Platform. Individual plots and their patterns are included 
as Appendix 4.7 and 4.8, respectively.   
 
4.3.5.6. Nitrate-discharge relationship 

 Except for Longlands East, nitrate-discharge relationships exhibited haphazardly 

unclear shapes, and their chemographs indicated that concentrations of nitrate decline 

rapidly at high runoff (Figure 4.29 a). Most c-q relationships at Longlands East were 

clockwise patterns while those of other fields were unclear patterns. There was also 

anticlockwise patterns and ‘line with a loop’ but these were fewer. Comparison of the 

chemographs that produced a haphazard pattern with those that produced clockwise or 

anticlockwise pattern indicated that within-event fluctuations occurred more rapidly in 

the concentrations that produced the haphazard patterns (Figure 4.29 a-c).   
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Figure 4.27 a-c. Representative nitrate-discharge relationship at selected fields in the 
North Wyke Farm Platform. Individual plots and their patterns are included as Appendix 
4.7 and 4.8, respectively.   
 
4.3.6. Discussion 

This aim was focussed on investigating concentration-discharge relationships at 

the farm scale from selected fields on the North Wyke Farm Platform. Land use and 

terrain characteristics of selected fields have been examined in the earlier sections and 

the results showed that the presently investigated fields are different in terms of the 

area covered, dominant soil series, land use and slope. Specifically, the study 

investigated the runoff characteristics and concentration-discharge characteristics of the 

effluent’s pH, temperature, conductivity, turbidity, dissolved oxygen and nitrate in 2013 

(January and November). 

 
4.3.6.1. Runoff Coefficients (RC) 

The RC is defined as the portion of rainfall that becomes direct runoff during an event, 

and has been determined in studies in runoff generation as a diagnostic variable   

(Kadioglu and Sen, 2001; Merz et al, 2006; Mohmoud et al, 2014). The mean RC 

determined for the 13 sampled events in the four selected fields (Pecketsford, Burrows, 

Middle and Higher Wyke Moor and Longlands East) were within the value range for 
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pasture, grazed land and cultivated soils (Mohmoud et al, 2014). Runoff coefficients in 

the fields tended to increase with peak discharge within the period of study but this 

relationship was not significant. It is, however, likely that longer term evaluation of RC in 

the study area produces significant direct relationships with peak discharge in the area, 

especially as the mean values for the total sampled events indicated seasonal 

variations, which may become pronounced with land use. The relatively statistically non-

significant differences in the values of runoff coefficient across selected fields suggest 

that the hydrological characteristics of selected fields may not be significantly different 

for the window of time used for the current investigation.   

 
4.3.6.2. Spatial variations    

The study showed that discharge and runoff chemistry exhibited significant variations 

across the selected fields. While variations in discharge were related to the sizes of the 

fields, peak, mean and total discharge values were comparatively lower at the 

Longlands East (the smallest field), than the three other fields studied, the 

concentrations of most of the investigated chemical variables were not. Larger 

concentrations of conductivity, nitrate and turbidity were recorded at Longlands East.  

 The concentration of nitrate in the runoff water was generally low, being far less 

than the 30 mgl-1 recommended limit in surface water bodies (DEFRA, 2007). The use 

of electrical conductivity as a hydrological tracer and for water chemistry assessment 

(e.g. Nakaruma, 1971; Moore et al, 2008; Gali et al, 2012) suggested that the smaller 

Longlands East field contained higher concentrations of dissolved solids than the larger 

fields. Analysis of the land use in the North Wyke Farm Platform (Aim 2) showed that 

Longland East was at the time of this study being grazed with sheep (about 40 ewes 

and ram per period) only, and was characterized by soil pH of about 5.9-6.1 units and 

0.9-1.03 gcm-3 soil bulk density but was not shown to be significantly different from 

other fields, except for its relatively smaller size (than the other selected fields for this 

aim). The high content of the runoff chemistry may also have resulted from previous 

(until 2011) land use, which had involved grazing of both cattle and sheep, cultivation of 

barley, rye and ploughing (refer to Table 4.5). An explanation to the relatively higher 

concentrations of conductivity, nitrate and turbidity is probably the lower discharge from 
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the field relative to the larger fields. The results of the relationship between the 

parameters showed that nitrate and conductivity exhibited inverse relationship with peak 

discharge (that is the higher the discharge, the lower the nitrate and conductivity. Peak 

discharge’s relationship with turbidity was not significant). The results is in line with the 

observation of previous studies on nitrate-nitrogen (e.g. Cooper, 1993; Woltemade, 

2000; DEFRA, 2007; Groffman and Marshall, 2013; Maltby, 2014), which noted that 

because water (runoff) progressively depletes nitrate, its concentration is often lower 

under larger water flow.  

 
4.3.6.3. Concentration-discharge relationships  

 Concentration-discharge relationships vary with the chemical substances, field 

properties and source of materials from the fields (Haygarth et al, 2004; Jiang et al 

2012). The selected fields (Pecketsford, Burrows, Middle and Higher Wyke Moor, and 

Longlands East) showed similar dominant patterns of concentration-discharge 

hysteresis for conductivity, turbidity, water temperature and nitrate but the patterns 

exhibited by pH-discharge and dissolved oxygen-relationship were different.  

 

4.3.6.3.1 Nitrate 

 Nitrate-discharge relationship generally showed nitrate concentration to be lower 

during high discharges (than during low discharges), resulting into complex hysteresis 

pattern or anticlockwise directional pattern (depending on the complexity of within-storm 

variation in nitrate concentrations. Peak discharge exhibited inverse relationship with 

nitrate concentration across selected, suggesting that nitrate was not being flushed out 

of the fields during high discharges. The inverse relationship between high discharge 

and nitrate concentration, and the anticlockwise directional pattern in this study suggest 

that nitrate was more supplied through subsurface pathways than through surface 

pathways (Evans and Davies, 1998; Jiang et al, 2012). The patterns also suggest that 

nitrate concentration in the study area may not be well linked with the atmospheric input 

but with diffuse input from land use (House and Warwick, 1998). The Department for 

Environment, Food and Rural Affairs (DEFRA, 2007) noted that agriculture accounts for 

about 61% of the nitrate-nitrogen in the surface water in England and Wales (DEFRA, 
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2007), which is presumably why the wider area of the Taw catchment is designated as a 

Nitrate Vulnerable zone (NVZ).  

 
4.3.6.3.2. pH and Conductivity 

 The pH and electrical conductivity values also varied significantly with peak 

discharge, but differently (pH tends to increase with high discharge while conductivity 

conversely decreases at increasing peak discharge). The dominant hysteresis pattern 

exhibited by electrical conductivity at all the investigated fields was clockwise, and the 

chemographs showed that conductivity was low at high discharges and high at low 

discharges. Electrical conductivity has been used in many studies, ether as surrogate to 

provide information about the total dissolved solids or as tracer for hydrological 

investigations because of its high correlation with dissolved salts (Nakaruma, 1971; 

Moore et al 2008; Pellerin et al, 2008; Gali et al, 2012). Conductivity generally exhibited 

its lowest concentration at peak discharge to form concave-shaped (or negative; Evans 

and Davies, 1998) clockwise hysteresis pattern that is associated with a dominant pre-

event source of input of dissolved solids. Variations in pH values with discharge on the 

other hand, suggest that while anticlockwise patterns dominated the pH-discharge 

relationship at Pecketsford, the clockwise and ‘figure of 8’ patterns were also important 

at Burrows, Middle and Higher Wyke Moor and Longlands East. The interpretation of 

this finding is that variations in the runoff pH are influenced by both event and pre-event 

chemical concentrations in the fields. pH values in the fields have been largely 

controlled by addition of lime on the field prior to the study, and this may have 

significantly informed the results of the study (please refer to Chapter 3 and Table 4.5 

for discussion about the management of the fields). 

 
4.3.6.3.3. Water temperature 

 Water temperature generally displayed a non-significant inverse relationship with 

peak discharges, suggesting that water temperature reduces throughout a storm event. 

The event-based temperature-discharge also shows that temperature generally decline 

from the beginning of a storm event in all the fields. Studies have shown that except for 

significant climatic, anthropogenic or hydrological interference (Webb and Nobilis, 1994; 

Webb et al, 2003), which was not recorded at any time of this study, water temperature 
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will often vary with precipitation or seasonal change (Shanley and Peters, 1988), and 

this accounted for the significant difference in the runoff temperature at most fields 

(except at the Middle and Higher Wyke Moor) between the January and November 

events. The dominant ‘figure of 8’ water temperature-discharge pattern suggests the 

influence of both the pre-event and event water on variation of runoff temperature. 

Water temperature-discharge relationships in the study exhibited different proportions of 

clockwise and anticlockwise direction that can be attributed to the previous level of 

dryness of the soil before and event, with dry antecedent conditions favouring clockwise 

and wet antecedent conditions favouring anti-clockwise hysteresis (Hornberger et al, 

2004; Abell et al, 2013).  

 

4.3.6.3.4. Turbidity and dissolved oxygen 

Turbidity-discharge relationships in this study mostly exhibited convex-shaped 

clockwise direction pattern, which showed turbidity peaked prior to discharge peak. In a 

few cases, turbidity peaked at the same time with discharge to produce complex 

patterns which also follow a clockwise direction. A clockwise direction turbidity-

discharge relationship indicates the dominance of pre-event source of materials that 

were flushed with runoff during a storm event (Qutram et al, 2013; Abell et al, 2013). 

The logarithmic relationship between turbidity and peak discharge was also not 

significant, and with the clockwise pattern suggest the pre-event pathway. Studies have 

suggested that turbidity can inform researchers about sediment availability, in 

intensively managed grasslands by one or more of the following processes; (a) 

trampling, poaching and pugging and general disturbance of soil by grazed animals, (b) 

readily mobile colloids that have resulted from slurry or manure application and general 

animal faeces, and (c) detachment of colloids due dissolution of cementing agents and 

enzymatic hydrolysis of organic materials that were once bound (Bilotta et al, 2007; 

Bilotta et al, 2008).  

Dissolved oxygen-discharge (DO-q) relationships reveal a generally different 

pattern between most events in January and others in November. While most events in 

January showed DO to peak at same time with discharge to produce a complicated 

pattern of a ‘loop (both clockwise and anticlockwise) and a line’, most events in 
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November produced clockwise patterns. William (1989) referred to similar ‘loop and a 

line’ concentration-discharge pattern as ‘single-valued line plus loop’ and associated the 

concentration-discharge to the event condition in which concentration does not 

synchronise with discharge in the middle of the hydrograph, although it varied directly 

with discharge at the beginning or at the end of the event. The logarithmic relationship 

between discharge and dissolved oxygen showed that they exhibit a non-significant 

relationship. Another explanation for the line pattern is the small range of the data, and 

its small variations during storm events.  

 
4.3.6.4. Insights into the hydrological processes from the analysis of c-q 
 relationship 
 
 Conductivity-discharge and turbidity discharge relationships observed in this 

study exhibited clockwise patterns during most of the investigated rainfall-runoff events 

at all the selected fields. Clockwise hysteresis patterns have been interpreted to indicate 

flushing of materials from the ground and vegetation surfaces at the start of a rainfall 

event (Holden, 2005), lateral flushing of readily available excess solute and suspended 

solids in the near surface horizons (Bishop et al, 2004). Clockwise hysteresis also 

occurs when chemicals interacts with the surface and near-surface in the course of 

transmitting feedback flushing typical of quick lateral transport of leached nutrients via 

saturation excess flow (Hornberger et al, 2004; Weiler and McDonnell, 2006). The 

dominance of complex or irregular nitrogen-discharge patterns at the larger three of the 

selected fields (Pecketsford (Field 1), Burrows (Field 4), Middle and Higher Wyke Moor 

(Field 8)) indicate ‘spatial variability of the nutrient along the flow channel’ (Murphy et al, 

2012) in these fields. At the Longlands East (Field 15), which is a smaller field, the study 

indicated clockwise hysteresis pattern, and this is interpreted to suggest that nitrate was 

flushed via saturation excess flow into the flow channel (Hornberger et al, 2004; Weiler 

and McDonnell, 2006). The significantly higher concentration of nitrate at the Longlands 

East during the November events (p<0.05) indicated recent application of manure 

before the event. Previous study of nitrate in North Wyke fields and elsewhere indicated 

concentrations of nitrate in runoff can be affected by wetting and drying of soil 

(Blackwell et al, 2012) and the rate of application of N fertiliser and farmyard manure 
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due to farm management (Scholefield and Stone, 1995; Jarvis, 1999; Brown et al, 

2001). Studies (Scholefield and Stone, 1995; Dixon et al, 2010) have also noted that a 

large fraction of nitrate may be locked up in the upper soil profile (O-horizon) in well 

fine-textured soil, waiting to be flushed out during a storm event. Variations in the 

nitrate-discharge relationship may also be explained by the effect of microbial biomass 

concentrations (due to fertiliser and farm manure treatment) following soil drying and 

rewetting (Blackwell et al, 2012). Dissolved oxygen-discharge relationships of ‘line and 

loop’ in January and mostly clockwise pattern in November indicated variability in solute 

concentrations at the source area within the fields. The ‘figure-of-8’ hysteresis pattern 

exhibited by water temperature-discharge relationship indicated that temperature 

responds to both surface and subsurface conditions.  

 The clockwise patterns exhibited by most of the c-q relationships (conductivity, 

turbidity, nitrate and water temperature) suggest that the materials that contributed to 

the runoff concentration were close to the gauge station (having travelled a short 

distance) (Klein, 1984) and that the runoff was dominated by event water (Davies and 

Evans, 1998). The anticlockwise patterns which dominated the pH-discharge 

relationship at three (Pecketsford, Burrows and Middle and Higher Wyke Moor) 

indicated that some chemicals also travel far from the gauging station (Klein, 1984) and 

that the runoff was dominated by pre-event water (Evans and Davies, 1998). The figure-

of-8’ and the unclear (haphazard) loop of some of the parameters during some of the 

storm events suggest that the pre-event and event water sometimes mix before 

reaching the gauge station. The implication of this is that the saturation-excess overland 

flow is an important mechanism in the study area. Saturation-excess overland flow 

occurs as excess water runs off after the soil is saturated, and it includes translatory 

flow (when previously stored water is released) and return flow (refer to Section 

2.2.1.2). Runoff mechanism that can be explained by clockwise hysteresis patterns are 

often fast macropore or surface flow (Holden, 2005; Bishop, 2004). Granger et al 

(2010b) showed from a study of the hydrological response of clay soils at North Wyke 

from δ2H, indicated indicated that Hortonian overland flow may be occurring in the study 

area.  
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4.3.7. Conclusions  

The concentrations of nitrate, conductivity and turbidity in the investigated fields 

have been identified with pre-event flow by examining chemographs and concentration-

discharge relationships. Farm management procedures (including grazing, application 

of manure, slurry and lime) and farm management history are identified as potential 

causes of the spatial variability of the concentrations of the chemical parameters in the 

selected fields. Spatial variations in the fields’ responses to rainfall (in terms of 

discharge and discharge peak) were linked with the different sizes of the investigated 

fields (larger volume of discharge was recorded in large farms than the smaller fields). 

The study found that the pre-event contribution dominated the variations in turbidity, 

nitrate and conductivity while variations in temperature, pH and dissolved oxygen varied 

with the influence of event contributions. The investigated parameters also showed 

evidence of temporal differences (variations occurred in their concentrations, and at 

least nitrogen showed varying concentration-discharge patterns in January and 

November). Indications from the results of the c-q relationships suggest that saturation-

excess and Hortonian overland flow are prominent flow paths in the study area.  
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Chapter 5 

5. Synopsis of findings, Conclusions and Recommendations  

5.1.  Synopsis of findings 

This research was conducted based on three possible foci for farm scale hydrology; 

precipitation, soil and land use. Movement of water from precipitation through a 

catchment to other parts of the environment has received a great deal of research 

attention in recent years, because pollutants can be transferred with water from their 

source areas to vulnerable areas, with significant environmental consequences (Shen et 

al, 2014; Sundström et al, 2014; Xia et al, 2014). The farm scale approach focussed in 

this study therefore exemplifies an important environment whose misuse is of significant 

threat to the immediate and larger society. The research focussed on intensively 

managed grasslands, which have been globally recognised as key to increase food 

production, and as potentially vulnerable areas to pollution and degradation (Tscharntke 

et al, 2005; Eriksson and Cousins, 2014). The aims of the research were to investigate 

the (1) temporal variability in precipitation and soil chemistry, (2) spatial variability of soil 

properties, and (3) concentration-discharge hysteretic relationships at the farm-scale. 

The intensively managed fields of the North Wyke Farm Platform in Devon, United 

Kingdom were used as study area. The fields of the North Wyke Farm Platform have 

been cultivated under different land management (before 2011) until the present 

experimentally planned tri-focused land management (grassland, planned reseeding 

and intensive leguminous uses).   

 
5.1.1. Temporal variability in precipitation and soil chemistry 

 Comparison of the precipitation and soil chemistry at the study area indicated 

that the soil water in the fields was not significantly related to the precipitation as at the 

time of investigation. Low correlation between precipitation and soil chemistry suggests 

that the fields were not contaminated as the precipitation chemistry was also within the 

minimum limit of environmental guidelines (Chapman, 1996). Sources of major 

precipitation ions (such as chloride, sodium and phosphate) were traceable to 

anthropogenic sources, especially sea-salts, and they exhibited significant level of 

variations with the temporal variations in rainfall and temperature as have also been 
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noted in many studies (e.g. Buishand et al, 1988; Whitlow et al, 1992; Xiao et al, 2014). 

Soil water chemistry at 0-10 cm and below 10cm soil depth, which exhibited significant 

relationship (p<0.05) for all the investigated parameters (except chloride and 

phosphate) indicated that land use is an important factor in the soil chemistry (by 

consequence runoff chemistry) in the study area.  

 
5.1.2. Spatial variability of soil properties 

 Spatial variability in the distributions of bulk density, pH, carbon, nitrogen, δ13C, 

δ15N) and organic matter was investigated from data obtained from the 15 fields in the 

study area. Small within-field and between spatial variability occurred in the distribution 

of bulk density, carbon and nitrogen, and the variability was found to be related to the 

effect of trampling of the soil, organic deposition by the grazing animals and previous 

treatment of the farms to improve the organic matter and pH levels. Animal related 

activities that often account for variability in soil physiochemical properties include soil 

pugging (plastic deformation associated with deep hoof imprints of grazed animals 

when the animals’ load exceeds the bearing capacity of the soil), poaching (elastic 

deformation of soils associated with animals trampling on very wet soil) and soil 

compaction, when the soil bearing capacity of these impact is exceeded (Bilotta et al, 

2007). Spatial variability in the investigated parameters across the fields were generally 

less than 25%, and this does not suggest poor land management of the area.  

 
5.1.3. Concentration-discharge hysteretic relationships at the farm-scale  

 Hysteretic plots of five parameters (pH, temperature, conductivity, dissolved 

oxygen, turbidity and nitrate) at 13 events (8 in January and 5 in November, 2013) were 

investigated in four fields (Pecketsford, Burrows, Middle and Higher Wyke Moor, and 

Longlands East). The fields were different in terms of their sizes (4.7, 11.0, 6.9 and 1.7 

ha, respectively), slope (0-12 %, 0-25 %, 2-8 % and 2-6 %, respectively) and dominant 

soil series but have been partly or wholly ploughed, reseeded and grazed between 1995 

and 2005. The sampled fields (except the Middle and Higher Wyke Moor) were also 

cultivated with barley within the period. Runoff coefficient varied between 0.1 and 0.3, 

and there was no significant spatial difference across the fields. Nitrate and conductivity 

values were much higher in the runoff at the Longlands East, and this can be traced to 
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the concentrations of δ13C and δ15N, which were found to be equally higher at the 

Longlands East than the three (Pecketsford, Burrows, and Middle and Higher Wyke 

Moor) other investigated fields under refer Aim 2. Except that the rate and volume of 

discharge at the Longlands East was relatively low (mean peak at the period of study 

was 7.1 m3 s-1 compared to 15.9 - 42.8 m3 s-1 in the other fields), contrasting features of 

the Longlands East compared with the other fields are its smaller size (1.5 ha, 

compared to 4.7-11.0 ha), and its relatively higher (1.0 g cm-3) bulk density. McDowell et 

al (2014) noted that chemical parameters such as nitrate are often emitted from small 

areas of a field (called critical source area) that emits in huge concentration in 

commensuration with surface flow pathways, as well as input and land use. Both 

conductivity and nitrogen concentrations were low at high discharges during most of the 

events studied. The results of hysteresis however showed that nitrate-discharge 

relationship was mostly clockwise at the Longlands East while it complex (or unclear) at 

the other three fields. The conclusion in Aim 3 that both the chemographs and 

hysteresis pattern indicated dominance of pre-event contributions of turbidity, nitrate 

and conductivity, suggested that flushing of the previously accumulated sources of 

these materials in the fields is a likely explanation for the occurrence. The relatively 

higher mean bulk density at Longlands East also indicates a lower porosity than the 

soils in other fields, which may affect transfer of chemical materials in soils. Review of 

the farm records also showed that the fields have been sprayed with farm yard manure 

as part of the management procedure for soil quality enhancement. The c-q 

relationships indicated that the Hortonian and saturation-excess overland flows are the 

prominent flow mechanisms in the study area, 

 
5.2. Conclusions 

 The study evaluated precipitation-soil water chemistry relationship, soil variability 

and concentration-discharge relationship at the farm-scale based on datasets from the 

North Wyke Farm Platform between 2011 and 2013. The three main hypothesis were 

that (1) precipitation and soil water chemistry are significantly related (2) significant 

relationships exists between the distribution of soil physiochemical characteristics and 

the managments of the fields, and that (3) hydrological behaviour of fields underlain by 
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certain dominant soils in the study area are different from that of other fields. The study 

rejected the first and third hypothesis, and concluded that relatively higher 

concentrations of nitrate and conductivity in the runoff at the Longlands East was 

related to the relatively higher carbon and nitrogen isotopes and bulk density at same 

field. The study therefore associated variability in the runoff chemistry with land use and 

soil compaction. The study also noted that sodium and chloride ions were dominant in 

the precipitation chemistry, and therefore suggests their further investigation as 

conservative tracers in the soil and runoff chemistry. It also showed that the study area 

was dominated by surface runoff.  

 
5.3. Limitations of the study and recommendations for further research 

As an international PhD student from Nigeria, the pressure of time limit and limited 

financial availability were main distractions during the course of this study. Other 

significant source of distraction was waiting for data to be generated and certified by the 

Farm Platform and Rothamsted Research before use. The challenge of not able to do a 

separate field work other than what was planned by the Farm Platform as a result of my 

financial and technical limitations were also important sources of limitations in the 

course of this research.  

 Based on the results of this study, a few other studies are recommended, and 

they include: 

 
(1) Conducting a laboratory investigation of the concentration-discharge hysteresis 

such that parameters (concentration, slope, rainfall volume, soil and vegetation) 

can be varied. The natural environment is such a complex ecosystem that 

changes over a short period may not be easily identified, but the laboratory 

environment can be varied and the effects promptly visualised and noted; and  

 
(2) investigating the soil water chemistry at different slope, soil series and vegetation 

from make-up monitoring stations in addition to the existing to the station of the 

Environment Change Network (ECN) at Burrows (Field 4) because soil water 

chemistry can vary with change in slope and vegetation (Parton et al, 1987; 

Sariyildiz et al, 2005; Xu et al, 2014). Variations in soil water chemistry across 
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varying slopes can provide answers to the changing concentration-discharge 

relationships in some fields.  
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APPENDICES  
 

Appendix 3.1. Ion balance estimates of the mean precipitation chemistry at North Wyke 
(1993–2011). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Ion Jan.-Dec. Dec-February  March-June June-Sept. Oct-Nov. 

 mgl-1 meql-1 mgl-1 meql-1 mgl-1 meql-1 mgl-1 meql-1 mgl-1 meql-1 

Ca2+ 0.613 0.031 0.346 0.017 0.915 0.046 0.527 0.026 0.856 0.043 

Mg2+ 0.338 0.028 0.390 0.032 0.345 0.028 0.300 0.025 0.318 0. 026 

K+ 0.634 0.016 0.306 0.078 0.256 0.007 0.901 0.023 0.964 0.025 

Na+ 2.944 0.128 3.680 0.16 2.751 0.12 2.415 0.105 2.856 0.124 

NH4
+ 0.317 0.018 0.297 0.017 0.637 0.035 0.281 0.016 0.161 0.009 

SO4
2- 0.327 0.007 0.330 0.007 0.47 0.01 0.384 0.008 0.148 0.003 

PO4 0.018 0.0002 0.019 0.001 0.012 0.0001 0.026 0.0003 0.012 0.0001 

Cl- 5.207 0.147 6.324 0.178 4.578 0.129 4.188 0.12 5.604 0.158 

NO3
- 0.329 0.005 0.340 0.006 0.514 0.008 0.299 0.005 0.222 0.004 

CO3
2- 2.251 0.075 1.093 0.036 2.853 0.095 2.236 0.075 3.281 0.109 

Calculated TDS 13.00  13.14  13.35  11.63  14.425  

Sum of cations  0.222  0.235  0.237  0.199  0.227 

Sum of anions  0.234  0.227  0.242  0.206  0.274 

Cation–Anion 
ratio 

 1.04  1.04  1.03  1.07  1 

Difference  0.012  0.008  0.005  0.007  0.047 

% difference  2.56  1.62  1.05  1.66  9.40 
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Appendix 3.2: Some field activities during soil data preparation for Aim 2. 
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Appendix 3.3. Monthly averages of rainfall and temperature in 1981-2000 for the North 
Wyke, Devon, United Kingdom. Rainfall bar in black colour indicate the month for which 
concentration-discharge was investigated. The months are representative of winter 
(January) and autumn (November) in the study area. Data were obtained from the Met 
Office website (http://www.metoffice.gov.uk/public/weather/climate/gcj0z3b55).   

http://www.metoffice.gov.uk/public/weather/climate/gcj0z3b55
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Appendix 4.1. Relationship between precipitation and soil water chemistry at North 
Wyke. 
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Appendix 4.1 (continues). Relationship between precipitation and soil water chemistry at 
North Wyke. 
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Appendix 4.1 (continues). Relationship between precipitation and soil water chemistry at 
North Wyke. 
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Appendix 4.1 (continues). Relationship between precipitation and soil water chemistry at 
North Wyke. 
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Appendix 4.2. Correlations between common meteorological elements and 
investigated precipitation chemistry. 
 

 

 

** Correlation coefficient is significant at p<0.01. 
* Correlation coefficient is significant at p≤0.05. 
 

 Rainfall Minimum 
Temperature 

Maximum 
Temperature 

Wind 
speed 

Relative 
Humidity 

pH 0.66* -0.42 -0.52* 0.47 0.82** 

Alkalinity 0.11 0.28 0.25 -0.34 -0.08 

Conductivity 0.73** -0.72** -0.75** 0.52* 0.62* 

Ca2+ -0.09 0.52* 0.49 -0.64* -0.25 

K+ -0.44 0.68* 0.70* -0.66* -0.63* 

Mg2+ 0.51* -0.53* -0.55* 0.37 0.44 

Na+ 0.73** -0.81** -0.86** 0.71** 0.74** 

NH4
+ -0.48 -0.03 0.11 -0.22 -0.57* 

Cl- 0.81** -0.82** -0.88** 0.77** 0.86** 

NO3
- -0.59* 0.22 0.36 -0.43 -0.69* 

SO4
2- -0.38 0.34 0.38 -0.49 -0.27 

PO4
3- -0.36 0.30 0.33 -0.36 -0.38 

DOC -0.86** 0.82** 0.88** -0.79** -0.87** 
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Appendix 4.3. Descriptive statistics (mean, minimum-maximum values are in parenthesis) of the investigated soil parameters at the North 
Wyke Farm Platform.  
Field 
Id 

Elevation  
(metres) 

Total 
Nitrogen 
(gkg-1) 

Total 
Carbon 
(gkg-1) 

C:N Carbon 
isotope (‰) 

Bulk  
Density 
(gcm-3) 

Nitrogen 
isotope 
(‰) 

pH SOM (gkg-1) C Stock  
(t C ha-1) 

N Stock 
 (t N ha-1) 

1 136.5 
(129.1-148.4) 

6.0 
(5.1-7.4) 

49.7 
(42.0-59.4) 

8.3 
(7.7-9.3) 

-28.9 
(-30- -28) 

0.9 
(0.7-1.0) 

6.1 
(5.2-7) 

5.5  
(5.1-5.8) 

111.5 
(88.1-139.7) 

45.5 
(38.6-53.2) 

5.5 
(4.6-6.2) 

2 146.4 
(137.5-155.9) 

4.3 
(3.5-5.6) 

34.3 
(26.9-45) 

8.0 
(7-8.8) 

-28.9 
(-30.5- -27.6) 

1.0 
(0.7-1.1) 

6  
(5.3-6.6) 

5.9  
(5.3-6.4) 

77.3 
(65.4-96.8) 

32.8 
(22.2-39.7) 

4.2 
(2.6-4.9) 

3 166.4 
(133.9-147.5) 

6.8 
(4.3-5.4) 

57.1 
(32.5-44.8) 

8.9 
(7.6-8.2) 

-27 
(-29.7- -28.7) 

1.0 
(0.7-0.9) 

6.3  
(5.2-7.1) 

5.6  
(5.3-6.4) 

138.7 
(81-109.5) 

38 
(28.1-49.2) 

4.6 
(3.6-5.8) 

4 161.2 
(139.4-181.5) 

5.4 
(4.0-6.5) 

45.4 
(32.9-57.5) 

8.4 
(7.2-11.2) 

-28.6 
(-30.2- -27.4) 

0.9 
(0.7-1.0) 

5.9  
(5-7.2) 

5.6 
(4.7-6.6) 

88.7 
(28.0-139.6) 

40.7 
(24.7-52.7) 

4.9 
(3.0-5.9) 

5 158.7 
(145.5-175.9) 

5.8 
(4.3-7.3) 

51.7 
(36-74.1) 

8.9 
(8.2-10.2) 

-29 
(-29.9- -27.9) 

0.9 
(0.8-1.1) 

5.9  
(4.4-7.1) 

5.8  
(5.3-6.5) 

120.8 
(89.8-166.3) 

47.8 
(27.8-70.3) 

5.4 
(3.3-7.9) 

6 172.3 
(163.2-182.6) 

5.8 
(4.8-6.4) 

49.7 
(42.9-54.8) 

8.6 
(8.3-9) 

-28.7 
(-29.3- -28.0) 

0.9 
(0.8-1.1) 

5.9  
(5.4-6.5) 

5.6 
(5.1-6.4) 

109 
(99.3-118.1) 

46.9 
(35.5-54.8) 

5.5 
(4.0-6.4) 

7 173.7 
(169.8-177.5) 

5.2 
(3.8-6.3) 

48.3 
(33.2-59.9) 

9.2 
(8.6-9.7) 

-28.7 
(-29.5- -28.0) 

0.8 
(0.7-0.9) 

5.6  
(5.1-5.9) 

5.6  
(5.2-5.9) 

97.6 
(71.3-114.3) 

38.5 
(29.3-49.2) 

4.2 
(3.0-5.2) 

8 166.6 
(134.5-185) 

4.5 
(3.4-5.6) 

40.9 
(29.5-52) 

9.1 
(8.4-9.7) 

-28.2 
(-29.2- -27.5) 

0.8 
(0.6-1) 

5.6  
(4.6-6.8) 

5.4  
(4.7-6.1) 

93.1 
(66.9-112.1) 

34 
(20.9-45.7) 

3.7 
(2.4-4.9) 

9 168.3 
(158-182) 

5.9 
(5.1-7.2) 

51 
(40.1-62.3) 

8.6 
(7.7-9.1) 

-29.1 
(-29.7- -27.9) 

0.9 
(0.8-1) 

5.9  
(5.3-6.9) 

5.6 
(5.3-6) 

118.0 
(89.1-140.8) 

45.4 
(34.0-60.1) 

5.3 
(4.4-6.7) 

10 164.4 
(159.9-167.7) 

6.8 
(6.4-7.2) 

57.5 
(53.0-60.9) 

8.5 
(8.3-8.9) 

-29.6 
(-30- -29.1) 

0.9 
(0.9-1) 

5.9  
(5.3-6.3) 

5.3 
(5.2-5.5) 

118.2 
(108.4-128.6) 

52.2 
(49.1-54.9) 

6.2 
(5.8-6.5) 

11 173.6 
(170.6-178.1) 

6.3 
(5.8-6.9) 

55.1 
(50.3-63.1) 

8.8 
(8.6-9.2) 

-29.4 
(-30.4- -28.8) 

0.9 
(0.9-1) 

6.1  
(5.6-6.6) 

5.4 
(5.3-5.6) 

119.9 
(110.2-131.5) 

50.0 
(43.9-58.5) 

5.7 
(5.1-6.3) 

12 159.2 
(153.5-164.8) 

6.6 
(6.1-6.9) 

58.8 
(53.5-65.9) 

9.0 
(8.5-9.6) 

-29.6 
(-30.4- -29.2) 

0.9 
(0.9-0.9) 

5.8  
(5.4-6.3) 

5.8 
(5.7-5.9) 

124.6 
(117.4-129.8) 

54.1 
(50.1-62.2) 

6 
(5.7-6.5) 

13 133.9 
(130.6-135.9) 

4.6 
(4.1-4.9) 

38.1 
(34-43.1) 

8.4 
(8.1-8.9) 

-29.5 
(-30.1- -28.3) 

1.0 
(0.9-1.1) 

6.8  
(5.9-7.2) 

5.5  
(5.4-5.6) 

87.6 
(78.8-96.4) 

37.1 
(33.9-38.7) 

4.4 
(4.1-4.7) 

14 132.7 
(128.3-153.4) 

4.4 
(3.8-5.1) 

33.5 
(29.5-43.6) 

7.6 
(6.9-8.6) 

-28.9 
(-29.8- -28.2) 

0.9 
(0.8-1.1) 

6.6 
(5.9-7.2) 

5.5 
(5.3-5.6) 

75.7 
(59.5-103) 

30.7 
(24.4-39.1) 

4.0 
(3.3-4.6) 

15 130.6 
(128.6-132.6) 

4.2 
(3.9-4.7) 

33.8 
(27.7-39.8) 

8.1 
(7.1-9.1) 

-29.3 
(-30.2- -28.6) 

1.0 
(0.9-1.0) 

6.7  
(6.4-7) 

6.2 
(6-6.3) 

90.5 
(80-101) 

32.4 
(26.9-36.5) 

4.0 
(3.8-4.3) 

Total 155 
(128.3-185) 

5.4 
(3.4-7.3) 

46.6 
(26.9-74) 

8.6 
(6.9-11.2) 

-29.0 
(-30.5- -27) 

0.9  
(0.6-1.1) 

6.1 
(4.5-7.2) 

5.6  
(4.7-6.6) 

102.9 
(28-166.3) 

41.8 
(20.9-70.3) 

4.6 
(2.4-7.9) 
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Appendix 4.4a: Vector (‘1-grid’) map information showing the spatial variability 
in the magnitude of concentration of selected physiochemical parameters in 
Field 1 (Pecketsford). A vector (line) is drawn at each grid of interpolation. 
Magnitude is indicated by arrow length and the arrows point in the direction of 
lower magnitude from the region of higher magnitude (concentration). 
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Appendix 4.4b: Vector (‘1-grid’) map information showing the spatial variability 
in the magnitude of concentration of selected physiochemical parameters in 
Field 4 (Burrows). A vector (line) is drawn at each grid of interpolation. 
Magnitude is indicated by arrow length and the arrows point in the direction of 
lower magnitude from the region of higher magnitude (concentration). 
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Appendix 4.4c: Vector (‘1-grid’) map information showing the spatial variability 
in the magnitude of concentration of selected physiochemical parameters in 
Field 8 (Higher and Middle Wyke Moor). A vector (line) is drawn at each grid of 
interpolation. Magnitude is indicated by arrow length and the arrows point in the 
direction of lower magnitude from the region of higher magnitude 
(concentration). 
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Appendix 4.4d: Vector (‘1-grid’) map information showing the spatial variability in the 
magnitude of concentration of selected physiochemical parameters in Field 13-15 
(Longlands South, North and East). A vector (line) is drawn at each grid of interpolation. 
Magnitude is indicated by arrow length and the arrows point in the direction of lower 
magnitude from the region of higher magnitude (concentration).
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Appendix 4.5a: Relationships among selected physiochemical variables in the North Wyke Farm Platform’s soils. 
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Appendix 4.5b: Relationships among selected physiochemical variables in the North Wyke Farm Platform’s soils. 
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Appendix 4.5c: Relationships among selected physiochemical variables in the North Wyke Farm Platform’s soils. 
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Appendix 4.6a: Spatial variations of Carbon Stocks (in t C ha-1) across the fields of the North Wyke Farm Platform.  
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Appendix 4.6b: Spatial variations of Carbon Stocks (in t C ha-1) across the fields of the 
North Wyke Farm Platform.  
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Appendix 4.6c: Spatial variations of Nitrogen Stocks (in t N ha-1) across the fields of the North Wyke Farm Platform.  
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Appendix 4.6d: Spatial variations of Nitrogen Stocks (in t N ha-1) across the fields of the 
North Wyke Farm Platform. 
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Appendix 4.7. Event-based c-q relationships across the selected fields. 

Event  Temperature Conductivity Dissolved Oxygen Turbidity pH Nitrate 

 
Field 
1 

4 8 15 1 4 8 15 1 4 8 15 1 4 8 15 1 4 8 15 1 4 8 15 

Event 1 F8 - F8 C C - C F8 LP - LP LP  C - A C A - A LP - - - - 

Event 2 SL A SL A C C A LP LP U LP A C F8 F8 F8 A U A U U U U  

Event 3 F8 F8 F8 F8 C U U C F8 U LP LP C C F8 C A U A U U U U C 

Event 4 F8 F8 F8 A C C C C LP U LP LP C C C C A A A U     

Event 5 C C C C C C C C F8 LP A A F8 F8 F8 F8 A F8 F8 F8 U U U C 

Event 6 U SL C C U U U LP A LP A A - - - - A A A A U LP U LP 

Event 7 F8 F8 C F8 C C C - A U A C C C C C C U LP LP U A U C 

Event 8 F8 C F8 F8 C F8 C C - C C F8 C C A SL A A A C U  A LP 

Event 9 F8 A F8 F8 - C C A C C A C C C C C C A LP A U U A A 

Event 10 F8 F8 U A C C C LP C C C C C C A C F8 LP C C U U F8 A 

Event 11 U F8 U U C C - U C F8 U U C - U U F8 F8 U U U U U U 

Event 12  C F8 U C C C F8 LP C F8 U F8 C C C C U U F8 U U U - F8 

 

Legend 

 

c-q shape and Interpretation   Field Number and Name 

F8: Figure of 8      Field 1: Pecketsford 
C: Clockwise      Field 4: Burrows 
A: Anticlockwise     Field 8: Middle and Higher Wyke Moor 
U: Unclear, irregular or complex loop   Field 15: Longlands East 
LP: Line with loop 
SL: Single line  
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Appendix 4.7. Hydrographs, chemographs and hysteresis plots investigated in the 

thesis. 

 
EVENT 1: PECKETSFORD. 
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EVENT 1: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 1: LONGLANDS EAST. 
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EVENT 2: PECKETSFORD. 
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EVENT 2: BURROWS. 
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EVENT 2: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 2: LONGLANDS EAST.  
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EVENT 3: PECKETSFORD.  
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EVENT 3: BURROWS. 
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EVENT 3: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 3: LONGLANDS EAST. 
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EVENT 4: PECKETSFORD. 
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EVENT 4: BURROWS. 
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EVENT 4: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 4: LONGLANDS EAST. 
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EVENT 5: PECKETSFORD. 
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EVENT 5: BURROWS.  
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EVENT 5: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 5: LONGLANDS EAST. 
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EVENT 6: PECKETSFORD.  
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EVENT 6: BURROWS.  
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EVENT 6: MIDDLE AND HIGHER NORTH WYKE.  
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EVENT 6: LONGLANDS EAST.   
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EVENT 7: PECKETSFORD. 
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EVENT 7: BURROWS.  
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EVENT 7: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 7: LONGLANDS EAST.  
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EVENT 8: PECKETSFORD. 
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EVENT 8: BURROWS.  
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EVENT 8: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 8: LONGLANDS EAST.  
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EVENT 9: PECKETSFORD.   
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EVENT 9: BURROWS.  
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EVENT 9: MIDDLE AND HIGHER WYKE MOOR.  
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EVENT 9: LONGLANDS EAST. 
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EVENT 10: PECKETSFORD. 
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EVENT 10: BURROWS.  
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EVENT 10: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 10: LONGLANDS EAST.  
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EVENT 11: PECKETSFORD.  
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EVENT 11: BURROWS. 
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EVENT 11: MIDDLE AND HIGHER WYKE MOOR. 

  



 
 

226 
 

 
EVENT 11: LONGLANDS EAST. 
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EVENT 12: PECKETSFORD. 
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EVENT 12: BURROWS. 
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EVENT 12: MIDDLE AND HIGHER WYKE MOOR. 
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EVENT 12: LONGLANDS EAST. 
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