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Abstract 

 

Touch perception is important in most living organisms and extremely sensitive 

detection systems have evolved to meet this need. Pacinian corpuscles (PCs) are 

primary mechanoreceptors. In the human, they are found in the skin (where they 

act as touch receptors), in the joints, in muscles and in many organs (where they 

act as motion sensors). The purpose of the work described in this thesis is to 

investigate how the performance of the PC is achieved, with reference to structure, 

mechanical properties and possible transduction mechanisms. 

 

PCs were obtained from the equine hoof and their distribution and clustering were 

investigated. Corpuscles were located in the frog area of the hoof (the digital 

cushion); they were found to be surrounded by adipose tissue and often closely 

associated with blood vessels. The physiological implications of these observations 

are discussed.  

 

The structure and composition of corpuscles was investigated using confocal 

microscopy with histological stains for collagen, proteoglycans and lipids. Nonlinear 

microscopy was also used to investigate the distribution of collagen (by second-

harmonic generation), elastin (by intrinsic two-photon fluorescence) and membrane 
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lipids (by coherent Raman imaging). These techniques provided novel insights into 

the three-dimensional structure of the intact corpuscle, demonstrating: (i) three 

clearly distinguishable zones – the outer zone, the inner zone, and the core; (ii) 

blood vessels running through the outer lamellae and the core; (iii) the presence of 

proteoglycans – less in the outer zone than in the inner zone; (iv) two types of 

collagen fibres (one type associated with the lamellae and the other forming a 

complex fibre network through the inter-lamellar spaces); (v) occasional elastic 

fibres; (vi) a sheath of adipose tissue closely associated with the corpuscle’s outer 

surface.     

 

Mechanical testing by micro indentation, micropipette aspiration and osmotic 

challenge showed that the outer zone was stiff and able to quickly restore its 

original shape after distortion.  

 

Dynamic mechanical properties were investigated over a range 50 to 400 Hz. 

Observations of lamellar displacement (amplitude and phase) were consistent with 

the predictions of the Loewenstein-Skalak model. This model includes 30 lamellae; 

however, the same overall frequency response could be replicated in a single-

lamella model with suitably chosen parameters. The benefits of a lamellar structure 

for transduction of mechanical signals therefore remain unresolved.   
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The permeability of the corpuscle to water and solutes was investigated using 

osmotic swelling and fluorescence tracer techniques. Both revealed unexpected 

complexity in the pathways of uptake to the inner core and demonstrated the 

presence of an impermeable boundary between the inner and outer zones, whose 

implications for mechanotransduction and nutrition in the corpuscle remain to be 

determined. 
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Chapter 1 

 

Literature review 

 

Introduction 

 

This study investigates the lamellar structure of the Pacinian corpuscle (PC). Three 

main objectives are pursued: (i) using a range of microscopy techniques to obtain 

an improved understanding of the structure and composition of the PC; (ii) 

developing and then using appropriate measurement techniques to determine the 

mechanical properties of the lamellae and the dynamics of the interlamellar fluid in 

response to deformation of the capsule; (iii) testing the predictions of current 

theoretical models of mechanotranduction in the corpuscle.  

 

This chapter continues with an introduction to touch perception and 

mechanoreceptors, leading, in section 1.2, to a description of the Pacinian 

corpuscle, a most sensitive mechanoreceptor which is the subject of this thesis. 

Section 1.3 provides an overview of the literature on the PC, which broadly covers 

experimental and theoretical work on anatomy, physiology, biomechanics, 

electrophysiology, biophysics and neuroscience; this provides a starting point for 

the present work, which is outlined in the final section of the chapter.    
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1.1 Touch perception 

 

There are four main mechanoreceptors in mammals: Ruffini cells, Pacinian 

Corpuscles, Merkel’s cells and Meissner`s corpuscles. In hairy skin, Meissner`s 

corpuscles are absent, and hair movement is detected by lanceolate endings. The 

receptors respond to mechanical deformation and distortion by firing nerve 

impulses, i.e., generating an action potential. Mechanoreceptors located in different 

skin layers and in other areas such as joints and organs have different receptive 

fields, morphology, and adaptation to stimuli, as expressed in the relationship  

 

 

Figure 1.1. Rapidly and slowly adapting receptors in the skin. The 

mechanoreceptors are embedded in the top two layers of skin: the epidermis and 

the dermis. Adapted from [2]. 

http://en.wikipedia.org/wiki/Mechanoreceptor
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between impulse generation and the stimulus [1]. Mechanoreceptors (figs.1.1 and 

1.2) can be divided into rapidly adapting (RA) receptors (whose firing rate in 

response to a sustained stimulus returns quickly to a resting rate) and slowly 

adapting (SA) receptors (whose firing rate in response to a sustained stimulus 

returns slowly to a resting rate) [2].  

 

Meissner’s corpuscles (in humans typically 30-140 µm in length and 40-60 µm in 

width [3]) are RA mechanoreceptors with small receptive fields. As shown in figure 

1.1, they are distributed in different areas of the dermis (just beneath the 

epidermis), and highly concentrated at the most sensitive locations such as 

fingertips and lips. They can sense light touch or vibration < 50 Hz. Interestingly, in 

humans the number of Meissner’s corpuscles decreases between the ages of 12 

and 50 [4, 5]. The other RA receptor is the PC (in humans typically 1 mm in length 

[6]) which has a large receptive field. PCs are located in the lower dermis, and are 

also found in joints and internal organs. They respond to a wide range of vibrating 

stimuli from 20 to 1000 Hz. Merkel cells (typical diameter 10 µm in humans [7]) are 

SA mechanoreceptors with small receptive fields. They are widely distributed in the 

superficial layers of the human skin and concentrated under the fingertip ridges 

that create the fingerprint. They are most sensitive to very low frequency vibration 

(5 to 15 Hz) and can detect finely detailed surface pattern [7]. The other SA 

receptors are the Ruffini cells, which have large receptive fields and are located in 

the dermis. They are sensitive to skin stretch and contribute to object manipulation 

[8, 9]. They are also found in joints where they respond to mechanical deformation 
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due to angle change in the joint. In skin they have an additional role as 

thermoreceptors [10, 11]. 

 

 

 

Figure 1.2. Merkel and Ruffini cells are SA receptors; their primary functions are, 

respectively, perception of fine detail and assisting object manipulation. Meissner’s 

and Pacinian corpuscles are RA receptors; their primary functions relate, 

respectively, to detection of low and high frequency vibrations. Adapted from [2]. 
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Figure 1.3. The pathway of signal transmission from a receptor. Adapted from [2]. 

 

 

Each mechanoreceptor transduces a signal from the environment into a signal 

that propagates through the nervous system via the dorsal column nuclei, through 

the thalamus, and eventually arrives at the somatosensory cortex (fig. 1.3). 

 

 

 

 

 



21 
 

1.2 The Pacinian Corpuscle 

 

Specific structures at the distal terminals of nerves in human hands and feet were 

noticed by the German anatomist Abraham Vater in 1741. However in 1835 the 

Italian anatomist Filippo Pacini rediscovered them distributed throughout the body 

and gave an appropriate description. Since then, these mechanoreceptors have 

been named as Vater-Pacinian or Pacinian corpuscles [12]. In most medical 

literature these encapsulated receptors are called Pacinian corpuscles (PCs).   

 

These receptors are larger than other receptors (see previous section) and sense 

vibrations and the onset and offset of static stimuli applied to the skin surface; in 

joints they are activated under compression through angle change in the joint 

capsule [1]. Because of their size and their significant role in haptic perception and 

the sense of balance, they have become a popular subject for research into touch 

perception [13].  

 

This thesis is based on the equine hoof PC to because the horse hoof is 

anatomically equivalent to the end of the human finger. An interesting comparison 

between the anatomy of the horse hoof and the human finger is provided in the 

book The Horse Conformation Handbook by Heather Smith-Thomas [14].  
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The horse hoof consists of the long and short pastern bone together with the coffin 

bone which correspond with the phalanges in the human finger (fig. 1.4).There are 

no muscles within the horse hoof, it contains tendons, ligaments and blood 

vessels, which originate from the axillary artery and the digital nerves which arise 

from the median nerve and include sensory and autonomic fibres (fig. 1.5 a & b) 

[15, 16].  

 

Figure 1.4.Comparison of the structure of the equine forelimb and human hand. 

Adapted from [14]. 
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Figure 1.5. Comparison of (a) equine foot specimen (sagittal section with hoof 

capsule removed) and (b) schematic diagram of the human finger (sagittal section); 

adapted from [15], [16]. 

 

a 

b 
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Two types of mechanoreceptors have been identified in horse hoof. The 

distribution of them through the hoof will be described in Section 1.2.1, together 

with the development, anatomy, neurophysiology and biomechanics of PCs 

obtained from numbers of studies on PCs during the last few decades.  

 

1.2.1 The Distribution of Pacinian Corpuscles 

 

 

In the study by Stark et al [17] up to 424 PCs were found in fresh human cadaver 

hands. 60% of them were located in the digital areas and rest of them in thenar 

and hypothenar regions. Most of the PCs were found close to large nerve bundles 

and blood vessels. Usually, they were found in groups of 5-8 surrounded by 

adipose tissue. They were generally surrounded by adipose tissue, as confirmed 

by later MRI investigations.  

 

Cauna observed that human PCs tend to increase in size throughout life to age 75. 

However, in people above 75 years old, he found the PCs tended to shrink. These 

PCs were observed in the dermis and subcutaneous layers of the skin of human 

hand and were always attached to flexor tendon and short digital muscles [18].  

 

Another study [19] of PCs distribution in the cat foot demonstrated that there was 

an average of 667 corpuscles in each fore foot. 80% of PCs were located in the toe 

areas and the rest were spread through the pad. PCs in the toe skin folds were 
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located next to the hairy follicles, however in the pad PCs were always found 

beside the metacarpal nerve.  There was always a blood vessel closely 

neighbouring the PCs, in skin folds or the pad. The same group [20] also found 458 

PCs in the right hand of the monkey Macaque Fuscata, and 416 PCs in the left 

hand. 405 were located in the digits and rest distributed through the palm areas. 

They suggested that the localization of those PCs may be associated with 

functions such as gripping as this is the main function of the primate hand (fig. 1.6). 

There was no difference in the structure of dermal and subcutaneous PCs. 

However, subcutaneous PCs were longer compared to those in the dermis and 

joints. The size of PCs in the fingers was smaller than in the palm area (left hand 

finger: length 470.5 ±  256.3 µm, width 229.5 ± 98.9 µm, left hand palm: length 

703.3 ± 335.1 µm, width 376.9 ± 178.7 μm).   

 

 

Figure 1.6. PC distribution in the monkey hand; solid circles represent PCs in the 

dermis and empty circles represent PCs in subcutaneous tissue. Adapted from [20]. 
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Particularly relevant to the present work is the identification of PCs in the bulb area 

or “frog” of the horse hoof, a region involved with shock absorption, return of 

venous blood and control of balance (fig. 1.7) [21]. Lancaster et al [15] also 

identified PCs in the frog area (digital cushion), heel bulbs, in neighboring region to 

the lateral cartilages, and around the secondary tendon of the flexor tendon (close 

to the navicular bone) (fig. 1.7, fig.1.8 (a), (b), (c)). These corpuscles are used in 

the present work and so are discussed in more detail in Chapter 3.  

 

 

 

 

 

Figure 1.7. A scheme of the horse hoof in coronal plane shows localization of frog 

area and bulb of heels where most of PCs were identified. Adapted from [23]. 
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Figure 1.8. (a) a digital cushion (shown in red) located above the frog area and the 

lateral cartilages, the cushion acts as a shock absorber; (b) relative position of the 

digital cushion (shown in red) and the lateral cartilages (shown in green) which are 

incorporated in the shock absorption mechanism; (c) relation between navicular 

bone (shown in green) and digital flexor (shown in purple). Adapted from [24]. 

 

1.2.2 Development of Pacinian Corpuscles  

 

Work by Cauna [22] with human PCs showed different stages of corpuscle 

development corresponding to the different prenatal periods; the first signs of 

corpuscles were evident in foetuses of 69-71mm length. The nerve endings 

become surrounded by cells, which later differentiate into outer and inner zones of 

the corpuscle. He concluded that once the outer lamellae become organized, this 

triggers further development in a growth zone between the outer lamellar and the 

inner zone.  

 

a b c 
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Throughout development the corpuscle maintains an elongated shape with an 

aspect ratio of approximately 1:3. However, different shapes often occur in the 

same group of corpuscles due to uneven growth (fig.1.9).  

 

  

 

 

Figure 1.9. Diagram of changes in the external shape of PCs from human foetal 

tissue due to variations in appositional and retrograde growth rates; (a) both rates 

equal, leading to development of a spherical shape for the PC; (b) retrograde rate 

greater than appositional rate, resulting in elongation of the PC; (c &d) growth rates 

and external shape of the PC are determined by the course of the nerve that the 

PC grows along. Adapted from [22]. 

 

 

 

a b 

c d 
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1.2.3 Vascularisation and Innervation 

 

PCs are encapsulated end organs of peripheral nerves; for example, PCs in the 

human hand are innervated by single afferent nerve fibres [3]. Usually, each 

corpuscle has it is own axon running though the core.  

 

Chalisova et al [25] discovered that, after additional innervation of the cat 

mesentery with somatosensory nerves (existing PCs having been previously 

removed), new PCs were generated. These were sometimes in complicated 

arrangements where several corpuscles, joined at their outer zones, were 

connected to the same nerve fibre, with the nerve ending crossing from one 

capsule to another. The discovery of this phenomenon, called polycapsularity, 

indicates the presence of a process of budding of the sensory capsules which 

could be a part of the regeneration and formation process. Interestingly, 

morphological and functional properties of the new PCs were indistinguishable 

from the properties of the original (removed) PCs. This leads to the hypothesis 

that, in the general case, generation of encapsulated end organs from the 

somatosensory nerves is induced by external stimuli from the surrounding tissue.  

 

PCs require a microcirculation to maintain their metabolism. As already noted, PCs 

are generally located close to blood vessels. Cauna [3] found a capillary network in 

human corpuscles forming arterio-venous anastomoses (AVs). The network 

(fig.1.10, fig.1.11) is such that if venous drainage is occluded there is an increase 
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of pressure inside the corpuscle which is transmitted into the inner core and the 

neurite. This suggests that PCs may have a role in monitoring changes in local 

blood circulation.   

 

 

Figure 1.10. Diagram showing the plane (dotted line) of the cross section in Figure 

1.11, through two PCs and an arterio-venous anastomosis (AV). Adapted from [3]. 

 

Winkelemenn and Osment found that the vessels within the corpuscle take an 

unusual loop around the area where the axon begins to lose its myelinated cells. 

This may provide specific pathways for metabolites between the outer connective 

tissue-growth zone and the nerve fiber (fig.1.12) [26]. Nishi et al [27] found blood 

vessels running through myelinated segments of PCs from the mesentery of the  

500 μm 

Cross section of the two 

PCs with AV 
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Figure 1.11. Two PCs from the index finger and a developing arteriovenous 

anastomosis (AV), the vein draining the corpuscles joins the venous end of the 

anastomosis. Adapted from [3]. 

 

cat, separated from the axon by collagen and a few lamellae. Michailow [28] 

injected dye into the circulation of PCs from cat mesentery, and observed a 

network of blood capillaries in the core. He did not observe blood vessels in the 

outer zone, suggesting that if they exist they arise from a different arterial supply.  

Gamon and Bronk [29] reported that an accumulation of blood in the cat`s 

mesentery vessels increased arterial resistance, leading them to hypothesise a 

relationship between the response of PCs and vascular changes.    

 

 

 

 

20 μm 

PCs  
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Figure 1.12. Schematic of the PC surrounding by adipose fat, showing, the core 

with the neurite (the end of the axon), the myelinated segment of the PC with blood 

vessels through. Adapted from [30]. 

 

As mentioned above, in addition to providing nutrition the blood vessels may also 

be involved in a PC function of maintaining circulatory control [31]. In cat 

‘mesentery PCs  it was observed that the blood vessels share the same entrance 

into the PC as  the nerve fibre and these blood vessels branch into capillary loops 

which supply the  central core [32]. The nutritional pathways provided by these 

vessels will be investigated in Chapter 3 and 4. 
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1.2.4 Microscopic Structure 

 

 

PCs in the mesentery of cats are thought to be uniquely involved in the sensation 

of ground vibration. They are sufficiently large to be visible by the naked eye and 

are thus most widely used by researchers on sensory structure [19, 25, 27, 29, 32-

35, 39, 43, 46, 49, 55]. Consequently, the major sources of information in this 

review relate to PCs from the cat, but it is important to recognise that these may 

not be totally representative of corpuscles from other species.  

 

Electron microscopy clearly indicates three main regions of cat PCs. There are 

around 30 lamellae in the outer zone and a number of tightly packed inner-zone 

lamellae. The inner region goes through the whole length of the capsule and links 

the major areas of the capsule including the neurite. Some cellular layers form a 

growth zone between the inner and outer lamellae. There are approximately 60-80 

inner lamellae in cat mesentery PCs [33]. The number of lamella is significantly 

greater than that reported in other species, for example there are only 30-40 inner 

lamellae in PCs from human hands [34]. The number of lamellae changes during 

growth [36]. 

 

Outer zone lamellae are arranged concentrically and they are sufficiently widely 

spaced from each other that they can be distinguished by a light microscope. The 

lamellar cells, supported on a collagen matrix, are extremely flattened and the 

cytoplasm of neighbouring cells overlaps forming a continuous layer in which no 
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gap has been observed. The fluid space between the lamellae contains a sparse 

network of collagen fibrils (fig.1.13) [33].  

 

Cauna [18] demonstrated histochemically the presence of fibroblasts in the 

lamellae, which are presumed to synthesise the collagen fibres. As seen in 

electron microscopy (fig.1.13) these fibroblasts are tightly attached to each other, 

suggesting that the lamellae are impermeable with no communication possible 

through them [33]. However, some fibroblasts show cytoplasmic protrusions into 

the interlamellar space, some of which connect neighbouring lamellae [40]. These 

connections are considered to be part of the transfer system within the sensory 

capsule [35], [36], [37]. More recently, electron micrographs of cat PCs reveal that 

the fibroblasts contain a large number of caveolae or vesicles which might be 

involved in cell-modulated trans-lamellar transport and may also be associated with 

the regulation of the metabolism of the whole lamellar structure [38]. 

 

Results from electron microscopy [33] also suggest that collagen fibrils between 

the outer lamellae are orientated orthogonally to collagen fibrils within the lamellae, 

with the latter tending to be perpendicular to the longitudinal axis of the corpuscle 

(fig.1.14).  Interestingly the number of collagen fibrils increases with age [39], [40]. 
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Figure 1.13. Electron micrograph of transverse section of the outer zone of the cat 

mesentery PC. Continuous cytoplasm sheets form the outer lamellae. Thickness of 

lamella approximately is 0.2μm. The collagen fibrils (c. f.) on the outer side of 

lamellae are most visible; however there are some faint collagen fibrils in the inter-

lamellae space. Adapted from [33]. 

 

 

Figure 1.14. Electron micrograph of a PC in cat mesentery; the section is tangential 

to the surface of a lamella; the direction of the long axis of the corpuscle is 

indicated by the arrow; many collagenous fibres lie in the plane of the section 

(circled region), and most of these are oriented at right angles to the longitudinal 

axis. Adapted from [33]. 

1 μm 
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The core fully encapsulates an unmyelinated axon. Extensions of the axon terminal 

incorporate radial clefts. These modified extensions progress into thin, bow-shaped 

hemi-lamellae which are separated from each other by longitudinally–orientated 

collagen fibrils creating a bulb around the neurite (fig.1.15). In the clefts there are 

small fibrils of elastin and a number of large fibrils of collagen [41].  

 

 

Figure 1.15. Schematic diagram of a portion of the inner zone demonstrating the 

morphological organisation of the inner core hemi-lamellar cells and axon 

processes within the bulbous ultra-terminal region. Adapted from [41]. 

 

The role of the radial clefts is still not clear. Some researchers suggested that 

these gaps are nutrition pathways via blood capillaries to regulate the environment 

around the neurite.  Axon processes extending into the hemi-lamellae may relate to 

the detection of mechanical deformation from external stimuli transmitted through 

the lamellae [42].  

A scheme of a whole PC 

A portion of the 

inner zone  
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1.2.5 Pacinian Corpuscle biochemistry 

 

 

Analysis of mechanical properties of the corpuscle requires information on the 

extracellular matrix, which is determined by large volume of substances of fibrils 

with high binding capacity. In order to transmit pressure signal through the capsule, 

it is necessary for the PC to possess high viscoelasticity, which must impose 

considerable constraint on the tissue structure.  

 

Histochemical studies on cat mesentery PCs by Sames [43] investigated the 

distribution of proteoglycans.  One type of proteoglycan, decorin, which binds to 

and modulates the organisation of collagens type I and II, was found in the 

interlamellar spaces around the interconnections presumed to consist of collagen 

type II. Such complexes are found in cartilages subjected to compressive loads 

and thus might be responsible for the cartilage-like elasticity of the PC. Another 

proteoglycan, biglycan, which interacts with collagen type I and binds to collagen 

type V, was found in the lamellae of the growth zone. In this context, biglycan may 

play a role in corpuscular growth. Collagen IV (which forms the network structure of 

basement membranes which, in many tissues, couple cells into the surrounding 

matrix) was found in all components of cat mesentery PCs, except the axon. 

 

From a biophysical point of view, one of the most important classes of 

proteoglycans are the large species such as aggrecan. These consist of a long 

protein core to which are attached a large number of glycosaminoglycans. These 
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molecules constitute the “space fillers” of the extracellular matrix and, through 

steric and electrostatic interactions, regulate the distribution and mobilities of water 

and solutes. Glycosaminoglycans were found in the interlamellar spaces of the 

outer core [43] and, together with collagen II, may also contribute to the cartilage-

like elastic properties of the PC.  

 

The presence of elastin within the PC from human hands was first documented in 

1908-1909 [27], [44]. Michailow [29] observed an elastic capsule surrounding a PC 

from the human hand.  An elastic fibril network was found around the core and in 

the blood vessels entering the corpuscle [29].   

 

The differences in biochemistry between the different zones of the PC suggest that 

they have different biophysical properties and functions [45]. In the context of 

biomechanics the most important cellular structure is the cytoplasmic cytoskeleton. 

Actin has been detected in cytoplasmic extensions from the neurite through the 

clefts in the PC [45]. Similar structures in, for example, hair cells play an important 

part in mechanotransduction and the same may be true of the cytoplasmic 

extensions of the PC.  
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1.2.6 Functions of the Pacinian Corpuscle 

 

There have been many discussions about the function of PCs in addition to tactile 

perception. Since 1865 a number of functions have been suggested, such as the 

measurement of the power of muscles or monitoring movement of joints. In this 

context they were generally thought to act as baroreceptors, but experimentally it 

has been difficult to establish relationships between specific stimuli and signals in 

the axon. (In two early studies, Gray and Malcolm [46] report measurements on 

nerve impulses from cat mesentery PCs in response to a wide range of mechanical 

signals of known displacement; Adrian and Umrath [47] report similar 

measurements in response to joint movement in the cat foot.) PCs have also been 

suggested to control tissue hydration, regulating the absorption of fluid from the 

microcirculation – this hypothesis implies that the corpuscles are osmosensitive. 

Both  Adrian and Umrath [47] and Ramstrom [48] applied temperature stimuli 

directly to PCs (in the cat foot and the human parietal peritoneum, respectively). 

When mechanical stimulation was avoided, no response to temperature changes 

was found in either study.   

 

Cauna [18] suggested that the PC has a blood supply for its own nutrition but may 

also respond to this supply and hence, together with other receptors in the skin, 

may contribute to a vascular reflex. PCs may have different primary functions 

depending on their size and location: some whose function is mainly sensory and 

others whose role is mainly related to regulation of the blood circulation. This 
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question of the function of the PC is addressed in a different context later, in 

chapter 3. 

 

1.2.7 Mechanisms of Mechanotransduction 

 

Mechanotransduction has been most extensively investigated in relation to tactile 

perception. When pressure or vibration is applied to the surface of the skin, a 

mechanical disturbance propagates through the neighbouring tissue, the receptor 

deforms and stress propagates through the lamellae resulting in the generation of 

a receptor potential at the nerve membrane (RP or GP-generator potential). When 

the signal reaches the threshold, an action potential (AP) is generated by opening 

stretch-activated ion channels (    and   ) in the axon [49], [39]. The response 

of PCs is conveyed by a pattern of action potentials which depends on the stimulus 

type (e.g. dynamic or static loading); adaption to a stimulus is seen as a decrease 

in the firing rate [50]. It has been hypothesized that the mechanotransduction 

process is most effective when mechanical stimuli are applied in a direction 

orthogonal to the axon of the PCs [36].  

 

Hubbard (see next section for experimental details) noted that the time course of 

mechanical disturbances in the corpuscle was similar to the adaptation of neural 

activation, and concluded that adaptation was the direct consequence of 

mechanical processes [55]. However, Loewenstein and Mendelson [39] studied 
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adaptation in cat mesentery PCs and suggested two components in adaptation: a 

mechanical component (acting as a high-pass filter in the form of the laminated 

capsule which prevents progression of slow stimuli to the neurite) and an 

electrochemical component relating to the neuronal mechanism.  Interestingly, 

encapsulated and decapsulated PCs have different adaptation periods to sustained 

stimuli. The response of encapsulated PCs decreases to normal within 6 ms, while 

decapsulated PCs keep producing neural spikes for up to 70 ms [20].   

  

Banker and Girvin found that vesicles at the end of the axon processes of PCs are 

similar to those in the sensory terminals of muscle spindles and believed them to 

contain neurotransmitters [37]. This gave rise to speculation that, during 

mechanical distortion of the PC, a substance is released from vesicles on the axon 

processes which is able to affect the ionic environment of the inner core, forming 

chemically-mediated synapses [41]. As mentioned above, Pawson et al [45] 

observed similarities in the composition of axon processes in the PC and 

stereocilia in the inner ear (known to be involved in auditory mechanotransduction), 

providing further evidence of the mechanotransduction role of axon processes in 

the PC.  

 

The frequency response of the corpuscles is central to their function in perception.  

A variety of studies indicate that 250 Hz is the optimal frequency detected by PCs 

[35], although PCs are sensitive to a range of frequency from 10 to 1000 Hz [38]. 

The PC frequency response differs among species, perhaps in relation to different 
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functionality. It has been observed that PCs in the cat mesentery demonstrate 

polymorphism, which unusual structure may produce a broader overall frequency 

response [35]. However, such polymorphism has not been observed in human 

PCs. 

 

Studies on human hands, e.g., [55], suggest that the PC is primarily responsible for 

perception at frequencies above 30 to 50 Hz, with other populations of receptors 

coming into play at lower frequencies. In a study on grasping of a vibrating 

cylinder, Brisben et al [53] report optimal sensitivity in the region 150-200Hz, with 

some subjects able to detect amplitudes < 0.01µm on the palm. Transition from the 

PC channel to perception via Meissner corpuscles was observed in the region 20-

25 Hz (section 1.2.9 contains further discussion of the PC frequency response).  

 

1.2.8 Experiments on Pacinian Corpuscles in Vitro 

 

There have been a number of studies on PCs in vitro. However, there is significant 

concern about the viability of the corpuscles because morphological change in PCs 

can be observed after dissection. It was observed by light microscopy that the 

neurite and the core degenerate after 6-12 hours although the inner and outer 

zones can maintain their structure for up 27 hours [37]. Also freezing and thawing 

causes degeneration of the axon and the core after 3 days (fig. 1.16) [51]. 
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Figure1.16. A transverse ultrathin section of rat foot PC after 3 days of 

simultaneous freezing treatment and denervation. The space of the core is 

occupied by cells (asterisks) with cytoplasm of a moderate electron density; the 

growth zone contains a huge number of erythrocytes. Taken from [51]. 

 

The first studies on the mechanical properties of isolated corpuscles were 

performed by Hubbard [55] who used rapid mechanical compression of PCs from 

cat mesentery to study lamellae displacement under external compression. The 

experimental apparatus shown in figure 1.17 and the photographic apparatus used 

to image the corpuscles at different stages is shown in figure 1.18.  

 

The corpuscle was squeezed between two microscope cover slides with total 

displacements (outer surface of PC) between 19 and 90 μm at rates in the range 

2.5 to 40 μm ms–1. Hubbard measured displacements within the corpuscle from 
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photographs taken at successive intervals, achieving a measurement error of 

around 1 μm. The displacement waveforms of three lamellae are shown in figure 

1.19, together with “static” and “dynamic” components. This work was the stimulus 

for one of the investigations in the present study and a more detailed discussion of 

these results and a comparison with new data are given in Chapter 5. 

 

Figure 1.17. A schematic of the glass cell in which the PC was compressed. (a) 

Focal plane of the glass cell with the PC in; (b) a side view of the glass cell with the 

PC in, the arrow indicates the direction of compression; (c) a transverse plan of the 

glass cell with the PC in, the arrow indicates the direction of compression; (d) 

diagram showing change of position of the axis of the PC with compression. Dotted 

outline represent conditions at the peak of compression. Focal plane I and II show 

the amount of refocusing ideally required. Adapted from [55]. 
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Figure 1.18. Diagram of the apparatus used for photography of the PC during and 

after an applied compression. Adapted from [55]. 

 

 

Figure 1.19. Lamellar displacements at three positions within a PC: (a) total 

displacement as recorded; (b) equivalent static displacement; (c) dynamic 

component of displacement. The numbers on the curves correspond to the ratio of 

the radius of the chosen lamella to the outer-capsule radius. Adapted from [55].  

PC 

a b 

c 
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Sato [56] investigated the receptor potential in PCs from cat mesentery in response 

to sinusoidal stimulations of different frequencies and amplitudes. A part of the 

mesentery containing the PCs was exteriorised from the body of the cat and kept in 

Ringer`s solution [57], and a PC axon was dissected from its surroundings without 

disturbing the local blood supply. The axon output was connected to an amplifier 

and a stimulus generator producing a range of sinusoidal signals in the range 20-

1000 Hz was directly applied on the surface of the PC. The experiments 

demonstrated an optimal frequency at around 150 and 300 Hz, respectively, with a 

fall-off in response at lower frequency which was steeper than that expected from 

the response of the nerve alone. Sato explains the fall-off in response above 300 

Hz in term of the mechanism for generating receptor potential, which is depressed 

at high frequency. Interestingly, this study suggests the frequency of peak 

response is affected by temperature, moving from 300 Hz at 37º C to 150 Hz at 

21ºC. It was suggested that this s due to the biochemistry of action potential 

generation. However, in another study Cauna and Mannan [18] observed no effect 

of temperature. 

 

Study of the concentration of ions in the intra capsular fluid is important in order to 

understand the electrochemical responses of PCs at rest and under load. Sampling 

of the fluid exuded from punctured cat PCs revealed it to be viscous and 

transparent and containing particles of fat [42]. The concentration of potassium 

ions in fluid of PCs from cat mesentery was 6.19 ± 0.72 mEq/L, which is greater 

than in cats’ blood plasma (2.78 ± 0.38 mEq/L), and the concentration of sodium 

ions was 114.4 ± 10.4 mEq/L, which is slightly lower than the  concentration of 
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sodium ions in plasma. Cells normally contain a higher concentration of potassium 

than the extracellular fluid and a much lower concentration of sodium, an 

imbalance which is lost during the generation of an action potential and it is 

probable that the observed concentrations reflect depolarization processes within 

the neurite. Also, because there are nodes of Ranvier within the capsule, the 

higher concentration of potassium may decrease the excitation threshold for 

sensory responses of the PC [58]. In support of this hypothesis, Diamond [59] 

found that blood capillaries (fig. 1.20) around the first node ensure that the 

concentration of potassium ions is sufficient to originate a first nerve spike in the 

node and then generate an action potential.  

 

A number of studies have investigated the effects of pharmacological agents on 

PC electrophysiology. Pawson et al [40] investigated the role of GABA (gamma-

aminobutyric acid) on the response of cat PCs to a mechanical “ramp-and-hold” 

stimulus applied to the surface of the capsule. Under normal conditions, neural 

response to the static “hold” phase of the stimulus falls off rapidly as a 

consequence of the PC`s adaptation. However, in the presence of gabazine as a 

GABA receptor antagonist, many action potentials were observed during the “hold” 

phase.  These results suggest that the normal adaptation response is not purely 

mechanical, as hypothesised by Hubbard [55] and others, but also has a chemical 

component, as suggested by Loewenstein and Mendelson [39]. 
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Figure 1.20. Schematic of the PC from cat mesentery; the corpuscle capillary bed 

was injected with Indian ink. The capillaries surround the first Ranvier node. Taken 

from [59]. 

 

It has been shown that PCs shrink in hypertonic solution and tend to expand in 

hypotonic solution [18]. The biomechanical implications of such experiments are 

discussed in more detail in the context of the present work in Chapter 4. An 

elecrophysiological study on the effects of sodium ion concentration on the 

receptor potential [59] demonstrated that, on replacing sodium by sucrose to 

maintain osmotic pressure, generation of the receptor potentials gradually 

declined, but returned to normal when the sodium concentration was restored, 

demonstrating the importance of sodium for the generation of electrical activity.  
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1.2.9 The frequency response of the Pacinian Corpuscle 

 

  

In addition to the study by Brisben et al already discussed in 1.2.7, the literature 

includes many psychophysics studies of touch perception, notably numerous 

studies by Verrillo and colleagues, in which test subjects are required to respond to 

closely controlled stimuli at threshold levels or above-threshold levels, e.g., [60, 61, 

62, 63]. Such studies typically involve vibratory stimuli in the form of displacement 

sine waves of known amplitude and frequency, delivered via a contactor with a 

surround to prevent spread of stimulation across the skin. The experimental results 

can be interpreted in terms of perception via four distinct channels (corresponding 

to receptor populations of four types – see section 1.1), including a PC channel. 

Figure 1.21 shows data fitted to a four-channel model. 

 

The sensitivity of the PC channel varies with frequency; it is most sensitive at 

approximately 250 Hz and sensitivity falls off at around 10 dB per octave at lower 

and higher frequencies. A possible interpretation of this is that the PC response 

falls off at low frequencies due to the mechanical behaviour of the lamellar 

structure, and falls off at high frequencies due to the effect of a refractory period in 

the excitation of the nerve. (See previous section for a similar interpretation of 

Sato’s in-vitro experiments.)  In terms of the mechanical transmission from the 

outer surface of the PC to the core, this interpretation predicts a high-pass 

response with good transmission for frequencies  250 Hz but a fall off in 

transmission at lower frequencies. 
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Figure 1.21. Threshold measurements for different populations of 

mechanoreceptors in the thenar eminence of the human hand; the thresholds from 

each of the four channels combine to give the overall threshold; the full line 

labelled P is the threshold for the PC channel, with a minimum in detection 

threshold (maximum sensitivity) at around 250 Hz; the NPI- channel corresponds 

to Meissner’s corpuscles and contributes to the overall threshold in the range 

3 – 30 Hz; the NPII-channel corresponds to Ruffini cells; the NPIII-channel 

corresponds to Merkel cells and contributes to the overall threshold below 3 Hz. 

The vertical scale is in decibels (logarithmic units) referenced to 1.0 µm peak. 

Adapted from [60].  
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1.3 Theoretical Modelling 

 

 

Hubbard [54] was the first researcher to suggest a model of mechanotransduction 

in PCs based on his experimental studies. Hubbard’s model proposed that the 

lamellar structure of PCs acts as a high-pass filter. Loewenstein and Skalak [36] 

took into account Hubbard`s experimental findings and morphological and 

mechanical properties such as membrane elasticity, viscosity of intercellular fluid, 

and interconnections between the lamellae; they constructed a model in which the 

part-spherical, part-cylindrical geometry of the PC was replaced by spherical or a 

complete cylindrical geometry. A model of the transmission of mechanical forces 

through the lamellae to the core was developed using a lumped parameter 

approach. The concept of the model was a series of concentric lamellae separated 

by incompressible fluid which recovers after deformation due to the elasticity of the 

lamellae. The lamellae were considered to be impermeable and the fluid, of 

specified viscosity was supposed to flow between the lamellae when the structure 

is deformed. Also, it was assumed that there were elastic interconnections 

between the lamellae, responsible for transmission of a static stimulus. 

Transmission of a mechanical stimulus was partly via these and partly via the 

interlamellar fluid. The entire corpuscle with a number of lamellae and the core was 

fully represented by the cylindrical model in figure 1.22. 
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Figure 1.22. The cylindrical model of the PC. (a) Longitudinal plane along the axon, 

where b is the length of the corpuscle; (b) transverse plane, where    is the spacing 

of the i-th lamella and    is radius of the i-th lamella. Adapted from [36]. 

 

Pressure on the surface of the PC may distort the cylindrical geometry, but it is 

assumed that pressure distribution is symmetrical with respect to the x-plane (fig 

1.22 (a)), and represented by a double Fourier series (equation (1)):   

      + ∑ ∑      
                

 

 
)                                     (1) 

where p is pressure, with a static term   . The amplitude coefficients     have 

units of pressure. This relationship is applied to each lamella and related to 

displacement wi by the equations:  

 

a b 
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Where    is the compliance of the i-th membrane;    is the radius of the i-th 

lamella;    is thickness of the i-th lamella; b is length of the PC; E is Young's 

modulus  

 

The stress σ developed in the radial springs due to the displacement of adjacent 

lamellae is expressed by (5), where the elastic modulus is taken to be αE  and    is 

the spacing of the i–th lamella.  

     
          

  
                                             (5) 

Or, in terms of the Fourier components: 

                   
 

 
)                (6) 

Combining the above equations gives the expression for the stress components: 

   = 
         

  
                                (7) 
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Lamellar deflection with relative velocity (  ̇ -    ̇ ) of adjacent lamellae produces 

fluid motion; the resulting pressure in the viscous interlamellar fluid can be 

represented by the equation:  

  ̅                 
 

 
)                           (8) 

Where the amplitude is given by: 

      (  
̇   ̇   )                 (9) 

For a fluid of viscosity µ the resistance can be written as: 

     
     

  
       

   

     
    

 
                (10) 

 

Ignoring inertial terms, the instantaneous load on the i-th lamella is given by the 

difference between viscous pressure and radial spring stress on both sides of the 

lamella:   

    
  

  
   ̅          ̅                   (11) 

and for any lamella except the first (outer lamella) and last (core): 
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                                                                                                         (12) 
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This model can be solved either numerically or by the construction of a mechanical 

analogue (fig. 1.23) or an electrical analogue (fig 1.24). The latter is developed in 

Chapter 2. 

 

 

Figure 1.23. The model of the PC represented by a mechanical analogue; lamella 

compliance is associated with springs M; springs S represent radial spring 

compliance; fluid resistance is represented by dashpots D. Adapted from [36]. 
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Figure 1.24. The model of the PC represented by an electrical analogue where all 

components of the mechanical model are converted into electrical equivalents; 

lamella compliance is represented by capacitance    ; fluid resistance is 

associated with resistance   ; the radial spring compliance is represented by       

Adapted from [36]. 

 

This theoretical model predicted static lamellar displacements (fig. 1.25) which 

correlated with the experimental measurements by Hubbard [55]. For dynamic 

stimuli, the pressure transfer function of the lamellar structure was calculated to 

have the expected high-pass characteristic (fig.1.26) with a relatively flat response 

above 300 Hz. At frequency 300 Hz, 90 % of applied pressure was transmitted to 

the core due to the viscous properties of the interlamellar fluid. Only 3% of applied 

pressure transmitted to the core during zero frequency stimuli which corresponds 

to static stimuli.  
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Figure 1.25. Lamellar displacement against position for static compression; the 

abscissa is the radius measured from the axis of the PC. The numbers on the 

curves represent the magnitude of the applied compression. Taken from [36]. 

 

 
 

Figure 1.26. Core pressure in the PC against stimulus frequency for displacement 

of the outermost lamella at constant input pressure. The ordinate is the peak 

pressure exerted on the core for a peak pressure of 100dyn/    on the outermost 

lamella at the frequencies given by the abscissa. Taken from [36]. 
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A comparison of the model with experimental data obtained in this project is 

described in Chapter 5. 

 

Grandori and Pedotti [64] combined the Loewenstein and Skalak model of 

mechanotransmission with data on electrical transmission in unmyelinated nerves 

and a model of neural activation based on the statistical analysis of data of firing 

rates and interspike intervals collected by Bolanowski [50]. The model was found to 

be compatible with a large body of experimental data [27], [53], [36], [42], [49], [58], 

[65], [37], [55], [59]. Sinusoidal stimuli were encoded into the pattern of spikes in 

the nerve fibre.  

 

Holmes and Bell [35] also developed a theoretical model of mechanotransduction 

in the PCs, again employing the Lowenstein-Skalak model of the mechanical 

component, which they coupled to another mechanism for neural excitation. They 

hypothesised the existence of stretch-activated ionic channels, which respond to 

mechanical pressures. However, the results were somewhat inconclusive due to 

the large number of free parameters in the model. 
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1.4 Discussion and Overview of Thesis 

 

The literature review demonstrates that both experimental work and theoretical 

models have provided some understanding of the mechanism of 

mechanotransduction in the PC, but a number of questions still remain. The 

important point is that the structure and mechanical properties are still incompletely 

characterised and that more information is necessary before existing models can 

be fully tested or more elaborate ones developed. Most recent work on 

mechanotransduction in PCs has concerned the neurophysiology rather than the 

biomechanics.  

 

The structure of the PC (fig. 1.27) can be summarised as follows: the lamellar 

structure has an inner zone and an outer zone, separated by a growth zone. The 

fluid spaces between the lamellae contain a complex collagen network [34]. Elastin 

is only found in the inner core, around the axon [41]. Lipids are present within the 

capsule [65]; proteoglycans are found in the inner lamellar spaces and may play an 

important role during compression [43]. Axon processes run from the neurite 

towards the growth zone and may reach the outer zone. It has been speculated 

that vesicles on the end of the axon processes behave as transmitters and are able 

to change the ionic environment after being triggered during compression [41], 

[37]. There are pathways between the hemilamellae and clefts of the inner core 

whose role is still unknown. However, some researchers associate them with 

nutrition pathways via capillaries [66], [42]. 



60 
 

 

 

Figure 1.27. Schematic diagram of a PC, showing the core, surrounded by 

lamellae in inner, middle and outer zones. 

 

Motivating the present work are important but still unanswered questions 

concerning connectivity of the fluid compartments which is crucial in determining 

the interlamellar fluid displacement under mechanical load. Daniel and Pease [33] 

raised an interesting question in relation to osmotic pressure: are the lamellae of 

the outer zone kept separate by hydrostatic pressure produced by osmotic forces? 

They proposed that colloidal material in the inter-lamellar solution generates an 

osmotic pressure which maintains the requisite pressure balance, and is oppose by 

stresses generated in the collagen fibre network. Intracapsular pressure is another 

important parameter, but previous attempts to measure it have encountered a 

problem of lamellar damaging during puncturing by a pressure probe [42], [67]. 

Also, there is very little information about corpuscle–tissue coupling; the 
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involvement of surrounding structures may be important for the transduction 

process. 

 

The first stage of the present work is dissection of PCs from the equine hoof, 

providing an opportunity to investigate surrounding tissue and investigate 

corpuscle-tissue coupling.  

 

Transmission, confocal and nonlinear microscopic techniques are combined in the 

present study to investigate the structure and biochemistry of the PC. Fluorescent 

tracer methods are used to study solute transport and provide data on fluid 

connectivity and lamellar permeability. Osmotic swelling measurements are 

undertaken further to explore the permeability and mechanics of the corpuscle. We 

also describe a number of direct mechanical measurements, including 

measurements of hydrostatic pressure and elastic properties of the capsule and 

lamellae. Finally, we undertake measurements of dynamic mechanical properties 

which we interpret using an electrical analogue of the Loewenstein-Skalak model. 

 

 

 

 

 



62 
 

Chapter 2 

 

Methods 

 

This chapter describes the experimental methods employed in this thesis, some of 

which were already established in the laboratory for measurements on other 

systems and others which were new or heavily modified. The method of dissection 

of the PC will be described in section 2.1, followed in section 2.2 by a description of 

the various microscopy techniques employed. Section 2.3 describes methods to 

investigate solute transport and osmotic swelling behaviour of the PC. The various 

methods of characterizing the mechanical properties of the corpuscle are 

described in sections 2.4, 2.5 and 2.6. The advantages and disadvantages of the 

methods and techniques used in the present study are discussed in the last section 

(2.7).  

 

2.1 Dissection of Pacinian Corpuscles 

 

 

It was initially intended to use PCs from rat and mouse limbs, which have been 

described by a number of authors [33], [45],[68], [69], [70] and snap frozen tissues 

were obtained from the School of Medicine, University of Bristol. However, pilot 

studies demonstrated that the overall shape and internal structure of PCs in 

defrosted rat limbs were seriously disrupted, presumably due to effects of the rapid 
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freezing, making the PCs difficult to recognise during dissection. Subsequently, 

fresh horse hooves (immediately after animal euthanasia) were obtained from 

animals of known age and health status at an abattoir (LJ Potters, Taunton) and 

transferred to the laboratory, allowing experiments to commence within one or two 

hours of euthanasia . Previous authors have described PCs in the frog area of the 

hoof [21], [71]. Their work aided the development of the dissection technique, and 

during the learning process other anatomical structures which may be associated 

with the functioning of PCs were also revealed and are discussed below.  

 

Before dissections, hooves were cleaned with tap water. The dissection procedure 

was to make an incision of the back of the hoof; the scalpel (blade N22) was 

placed against the back of the heel and a wedge of tissue between the heel bulbs 

and frog apex was excised (fig. 2.1). Evans Blue (0.1% w/v in 0.15M NaCl) was 

applied to the surface of the extracted tissue to help in identifying blood vessels as 

landmarks for further investigation.   

  

Figure 2.1. (a) coronal view of the hoof; the red box is the area of interest. (b) 

transverse view of the hoof; the dashed line is profile of excision. A wedge of tissue 

was cut from the hoof. Adapted from [21]. 

b a 
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Two techniques were used to determine the distribution of corpuscles through the 

tissue. First, histological sections were prepared in order to study the relationship 

between surrounding structures such as blood vessels, glands and corpuscles. 

Cubes of the tissue of approximately 1cm x 1cm x 1cm were snapped frozen and 

20 µm frozen sections were prepared (Leica Cryocut CM1800 Cryostat). The tissue 

sections were stained with Evans Blue (0.1% w/v in phosphate buffered saline) and 

observed under a dissection microscope (Wild Heerbrugg MS Stereomicroscope, 

total magnification 120x). 

 

The second approach sought to dissect clusters of corpuscles. Tissue blocks were 

cut from regions identified from the histology as likely to contain PCs, and PCs 

were dissected with ocular scissors and a scalpel. Dissected groups of PCs, often 

tightly surrounded by a layer of adipose and loose connective tissue were stored in 

0.15M NaCl at 4º C for up to 24hrs. For longer term storage of specimens for 

structural analysis, fixation of PCs in 4% formaldehyde was used. However, 

formaldehyde fixation can lead to tissue shrinkage and intercellular distortion, so 

results from such preparations were always confirmed on fresh tissue.  

 

Isolated corpuscles and tissue sections containing corpuscles were taken for 

further microscopic investigation. Histological sections and intact corpuscles were 

stained with Alcian Blue, Van Gieson, for demonstration of, proteoglycans and 

collagen by standard procedures [72]. Blood vessels were also revealed by their 

uptake of fluorescein and rhodamine in the tracer studies described below. Some 
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specimens were and stained with di-8-anneps for visualisation and axon cell 

membranes, including the axon and lipid droplets [73]. Confocal and nonlinear 

microscopy were performed on intact corpuscles and a holding chamber was 

constructed by forming a 4-sided frame (1 cm x 1.5 cm x 1 mm) of Paraffin film (“M” 

Laboratory film, Bemis Flexible Packaging, Neenah, WI54956) and placing it on a 

microscope slide, which was placed on a hot plate (Gallenkamp, Magnetic Stirrer 

Hotplate 300) to melt the Paraffin and attach the frame to the slide. The tissue was 

placed in the chamber, 0.15M NaCl added and a cover slip was placed on the top 

of the frame and sealed with a brief touch of a soldering iron tip to melt the 

Paraffin. This chamber allowed good visualization whilst preventing the PCs from 

undergoing compression and dehydration. Other experiments (osmotic swelling, 

lamella displacement and cell aspiration) required a similar 3-sided chamber 

1.5mm deep to allow the insertion of instruments or changes of bathing solution.   

 

2. 2 Microscopy 

 

2. 2. 1 Light microscopy 

 

 

Transmitted light microscopy (Olympus U-TVO.5X with digital camera JVC, TK-

C1381) was the main tool for morphological analyses, osmotic swelling and lamella 

displacement studies. Observations on whole corpuscles were generally made 

using 40×0.75 or 10×0.30 objectives, but 5×0.15 and 4×0.13 objectives were also 

available. 
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For experiments involving pressure measurements on the PC the rotation stage of 

the microscope (fig. 2.2 a) was modified as shown in figures 2.2 b and 2.3. The 

modified stage–plate contains a homemade micromanipulator, with two 

micrometers attached to it. A transparent plastic chamber with three access 

channels, inserted into a metal holder is also attached to the base plate. The 

chamber, diameter 4mm and depth 2.5mm, on the centre of the slide, has three 

access channels for different purposes, depending on the type of experiments. In 

general one channel was used to hold the PC in position using suction from a 

micropipette. Flexible glue (Word Precision Instrument Inc., Kit silicon Sealant) 

prevented saline leakage from the channels.  

 

 

 

Figure 2.2. (a) The Olympus U-TVO.5X microscope. (b) The schematic on the right 

shows the micromanipulator and modified working plate. 

b a 
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Figure 2.3. The experimental set–up with modified working plate for the light 

microscope. On the left is the mechanical stimulator (see section 2.5.3) and the 

pressure transducer with the micropipette attached. 

 

2.2.2 Confocal microscopy 

 

 

Confocal microscopy was used to determine the 3D structure of the intact PC and 

to investigate the uptake of fluorescent tracers. The basic mechanism of this 

microscope involves scanning a finely focused laser beam through a sample. The 

back scattered or transmitted light then passes through a pinhole, which rejects 

light which did not originate at the focal plane of the objective, before being 

directed to a photomultiplier tube. A series of consecutive two-dimensional scans 

taken at different depths can be reconstructed into three-dimensional images.  

digital 

micrometers 

mechanical stimulator  

pressure transducer 

with pipette  

PC on glass 

slide 
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The present studies employed a TCS Leica LAS S5C inverted microscope 

equipped with four lasers (i) Ar+, (ii) HeNe 543 nm, (iii) HeNe 594 nm, (iv) HeNe 

633 nm, and a wide range of filters for fluorescence microscopy.  

 

In the tracer uptake experiments fluorescein was stimulated at 490 nm and 

observed at 525 nm; for rhodamine B, stimulation was at 540 nm and observation 

at 625 nm.  

 

2. 2. 3 Multiphoton microscopy 

 

Multiphoton microscopy (MPM) allows confocal imaging based on intrinsic contrast 

mechanisms and therefore provides stain-free imaging of living tissue. Because 

excitation occurs at infrared wavelength it provides superior depth penetration to 

confocal microscopy. Three modalities were employed in this investigation: Second 

Harmonic Generation (SHG), Two–Photon Fluorescence (TPF) and Coherent Anti-

Stoke Raman Scattering (CARS). Second harmonic generation was used to 

visualize fibrous collagen, TPF to visualize elastin and CARS, tuned to a vibrational 

frequency of the fatty acids of membrane phospholipids was used to visualize cell 

boundaries.  

 

TPF is the simplest of the modalities. It uses two low-energy photons 

simultaneously to interact with the target molecule producing excitation of an 

electron to a higher energy level.  For an appropriate molecule this is followed by 
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the emission of one photon of fluorescence as the electron returns to the ground 

state [74]. For fluorophores that are normally excited by ultraviolet light, TPF has 

the advantage of exciting the molecules using photons of longer wavelength which 

have better depth penetration and cause less photo-damage to the tissue. 

Because TPF is a weak effect a large number of photons must be delivered to the 

sample simultaneously in order to increase the probability of non-linear excitation. 

Constant illumination at this intensity would damage the sample, so a series of 

femto-second pulses is generated, resulting in high peak intensity whilst keeping 

the average power on the sample low [76]. The probability of a two-photon event 

occurring is dependent on intensity squared and, because intensity falls off rapidly 

outside the focal spot, TPF excitation only occurs in the focal volume and therefore 

the need for a pinhole, as occurs in confocal laser scanning microscopy, is 

removed. (Insertion of a pinhole can result in loss of the number of photons 

collected because even photons that were in the focal volume on excitation can 

become scattered on the exit path out of the sample.) Amongst the extracellular 

matrix macromolecules, only elastin displays TPF. 

 

SHG is a second-order non-linear process in which two incoming photons are 

simultaneously scattered to emit a single photon with double the energy (half the 

wavelength) of those entering the sample [76]. Theoretical analysis of the 

scattering process reveals that it breaks symmetry and so can only occur when 

polarisation of the scatterer is itself antisymmetric. This happens at surfaces and in 

very asymmetric molecules or fibres. The principal source of SHG in tissues is 

collagen fibres [76].  



70 
 

CARS is a four-wave mixing process in which Raman vibrations are excited 

coherently by multiple photons. The process requires two incident laser beams, 

tuned to resonance with a particular vibrational mode of the target molecule, as 

shown in the energy-level diagram for this process (fig. 2.4) [77]. 

 

Figure 2.4. CARS levels. The two excitation beams (at ωp and ωs) form a beating 

field with angular frequency ωp - ωs. When ωp - ωs matches a Raman frequency of 

the sample, the anti-Stokes signal at ωas is enhanced. Adapted from [78].  

 

The nonlinearity of the process means that the scattering intensity varies as the 

square of the number of bonds in the focal volume so it is particularly effective in 

visualising cell membranes when tuned to vibrational modes of the membrane 

phospholipids. 

 

These modalities were implemented simultaneously using the purpose-made 

multimodal multiphoton microscope in the biophysical laboratory at Exeter 

(www.newton.ex.ac.uk/research/biomedical-old/multiphoton/).  

 

http://www.newton.ex.ac.uk/research/biomedical-old/multiphoton/).%20Eeach
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SHG was generated in the forward direction, TPF in the epi-direction and CARS in 

both the forward and epi-directions. TPF and SHG were excited using a mode-

locked femtosecond Ti:sapphire oscillator (Mira 900D; Coherent, USA)  which 

resulted in the generation of 100-fs pulses at 76 MHz repetition rate and 800 nm 

wavelength. For CARS, the synchronised dual laser beams of differing 

wavelengths were provided by an optical parametric oscillator (Levante Emerald, 

APE, Berlin, Germany) pumped with a frequency-doubled Nd:vanadium 

picosecond oscillator (High-Q Laser Production GmbH). The signal beam was 

tuned to 924 nm and the idler beam to 1254 nm, stimulating phospholipid vibration 

at 2845 cm–1.  

 

2.3 Tracer Uptake Experiments 

 

 

Two low molecular weight tracers differing in charge and lipid solubility, rhodamine 

B (molecular weight 479Da, 0.55nm hydrodynamics radius, C28H31ClN2O3, Sigma, 

UK) and fluorescein (molecular weight 332Da, 0.4nm hydrodynamic radius, 

C20H12O5  Sigma, UK) were studied. Fluorophore distribution as a function of time 

was quantified using the confocal microscope. 

 

These tracers were chosen because of their low molecular weights, so their rates 

of transport and transport pathways are likely to be similar to the nutrient and 

signal molecules important for the nutriton of the capsule and involved in its 

electrophysiology. The two tracers have different charges, rhodamine B is cationic 
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and fluorescein is anionic, allowing us to investigate the effects of charge on solute 

transport and distribution. 

 

For these experiments the corpuscle was immersed in the microscopy chamber 

described above containing solutions of fluorescein (1mg /100ml) and rhodamine B 

(1mg /100ml)   in 0.15M NaCl at room temperature for time periods varying from 5 

minutes to 18 hours. Then the PC was briefly washed in 0.15M NaCl and 

transferred to another chamber containing 0.15M NaCl alone on the stage of the 

confocal microscope. Stacks of 60, 80 or 100 images with one micron interval 

between the images were obtained and saved in RAW format for image–

processing using Image J software (www. imagej.nih.gov/ij/). Each Raw file was 

separately visualized in two sequences of images using the Image J plugin 

“Channel Separator”. Profiles of tracer distribution over selected regions were 

constructed and compared at different incubation period. 

 

 

2.4 Osmotic Challenge Experiments 

 

 

The response of PCs to changes in osmotic pressure in the surrounding medium 

provides information on the permeability to a particular osmolyte of the capsule and 

internal structure and, when swelling or shrinkage occurs, it provides insight into 

the mechanical properties of the restraining structure. 
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Four osmolytes were employed in these experiments. Sucrose, polyethylene glycol 

(mw 20,000) and bovine serum albumin (mw 67,000) (Sigma Chemicals, UK) were 

used to probe the permeability of the outer corpuscle and successive lamellae to 

neutral solutes of  increasing  size,  and NaCl was used to probe permeability to 

ions which may be directly involved in the transduction process.  

 

In each experiment the corpuscle was placed in a chamber on the stage of the 

transmission microscope and allowed to equilibrate with 0.15M saline solution 

(generally up to ½ hr), and then the solution was changed to the chosen solution 

(e.g. sucrose or saline in higher concentration). The time-course of structural 

change was determined from measurements made using Image J on still frames 

from a video recording. The principal measurements were: length of the corpuscle, 

maximum diameter and interlamellar spacing and width. 

 

2.5 Mechanical Measurements 

 

 

2.5.1 Measurement of Intracorpuscular Hydrostatic Pressure 

 

 

A knowledge of intracorpuscular pressure and the ways in which it changes as 

static and dynamic loads are applied to the capsule are important to understand 

the structure of the PC and mechanisms of mechanotransduction. In the present 

study, the original intention was to measure hydrostatic pressure in PCs using a 



74 
 

servo-null pressure measurement system developed by Wierhieml [79] to measure 

pressure in the microcirculation. However, preliminary assessment suggested that 

it should be possible to make pipette pressure measurements without the servo 

feedback system in order to improve frequency response. It was therefore decided 

to construct a new system for direct pressure measurement. 

 

The experimental system for combined pressure measurement and observation of 

lamella displacement comprised the standard microscopy chamber, open on one 

side (see 2.2.1) into which was inserted a sharpened glass micropipette connected 

directly to a sensitive pressure transducer and mounted on a micromanipulator 

(micrometer head 0-25 mm, 0.001 mm World Precision Instrument, the UK), the 

whole being positioned next to the stage of the microscope (fig. 2.5). In order to 

take measurements inside the PC, a micropipette with a sharp, fine tip was 

required to penetrate the capsule. The micropipette (boron glass, 2 mm o.d WPI) 

was pulled using an electrode puller (Harvard Apparatus Model) to a tip diameter of 

approximately 3.5 µm and ground to a tip angled at approximately 45° using a 

grinding wheel covered with 1000 grade abrasive paper. After cleaning in an 

ultrasonic cleaning bath (Sonic, Ultrawave, PH-5.5-6) it was then filled with 0.15 M 

NaCl solution and connected directly to a pressure transducer with internal 

amplifier (HDIM020GBZ8PS, Sensor Technics). A fresh PC was placed on the 

slide and positioned by aspirating it, under negative hydrostatic pressure, into a 

second, wider micropipette which had been soda-glass annealed to provide a non-

penetrating tip. The corpuscle was centred under the microscope and the tip of the 

pressure probe micropipette was advanced into the PC.  
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Figure 2.5. Schematic of the experimental set-up for measurement of intercellular 

pressure inside the PC. The PC is localised using one micropipette (right of figure), 

pressure is measured using a second micropipette (foot of figure) and there is 

provision for applying a mechanical stimulus (left of figure). 

 

In pilot studies in advance of the present study (carried out in Exeter by Ian 

Summers and Natalie Garret) defrosted PCs from the rat foot were successfully 

penetrated without deflation and pressure measurements were obtained using the 

servo-null pressure transducer. However, despite numerous attempts it was 

impossible to replicate these measurements of intercapsular pressure in a fresh 

PC from the horse hoof. These horse PCs were much more difficult to penetrate 

and when this was achieved the lamellar structure was so badly disrupted that the 
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results were considered unreliable and the study was not pursued due to lack of 

time – no results are presented in this thesis. These observations are consistent 

with reports in the literature that the capsule is “deflated” once punctured [33], [42], 

but it remains to be established whether the previous success arose because the 

capsule was already deflated by the freeze-thaw procedure or because the rat PC 

has different mechanical properties.  

 

2.5.2 Micropipette Aspiration 

 

 

Micropipette aspiration is a well-established method of measuring the mechanical 

properties of cell membranes [79]. An aim of this project was to investigate the 

feasibility of scaling up this approach to investigate the local mechanical properties 

of the outer capsule of the PC and the mechanical coupling between lamellae.  

 

The apparatus shown in figure 2.6 was constructed consisting of a hydrostatic 

pressure reservoir on a calibrated support connected via a 3-way tap to a glass 

micropipette. The pipette, prepared as described in section 2.5.I, but with a flat, 

smooth tip 20-150µm in diameter finished by soda glass annealing, was filled with 

0.15M NaCl and mounted on a micromanipulator. A fresh PC from horse hoof was 

placed in an observation chamber on the microscope stage and the pipette was 

then positioned on its surface. The pressure reservoir was then lowered in order 

first to trap the PC and then to draw a tongue of the PC capsule into the tip of the 
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pipette, on which the microscope was focussed, using a 60X water immersion 

objective.  

 

 

Figure 2.6. Micropipette aspiration system consisting of a hydrostatic pressure 

reservoir on a calibrated support connected via a 3-way tap to a glass micropipette. 

  

 

2.5.3 Lamella displacement under static and dynamic compression of the 

corpuscle 

 

The behaviour of lamellae under dynamic and static compression of the corpuscle 

was investigated by two approaches. Experimental measurements on corpuscles 

were complemented by the construction of an electrical analogue of the theoretical 

model of mechanotransduction proposed by Loewenstein and Skalak [36], outlined 

in chapter 1.  
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Figure 2.7. The experimental set-up for experiments involving static or dynamic 

compression. The corpuscle (PC) sits in saline solution between two metal plates. 

 

The experimental set-up is based around a microscope slide observation chamber, 

as shown in figure 2.7. The corpuscle immersed in 0.15M NaCl in saline solution is 

positioned between two metal plates, one fixed and the other moving under the 

control of a micromanipulator and a mechanical stimulator. The direction of 

movement (left to right or right to left in fig. 2.7) is such that a compressive load 

can be applied to the corpuscle. The micromanipulator determines the baseline 

position of the moving plate, upon which a sinusoidal displacement from the shaker 

can be superimposed with a peak-to–peak amplitude of approximately 20 microns. 

Transmitted light microscopy is used to image a central plane of the corpuscle. For 

experiments involving static compression, the stimulator is not used and the 

compression is determined purely by the micromanipulator: images are acquired at 
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different positions of the moving plate, corresponding to different amount of 

compression. In order to determine local properties in some experiments the 

mechanical distortion of the corpuscle was achieved using a pointed probe 

10-20 μm in diameter rather than the flat plate.    

 

 

 

 

Figure 2.8.Schematic overview of the apparatus: signal paths are indicated by the 

blue arrows. 

 

Figure 2.8 shows an overview of the complete apparatus. This set-up was 

developed over a period of many months, originally with the intention of 

simultaneously measuring pressure variations within the corpuscle in response to 

sinusoidal mechanical stimulation. In the event, the micropipette technique for 
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intra-capsular pressure measurement proved impossible to implement reliably. 

However, visualisation of the lamellae proved easier than expected and so the 

experimental focus was changed to a study of lamellar displacement in response to 

sinusoidal mechanical stimulation. The signal paths in figure 2.8 are indicated by 

blue arrows. The signal generator provides a sine wave which drives the stimulator 

(Bruel and Kjaer type 4810) via a power amplifier. The vibratory motion of the 

shaker, corresponding to the mechanical stimulation applied to the corpuscle, is 

measured by an accelerometer (Knowles type BU1771) whose output signal, after 

passing through a preamplifier, is displayed on Oscilloscope 2. Observation of this 

signal on the oscilloscope allows the amplitude of the vibration to be set as 

required, and provides a check that the displacement waveform in the steady state 

is indeed sinusoidal. (Harmonic distortion is observed if the drive voltage to the 

shaker is too high or if the movement of the mechanical system is not completely 

free.) The signal generator also triggers a pulse generator, producing a short 

rectangular pulse once per cycle of the mechanical stimulation. A variable time 

delay is given to this pulse before it is applied to the trigger circuitry of the 

microscope camera. The camera thus takes one image per cycle of the mechanical 

stimulation, at a phase in the sine wave cycle that is determined by the time delay 

which has been applied to the trigger pulse. This is effectively a stroboscopic 

imaging technique. Oscilloscope 1 is used to simultaneously display the sine wave 

from the signal generator and the trigger pulse sent to the camera; this allows 

adjustment of the time delay to correspond to a specified phase within the 

sinusoidal mechanical stimulation. 
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When investigating response to sinusoidal mechanical stimulation, the camera 

(Qlmaging type Retiga 2000R) was set to an acquisition time of 0.12ms. This was 

short enough to “freeze” sinusoidal motion at frequencies up to approximately 500 

Hz. Images were acquired at phase steps of 36°, i.e., ten per cycle, at frequencies 

of 50, 100, 200 and 400 Hz. (See fig. 2.9 for examples; each complete data set 

consists of 21 images covering two compete cycles). By observing the 

accelerometer signal on Oscilloscope 2 (see fig. 2.8), the displacement amplitude 

of the moving plate was set to a nominal value of 20m peak to peak 

(subsequently determined more accurately from measurements on the acquired 

images); at 400 Hz the available displacement amplitude was limited to around 

8m peak to peak because of the need to avoid overheating the shaker with high 

drive currents. 

 

The layered structure of the corpuscle provides visible landmarks (see fig. 2.10) 

whose position along a suitable chosen line can be tracked over a set of images at 

different phases in the cycle of mechanical stimulation (see fig. 2.11). The 

sinusoidally varying position of these visible landmarks provides amplitude and 

phase information for the tissue displacement, as a function of position (depth) 

within the corpuscle.  
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Figure 2.9.  A sequence of images (FOV 600 m  900 m) covering one half 

cycle of 100 Hz stimulation in phase steps of 36° (time difference 1 ms, exposure 

time 120 µs). The moving plate (black band on the right of each image) is seen to 

move inwards. PC from heel area of hind hoof of 8-year-old mixed-breed horse.  

 

 
 

 

 

Figure 2.10. A corpuscle positioned between (left) the fixed metal plate, and (right) 

the moving metal plate (FOV 600 m  900 m). The features a and b mark the 

boundary between inner and outer regions of the corpuscle; c is a lamellar feature 

in the outer region and d is the surface of the corpuscle. The position of such 

features can be determined from a profile along a line such as the one shown. 
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Figure 2.11. Line profiles (see fig. 2.9) across the corpuscle, for 21 phase steps 

over two cycles of stimulation at 100 Hz. Dotted lines are fits to 2 selected features. 

(Note position is measured relative to the corpuscle centre, so left and right move 

in antiphase.) 

 

2.6 Electrical Analogue of Pacinian Corpuscle 

 

The theoretical model of Loewenstein and Skalak [36] has been outlined in 

Chapter 1. As described in section 1.3, Loewenstein and Skalak also proposed an 

electrical analogue of their mechanical model, as a network of capacitors and 

resistors (figs. 1.24 and 2.12) whose values correspond to the compliances and 

resistances of the mechanical model (fig. 1.23).  

 

14-th line profile  

1-st line profile  
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Figure 2.12. The model of the PC represented by an electrical analogue in which 

all components of the mechanical model are converted into electrical equivalents. 

The red circle indicates a single network, corresponding to a lamella with the 

associated interlamellar fluid. Adapted from [36]. 

 

Each lamella in the 30-lamella structure of the mechanical model is represented by 

a network of the type circled in figure 2.12 with 30 similar networks connected in 

series to form an analogue of the entire corpuscle. Pressure in the mechanical 

model is represented by voltage in the electrical analogue. As shown in figure 2.12, 

the pressure applied to the i-th lamella is represented by the voltage    and the 

pressure applied to the (i −1)th lamella is represented by the voltage     . These 

voltages are determined by equations (13) and (14).   

     
   

   
    ̇           (13) 

        
   

   
                 (14)  

where     and       are the charges on capacitors     and     , respectively. 

Charges are also related by 
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       (15) 

Substituting (15) into (13) gives 

     
   

   
 

       

   
    ̇      ̇                        (16) 

Now substituting (16) into (14) leads to 
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                                                                                                      (17) 

which has a direct correspondence to equation (12), derived in section 1.3 for the 

mechanical model: 

  

  
     ( ̇     ̇ )   
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                                                                                                         (12) 

From comparison of equations (12) and (17), we see that displacement amplitude 

Bi is represented by charge Qi, compliance Ki is represented by capacitance Cmi, 

compliance h/αE is represented by capacitance Csi and mechanical (viscous) 

resistance Ri is represented by electrical resistance Ri. 
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The electrical analogue models the transmission of pressure (voltage) and 

displacement (charge) through the set of 30 lamellae (networks) from surface to 

core, and forms the basis of the comparison with experimental data in Chapter 5.  

Loewenstein and Skalak suggested appropriate values for the compliances and 

resistances in their electrical model (see fig. 2.13), from which component values 

for the electrical analogue may easily be derived. In the practical implementation of 

the electrical analogue, values for the capacitance Cm, which represents the 

lamella compliance, are in the range 4.4 to 0.047 F; values for the capacitance 

Cs, which represents the compliance of radial elements, are in the range 330 to 

12,000 pF; values for the resistance R, which represents viscous resistance, are in 

the range 2000 to 5.6 k. (Note: these values give an electrical analogue which 

operates 100 times faster than the mechanical model, i.e., the behaviour of the 

electrical analogue at 5 kHz corresponds to the behaviour of the mechanical model 

at 50 Hz; experimental measurements on the electrical analogue are quoted at a 

frequency 100 times less than that actually used; resistor and capacitor values 

were rounded to the nearest preferred value.) Figure 2.14 shows the practical 

implementation of the electrical analogue. Measurements were made at a range of 

frequencies by applying a voltage sine wave to the input terminals and measuring 

(a) the variation in voltage through the series of 30 networks, representing the 

change in pressure from the surface of the corpuscle to the core, and (b) the 

variation of charge (capacitancevoltage) on the capacitor Cm, representing the 

variation of displacement through the set of lamellae.  
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Table I 

 

Table II 

 

 

Figure 2.13. Table 1 summarises the mechanical components of the Loewenstein 

and Skalak model. The viscosity of the fluid is assumed to be that of water and the 

solid mechanical properties are assumed to be similar to those of the arterial wall. 

Table II summarizes the relationships between mechanical and electrical 

parameters. (Because the mechanical model neglects inertial effects the electric 

analogue in fact contains no inductances.)  Adapted from [36]. 
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Figure 2.14. Practical implementation of the electrical analogue, with oscilloscope 

probes connected. The input terminals are at the top left of the picture; the signal 

travels left to right through the first 19 networks    (top half of picture) and then 

right to left through the next 11 networks (bottom half of picture). Each network 

consists of two capacitors (    with a range of 4.4 to 0.047 μF, with arrange of 330 

to 12,000 pF), and a resistor (R with a range 2000 to 5.6 kΩ). 

 

 

Voltage measurements were made using a two-channel digital oscilloscope with 

high-impedance probes; on-screen cursors were used to measure signal 

amplitudes; differential measurements of voltage were required to establish the Cm 

charge.  

  

   

   

R 
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Chapter 3 

 

Investigations of the distribution and structure of PCs 

 

This chapter describes investigations of PCs of the horse hoof. Section 3.1 first 

describes the anatomy of the horse hoof, the distribution of PCs and aspects of the 

structure of the surrounding tissue that may be important in mechanotransduction. 

Section 3.2 reports on the structure of the corpuscle and variations in the structure 

of PCs obtained from horses of different breeds and ages, and compare these 

observations with those reported in the literature. Section 3.3 describes in more 

detail the structure of the corpuscle as revealed by histological staining and 

confocal microscopy. Section 3.4 describes the first application of nonlinear 

microscopy to reveal the structure of the fresh, unstained corpuscles. 

 

3.1 Gross Anatomy 

 

3.1.1 The Structure and Mechanics of the Horse Hoof 

 

The distribution of PCs in the horse hoof is highly localised and needs to be 

considered in relation to the biomechanics of the hoof whose expansion and 

recovery under transient loading is central to the processes of locomotion and 

shock absorption.  
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The hoof consists of a relatively rubbery sole with an extremely hard wall made out 

of keratinized structures surrounding the toe (fig. 3.1 and 3.2). There are no 

muscles in the hoof, only bones, ligaments and tendons together with the requisite 

vascular network and the nervous system involved principally with 

mechanotransduction. The skeletal structure consists of three bones.  The short 

pastern bone is located between the long pastern bone in the leg and the coffin 

bone, which is the largest bone and determines the shape of the hoof and affords 

protection to the vascular and nervous systems. There is a thin bone called the 

navicular bone located behind the coffin bone. The digital flexor tendon is attached 

to the coffin bone and goes across the navicular bone, which acts as a fulcrum for 

the tendon [24].     

 

   

Figure 3.1. (a) relation between navicular bone (shown in green) and digital flexor 

(shown in purple); (b) a digital cushion located above the frog area and the lateral 

cartilages, the cushion acts as a shock absorber; (c) relative position of the digital 

cushion (red area) and the lateral cartilages (green areas) which are incorporated 

in the shock absorption mechanism. Adapted from [24]. 

 

a b c 
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The bones (coffin and navicular) are surrounded by a sensitive lamina, which 

provide pathways for nerves and blood vessels penetrating through the whole hoof. 

There is an elastic, fatty digital cushion located right under the lamina (fig. 3.1 b). 

The main function of the cushion is to absorb shock, which a horse receives from 

contact with the ground (fig. 3.1 c).  

 

The digital cushion, with the extensive microcirculation it contains, also acts as a 

pump to drive venous blood back up the leg (fig .3.2).   

 

  

 

 

Figure 3.2. Diagram of the blood circulation in the hoof. Taken from [24]. 
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3.1.2 Distribution of Pacinian Corpuscles in the Horse Hoof 

 

Up to 60% of the horse body weight, including head and neck, is carried by the 

front limbs and more forces are applied to the front feet during movement than to 

the hind feet. The front feet mainly act as a shock absorber and give direction of 

movement while the hind feet push the horse forward. The differentiation between 

the biomechanics and function of the front and hind feet is reflected by the shape 

of the hoof capsule [80] and by localization and quantity of mechanoreceptors as 

observed in the present study (fig. 3.3).   

 

 

Figure 3.3. The front hoof (a) is wider and the hind foot hoof (b) is more pointed. 

He white area (4 in the front hoof and 2 in the hind) shows where PCs were 

identified in the present study. Adapted from [80]. 

 

a b 



93 
 

The observation of histological sections revealed PCs generally close to blood 

vessels and hair follicles. They generally occur in clusters, and the axons which 

serve a group of PCs run in the same direction as blood vessels within the loose 

connective tissue and adipose fat (fig. 3.4).  

 

 

Figure 3.4. Histological section of tissue (stained with Evans Blue) from the digital 

cushion showing the typical location of a group of PCs between hair follicles and 

blood vessels, surrounded by adipose and loose connective tissue. 

 

The corpuscles were generally quite uniform in size and shape in the smaller 

clusters (around clefts), but the larger groups (around blood vessels in heel bulbs) 

usually contained corpuscles differing in size and shape (fig. 3.5, fig. 3.6, fig. 3.7, 

and fig, 3.8). The size varied from 0.6 up to 2.5mm in length and 0.2 up to 1mm in 

hair follicles 

group of PCs 

blood vessel 

adipose tissue 

loose connective 

tissue  

1000 µm 
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maximum diameter. The study was too small to investigate variation with size, age 

or breed of horse, but it is noticeable that the largest corpuscles, reaching up to  

4 mm in length and 2 mm in diameter, were found in two Shire horses. The mean 

sizes of PCs observed in the heel area (n = 360) are     
     mm (diameter) and 

    
     mm (length). The mean sizes of PCs observed in the cleft area (n = 36) 

are     
     mm (diameter) and     

     mm (length). 

 

The most commonly observed overall shape was ellipsoidal but some were round 

or conical (fig. 3.9). For example, in a large group of 13 PCs, ten corpuscles were 

ellipsoidal and two had conical shape. The large groups of PCs from the bulbar 

area were surrounded by a thin layer of fatty and connective tissue, which was 

difficult to remove. Individual PCs or small groups of PCs were also surrounded by 

a layer of loose connective and adipose tissue.  Interestingly the layer that 

surrounds the corpuscle appeared as a sack of whitish colour but transparent 

enough to identify the onion-like structures of the corpuscle. Sometimes, there are 

conical-shaped PCs standing out from the group, each of them covered separately 

by a thin layer. This layer becomes visible during micro dissection only after 

surrounding tissue has been removed.  

 

Results from dissection of hooves from 17 horses (age range 1 – 18 years, breeds 

ranging from Dartmoor pony to Shire horse) are summarised in fig. 3.10. Roughly 

twice as many PCs were observed in the front hoof than in the hind hoof. 
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Figure 3.5. Different PCs from the same horse, with significant differences in size 

and shape: (a) & (c) ellipsoidal, (d) & (f) conical, (b) & (e) oval. 
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Figure 3.6. A large group of 13 PCs, found close to the bulbar artery in the bulb 

area of the digital cushion of the front hoof of a 15-year-old mixed-breed horse 

(sample was stained with Evans Blue). The mean sizes of PCs from three horses 

of this age/type are      
      mm (diameter) and      

      mm (length). 

 

1000 µm smallest PC in the group 

(size 0.58 × 1.10 mm) 

largest PC in the group 

(size 1.15 × 2.08 mm)  

surrounding layer of 

connective tissue  
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Figure  3.7. A large group of 12 PCs dissected from the front hoof (heel area) of a 

3-year-old racehorse. The mean sizes of PCs from two horses of this age/type are 

     
      mm (diameter) and      

      mm (length). 

 

 

Figure 3.8. A large group of 7 PCs from a 15-year-old mixed-breed horse. This 

group of corpuscles was found next to the bulbar artery in the bulb of the heel area 

of the front foot. The mean sizes of PCs from three horses of this age/type are 

     
      mm (diameter) and      

      mm (length). 
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Figure 3.9. A group of 6 PCs found in a 1.5-year-old racehorse, next to the bulbar 

artery in the bulb of the heel area of the hind foot. The mean sizes of PCs from two 

horses of this age/type are      
      mm (diameter) and      

      mm (length). 

 

              Region   Typical number of PC 
clusters found per horse 

       Mean number of 
       PCs in a cluster 

        front foot (heel) 1 or 2        9.6  (range 4−13) 
        front foot (cleft) 0 or 1        3.0  (range 2−4) 
        hind foot (heel) 1 or 2        5.6  (range 3−8) 
        hind foot (cleft) always 0        −− 

Figure 3.10. Table of observed PC distribution in horses’ front and hind feet. 

 

The frog is probably the principal site for the reception of the tactile stimuli for 

locomotion and this is the primary function of the PCs in this area, however, their 

1000 µm 
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surrounding 
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intimate association with the vasculature adds support to suggestions in the 

literature that some at least may have an additional role in monitoring 

haemodynamic conditions: in the horse hoof these two functions may be intimately 

connected.  

 

Although the study group was too small for detailed analysis, differences were 

observed between PCs from the various horses, which may correlate with 

differences in the structure and biomechanics of the hoof in different breeds. It is 

clearly important that impact loads when the hoof hits the ground are distributed 

rapidly in order to prevent damage to bones and connective tissue. The efficiency 

of this mechanism in specific animals depends upon the conformation of the 

cartilages and the structural composition of the digital cushion. A study of the 

characteristics of the hoof in different breeds [71] found that structural organization 

was influenced by a genetic predisposition and an adaptation to various external 

stimuli (age, weight of horse, environment, etc.). Some breeds show a distinct 

cartilage and fatty cushion (a structure which can transfer impact forces to the level 

of the navicular bone) whilst others have a more uniform fibrocartilaginous fatty 

cushion. In mixed-breed or Arabian horses, fibrocartilaginous digital cushions are 

common, and fibrocartilaginous digital cushions predominate in the forelimbs of 

most types of horses. The venous complex incorporated into the fibrocartilaginous 

digital cushion encourages movement of venous blood as the hoof periodically 

contacts the ground [81].  
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As summarised in fig. 3.10, the experimental data from the present study indicate 

that PCs in front feet are distributed within the heel around the arteries with a small 

group of PCs located beside the cleft. As noted above, the front foot contains a 

fibrocartilaginous digital cushion [81], and PCs in the heel and cleft (both within this 

cushion) may be involved in monitoring or regulating both the shock absorption and 

blood pumping mechanisms. PCs in the heel area of the hind foot may be involved 

in monitoring impact forces on the navicular bone as an aid to locomotion.  

 

3.2 Microscopic Structures 

 

Light microscopic analyses were undertaken in 50 corpuscles taken from the frog 

regions of different breeds of horses, including racing and mixed-breed horses, 

ponies and shire horses, ranging in age from one up to twenty years old. All PCs 

have the same basic structure, which is represented in figure 3.11. The outer 

membrane has a smooth contour, suggesting that there may be a positive 

intracapsular pressure which keeps lamellae separated from each other; a 

prominent blood vessel can been seen passing through, which is seen in most 

corpuscles. There is a visible clear boundary between the outer and inner zones 

defined by a different density and structure of the lamellae; the inner zone and the 

outer zone are surrounded by a thin layer of connective and fatty tissue.  

 



101 
 

 

Figure 3.11. PC of oval shape, size 1.2 × 0.7 mm, dissected from a hind foot of a 4-

year-old mixed-breed horse, 2 hours after euthanasia; (transmission light 

microscopy). 

 

As mentioned above the size of PCs varied between groups, and the number of 

lamellae depended on the size of the corpuscle. The number of outer lamellae in 

large corpuscles (length up to 2.5mm) can reach up to 30 with a number of tightly 

packed inner lamellae. The interlamellar space generally ranged between 20−50 

microns. In horses up to 15 years old, the typical radial thickness of the outer zone 

was roughly equal to that of the inner zone, but in older horses the outer zone 

occupied a greater proportion of the capsule. Associated with these changes was a 

reduction in the vascularity of the surrounding tissue.  
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Figure 3.12. The area of the first Ranvier node in a PC from the heel (front foot) of 

a 4-year-old mixed-breed horse; (transmission light microscopy, inverted contrast). 

Single connections and complex connections (see text) are visible.  

 

Two principal forms of connection within the lamellar structure were observed (figs. 

3.12, 3.13, 3.14). The first type of connection is a single strand running between 

two neighbouring lamellae, roughly perpendicular to the lamellae, and the second 

is a more complex structure generally involving two (or more) strands crossing, 

with strands sometimes running roughly tangential to the lamellae. (The 

interlamellar spaces also contain fibrils, which are much thinner.) Single 

connections are relatively regularly distributed through the outer zone, while 

complex connections seems to be associated with extended radial strands which 

run through the lamellar structure towards the neurite. The spacing of complex 

connections in the outer zone is greater than in the inner zone.  The connections  
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Figure 3.13. The outer zone and part of the zone of the first Ranvier node in the 

same PC as shown in fig. 3.12, showing single and complex connections; 

(transmission light microscopy, inverted contrast).   

 

    

Figure 3.14. Images of the same PC as in figs. 3.12 and 3.13, showing (a) a single 

connection running orthogonally between two lamellae, (b) a complex connection 

running tangentially along the lamellae; (transmission light microscopy, inverted 

contrast).   
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appear to be cellular junctions that form “bridges” between neighbouring lamellae. 

Lowenstein and Skalak [36] remark that an “onion-like” structure of concentric 

lamellae separated by interlamellar fluid requires radial connections to achieve 

stability – if the interlamellar connections observed in the presents study are purely 

cellular, it is unlikely that they perform this mechanical function. (See section 3.3.1 

for further information on the nature of these connections.) 

 

3.2.1 Blood Vessels in Pacinian Corpuscles 

 

A number of previous studies have raised questions about the role of blood vessels 

in the PC, as reviewed in Chapter 1. In the present study, most of the corpuscles 

examined had blood vessels entering the inner core and other vessels crossing the 

outer surface. Figures 3.15 and 3.16 demonstrate two blood capillaries with an 

approximate diameter of 10 microns, running close to the nerve fibre. In figure 3.15 

the capillaries enter the capsule along the axon, and make a distinctive loop in the 

area of the first Ranvier node.  The capillaries reappear at the end of the inner core 

area (fig.3.16), but it is unclear whether these capillaries join or run parallel to each 

other. The outer zone of the PC appears to have an independent blood supply: 

figure 3.17 shows two large capillaries (around 17 µm diameter) which follow the 

axon before running through the outer zone of the lamellar structure. (See Chapter 

4 for a description of the role of blood vessels in solute transport.)    
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Figure 3.15. A region of the same PC shown in figure 3.12, where the nerve is 

losing its myelinated sheath and modified lamellae form around the nerve; blood 

capillaries share the entrance to the core with the axon and make a distinctive loop 

within the inner core; (transmission light microscopy). 

 

Figure 3.16. A region of the same PC shown in figures 3.12 and 3.15; the blood 

capillaries continue through the outer zone after a loop within the inner zone; 

(transmission light microscopy). 
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Figure 3.17. Two blood vessels following the axon and then appearing to run 

through the outer zone of a PC extracted from the hind hoof of a 10-year-old Shire 

horse; (transmission light microscopy). 

 

3.3 Confocal Microscopy 

 

Because frozen sectioning caused significant damage to the corpuscles, confocal 

microscopy was used to examine the structure of intact PCs from horse hoof. In 

order to observe 3-D structure staining and observation were performed on the 

intact corpuscles, although this produced some difficulties with stain penetration. 

Alcian Blue was used to stain for glycosaminoglycans, and Van Gieson’s stain was 

used for collagen. Stains for elastin are rather unspecific (e.g. Weigert’s) which 

was inadequate in the intact corpuscle. Elastin was searched for using its intrinsic 

fluorescence, but two photon excitation proved more sensitive, so these results are 

capillaries 
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107 
 

presented in the following section. To complement efforts to detect cells by CARS, 

also described in that chapter, cell membranes and lipid deposits were stained with 

the lipid-soluble fluorophore di-8-ANEPPS.  

 

3.3.1 Lipid Staining 

 

Di-8-ANEPPS penetrated the intact corpuscle only slowly: 18 hours incubation 

revealed that the tissue is rich in lipids. An unexpected observation was the 

presence of vesicles or lipid droplets apparently freely floating in the interlamellar 

fluid. If these are indeed vesicles, they may be part of a signalling system – 

otherwise, it possible to assume they are involved in cellular metabolism. The 

interlamellar connections stained for lipid, confirming the hypothesis above that 

these are cellular junctions. The capsule stains intensely, though it is unclear 

whether this is because of a higher lipid content or because of limited dye 

penetration to the core.  
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Figure 3.18. Confocal microscopy images (sections from a confocal stack with slice 

thickness 1µm) of a PC extracted from the cleft area of the front foot of a 4-year-old 

mixed-breed horse, after incubation in the fluorophore di-8-ANEPPS for 18 hours; 

excitation was at 488 nm and emission was at 530 nm: (a) staining of the surface 

of the corpuscle, (b) 25 μm deep in the tissue, showing weakly stained cell 

membranes and strongly stained axon. 
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3.3.2 Glycosaminoglycans 

 

Alcian Blue staining revealed glycosaminoglycans particularly in capillaries 

penetrating the surface and outer zone and proved an unexpectedly effective way 

of observing their architecture and extending the observations made above. The 

capillaries branch from a main vessel which shares an entrance into the corpuscle 

with the axon (fig. 3.19 (a)) run in different directions throught the outer zone 

(fig. 3. 19 (b)). 

  

Glycosaminoglycans were evident in all lamellae.The lamellae of the inner zone 

stain more intensely than the outer lamellae (fig. 3.20 (a)) particularly in the vicinity 

of the small capillaries. Staining is also more intense in what is generally referred 

to as the growth zone of the corpuscle, between the inner zone and the outer zone.  

 

3.3.3 Collagen 

 

The Van Gieson stain was applied to study the presence of collagen. As shown in 

figure 3.22, there was staining throughout the corpuscle. In the outer region the 

individual lamellae were well resolved, indicating that collagen is a major  
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Figure 3.19. PC of size 1.20 × 0.63 mm, extracted from the heel area of the hind 

hoof of 4-year-old racehorse and incubated in Alcian Blue for 40 minutes; confocal 

microscopy, slice thickness 0.99 μm; (a) showing capillaries in the part of the PC 

close to the first Ranvier node; (b) showing capillaries running along the outer 

lamellae (capillary diameter in the outer zone is typically in the range 10 to 15 μm). 
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Figures 3.20 and 3.21. The same PC as in fig. 3.19, incubated in Alcian Blue for 

40 minutes; confocal microscopy, slice thickness 0.99 μm; (a / fig.20) within the 

circled region, capillaries are seen entering the inner zone, which has highly 

packed lamellae; (b / fig. 21) the bright central band in this image corresponds 

to the plane of the growth zone; the circled regions indicate features in the 

proteoglycans distribution whose origin is unknown.  
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Figure 3.22. PC of size 1.10 × 0.45 mm, extracted from the heel area of the front 

foot of an 8-year-old mixed-breed horse, incubated in Van Gieson stain for 40 

minutes; a single image from a confocal-microscopy stack shows a central section 

of the PC, through the core. 

 

component of the structure, including the interlamellar struts. Collagen was also 

visible in the walls of the larger blood vessels. Staining was rather patchy and this 

was believed to be because of problems in dye penetration. Since SHG provided a 

much more powerful means of visualising collagenous structures in 3-D this 

approach was not pursued further and collagen organisation is discussed in more 

detail in section 3.4. 
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Figure 3.23. PC (as in fig. 3.22) of size 1.10 × 0.45 mm, incubated in Van Gieson; 

a single image from a confocal-microscopy stack, showing variation of interlamellar 

gaps. A number of capillaries pass through the outermost lamellae. 

 

3.4 Nonlinear Microscopy 

 

Nonlinear microscopy was used to investigate the structure of the fibre network 

within the extracellular matrix, which is likely to be the principal determinant of the 

elastic properties of the solid component of the PC. 

100 µm μm1 

core  

interlamellar spaces  

capillaries  



114 
 
 

Nonlinear microscopy was performed on fifteen fresh unstained PCs dissected 

from front and hind hooves of horses aged two, six and eight years old. As 

described above, fibrous collagens (types I, II and III) can be detected by second 

harmonic generation (SHG), elastin by its intrinsic two photon fluorescence (TPF) 

and cell membranes by tuning Coherent Anti-Stokes Raman spectroscopy (CARS) 

to the frequency of membrane phospholipids. In viewing the images below it should 

be noted that, in tissues with high collagen content, collagen gives a small 

fluorescence contribution in the TPF images and a protein-CH contribution to the 

CARS images. These contributions are easy to distinguish and have actually been 

used in checking the co-registration of the multimodal images displayed below 

(figs. 3.24- 3.32). 

 

 

SHG imaging showed an extensive network of collagen fibres (fig. 3.24). Fibres 

within the lamellae were tentatively identified as type I collagen on the basis of their 

similarity in size, which was approximately 5 µm in diameter (fig. 3.25, red arrow 

head), to such fibres observed in tissues such as tendons and blood vessels. 

Collagen fibres are also observed linking to the lamellae (fig. 3.25, green arrow 

head). They are much thinner, approximately 1 µm in diameter, and appear to be 

related to the “simple” junctions observed with conventional microscopy, described 

above (section 3.2). It is possible that this is type II collagen, which has been 

reported in the interlamellar spaces [45], [43] or type III, which forms finer fibres 
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than type I. Collagen fibres were not observed in relation to the “complex” lamellar 

connections, suggesting that these are simply cellular junctions. 

 

 

 The orientation of collagen fibres within the lamellae will be a major determinant of 

their mechanical properties and is probably important in transducing mechanical 

stimuli through the PC. The majority of fibres were orientated longitudinally (with 

respect to the long axis of the PC) (fig. 3.27), some transverse (fig. 3.24) and also 

some in random networks (fig. 3.26). Longitudinal organization of collagen fibres, 

was most clearly observed in the first 10-14 outer lamellae.  At the surface of the 

corpuscle the collagen network was denser (consistent with the staining results) 

and it organisation was more irregular, forming an isotropic network at the surface 

of the corpuscle (fig. 3.26, 3.27). 

 

 

Figure 3.24. PC of size 1.0 × 0.5 mm, extracted from the heel area of the front foot 

of a 6-year-old mixed-breed horse; images from a SHG stack show (a) the surface 

of the PC, with complex collagen organisation, (b, c) planes at depth 100 µm and 

150 µm, showing collagen network in lamellae and organisation of the outer core.  

a b c 

250 µm 
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Figure 3.25. PC of size 1.3 × 0.6 mm, extracted from the hind foot (heel) of a  

12-year-old mixed-breed horse; SHG image, showing collagen fibres running along 

the lamellae (following the red lines) and in the interlamellar spaces (following the 

yellow lines). Dehydration during imaging may have caused folding of some lamellae. 

 

 

Figure 3.26. PC of size 1.20 × 0.52 mm, extracted from the heel area of the front 

foot of 4-year-old racehorse; the SHG image shows a detailed collagen 

organisation in the surface of the corpuscle.  
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Figure 3.27. PC of size 1.0 × 0.4 mm, extracted from the cleft area of the front foot 

of a 4-year-old mixed-breed horse; SHG images demonstrate a complex 

organisation of collagen fibres at the PC surface (left) and longitudinal organisation 

in the outer zone (right); blood vessels can be seen in the outer zone. 

 

  

Figure 3.28. PC of size 1.20 × 0.52 mm, extracted from the heel area of the front 

foot of a 4-year-old racehorse; SHG images show (a) vessels (approximately  

20 μm in diameter) perpendicular to the axon, (b) two longitudinally orientated 

channels (20 μm in diameter) along the outer lamellae, also two capillaries sharing 

the same entrance to the PC as the axon (they eventually reach the inner core). 
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Collagen was also evident in the walls of blood vessels, and in the neighbourhood 

of vessels the collagen organisation of the PC was disrupted. For example, figure 

3.28b shows two 10 μm vessels, probably capillaries, which share the same 

entrance with the axon. Also visible are two 20 μm diameter channels, running 

through the outer zone, and two vessels of similar diameter running perpendicular 

to the axon (fig. 3.28a)  

 

These observations on blood vessels are consistent with the light and confocal 

microscopy already described, and with tracer uptake experiments presented in 

Chapter 4. 

 

It was difficult to entirely eliminate dehydration during the long time required for 

acquisition of the image stack and this may have caused slight folding of the 

lamellae and crimping of transverse fibres (fig. 3.25). 

 

TPF imaging of the PC surface layer revealed elastin fibres weakly against the 

background of collagen fluorescence (fig. 3.29).  



119 
 

 

 

 

Figure 3.29. PC of size 1.20 × 0.52 mm, extracted from the heel area of the front 

foot of a 4-year-old racehorse; TPF image showing elastin fibres weakly against 

the collagen network; the circled area, associated with arteries, shows orientated 

elastin fibres (found in vessels perpendicular to the axon – see fig. 3.28 (a)) 

against randomly orientated collagen on the surface of the PC. 
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Figure 3.30. PC of size 1.20 × 0.52  mm, extracted from the heel area of the front 

foot of a 4-year-old racehorse;  TPF image showing a network of elastin fibres 

running across the surface layer of the PC. 

 

A sparse network of fibres approximately 1µm in diameter was present on the 

surface of the PC (fig.3.30). The appearance of these fibres is similar to that of 

elastin fibres recently found in tissues such articular cartilage [82]. Similar fibres 

were interwoven between the collagen fibres of the lamellae and some spanned 

lamellae (fig. 3.30).  

50 µm 

elastin fibres 
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Figure 3.31. PC of size 1.20 × 0.52 mm, extracted from the heel area of the front 

foot of a 4-year-old racehorse; CARS imaging reveals a high density of fatty lipids 

within the surface layer (a), decreasing in the outer zone away from the surface (b). 

 

CARS imaging, demonstrated the presence of a high density of lipids in the outer 

zone, perhaps related to surrounding adipose tissue, as noted by light microscopy. 

The density of lipids is highest in the surface and first few lamellae but decreases 

away from the surface (fig. 3.31). Because of the high fluorescence background, 

contrast was insufficient to delineate individual cell membranes.  

 

Colour-coded SHG images (collagen), TPF images (elastin) and CARS images 

(lipids) can be combined to form a composite colour image, as shown in figure 

3.32. The composite image shows, as expected, a high concentration of lipids (red)  

at the surface of the PC, and high concentration of collagen within the outer core. 
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a b 

50 µm  

lipids  
lipids  
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Figure 3.32. PC of size 1.20 × 0.52 mm, extracted from the heel area of the front 

foot of a 4-year-old racehorse; composite overlaid colour-coded images [SHG 

(collagen) − blue, TPF (elastin) – green, and CARS  (lipids) – red] of (top) a plane 

at the PC surface and (bottom) a plane through the outer zone.  
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3.5 Discussion 

 

PCs were found next to the primary blood supply in the hoof which is associated 

with the blood pumping during the movement. They are surrounded by a semi-

transparent layer of adipose and loose connective tissue which needed to be 

removed before microscopic investigation. Confocal microscopy and CARS also 

revealed a high density of lipids on the surface of the PC, associated with relatively 

coarse collagen fibres and this may represent collapsed remnants of this 

encapsulating structure. Whether this structure has any role in transduction, 

perhaps by equilibrating the pressure distribution on the surface of the PC, would 

be an interesting topic of further research.  

 

More than a hundred dissections of horse hooves revealed a similar PC 

distribution, with PCs varying in shape and size within the same cluster. Another 

question, which can only be resolved when a deeper understanding of the 

relationship between the structure of the PC and its transduction capabilities is 

better understood is whether these clusters function cooperatively, perhaps to 

cover a broad band of stimuli, or whether each is an independent sensor. 

 

The microscopy revealed a number of significant aspects of corpuscular structure. 

The main component of the extracellular matrix was collagen, forming the skeleton 
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of each lamella, and showing slight variations with depth and particularly on the 

outer surface. The elastin fibre network was very sparse (probably accounting for 

the difficulty in detecting it with histochemical stains) and it is difficult to imagine 

that it directly supports mechanical loads. However, relatively recently it has been 

recognised that many collagen-rich tissues contain relatively sparse networks of 

elastin fibres and their presumed mechanical function is a topic of current research 

interest [82].  

 

Proteoglycans were also present within the lamellae. These probably serve, as in 

the glomerular basement membrane, to regulate the movement of water and 

solutes across the lamellae. However, they may also have a direct role in 

determining the viscoelasticity of the matrix through their effect on the distribution 

and mobility of water. 

 

Several forms of interlamellar connection were observed, some were fibrous – 

mainly collagen with small quantities of elastin, and these probably represent the 

mechanical connections envisioned in the Loewenstein-Skalak model. However, 

others appeared to be cellular processes and these are unlikely to have a 

mechanical role but to provide pathways of intercellular communication – a process 

in which lipid vesicles may also be involved. 
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Blood vessels were visualised in the PC by a number of techniques. It appears that 

there are independent supplies to the core and surface of the corpuscle, both of 

which may be necessary to meet its nutritional requirements, but the anatomical 

association between corpuscles and blood vessels adds support to the hypothesis 

that they may also be involved in some aspects of haemodynamic regulation. To 

investigate this possibility it would be important to explore the coupling of the 

corpuscle into the rest of the circulation – techniques such as corrosion casting of 

the microcirculation of the hoof would be a useful tool in this task. 
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Chapter 4 

 

Water and solute transport 

 

The pathways of water and solute transport into the PC are of interest in 

understanding how this unusual structure maintains its nutrition and integrity. 

However, the main aim of the work described in this chapter was in relation to 

understanding the process of mechanotransduction. The flow of fluid in the 

interlamellar space is important in most [83], [52], [64], [84], theories of 

mechanotransduction. However, the connectivity of the interlamellar spaces and 

the resistance to water flow across and along the lamellae are quite poorly 

investigated. This chapter describes two groups of experiments. The first group of 

experiments investigates osmotic swelling of the PC, described in section 4.1.  

Fluorescent tracer measurements of permeability are reported in section 4.2. 

Discussion on how obtained results may lead to better understanding of 

mechanotransduction in the PC is in section 4.3.  

 

4.1 Osmotic Challenge 

 

 

The permeability of the lamellar membranes to water and a range of solutes was 

investigated by measuring the response of the corpuscle to osmotic pressure 

gradients generated by these solutes (see section 2.4 for practical details). If the 

corpuscle is permeable to water but not the solute, the osmotic pressure gradient 
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generates a flow of water into or out of the corpuscle until it is resisted by tension in 

the structure of the corpuscle. If the membrane is partially permeable to the solute 

this pressure is then dissipated by the (slower) movement of solute into the 

corpuscle. This approach therefore gives insights into both the permeability of the 

corpuscle to a particular solute and to the mechanics of the corpuscle.       

 

4.1.1. Osmotic Swelling 

 

Eight corpuscles, dissected from different horses, were equilibrated in a bath of 

0.15 M NaCl and the bathing solution was then exchanged for deionised water. 

Within 15 seconds the volume of the PC increased from the original, and then 

remained approximately constant for the next 30 minutes. The changes in length 

and width generally preserved the overall shape of the capsules (figs. 4.1, 4.2). In 

corpuscles incompletely dissected and retaining some surrounding tissue the 

changes were slower, presumably due to the buffering action of osmolytes 

diffusing in the tissue.  

 

The overall change arose largely from an increase in interlamellar spacing, of  

(30 ± 2)% in the outer zone (fig. 4.4). There was no measurable change in spacing 

in the inner zone. The optical contrast between the lamellae and interlamellar 

space became less, presumably due to swelling of either the cells or extracellular 

matrix of the lamellae.  
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4.1.2. Hyperosmotic Solutions 

 

The permeability of the corpuscle to molecules of different size and charge was 

investigated by monitoring changes produced by replacing the 0.15M NaCl bathing 

solution with various hyperosmotic solutions. Sucrose (4M) was used as a small, 

neutral solute, PEG (polyethylene glycol, 20,000 kD molecular weight, 

concentration 30% wt /vol) was used as an intermediate size solute, and albumin 

(0.1mM) was used as a representative protein. Sodium chloride (2M) was used to 

investigate ion transport. When exposed to hyperosmotic solutions, the spacings of 

the outer lamellae of the outer core were reduced, whilst the spacings of the inner 

lamellae again remained unchanged. The changes in overall PC dimensions 

generally preserved the overall shape of the capsule. This shrinkage occurred on a 

similar time-scale of a few seconds for all the osmolytes and to a similar extent for 

all the osmolytes (lamellar spacing decreasing by around 20%, see fig. 4.4) despite 

the differences in their size and osmotic pressure; (response to PEG was an 

exception, with no noticeable effects within 20 minutes). We therefore hypothesise 

that this shrinkage phase represents the rapid movement of water out of the 

capsule. The osmotic pressure of the low molecular weight solutions is many times 

higher than that of albumin. The similarity of their effects on interlamellar spacing 

could indicate that the lamellae are partially permeable to the smaller solutes, so 

that the full osmotic gradient is not generated across the lamellae, which is 

consistent with the recovery at longer times, discussed below. Alternatively, there 

may be a maximal state of collapse of the corpuscle where its mechanical strength 

is sufficient to prevent further collapse. 
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The subsequent behaviour of the corpuscle varied with the osmolyte, reflecting the 

different permeability of the corpuscle to the different solutes. For albumin there 

was no further change for up to 30 minutes. For the other solutes (excepting PEG) 

the volume of the corpuscle slowly increased as the solute diffused into the 

corpuscle. The response was similar for 2M NaCl and 4M sucrose, indicating that 

there is little charge interaction with the extracellular matrix. This is surprising, 

given the high concentration of proteoglycans in the matrix and perhaps suggests 

that the cell junctions constitute the major barrier. However it is clear that active 

cellular ion transport is not a factor in the response.  



130 
 

 

 

 

Figure 4.1.Osmotic swelling of a PC, extracted from the heel area of the front foot 

of an 8-year-old mixed-breed horse; (a) the initial state in 0.15M NaCl, (b) 15 

seconds after exchange to deionised water, (c) the final state, when equilibrium 

was reached.  
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Figure 4.2. Osmotic swelling of a PC, extracted from the heel area of the hind foot 

of an 8-year-old mixed-breed horse; in this case the surrounding tissue was not 

removed and the osmotic response was attenuated; (a) in 0.15 M NaCl, (b) 30 

seconds after exchange for deionised water, (c) equilibrium after 1h. 
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Figure 4.3. Time course of changes in interlamellar spacing in outer and inner 

zones (full blue and red lines, respectively) for the case of a PC completely 

separated from its surrounding tissue, following exchange of 0.15M NaCl for 

deionised water; the dashed blue line shows equivalent measurements for the 

case of a corpuscle incompletely separated from its surrounding tissue, showing an 

overall change of similar magnitude but on a longer timescale. 

 

 

Figure 4.4. Changes in interlamellar spacing after 15 seconds incubation with 

deionised water or osmolytes (concentrations as in text). The error bars 

indicate the standard error in the mean (n = 8). 
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4.2 Tracer-Uptake Experiment 

 

Solute diffusion was studied using two small, fluorescent molecules, rhodamine B 

(M.W 479 Da) and fluorescein (M.W 332 Da) representing the range of nutrients 

and metabolites whose exchange is important for the metabolism of the PC. A total 

of 20 corpuscles were used with incubation periods of 5min to 18h, generally using 

the two tracers simultaneously to facilitate detailed comparison of distributions. 

After the required incubation period the corpuscles were washed and transferred to 

a saline-filled chamber on the stage of the confocal microscope and image stacks 

were acquired at 1µm separation through the depth of the corpuscle. The 

distribution of fluorescence across selected line profiles was quantified using 

Image J, as described under Methods.  

 

Figure 4.5 shows the time-course of uptake of fluorescein and rhodamine B. (Some 

higher resolution images are shown in fig. 4.6 for rhodamine B and fig. 4.7 for 

fluorescein.) Rhodamine B appeared in the tissue before fluorescein. Both tracers 

first appeared in the core of the corpuscle. The images suggest that the site of 

initial entry was close to the axon. As described in section 3.2, blood vessels share 

the same entrance as the axon, and at short times tracer was clearly visible in 

these vessels, before diffusing into the surrounding tissue. Rhodamine B was 

present in the core at high concentration (close to that in the perfusing solution) 

after only 5 minutes incubation (see image a' in fig. 4.5: this observation was 

repeated in ten PCs).  
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Images b and b' in fig. 4.5 (after 8 minutes incubation) indicate both tracers in high 

concentration along the axon and distribution through the inner zone towards the 

outer zone; however, there is a sharp change in concentration between the outer 

and inner zones, which may correspond to a barrier at the transition.  In the outer 

capsule a high concentration of rhodamine B delineates the collagen network, but 

the distribution of fluorescein is more uniform. Despite rhodamine B being the 

larger molecule it appeared to diffuse faster into the core than fluorescein. This 

may be because rhodamine B is positively charged (its uneven distribution in the 

outer region probably arises from electrostatic interactions with the negative 

charges on the extracellular matrix) whereas fluorescein is negatively charged, 

demonstrating the existence here of a charged structure as the primary transport 

resistance – probably associated with basement membrane.  

 

Figure 4.8 presents intensity profiles across the width of the PC, showing the 

distribution of fluorescein (top panel) and rhodamine (lower panel) at different 

times. After 18 h a uniform distribution has been attained throughout the corpuscle; 

at earlier times the intensity gradients indicate that there is transport across the 

outer surface with rapid initial transport into the core (at 8 minutes the distribution 

of both tracers is higher towards the centre of the PC). Superposition of 

fluorescence images and transmitted-light images at high resolution (fig. 4.7) 

shows that the fluctuations in fluorescence intensity which can be seen in fig. 4.8 

are correlated with the lamellar structure, with regions of high intensity 

corresponding to the interlamellar spaces.   
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Fluorescein (513 nm emission)        Rhodamine B (564 nm emission) 

      5 min              

      8 min                         

      20 min           

    1080 min                    

Figure 4.5.  Fluorescence images of the time course of uptake of fluorescein and 

rhodamine B: (a & a’) 5 min incubation, PC from the heel area of the hind foot of a 

4-year-old mixed-breed horse; (legend continues on next page)  

D 

 

F H 

 

B 
a a' 

b b' 

c c' 

d d' 

300 µm  

axon  

core  

axon  

core   



136 
 

(b & b’) 8 min incubation, PC from the front heel of a 4-y-old mixed-breed horse; (c & c’) 

20 min incubation, PC from the front heel of a 15-y-old mixed-breed horse; (d & d’) 18 h 

incubation; PC from the front heel of a 6-y-old racehorse; the representative 1 µm slices 

from a confocal stack are not normalised; at 5 min and 8 min the dye distributions are 

non-uniform – higher in axon and core, at 20 min and 18 h the distributions are more 

uniform; quantitative analyses of tracer distribution are given in fig. 4.8. 

 

 
 

  

 

Figure 4.6. High resolution images of tracer distribution in a PC incubated in 

rhodamine B for 5 min: (a) 30 μm deep in the PC, showing the fibril network around 

the inner zone, (b) section showing dye distribution affected by an apparent barrier 

around the core; images are representative 1 µm slices from a confocal stack. 
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Figure 4.7. Superposition of fluorescence and transmitted light images at high 

resolution; PC incubated in fluorescein for 8 minutes; images are representative 1 µm 

slices from a confocal stack: (a) through the centre of the PC − regions of high 

fluorescence intensity correspond to the interlamellar spaces, (b) through the 

external capsule  – the high fluorescence intensity in the circled region is probably 

a geometric effect (intersection of the image plane with the curved capsule surface).  
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Fig.4.8. Intensity profiles showing the distribution of fluorescein (top panel) and 

rhodamine B (lower panel) at different times; profiles are taken (from fig. 4.5 

images) through the midpoint (maximum diameter) of the corpuscle; Intensity 

(arbitrary units) is normalised to a stock solution of fluorophore; distance is scaled 

by maximum diameter to allow comparison between corpuscles of different size.  
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4.3 Discussion 

 

 

The osmotic stress experiments revealed different properties in the outer and inner 

lamellae. The behaviour of the outer lamellae was consistent with them providing a 

partially permeable osmotic barrier. The limited extent of the swelling under hypo-

osmotic conditions suggested that the capsule is either rather rigid or quite 

permeable. Comparison with other tissue such as the renal basement membrane 

suggests that the latter is unlikely to be the case for a large protein such as 

albumin; evidence for the former is provided by the rigidity found in the mechanical 

tests described in Chapter 5. That the capsule also shrank by relatively little in the 

face of high osmotic pressure gradients also suggests rigidity under compressive 

loads. This is also consistent with the mechanical testing and may be essential for 

the corpuscle to transmit mechanical loads from the periphery to the core. The lack 

of response in the core may suggest that it is mechanically even stiffer than the 

outer region or there are pathways that permit rapid and total equilibration with the 

osmolytes. One such pathway might be the blood vessels entering the core. 

However, most capillary beds, except the specialised fenestrated capillaries of 

organs such as the kidney, do not allow the unimpeded exchange of proteins. We 

cannot exclude the possibility that the corpuscle capillary beds became leaky 

during preparation, but the mechanical hypothesis seems plausible. 

 

The sharp boundary between inner and outer regions was unexpected, but this 

was also seen in the tracer uptake experiments. 
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The tracer-uptake experiments demonstrated relatively rapid transport along blood 

vessels surrounding the axon, and suggest a barrier between the PC core and the 

inner zone. In Chapter 3 we discussed the two possibilities that blood vessels 

entering the core may be involved in haemodynamic sensing by the corpuscle or to 

deliver nutrition to the core. The tracer studies suggest a need for the latter, though 

they do not exclude the former. 

 

The shape of the tracer concentration profiles in the outer capsule and their 

change with time suggest that transport occurs by diffusion [86]. More detailed 

structural analysis would be required to analyse transport in terms of a series of 

lamellar barriers separated by fluid spaces but it is useful to obtain an order of 

magnitude estimate of the overall process using dimensional arguments [87]. The 

diffusion coefficient has dimensions of length2/time. We can estimate its magnitude 

by taking as the characteristic length the radius of the capsule (~300 µm) and the 

characteristic time as that required for tracer equilibration (~20 min). These give a 

value of diffusion coefficient ~ 8 × 10–7 cm2 s–1. This is almost two orders of 

magnitude lower than the free diffusion coefficients of these small molecules [88], 

but is comparable to coefficients found in tissues such as cartilage. We can 

therefore deduce that the lamellae do indeed constitute a significant barrier to the 

movement of solutes, such as those involved in nutrition – this provides further 

confirmation of the need for a blood supply to the core region.  
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Chapter 5 

 

Corpuscle mechanics 

 

Section 5.1 will discuss the mechanical behaviour of the PC under static 

compression and sinusoidal stimulation at 50, 100, 200 and 400 Hz; an aspiration 

test will be described in section 5.2. The results for sinusoidal stimulation will be 

compared to predictions obtained from the electronic analogue of a theoretical 

model of mechanotransduction in the PC (section 5.3). Results obtained from all 

the experiments on mechanical properties of the corpuscle will be summarized in 

section 5.4. A computer file of video recordings of mechanical stimulation of the PC 

is attached to this thesis. 

 

5.1 Lamella displacement under mechanical load 

 

 

The experimental method is described in section 2.6.3. A fresh PC was inserted 

into the paraffin-wax frame and covered with 0.15M NaCl solution. The corpuscle 

was positioned against a metal plate attached to the frame wall (see fig. 2.7) in 

order to fix its position during mechanical stimulation.  

 

 

 



142 
 

5.1.1 Dynamic displacement 

 

 

In this case sinusoidal stimulation at 50, 100, 200 and 400 Hz was applied to the 

surface of the PC. Peak-to-peak amplitude was nominally 20 m (8 m at 400 Hz, 

see section 2.6.3); measured values of peak-to-peak amplitude (from microscope 

images, see below)  were 15.1, 24.7, 28.4 and 8.1m (± 1 m) at 50, 100, 200 and 

400 Hz, respectively. For more detailed explanation of how displacement 

measurements were made see section 2.5.3. Figure 5.1 (duplicate of fig. 2.10) 

shows a corpuscle positioned between fixed and moving metal plates, with 

features marked by arrows. The positions of these features were tracked from 

grey-scale profiles along the same line in a series of images (covering two 

stimulation cycles in phase steps of 36 degrees) and are shown as the data points 

in figure 5.2. (A few points are missing because not all of the four features were 

visible in every profile.) Figure 5.2 also shows sine-wave fits to these data points – 

to produce these fits, a sine wave of the appropriate frequency is specified by the 

variables of baseline, amplitude and phase, and these variables are adjusted to 

minimise the squared error between the sine wave and the chosen set of 

experimental data points; repeating this procedure for each data set provides 

amplitude and phase  information for the tissue displacement at the four different 

frequencies, as a function of position (depth) within the corpuscle. 



143 
 

 

Figure 5.1. PC from the heel of the hind hoof of an 8-year-old mixed breed horse, 

positioned between (left) the fixed metal plate, and (right) the moving metal plate. 

The arrows indicate features selected for tracking during the motion. 

  

The mid-point of the corpuscle may be defined as the average of positions a and b 

which define the inner zone (see fig. 5.1), and the sinusoidal displacement of this 

mid-point may be calculated as the mean of the sine-wave fits for a and b (see fig. 

5.2). Hence the sinusoidal displacements of a, b, c, d can be calculated relative to 

the displacement of the mid-point, as in figures 5.3 and 5.4 which show amplitude 

and phase of the motions of a, b, c and d.  

 

 

 

200 µm 
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Figure  5.2. Positions of tracked features in series of 21 images of a PC (sample 

from fig. 5.1). The images cover two stimulation cycles in phase steps of 36 

degrees. The features a and  b mark the boundary between inner and outer zones 

of the corpuscle (see fig. 5.1); (legend continues on next page) 



145 
 

c is a lamellar feature in the outer zone and d is the surface of the corpuscle; the 

position of the centre of the corpuscle is assumed to be midway between the 

positions of the features a and b. The four panels show results for stimulation at 

50, 100, 200 and 400 Hz. Estimated error in the individual data points is 1-2 pixels. 

 

 

 

Figure 5.3. Displacement amplitude (relative to amplitude at the outer surface) as a 

function of position; all motions are measured with respect to the mid-point of the 

corpuscle (average position of features a and b); from right to left on the horizontal 

axis, the five sets of data points correspond to the following features:  d, c, b, mid-

point and a (as shown in fig. 5.1); estimated errors in normalised amplitude are in 

the range 5% to 10%. The graphs suggest that the outer zone of the PC acts as a 

high-pass filter for displacement, with 400 Hz signals undergoing less reduction in 

amplitude than 50 Hz signals as they travel through the outer zone (from d to c to b).  
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Figure 5.4. Displacement phase (relative to phase at the outer surface) as a 

function of position; all motions are measured with respect to the mid-point of the 

corpuscle; from right to left on the horizontal axis, the four sets of data points 

correspond to the features d, c, b and a (as shown in fig.5.1); estimated errors in 

relative phase are in the range 5 to 10 degrees. 

 

5.1.2 Static displacement 

 

To investigate the effect of static displacement of the outer surface, a fresh PC was 

subjected to a 30 m compression (using the micromanipulator connected to the 

moving plate, see figs. 2.7 and 2.8). The compression was then released slowly 

(10 seconds per step) in steps of 5 m. As in the case of sinusoidal displacement, 

the positions of image features were tracked via grey-scale line profiles across a 

sequence of images (fig. 5.5).  
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Figure  5.5. The PC (extracted from the heel area of the hind hoof of a 10-year-old 

mixed-breed horse) is placed between two plates, one of them (top left) stationary 

and the other (bottom right) moving; (a) uncompressed; (b) displacement of 30 µm 

applied at the surface of the capsule; line profiles across the corpuscle in fig .5.6 

are based on the line shown in fig.5.5 (b). 

 

In this case, in contrast to the response at frequencies of 50 Hz and above shown 

above, a change in shape of the corpuscle occurred only in the outermost layers, 

and the remainder of the corpuscle (including all features which could be easily 

tracked) did not demonstrate any geometrical distortion. This is most clearly seen 

in a video assembled from the sequence of still frames, but can also be seen in the 

line profiles in figure 5.6 – different parts of the corpuscle are displaced by the 

same amount, corresponding to an overall translation but no change of shape. It 

seems unlikely that this corresponds to the natural behaviour of the corpuscle – 

some transmission of the mechanical stimulus to the centre of the corpuscle is 

expected, at least according to accepted models. 

a b 

200 µm  
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Figure 5.6. Line profiles across the corpuscle for static displacement of the surface 

in steps of 5 m; dotted lines indicate translation of most of the corpuscle in this 

case (towards the fixed plate when pushed by the moving plate); 1 pixel = 1.48 m.  

 

Microscopic observation suggests that during lateral compression the PCs get 

longer, i.e., the compressive strain distributed perpendicularly to the lamellae is 

accompanied by a tensile strain along the lamellae (longitudinal direction).  On 

removal of the compression, the PC tends to return to its original shape, 

presumably due to lamella stiffness and the resilience of the collagen fibril network. 

Similarly, a microindentation test described below confirms the ability of the PC to 

restore its shape after significant localized distortion (fig. 5.7).  

The difference with the high frequency behaviour could indicate that the corpuscle 

does not transduce at low frequencies. This may perhaps because the lamellae are 
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permeable to water on these time scales, although it is difficult to reconcile this 

possibility with the permeability measurements above. However, it is possible that 

the corpuscle does not transduce low frequencies because of the difficulty in 

distinguishing signal from noise associated with movement etc.  

 

 

Figure 5.7. PC extracted from the heel area of the hind foot of a 5-year-old Shire 

horse. Indentor diameter  604 µm. Mechanical deformation of the lamella structure 

produced by microindentation; the right panel shows restoration of shape when the 

probe is removed, presumably due to lamellae stiffness and the resilience of the 

collagen fibril network. Apart from the recoil the main point of interest is that the 

lamellae only ~ 1 indentor diameter away from the site are completely unaffected 

by a rather large indentation of almost 1/3 diameter of the corpuscle 

 

 

5.2 Micropipette aspiration 

 

 

The experimental method and purpose of the aspiration experiments are described 

in section 2.6.2. In summary, suction is applied to a circular region of the PC 

surface, with a view to producing a “bulge”. Attempts were made to perform this 

300 μm 
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technique on a fresh PC, but it was found that the maximum available (negative) 

pressure of around 5 kPa was insufficient to aspirate the external membrane, using 

a pipette of 0.3 mm internal diameter. [A similar observation had been made 

previously in the Exeter laboratory, as part of a pilot study for the present project 

(personal communication from N Garrett).] Consequently, it was decided to 

disconnect the hydrostatic system (fig. 2.6) so that increased suction could be 

applied directly, using a syringe. Measurable distortion could now be produced, as 

shown in fig. 5.8, although it was not possible accurately to measure the applied 

(negative) pressure.  

 

Aspiration produced a roughly hemispherical protrusion of the outer surface, which 

was followed faithfully by around five of the underlying lamellae. As pressure was 

maintained constant the length of the protrusion increased, as shown in figure 5.9. 

After approximately 5 minutes the movement became much slower and 

interlamellar struts running straight between the deformed and undeformed 

lamellae became very clearly visible, suggesting that tension in these was limiting 

further movement. (Note that this timescale is much longer than the adaptation 

timescale of the PC’s neural response.) As in the indentation experiments, 

deformation was limited to the region of force application. 

 

An order of magnitude estimate of the forces involved can be obtained by 

assuming the cap is hemispherical and applying Laplace’s law for the deformation 

of a thin shell:   P = T/R 
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where P is the aspiration pressure, T is the lamellar tension and R is the radius of 

curvature of the protrusion. Estimating  P = 2.5 × 104 Pa and R = 150 µm, we 

obtain T ~ 4 N m–1. 

 

 

 
  

  
 

 

 

 

Figure 5.8. Aspiration of a PC, size 1.2  0.7 mm, extracted from the heel area of 

the front foot of a 12–year-old mixed-breed horse; pipette diameter 0.3 mm; (a) at 

the time that the suction is applied; (b) 210 seconds later; (the arrow indicates the 

length of protrusion). 

a 

b 

300 µm 

Length of 

protrusion  
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Figure 5.9. The graph represents variation of length of protrusion of part of the 

corpuscle sucked into the pipette with time after application of the suction. The 

measurements were stopped after 210 seconds.  

 

 

5.3 Electrical analogue of the model of the Pacinian Corpuscle 

 

A wide range of measurements was made on the electronic analogue of the 

theoretical model of Loewenstein and Skalak [36], described in chapter 2, section 

2.5.1. The data obtained provide a broader overview of the model’s performance 

than that presented in Loewenstein and Skalak’s original paper, particularly in 

terms of the variation of pressure and displacement as a function of position within 

the corpuscle.  
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Figure 5.10. Sinewave response for pressure amplitude (attenuation factor as a 

function of frequency) measured at eight positions within the model corpuscle. 

Pressure is represented by voltage in the electrical analogue. 

 

Figure 5.10 shows the attenuation of pressure (measured as voltage amplitude at 

the nodes of the 30-stage electrical analogue) for sinusoidal stimuli in the 

frequency range 1 to 400 Hz. It can be seen that attenuation factors at the various 

positions with the model corpuscle are close to unity at higher frequencies, but 

decrease as frequency falls, with the responses flattening below 5 Hz. This 

variation with frequency is due to the decrease in the impedance of the 

capacitative (compliance) elements as frequency rises; the capacitative 

(compliance) impedances become negligible compared to the resistive 

impedances at high frequencies, see figure 2.12, chapter 2.  
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The same data are plotted as a function of position (lamella number) in figure 5.11.  

It can be seen that the majority of the fall in pressure amplitude occurs over the 

outer lamellae, L20 to L30.  

 

Figure 5.12 shows the phase of the pressure wave (measured as voltage phase at 

the nodes of the 30-stage electrical analogue, with respect to the phase of the 

input sine wave) as a function of position (lamella number) and frequency. 

Comparing to figure 5.10, it can be seen that the slope of the amplitude-response 

curves (fig. 5.10) is related to the magnitude of the phase shifts (fig. 5.12); slopes 

and phase shifts both fall as frequency rises from 50 Hz to 400 Hz.   

 

 

 

Figure 5.11. Sinewave response for pressure amplitude (attenuation factor as a 

function of position, i.e., lamella number) measured at various frequencies in the 

range 1 to 400 Hz; (data from fig. 5.10). Pressure is represented by voltage in the 

electrical analogue. 
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Figure 5.12. Sinewave response for pressure phase as a function of position 

(lamella number) measured at various frequencies in the range 50 to 400 Hz. 

Pressure is represented by voltage in the electrical analogue. 

 

 

 

 

Figure 5.13. Sinewave response for displacement amplitude (attenuation factor as 

a function of frequency) measured at eight positions within the model corpuscle. 

Displacement is represented by electric charge in the electrical analogue. 
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Figure 5.14. Sinewave response for displacement amplitude (attenuation factor as 

a function of position, i.e., lamella number) measured at various frequencies in the 

range 1 to 400 Hz; (data from fig. 5.13). Displacement is represented by electric 

charge in the electrical analogue. 

 

Figure 5.13 shows the attenuation of displacement for sinusoidal stimuli in the 

frequency range 1 to 400 Hz. (Displacement is measured in terms of charge on the 

various capacitors Cmi in the electrical analogue – see section 2.6; in practice this 

involves a differential measurement of voltage across each capacitor.) It can be 

seen that the attenuation factor for displacement is less strongly dependent on 

frequency than that of pressure (fig. 5.10). The same data are plotted as a function 

of position (lamella number) in figure 5.14 (data for higher frequencies are limited 

because the differential signal corresponding to displacement (see section 2.6) 

becomes too small to measure accurately). Figure 5.15 shows displacement phase 

as a function of position (lamella number) and frequency, measured in terms of the 

phase of the measured differential voltages – as for the case of pressure, phase 
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shifts are higher at 50 Hz than at 100 Hz; this is related to the variation of slope 

with frequency for the curves in fig 5.13. 

 

 

 

Figure 5.15. Sinewave response for displacement phase as a function of position 

(lamella number) measured at 50 and 100 Hz. Displacement is represented by 

electric charge in the electrical analogue. 

 

5.4 Discussion 

 

Sections 5.2.1 and 5.2.2 present microscope measurements on the effect of 

dynamic and static mechanical stimuli on the corpuscle. Although these 

experiments were repeated many times, there were few successful outcomes. In 

particular, the dynamic experiment in section 5.2.1 was successfully completed 

only once – in addition to difficulties in preparing and mounting the corpuscle 
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without damage, only a small proportion of corpuscles were sufficiently transparent 

to allow good visualisation of the lamellae.  

 

The experimental results for sinusoidal stimulation in section 5.2.1 may be 

compared to predictions of the electrical analogue in section 5.4. Figure 5.16 

shows the experimental results for amplitude and phase (duplicates of figs 5.3 and 

5.4) and corresponding predictions of the electrical analogue (curve-fits from figs 

5.14 and fig 5.15, replotted in terms of distance in microns as opposed to lamella 

number, using data on lamella spacing from [36]). Some discrepancies are 

apparent but, given the approximate nature of the model and the difficulties 

involved in obtaining the experimental data, the overall agreement is surprisingly 

good. In particular, both experiment and model show phase shifts of less than 30° 

in all cases – this is perhaps unexpected because a multi-element network has the 

potential for much larger phase shifts. This point is worth further consideration.  
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Figure 5.16. Experimental measurements of lamellar displacement observed in an 

equine PC in response to external, sinusoidal mechanical stimulation (lower 

panels, taken from figs. 5.3 and 5.4) and corresponding model data from the 

electrical analogue of Loewenstein and Skalak (upper panels, replotted from figs. 

5.13 and 5.14); in the top left and bottom left panels, displacement amplitude is 

shown as a function of position (radius), normalised to a value of unity at the PC 

surface (input); in the top right and bottom right panels, displacement phase is 

shown as a function of position (radius), measured with respect to displacement 

phase at the PC surface (input).  
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Figure 5.17. Pressure amplitude and phase response for 30 networks 

(Loewenstein & Skalak model) and a single network. 

 

Figure 5.17 compares the amplitude and phase responses for pressure 

transmission through the chain of 30 networks in the Loewenstein-Skalak model, 

with those from a single network of the same type (fig. 5.18) whose  components 

(two capacitors and one resistor) have been chosen to give the best match to the  

30-network responses. It can be seen that, with a suitable choice of components, it 

is possible to achieve responses from a single network which are very similar to 

those from the 30-element network. This suggests that the function of the multi-

lamella structure of the PC is not to produce a particular amplitude and phase 

response. A single lamella could produce the same response and a multi-lamella 

structure has the capability of producing much larger phase shifts and much 

greater variation of pressure attenuation factor with frequency than observed in the 

PC.   
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In the single-network equivalent (fig. 5.18) the capacitor Cm provides a global 

representation of the lamella compliances and the capacitor Cs provides a global 

representation of the radial-spring compliances. At low frequencies the attenuation 

factor of the network is given by Cm/(Cm + Cs) and this is much less than unity 

because the global lamella compliance Cm is much less than the global radial-

spring compliance Cs. (In other words, at low frequencies when the interlamellar 

fluid is easily displaced, the lamella stiffness resists the transmission of mechanical 

signals via the radial springs.) 

 

 

Figure 5.18. A single network with the same configuration as one of the networks in 

the Loewenstein-Skalak model. 

 

The micropipette aspiration experiment described in section 5.3 demonstrates that 

the external membrane of the PC is particularly stiff for distortions in this geometry.  

This may be attributable to the network of collagen fibrils between lamellae, which 

act against pulling one lamella away from another. It is difficult to interpret the 

“creep” observed in this experiment, i.e., the slow increase in membrane distortion 

over a timescale of a few minutes, in response to continuously maintained suction 

(fig. 5.9). This is not in line with the “rapidly adapting” nature of the PC that is 
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generally assumed [32-50], according to which mechanical distortions develop on a 

timescale of less than a second.  
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Chapter 6 

 

Conclusions and Future Work 

 

Chapter 6 is an overview of experimental work undertaken for this thesis on PCs 

from the horse hoof. It reviews research that arises from the main points in the 

literature review in Chapter 1. Novel methods, and techniques which have not 

previously been applied to study PCs, have been used to develop a better 

understanding of the structure and function of the PC.  

 

Three main areas were investigated in this work: the physiology of the PC; the 

mechanical properties of the structure and interconnectivity of fluid spaces; the 

mechanism of the PC response to external mechanical stimuli.  

 

Histological and anatomical investigations informed the process of obtaining PCs 

by dissection of the hoof, allowing exact localization of the PCs in relation to the 

pattern of surrounding structures such as blood vessels and adipose tissue. It 

provides a starting point for a possible future study on the involvement of 

surrounding tissue in the transduction process.  
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Dissection of PCs is not easy – they are difficult to locate and difficult to remove 

without damage to their delicate structure. For microscopy studies it is necessary 

to remove the opaque external membrane – another difficult operation. A topic for 

further study is the structure, biomechanics and possible functions of this layer. In 

addition, fresh PCs degenerate after a few hours, despite our adoption of 

procedures which preserve other tissues in much better condition. The availability 

of suitable PCs was a limiting factor in many experiments. 

 

The variety in size and shape of the corpuscles within a cluster, observed among 

horses of different ages may lead to two hypotheses: differences in shape and size 

are related to different ranges of sensitivity, or some corpuscles grow more than 

others through the life span of the animal. The experimental data were too limited 

to test the first hypothesis and application of the best current theoretical model 

posed fresh questions about the structure-function relation in the corpuscle whose 

resolution is a prerequisite for addressing this issue. Testing the second hypothesis 

would be an enormously time-consuming task. 

 

Each microscopic technique provided specific structural information. Light 

microscopy is able to reveal basic information on anatomy of PCs which has 

already been described in the literature. However, we obtained new evidence of 

two different types of mechanical linkage between lamellae. Each of them may 

carry its own specific role, contributing to the overall receptor function. The staining 

techniques of whole PCs have not been documented before. Hence, to establish 
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the best incubation time for labelling collagen, proteoglycans, lipids in a whole 

capsule was a challenge. A high density of collagen was found in lamellae close to 

the surface and around the core.  Confocal microscopy confirmed the presence of 

separate blood supplies to the inner and outer zones. Vessels that penetrate the 

outer zone may have a role in controlling the amount and composition of the 

interlamellar fluid and regulation of internal pressure. They may also be related to 

the putative function of PCs in regulation of the circulation. 

 

The density of proteoglycan increases towards the inner zone, with less in the 

outer zone. A common role of proteoglycans in extracellular matrix is structural 

support and provision of resistance against compression. However, they also 

confer size- and charge-selectivity to transport of solutes through basement 

membranes and other extracellular matrices. In the PC it is possible that 

proteoglycans in the interlamellar spaces contribute to flow resistance and hence 

to the overall mechanical stresses of the lamellar structure. They are also probably 

responsible for the charge selectivity we observed in the transport of fluorescein 

and rhodamine B. A high density of lipids was observed on the surface of the 

corpuscle, decreasing towards the inner zone. Since lipids are associated with 

energy storage and protection from the environment, it is possible to assume that 

lipids found on the surface and through the outermost lamella may carry these 

functions within the process of mechanotransduction. Corpuscles were always 

surrounded by adipose tissue and it is possible that it has a role in the transduction 
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process in, for example making external forces more isotropic before they reach 

the corpuscle surface. Such hypotheses could be a major area for future work.  

 

The collagen fibres occupy approximately 25% of the whole corpuscle, particularly 

in the outer zone. They are probably the major determinant of the degree of 

swelling and shrinkage of the outer zone induced by different osmotic forces. They 

may also produce the high stiffness of the outer lamellae demonstrated in the 

micropipette aspiration test.  

 

There are occasional single elastin fibres uniformly distributed across the outer 

zone, becoming less distinguishable in the complex network of collagen and 

proteoglycans towards the inner zone. These elastic fibres may be associated with 

radial connections described by Lowenstein and Skalak [36] and may be involved 

in the recovery of the structure after the application of loads.  

 

The complex network around the core is associated with increased density of 

proteoglycans which, in addition to the functions discussed above, will influence 

the distribution of cations such as can  attract Na+, K+, Ca++, and may thereby play 

a role in the electrochemistry of the nerve. Deformation of the lamellar structure 

may also be associated with ionic effects [42]. Electrochemical effects of PC 

function have not been investigated in the present study. Measurement of changes 
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in ionic composition and electrical potential, within the PC and across the nerve 

membrane, in response to mechanical deformation, remains an exciting topic for 

future work.  

 

Experiments involving osmotic challenge show differences in behaviour between 

the inner and outer zones. However, it remains unclear whether these two zones 

have different roles in the process of mechanotransduction.  Both the osmotic 

swelling and tracer uptake experiments indicated that the lamellae are partially 

permeable to water and solutes. This may be important in nutrition. It may also be 

important in the long-term accommodation of the corpuscle to continued loading. 

 

Investigation of the theoretical model proposed by Lowenstein and Skalak [36] has 

provided a wide range of predicted responses to mechanical stimuli, considerably 

extending the scope of the original study. Corresponding measurements of the 

displacement response of the PC to sinusoidal mechanical stimuli show 

reasonable agreement with predictions, both in terms of amplitude and phase. 

These measurements were particularly challenging, involving many months of 

development work, and it is to be hoped that further measurements of this type will 

be carried out in future, to confirm and extend the present results. A weakness of 

the existing set-up is that experiments are performed at room temperature – 

experiments at body temperature (37°C) may produce different results [56]. If 

pressure measurement could also be implemented alongside measurement of 
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displacement, this would provide a very powerful technique for studying the 

mechanical behaviour of the corpuscle, allowing a rigorous test of theoretical 

models. Again, a great deal of effort was devoted to pressure measurements and 

whether the problems encountered with leakage could be circumvented by further 

attention to pipette tip design or the use of piezoelectric drivers still remain to be 

investigated. 

 

At the end of the present study, there remains the question of why the Pacinian 

corpuscles have their complex lamellar structure. As discussed in Chapter 5, it 

seems unlikely that such a complex structure is required to produce the observed 

variation of response with frequency. Brisben et al [53] suggest that the function of 

the lamellar structure is “to protect the extremely sensitive receptor ending from the 

high static and low-frequency forces that occur in many motor acts, thereby leaving 

the ending sensitive to transmitted vibrations with amplitudes as small as 10nm”. 

The author is unaware of evidence in the literature that receptor endings of nerves 

associated with PCs are more susceptible to mechanical damage than nerve 

endings associated with other types of touch receptors, so this argument by 

Brisben et al is open to question. It may be that the most important function of the 

lamellar structure is to increase the size of the receptor, providing a large volume 

and large surface area, and hence a mechanism to efficiently transmit mechanical 

signals to the receptor ending from a large region of surrounding tissue (i.e., to 

achieve the spatial summation which is an important aspect of perception via PCs). 
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The work presented in this thesis provides a wide range of new information on the 

PC. Other researchers are encouraged to further investigate this fascinating 

subject for study. 
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