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Abstract

This thesis deals with the application of optimisation based Valida-

tion and Verification (V&V) analysis on aerospace vehicles in order to

determine their worst case performance metrics. To this end, three

aerospace models relating to satellite and launcher vehicles provided

by European Space Agency (ESA) on various projects are utilised. As

a means to quicken the process of optimisation based V&V analysis,

surrogate models are developed using polynomial chaos method. Surro-

gate models provide a quick way to ascertain the worst case directions

as computation time required for evaluating them is very small. A sin-

gle evaluation of a surrogate model takes less than a second. Another

contribution of this thesis is the evaluation of operational safety margin

metric with the help of surrogate models. Operational safety margin is

a metric defined in the uncertain parameter space and is related to the

distance between the nominal parameter value and the first instance

of performance criteria violation. This metric can help to gauge the

robustness of the controller but requires the evaluation of the model

in the constraint function and hence could be computationally inten-

sive. As surrogate models are computationally very cheap, they are

utilised to rapidly compute the operational safety margin metric. But

this metric focuses only on finding a safe region around the nominal



parameter value and the possibility of other disjoint safe regions are

not explored. In order to find other safe or failure regions in the param-

eter space, the method of Bernstein expansion method is utilised on

surrogate polynomial models to help characterise the uncertain param-

eter space into safe and failure regions. Furthermore, Binomial failure

analysis is used to assign failure probabilities to failure regions which

might help the designer to determine if a re-design of the controller

is required or not. The methodologies of optimisation based V&V,

surrogate modelling, operational safety margin, Bernstein expansion

method and risk assessment have been combined together to form the

WCAT-II MATLAB toolbox.
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Chapter 1

Introduction

Verification & Validation of controllers for space applications is a process to cer-

tify the satisfactory performance of a given closed loop system during a specified

mission. This is a crucial task, and a poor performance, or an onset of instabil-

ity, can lead to the failure of the entire mission. It is common that many of the

parameters in the system are not precisely known over the entire operating region

of the system, but they are considered to lie within a bounded interval. Hence,

it is very important, for ensuring the robust performance of a controller, that the

worst-case stability and performance metrics of the given closed loop model is nec-

essarily assessed for nominal as well as the expected level of variations of uncertain

parameters, for e.g. the uncertainty in different aerodynamic coefficients, physi-

cal configuration parameters, flexible, bending and sloshing mode parameters. In

aerospace applications, this is typically identified as flight clearance of the control

laws, and carried out as the final step withinthe iterative design process. The

scenario is not different in the case of space applications.
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In the case of space missions, a typical Verification & Validation is carried out

to evaluate the stability and performance of the closed loop control system models

of spacecraft, re-entry vehicle, and satellite. The design process, at large, involves

the modelling of the environment, aerodynamics, and various systems including

the control system module which consists of the actuators and the sensors. Non-

linearities, flexible modes and lumped delays are often present in these models. To

account for the variations of the parameters, a nominal model is defined together

with a series of tolerances which define the level of uncertainty of each parameter.

The worst-case analysis problem is to carry out the robust stability and perfor-

mance analysis of such complex, non-linear and high-fidelity simulation models

of a space mission. It is assumed that the controller is available, and it would

possibly have been designed using a simple dynamic model. The representation

of the dynamic model may have been realised according to several assumptions so

that a viable design technique may be employed. Verification & Validation is the

last step in the design cycle of the controllers, therefore, it is important to make

use of the best dynamic model that captures almost all the effect of nonlinearities,

uncertainties, flexible modes, disturbances and various delays. As a consequence,

the simulation model can become complex, non-linear, and of high-fidelity.

As an example, consider the guidance and control law of a re-entry vehicle which

ensures robust tracking of a pre-defined mission trajectory. In order to guarantee

the success of a mission, the worst-case deviations from the pre-defined trajectory

due to the simultaneous variations in the multiple uncertain parameters need to

be evaluated. Clearly, this task becomes cumbersome and computationally very

challenging, where different combinations of large numbers of uncertain parameters

14



must be investigated such that an estimate about the worst-case stability and

performance of the control laws can be made. To determine the deviation from

the pre-defined trajectory, the closed loop re-entry vehicle system for a finite time

period needs to be simulated. In accordance with this rationale, the framework

applicable to any representation of the dynamical system, including the best one

available is desired to be made use of. Moreover, computationally efficient tools

need to be identified, developed and tested with different space applications.

A Verification & Validation process can provide confidence, by ensuring the

control laws work as per the specifications without any safety critical malfunctions

over the entire operating region. An overview of Verification & Validation meth-

ods and various challenges for Verification & Validation and certification for the

adaptive control systems used in safety critical aircraft systems is given in [2]. Ac-

cording to [3] and the references therein, Verification & Validation can be defined

as follows:

• Validation is the process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the intended

uses of the model.

• Verification is the process of determining that a model implementation ac-

curately represents the developer’s conceptual description of the model and

the solution to the model.
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1.1 A review on Verification & Validation methods

During the design cycle [4], the performance of controller is assessed using a range

of methods such as analytical techniques that could be employed on lower order

models, simulations that are applicable to complex, high-fidelity models, hardware

in loop analysis where actual subsystems replace some of the mathematical models

and the flight tests. Analytical techniques such as gain/phase margins [5] and the

nonlinear continuation/bifurcation analysis against single parameter variations [6]

can be considered as the traditional analytical tools for worst-case analysis in the

early phase of the design cycle. The multivariable methodologies such as µ-analysis

and ν-gap metric analysis (chapters 17 and 18, of Ref. [7]) became more modern

candidates for carrying out worst-case analysis based on robust control theory [8]

that convert a given closed loop system to a Linear Fractional Transformation

(LFT)-based model [9]. These techniques and their variants deal with multiple

sources of uncertainty, however the complexity in determining the exact µ value

is claimed to be an NP-hard problem [10]. Useful extensions of these approaches

which can handle certain types of nonlinear dynamics have also recently been

developed, such as Integral Quadratic Constraints (IQC) [11, 12] and Sum Of

Squares (SOS) programming [13]. A common characteristic of the above modern

methods is that specific requirements are made on the closed-loop simulation model

under investigation, e.g. simplified versions of the full vehicle simulation model

must be developed in order to generate LFT-based models for µ-analysis and

IQCs and similarly polynomial representations for the SOS methodology. Few of

these key techniques, classified as analytical methods that seem to be relevant
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for Verification & Validation are tabulated in Table 1.1 and discussed in brief in

sequel.

1.1.1 Analytical based Verification & Validation methods

Analytical based methods are discussed in this section and summarised in Table 1.1

which gives information on their applicability to different classes of systems and

types of domains, indicator of engineers effort, indicator of computational com-

plexity/overhead. The appearance of ‘X’ shows the applicability of the methods.

The followings fields from the Table;‘L’, ‘NL’,‘DD’, ‘CD’, ‘EE’, ‘CC’; are Linear

Models, Nonlinear Models, Discrete domain, Continuous domain, Engineer Effort

and Computational Complexity respectively. The number of ‘−’ shows reduced

complexity/effort and the number of ‘+’ shows increased complexity/effort. Ab-

sence of these symbols means no specific information. The term ‘Engineer Effort’

is a subjective estimation of the skills and time required by an engineer to write a

code, test it on benchmark problems and then apply it to industrial problems. The

methods SOS and IQC require more effort to learn and implement in industrial

problems than for instance the gain and phase margin methods taught in under-

graduate program. Hence in Table 1.1, increased ‘Engineer Effort’ is indicated for

SOS and IQC methods.

1. Gain and phase margin / Nichols exclusion region analysis:

For SISO case, gain margin indicates the possible level of increment in the

gain of the plant before the gain of system at 180◦ phase lag frequency reaches

unity, whereas the phase margin gives how many more degrees to 180 phase

lag at which the system gain would cross unity. These are classical methods
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Table 1.1: Analytical based Verification & Validation methods

Method L NL DD CD EE CC
Gain/Phase Margin X X
µ - analysis X X + −
ν - gap analysis X X + −
IQC/Multiplier analysis X X X ++ +
SOS analysis X X X X + + + ++
Bifurcation and Continuation analysis X X + +
Interval analysis X X X X − −

[5] and still very much in use providing good insight of the system. However

these are limited to linear time invariant systems and carried out one loop

at a time. Extensions of the concept to evaluate exact MIMO stability

margins can be found in [14]. In [15] methods are developed to determine

the margins in near real time and employed to a modern fighter aircraft

example. Recently, in [16] gain and phase margin are monitored ‘online’.

2. Structured singular value (µ) analysis:

The method is applicable to only those systems that are linear uncertain dy-

namical systems and realised in a Linear Fractional Representation (LFR)

form (necessary modelling effort for designer). The computation of exact

value of the Structured Singular Value (SSV) is an NP hard problem and

hence the method evaluates the fulfilment of robust stability and performance

criteria with upper and lower bounds for µ and the quality of the bounds

depends on the size of the perturbation matrix in loop and whether the per-

turbation is complex, real or mixed. The solution of the upper bound is a

convex problem that can be solved using Linear Matrix Inequalities (LMI)

[17], whereas the calculation of lower bound is a non-convex problem and
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often heuristic methods are required. In the case when there are complex el-

ements in the perturbation block, polynomial time algorithms such as power

iteration proposed in [18] is available to compute the lower bound. The com-

putation of bounds for µ can also become very tedious, especially in the case

of real µ. The worst-case perturbation is usually provided by the lower bound

of µ. The computational complexity is a polynomial function of number of

uncertainties in the model. See [19, 20, 21, 22] and Refs. there in for more

details. The existence of powerful tools such as µ - analysis tools in MAT-

LAB makes this approach more attractive. However traditional frequency

gridding based methods might be less effective in case of the applications in

which there are dominant flexible modes present. Since, such modes might

be present in a narrow frequency region there exists a high chance for missing

the mode and for over evaluating the robustness properties when gridding

type approach is followed. Since the present application is flexible satellites,

this point is very important. For more details on a specific suitable approach,

see [23]. How the modern robustness metric such as SSV can be interpreted

in terms of the classical gain/phase margin and the Nichols exclusion region

robustness specifications is discussed in [24].

3. Gap metric (ν - gap) analysis:

Like µ - analysis, this method also requires the uncertain linear model to

be expressed in an LFR form. According to [25], a simple algorithm is used

to compute the worst-case parameter combinations based on the gap metric

that has roots on operator theory. A claim is made in [25] that the calculation

of the worst-case using ν - gap metric is simpler than that of computing the
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lower bound of µ. In [26] the robust performance of an integrated flight

and propulsion control law had been analysed using the ν - gap metric and

compared with µ analysis results. However, it might be stated that the

methodology is yet to be popular among the practitioners, perhaps due to

the inherent complexity of the concepts for an industrial practitioner.

4. Integral Quadratic Constraints (IQC) / Multiplier analysis:

The IQC method is a unifying framework for system analysis that generalises

the small gain theorem and passivity theorem [27] and many other results

from robust control. This analysis allows a designer to handle different kinds

of uncertainties, time invariant, time varying, delay and certain class of non-

linear uncertainties simultaneously. Since the theory takes into account of

time varying uncertainties and their variation rates, the method leads to less

conservatism. The system under investigation is converted into a standard

LFT form by pulling out the uncertainties which then can be described by

IQCs. The multiplier/IQC framework is based on a special modelling where

the analysed system is written as the Linear Time Invariant (LTI) intercon-

nection of sub-systems of different nature: time-varying, a class of non linear,

uncertain, time delay, etc. Each subsystem is characterised by a set of mul-

tipliers or IQCs. Static as well as dynamic multipliers have been proposed

over the period; a mild criticism on this method by practitioners may be

the lack of clear guidelines to choose a multiplier easily. However, powerful

software such as IQC-β toolbox is available for the purpose. See [11, 28, 29]

for details on IQC methods. From [30], it is apparent that the method is

gaining popularity among the European Space community and their project.
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5. Sum of Squares (SOS) analysis:

SOS techniques study the stability or performance of a dynamical system

represented only in a polynomial form. The method falls in a class of semi

definite programming problems which involves solving (linear convex) opti-

misation problems in the cone of positive semidefinite matrices. SOS pro-

gramming can be used to guarantee stability and performance of control

systems including non linear systems, continuous/discrete hybrid systems,

and time delay systems. In [31] for the first time, the SOS techniques had

been extended to compute the L2 gain bound for affine nonlinear systems im-

portantly by overcoming the computation of numerically difficult Hamilton

Jacobi Inequality. Polynomial Lyapunov functions of possibly high degrees

than a quadratic Lyapunov function are computed and tagged as certificates

associated with the dynamical system. Hence, local stability and perfor-

mance can be ensured in polynomial sublevel sets of the state space. Refs.

[13, 32] apply the methodology for robustness analysis problems associated

with aerospace applications.

6. Bifurcation and continuation method:

The theory can be used to analyse the dynamical system represented as non-

linear differential equations. All possible steady and non-steady equilibrium

solutions can be obtained as a function of its state and input variables by

locally linearising the dynamical system about a continuum of equilibrium

points. The solutions are obtained via suitable numerical continuation meth-

ods (especially powerful software AUTO implementing various such methods
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is available for use [33]). This can provide useful insight into various non-

linear phenomena associated with the dynamical system [6]. Perhaps, one

major drawback with this method is its limitation to vary single parameter

at a time (there exists methods to vary two parameters at a time, and repre-

sentation of the results becomes hard in cases of parameter dimension more

than that.) and the smoothness assumption associated with the dynamical

system. Moreover, the method does not guarantee worst-case of stability or

performance will always be found. However, this can be used as a potential

tool to identify the critical area in parametric region for further close analy-

sis. This can offer a significant reduction of computational effort. Also, this

analysis method in conjunction with optimisation method has significant po-

tential; see for example a nonlinear method proposed in [34] for limit cycle

analysis in an aerospace example.

7. Interval analysis (polynomial based method):

In this analysis method the analysis criteria, or cost function, are defined

as polynomial functions of uncertain parameters. In [7] (page 333-353), the

method was used to assess a linear stability criteria of uncertain systems and

found to be comparable with a classical grid analysis approach. However,

the associated computational load is much lower. Lower computational load

and simplicity of the approach makes this method attractive to engineers.

The method can be used to investigate the entire operating region, or entire

uncertain parameter space, treating it as a continuous domain. Provided, the

assessment criteria can be expressed as an algebraic function, the method can

be employed to any linear and nonlinear criteria. See [7, 35] for more details,
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first reference with a flight control clearance problem and the last reference

with a re-entry module clearance example.

1.1.2 Simulation based Verification & Validation method

The most common approaches used in industry are based on statistical techniques

and/or evaluations over grids which are easily applicable. These methods can be

applied to the full nonlinear, complex and high-fidelity simulation model of the

vehicle with a minimum of effort on the part of the designer. In such approaches,

mainly there are two possibilities: (a) the extreme points of the vehicles uncertain

parameter space are considered and the analysis criteria are evaluated at these

points; (b) the search space is randomly sampled and Monte-Carlo simulation

is employed [7]. As the number of uncertain parameters considered (gridding of

extreme points) increases, the computational effort associated with the Verification

& Validation exponentially increases [7]. The case is not different with respect

to the desired statistical confidence levels for the clearance results (Monte-Carlo

simulation), [36, 37]. These constraints severely limit the reliability of the analysis

in the case of complex models particularly those with the slow simulation speeds.

Moreover, there is no guarantee that the worst-case uncertainty combination

has in fact been found, since it is possible that the worst-case combination of

uncertain parameters does not lie on the extreme points, or in the sampled set

used by Monte-Carlo approaches. To address this issue, the advanced optimisa-

tion algorithms that efficiently search the parameter space for the worst-case that

violate the specific criterion can be considered [38]. Simulation based Verification

& Validation methods are summarised in the Table 1.2 with similar notations to
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that used in analytical based Verification & Validation. A brief discussion on each

of the methods mentioned in the table is provided in this section.

Table 1.2: Simulation based Verification & Validation methods

Method L NL DD CD EE CC
Grid point analysis X
Monte Carlo analysis (Nominal) X X −− −
Optimisation based analysis X X X X −− −−

1. Grid point method:

In a grid point analysis method the dynamical system, mostly a realistic

nonlinear model, is analysed at a number of grid points of the operating

region, the effect of parameter variations are assessed by the stability and

performance metrics of the locally linearised models about an equilibrium

attained on these grid points as well as nonlinear simulations [39]. The

reliability of results from this method depends extremely on the engineer’s

familiarisation with the model and the intuition of choosing the grid points.

The main criticism with this method is that there is no guarantee that ‘worst-

case’ has been obtained since the verification and validation process uses a

discrete set of points. Better results can be obtained on a finer grid, however

at the expense of a higher computational cost and without any guarantees

that a worst-case will be found. Any analysis method which linearises the

complex nonlinear model would usually bring forth conservatism in results

due to the inherent linearisation errors.

2. Monte Carlo simulation analysis:

Monte Carlo refers to a class of methods that perform repeated sampling
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of the uncertain parameter space to obtain a desired numerical result. A

Monte Carlo method can be used to perform V&V analysis by performing

random sampling of the uncertain parameter space with an aim to obtain

the worst case. These methods are widely used to assess the probability of

exceeding a predefined limit of a performance metric arising from variation

in uncertain input parameters. This form of robustness analysis is done by

using statistical descriptions of parameter uncertainty. The uncertain pa-

rameter either has a known or an estimated probabilistic density function,

e.g. Gaussian. Monte Carlo simulations are widely used in traditional vali-

dation processes, which are very common in the aerospace industry [40, 41].

However a major drawback, like any other statistical method, is that they

are very time consuming. For a high level of probability and confidence level

the associated computational time can be excessive. The Importance and

Stratified sampling methods could be used to improve the convergence rate

and probability of occurrence of a specified event in such simulations. New

development of the Monte Carlo method such as methods based on poly-

nomial chaos and surrogate models are attractive because they can reduce

computational overhead significantly.

3. Optimisation based analysis:

In optimisation methods, the validation problem is rewritten or reformulated

as an equivalent distance maximisation/minimisation problem. The global

solution to the optimisation problem is worst-case. The dependency of the

considered performance criterion over the search space for this class of prob-

lem will in general be highly nonlinear and non-convex [42]. Hence, local
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optimisation methods, depending on the given initial conditions, can get

trapped in locally optimal solutions. Hence the global optimisation methods

are necessary to avoid such situation and obtain solutions of good quality,

i.e., global solution. Many different classes of optimisation algorithms are

available in the literature which may be used for worst-case analysis of com-

plex systems. Some of the most well known are: Gradient-based optimisa-

tion, e.g. Sequential Quadratic Programming (SQP), Simulated Annealing,

Genetic Algorithm (GA), Differential Evolution (DE), DIviding RECTan-

gles (DIRECT), Particle Filtering, , Mixed Integer Programming, Branch

and Bound Methods, Interval Analysis and Multiobjective Algorithms. This

concept can address any clearance criteria. Parametric models have to be

available, which could be linear or non-linear. No matter how complex the

model is, the problem is addressable. The computation time depends on

the optimisation method and the type of problem. Leveraging the ‘intel-

ligence’ embedded in global optimisation algorithms offers the potential to

significantly reduce the number of simulations required to assess worst-case

performance of complex systems, impacting directly on the time and cost

requirements for the validation. In [43, 44], a few of the local, global and hy-

brid optimisation methods have been applied to a specific time domain flight

clearance problem for a high performance aircraft, however the dimension of

the uncertain space considered was of significantly low order.
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1.2 Research motivation

From Table 1.1, it can be seen that most of the analytical methods are applicable

to linear models, or a certain class of nonlinear models (often that satisfies the sec-

tor condition). Although, SOS methodology is applicable to linear and nonlinear

models in discrete as well as continuous domain, the methodology requires a lot of

effort on engineer’s behalf to perform the analysis and has a high computational

complexity. Interval analysis is applicable to linear and nonlinear models in dis-

crete and continuous domain. Comparing with SOS, interval analysis has lesser

computational complexity and lesser effort required by engineer. Unfortunately,

the methodology is not very popular with the aerospace industries. In [45], SOS

methodology has been used to assess the robust performance of a simplified closed

loop rendezvous mission. As a consequence, it is evident that the complexity of

the problem that can be dealt with the present SOS tools is of significantly low

order. From [30], it is apparent that the IQC method is also gaining popularity

among the European space community.

Verification & Validation is the last step of the design cycle, and hence it is

important not to alter, or modify the given structure of the model for carrying

out the analysis. The model is often treated as a ‘black-box’ representation with

access limited to certain inputs and output variables. Obviously, the currently

available analytical tools require further significant development to be absorbed

in the industry, yet then the use of such tools, in the earlier stated manner for

validating the general class of realistic industrial models, seems to be difficult.

On the other hand, the simulation based methods are more popular with the

industry due to its applicability and the lesser effort required by the engineers
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to perform the analysis. These methods aim to determine the deviations in the

performance criterion for various uncertainty configurations. The maximum de-

viation of the performance criterion is of interest, and is treated as a gauge for

assessing the robustness of the controller. In Grid point and Monte Carlo analysis,

large number of simulations are required in order to accurately estimate the global

maximum of a given performance metric. Even so, Monte Carlo analysis is pop-

ular among the aerospace industry because the statistical attributes like accuracy

and confidence levels of the obtained result can be assigned. In order to ascertain

the global maximum, researchers have employed the optimisation algorithms to

evaluate the worst-case performance metrics using relatively less number of simu-

lations as compared to the Monte Carlo techniques. Researchers in this area have

used local, global and hybrid optimisation methods for performing the worst-case

analysis.

European space industry is keen about developing this approach further, and

develop it as a useful tool for carrying out Verification & Validation of different

missions 1. Though the concept had been applied earlier to certain lower order

problems, it is necessary to assess the concept with a larger number of uncertain-

ties, and with as many different time and frequency domain performance criterion

of disparate missions as possible. The thesis aims to address this requirement by

considering different time and frequency domain Verification & Validation prob-

lems in the presence of significantly large number of uncertain parameters.

Optimisation based V&V analysis for aerospace problems are often non-convex

optimisation problem whose global solution is not always guaranteed. Stochastic

1Developed with support from WCAT-II, European Space Agency (ESA) supporting grant
ESTEC Contract No 19783/06/NL/JD: 4000104541
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optimisation procedure may have to be repeated a few times in order to guaran-

tee that the worst-case has truly been found. In optimisation based Verification

& Validation the performance criterion is evaluated by means of the finite time

simulation or a frequency sweep. If the individual finite time simulation itself is

computationally time consuming, the optimisation based analysis will naturally

be even more so. Speeding up of the computational time of the simulation based

Verification & Validation methods for such situation is another key issue that the

thesis is aiming to address.

A potential solution for speeding up the computation time is the use of surro-

gate models, which are computationally inexpensive. In this thesis, accurate and

computationally fast surrogate polynomial models are developed. The proposed

surrogate models are polynomial expressions in terms of the respective uncertain

parameters, and the evaluation of this polynomial expression would give the asso-

ciated performance criterion under consideration. Each polynomial expression will

be associated with a given performance metric, and its use with the optimisation

can reduce the computational effort significantly.

In addition, this thesis also investigates to determine the safe operating region

around the nominal parameter value in the uncertain parameter space. This safe

operating region would satisfy all the performance criteria and the robustness could

be associated by the size of the region to determine the safe operating region. Op-

timisation methods will have to be developed in order to determine the operational

safety margin, and often the computational effort associated with such problem

can be very high. Once again, the surrogate polynomial models could be used to

speed up the conventional optimisation problem. As surrogates are polynomial

expression in terms of uncertain parameters, it would determine the propagation
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of uncertainty in the uncertain parameter space. Since safe regions indicate that

all performance criteria are satisfied, failure regions corresponds to failure of one or

more performance criterion. Additionally, a failure probability need to be assigned

to the failure regions in order to assess the risk for re-design of controller.

1.3 Contribution of thesis

In this thesis, the methodology of the optimisation based worst-case analysis is

extended to space applications including the Verification & Validation of Earth

observation satellite and launch vehicle models. The efficiency of the conventional

optimisation based worst-case analysis has been enhanced by exploiting the use

of polynomial surrogate representation of the performance objective of simulation

model, developed using the polynomial chaos theory and the probabilistic colloca-

tion methodology. Furthermore, the surrogate assisted optimisation based worst-

case analysis is employed to identify the subset of the uncertain parameter space

efficiently in which the multiple performance specification criteria are satisfied.

The results of this thesis have been published, or are currently submitted and in

the review process for publication [46, 47, 48, 49]. In addition, the technical devel-

opment and application reported in this thesis are coded in the Matlab/Simulink

environment, and these reusable, generic surrogate assisted Verification & Valida-

tion tools are available for download for different industries from European Space

Agency1. The contribution is as follows:

• Optimisation based Verification & Validation analysis to aerospace

1Developed with support from WCAT-II, European Space Agency (ESA) supporting grant
ESTEC Contract No 19783/06/NL/JD: 4000104541
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models including Earth observation satellite and launch vehicle

models

Optimisation based Verification & Validation is applied to a flexible satel-

lite model and a flexible launch vehicle in its Thrust Vector Control (TVC)

phase. The robustness of the controller is evaluated under uncertain param-

eter variations. For both the models, worst-case performance metrics are

evaluated by employing different optimisation algorithms. The time and fre-

quency domain performance metrics are translated into cost functions which

are maximised by the optimisation algorithm to determine the worst case per-

turbation. With the flexible satellite model, for the first time, significantly

large number of uncertain parameters are considered in the optimisation

based Verification & Validation analysis. Frequency and temporal perfor-

mance metrics are evaluated for the flexible launch vehicle and worst case

uncertainty perturbation are determined. Specifically the roll coupling ef-

fects are studied by determining the MIMO gain and phase margins. Worst

case performance metrics deviations of aerodynamic load, pitch angle and

command deflections emanating due to uncertainties in rigid and flexible

mode parameters are determined.

• Development of surrogate models and its use in the simulation and

optimisation based Verification & Validation

Surrogate models of the performance objectives of the flexible launch vehicle

are developed using polynomial chaos technique. Specifically non-intrusive

technique is adopted. The uncertainty space is sampled using probabilistic

collocation technique to generate polynomial models in terms of the uncer-
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tain parameters. Surrogate models are developed for each performance crite-

rion considered. First and second order surrogate polynomials are developed

for each performance criteria. The accuracy of the derived surrogate model

is evaluated by comparing the results of both original and surrogate mod-

els. Subsequently the surrogate models are utilised in the simulation based

Verification & Validation. For this, the performance cost requiring the eval-

uation of original model is replaced with the surrogate model and simulation

based Verification & Validation is performed. The efficacy in speeding up

the process is demonstrated.

• Identify safe and failure regions in the uncertain parameter space

and assigning risk to unsafe regions

The region around the nominal parameter value that satisfies all performance

criteria is translated intro a metric called as the operational safety margin.

The size of the region is indicative of robustness. Optimisation is employed

on the original and surrogate model for evaluating the operational safety

margin metric. Surrogate models are utilised to speed up the process of

evaluating the operational safety margin metric. Surrogate models are also

utilised in characterising the uncertain parameter space into safe and failure

regions. Failure probability is assigned to the failure regions by employing

binomial failure analysis. The failure probability would help assess the risk

of re-designing a controller.
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1.4 Thesis organisation

This thesis is organised as follows, in chapter 2 introduces optimisation based

Verification & Validation analysis and provides a brief survey on the topic. Ver-

ification & Validation analysis method is then applied to an industrial model of

flexible satellite for the BIOMASS mission consisting of large number of uncer-

tainties. Analysis is performed for frequency domain characteristics on sensitivity

and complementary sensitivity functions. Verification & Validation analysis is also

applied to two launch vehicle models to study the impact of uncertainties and roll

coupling on MIMO margins and temporal performance metrics.

Chapter 3 presents the polynomial chaos modelling to develop surrogate poly-

nomial models. A non-intrusive method called probabilistic collocation method

is utilised to generate surrogates. This methodology is used to develop surrogate

models for the temporal performance criteria of the flexible launch vehicle. Sur-

rogate models are developed using the rigid and flexible parameters of the launch

vehicle and evaluation of the model gives the performance criterion under consid-

eration. First and second order surrogate models are developed while discussion

on complexity for generating higher order polynomials is provided. The accuracy

of the surrogate models are determined by evaluation of both surrogate and orig-

inal models for a set of uncertain parameter combinations. Finally, optimisation

based Verification & Validation method is applied on these surrogate models and

the results are compared with those obtained with the flexible launch vehicle for

improvement in computational time and quality of the results.

In chapter 4 deals with identification of safe and failure regions in the uncertain

parameter space. To this end the method of operational safety margin is utilised to
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identify the largest safe region around the nominal parameter value. Operational

safety margin defined in the uncertain parameter space is evaluated for the flexible

launch vehicle. In order to speed up the process of evaluation of the metric,

surrogate models of the flexible launch vehicle is also utilised. Next, Bernstein

polynomial expansion method is employed on the surrogate models in order to

characterise the uncertain parameter space into safe and failure regions. The

method of binomial failure analysis is utilised to determine upper and lower bounds

on failure probability of the failure regions identified by the Bernstein expansion

method. This method is utilised to assess the risk for performing a re-design of

the controller used in the flexible launch vehicle.

Finally Chapter 5 presents the conclusions of this study. A few future research

directions are also explained in this chapter.
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Chapter 2

Optimisation Based Verification

& Validation Analysis

2.1 Introduction

In order to guarantee the safety of the mission, the worst case stability and per-

formance metrics of the control laws must necessarily be assessed for nominal as

well as the expected level of variations of uncertainty in the mission parameters,

such as aero-thermodynamic parameters, physical configuration parameters such

as mass, inertia, actuator and sensor uncertain parameters, and flexible mode pa-

rameters. For example, in the case of flexible satellites [50], the poorly damped

flexible modes may get excited even in the presence of the attitude control of the

spacecraft. Excitation of such flexible modes can lead to the degradation of the

pointing performance of the spacecraft. The designed control law must be robust

enough to suppress the vibrations during the attitude control of the spacecraft

to ensure accurate pointing performance. In order to guarantee the safety of this
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mission, it is apt to assess the worst case deviations of the pointing error in the

presence of various uncertain parameters including those associated with flexible

modes. One way to assess this is by perturbing the simulation model with several

simultaneous variations of the multiple uncertain parameters, within their allow-

able bounds. However, this is computationally expensive and determining the

worst-case efficiently is a challenging problem.

Given a bounded, multi dimensional uncertain parameter space, ∆ ⊂ Rm, the

aim is to determine the combination of the uncertain parameters associated with

the maximum possible violation of a mission performance criterion, δ∗ ∈ ∆ ⊂ Rm,

which is identified as worst case perturbation. The corresponding optimisation

problem specifically associated with a time domain performance criterion, is de-

fined as:

δ∗ = arg max
δ∈∆,t∈[t0 tf ]

J(δ,C,W, t) (2.1)

where δ = Col(δ1, . . . , δm) represents the uncertain parameter vector and δi,min ≤

δi ≤ δi,max, for all i = 1, 2, . . . ,m. The term t represents the simulation time of

the model, C and W represent the controller and other configuration parameters

of the simulation model. In optimisation based V&V analysis, the combination

of uncertain parameters that yields a maximum value of the performance crite-

rion J(·) is identified by using one or several optimisation techniques among the

different local, global and hybrid optimisation methods.

In these studies, evaluation of the cost function requires the simulation of the

model of the dynamics, and the model is treated as a ‘black-box’ with access limited

to certain input and output parameters. This is often the case with many other
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industrial models that are used for the purpose of verification and validation of the

controllers. The model could be complex, nonlinear and can have large number

of uncertain parameters. Here, the uncertain parameters and the measured states

which are required to evaluate the performance criteria are considered as inputs

and outputs of the ‘black-box’ model respectively.

2.1.1 A brief survey on optimisation based V&V analysis

In [7], the local gradient based SQP method and gradient free pattern search

method have been used for assessing the perturbations that provided the worst

case stability margin, which was a performance criterion for the flight clearance

problem. The benchmark model was the High Incidence Research Model (HIRM)

with 9 aerodynamic uncertainties along longitudinal axis and 15 aerodynamic un-

certainties along lateral axis. Longitudinal and lateral cases were analysed sep-

arately. A comparison between the local optimisation and the classical gridding

based methods were performed to show the superiority of the optimisation tech-

niques. However, local optimisation methods do not guarantee that the worst case

perturbations have been found, especially for the non-convex problems.

In order to address this issue, Menon et. al.,[43, 44, 51], utilised global and

hybrid optimisation methods for the clearance of the nonlinear flight control laws.

The global optimisation methods such as GA and DE were proposed for the flight

clearance problems. In addition, novel hybrid algorithms that utilised local optimi-

sation methods were proposed to improve the convergence results when compared

with other existing techniques. These methods were applied and compared for

the flight clearance problem of a highly augmented aircraft model called Aero-
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Data Model In a Research Environment (ADMIRE). The analysis considered a

nonlinear clearance criterion based on the angle of attack limit exceedence crite-

rion defined in [7], with a limited number of uncertain parameters, (only 5), and

concluded a superior performance for the hybrid DE, when compared with other

optimisation techniques such as GA,DE and hybrid GA in terms of the faster con-

vergence to a global/near global solution. Identical results were obtained in [52] on

a similar analysis problem of ‘medium’ complexity, for eg., a flexible satellite with

26 uncertain parameters and in [46, 53] for a flexible launch vehicle with 28 uncer-

tain parameters. In both studies, the uncertainties in configuration, aerodynamic

and flexible mode parameters were accounted.

In [54], deterministic global optimisation method based on DIRECT and its

hybridised version were applied to a re-usable launch vehicle problem. DIRECT al-

gorithm partitions the normalised parameter space into small hypercubes or boxes

and evaluates their centre points. The algorithm aims to find the optimal hyper-

cube containing the global optimum. The worst case perturbations consisting of 8

time varying uncertain parameters were determined for time domain specifications

on AoA and AOSS. A comparison with Hybrid Differential Evolution (HDE) and

Monte Carlo method was also performed. Hybrid version of DIRECT algorithm

performed better than other algorithms, and took less number of function eval-

uations to attain the global optimum. However, in [55], both conventional and

hybrid versions of DIRECT failed on a VEGA launcher model with larger number

of uncertain parameters. As the number of uncertain parameters increased, the

number of functions evaluations increased, since the partitioned parameter space

would have more number of hypercubes to explore. In this case, HDE provided

better results than the DIRECT and the Monte Carlo method. A conclusion was
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drawn that the DIRECT algorithm suffers from the increase in the dimension of

the parameter space.

In [56], two different mutliobjective optimisation methods were employed to

determine a worst case solution set, while considering multiple performance met-

rics simultaneously. First, a fast, elitist, evolutionary multiobjective optimisation

algorithm known as Non-dominated Sorting Genetic Algorithm (NSGA)-II is em-

ployed. Second, hybrid multi objective optimisation algorithm which adaptively

switches between three different strategies such as NSGA-II, differential evolution

and the metropolis algorithm is employed.

The Worst Case Analysis Toolbox (WCAT) comprising of several local, global

and hybrid optimisation algorithms, that was originally coded in [57]1 was recently

significantly modified to WCAT-II and widely distributed in European aerospace

industry as part of the study reported in this thesis. Another widely used tool by

the aerospace industry is called the Multi-Objective Parameter Synthesis (MOPS),

which is developed at the German aerospace centre DLR [58]. MOPS has been

used for synthesising and tuning of robust controllers satisfying several design

objectives, often some of them conflicting with each other. Recently in [59, 60],

the tool has been used to carry out the worst case analysis.

2.2 Analysis framework

A block schematic representation of the key elements of the optimisation based

V&V analysis framework is shown in Figure 2.1. The simulation models can be

complex, nonlinear and with large number of uncertain parameters. Typically

1The work was carried out with the support from European Space Agency (ESA), under the
Technical Research Project (TRP) - ESTEC Contract No 19784/06/NL/JD
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Figure 2.1: Framework of the Worst Case Analysis Tool (WCAT)

in this analysis framework, it is possible to modify the values of the uncertain

parameters, and the model can be simulated with these perturbed uncertain pa-

rameters. The performance criterion, which is mathematically represented as cost

function (J), either in time domain or in frequency domain, is evaluated using

the time simulation or frequency sweep of the model. Often the performance cri-

terion is represented as suitable norm (distance) maximisation problem defined

on a bounded search space. During each iteration of the optimisation algorithm,

WCAT generates a set of candidate uncertain parameters which are associated

with their corresponding cost function values. The way a new candidate uncertain

parameter is generated, depends on the type of optimisation algorithm selected

in the WCAT. This could be any among the local, global (GA,DE) and hybrid

(HGA,HDE) optimisation algorithm available. WCAT provides the solution, the
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worst case uncertain parameter vector, when convergence to a solution is obtained

with a desired accuracy level or computational budget (a finite number of sim-

ulations or iterations) is exceeded. The computational budget is usually fixed

comparable to standard Monte Carlo simulations. The underlying principle of

how the optimisation based V&V analysis framework is utilised to determine the

solution can be summarised in the following five steps.

Steps
i) Initialise/ configure the simulation model, i.e, initialising the model with

the default initial conditions, and the uncertain parameters with nominal
values.

ii) Assign the uncertain parameter variables with the perturbed values, if
available.

iii) Simulate the model for a finite time period.
iv) Compute the cost function J based on the output data from simulation.
v) Repeat Steps 2-4, till termination criteria of optimisation algorithm is

satisfied.

The optimisation algorithms, that are coded in MATLAB within the WCAT

are briefly discussed in sequel.

2.2.1 Local optimisation

In this thesis, the local optimisation technique employed is the gradient based

Sequential Quadratic Programming method. The main idea behind the SQP

method is to solve a constrained nonlinear optimisation problem using a sequence

of quadratic programming subproblems. Consider a constrained nonlinear optimi-
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sation problem described as, ([61])

min
δ

J(δ) (2.2)

Subject to gi(δ) = 0, i ∈ E

gi(δ) ≤ 0, i ∈ I

where, E represents the set of equality constraints and I represents the set of

inequality constraints. During each iteration of the SQP, a quadratic subproblem

is solved. The constraint function for this subproblem are formed by linearising

the constriants of the the optimisation problem in (2.2). The cost function of

the subproblem is an quadratic approximation to a Lagrangian function L(δ, λ) =

J(δ) − ∑dim(E+I)
i=1 λTi gi(δ), where λ is the lagrangian multiplier. The quadratic

subproblem modelled at iterate δk is given by, ([61])

min
d

Jk +∇JTk d+
1

2
dTHkd

Subject to ∇gi(δk)Td+ gi(δk) = 0, i ∈ E (2.3)

∇gi(δk)Td+ gi(δk) ≤ 0, i ∈ I

where d = δ − δk, k represents the kth quadratic subproblem, Hk is the Hessian of

the Lagrangian. The Hessian is a positive definite matrix consisting of second order

derivatives of the cost function and constraints. In the present study, the dynamic

simulation model is treated as a ‘black-box’ and hence the second order derivatives

are not available. In such cases, the Hessian is computed using a quasi-Newton
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approximation given by:

Hk = B−1
k

Bk+1 = Bk −
BkSkS

T
k Bk

STk BkSk
+
YkYkT

Y T
k Sk

where SK = δk+1 − δk and Yk = ∇δL(δk+1, λ) − ∇δL(δk, λ). The quadratic sub-

problem in (2.3) is solved using a standard quadratic programming method called

the active-set method. The solution to the quadratic subproblem δk is utilised to

generate the next iterate by utilising the Line search method ([61])as follows,

δk+1 = δk + αdk (2.4)

where α, is the step-length parameter to generate a sufficient decrease in a merit

function. Using the new iterate δk+1 a quadratic subproblem is modelled in the next

iteration. This algorithm runs several iterations until the termination criterion is

met. In this thesis, SQP method is implemented by utilising the function fmincon

provided in [62]. The function is implemented with the medium-scale optimisation

scheme and the gradients are approximated using the finite difference method. In

local optimisation methods, there is a chance that the solution could be trapped in

a local optima, and depends on the initial starting point in the uncertain parameter

space.

2.2.2 Genetic Algorithms

This is a popular global optimisation algorithm based on the evolutionary princi-

ples [63]. The underlying principle is to emulate the evolutionary process in the
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nature. This process starts with generating a prerequisite number of randomised

combinations of uncertain parameters. These combination of uncertain parame-

ters are termed as the initial population and each combination is termed as an

individual in the population. The cost function J in Eqn. 2.1 is termed as the

fitness function. This fitness function is utilised to assign a performance index

to each individuals in a population. The population is then used to reproduce

new individuals by using genetic operators and a selection process for mating.

There are various genetic operators available in literature, refer [64, 65] for gen-

eral information on GAs and the different genetic operators associated with this

approach. In this study, the WCAT software utilises internally the functionalities

of the MATLAB GA toolbox. The GA algorithm is described briefly.

1. Random Initialisation: The GA algorithm begins by generating an initial pop-

ulation of random individuals in the uncertain parameter space that are constant

over iteration.

2. Evaluation of Fitness Function: Each member of the current population is used

to evaluate the fitness function. Minimum value of fitness function is desired.

3. Reproduction of child population: A new population is termed as a child whose

entries are generated using individuals of the current population. The individuals

in the current population are called parents. The child population is produced

using genetic operators like crossover and mutation. The child population is then

passed on to the next iteration of the algorithm. Each iteration is termed as

generation and the entire process is repeated until maximum generations have

exceeded. There are three ways in which a child population is generated,
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(a) Elite Count: The number of individuals with the best fitness values in the cur-

rent population that are guaranteed to survive to the next generation. These

individuals are termed as elite children. In this study, the default value of

Elite count is 2.

(b) Crossover: This process refers to those individuals in the child population

that are created by combing the vectors of a pair of parents. Two members of

the current population are randomly picked for mating crossover process. A

randomly generated binary vector is used to select the genes from the parents.

When the gene in the binary vector is 1 then the corresponding gene from the

first parent is selected, and the gene from second parent is selected when it is

0,[62]. This process is illustrated in Figure 2.2. The fraction of individuals in

the next generation, other than elite children, that are created by crossover

are set to 0.8 in this study.

(c) Mutation: Some individuals of the child population are generated by applying

random variations to a single individual in the current population. The algo-

rithm generates random direction that are adaptive with respect to the last

successful or unsuccessful generation [62].

GA’s are very popular and it has a better chance of converging to a global optimum

as compared to the local optimisation methods. This algorithm has been popular

among optimisation based V&V methods since its application on flight clearance

problems [51]. In recent years, several researchers have applied genetic methods

to a wide variety of problems in the aircraft design optimisation, structural opti-

misation, and flight control problems in the aerospace science field. There are also

many different applications in other fields of science, for example [66] have applied
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Figure 2.2: Crossover process in GA

evolutionary algorithms for prediction of protein structures. In [67], GA has been

applied in the field of designing drugs. A review of GA as applied in the area of

electromagnetics is provided in [68].

2.2.3 Differential Evolution

Differential Evolution (DE) method was first introduced by Storn and Price in

[69] and is based on evolutionary principles. The results obtained by DE have

been observed to be better than other evolutionary algorithms, both in terms

of accuracy and computational overhead [51]. This method like GA starts with
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random initial population. A new search point is generated by adding the weighted

vector difference between two randomly selected individuals from the population

with a third randomly chosen individual. The vector difference determines the

search direction and a weighting factor decides the step size in that particular

search direction. The DE methodology is briefly outlined as follows:

1. Random initialisation: The initial population consists of individuals that are

chosen randomly over the parameter space. The size of the population is kept

constant at Np during all iterations of the DE algorithm. Each member of the

population can be represented as xi = [x1i x2i . . . xdi], where i = 1, . . . , Np

and d the total number of parameters.

2. Evaluation of Fitness Function: Cost function is evaluated for each member

of the initial population. Minimum value of the cost function is desired.

3. Mutation: In this step, three uncertain parameter vectors are chosen ran-

domly from the current population to generate new candidate members. The

difference between the two vectors from the current population is scaled and

added another randomly chosen third vector.

x̄G+1
n = xk

G + FmDij, Dij = xi
G − xk

G (2.5)

where Fm is the mutation factor that can be set between [0 1], G represents

the iteration number.

4. Crossover: In this step, a new candidate individual xn
G+1 is reproduced from

the mutant vector x̄G+1
n and a parent individual xn

G. A random number is

generated between [0 1] and compared with crossover factor ρc ∈ [0 1]. If
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the random number is greater than the cross over factor then the parent is

selected for the next iteration or else mutant vector is selected.

5. Evaluation and Selection: The cost function value for the new candidate

xn
G+1 is evaluated. If the new candidate xn

G+1 has better cost function

value than the parent xn
G, then xn

G+1 is selected to be the new member

of the population for the next iteration. Otherwise xn
G is selected and

subsequently identified as xn
G+1.

6. Termination criterion: In the present study, a fixed termination criterion is

utilised such that the total number of function evaluations does not exceed

1000.

For more details on the algorithm, refer [51, 69]. There are variants DE available

based on the various operators that are employed. The one preferred in general

and the one which is employed in the present studies is referred as DE/rand/1/bin.

DE has been applied to problems in different fields of science, with promising

results. For example in [70], the DE method has been applied in the field of

electromagnetics. In [71], the DE method has been applied and compared with

other local and global optimisation schemes in an aerodynamic shape optimisation

problem for an aerofoil.

2.2.4 Hybrid evolutionary optimisation

With the use of local optimisation alone the chances of getting locked into a lo-

cal optimum are high, particularly since there is little information available with

which to choose a good initial starting point. If the initial guess is close to the true
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worst case, however, local optimisation methods can converge to the global opti-

mum extremely quickly. Global optimisation methods, on the other hand, have a

high probability of converging to the global solution, if allowed to run for a long

enough time with a sufficient initial population and reasonably correct probabil-

ities. Their rate of convergence can be very slow and moreover, there is still no

guarantee of convergence to the true global solution. In order to try to get the

best from both schemes, several researchers have proposed combining the two ap-

proaches, [72, 73]. In such hybrid schemes there is the possibility of incorporating

domain knowledge, which gives them an advantage over a pure blind search based

on evolutionary principles such as GAs. Most of these hybrid schemes apply a

technique of switching from the global scheme to the local scheme after the first

optimisation algorithm finishes its search or optimisation. In [74], some guidelines

are provided on designing more sophisticated hybrid GAs, along with experimental

results and supporting mathematical analysis. In a similar way, the conventional

DE methodology was augmented by combining it with a downhill simplex local

optimisation scheme in [75]. At each iteration the local optimisation was applied

to the best individual in a current random set. This hybrid scheme was applied

to an aerofoil shape optimisation problem and was found to significantly improve

the convergence properties of the method. There are many local optimisation

schemes available and there are also different ways of hybridising the algorithms.

However, the common aim of these schemes is to provide faster convergence to the

true global solution. Refer [52] for further details on hybrid algorithms and its

implementation in WCAT.

In sequel, the optimisation based V&V is carried out for three distinct scenarios

which have not been considered in previous studies.
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2.3 BIOMASS: A flexible satellite model

A flexible satellite benchmark model was provided by Astrium UK as part of

the project “Modern Attitude Control for EO Satellites with Large Flexible El-

ements” an European Space Agency (ESA) Technical Research Project (TRP).

This benchmark is based on a realistic satellite model that describes the dynamics

of the model used in BIOMASS mission. Large number of uncertain parame-

ters, emanating from rigid and flexible modes of the satellite are considered. For

performing V&V analysis, the performance criteria considered is based on the

frequency domain specifications

BIOMASS mission aims to collect scientific data relating to the global forest

biomass distribution, annual changes thereof and their interaction with the car-

bon cycle, [76, 77]. It is a satellite radar mission operating at P-Band which is

considered as a candidate for ESA 7th Earth Explorer mission. Ariane space Vega

launcher will be used to place the spacecraft into a sun-synchronous orbit while

flying at an attitude of 600km. In order to achieve its objectives, Synthetic Aper-

ture Radar (SAR) system with reflector antenna concept is positioned towards the

dark side of the orbit [77]. The key point is that large size and flexibility of the

antenna influences the design of Attitude and Orbital Control System (AOCS).

Particularly, disturbance torques generated by the atmospheric drag and gravity

gradient in low Earth orbit could also act on the large antenna [77]. Furthermore,

the excitation of flexible modes along with the coupling of the flexible structures

such as antenna and solar array degrade the mission performance considerably.

Hence, there is a need to assess the robustness of the AOCS controller, and deter-

mine the worst case perturbations for which the AOCS exhibits poor performance,
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or complete loss of control.

The BIOMASS simulator consists of a mechanical model (Gmec), Reaction

Wheel (RW) model ( GRW ), a delay ( Gdelay) and a controller (AOCS) in feed-

back. The mechanical model (Gmec) consists of a rigid platform on which the

SAR payload along with the solar array is mounted. Propellant slosh effects are

taken into account and the baseline propulsion system consists of a conventional

monopropellant system with two propellant tanks (58 litre volume), operated in

blow-down configuration [77]. The reaction wheel model GRW corresponds to the

dynamics of the Reaction Wheel (RW) system, and a standard 1st order lag filter

of the form,

GRW :=
Tact(s)

Tdem(s)
=

1

(1 + τs)
(2.6)

where Tdem(s) is the demanded torque signal sent to the RW subsystem from the

controller, Tact(s) is the actual actuated torque (applied to the plant), and τ is

the delay in seconds, captures the required dynamics. Gdelay corresponds to the

delay in-the-loop modelled as a 4th order Pade Approximation [77]. Controller

block corresponding to the AOCS system is an H∞ controller developed as in[77].

The H∞ controller is designed to reject the disturbance torques generated by the

atmospheric drag, solar radiation pressure, magnetic torque and gravity-gradient;

and provide robust stability and performance with respect to the specifications in

Table 2.1, in the presence of the uncertainties which are listed in sequel.
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2.3.1 Uncertain parameters

The robustness of the controller has to be assessed in the presence of the uncertain

parameters emanating from the four elements of the satellite such as central rigid

platform, antenna, solar array and slosh dynamics of the satellite model. In total,

132 uncertain parameters are considered, which are, masses of all the four elements

(4 in total), moments of inertia of all the four elements (6 per element, 24 in total),

modal participations of those elements with flexible modes, i.e., antenna, solar

array and slosh (3 per element, 12 in total), cantilever frequency of all flexible

modes (15 for antenna, 12 for solar array and 6 for slosh, 33 in total), cantilever

damping of all flexible modes (15 for antenna, 12 for solar array and 6 for slosh, 33

in total), x, y and z axis components of Center of Mass (CoM) vector for all the

elements (3 per element, 12), translation and rotation of the interface of all the

appendages with the central rigid platform (3 per element,12 in total) and time

constants for Gdelay and GRW , (2 in total). The uncertainties are all normalised

to vary between ±1 and scaling is addressed internally in the simulation model.

2.3.2 Specifications

The H∞ controller is designed in order to achieve two main specifications listed in

Table 2.1. The satisfaction of these specifications indicates a good robust perfor-

mance of the design. Robust performance is achieved when the system satisfies the

performance specifications for all the perturbed plants about the nominal model

up to the worst-case model uncertainty [78].
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Table 2.1: Functional performance requirements: BIOMASS

Specification Description Requirement
s1: Maximum singular value of the sen-
sitivity function S(jω)

< 6dB

s2: Maximum singular value of comple-
mentary sensitivity function T (jω)

< 6dB

2.3.3 Worst case analysis

In previous studies reported in [43, 44, 51, 79], specifications on the time domain

performance have been considered. Contrary to this, frequency domain specifi-

cations similar to that considered in [52], but with significantly large number of

uncertain parameters, have been considered. In order to investigate whether there

exist an uncertain parameter combination within its bounds that can cause a vio-

lation of an requirement, the specifications are considered as cost functions. The

problem is formulated as a maximisation problem as follows.

JS = max
ω
σ̄(S(jω))

JT = max
ω
σ̄(T (jω)) (2.7)

The worst case perturbation is determined using different optimisation algorithms

such as SQP, GA, DE, HGA and HDE. The results are compared in terms of ac-

curacy and complexity. To have a fare comparison, a fixed computational budget,

i.e. the maximum number of function evaluations allowed for each optimisation

techniques is set to 1000. Different configuration parameters for the optimisation

algorithms have been chosen according to the suggestions in the published works

[44, 52, 54]. For DE, population size is set to 25, the crossover factor, which is

used to generate new members of the population which are utilised for next gen-

53



eration, is set to 0.8. The mutation factor which is used to generate a mutant

vector during each generation of DE is set to 0.8. For GA, population size is set

to 10. Migration fraction, i.e. the fraction of those individuals scoring the best

value that will migrate, is set to 0.2. Crossover fraction, i.e. the fraction of genes

swapped between individuals is set to 0.8. For hybrid GA, local optimisation is

performed at the end of GA, where as for DE, local optimisation is performed

when there is no improvement in cost function values for two successive iterations.

The maximum iterations performed by the local optimisation for both hybrid GA

and DE is set to 30.

Worst case analysis results from various optimisation algorithms along with

Monte Carlo results are tabulated in Table 2.2. Table 2.2 gives the maximum

singular values of sensitivity and complementary sensitivity functions and the to-

tal number of simulations performed by each algorithm to generate worst case

result. With the fixed computational budget termination criterion, it can be seen

from the Table 2.2 that HDE algorithm is capable of violating sensitivity function

(max
ω
σ̄(S(jω)) = 6.1145 dB). A Monte Carlo simulation of 1000 campaigns is per-

formed for comparison. Even though Monte Carlo results for sensitivity function

(max
ω
σ̄(S(jω)) = 4.9402 dB) does not violate the performance criteria, it provides

better results as compared to SQP, GA and Hybrid Genetic Algorithm (HGA).

Performance of SQP depends on the initial condition which was chosen randomly.

An intelligent choice of initial condition based on designer expertise can improve

the performance of SQP algorithm. An increase in population/generation size of

GA/HGA could provide better results but this has not been investigated further

since the objective of the consortium was to identify optimisation algorithms which

could potentially give very good solutions with a fixed computational budget, fixed
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Figure 2.3: Optimisation technique comparison

at 1000. For co-sensitivity function T , no performance violation is recorded for

any optimisation techniques. Even so, HDE provides better result when compared

to other optimisation techniques.

Figure 2.3, shows the worst case trend based on the performance criteria on S

and T functions for algorithms. It is observed that HDE and DE perform better

than other techniques when the optimisation parameters are set to the default val-

ues and maximum function evaluations are restricted to 1000 simulations. Identical
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Figure 2.4: Worst Case and Nominal plot comparison for S(jω):HDE Algorithm
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Figure 2.5: Worst Case and Nominal plot comparison for T (jω): HDE Algorithm
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Table 2.2: Worst case values of S & T

Criteria MC SQP GA DE HGA HDE
max
ω
σ̄(S(jω)) < 6 4.9402 3.8982 3.9367 5.1637 3.9334 6.1145

max
ω
σ̄(T (jω)) < 6 5.2716 4.7397 5.5134 5.4110 5.0277 5.6677

performance of HDE and DE, when compared to other optimisation algorithms,

have been reported previously in [43, 44, 52, 55] for lower order problems. The

worst case and nominal plots for sensitivity and co-sensitivity functions as gen-

erated by HDE algorithm is shown in Figure 2.4-2.5. Here the concept of using

HDE and DE has been validated and demonstrated to be effective even in the case

of flexible systems with large number of uncertainties. Furthermore, the solutions

are obtained with a reasonable computational effort, and infact significantly better

than many other existing simulation based techniques including Monte Carlo and

several other optimisation techniques. In addition, the robustness of optimisation

parameter setting is also demonstrated.

2.4 Launch vehicle model

To study the impact of uncertainties, roll coupling and external wind perturbation

on frequency and time domain specifications of a launch vehicle in its TVC phase,

Astrium Space Transportation Ltd., France provided flexible launch vehicle models

as a part of the project SAFE-V an ESA TRP1. In this study, two different models

of the launch mission are considered. Each model focus on separate aspects of the

launch mission. Each model and the specific analysis carried out with that model

are explained in sequel.

1“Robust Flight Control System Design Verification and Validation Framework” Contract
No. 4000102288 with Astrium Space Transportation, ESA project
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2.4.1 Roll coupling benchmark
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Figure 2.6: 3-axis launcher control loop

During the atmospheric flight phase of the launcher, the perturbations on the

solid rocket motor, aerodynamics and the Centre of Gravity (CoG) offset pa-

rameters may induce an undesired roll torque. Main Roll Attitude Control Sys-

tem (RACS) can be used to control the roll rate to zero all the time. However,

utilising RACS all the time would lead to the propellant consumption, and as a

consequence will affect the overall performance of the mission. Hence, often the

solution is to allow a limited roll rate to be built up, and activate the RACS only

when the roll rate exceeds an acceptable pre-defined threshold. The yaw and pitch

axis are coupled in the presence of roll rate. When the roll rate of the vehicle ex-

ceeds the acceptable limits, the coupling effect could lead to excessive rotations in

the pitch, roll and yaw axes. The benchmark, in this section deals with the impact

of roll coupling on the launcher control during the ascent phase of TVC launcher

and in the presence of several uncertainties. The aim is to analyse the stability of

the 3 axis launcher model without roll attitude control during the ascent phase,
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so that the extreme behaviour emanating due to the roll coupling effect can be

studied.

Figure 2.6, presents the general structure of the 3 axis launcher control loop of

the benchmark. There are yaw and pitch auto-pilots, the controller does not in-

clude any gyroscopic compensation. The state space representation of the launcher

model under consideration is given below.

ẋ = Ax+Bu (2.8)

where x =

[
ψdiv q Ż θdiv r Ẏ

]T
, u =

[
βRψ βRθ

]T
. The plant and input

distribution matrices are respectively:

A =



0 1 0 p 0 0

A6ψ 0 A6ψ/V 0 p(Iyy − Ixx)/Izz 0

−aψ − γ 0 −aψ/V 0 0 p

−p 0 0 0 1 0

0 −p(Izz − Ixx)/Iyy 0 A6θ 0 A6θ/V

0 0 −p −aθ − γ 0 −aθ/V


B =

 0 K1ψ −γT 0 0 0

0 0 0 0 K1θ −γT

T (2.9)

where ψdiv is the launcher yaw angle deviation w.r.t the commanded yaw angle

(in radians), θdiv is the launcher pitch angle deviation w.r.t the commanded pitch

angle (in radians), p, q, r are the angular rate (rad/s) in the roll, pitch and yaw axis

respectively ,Y and Z are the transverse accelerations (m/s2) along y and z axis.

The input signals βRψ and βRθ are the realised actuator deflections (in radians)

59



along yaw and pitch axis. V is the absolute velocity (m/s) of the launcher, and

Ixx, Iyy and Izz are the principal moments of inertia in x, y, z axis respectively.

A6ψ =
QSrefCNαψLf

Iyy
, A6θ =

QSrefCNαθLf
Izz

, K1ψ = PC ltu
Iyy

, K1θ = PC ltu
Izz

,

aψ = 1
2
ρV 2Sref

CNαψ
mass

, aθ = 1
2
ρV 2Sref

CNαθ
mass

, γ = thrust−drag
mass

, γT = thrust
mass

where, Q, Sref , CNαψ/θ, LF , PC , ltu and Vr are dynamic pressure, reference area,

normal aerodynamic force coefficients derivative w.r.t angle of attack expressed in

body frame, distance between CoG and Centre of Pressure (on longitudinal axis),

commanded thrust level, position of nozzle rotation point w.r.t launcher CoG,

absolute velocity and relative velocity respectively.

In this analysis, the impact of the roll coupling on the MIMO stability margins

is studied. An H∞ controller is designed and provided in the yaw and pitch axis

alone, and the roll is not controlled. The controller is a gain scheduled controller

where the scheduling variable is time. Previously, the MIMO stability margins

have been evaluated for multi loop flight control systems in [14], and for the VEGA

launcher model in [80]. In [14], exact MIMO stability margins are evaluated by

inserting the negative value of the inverse of the open loop transfer function at the

input channels of the model. This would destabilise the closed loop system, and

the locus of negative value of inverse of the open loop transfer function is utilised to

evaluate the MIMO stability margins. Whereas, in [80], MIMO stability margins

are evaluated by perturbing all the input channels at the same time. The value of

the perturbation which just destabilises the closed loop system gives the MIMO

stability margins. European aerospace industry have been using a tool that was

developed in MATLAB to evaluate the MIMO margins based on [14]. However,
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the use of this tool in the optimisation based V&V framework took considerable

time, in the order of minutes to evaluate single function evaluation. Later, a tool

based on [80] was developed to conduct the analysis in this study and explained

in sequel.

+

-

Ke
jτ G(s) xxref u

Figure 2.7: A complex perturbation introduced at the plant input u

The underlying concept for evaluating the MIMO stability margins is an ex-

tension of the Single Input Single Output (SISO) stability margins. In the case

of a SISO system, a complex perturbation Kejτ is introduced at the input of the

plant, as shown in Figure 2.7. Let K∗ejτ
∗

be the value of the complex perturba-

tion associated with the first occurrence of destabilisation of the closed loop SISO

system. Then the amplitude K∗ and phase τ ∗ of this complex perturbation is used

to evaluate the gain and phase margin respectively as.

Gain Margin Gm = −20 log10(K∗)

Phase Margin Pm =
τ ∗180

π

In [80], the idea is extended to MIMO system. For a MIMO system, a square

diagonal complex perturbation matrix Diag[Kie
jτi ] is introduced at the MIMO

plant inputs, were the ith diagonal element corresponds to the complex perturba-
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Figure 2.8: Schematic representation for evaluation of MIMO Margins

tion applied to the ith input of the plant. The schematic representation is shown

in Figure 2.8. Though the approach is conservative, the values of Ki and τi are

varied separately to evaluate the MIMO gain and phase margins respectively.

LF and HF gain margins are evaluated in this study. Figure 2.9 shows the

evaluation of LF,HF and phase margins for a SISO system. LF margin is defined

as the magnitude of the open loop transfer function at the crossing of the vertical

axis at −180◦ above 0dB. HF margin is defined as the magnitude of the open loop

transfer function at the crossing of the vertical axis at −180◦ below 0dB. Phase

margin is the value of the phase of the transfer function at the crossing of 0dB

axis.

For a MIMO system, the LF gain margin is computed when the amplitude Ki

has values less than 1 (Ki < 1), since this corresponds to the magnitude of the

open loop transfer function at the crossing of the of the vertical axis at −180◦

above 0dB in Figure 2.9. Similarly, for HF gain margin the amplitude Ki has

values greater than 1, Ki > 1. Let K∗1e
−jτ∗1 and K∗2e

−jτ∗2 be the value of complex
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Figure 2.9: Nichols plot of a SISO system showing LF, HF and phase margins

perturbations introduced in both input channels simultaneously. These values are

associated with the first occurrence of the destabilisation of the closed loop MIMO

system. Then the gain and phase margins can be determined for each input using

Gain margin in yaw axis Gmψ = −20 log10(K∗1)

Gain margin in pitch axis Gmθ = −20 log10(K∗2)

Phase margin in yaw axis Pmψ =
τ ∗1 180

π

Phase margin in pitch axis Pmθ =
τ ∗2 180

π

Then the MIMO gain and phase margins can be evaluated as,

Gm = min(Gmψ, Gmθ)

Pm = min(Pmψ, Pmθ)
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In this study, the complex perturbations are varied simultaneously and equally in

all input channels i.e. K1 = K2 and τ1 = τ2. In the current model the pitch and

yaw channels are coupled, through the angular rate in the roll axis.

2.4.2 Uncertainties

In this benchmark, the uncertainties emanating from the rigid mode alone are

considered. These uncertainties are listed in Table 2.3 and vary uniformly between

[−1, 1].

Table 2.3: Variability of rigid mode uncertain parameters

Name Description Nominal Value Variation
MIxx Inertia 0 [−1, 1]
MIyy Inertia 0 [−1, 1]
MIzz Inertia 0 [−1, 1]
MP Thrust 0 [−1, 1]
MCzθ Normal Aerodynamic coefficient along pitch axis 0 [−1, 1]
MCzψ Normal Aerodynamic coefficient along yaw axis 0 [−1, 1]
MXfθ Centre of pressure along pitch axis 0 [−1, 1]
MXfψ Centre of pressure along pitch axis 0 [−1, 1]
MQ Dynamic pressure 0 [−1, 1]
MXg Centre of gravity 0 [−1, 1]
MM Mass 0 [−1, 1]
MCx Axial Aerodynamic coefficient 0 [−1, 1]

2.4.3 Specifications

In order to validate the controller in the presence of uncertainties and increasing

roll rate, the performance specifications are defined for V&V analysis in Table 2.4.

2.4.4 Worst case analysis

The specifications given in Table 2.4 are used to formulate the following minimi-

sation problem as follows:
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Table 2.4: MIMO stability specifications

Specification Description Stability Margins
s1: Minimum value of LF open loop gain margin = 0 dB
s2: Minimum value of HF open loop gain margin < 2 dB
s3: Minimum value of phase margin < 20◦

min Ji (2.10)

Subject to δi,min ≤ δ ≤ δi,max

where Ji becomes

J1 = minGmLF

J2 = minGmHF (2.11)

J3 = minPm

where GmLF and GmHF corresponds to the LF and HF gain margins respectively.

The worst case perturbation vector corresponding to the uncertainties described

in Table 2.3 has been identified for each of the cost functions defined in (2.11).

Note that the complex perturbation Kie
−jτi are not treated as uncertainties, and

the values of Ki and τi are varied separately inside each cost function until the

first occurrence of instability. A promising candidate optimisation methodology as

claimed in references [44, 52, 53], hybrid differential evolution (HDE) with default

optimisation setting is considered here with a fixed termination criteria of 1000

simulations, population size of 30, mutation scale factor of 0.8 and crossover factor

of 0.8. The local optimisation method used in the hybridisation strategy of HDE

is SQP. The maximum number of local iterations is set to 30. These optimisation

tuning parameters provided promising results, similar to the other studies reported

in [44, 52, 54].
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As discussed in [80], the minimum and maximum value of the roll rate occurs

at 20 and 58 seconds respectively of the launcher flight time. Hence these time

instances are chosen for performing the worst case analysis. At these time instance

the effect of increasing roll rate on MIMO stability margins are studied. Five

different roll rates, 10, 20, 30, 40 and 50 deg/sec are considered for the analysis.

The worst case stability margins are evaluated and are reported in the Table 2.5.
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Figure 2.10: Degradation of MIMO margins

When increasing the roll rate for a fixed nominal configuration, it can be seen

from Figure 2.10 that the stability margins degrade. As the roll rate increases, the

oscillations are induced along yaw and pitch axis, and these oscillations eventually

lead to instability of the MIMO system. Unstable cases are found at the time

instant of 20 seconds, for the roll rates 40 and 50 deg/s. In particularly, the
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performance specification on the open loop LF gain margin and the phase margin

are violated, whereas the specifications on the open loop HF gain margin are within

acceptable limits. It is observed that the LF margin and phase margin worst case

values are larger at 58 seconds, where as the trend is reversed for HF margin

and occur at 20 seconds. A high roll rate during initial part of the flight phase

reduces the LF and phase margin considerably, whereas a high roll rate during the

latter part of the flight reduces HF gain margin. From the results, we can draw a

conclusion that a high roll rate occurring at the during the initial part of the flight

time can degrade the LF and phase margins to the point of instability, wheres

the roll rates occurring at the later part of the flight time are not that severe.

It is also observed that the worst case parameter combinations corresponding to

performance criteria violations of LF and phase margins at 20 seconds are not at

their bounds.
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Table 2.5: Worst case results for roll coupling benchmark

Cost Function Time
(sec)

Roll Rates (deg/sec)

10 20 30 40 50
Worst case values

LF Margin = 0dB
20 2.49 1.51 0.72 0 0
58 2.97 2.85 2.73 1.62 1.49

HF Margin < 2dB
20 4.29 3.9 3.49 3.1 2.6
58 3.46 3.17 2.86 2.54 2.14

Phase Margin < 20deg
20 24.06 21.77 18.91 5.72 0.01
58 18.33 16.61 14.89 13.17 10.88
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2.4.5 Thrust Vector Control (TVC) benchmark model
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Figure 2.11: Block description of the flexible launcher vehicle

This benchmark model consists of a single axis, parameter varying model [81],

derived by linearisation of complete non-linear dynamic equations of motion of the

flexible launcher about different equilibrium flight conditions, is considered as the

benchmark for this study. A H∞ controller is provided for the pitch control of the

launcher during the atmospheric flight phase from take-off to tail-off [81]. Rigid

and bending mode dynamics together with an actuator, bending mode filter and

a H∞ controller are modelled, and implemented in MATLAB simulink . The rigid

body dynamics during the atmospheric flight phase is described by the following

three state representation:


θ̈

θ̇

Z̈

 =


0 A6(t) A6(t)/V (t)

1 0 0

0 A1(t) −A6(t)α3(t)



θ̇

θ

Ż

+


K1(t) −A6(t)/V (t)

0 0

K2(t) A6(t)α3(t)


 β

W

 (2.12)

where, Col(θ̇, θ, Ż) are states of the rigid mode dynamics of the launcher and

69



corresponds to pitch rate (deg/sec), pitch angle (deg) and drift velocity (m/sec)

in the body frame respectively. βR and W represents the realised control input

deflections around the nominal value to follow the reference trajectory and the

wind perturbation respectively.

Figure 2.12: Single axis flexible launcher model([1])

In (2.12) aerodynamic efficiency A6, thrusters efficiency K1 and K2 and α3 are

time varying parameters along the trajectory and are defined as follows [81]:

A1 = −PC + PS
m

+
QSref
m

(CA − CNα)

A6 =
QSrefCNαLF

I

K1 =
PC ltu
I

, K2 = −PC
m
, α3 =

I

mV
LF
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Table 2.6: TVC launcher notations

Notations
θ Launcher pitch angle
α Angle of attack
β Deflection angle
ξi ith bending mode damping
ωi ith bending mode pulsation
CA Axial aerodynamic force coefficient
CNα Normal aerodynamic force coefficient
D Drag in body axis
F Aerodynamic focus or Centre of Pressure
G Launcher Centre of Gravity
htui ith bending mode deformation at nozzle rotation point
hptui ith bending mode slide of deformation at nozzle rotation point

I Total inertia
IT Nozzle pitch inertia
L Lift in body axis
LF Distance between CoG and Centre of Pressure
Ltu Position of nozzle CoG respective to nozzle rotation point
ltu Position of nozzle rotation point w.r.t. centre of gravity
Mtu Nozzle mass
m Launcher total mass
PC Commanded thurst
PS thrust level along longitudinal axis
Q Dynamic pressure
Sref Reference area
T Nozzle
V Absolute velocity
VR Relative velocity
W Wind perturbations

A second order model with a small damping value represents the flexible bend-

ing mode dynamics associated with the flexible launcher and is modelled as an

additive perturbation on the rigid body model. The flexible mode dynamics are

represented as follows [81]
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q̈i + 2ξiωiq̇i + ω2
i qi = −PChtuiβC + (IThptui −MtuLtu(htui − Ltuhptui))β̈C (2.13)

where βC represents the commanded deflections around the nominal value to follow

the reference trajectory. A total of five bending modes are considered in this

benchmark. Actuator model for the pitch control is characterised by a second

order system having commanded deflection as a single input, and the realised

deflection and its two derivatives as the three outputs.

β̈R + 2ξβωββ̇R + ω2
ββR = ω2

ββC (2.14)

where, ξβ and ωβ represents damping of the actuator model and actuator model

pulsation. The final effective deflection angle β corresponds to sum of the realised

control input deflection and the misalignment deflection, and is given as:

β = βR + βFZ (2.15)

Pitch angle is derived from the attitude measurement by Inertial Measurement

Unit (IMU) and the pitch rate from the angular rate measurement by the gyrom-

eter. Noises are added to these measurements. Angular noise and angular rate

noises are treated as gaussian with 0.02◦ and 0.15◦/s standard deviation respec-

tively.

θm = θ −
∑
i

hpIMUiqi + noises

θ̇m = θ̇ −
∑
i

hpGY iq̇i + noises (2.16)

The linear time varying model of the flexible launcher, which combines the rigid
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dynamics given in (2.12) and the flexible mode dynamics given in (2.13) models

together with actuator (2.14)-(2.15) and measurement models (2.16), is described

as:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.17)

y(t) = C(t)x(t) (2.18)

where x(t) = Col(θ̇, θ, Ż, β̇R, βR, q̇i, qi) represents the states, u(t) = Col(βC ,W, βFZ)

represents the control inputs, y = Col(θm, θ̇m) represents the pitch angle and pitch

rate measurements respectively. The matrices A,B and C are given as follows

A =



0 A6(t) A6(t)/V (t) 0 K1(t) 0 0

1 0 0 0 0 0 0

0 A1(t) −A6(t)α3(t) 0 K2(t) 0 0

0 0 0 −2ξβωβ −ω2
β 0 0

0 0 0 1 0 0 0

0 0 0 −2ξβωβMbi −ω2
βMbi − PChtui −2ξiωi −ω2

i

0 0 0 0 0 1 0



B =


0 0 0 ω2

β 0 ω2
βMbi 0

−A6(t)/V (t) 0 A6(t)α3(t) 0 0 0 0

K1(t) 0 K2(t) 0 0 0 0


T

C =

0 1 0 0 0 0 −hpIMUi

1 0 0 0 0 −hpGY i 0



where Mbi = IThptui −MtuLtu(htui − Ltuhptui).

The controller used with this benchmark model, consists of a H∞ rigid mode
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controller and a bending mode filter, which is kept in series with the controller, for

robust attenuation of the bending modes. The measurements of angular position

and angular rate are the inputs of the controller and the filtered commanded

deflection is the output. Controller and bending mode filter is defined for several

time instants of the flight and linearly interpolated between these instants. Further

details on the model can be found in [81, 82].

2.4.6 Disturbances
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Figure 2.13: Wind profile

External disturbance corresponds to the wind gradient and the wind gust.

As the equations of the launcher model are derived at the centre of gravity, the

wind disturbance is assumed to be applied at the point itself. Applying wind

disturbance at centre of gravity is a common practice in industry and used herein

because accounting for wind disturbance away from centre of gravity makes little

difference, [81]. In this study, the wind perturbation is modelled by a synthetic

wind from a wind envelope, wind shear (wind speed change divided by the altitude
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interval) and wind gust according to NASA specification in [83]. Wind envelop and

wind shear both come from wind measurements collected at the area of interest

for a long period and wind gust is an arbitrary characterisation of the small scale

motion. The NASA database given in [83] is followed. The synthetic wind is

determined by an altitude which corresponds to the maximum wind gradient. It

is also the altitude at which the wind takes the value of the envelope. The altitude

is computed using the trajectory data and the time instant of the flight. We have

considered a deterministic wind profile occurring at seven flight instances, 30, 35,

40, 45, 50, 60 and 70 seconds (refer Figure 2.13).

2.4.7 Uncertainties

Twenty eight uncertain parameters are considered in this study, which constitutes

of eight rigid mode uncertain parameters and five bending mode uncertain param-

eters with four different bending modes. The list of uncertain parameters is given

in Table 2.7. Following type of bounds were defined by ASTRIUM and CNES for

launcher application as presented in [84]. The uncertainty domain considered in

this study consists of two aspects: (i) a possible nominal domain which is not well

known prior to the flight but can be known and reduced after the qualifications of

the flights (reducible uncertainty) and (ii) a dispersion domain in which the pa-

rameter value can change from one mission to another. In the framework of worst

case analysis, uncertain parameters with uniform distribution are utilised by opti-

misation methods. These bounds should be able to incorporate both uncertainties

and dispersions associated with the parameters.

For each uncertain parameter, δ, two sources of variability are considered
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such as: i) uncertainties which are uniformly distributed (U(−δu,+δu)) with sup-

port set δ ∈ [−δu,+δu] ⊂ ∆ and ii) dispersions which have a normal distri-

bution (N(µ, δ2
disp)). The possible domain is considered as a bias on the un-

Statistical approach

-δu δu

-δu δu-δwc δwc

Worst case approach

Bias: Uniform Law

Dispersion: Gaussian Law

Figure 2.14: Uncertainties and dispersions

certain parameter value, and modelled by taking the worst case in the domain

w.r.t the requested objective, selecting randomly with a uniform law since ev-

ery value δ ∈ [−δu,+δu] ⊂ ∆ is equiprobable. Hence, the dispersion domain

can also be treated as worst case. The two sources of variability for rigid uncer-

tain parameters are combined to form worst case bounds and is shown in Figure

2.14. The worst case bounds for the rigid parameter uncertainties are defined by

δwc = ±(δu + Nδdisp). Here, N = 2.8 corresponds to the number of dispersion

variance (δdisp) of the quantity of interest. The term 2.8δdisp provides 99.7% prob-

ability and 95% confidence levels for the objectives on aerodynamic load (Qα) and
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attitude (θ). A general law to be used with the optimisation algorithms is to sam-

ple uniformly in [−δwc,+δwc], which is certainly outside the [−δu,+δu]. Obviously,

uncertain parameters close to the worst case bounds ±δwc will have less probability

of occurrence and should be rejected. In order to reject such uncertain parameter

combinations, probabilistic constraints are defined when optimisation methods are

employed for V&V analysis. Such constraints are defined and explained in section

2.4.9.

Table 2.7: Variability of rigid and bending mode uncertain parameters

R
ig

id

Name Description Uncertainty Dispersion
MI Inertia 10% 3%
MP Thrust 3% 1%
MCz Aerodynamic coefficient 20% 10%
MXf Centre of pressure 1.79m 0.2m
MQ Dynamic pressure 20% 4%
MXg Centre of gravity 0.3m 0.05m
MM Mass 5% −−
∆β Deflection Misalignment 1◦ −−

B
en

d
in

g
m

o
d

e

Mpuls 1 Pulsation of 1st bending mode 20% −−
Mpuls 2 Pulsation of 2nd bending mode 20% −−
Mpuls 3 Pulsation of 3rd bending mode 20% −−
Mpuls 4 Pulsation of 4th bending mode 20% −−
Mhtu 1 Deformation at nozzle of 1st bending mode 30% −−
Mhtu 2 Deformation at nozzle of 2nd bending mode 30% −−
Mhtu 3 Deformation at nozzle of 3rd bending mode 30% −−
Mhtu 4 Deformation at nozzle of 4th bending mode 30% −−
Mhptu 1 Slide deformation at nozzle of 1st bending mode 30% −−
Mhptu 2 Slide deformation at nozzle of 2nd bending mode 30% −−
Mhptu 3 Slide deformation at nozzle of 3rd bending mode 30% −−
Mhptu 4 Slide deformation at nozzle of 4th bending mode 30% −−
MhpIMU 1 Slide deformation at IMU of 1st bending mode 30% −−
MhpIMU 2 Slide deformation at IMU of 2nd bending mode 30% −−
MhpIMU 3 Slide deformation at IMU of 3rd bending mode 30% −−
MhpIMU 4 Slide deformation at IMU of 4th bending mode 30% −−
MhpGY 1 Slide deformation at Gyro of 1st bending mode 30% −−
MhpGY 2 Slide deformation at Gyro of 2nd bending mode 30% −−
MhpGY 3 Slide deformation at Gyro of 3rd bending mode 30% −−
MhpGY 4 Slide deformation at Gyro of 4th bending mode 30% −−

2.4.8 Specifications

The controller structure (CH∞), consisting of H∞ controller and bending mode

filter, must satisfy various functional performance requirements during the atmo-
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spheric phase control. The main functional requirements are the compensation

for external wind and wind gust perturbations and compensation for the inter-

nal perturbations which includes the thrust misalignment, the static error of the

servo-actuators and thrust asymmetry. The compensation scheme must maintain

minimum aerodynamic loads (Qα, which is angle of attack times the dynamic

pressure(kPadeg)), for structural sizing reasons. The main temporal performance

specifications that are to be validated in the presence of multiple uncertain pa-

rameter perturbations and dispersions, are listed in the Table 2.8.

Table 2.8: Functional performance requirements

Specification Description Requirement Cost function
s1: Maximum absolute value of aero-
dynamic angle of attack (Qα(t)) com-
patible with general load specification
simulated over finite time period

< 500kPadeg max
t∈[t0 tf ]

|Qα(t)|

s2 : Maximum absolute value of atti-
tude over finite time period

≤ 2◦ max
t∈[t0 tf ]

|θ(t)|

s3: Maximum absolute final value of at-
titude (θ(tf ))

≤ 2◦ max |θ(tf )|

s4: Maximum absolute final value of at-
titude rate (θ̇(tf ))

≤ 0.8◦/s max |θ̇(tf )|

s5: Maximum absolute value of deflec-
tion angle (β(t)) simulated over a finite
time period

< 6◦ max
t∈[t0 tf ]

|β(t)|

s6: Cumulated deflection over a finite
time period

< 200◦ max
tf∑
t0

|βC |

2.4.9 Worst case analysis

As discussed in Section 2.4.7, dispersions are associated with the rigid parameters,

there is a possibility that these rigid parameters may be sampled outside the
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uncertainty domain. If the rigid parameters are sampled outside the uncertainty

domain then we may find cases of instability, or even worst cases which are worse

than the ones found inside the uncertainty domain. As the probability of the

rigid parameters occurring in this region is very low, we introduce a constrained

optimisation which evaluates the combined probability of rigid parameters and

checks if its within 99.7%. The combined probability of 99.7% corresponds to

95% confidence levels on aerodynamic load and attitude objectives. The rigid

parameters are rejected whenever the requested 99.7% probability is not met.

Combined probability is computed as follows1:

Pc(δrigid) =

dim(δ)∏
i=1

P (δi) (2.19)

and δ = Col(δ1, . . . , δk), for TVC benchmark model, dim(δrigid) = k = 8. This

is best explained with an example with two uncertain parameters, say δ1 and

δ2, drawn uniformly over the worst case search domain [−δwc, δwc] as shown in

Figure 2.14 and discussed in subsection 2.4.7. If δi is chosen within the interval

[−δiu, δiu], where δiu represents the bound of the uniform distribution, then the

associated probability is P (δi) = 1. Thus the parameter δi is inside the original

uncertainty domain and no excursions due to dispersions. Whereas, if δi is inside

[δiu, δ
i + 2.8δidisp] (similar analysis could be done for[−δiu,−(δi + 2.8δidisp)]) then the

associated probability is computed with Gaussian law and bilateral distribution.

To explain further, consider three cases:

• If δ1 = δ1
u and δ2 = δ2

u, then Pc(δ) = P (δ1)P (δ2) = 1 since both P (δi) are

1This probability constraint was defined by Astrium Space Transportation Ltd. during the
SAFE-V project.
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equal to one. Such an uncertain parameter can be considered for analysis.

• Assume δ1 = δ1
u and δ2 = δ2

u+2.8δ2
disp. In this case, the cumulative probabil-

ity of the uncertain parameter combination becomes Pc(δ) = P (δ1)P (δ2) =

1(1 − 0.997) = 3 × 10−3. This combination of uncertain parameters can-

not be rejected as its cumulative probability is equal to the required 99.7%

probability.

• Let δ1 = δ1
u + 2.8δ1

disp and δ2 = δ2
u + 2.8δ2

disp. The cumulative probability

associated with this specific uncertain parameter vector becomes Pc(δ) =

P (δ1)P (δ2) = (1−0.997)2 = 9×10−6. Since the cumulative probability of this

uncertain parameter combination is less than 99.7% i.e. 1−0.997 = 3×10−3,

this element must be rejected.

In general, whenever Pc(δ) of an uncertain parameter combination of rigid

parameters is found to be less than 3×10−3, then corresponding uncertain param-

eters are to be rejected. The worst case analysis performed in a constrained search

space. The constrained worst case analysis problem for this study is a constrained

global optimisation problem and formally defined as a follows:

δ∗i := max
δ∈∆

Ji(δ,CH∞ ,W ) (2.20)

sub to Pc(δ) ≥ ε (2.21)

δi,min ≤ δ ≤ δi,max

for all i = 1, . . . , dim(J), where Pc(δ) represents the cumulative probability of

the uncertain parameter vector (emanating due to the presence of dispersions),

and ε fixed at 3 × 10−3. Ji(δ,CH∞ ,W ) represents the ith functional performance
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requirement formulated as a norm based cost function as listed in the last column of

Table 2.8. The cumulative probability associated with the occurrence of uncertain

parameter vector is addressed explicitly.

The objective is to determine the worst case uncertain parameter combinations

associated with different functional performance criteria defined as cost functions

listed in the Table 2.8. The entire parameter space [−δwc, δwc] is considered for this

analysis. The worst case analysis is carried out for different wind perturbations

occurring during the TVC phase at 30, 35, 40, 45, 50, 60 and 70 seconds. Hybrid

Differential Evolution algorithm, with the same optimisation tuning parameters

as used in the flexible launch vehicle model in section 2.4.1, is used to determine

the worst-case perturbations.

The numerical results for six different cost functions at seven different wind

perturbations are given in Table 2.9 - 2.10. In Table 2.9, consider the cost function

representing the performance on aerodynamic load |Qα(t)| and wind occurring at

45seconds. Among the 1000 candidate uncertain parameter vectors in the search

space, the maximum cost function value associated with the worst case is 561.91

and has a mean of 436.11 with a standard deviation of 79.57. Mean and standard

deviation statistics gives us an idea of variability of cost function values in the

search space. A high value of standard deviation indicates that the cost function

values are spread out over a large range in search space whereas a low value

indicates that the cost function values lie too close to the mean. This shows the

exploration property of the optimisation algorithm which is its ability to access

uncertain parameter vectors spread out in the search space. In order to find the

global solution, the optimisation algorithm should be able to explore the search

space as thoroughly as possible. In this case, Standard deviation is high and it
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indicates that the algorithm was able to access uncertain parameter vectors spread

out over the search space.

Table 2.9: Worst case results over the entire parameter range for wind perturba-
tion at 30,35,40, 45, 50, 60 and 70 seconds

Worst case values
30sec 35sec 40sec 45sec 50sec 60sec 70sec

m
ax

t∈
[t

0
t f

]

∣ ∣ Q α(
t)
∣ ∣

HDE

max 432.23 460.61 509.65 561.91 543.23 411.07 189.43
mean 336.68 369.56 406.95 436.11 430.48 324.13 142.48
std 62.53 66.12 75.46 79.57 77.49 56.87 27.8

failures 0 0 37 383 370 0 0

MC

max 424.74 449.14 493.08 549.26 532.14 438.35 184.46
mean 319.58 340.42 376.16 411.67 402.38 305.68 131.23
std 41.6 46.62 50.13 53.76 54.26 49.20 23.3

failures 0 0 0 60 40 0 0

m
ax

t∈
[t

0
t f

]

∣ ∣ θ(t)
∣ ∣

HDE

max 5.85 Unstable Unstable Unstable 6.91 5.43 3.76
mean 3.51 3.41 2.95 2.15
std 0.87 1.12 1.13 0.721

failures 0 0 0 0

MC

max 4.65 7.03 8.8 8.2 5.54 5.4 3.8
mean 3.14 3.24 3.35 3.34 2.73 2.28 1.73
std 0.59 0.7 0.76 0.95 0.63 0.82 0.53

failures 0 0 0 0 0 0 0

m
ax
∣ ∣ θ(t t

f
)∣ ∣

HDE

max 0.15 0.16 Unstable Unstable 0.139 0.164 0.244
mean 0.038 0.035 0.04 0.038 0.053
std 0.027 0.029 0.03 0.028 0.037

failures 0 0 0 0 0

MC

max 0.22 0.18 0.19 0.184 0.177 0.15 0.27
mean 0.04 0.04 0.04 0.04 0.047 0.04 0.05
std 0.03 0.03 0.03 0.03 0.03 0.02 0.04

failures 0 0 0 0 0 0 0

The table entry ‘failures’ indicates the number of occasions the performance cri-

terion has violated. Among the candidate points, 383 cases out of 1000 violated

the performance requirement on |Qα(t)| ≤ 500kPa during the execution of HDE

optimisation algorithm. It was noticed that the rigid uncertain parameters was

the main cause for the worst case performance in all the cases and the flexible

modes were well suppressed by the bending mode filters.
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Table 2.10: Worst case results over the entire parameter range for wind pertur-
bation at 30,35,40, 45, 50, 60 and 70 seconds

Worst case values
30sec 35sec 40sec 45sec 50sec 60sec 70sec

m
a
x
∣ ∣ θ̇(t t

f
)∣ ∣

HDE

max 0.595 0.498 Unstable Unstable 0.493 0.445 0.493
mean 0.117 0.138 0.112 0.110 0.118
std 0.09 0.101 0.088 0.088 0.094

failures 0 0 0 0 0

MC

max 0.556 0.54 0.53 0.58 0.536 0.54 0.45
mean 0.13 0.13 0.13 0.13 0.122 0.12 0.12
std 0.1 0.09 0.1 0.1 0.09 0.09 0.09

failures 0 0 0 0 0 0 0

m
ax

t∈
[t

0
t f

]

∣ ∣ β(t)
∣ ∣

HDE

max 6.5 6.5 6.5 6.5 6.5 4.54 2.09
mean 4.29 4.72 4.27 4.86 4.43 2.79 1.18
std 1.32 1.38 1.44 1.35 1.38 0.82 0.4

failures 187 516 582 517 366 0 0

MC

max 6.47 6.5 6.5 6.5 6.5 5.08 2.22
mean 3.79 4.26 4.36 4.4 3.88 2.41 0.98
std 0.95 1.05 1.08 1.12 1.01 0.75 0.32

failures 13 67 93 111 29 0 0

C
u

m
u

la
te

d
D

efl
ec

ti
on

HDE

max 136.44 153.7 Unstable Unstable 141.64 136.32 133.42
mean 125.87 127.28 125.43 124.27 123.69
std 14.05 13.55 13.60 12.63 12.4

failures 0 0 0 0 0

MC

max 136.52 142.51 151.14 142.18 135.63 138.17 134.03
mean 126.81 127.3 127 127 126.36 125.82 124.84
std 3.07 3.5 3.5 3.43 3.07 3.04 2.9

failures 0 0 0 0 0 0 0

The normalised rigid mode worst case directions corresponding to seven differ-

ent wind perturbations are shown in Figure 2.15 and the comparison of nominal

and worst case transient responses are given in Figure 2.16. The corresponding

worst case directions shown in Figure 2.15 are explained by three main physical

reasons. At first, since the dynamic pressure has a direct impact on the aerody-

namic loads, the worst case perturbation providing maximum Qα corresponds to

maximum dynamic pressure (MQ). Secondly, the angle of attack (α, AoA) will be

maximum for minimum aerodynamic efficiency (A6min) which is opposite to max-

imum attitude (α = θ + W/V ). This can be easily shown by writing the transfer
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function from the wind perturbation to AoA (open loop α/W = s2/(V (s2 − A6))

→ 1/V (A6 → 0), 1/V for closed loop with PD). Thus worst case corresponds to

the uncertain parameter combination with minimum value for aerodynamic coef-

ficient (Cz) and centre of pressure Xf, and maximum value for centre of gravity

Xg. Finally, maximum thrust misalignment (FZmax) and maximum propulsive

efficiency (K1max) will lead to a maximum contribution of static part of the angle

of attack (αstatic = K1/A6FZ). Worst case directions are oriented towards the pa-

rameters which are simultaneously the most influent ones (dynamic pressure MQ,

aerodynamic coefficient MCz, center of pressure MXf, centre of gravity MXg) and

the more dispersed ones (deflection misalignment).

Unstable cases are found for attitude, attitude rate and cumulative deflection

angle performance criteria, when the wind perturbation corresponds to 35, 40,

and 45 seconds (refer Figures 2.18, 2.20). For these cases, sustained actuator

saturation is observed (refer Figure 2.24) and the instability occurs just after the

wind perturbation starts to act on the system. Two factors explain the worst case

parameters value. First, the effect of wind (W ) on attitude is maximal for maximal

aerodynamic efficiency A6 (maximal Q, Cz and Xf); this can be easily shown by

writing the open loop or closed loop transfer function from the wind perturbation

to the attitude (open loop θ/W = A6/(V (s2−A6))→ 1/V as A6 →∞), Then the

possibility for the controller to counter the wind is minimal for minimal propulsive

efficiency K1 (minimal thrust MP and highest centre of gravity Xg).

For the wind perturbations corresponding to 60 and 70 seconds, no performance

criteria violation is recorded, refer Table 2.9 - 2.10. It is observed that the launch

vehicle model is able to withstand wind perturbations after 50 seconds whereas for

the perturbations occurring between 35 to 50 seconds leads to instability of the
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Figure 2.15: Rigid mode worst case perturbations at different wind instances for
max |Qα(t)|
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Figure 2.16: Aerodynamic AoA Qα plots at different wind perturbation instances
for max |Qα(t)|
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launch vehicle.

Monte Carlo analysis is also performed and the results are also tabulated for

comparison in Table 2.9 and Table 2.10. These results are provided to compare it

with those found by optimisation based analysis. A 1000 Monte Carlo campaigns

are performed for each cost function. It is observed that optimisation based method

is able to find more performance criteria violations and even better worst cases than

those found by Monte Carlo method, which can be attributed to the intelligence

embedded in the search process of optimisation scheme. Monte Carlo is unable to

capture any unstable cases corresponding to the performance criteria of attitude,

attitude rate and cumulated deflection. Also, apart from objectives based on

aerodynamic load and attitude, no failures i.e performance criteria violations were

recorded for other objectives.

87



1 2 3
−1

−0.5

0

0.5

1

Inertia: MI

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Thrust: MP

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Aerodynamic coefficient Cz: MCz

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Centre of pressure (focus) Xf: MXf

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Dynamic pressure: MQ

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Centre of gravity Xg: MXg

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Mass: MM

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

1 2 3
−1

−0.5

0

0.5

1

Deflection Misalignment 

N
o

rm
a

lis
e

d
 B

o
u

n
d

s

 

 

Wind@30s Wind@35s Wind@40s Wind@45s Wind@50s Wind@60s Wind@70s

Figure 2.17: Rigid uncertain parameters maximising |θ(t)|
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Figure 2.18: θ plots at different wind perturbation instances for max |θ(t)|
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Figure 2.19: Rigid uncertain parameters maximising |θ(tf )|
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Figure 2.20: θ plots at different wind perturbation instances for max |θ(tf )|
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Figure 2.21: Rigid uncertain parameters maximising |θ̇(tf )|
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Figure 2.22: θ̇ plots at different wind perturbation instances for max |θ̇(tf )|
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Figure 2.23: Rigid uncertain parameters maximising |β(t)|
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Figure 2.24: β plots at different wind perturbation instances for max |β(t)|
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2.4.10 Multi-objective Verification & Validation analysis

Uptill now, in this chapter the goal was to perform V&V analysis to identify the

worst case solution w.r.t a single performance criterion. However in this section,

worst case solutions are generated using two performance criteria simultaneously

and contradicting to each other. When there is more than one objective to be

maximised, there exists solutions for which performance on one objective cannot

be improved without sacrificing performance on at least one other. Such solu-

tions are said to be Pareto optimal and the set of all Pareto optimal solutions is

said to form the Pareto front. Multi-objective algorithms based on evolutionary

principles are popular approaches to generate Pareto optimal solutions,[85]. In

[85] a survey is given on a number of evolutionary multi-objective optimisation

techniques including Schaffers Vector Evaluated Genetic Algorithm (VEGA) [86],

Fonseca and Flemings Multi-Objective Genetic Algorithm (MOGA) [87], Srinivas

and Debs Non-domination Sorted Genetic Algorithm (NSGA) [88], Horn and Naf-

pliotis Niched Pareto Genetic Algorithm (NPGA) [89] etc. The general procedure

of Multi-Objective Evolutionary Algorithm (MOEA) follows the same way as in

EAs for single objective optimisation.

2.4.11 Non-Dominated Sorting Differential Evolution

Multi-objective algorithm based on Differential Evolution principles was first pro-

posed by Xue in [90]. Xue’s proposed Multi-Objective Differential Evolution

(MODE) method combined the principles of Differential Evolution and non-dominated

sorting algorithm developed by Deb ,[91]. Non-dominated Sorting Differential Evo-

lution (NSDE) is similar to MODE and generates new members of the population
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by following DE principles, but it differs from MODE as it utilises non-dominated

sorting algorithm for selecting individuals for the next generation.

The NSDE algorithm starts by initialising a random population Pi(j), where

i = 1, . . . , N , N is the number of individuals in a population and j = 1, . . . ,M ,

M is the number of generations.For each member of the initial population, the

objective functions are evaluated. For every generation j, DE operators such as

greediness factor and scaling factor are used to produce a new population P new(j)

which is combined with the parent population [P new(j)∪P (j)]. Then N best indi-

viduals (same as the population size) based on their objective function values are

selected for next generation and the process is repeated till a termination criterion

is fulfilled. Steps involved in NSDE algorithm is described here in brief:

1. Population Initialisation: The population is initialised based on the range of

the uncertain parameters under consideration and constraints if any. Initial pop-

ulation consists of randomly generated uncertain parameters.

2. Non-Dominated sort: Objective functions are evaluated for all the individuals

in the population. The term dominated is used for indicating if any individuals

with better objective function values exist w.r.t a certain individual, if not then it

indicates that the considered individual is non-dominated. Based on the objective

function values, for each member of the population, determine how many individ-

uals are dominated/non-dominated by it. If an individual is not dominated by

any other individual in the population then it is considered as a non-dominated

individual and assigned rank 1. All individuals with rank 1 are grouped to form a

‘front’ so all individuals with rank 1 will be assigned to front 1 and so on. Figure
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Figure 2.25: Ilustration of Non-dominated sorting and Crowding distance

2.25 shows individuals grouped into different fronts based on their rank values.

The initialised population is sorted based on non-domination into each front. The

first front being completely non-dominated set in the current population and the

second front being dominated by individuals in the first front only and so on. The

fast sort algorithm described in [92] is utilised here to sort the initial population

based on their fronts. This algorithm is provided here in Table 2.11

3. Crowding Distance: In non-domination sorting, the population is sorted accord-

ing to the ascending order of the objective function value. Then the minimum and

maximum values for each objective function are assigned an infinite distance value.

For all other intermediate solutions, the crowding distances are assigned equal to

the normalised absolute difference in the objective function values of the two adja-

cent solutions in the sorted set. The overall crowding distance is calculated as the

sum of individual distance values corresponding to each objective function value,
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Table 2.11: A fast sort algorithm

1. For each individual Pi(j) ∈ P (j) do the following

(a) Initialise the set Sp which would contain all the individuals that is being
dominated by Pi(j). Sp ← {∅}.

(b) Initialise the number of individuals that dominate Pi(j), as np = 0.

(c) For each individual Pk(j) ∈ P (j)

i. If Pi(j) dominates Pk(j) then

A. Add Pk(j) to the set Sp i.e. Sp = Sp ∪ Pk(j)
ii. Else if Pk(j) dominates Pi(j) then

A. Increment the domination counter for Pi(j) i.e. np = np + 1

iii. End if

(d) End For

(e) if np = 0, i.e. no individuals dominate Pi(j) then Pi(j) belongs to the first
front. Set rank of the individual Pi(j) to one, Pirank = 1. Update the first
front set by adding element Pi(j) to that set i.e. F1 = F1 ∪ Pi(j).

2. End For

3. Initialise the front counter to one. r = 1.

4. While rth front is nonempty i.e. F1 6= 0.

(a) Q = {∅}. This set for storing the individuals for (r + 1)th front.

(b) For each individual Pi(j) in front Fr

i. For each individual Pk(i) in Sp, nq is total individuals in set Sp.

A. nq = nq − 1, decrement the domination count for individual Pk(j).

B. If nq = 0 then none of the individuals in the subsequent fronts would
dominate Pk(j). Hence set Pirank = r + 1. Update the set Q with
individual Pk(j), Q ∪ Pk(j).

ii. End For

(c) End For

(d) Increment the front counter by one.

(e) Now the set Q is the next front and hence Fr = Q.

5. End While.
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which are normalised prior to calculation. The general idea is to assign the Eu-

clidian distance between each individual in a front and it is assigned front wise.

4. Offspring population: In order to generate the offspring population, two vectors,

the differential vector and perturbation vectors are defined for each individual in

the population. In the DE for single-objective problems, the differential vector is

defined as the vector between the best individual and the individual under consid-

eration for reproduction. This best individual is usually the individual with the

highest objective function value in the population. However, in multi-objective

optimisation, assigning the best individual among the population could be dif-

ficult as there might be solutions which are maximum along one objective and

minimum along other. To define the differential vector, the non-domination based

sorting method is used to identify the best individual. For each individual, Pi, in

the population, a non-dominated set Di is identified. A solution, Pbest, is chosen

randomly from the set Di. The differential vector is defined between Pi and Pbest.

If the individual is already a non-dominated individual, then Pbest = Pi and the

differential vector will have zero value. Hence, the best solution, Pbest, will dynam-

ically change depending on the individual’s position in the criteria space. This is

the major difference from the single-objective DE, where the best solution is fixed

for the reproduction for all solutions in the population. The perturbation vectors

are defined by randomly chosen distinct pairs of individuals from the parent pop-

ulation. The number of the perturbation vectors is determined by a pre-defined

parameter K and is set to a value of 2 for this analysis. Once the differential vector

and the perturbation vectors are defined, the reproduction operation is defined in

a similar way as in the single-objective DE.
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P new
i =


Pi + F ·∑K

k=1(P k
ia − P k

ib
) Pi is non-dominated

γ · Pbest + (1− γ) · Pi + F ·∑K
k=1(P k

ia − P k
ib

) Pi is dominated

(2.22)

where Pbest is the best individual in the Pareto sense chosen from the parent

population, γ ∈ [0 1] represents the greediness of the operator, and K is the num-

ber of perturbation vectors, F is the factor that scales the perturbation, P k
ia and

P k
ib

are randomly selected mutually distinct individuals in the parent population,

and P new
i is the offspring.

5. Recombination and selection: The offspring population is combined with the

current population and selection operation is performed to select N individuals

for the next generation. Since all the previous and current best individuals are

added in the population, elitism is ensured. Population is now sorted based on

non-domination. The new population for the next generation is filled by each

front subsequently until the population size N is exceeded. If by adding all the

individuals in front, the population exceeds N then individuals in front are selected

based on their crowding distance in the descending order until the population size

is N . The process is repeated to generate the subsequent generations. A fixed

termination criteria of maximum allowed generations is used to terminate the

algorithm.
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2.4.12 Application to TVC benchmark problem

The TVC benchmark problem described in Chapter 2 Section 2.4.5 is defined as a

multi-objective optimisation problem in Equation (5.1). The optimisation problem

is formulated to identify Pareto front for maximum deviations of aerodynamic load

and deflection angle performance objectives.

δ∗i := max
δ∈∆

Ji(δ,CH∞ ,W )

sub to Pc(δ) ≥ ε for i = 1, 2. (2.23)

where

J1 = max
t∈[t0tf ]

|Qα(t)|

J2 = max
t∈[t0tf ]

|β(t)| (2.24)

Two objectives considered are related to the performance criteria on maximum

deviations of aerodynamic load (s1) and deflection angle (s4). The wind perturba-

tion occurring at 50 seconds is considered for this analysis. NSDE and NSGA-II

algorithm are utilised to perform multi-objective optimisation. The following op-

timiser configuration parameters are used: population size is set to 25, maximum

generations is set to 100 for both NSDE and NSGA. For NSDE algorithm, scaling

factor F is set to 0.8, γ greediness operator is set to 0.8 is generated and is shown

in Figure 2.26. Worst case solutions have been found were the performance cri-

terion is violated for one objective while not violating the other criterion. From

the Figure 2.26, it can be seen that when maximum deviation in deflection angle

is 6.5◦, violating the performance criterion of 6◦, does not violate the maximum

deviation in aerodynamic load which has a value of 483.6kPadeg. Similarly, when
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maximum deviations in aerodynamic load has a value of 536.9, which violates the

performance criterion of 500kPadeg, no violation is found for the performance

criterion on the deflection angle which has a value of 3.96◦. While performing the

single objective worst case analysis (refer Section 2.4.9), the worst case value of

maximum deviations of aerodynamic load is accompanied by actuator saturation.

Deflection angle is saturated at 6.5◦. In addition to conventional worst case solu-

tion, Multi-objective analysis has identified other potential solutions, which violate

the criterion on the aerodynamic load while the deflection angle is not saturated

and in fact with low values.
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Figure 2.26: Pareto Front associated with maximising the deviations in the aero-
dynamic load and the deflection angle

Both NSGA-II and NSDE have comparable performance in identifying the

Pareto solution set, while the latter converges faster. It is observed that NSDE

solutions are no better than NSGA-II. Even so, NSDE algorithm requires more
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testing on other industrial models in order to highlight any benefits or lack thereof

over NSGA-II.
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Chapter 3

Polynomial Chaos Based

Surrogate Models

3.1 Introduction

Traditionally, the aerospace industry relies extensively on Monte Carlo and opti-

misation based methods to perform the V&V ([52, 53, 76, 79]). The Monte Carlo

method requires several sampling points in order to provide a strong statistical

confidence that the worst case has been found [7, 37]. In this thesis, the eval-

uation of the sampling points entails running the simulations of a mathematical

model, which could be linear or non-linear. The models are considered as black-

box models. The inputs are assumed to be the uncertainties in the model. The

outputs are the performance objectives. For example, in [93], Wang performs

V&V on an autonomous rendezvous problem using the Monte Carlo and the opti-

misation based methods. The nonlinear mathematical model for the autonomous

rendezvous problem is computationally expensive, and each function evaluation
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requires 30minutes of simulation time. Hence, a detailed Monte Carlo analysis or

a complete optimisation-based analysis is prohibitive with this model. In Monte

Carlo analysis, it is obvious that the more simulation are performed, the higher

the probability of finding the worst case would be. With the computationally ex-

pensive black box models, similar to the one considered in [93], one has to limit

the analysis with a fixed computational budget and a low number of simulations.

The probability of finding the worst case would be low if a small number

of simulations were to be performed. The total number of simulations (NMC)

required to estimate the probability of finding a worst case with an accuracy of ε

and a confidence of 1− κ is given by [37]:

NMC ≥
1

2ε2
ln

2

κ
(3.1)

The inequality provides the statistical guarantee of determining the worst case

with a minimum number of simulations. For example, in order to be 99% (i.e.

κ = 1 − 0.99) sure that the probability of finding a worst case is within 0.01(i.e.

ε = 0.01) of the true value, the total number of simulations (NMC) needed is at

least 26, 492. Varga in [7] and Wang in [52], also discuss the computational com-

plexity associated with the statistical guarantees of high confidence value. Simi-

larly, in the case of the optimisation based analysis, the convergence to the global

optimum is often requires large number of function evaluations. In the case of

non-convex optimisation problems, the convergence to the global solution requires

even more function evaluations, and in some cases the convergence might not even

be guaranteed. According to [7, 51] typical worst-case analysis problems fall in

this class of optimisation problem. Also, as argued in [93], with computationally
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expensive simulation models, even the optimisation based methods could become

prohibitive.

In the field of multidisciplinary design optimisation, the surrogate models have

been developed for the high fidelity finite element simulation models using different

methods such as the polynomial regression [94], multivariate adaptive regression

splines [95], response surface methods [96] and Kriging [97]. The surrogate models

are approximate representations of the original models, and far less time consum-

ing to evaluate compared to the original models. Surrogate models are also often

identified as response surface models. The aim is to have the surrogate models

as accurate as possible to the original model and thereby speed up the design op-

timisation process without compromising on the quality of the solution, [94, 98].

In an identical manner, the surrogate models can be utilised in the optimisation

based worst case analysis and the convergence to the worst case solution can be

enhanced significantly. Suppose an accurate surrogate model can be determined

to represent a computationally expensive original model in an efficient way. Then,

this computationally inexpensive, equivalent model could be used for the large

number of Monte Carlo simulations. The worst case determined from these large

number of Monte Carlo simulations will have a high degree of statistical confi-

dence, however the time required to do this activity would be significantly shorter

when compared to that with equivalent number of simulations of original model.

This chapter discusses the derivation of surrogate models using the concepts of

polynomial chaos theory and its application to the TVC benchmark problem.

In the literature, there are several ways to develop surrogate models. Khuri and

Mukhopadhyay give a comprehensive review on the response surface methodology

in [96]. There they explain the classical response surface method and its develop-
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ment from 1951-2010. Kleijnen, [97], provides a review on Kriging method and also

presents a method to develop surrogate models by applying Kriging to data sets

generated by Latin hypercube sampling. Cheng and Titterington, [99], presents a

review on artificial neural networks from the statistical perspective, wherein, their

use in developing the surrogate models is explained. In [95], Friedman developed

a statistical technique called Multivariate Adaptive Regression Splines (MARS) to

model complex nonlinear functions. Chung and Alonso, [98], provide a compari-

son between response surface method and the Kriging method when applied to a

supersonic business jet design problem. It was observed that the response surface

method did not provide a good approximation to the models with multiple local

minima, whereas the Kriging method was found to be less accurate in estimat-

ing the global extrema. Jin et al., [94], compare various methods like polynomial

regression, Kriging, MARS and radial basis functions under multiple modelling

criteria for the vehicle design problem. Among the methods that were applied for

vehicle design, the most efficient method was found to be polynomial regression.

In conventional Monte Carlo V&V analysis, the model is evaluated about many

input parameters sampled from a distribution, and the corresponding output func-

tion values are determined. Thus, the inputs may be considered as the random

excitations to the black-box model leading to different performance outputs. The

random excitations often belong to a specific probability distribution, for e.g.,

uniform or Gaussian. The performance metrics will be different to each of these

random fluctuations. Hence, It is possible to interpret the relation between the

performance metric and the uncertain parameters as a random process. Formally,

a random process is defined as, ([100])
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F (t, δ) =

∫
g(t)dµ(δ) (3.2)

where, g(t) is a deterministic process, t is time and dµ(δ) is an orthogonal set of

functions in terms of uncertain parameter δ. F (t, δ) represents a random process

whose covariance function R(t1, t2) satisfies the following relation

∫
R(t1, t2)φi(t1)dt1 = λeigiφi(t2) (3.3)

where t1 and t2 are temporal coordinates, λeigi and φi(·) represents ith eigenvalue

and ith eigenfunction respectively.

In 1946, [101], a method called as the Karhunen-Loeve (KL) expansion method

was proposed to develop surrogate models by making use of the covariance func-

tion. Typically, in the KL expansion method, the random process F (·) is repre-

sented as the sum of infinite terms of the eigenfunctions (φi(·)) and the eigenvalues

(λeigi) appearing in the covariance function (R(·)) [102]. The KL expansion of the

random process F (·) can be represented as

F (t, δ) = F̃ +
∞∑
i=1

√
λeigiφi(t)ξi(δ) (3.4)

where F̃ denotes the mean of the random process and the terms ξi(·) form the set of

uncorrelated random variables. See [102] for more details on additional theoretical

aspects of the KL expansion. The KL expansion method, though attractive and

efficient, assumes the a priori knowledge of the covariance function (R(·)) for the

performance metrics. This can be considered as the main draw back of the KL

expansion method. In a typical V&V analysis, there is no a priori information
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about the covariance function. This is the major impediment to adopt the KL

expansion technique directly in the type of V&V analysis carried out in the thesis.

Another efficient method for developing surrogate models in the case of complex

industrial models is based on the principles of polynomial chaos expansion. In this

thesis, the surrogate models are developed using polynomial chaos technique, the

fundamentals of which are discussed in sequel. Subsequently, the surrogate models

for the performance metrics of the TVC benchmark problem have been constructed

using the polynomial chaos expansion method and the efficacy of the methodology

is demonstrated.

3.2 Polynomial chaos expansion

Norbert Wiener introduced the concept of polynomial chaos in 1938 ([103]), in

which stochastic processes with Gaussian random variables was modelled in terms

of the Hermite polynomials. Later in 1944, Cameron and Martin ([104]) showed

that any random process F (·) with a finite variance can be expressed as a weighted

infinite sum of Hermite polynomials in a Gaussian random variable δ ∈ R, with

zero mean and unit variance as

F (δ) =
∞∑
q=0

aqΦq(δ) (3.5)

where the terms aq are the co-efficients of the univariate polynomial and the terms

Φq(·) are the basis of the Hermite polynomials. For example, the first three basis
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of univariate Hermite polynomial are.

Φ1(δ) = 1

Φ2(δ) = δ

Φ3(δ) = δ2 − 1

3.2.1 Wiener Askey polynomial chaos

Subsequently, similar representations were derived for stochastic process with non-

Gaussian random variables in [105]. For this purpose, properties of other orthogo-

nal polynomials from the family of Askey scheme such as Legendre, Laguerre and

Jacobi polynomials are exploited. In [105], it was shown that for the continuous

random variables with uniform, gamma and beta distributions, Legendre, Laguerre

and Jacobi orthogonal polynomial basis can be used to develop the corresponding

asymptotically convergent polynomial representation.

The basic concept of polynomial chaos modelling is to approximate the re-

sponse of the model using a polynomial function of the uncertain parameters. The

polynomial function is constructed using an orthogonal polynomial basis (Φq(δ)).

Here, the underlying idea is as follows: represent the random variables, i.e., various

uncertain parameters to be perturbed, as orthogonal functions and determine the

coefficients in Eqn. 3.5 to develop the polynomial model. A truncated version of

Eqn. 3.5 is given as follows [105]:

F (δ) =
M∑
q=0

aqΦq(δ) (3.6)

where M = qc − 1, where qc = (qv+qo)!
(qv !qo!)

is the total number of coefficients, and
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qv is the number of independent sources of uncertainty and qo is the maximum

order of the polynomial. Here, the coefficient, aq, for q = 0, . . . ,M have to be

determined. The terms Φq(·), for q = 0, . . . ,M are a set of polynomials that

belong to a family of polynomials which are orthogonal and satisfy complete basis

in the square integrable space.

∫
Dδ

Φi(δ)Φj(δ)w(δ)dδ =


0 if i 6= j

h2
i if i = j

(3.7)

where h2
i is a constant term corresponding to

∫
Dδ

Φ2
i (δ)w(δ)dδ. Dδ is the domain of

the random variable δ. The term w(δ) is the weighting function and has same form

as the probability density function of the random variable δ. In the case of multiple

random variables, the weighting function corresponds to a joint probability density

function of the independent random variables.

Table 3.1 gives different distributions of random variables and the associated

orthogonal polynomial functionals from the Wiener-Askey scheme together with

the support set. For example, for a continuous uniform distributed random vari-

able, a Legendre polynomial basis with corresponding support set [−1, 1] can be

utilised for constructing representation as in Eqn 3.6.

Table 3.1: Wiener-Askey polynomials with corresponding distribution

Continuous

Random variable δ Wiener-Askey Scheme Support Set
Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Uniform Legendre [−1, 1]

Beta Jacobi [a, b]

The weight functions (w(δ)) and the recurrence relations that generate the
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basis of orthogonal polynomials in Table 3.1 are given in Appendix A.

3.2.2 Intrusive and Non-intrusive method

In general, there are two distinct methodologies for constructing the polynomial

chaos representations, and can be classified as intrusive and non-intrusive methods.

This distinction is based on the availability of the explicit mathematical equation

that describes the dynamics of the model. Intrusive method relies on the avail-

ability of analytical equations of the system and utilises the method of Galerkin

projection to develop polynomial representations.

Let us consider a stochastic differential equation, [105]:

L(x, t, δ) = f(x, t, δ)

where the operator L generally involves differentiation in space/time and can be

nonlinear, x represents the states of the system, t represents time and δ the random

parameter that could be introduced via initial conditions, material properties etc.

Say, F (x, t, δ) denotes the solution to the above stochastic differential equation,

then the solution can be expanded as a Wiener-Askey polynomial chaos as follows:

F (x, t, δ) =
M∑
q=0

aq(x, t)Φq(δ)

The coefficients (aq(x, t)) can be evaluated using the Galerkin projection method:

aq(x, t) =
< L(x, t, δ),Φq(δ) >

< Φq(δ),Φq(δ) >
(3.8)

where, < ·, · > denotes the inner product. For example, let f and g be two real
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functions defined over a closed interval [a, b]. Then the inner product is defined

as < f, g >=
b∫
a

fgdx.

Evaluation of (3.8) requires solving multiple integrals which depends on the

dimension of δ, which are the random variables often representing uncertainties.

Hence, polynomial approximation of models with larger number of uncertainties,

using Galerkin projection method results in excessive computational overhead due

to the numerical integration that requires evaluation of the original model at var-

ious combination of uncertainty configuration.

Non-intrusive methods does not require explicit availability of the analytic

expressions of the dynamics of the model. The model can be treated as a ‘black

box’ with access limited to certain pre-defined inputs and outputs of the model,

which may be complex, non-linear and of high fidelity. This is represented in

Figure 3.1. The idea is to obtain a surrogate polynomial representation for the

performance specification in terms of the uncertain parameters that robustly mimic

the actual model over a wide region.

Black Box

Uncertain

Parameters

Performance

Specifications

Figure 3.1: Block description of a surrogate modelling

Probabilistic collocation is a non-intrusive method, which is based on intelli-

gent sampling of the uncertain parameter space such that the original model is

evaluated at a predefined set of points. Probabilistic collocation is utilised here to

generate surrogate models that take uncertain parameters as its input and perfor-

mance criterion as its output. Details on probabilistic collocation method can be
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found in Section 3.3. Both intrusive and non-intrusive polynomial chaos methods

have been previously applied to different areas such as solid mechanics [106, 107],

stochastic finite elements [100] and stochastic fluid dynamics [108, 109]. In [110],

the power series expansion as well as polynomial chaos expansion have been used

to quantify the effects of uncertainty on the sates and outputs of nonlinear sys-

tems, and illustrate it on a batch crystallisation process. In [111], Polynomial

Chaos is used to analyse stability and control of a dynamical system whose gains

are treated as uncertainties. Singh, [112], used the generalised polynomial chaos

(gPC) method to design robust input shapers for precise control of mass-spring

systems. In aerospace applications, Fisher, [113], provided a framework based on

gPC to analyse a linear flight control design for an F-16 aircraft model.

The concepts of the polynomial chaos modelling is applied to the TVC bench-

mark with 29 uncertainties.

3.3 Probabilistic collocation method

In probabilistic collocation method, the original model has to be evaluated at a

specific set of points sampled in the uncertain parameter space. The idea here

is to generate a set of sampling points such that the behaviour of the original

model can be captured. These sampling points are termed as collocation points.

In the literature collocation points have been generated using various methods, For

example, Hosder in [114], utilises the sampling methods like random sampling, latin

hypercube sampling and Hammersley sampling for generating collocation points.

Loeven in [115] uses the Gauss quadrature method to generate the collocation

points where the recurrence coefficients (αi, βi) are generated using the Darboux’s
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formulae [115, 116]. According to [115], the orthogonal polynomials satisfies the

three term recurrence relationship

Φi+1(δ) = (δ − αi)Φi(δ)− βiΦi−1 i = 1, 2, . . . , q.

Φ0(δ) = 0,Φ1(δ) = 1 (3.9)

where, recurrence coefficients are evaluated as follows:

αi =
< δΦi,Φi >

< Φi,Φi >
i = 1, 2, . . . , q.

βi =
< Φi,Φi >

< Φi−1,Φi−1 >
i = 2, 3, . . . , q.

where < ·, · > is the inner product. These recurrence coefficients are then utilised

to generate a matrix. The eigenvalues of the matrix T in (3.10) are the roots

of the polynomial in the orthogonal basis [115]. These eigenvalues becomes the

collocation points at which the original model has to be evaluated to achieve the

polynomial representation.

T =



α1

√
β2

√
β2 α2

√
β3 0

√
β3 α3

√
β4

. . .
. . .

. . .

0
√
βq−1 αq−1

√
βq√

βq αq


(3.10)

A simpler method to generate collocation points is provided by Webster in [117].

Wherein the roots of the next higher order polynomial in the orthogonal polyno-
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mial basis is considered as collocation points. This method is utilised in this thesis

for generating collocation points. Table 3.2, enumerates the steps for generation

of collocation points.

Table 3.2: Generation of Collocation Points

Steps for generating collocation points
i) Set the desired order (qo) of the polynomial (F (·)), i.e. surrogate model.
ii) Pick the next higher order polynomial (qo + 1) in the orthogonal polyno-

mial basis (Φq(δ)).
iii) Evaluate the roots of the polynomial.
iv) Set the roots as collocation points.

All the roots of the orthogonal polynomials (Φq(δ)) lie equally distributed in

the interior of their support set, [118]. For example, all the roots of the Legendre

polynomials will all lie inside [−1, 1]. Moreover, these roots are equally distributed

over the interval [−1, 1]. Since the roots are equally distributed inside the support

set, they can be used as the collocation points. If the collocation points are not

equally spread out in the uncertain parameter space then the resulting model will

be less accurate.

In this thesis, the original model is evaluated at the roots of the next higher

order polynomial in the orthogonal polynomial basis. In fact, (refer Eqn. 3.6) the

output of the original model at these collocation points is equated to the product of

coefficients and orthogonal polynomial basis (Φq(δ)) in order to generate a system

of equations with coefficients as unknowns. The total number of collocation points

have to be at least equal to the number of coefficients of the polynomial chaos

expansion. If the number of collocation points are equal to the coefficients then

their system of linear equations can be solved simultaneously. The main steps

involved in deriving surrogate model using the non-intrusive method based on
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probabilistic collocation strategy is provided in Table 3.3.

Table 3.3: Surrogate modelling

Steps for surrogate modelling
i) Initialise the number of basis for the orthogonal polynomial (q), the order

of the surrogate model (qo) and the number of uncertain parameters (qv).
ii) Calculate the number of coefficients for the polynomial surrogate model

qc = (qv+qo)!
(qv !qo!)

.

iii) Generate the basis of the orthogonal polynomial (Φq(δ)) based on the
distribution of the random variable δ (Table 3.1).

iv) Determine the collocation points by solving the roots of the polynomial
from the orthogonal polynomial basis(Φq(δ)) whose order is qo + 1.

v) Evaluate the response of the original model at each of the collocation
points and obtain a set of linear equations by using equation (3.6).

vi) Solve the simultaneous equations to determine the coefficients (aq).

3.3.1 A numerical example

In order to illustrate the development of a surrogate model, consider the exam-

ple that calculates the magnitude of frequency response of a low-pass Sallen-Key

filter,[119]. Although the surrogate polynomial model of this filter may seem as or

even more complex than the filter itself, the surrogate models developed for the

launcher model are not as complex as the original launcher models. The Sallen-Key

filter example is used here to illustrate the steps for development of a surrogate

polynomial model. The Sallen-Key filter is shown in Figure 3.2 and its transfer

function is given as:

H(s) =
1

1 + C2(R1 +R2)s+ C1C2R1R2s2
(3.11)

where R1, R2, C1, C2 are the resistance and capacitance respectively. In this ex-
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Figure 3.2: Low-pass Sallen-Key Filter

ample, the resistance R1 and capacitor C1 are assumed to be uncertain where as

resistance R2 and capacitor C2 are fixed at 100Ω and 22.5µF respectively. The un-

certain parameters are assumed to have uniform distribution withR1 ∈ [90Ω, 110Ω]

and C1 ∈ [15µF, 30µF ]. The uncertainty in R1 and C1 could be represented as

R1 = 100 + 10δ1 (3.12)

C1 = 22.5 + 7.5δ2

where δ1 and δ2 are uncertainties in the resistance R1 and capacitor C1 respectively,

which vary uniformly, δi ∈ [−1, 1]. The magnitude of the frequency response of

the filter transfer function (Eqn. 3.11) is:

|H(jω)| =
√(

1− C1C2R1R2ω2

f(ω)

)2

+

(−C2R1ω − C2R2ω

f(ω)

)2

(3.13)
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where

f(ω) = 1 + (−2C1C2R1R2 +C2
2R

2
1 + 2C2

2R1R2 +C2
2R

2
2)ω2 +C2

1C
2
2R

2
1R

2
2ω

4 (3.14)

Here the output is the magnitude of the frequency response, (|H(jω)|), com-

puted at a specific frequency, ω = 376.99rad/s. If δ1 and δ2 can then be considered

as inputs of |H(jω)|, then the idea of surrogate modelling is to obtain an equiva-

lent polynomial representation of |H(jω)| in terms of the uncertain parameters δ1

and δ2.

In this case, the total number of uncertainties (qv) equals 2; let the order (qo) of

the surrogate model to be constructed be 3. Then, following the procedure listed

in Table 3.3, the number of coefficients (qc) of the surrogate polynomial which

are to be determined becomes 10. Since, δ1 and δ2 are uniformly distributed,

from the Table 3.1, it is obvious that Legendre polynomial basis have to be used.

Subsequently, the univariate orthogonal polynomial basis (Φ′) are generated for

each uncertain parameters and are provided in Table 3.4.

Table 3.4: Legendre polynomial basis

Basis Uncertain parameter δ1 Uncertain parameter δ2

Φ′0 1 1
Φ′1 δ1 δ2

Φ′2 1.5δ2
1 − 0.5 1.5δ2

2 − 0.5
Φ′3 2.5δ3

1 − 1.5δ1 2.5δ3
2 − 1.5δ2

Φ′4 4.375δ4
1 − 3.75δ2

1 + 0.375 4.375δ4
2 − 3.75δ2

2 + 0.375

The subscript i of Φ′i indicates the order of the polynomial. The next step is to

generate collocation points. So that the coefficients can be determined. For that,

the solution to the next higher order polynomial, (qo+1 = 4), in the Legendre poly-

nomial basis is used. This corresponds to solving Φ′4 for δ1 and δ2 in the Table 3.4.
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Solving the two polynomial equalities 4.375δ4
1 − 3.75δ2

1 + 0.375 = 0 and 4.375δ4
2 −

3.75δ2
2 + 0.375 = 0 yields the solution set δ1 = δ2 = {−0.34,−0.86, 0.34, 0.86}.

This solution set is combined to form a unique set of sampling points for δ1 and

δ2, which are termed as collocation points and given in Table 3.5.

Table 3.5: Collocation points at which the original model is evaluated

Collocation Points
Uncertain parameter δ1 Uncertain parameter δ2

-0.34 -0.34
-0.34 -0.86
-0.34 0.34
-0.34 0.86
-0.86 -0.34
-0.86 -0.86
-0.86 0.34
-0.86 0.86
0.34 -0.86
0.34 0.86

Since there are two uncertain parameters, a multivariate orthogonal polynomial

basis (Φq) is required, which is formed by combining the first two Legendre poly-

nomial basis from the Table 3.4, such that each of them satisfies the orthogonality

property and the bound on the required order of the polynomial. Furthermore,

the number of the multivariate orthogonal polynomial basis should be equal to

the number of coefficients i.e. qc = 10. The obtained multivariate orthogonal

polynomial basis are given in Table 3.6.

The magnitude of the frequency response of the filter |H(jω)| in Eqn. 3.13

is evaluated at each of the collocation points listed in Table 3.5. Our aim is to

determine the coefficients aq of F := |H(jω)| = ∑10
q=0 aqΦq(δ). The set of |H(jω)|

values obtained by evaluating at each collocation points, then provide ten linear

equations that has to be solved simultaneously to obtain the coefficients aq. The
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Table 3.6: Multivariate orthogonal polynomial basis

Multivariate Orthogonal Polynomial Basis (Φq)
Φ0 1
Φ1 δ1

Φ2 δ2

Φ3 1.5δ2
1 − 0.5

Φ4 1.5δ2
2 − 0.5

Φ5 2.5δ3
1 − 1.5δ1

Φ6 2.5δ3
2 − 1.5δ2

Φ7 δ1δ2

Φ8 1.5δ1δ
2
2 − 0.5δ1

Φ9 1.5δ2
1δ2 − 0.5δ2

coefficients (aq) when multiplied with respective multivariate orthogonal basis (Φq)

provide us the surrogate polynomial model (Eqn. 3.6), which is supposed to be an

equivalent representation for |H(jω)| in Eqn. 3.13.
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Figure 3.3: Comparison of accuracy of the surrogate model

122



3.4 Surrogate modelling of TVC benchmark

The dynamics of the closed loop flexible launcher model, discussed in Section

2.4.5 is considered. An H∞ controller is provided with the model. The uncertain

parameters present in the model are listed in Table 2.7. These variations results

in changes in the outputs of the model. Ideally the Hinfty controller shall provide

robust performance in the presence of all these uncertainties listed in Table 2.7.

We will consider the closed loop benchmark representation as ‘black-box’. As

briefed in Section 2.4.5, the flexible launcher model incorporates the effect of noise

acting on its outputs by adding a gaussian signal with 0.02◦ and 0.15◦/sec standard

deviation for attitude and attitude rate respectively. The gaussian noise signal is

realised in MATLAB simulink by utilising the “Random Number” simulink block.

This simulink block contains an entry called the “Seed”, which ensures that the

noise signal is not repeated for each evaluation of the flexible launcher model. In

order to capture the effect of the noise on the outputs in the surrogate model, the

seed value of the “Random Number” simulink block is treated as an uncertainty in

addition to the uncertainties considered in the Table 2.7. Hence, the total number

of uncertainties qv is fixed at 29. The cost function is the performance specification

against which the controller is validated. The entire list of cost functions are given

in the Table 2.8. The polynomial surrogate models are generated for each of the

cost functions listed in Table 2.8.

In order to perform the worst case analysis, all the uncertainties given in Table

2.7 are normalized between [−1, 1]. As the uncertainties are uniformly distributed,

Legendre polynomials are utilised for generating the orthogonal polynomial basis as

per the Wiener-Askey scheme, given in Table 3.1. First order (qo) surrogate models
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Table 3.7: Coefficients of 1st order surrogate model for each cost function

Coefficients max
t∈[t0tf ]

∣∣Qα(t)
∣∣ max

t∈[t0tf ]

∣∣θ(t)∣∣ max
∣∣θ(ttf )

∣∣ max
∣∣θ̇(ttf )

∣∣ max
t∈[t0tf ]

∣∣β(t)
∣∣ Cumulated

Deflection

a 0 -401.44 -2.62 -0.02 0.04 -3.70 -127.57
a 1 -11.78 -0.06 0.01 -0.04 0.36 -0.95
a 2 -1.24 -0.16 0.00 0.00 0.25 -2.07
a 3 51.79 -0.71 0.02 -0.01 -1.21 -0.97
a 4 20.33 -0.56 0.01 -0.02 -0.82 -1.22
a 5 -112.14 -0.81 0.00 0.00 -1.00 -0.12
a 6 6.37 -0.07 0.01 0.00 0.45 1.58
a 7 -17.53 0.03 -0.01 -0.02 -0.24 -1.06
a 8 -15.29 -0.65 -0.01 0.00 0.05 -1.52
a 9 -2.19 -0.19 -0.01 -0.01 -0.03 -0.75
a 10 -2.76 -0.06 0.01 -0.03 -0.44 1.82
a 11 -1.04 -0.09 0.01 0.01 0.23 -0.15
a 12 10.56 -0.02 -0.01 -0.02 0.00 2.21
a 13 -11.26 0.04 0.03 -0.01 0.03 1.56
a 14 -8.06 -0.22 -0.01 -0.03 -0.09 1.22
a 15 2.47 0.19 0.02 -0.01 -0.14 0.22
a 16 -3.10 0.32 0.01 0.00 -0.29 -1.25
a 17 -20.85 -0.09 -0.01 -0.01 0.09 -1.08
a 18 15.85 -0.05 -0.01 -0.02 0.71 0.08
a 19 -13.91 -0.14 0.02 0.01 -0.38 -1.06
a 20 -7.07 0.07 -0.01 0.02 -0.09 0.25
a 21 14.51 0.10 0.00 -0.01 -0.01 -0.12
a 22 10.80 -0.18 -0.02 -0.02 -0.46 -1.09
a 23 -29.54 -0.14 -0.02 0.01 -0.18 -0.58
a 24 2.26 -0.09 0.00 0.00 -0.60 -2.11
a 25 -9.20 0.07 0.01 0.02 0.01 2.02
a 26 6.06 0.23 0.00 -0.03 0.19 -2.54
a 27 -12.92 0.04 0.00 0.00 -0.05 -0.80
a 28 0.67 0.29 -0.02 -0.02 -0.22 0.46
a 29 -0.04 -0.22 -0.02 -0.09 0.02 1.39

are derived using the probabilistic collocation method for wind perturbation oc-

curring at 50 seconds (refer Table 3.7). The number of collocation points required

for evaluating the coefficients of the polynomial are given by qc = (qv+qo)!
(qv !qo!)

= 30,

where the number of uncertainties qv and the order qo are fixed at 29 and 1 re-

spectively. An identical procedure as discussed in previous section was followed.

For e.g., the basic idea here is, to obtain an approximate surrogate polynomial for

the cost function for e.g. max
t∈[t0 tf ]

∣∣∣∣Qα(t)

∣∣∣∣ in terms of the 29 uncertain parameters.

max
t∈[t0 tf ]

∣∣∣∣Qα(t)

∣∣∣∣ ≈ M∑
q=0

aqΦq(δ) (3.15)

where Φq(δ)= [1, δ1, δ2, · · · , δ29] and aq = [a 0, a 1, · · · , a 29]. Similarly, approx-
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imate models are generated for the other cost functions as well in an identical

manner. The coefficients of the 1st order surrogate polynomial models are listed

in Table 3.7.

A HDE optimisation algorithm is employed to perform the worst case analysis

on the first order surrogate models. The results are tabulated as shown in Table

4.2, which contains five columns, the first column corresponds to the cost function

for which the surrogate models are derived, second column is for the worst case

values (Wc) obtained by performing HDE optimisation on the surrogate models.

The third column represents the actual value (Lm) of the cost function when the

flexible launcher model is evaluated by using the worst case parameter combination

found by surrogate models. The fourth column provides the % Error which is

evaluated as

%Error =
|Wc− Lm|

Lm
× 100 (3.16)

The worst case analysis is performed by using a fixed termination criteria with

maximum number of function evaluations set to 1000. It is seen that the poly-

nomial models are very fast (in seconds) as compared to the actual model which

takes approximately 15 min. The percentage error is found to be large in the case

of the first order polynomial model. In order to reduce the error, second or higher

order surrogate models can be derived.

Second order polynomial models are generated for each of the cost functions

listed in Table 2.8. A second order polynomial chaos expansion, with 29 uncertain

parameters requires 465 coefficients in Eqn. 3.6. For obtaining second order sur-

rogate models for the cost functions listed in Table 2.8, 465 collocation points are

generated and the flexible launcher model is simulated and each cost in Table 2.8 is
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Table 3.8: Worst case results of 1st order surrogate model for wind @ 50 sec

Cost Function Max Actual
Value

%
Error

Time
(sec)

max
t∈[t0tf ]

∣∣Qα(t)
∣∣ 647.88 524.35 23.55 6.09

max
t∈[t0tf ]

∣∣θ(t)∣∣ 5.96 4.85 22.88 6.03

max
∣∣θ(ttf )∣∣ 0.2 0.09 122.2 5.94

max
∣∣θ̇(ttf )∣∣ 1.68 0.17 500 6.24

max
t∈[t0tf ]

∣∣β(t)
∣∣ 8.84 6.5 36 6.13

Cumulated Deflection 190 129.8 46.37 6.18

evaluated. A set of linear equations can be formed by substituting these collocation

points and their corresponding output responses in Eqn 3.6. Coefficients of the

polynomial are obtained by solving these set of equations. Both polynomial and

original model are evaluated at various uncertainty configurations for comparison,

as shown in Figure 3.5. Ideally, all the blue points should lie on the red line indi-

cating a highly accurate polynomial model. From the Figure 3.5, all the points are

cluttered around the red line indicating a fairly accurate polynomial model. The

comparison is shown for two performance criteria (given in two columns) at three

different wind perturbations (along each row). In order to generate a polynomial

model with further higher degree of accuracy one will have to go for higher order

polynomials. The higher the order of the polynomial, the larger are the number

of coefficients to be evaluated, and hence an increase in the modelling time.

The Polynomial modelling complexity is depicted in Figure 3.4. It shows that

as the order of the polynomial increases so does the number of coefficients to be
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Figure 3.4: Polynomial modelling complexity.

evaluated. Also, as the number of uncertain parameters increases the total number

of coefficients increases exponentially. A large number of simulations of launcher

vehicle are required for development of surrogate models whose order is more than

2.

3.5 Worst case analysis

Table 3.9 contains the results of worst case analysis performed using a second order

polynomial. The error between the surrogate model and the actual model is found

to be small. As the time taken for performing the worst case analysis on polyno-

mial models is considerably small, one can perform even more number of function

evaluations in less amount of time. In this study, the termination criteria for hybrid

differential evolution was set to a maximum function evaluations of 10000 while

performing the worst case analysis on the second order polynomial models. The
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Figure 3.5: Comparison between launcher and polynomial models.

performance criterion for aerodynamic load (Qα), is violated for wind perturbation

occurring at 40 and 50 seconds. The worst case directions are shown in Figure 3.7

which suggests that the worst case direction is oriented towards dynamic pressure

MQ, aerodynamic coefficient MCz and center of pressure MXf . Similar worst

case directions were identified when performing worst case analysis on the original

model in Section 2.4.9, Figure 2.15. The time plots are generated by using the

worst case parameter combination found by using the surrogate models on the

actual models and shown in Figure 3.6. For wind perturbation at 40 seconds,

Table 3.9 shows for attitude cost functions that the surrogate models are unable to

capture unstable cases. These unstable cases are not accurately captured by the

surrogate models but they provide good estimates for stable ones. A reason is that

the nonlinearity present in the original launcher model are not entirely captured
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Table 3.9: Worst Case results for second order polynomial model

Cost Functions Worst Case Values
30 sec 40 sec 50 sec

max
t∈[t0tf ]

∣∣Qα(t)
∣∣

Max 448.66 510.79 557.28
Actual Value 430.26 514.95 553.77
%Error 4.276484 0.807845 0.6338372
Time(sec) 200.59 199.31 200.02

max
t∈[t0tf ]

∣∣θ(t)∣∣
Max 5.85 8.05 6.91
Actual Value 6.01 Unstable 6.02
%Error 2.66223 - 14.7840532
Time(sec) 163.17 165.15 163.62

max
∣∣θ(ttf )∣∣

Max 0.354 0.33 0.227
Actual Value 0.191 Unstable 0.109
%Error 85.340314 - 108.2568807
Time(sec) 160.05 161.36 161.93

max
∣∣θ̇(ttf )∣∣

Max 0.211 0.212 0.195
Actual Value 0.144 0.187 0.173
%Error 46.527778 13.368984 12.716763
Time(sec) 162.28 160.76 160.42

max
t∈[t0tf ]

∣∣β(t)
∣∣

Max 7.5 8.48 7.75
Actual Value 6.5 6.5 6.5
%Error 15.384615 30.461538 19.2307692
Time(sec) 163.33 163.06 160.09

Cumulated Deflection

Max 137.99 147.62 136.16
Actual Value 135.48 128.57 140.78
%Error 1.852672 14.816831 3.2817162
Time(sec) 168.53 189.45 164.91

by the surrogate model, especially when large deviation emanating from onset of

instability occurs. However, the worst case analysis performed on surrogate mod-

els was able to give the worst case parameter combinations that corresponded to

instability cases in the launcher model. A possible way to overcome this is to

develop a accurate local surrogate models that represent a section of the search

space. But here the objective was to derive global surrogate models (i.e. one poly-

nomial model representing the entire search space) with a fair degree of accuracy
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Figure 3.6: Aerodynamic AoA Qα plots at different wind perturbation instances
for max |Qα(t)|

with less number of function evaluations as possible, conservatism is introduced.

For example, to increase the accuracy of the surrogate model one might have to

go for a third order model. But the number of coefficients for a third order surro-

gate model with 29 uncertainties is 4960. However, this would be computationally

very expensive when compared to conventional Monte Carlo or optimisation based

techniques. A work around would be to divide the parameter space into a number

of strata and create local surrogate models for each one of them. With lower order

local surrogate models one would be able to achieve even higher accuracy. For

wind perturbation at 40 and 50 seconds, Table 3.9 shows that the accuracy of the

second order surrogate model is less than 1% for Qα cost function. For these cases,

the surrogate models could be used instead of the launcher model. Time domain

plots relating to attitude rate and deflection angle are shown in Figure 3.8-3.9.
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Figure 3.7: Rigid mode worst case perturbations at different wind instances for
max |Qα(t)|
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Figure 3.8: θ̇ plots at different wind perturbation instances for max |θ̇(tf )|
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Figure 3.9: β plots at different wind perturbation instances for max |β(t)|
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Figure 3.10: Rigid uncertain parameters maximising |θ̇(tf )|
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Figure 3.11: Rigid uncertain parameters maximising |β(t)|
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Chapter 4

Identification of safe/failure

regions in the parameter space

4.1 Introduction

It is evident that optimisation based analysis efficiently determines a worst-case

solution in the multi-dimensional parameter space, which corresponds to either

the controller’s performance being degraded, or even the complete loss of control.

Prior to identifying worst case, the optimisation based analysis evaluates other

candidate potential solutions that might be violating the performance criterion

and might also lie close to the nominal parameter value in the parameter space.

The size of the region around nominal parameter value that satisfies all the per-

formance criteria is a useful metric to comment on the robustness of the control

law. In fact, characterising the parameter space into regions which satisfy the

performance criteria and which do not would be very insightful. Techniques like

operational safety margin method, [46, 120], allow the region around the nomi-
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nal parameter value to be determined, whereas the Bernstein expansion method

[121], conveniently characterises the entire parameter space into safe and unsafe

regions. The safe region corresponds to the region in the parameter space in which

all performance criteria are satisfied. The unsafe region is the complement of the

safe region, i.e., where one or more of the performance criteria are violated. Both

methods are investigated in this chapter.

The concept of operational safety margin quantifies the largest region around

the nominal parameter value. The operational safety margin metric is a measure

of the size of the safe region around a nominal parameter and thus is a practical

metric to assess the robustness of a non-linear closed loop system. A comparison

of different versions of controllers could be based on how big or small the region

is [122, 123]. In this chapter, for the first time, the surrogate models from section

Chapter 3, 3.4 are integrated to speed up the process of evaluating the operational

safety margin for the launcher model.

4.2 Operational safety margin assessment

4.2.1 Basic Concept

The basic idea of operational safety margin assessment is to assess the largest

region in a multi-dimensional space around the nominal parameter such that every

perturbation belonging to that region/set satisfy all the performance criteria. In

order to determine the exact boundaries of safe and unsafe regions, extensive

search of the parameter space may have to be performed. The idea here is to

find an approximate safe region in the multi-dimensional space centred around the
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nominal parameter value. For this, two support sets, i.e., rectangular or spherical

could be utilised. Rectangular support set is defined around the nominal parameter

value by min/max bounds along each dimension of the parameter space, whereas

the spherical support set is defined by utilising the nominal parameter value as the

center with radius defined along each dimension. Using either one of the support

sets, a safe region around the nominal parameter value is identified. It is obvious

that the estimated safe region may be conservative, and depends on the support

set.

The closed loop functional performance requirements are written as a set of

inequality constraints s(δ,CH∞ ,W ) < 0, where CH∞ is the control law used and W

is the wind gust disturbance profile and δ ∈ ∆. The closed loop design is said to be

robust and acceptable, if each ith inequality constraint si(δ,CH∞ ,W ) < 0 is satisfied

in the presence of various combinations of uncertain parameter perturbations. An

assumption is that the nominal parameter satisfies all constraints si.

The uncertain parameter space (∆ - space), can be classified into safe and

unsafe region, depending on the satisfaction or violation of the set of constraints

s(δ,CH∞ ,W ) < 0, respectively. The unsafe region, denoted as Su(s) ⊂ ∆, is given

by

Su(s) :=

dim(s)⋃
i=1

Sui (si)

where, for Sui is the ith unsafe region corresponding to the ith inequality constraint

si

Sui (s) = {δ ∈ Rdim(δ)|si(δ,CH∞ ,W ) > 0}

Su(s) is the union of all unsafe regions defined by the individual constraints. The

boundary of the set is on the surface, given by the constraint s(δ,CH∞ ,W ) = 0.
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The complementary set S
′u(s) becomes the safe set. At least one constraint must be

violated in the unsafe region while in the safe region all the performance constraints

must be satisfied.

A reference set in the parameter space needs to be defined with the nominal

parameter vector δ0 as the geometric center. This reference set is then subjected to

homothetic dilations (i.e. expansion and contraction of set) until the first instance

of violation of the constraints s < 0 occur, or when s = 0 is found. Here, s < 0

implies violation of at least one constraint si < 0. In other words, we are interested

in evaluating the largest safe set, S
′u(s), around the nominal parameter value

within which the set of constraints s < 0 is satisfied. The size of this set is

directly related to the operational safety margin. If the size is larger, it implies

that the closed loop system has more robustness and can be operated over a larger

uncertainty region, i.e. larger operating region.

4.2.2 Optimisation problem formulation

In this study, the chosen reference set, M ⊂ ∆ := δ ∈ [δmin, δmax], is assumed to

be a hyper rectangle with each component of the uncertain parameter vector, δ ∈

Rdim(δ), defined over a bounded interval. Assume symmetry about the geometric

centre which corresponds to the nominal parameter value (δ0). Let m is the vector

of half-lengths of the sides of the hyper-rectangle. The hyper-rectangle R(δ0,m)

is defined as

R(δ0,m) := {δ|δi ∈ [δi0 −mi, δi0 + mi], 1 ≤ i ≤ dim(δ)} (4.1)

R(δ0,m) is called the reference set, which is chosen by selecting the values of
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the vector of half lengths m. This reference set, R(δ0,m), is depicted by dashed

blue line in Figure 4.1(a) and 4.1(b). A homothetic scaling of the reference set

by a scaling factor λ is R(δ0, λm) := {δ0 + λ(δ − δ0)|δ ∈ R(δ0,m)}. Suppose

λ is positive, the resultant set is expanded w.r.t the reference set, in Eqn no

4.1 and if λ is negative, the resultant set is contracted w.r.t the reference set in

Eqn no 4.1. The ratio of expansion, or contraction is called the similitude ratio,

λ ∈ R. The similitude ratio is a positive scaling factor. The similitude ratio

condition λ > 1 corresponds to the expansion, and the similitude ratio in the

range of 0 < λ < 1 corresponds to the contraction of the reference set, R(δ0,m).

By successive dilations of the reference set, i.e., expansions and contractions, the

objective is to determine the largest safe set, S
′u(s), around the nominal parameter

value. The largest set is depicted by the red line in Figure 4.1(a) and 4.1(b) and

is represented as R(δ0, λ̃m), where λ̃ is called the critical similitude ratio. Critical

similitude ratio is a non-dimensional positive scaling value denoted as λ̃. It is the

similitude ratio of the dilation, and interpreted as the operational safety margin,

ρ, for satisfaction of all the functional performance requirements in the parameter

space. The corresponding uncertain parameter combination is termed as critical

parameter vector. Hence, although conservative this would be viewed as the onset

of violation of at least one performance criterion in the certain parameter space.

There could be certain directions in which an expansion might still be possible,

depending on the complex topology of the safe uncertainty set.

The sets R(δ0,m) and the scaled setR(δ0, λ̃m) are proportional. In Figure

4.1(a), the reference set, R(δ0,m), has expanded to R(δ0, λ̃m), which implies that

the unsafe region Su is outside the reference set. Whereas in Figure 4.1(b), the

reference set, R(δ0,m), has contracted to R(δ0, λ̃m), implying that the unsafe
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Figure 4.1: Dilations of Uncertainty Set.

region to be inside the reference set. Naturally, good robustness is associated with

the expansion of the reference set whereas the contraction implies poor robustness,

since even a small perturbation around the nominal parameter value would result in

violation of performance criteria. This is a measure of robustness of the controller,

CH∞ , implying how large an uncertain parameter set be identified as safe with

respect to the nominal point.

The constraint s(δ,CH∞ ,W ) might have a nonlinear dependency on the pa-

rameters, and hence the computation of the critical parameter value becomes a

non-convex global optimisation problem. Furthermore, for checking the satisfac-

tion of the constraints, simulation of the closed loop model and evaluation of each

performance constraint is required.

The critical parameter value corresponding to the dilation of the reference set

R(δ0,m) in the case of the ith constraint can be computed by solving

δ̃ = arg min
δ
{||δ − δ0||∞m|si(δ,CH∞ ,W ) ≥ 0} (4.2)

where ||δ− δ0||∞m := arg sup
i
{ |δ−δ0|i

mi
}, is m-scaled norm. Considering all the perfor-

140



mances, the overall critical parameter value is δ̃ = δ̃k, where k = arg min
1≤j≤dimδ

{||δ̃j −

δ0||∞m}, which is associated with the critical requirement. The resultant set R(δ0, λ̃m)

is proportional to R(δ0,m), where λ̃ = ||δ̃−δ0||∞m, in a non-dimensionalised setting.

The operational safety margin is ρ = λ̃ ‖ m ‖. The robustness is ensured

when ρ ≥ ‖m‖ for a given controller design. In such situation, all the performance

constraints s(δ,CH∞ ,W ) ≤ 0 are satisfied in the region ∆ = Rδ(δ0,m). Eqn 4.2 is

reformulated as a constrained optimisation problem as follows.

min ||δ − δ0||∞m (4.3)

Subject to: si(δ,CH∞ ,W ) ≥ 0

The evaluation of operational safety margin becomes computationally very ex-

pensive when applying it to a industry standard problem. As the performance

criteria are treated as constraints, the closed loop dynamical system is simulated

and performance criteria is evaluated in the constraint function of the optimisa-

tion scheme. The optimisation algorithm will first search the parameter space for

constraint satisfaction before evaluating the cost function. The optimisation algo-

rithm might require to evaluate the constraints at various points in the parameter

space before the constraints are satisfied. As the dynamical system is evaluated

in the constraint function, the process of evaluating the operational safety mar-

gin becomes computationally expensive. Identifying the exact operational safety

margin, which may be a non- convex multidimensional surface, and even discon-

nected regions, with an attractive and feasible computational effort is challenging.

Hence, the problem is to approximate the operational safety margin that could be
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conservative, yet determined with a minimal computational effort.

Computational effort can be considerably reduced, if the constraint function are

provided in a polynomial form. Hence, a surrogate polynomial model is preferred

instead of a closed loop dynamical model as it provides an inexpensive way to

evaluate the operational safety margin. These models are developed by treating

the closed loop dynamical system as a ‘black-box’ with uncertain parameters as

the inputs and the performance constraints as the outputs. Polynomial chaos

modelling approach is used to derive the surrogate models.

4.2.3 Operational safety margin of TVC benchmark model

A constrained optimisation problem to evaluate the operational safety margin for

TVC benchmark model is formulated using the specifications in Table 2.8 and is

as follows,

min ||δ − δ0||∞m

Subject to δmin ≤ δ ≤ δmax

Pc(δ) ≥ ε

|Qα(t)| ≥ 500kPadeg (4.4)

|θ(t)| ≥ 2◦

|θ̇(t)| ≥ 0.8◦/s

|β(t)| ≥ 6◦

tf∑
t0

|βC | ≥ 200◦
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where t ∈ [t0, tf ], δ are the uncertain parameters as described in Table 2.7, Pc(δ)

is the cumulative probability as described in section 2.4.9 and the constrains on

the time domain specifications are as per Table 2.8. The objective is to determine

the safety margins for a given control law CH∞ at five different wind perturbations

occurring at 30, 35, 40, 45 and 50 seconds. The operational safety margin is de-

termined by solving the constrained optimisation problem in Eqn. 4.4. Since the

constrained optimisation is not necessarily convex, a hybrid differential evolution

method has been used to determine the critical parameter values and the safety

margin over the multi-dimensional uncertain parameter space. The critical simil-

itude ratio (λ̃) and the operational safety margin (ρ) are evaluated for different

wind perturbation cases using the flexible launcher model, and are given in Table

4.1. A high computation time i.e. more than 5 hours is required to evaluate the

operational safety margin for each wind instance when the flexible launcher model

is utilised.

In order to reduce the computational time, surrogate polynomial models from

section 3.4, Chapter 3 are utilised as constraints. It can be seen from Table 4.1

that the computational time reduces significantly when the surrogate models are

utilised. Due to the inherent error in the approximation, the critical parameter

value found using polynomial model is not the same as the original launcher model.

It is found that λ̃ < 1 for the wind perturbations occurring at 35, 40, 45 and

50 seconds. This indicates a reduced level of robustness, whereas for the wind

perturbation occurring at 30sec, the value of λ is slightly greater than 1 indicating

good robustness. For wind perturbation occurring at 40 and 45 seconds, the critical

similitude ratio (λ̃) is 0.66 and 0.68 (for the launcher model) respectively, indicating

that the reference set has contracted to a small safe region around the nominal
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parameter value.

Table 4.1: Critical similitude ratio (λ̃) and operational safety margin (ρ) results
for the launcher & polynomial surrogate model

Time instance of wind perturbations
30sec 35sec 40sec 45sec 50sec

L
au

n
ch

er
M

o
d
el

λ̃ 1.05 0.71 0.66 0.68 0.88

ρ ≥ 2.65 2.78 1.88 1.75 1.8 2.32

CPU Time (sec) 20914.33 16524.17 16948.07 18085.58 18381.9

P
ol

y
n
om

ia
l

M
o
d
el λ̃ 1.05 0.756 0.685 0.718 0.899

ρ ≥ 2.65 2.78 2 1.81 1.9 2.38

CPU Time (sec) 181.27 442.16 211.41 366.65 204.07

4.2.4 Worst case analysis inside the safe region

To gain further insight about the levels of each performance deviations that

could occur within the safe region defined by the operational safety margin, and to

verify that indeed the safe region has no violation of any performance criterion, a

worst case analysis is performed on the original launcher model. In each case, the

perturbations are limited within the set defined by the values of operational safety

margin given in Table 4.1 respectively. Optimisation based worst-case analysis
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Figure 4.2: Comparison of rigid mode worst case perturbations for max |Qα(t)|
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Table 4.2: Worst case results inside safe region

Cost Function Worst case values
30sec 35sec 40sec 45sec 50sec

max
t∈[t0tf ]

∣∣Qα(t)
∣∣ max 388.11 393.44 423.09 467.65 476.51

mean 340.85 355.41 385.65 425.83 423.46
std 42.84 37.24 39.71 44.25 47.84
failures 0 0 0 0 0

max
t∈[t0tf ]

∣∣β(t)
∣∣ max 5.78 5.85 5.94 5.91 5.993

mean 4.10 4.62 4.84 4.76 4.45
std 0.85 0.71 0.67 0.68 0.83
failures 0 0 0 0 0

max
t∈[t0tf ]

∣∣θ(t)∣∣ max 4.51 4.24 4.21 4.53 4.13
mean 3.51 3.46 3.56 3.51 3.04
std 0.58 0.44 0.45 0.52 0.5
failures 0 0 0 0 0

max
∣∣θ(ttf )∣∣

max 0.199 0.152 0.144 0.145 0.138
mean 0.038 0.033 0.032 0.035 0.034
std 0.026 0.026 0.024 0.030 0.025
failures 0 0 0 0 0

max
∣∣θ̇(ttf )∣∣

max 0.477 0.465 0.456 0.568 0.385
mean 0.124 0.119 0.118 0.134 0.121
std 0.095 0.095 0.090 0.101 0.101
failures 0 0 0 0 0

Cumulated deflection

max 136.15 138.19 135.54 137.95 135.44
mean 125.43 125.92 125.76 124.95 124.57
std 12.1 12.31 12.00 11.81 11.42
failures 0 0 0 0 0

is performed for the cost functions listed in Table 2.8. The parameter space is

restricted to be within the reference set defined by R(δ0, λ̃m) where m was kept

fixed at 0.5 and λ̃ from Table 4.1. For example, at 40 second wind perturbation,

the λ̃ = 0.66 and m = 0.5 the parameter space is restricted around the nominal

parameter value δ0± λ̃×m i.e. λ̃×m = 0.66× 0.5 = 0.33. The red dashed line in

Figure 4.2 is representative of the safe region in the multi-dimensional uncertain

parameter space. The results of the worst case analysis are shown in Table 4.2.
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Comparing these results with those found in Table 2.9, none of the performance

criteria were exceeded and no instabilities were found. The maximum excursions

for all the performance requirements are within the safe region identified by the

operational safety margin. It is clear that the deflection angle performance re-

quirement were reaching its limits and it is the first violating constraints in all

the cases. Figure 4.2, provides a comparison of the worst case analysis carried

out inside safe region with that carried out over the entire parameter space. The

main parameters contributing to the worst case of aerodynamic load are the aero-

dynamic coefficient, dynamic pressure and centre of gravity. All these uncertain

parameters are at their bounds when the parameter space is restricted within the

safe set. This indicates that the worst case lie near the restricted boundary, and

the performance criteria for the aerodynamic load will violate if these parameters

exceed the restricted space.

4.3 Bernstein expansion based approach

4.3.1 Introduction

While the operational safety margin method is able to ascertain a safe region

around the nominal parameter value, the Bernstein expansion method allows one

to characterise the entire parameter space in safe/unsafe regions. This second

method utilises the Bernstein polynomials and specifically their range enclosure

property,[121, 124], to determine the safe/unsafe regions. Bernstein polynomials

are named after Sergei Natanovich Bernstein, who first introduced it in a short

paper, [125], which gave proof that a continuous function is approximated by a
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polynomial over a defined interval. Since then Bernstein polynomials have been

used for various applications: [126] deals with the computational reachability prob-

lem of a discrete time polynomial dynamical system. In [127], Lane and Riesenfeld

develop methods for isolating the minima/ maxima and the roots of a polynomial

with real coefficients. In computer aided geometric design, [128] discusses the

use of interval polynomials and interval Bezier curves for surface approximations.

In [129], utilises Bernstein polynomials to develop an algorithm for a constrained

global optimisation of mixed-integer nonlinear programming problems. In the field

of robust control, [121] develops two algorithms depending on Bernstein polyno-

mials to ascertain robust stability of polynomials whose coefficients are parameter

dependent polynomials. In [130], uncertain parameter space is classified into fail-

ure and safe regions using Bernstein expansion method for a polynomial inequality

dependent on two uncertain parameters. A recent survey article,[131], on Bern-

stein polynomials and its applications over the last century was written on the

100th anniversary of the Bernstein’s paper [125].

4.3.2 Basic Concept

The core idea with Bernstein polynomial expansion approach is to represent a

given polynomial into a Bernstein polynomial and then utilise the properties of

Bernstein polynomials over a hyper-rectangular box to determine if the polynomial

is satisfied or not. If the maximum value of Bernstein coefficients is negative then

the hyper-rectangular box is considered as a safe region. On the other hand, if

the minimum value of Bernstein coefficient is positive then the hyper-rectangular

box is considered as a failure region. Whereas, if maximum value of Bernstein
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coefficients is positive and minimum value is negative, then the hyper-rectangular

box would contain both safe and failure regions. For more precise determination

of safe/failure regions, sub-division of the hyper-rectangular box will have to be

performed until a sub-divided box is considered safe or fail. This section describes

the procedure for determining the Bernstein coefficients and explains the range

enclosure property for determining safe and failure regions.

Define a multi-index I = (i1, . . . , im) and the multi-powers δI = δi11 δ
i2
2 · . . . · δimm

for δ ∈ Rm. We write I ≤ N if N = (n1, . . . , nm) and if 0 ≤ ik ≤ nk, k = 1, . . . ,m.

Then the I th Bernstein polynomial of degree N is defined as

BN,I(δ) = bn1,i1(δ1)bn2,i2(δ2) · . . . · bnm,im(δm), (4.5)

where for ij = 0, . . . , nj, and j = 1, . . . ,m

bnj ,ij(δj) =

nj
ij

 δ
ij
j (1− δj)nj−ij . (4.6)

The Bernstein expansion approach, [121, 132], first transforms a m-dimensional

multivariate polynomial to a Bernstein polynomial in Eqn. 4.5. The polynomial

representation,F (δ) =
∑M

q=0 aqΦq in Eqn. 3.6 can be transformed into a Bernstein

polynomial representation in Eqn. 4.5. The polynomial F (δ) =
∑M

q=0 aqΦq in Eqn

3.6 is rewritten in terms of δ instead of the orthogonal polynomial basis as

F (δ) =
∑
I≤N

aIδ
I , x ∈ Rm, (4.7)

where aI are the coefficients of the polynomial F (δ), and N is its degree. Also, we
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represent

N
I

 for

n1

i1

 · . . . ·
nm
im

 .

Bernstein polynomials are defined over a unit box U = [0, 1]m. To transform

the polynomial F (δ) in its Bernstein form, δ ∈ Rm has to be mapped affinely onto

the unit box U . For δ = {δ1, . . . , δm} ∈ Rm, the transformation of a polynomial

from its power form in Eq. (4.7) into its Bernstein form results in

F (δ) =
∑
I≤N

bI(U)BN,I(δ), (4.8)

where the Bernstein coefficients bI(U) of F (δ) over the unit hyper-box U are given

by

bI(U) =
∑
J≤I

I
J


N
J


aJ , I ≤ N. (4.9)

The minimum and maximum value of the Bernstein coefficients provide bounds

on the polynomial over a given interval. These bounds can be used to determine

whether a polynomial inequality holds, or not, over a given interval. The idea

here is to consider the surrogate polynomial models as a polynomial inequality,

which would determine whether a specific performance criteria is satisfied, or not,

over a given interval. Using this approach, the entire parameter space can be

characterised into safe and failure regions.

The range enclosing property is used to determine the minimum and maximum

value of the Bernstein coefficients bI(U) in Eq. 4.9 over a unit hyper box U .

150



Specifically, the range enclosing property, [121] is:

∀δ ∈ U : min
I≤N

bI(U) ≤ F (δ) ≤ max
I≤N

bI(U) (4.10)

The range enclosing property helps to determine whether a polynomial inequality,

F (δ) < 0, satisfies or not over a hyper-rectangular box. The satisfaction of the

polynomial inequality F (δ) < 0 corresponds to the maximum value of the Bern-

stein coefficients bI(U) is negative. On the other hand the inequality does not hold

if the minimum value of Bernstein coefficients is non-negative.

4.3.3 An illustration of sub-division algorithm

The range enclosure property is exploited by employing a sub-division algorithm

[132] to determine the regions in the parameter space where the polynomial in-

equality holds or not. The algorithm generates the Bernstein coefficients over a

range on the m-dimensional box. The bounds of the polynomial over a given in-

terval are found using Eq. (4.10) and the polynomial inequality is tested. When

the satisfiability of a polynomial inequality is not known then the m-dimensional

box is subdivided into 2m boxes. The bounds of the Bernstein coefficients in these

new boxes are computed and satisfiability of the polynomial inequality is checked.

Additional subsequent subdivisions are performed for those boxes in with the poly-

nomial inequality cannot be determined. The computational complexity increases

exponentially as the dimension of the box increases. The method is illustrated

with a simple numerical example taken from [55](Chapter 9, page 174). The

stopping criterion of the sub-division algorithm is based on the volume of the m-

dimensional boxes i.e. product of length along each dimension. The algorithm is
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stopped, whenever the volume of the sub-divided boxes is less than 10−5.

Example Consider the System

ẋ(t) = f(δ)x(t), (4.11)

with x ∈ R and

f(δ) = 672.2δ6
1 + 401.7δ5

1δ2 − 75δ5
1 − 727.9δ4

1δ
2
2 + 233.6δ4

1δ2 − 30.5δ4
1 − 254.5δ3

1δ
3
2

−71δ3
1δ

2
2 − 19.6δ3

1δ2 + 26.6δ3
1 − 233.5δ2

1δ
3
2 + 40.2δ2

1δ
2
2 + 64.3δ2

1δ
4
2 + 2δ2

1δ2

+6.6δ2
1 − 282.1δ1δ

5
2 + 152δ1δ

4
2 − 9.3δ1δ

3
2 − 19.7δ1δ

2
1 + 3.7δ1δ2 + 1.9δ1

+251.8δ6
2 + 234.6δ5

2 − 64.8δ4
2 − 19.9δ3

2 + 9δ2
2 + 1.7δ2 − 3.1 (4.12)
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Figure 4.3: Stability regions: green region=stable red region = unstable

is a bivariate (m = 2) polynomial in δ = (δ1, δ2), δ ∈ [−1 1] and the degree of

the polynomial is N = 6, such that f(0) < 0 and f(δ) < 0 for δ belonging to the

stable region. The idea is to characterise the two dimensional parameter space
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into safe and unsafe regions. A sub-division based algorithm is employed and the

steps involved are enumerated in Table 4.3

Table 4.3: Sub-division algorithm based characterisation of uncertain parameter
space

Pseudo-Code
1) Start with either considering the entire parameter space as a hyper-

rectangle or with a pre-defined set of hyper-rectangles.
2) For 1 to Number of hyper-rectangular boxes do.

a) Compute Bernstein coefficients using Eq. 4.9.
b) Find maximum and minimum value of Bernstein coefficients
c) If maximum value is negative do

i) Hyper-rectangular box is a safe region
d) ElseIf minimum value is positive

i) Hyper-rectangular box is a failure region
e) Else

i) Hyper-rectangular box contains both safe and failure regions
ii) Divide this box along each parameter and create smaller

hyper-rectangular boxes
f) End
g) If termination criteria is satisfied

i) Termination criteria is related to the volume of the
hyper-rectangular box.

ii) Exit For loop.
h) Else

i) Continue
i) End

3) End.

Bernstein coefficients for the system in Eq. 4.12 are evaluated using Eq. 4.9.

Subsequently, the range enclosure property of Eq. 4.10 is utilised to classify the

stable and unstable regions in the parameter space. Figure 4.3 depicts the classifi-

cation of two dimensional parameter space into safe and unsafe regions. The green

colour region indicates safe/stable set. The region in red colour indicates unsafe

set corresponding to instability.The total time taken to evaluate the entire param-
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eter space was approximately 30 seconds, and is much faster than the methods

reported in [55] where Lyapunov based analytical methods were used which took

more than one minute to classify safe and failure regions. Simulation based meth-

ods will require finer grids of the parameter space and evaluation of these grids will

be computationally very expensive. Notice that, Bernstein expansion method only

evaluates Bernstein coefficients over a hyper-rectangular box and utilises the range

enclosure property to determine the safe and failure regions. Such a sub-division

based algorithm is computationally inexpensive to evaluate a 2 dimensional pa-

rameter space. But the computation time increases exponentially as the number

of parameters is increased as it requires division along each parameter.

4.3.4 Application: TVC benchmark model

A sensitivity analysis is performed on the worst case found for the performance

criterion on |Qα(t)| with the wind perturbation occuring at 50 second of the flight

instant. For performing the sensitivity analysis, launcher model is evaluated by

varying rigid parameters one at a time while keeping the rest of the rigid parame-

ters fixed at worst case value. The flexible modes are set to the nominal parameter

value. It can be seen from Figure 4.4, that even when the uncertain parameters

corresponding to flexible modes are set to their nominal values, performance crite-

ria is violated by rigid parameters alone. It shows that rigid parameters have major

contribution in the worst case found. This allows us to develop surrogate polyno-

mial models with rigid parameters alone and characterise the uncertain parameter

space into safe and failure regions.

Employing a sub-division algorithm on the TVC benchmark model with all
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Figure 4.4: Sensitivity analysis: flexible uncertain parameters set to nominal values
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the 28 uncertain parameters is computationally expensive. If we start with the

entire parameter space with all the 28 uncertainties under consideration then the

number of hyper-rectangles after initial sub-division along all the 28 uncertainties

will be equal to 228 = 268435456. Often, the number of safe and failure regions

found during this initial iteration will be very few or none at all. Even so, one is

left with large number of hyper-rectangles to investigate and if no safe or failure

regions is found then further sub-division might be required. Each sub-division will

result in 268435456 boxes. In order to reduce the computational effort involved,

we develop a polynomial model for the TVC benchmark by considering the rigid

uncertain parameters alone. Also, worst case analysis performed on the TVC

benchmark showed that the rigid parameters were the key parameters contributing

to worst case values. The computational burden will reduce considerably when just

8 uncertain parameters are considered.
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In Section 4.2.4, it is observed that the performance criterion related to the

deflection angle is the first to violate among the criteria listed in Table 4.2. Also,

Table 4.2 shows that the results of the worst case analysis inside the safe region,

it is observed that performance criteria related to the aerodynamic load and the

deflection angle are at their bounds as compared to other performance criteria.

For application of the Bernstein expansion on TVC models, only these two perfor-

mance criteria are considered for the classification of uncertain parameter space

into safe and failure regions. Also, surrogate polynomial models are converted into

polynomial inequalities as

FQα − 500 < 0 (4.13)

Fβ − 6 < 0

Note that negative values are indicative of safe regions while positive values

correspond to failure regions. Bernstein expansion approach is applied to poly-

nomial inequalities in Eqn. 4.13, for wind perturbation occurring at 40 and 70

seconds of the flight instant. Instead of a sub-division algorithm, a pre-defined set

of hyper-rectangles were generated and then evaluated by Bernstein approach in

order to reduce the computational burden. The entire uncertain parameter space,

δi ∈ [−1 1] (for i = 1, . . . , 8), was divided into 16777216 hyper-rectangles. Each

individual hyper-rectangle had a length of 0.25 along each dimension and hence

had a volume of V olRi = (0.25)8 = 1.5259 × 10−05. Since it is difficult to visu-

alise the higher dimensional uncertain parameter space, in general the 2-d slices of

the multi-dimensional uncertain parameter space are generated for each cases of
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wind perturbation (refer Figure 4.5). In Section 2.4.9, Chapter 2, four rigid uncer-

tain parameters namely aerodynamic coefficient (MCz), centre of pressure (MXf),

Dynamic pressure (MQ) and centre of gravity (MXg), were found as the main

contributors to worst case. 2-D slices of these four parameters at wind instances

of 40 and 70 seconds are shown in Figure 4.5.

These 2-D slices are a conservative way to visualise the higher dimension hyper-

rectangles. The Figure 4.5(a), is classified into three regions, green regions cor-

responds to safe regions, magenta colour represents regions which may be safe or

failure regions depending on the other uncertain parameter values, white regions

corresponds to region which require further investigation. The entire 2-D slice,

when centre of gravity and centre of pressure are considered, can correspond to

safe or failure regions. It is observed that even when these two parameters have

nominal parameter value, failure regions can be found depending on certain com-

binations of other uncertain parameters. This indicates that a failure region lies

close to the nominal parameter value in the higher dimension. Operational safety

margin analysis (refer Section 4.2.3) had showed that the reference set had con-

tracted which indicated a small safe region around the nominal parameter value.

This explains the high number of failures found by the Monte Carlo analysis and

the unstable cases found by the optimisation based worst case analysis (refer Table

No 2.9). Entire rigid parameter space is found to be safe for the case when wind

perturbation is occurring at 70 seconds of the flight instant (refer Figure 4.5(b)).

This result validates the result found by worst case analysis i.e. no worst cases for

wind at 70 seconds are found ( refer Table No 2.9 - 2.10).
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4.4 Risk assessment

Assessment of robustness of a controller in the presence of the uncertain param-

eter variations is necessary to determine if a redesign of the controller is needed

or not. Optimisation based worst case analysis provides a single worst case point

in the uncertain parameter space which corresponds to the poor robustness, or

complete failure of controllers ability to stabilise the spacecraft. Often times this

worst case point lies on the boundary of the uncertain parameter space. The

probability of a uncertain parameter to occur on the bounds is assumed to be

low, and not sufficiently high enough to perform a redesign of the controller. The

population based optimisation algorithm could generate other sub-optimal solu-

tions which have violated the performance criteria and could lie in a region where

the uncertain parameters might have a better probability to occur. It would be

advantageous to investigate these sub-optimal solutions. Unfortunately, optimi-

sation analysis doesn’t provide any statistical information that could provide the

probability of performance criteria violation. Monte Carlo analysis provides statis-

tical information to assess the probability of performance criteria violation. If the

performance criteria violation is considered as failure then failure probability gives

an idea as to how many failures can be expected in a given Monte Carlo campaign

of sample size N. Number of failures will vary with each Monte Carlo campaign,

and so does the failure probability. So, for example, 10 Monte Carlo campaigns

can give 10 different failures, and thus 10 different failure probabilities. Hence,

the failure probability from one Monte Carlo campaign might not be sufficient to

conclude whether a redesign is necessary.

Due to the time complexity involved with the simulator, it may not be possible
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to perform more than one Monte Carlo campaign. In such cases, Binomial failure

analysis, [133], provides an upper and lower bound on the failure probabilities

of observing k or fewer failures among a sample size of N (k ≤ N). The upper

bound on the failure probability corresponds to 10% of the Monte Carlo campaigns

i.e. out of 100 Monte Carlo campaigns, 10 will exhibit a maximum of k failures.

Similarly, a lower bound on the failure probability corresponds to 90% of Monte

Carlo campaigns that exhibit at the most k failures. Using the Binomial failure

analysis, estimates on upper and lower bound on failure probabilities can be found

without actually performing Monte Carlo campaigns. These bounds are directly

related to the risk of accepting a bad design and to the risk of rejecting a good

design. Based on the risk, the control design engineer could determine if a redesign

of controller is necessary or not.

4.4.1 Binomial failure analysis

Consider a Monte Carlo campaign with sample size, N=1000, of which 10 samples

exhibit failure ([133]). One might incorrectly assume that the failure probability

is 10/1000, or 1% and that this sample is typical. In fact, if a second Monte Carlo

campaign is performed then one might find a different number of failures with a

new failure probability. As discussed in the previous section, bounds on the failure

probability provides to the controller designer the risk of accepting a bad design

and the risk of rejecting a good design. How binomial failure analysis can be used

to estimate an upper and lower bounds on the failure probability is shown in [133].

According to binomial failure analysis, the cumulative probability Fbin(k|p,N)

of observing k or fewer failures among a sample size of N with failure probability
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p is given by:

Fbin(k|p,N) =
k∑
j=0

N
j

 pj(1− p)N−j (4.14)

Using Eq. 4.14, for the given k and N , the cumulated probability Fbin(k|p,N)

is plotted in Figure 4.6 by varying p between 0 and 1. This figure is called the

operating characteristic (OC) for a sampling plan (k,N). From Figure 4.6, it can

be observed that about 58.3% of 100 Monte Carlo campaigns will exhibit 10 or

fewer failures at a failure probability of p = 1%. This means that there is 58.3%

chance of accepting a controller design which would exhibit 10 or fewer failures

if the failure probability is 1%. As exact failure probability is not known, it is

desirable to know the upper and lower bounds on the failure probability. The

upper bound is evaluated from the Figure at Fbin = 10% which corresponds to

p = 1.53%. This implies that there is 10% chance of accepting a controller design

for failure probability p = 1.53%. This risk of accepting a bad controller design

is called consumer risk (CR). On the other hand, the lower bound is evaluated

at Fbin = 90% which corresponds to p = 0.7%. It corresponds to the risk of

rejecting a good controller design and is called producer risk (PR). Hence the

failure probability corresponding to consumer and producer risk is pc = 1.53% and

pp = 0.7%, respectively.

4.4.2 Application: TVC benchmark model

In this section, the Binomial failure analysis is applied to the TVC benchmark

model. Since, the performance criterion s4 of Table 2.8 is the first to violate
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among the listed criteria given in Section 4.2.4, consumer risk and producer risk

were evaluated for deflection angle criteria. The bounds on the failure probability

was evaluated at five different wind perturbations occurring at 30, 35, 40, 45 and 50

seconds. Worst case analysis performed on the TVC benchmark model in Section

2.4.9, showed no performance criteria violations for wind perturbations occurring

at 60 and 70 seconds. Hence, these instances were not considered. Consumer

risk and producer risk were evaluated based on the number of failures obtained

from a Monte Carlo campaign (refer Table 2.10 ) performed with a sample size of

N = 1000.

The bounds on the failure probability have been tabulated in Table 4.4. A high

number of failures were recored by Monte Carlo for wind perturbation occurring

at 45 seconds, 111 failure were found in Table 2.10 of Section 2.4.9. The consumer

risk, i.e. 10 out of 100 Monte Carlo campaigns will exhibit a failure probability of

pc = 12.5%, where as the producer risk i.e. 90 out of 100 Monte Carlo campaigns
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will exhibit a failure probability of pp = 9.93%. A redesign of the controller would

be necessary since high failure probabilities were found for the wind perturbation

occurring at 35, 40 and 45 seconds. This is consistent with the results found by

the worst case analysis and operational uncertainty margin estimation. During

the worst case analysis, unstable cases were found at these wind instances along

with sustained actuator saturation. Also, the operational uncertainty margin is

particularly low for these wind instances indicating that the safe region around

the nominal parameter value is small, indicating poor robustness. Redesign of the

controller to take into account the effect of wind perturbation occurring at 35, 40

and 45 seconds is necessary.

Table 4.4: CR and PR for various wind instances corresponding to the deflection
angle requirement

30sec 35sec 40sec 45 sec 50sec
No. of Faliures 13 67 93 111 29

Consumer Risk, (pc) 1.89% 7.82% 10.58% 12.5% 3.7 %
Producer Risk, (pp) 0.95% 5.78% 8.24% 9.93% 2.33 %

4.4.3 Assigning risk to region around worst case

Control design engineers from the aerospace industry often ask for the probability

of failure for a worst case computed using optimisation based worst case analysis.

It usually assumed that the risk of the solution computed using optimisation based

worst case analysis is very low and hence no redesign of the controller is required.

In fact, the exact value of failure probability cannot be assigned to a optimisation

based result. A way to apply the Binomial failure analysis to worst case result

would be to find out the failure region around the worst case using the Bernstein
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expansion method. Once a failure region is identified, Monte Carlo samples can

be generated and observed whether if any of these samples lie inside the failure

region around worst case.

Table 4.5: Bounds of failure region around worst case

Bounds of failure region
Parameters Lower bound Upper Bound
MI -0.25 0.57
MP -0.15 0.66
MCz 0.5 1
MXf 0.38 1
MQ 0.41 1
MXg 0.04 0.86
MM -0.1 0.72
∆β -0.04 0.78
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Figure 4.7: Risk assessment for a sample plan of (1,1000).

In Section 4.3.4, the Bernstein expansion method was applied to TVC bench-

mark model for wind occurring at 40 seconds. The worst case result for the perfor-
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mance criteria corresponding to the deflection angle requirement was considered

for risk assessment. A failure region was identified around the worst case point,

whose bounds along each dimension is provided in Table No 4.5. Uncertain pa-

rameter combinations generated from a Monte Carlo campaign were tested for this

failure region. The results from the Monte Carlo campaign performed in Section

2.4.9 of Chapter 2 were used. It was observed that no uncertain parameter com-

bination lie inside the failure region apart from the worst case obtained from the

optimisation based worst case analysis. So the risk of observing k = 1 or fewer

failures is evaluated using Binomial failure analysis and is shown in Figure 4.7.

Consumer and producer risk are found to be 0.39% and 0.05% respectively. These

values were very small and hence no re-design of the controller is necessary based

on result generated by the worst case alone.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Simulation based V&V methods have been a popular tool for European aerospace

related industries. They are comparatively easy to implement, and adaptable to

complex and non linear dynamic models. The thesis presents the successful ap-

plication of simulation and optimisation based methods on the V&V analysis of a

flexible satellite model for the Earth observing BIOMASS mission and the flexible

launch vehicle models. The robustness of the attitude control system of the flex-

ible satellite model in the presence of significantly large number of uncertainties

(132 uncertain parameters including that of several flexible modes) has been veri-

fied. Frequency domain metrics, such as sensitivity and complementary sensitivity

function, are formulated as worst-case optimisation problems and analysed using

local, global and hybrid (a mix of global and local) optimisation algorithms that

include SQP, GA, DE, HGA and HDE algorithms. Wang et. al. [52], performed

a similar analysis on a flexible satellite model, this was with far lesser number

of uncertainties. This thesis also presents the assessment of the performance of

the optimisation based analysis framework to determine the worst case perturba-
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tion efficiently in the presence of larger number of variables - assessing a realistic

industrial benchmark model with maximum number of uncertainties considered.

The conclusion from the research study is consistent with the previous studies ,

[43, 44, 51, 52, 54, 134], and the comparatively superior performance of the HDE

algorithm was comprehensively demonstrated even in the presence of larger num-

ber of uncertainties.

Subsequent part of the research reported in this thesis focuses on the flexible

launch vehicle model with medium level of uncertainties. The roll coupling effect

in the flexible launch vehicle model was studied using the optimisation based anal-

ysis framework. MIMO margins were computed by perturbing all input channels

simultaneously in order to destabilise the closed loop system. The amount of per-

turbation applied to destabilise the system gives the MIMO margins. Worst case

MIMO margins were then determined in order to study the effects of roll coupling.

During the atmospheric flight phase of the launch vehicle, certain perturbations

can introduce an unwanted roll torque which can further induce oscillations in the

yaw and pitch axis due to roll coupling. Optimisation based V&V, were able to

determine the worst case MIMO margins for different roll rates. It was observed

that as the roll rate increased, the MIMO margins degraded significantly.

Additionally, optimisation based V&V analysis have been carried out to assess

the worst-case limits of the performance objectives of aerodynamic load, pitch an-

gle and cumulative deflection of the flexible launch vehicle model during its thrust

vector control phase. The impact on these performance objectives under the pres-

ence of external wind perturbation and several rigid and flexible mode uncertain

parameters of the model were investigated. The search for sets of uncertain param-

eters that simultaneously optimise the performance objectives on the maximum
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deviations of the aerodynamic load and the deflection angle was formulated as a

multi-objective optimisation problem and solved using the non-dominated sorting

differential evolution (NSDE) algorithm. The non-trivial solutions obtained using

the NSDE algorithm have been compared with that obtained using a popularly em-

ployed non-dominated sorting genetic algorithm. The results showed comparable

performance.

The thesis presents the benefits of developing surrogate models for performing

computationally faster simulation and optimisation based V&V analysis. A non

intrusive polynomial chaos method which utilised the probabilistic collocation sam-

pling scheme was employed for obtaining the surrogate polynomial models. First

and second order polynomial models were generated for different performance ob-

jectives of the TVC benchmark model. Second order surrogate models developed

for performance criteria relating to the aerodynamic load and deflection angle re-

quirement, have showed good approximation to the original launcher model. For

other criteria, a higher order polynomial model might provide better approxima-

tion at a cost of increasing the number of coefficients required for the higher order

polynomial model. Since probabilistic collocation method was employed here, the

number of simulations of the original model were equal to the number of coefficients

of the polynomial. Third order polynomial representation for the performance ob-

jective of the flexible launcher would require more than 2000 coefficients. Hence

developing a third order polynomial model becomes computationally challenging.

Thus, the trade-off for obtaining reliable and accurate polynomial surrogate models

at the reasonable computational overhead was studied.

The surrogate models developed were utilised for performing optimisation based

V&V analysis. These surrogate models were computationally very fast and re-
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quired approximately 200 seconds to perform 10,000 function evaluations, the ac-

tual model would have taken several hours of computation time. The worst case

performance metrics were evaluated very rapidly with the use of better surrogate

models. Worst case directions for the uncertain parameters were also accurately

identified, which matched perfectly with those generated by the original model. A

surrogate modelling tool was developed in MATLAB and added as a new feature

to the WCAT -II toolbox [135].

The thesis also presents methods for characterising a safe region around the

nominal parameter value as well as establishing other disjoint safe regions in the

uncertain parameter space. To this end, operational uncertainty margin estimation

method was applied to identify a safe region around the nominal parameter value.

This method determines the distance between the nominal parameter value and

the boundary of safe/fail region and also quantifies this distance into a safety

margin metric in the uncertain parameter space. This metric was evaluated by

defining an optimisation problem to identify the boundary of safe and fail region

closest to the nominal parameter value. This optimisation problem is then solved

for both original TVC benchmark and its corresponding surrogate model. AS

expected, surrogate model generates the results very rapidly and is favourable to

be used instead of the original model as computational time is reduced from hours

to just couple of minutes. Operational safety margin estimation was also coded in

MATLAB and made available as another feature of the WCAT-II toolbox [135].

In order to classify the entire parameter space into safe and fail regions, Bern-

stein expansion method was applied to the TVC surrogate models. This method

classified a given range of uncertain parameters into safe or fail or into a region

which requires further division of the provided range. This problem is NP-hard
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when entire parameter space is required to be classified and the computational

complexity depends on the number of uncertain parameters at hand. The method

becomes infeasible for the TVC benchmark problem, which has 28 uncertain pa-

rameters. A sensitivity analysis of the given worst case, determined that the rigid

parameters alone were mainly responsible for the worst case values, whereas flex-

ible parameters have comparatively lesser contribution towards the worst case.

Hence, Bernstein expansion method was employed on a surrogate model based

on rigid uncertain parameters alone. For wind perturbation occurring at 70 sec

(Figure 4.5(b)), this method accurately identified the entire parameter space as

being a safe region, whereas for wind perturbation occurring at 40 seconds, both

safe and fail regions were identified. Bernstein expansion method has been also

kept as an advanced feature in the WCAT-II toolbox [135].

Finally, Binomial failure analysis was applied to the failure regions to assign

upper and lower bounds of failure probability. This method was again applied

to the TVC benchmark problem and estimated high failure probabilities for wind

perturbation occurring at 40 and 45 seconds. This validated the worst case results

generated during optimisation based V&V analysis where many cases of instabili-

ties were found. The result suggested that re-design of the controller was required

in order to guarantee safety of the mission.

5.2 Future work

Combing techniques like operational safety margin estimation, surrogate modelling

and optimisation methods for controller tuning, can be taken up as a possible

future work. The problem can be formulated as a multi-objective optimisation
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problem with operational safety margin as one of its objectives. If safety margin

estimation is utilised as one of the objective in multi objective controller tuning

then it would give us an idea about the safe region around nominal parameter

value for each controller configuration evaluated by the optimisation algorithm.

This would be advantageous as robustness of the controller w.r.t the uncertainty

perturbations could be determined for each potential solution in the Pareto front.

The controller configuration in the Pareto front with maximum safety margin value

could be chosen as the solution. However combining safety margin estimation

with multi objective optimisation would lead to a nested optimisation problem as

safety margin estimation is an optimisation problem in itself. The computational

overhead of such a problem can be very expensive. In order to overcome this

issue, surrogate models could be developed and utilised for estimation of the safety

margin, thus reducing the over all time involved for computing.

To elaborate, a proposed mutliobjective controller tuning for a launcher model

during it’s orbital phase with longitudinal spin can be formulated as follows:

u∗ := min
u∈C

Ji(u)

sub to gj(u) ≥ 0 (5.1)

where u is the controller tuning parameters, the objectives are defined as Ji =

[J1 J2 J3]; and constraints as gj = [g1 g2 g3 g4]. The three objectives Ji are de-

fined for minimising the number of of activation, minimising the de-pointing angle

and maximising the operational safety margin metric respectively. The four con-

straints are related to the total fuel consumption, angular rate in x & y axis and

roll speed accuracy. The controller configuration (u) consists of 26 parameters re-
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lated to the roll speed command profile, controller PD gains, deadzone thresholds

and estimator gains. The developed surrogate modelling, safety margin estima-

tion and optimisation algorithms in MATLAB, available as different features of

the WCAT-II toolbox, could be directly utilised to solve the non-traditional opti-

misation problem.

The proposed methodologies in this thesis can also be implemented for tuning

model parameters for a Rover Dynamic Model (RDM). ESA is investigating oppor-

tunities for the next exploration mission and technological developments leading

to a future Mars sample return missions. As a part of such a mission, a sample

fetch rover would retrieve samples for an ascent vehicle. To achieve this objective,

improvements are required with respect to the current state-of-the-art rover explo-

ration. In this framework, the RDM parameters have to be tuned such that the

rover is able to perform various manoeuvres like traversing up/down on a slope,

making a point turn on a slope, climbing over a rocky surface on Mars terrain

with ease. To this end, Astrium Ltd. have incorporated the wheel-soil interac-

tion into the RDM based on the Mars yard developed at Astirum Stevenage. The

developed RDM is of high fidelity and requires approximately a minute for com-

pleting a single simulation run. A multi-objective problem could be formulated for

tuning parameters like longitudinal and latitudinal slip ratio’s while performance

metrics are related to the rover ability of going up/down, point turn on a slope

with minimum slippage as possible and also the rovers ability to climb rocks. The

multi-objective analysis of RDM model will be computationally very expensive.

To overcome this, surrogate models with good polynomial approximation to the

original RDM model could be used to reduce the computational effort. Another

aspect of this project is that the performance metrics are defined at different slope
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angles which increases the number of objectives to be more than 3. Accurate vi-

sualisation of Pareto front for higher dimensional design data presents a challenge

and requires further investigation. Visualisation of such a higher dimensional data

set should be accurate and should help the designer in selecting a potential solution

from the Pareto set of optimal solutions.

Another potential future research area is the application of surrogate modelling

tools for industrial application where higher dimensional data are present. The

curse of higher dimension makes surrogate modelling infeasible for such kind of

models. A method to overcome this issue would be to reduce the number of pa-

rameters involved hence reducing the dimension. When dealing with models with

large number of uncertain parameters, there is a possibility that not all param-

eters will contribute towards the worst case for a given performance metric. In

fact some of them might have very little or negligible contribution towards worst

case. Another way around, would be to use the same number of parameters as

in the original model but removing the coefficients from the polynomial expres-

sion which have negligible contribution. The method of sparse polynomials chaos

can be utilised for developing the surrogate models which provides a method for

automatically detecting significant coefficients of the polynomial model.

Surrogate polynomial modelling method is not restricted to aerospace industry

and has many applications across various fields, some of which are mentioned here.

One potential application area is in the field of climatic sciences, where researchers

are conducting investigations on the impact of location, altitude, magnitude and

timing of volcanic eruptions on global climate. The goal of these studies is to de-

fine a new index called volcanic climate index which considers all the above stated

factors and its impact on global climate. To this end, models have to be developed
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based on the data available on the factors mentioned above. The surrogate mod-

elling techniques could be applied in such a scenario to develop models describing

the volcanic climatic index. Another surrogate modelling application would be

the use of polynomial chaos modelling method in developing observers/controllers

schemes in distributed parameter systems such as flow control. For example, the

Navier-Stokes problem, in which the low dimensional quadratically nonlinear mod-

els can be generated using polynomial chaos method and works are in progress in

this direction.

Risk assessment discussed in this thesis is based on Monte Carlo analysis and

the statistics involved there in. There are techniques available in literature which

are based on optimisation methods for evaluating risk for redesigning a controller.

These methods are called the cross entropy method and buffered failure probability

method. Application of such methods in evaluating worst cases or while optimising

controller tuning parameters would elevate the importance of these applications

significantly, as the industry still relies on Monte Carlo analysis and its statistical

guarantees for redesigning a controller.
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objective parameter synthesis (MOPS), ser. Lecture Notes in Control and

Information Sciences. Springer Berlin Heidelberg, 1997, vol. 224, pp. 13–

21.

[59] H. D. Joos, “A multiobjective optimisation-based software environment for

control systems design,” in Proceedings of IEEE International Symposium

on Computer Aided Control System Design, 2002, pp. 7–14.

[60] ——, “Flight control law clearance using optimisation-based worst-case

search,” in Proceedings of 6th IFAC Symposium on Robust Control Design,

vol. 6, no. 1, 2009, pp. 331–336.

[61] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer,

1999.

[62] “Optimization toolbox user’s guide,” The Mathworks, Tech. Rep., 2000.

[63] D. Goldberg and J. Holland, “Genetic algorithms and machine learning,” in

Machine Learning. Kluwer Academic Publishers, 1988, vol. 3, no. 2, pp.

95–99.

[64] R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics. John

Wiely & Sons, 2007.

[65] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evo-

183



BIBLIOGRAPHY

lutionary optimization as applied to inverse scattering problems,” Inverse

Problems, vol. 25, no. 12, pp. 1–41, December 2009.

[66] N. Mansour, F. Kanj, and H. Khachfe, “Evolutionary algorithm for protein

structure prediction,” in Proceedings of Sixth International Conference on

Natural Computation, vol. 8, 2010, pp. 3974–3977.

[67] V. J. Gillet, “Applications of evolutionary computation in drug design,” in

Applications of Evolutionary Computation in Chemistry. Springer, 2004,

vol. 110, pp. 133–152.

[68] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to

electromagnetics: a review,” IEEE Transactions on Antennas and Propaga-

tion, vol. 45, no. 3, pp. 343–353, 1997.

[69] R. Storn and K. Price, “Differential evolution –a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of Global Optimiza-

tion, vol. 11, no. 4, pp. 341–359, 1997.

[70] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to

electromagnetics,” IEEE Magazine Antennas and Propagation, vol. 53, no. 1,

pp. 38–49, 2011.

[71] J. Kim, D. G. Bates, and I. Postlethwaite, “Nonlinear robust performance

analysis of an aeroelastic system,” in Proceedings of the 16th IFAC World

Congress, 2005, pp. 4–8.

[72] L. Davis, Handbook of Genetic Algorithms. New York: Van Nostrand Rein-

hold, 1991.

184



BIBLIOGRAPHY

[73] J. Yen, J. C. Liao, B. Lee, and D. Randolph, “A hybrid approach to mod-

eling metabolic systems using a genetic algorithm and simplex method,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-

ics, vol. 28, no. 2, pp. 173–191, 1998.

[74] B. Mansoornejad, N. Mostoufi, and J. F. Farhang, “A hybrid GA-SQP opti-

mization technique for determination of kinetic parameters of hydrogenation

reactions,” Computers and Chemical Engineering, vol. 32, no. 7, pp. 1447–

1455, 2008.

[75] T. Rogalsky and R. W. Derksen, “Hybridization of differential evolution

for aerodynamic design,” in Proceedings of the 8th annual conference of the

computational fluid dynamics society of Canada, 2000, pp. 729–736.

[76] M. Watt, M. Yu, A. Falcoz, A. Kron, P. P. Menon, F. Ankersen, and L. Mas-

sotti, “Integrated structure/control optimisation applied to the biomass

earth observation mission,” in Proceedings of AIAA Guidance, Navigation,

and Control (GNC) Conference. AIAA 2013-4714, 2013.

[77] M. Watt, M. Yu, A. Falcoz, P. Singh, and C. Warren, “BIOMASS normal

mode aocs : classical versus robust design,” in Proceedings of International

ESA Conference on Guidance, Navigation and Control Systems, Czech Re-

public, June 2011.

[78] S. Skogestad and I. Postlethwaite, Multivariable feedback control: Analysis

and Design, 2nd ed. New York: John Wiely & Sons, 2005.

[79] A. Marcos, H. G. D. Marina, V. Mantini, C. Roux, and S. Bennani,

“Optimization-based worst-case analysis of a launcher during the atmo-

185



BIBLIOGRAPHY

spheric ascent phase,” in Proceedings of AIAA Guidance, Navigation, and

Control (GNC) Conference. AIAA 2013-4645, 2013.

[80] C. Roux and I. Cruciani, “Roll coupling effects on the stability margins

for vega launcher,” in Proceedings of AIAA Atmospheric Flight Mechanics

Conference and Exhibit. AIAA 2007-6630, 2007.

[81] M. Ganet-Schoeller and M. Ducamp, “LPV control for flexible launcher,” in

Proceedings of AIAA Guidance, Navigation, and Control Conference. AIAA

2010-8193, 2010.

[82] M. Ganet-Schoeller, J. Bourdon, and G. Gelly, “Non-linear and robust sta-

bility analysis for atv rendezvous control,” in Proceedings of AIAA Guidance,

Navigation, and Control Conference. AIAA 2009-5951, 2009.

[83] D. L. Johnson, “Terrestrial environment (climatic) - criteria guidelines for

use in aerospace vehicle development,” NASA Technical Memorandum 4511,

Revision, 1993.

[84] I. Rongier and J. Droz, “Robustness of Ariane 5 GNC algorithms,” in Pro-

ceedings of the 4th ESA International Conference on Spacecraft Guidance,

Navigation and Control Systems,. ESTEC, Noordwijk, The Netherlands,

October, 1999.

[85] C. A. Coello Coello, “An updated survey of evolutionary multiobjective op-

timization techniques: state of the art and future trends,” in Proceedings of

Congress on Evolutionary Computation, vol. 1, 1999.

[86] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic

186



BIBLIOGRAPHY

algorithms,” in Proceedings of the 1st International Conference on Genetic

Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1985, pp.

93–100.

[87] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization.” in Proceedings of

the Fifth International Conference on Genetic Algorithms, vol. 93, 1993, pp.

416–423.

[88] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated

sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp.

221–248, 1994.

[89] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic al-

gorithm for multiobjective optimization,” in Proceedings of the First IEEE

Conference on Evolutionary Computation, IEEE World Congress on Com-

putational Intelligence, vol. 1, 1994, pp. 82–87.

[90] F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multi-objective

differential evolution,” in Proceedingds of the 2003 Congress on Evolutionary

Computation, vol. 2, 2003, pp. 862–869.

[91] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-

dominated Sorting Genetic Algorithm for Multi-objective Optimization:

NSGA-II, ser. Lecture Notes in Computer Science. Springer Berlin Hei-

delberg, 2000, vol. 1917, pp. 849–858.

[92] A. Seshadri, “A fast elitist multiobjective genetic algorithm: NSGA-II,”

MATLAB Central, 2006.

187



BIBLIOGRAPHY

[93] W. Wang, P. Menon, D. G. Bates, S. Ciabuschi, N. Paulino, E. Sotto,

A. Bidaux, A. Garus, A. Kron, S. Salehi, and S. Bennani, “Verification and

validation of autonomous rendezvous systems in the terminal phase,” in Pro-

ceedings of AIAA Guidance, Navigation, and Control Conference. American

Institute of Aeronautics and Astronautics, August 2012.

[94] R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of metamod-

elling techniques under multiple modelling criteria,” in Structural and Mul-

tidisciplinary Optimization. Springer-Verlag, 2001, vol. 23, no. 1, pp. 1–13.

[95] J. H. Friedman, “Multivariate adaptive regression splines,” The Annals of

Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[96] A. Khuri and S. Mukhopadhyay, “Response surface methodology,” Wiley

Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 2, pp. 128–

149, 2010.

[97] J. P. C. Kleijnen, “Kriging metamodeling in simulation: A review,” European

Journal of Operational Research, vol. 192, no. 3, pp. 707–716, 2009.

[98] H. S. Chung and J. J. Alonso, “Comparison of approximation models with

merit functions for design optimization,” in Proceedings of 8th Symposium

on Multidisciplinary Analysis and Optimization, vol. 200. AIAA 2000-4754,

September 2000.

[99] B. Cheng and D. M. Titterington, “Neural networks: A review from a sta-

tistical perspective,” Statistical Science, vol. 9, no. 1, pp. 2–30, 1994.

188



BIBLIOGRAPHY

[100] R. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach.

Dover Publications, 2003.

[101] K. Karhunen, “Zur spektraltheorie stochastischer prozesse,,” in Annales

Academiae Scientiarum Fennicae,, 1946.

[102] D. Xiu and G. E. Karniadakis, “Modeling uncertainty in steady state dif-

fusion problems via generalized polynomial chaos,” Computer Methods in

Applied Mechanics and Engineering, vol. 191, no. 43, pp. 4927 – 4948, 2002.

[103] N. Wiener, “The homogeneous chaos,” American Journal of Mathematics,

vol. 60, no. 4, pp. 897–936, 1938.

[104] R. H. Cameron and W. T. Martin, “Transformations of Weiner integrals

under translations,” Annals of Mathematics, vol. 45, no. 2, pp. 386–396,

1944.

[105] D. Xiu and G. Karniadakis, “The wiener–askey polynomial chaos for stochas-

tic differential equations,” SIAM Journal on Scientific Computing, vol. 24,

no. 2, pp. 619–644, 2002.

[106] R. Ghanem and J. Red-Horse, “Propagation of probabilistic uncertainty in

complex physical systems using a stochastic finite element approach,” Phys-

ica D: Nonlinear Phenomena, vol. 133, pp. 137 – 144, 1999.

[107] R. Ghanem, “Ingredients for a general purpose stochastic finite elements

implementation,” Computer Methods in Applied Mechanics and Engineering,

vol. 168, no. 1, pp. 19–34, 1999.

189



BIBLIOGRAPHY

[108] T. Y. Hou, W. Luo, B. Rozovskii, and H. M. Zhou, “Wiener chaos expansions

and numerical solutions of randomly forced equations of fluid mechanics,”

Journal of Computational Physics, vol. 216, no. 2, pp. 687 – 706, 2006.

[109] D. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow simulations

via generalized polynomial chaos,” Journal of Computational Physics, vol.

187, no. 1, pp. 137 – 167, 2003.

[110] Z. K. Nagy and R. D. Braatz, “Distributional uncertainty analysis using

polynomial chaos expansions,” in Proceedings of IEEE International Sympo-

sium on Computer-Aided Control System Design, 2010, pp. 1103–1108.

[111] F. S. Hover and M. S. Triantafyllou, “Application of polynomial chaos in

stability and control,” Automatica, vol. 42, no. 5, pp. 789 – 795, 2006.

[112] T. Singh, P. Singla, and U. Konda, “Polynomial chaos based design of robust

input shapers,” Journal of dynamic systems, measurement, and control, vol.

132, no. 5, 2010.

[113] J. Fisher and R. Bhattacharya, “Linear quadratic regulation of systems with

stochastic parameter uncertainties,” Automatica, vol. 45, no. 12, pp. 2831 –

2841, 2009.

[114] S. Hosder, R. Walters, and M. Balch, “Efficient sampling for non-intrusive

polynomial chaos applications with multiple uncertain input variables,” in

Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference. AIAA 2007-1939, 2007.

[115] G. J. A. Loeven, J. A. S. Witteveen, and H. Bijl, “Probabilistic collocation:

190



BIBLIOGRAPHY

An efficient non-intrusive approach for arbitrarily distributed parametric un-

certainties,” in Proceedings of 45th AIAA Aerospace Sciences Meeting and

Exhibit. AIAA 2007-317, January 2007.

[116] G. H. Golub and J. H. Welsch, “Calculation of gauss quadrature rules,”

Mathematics of Computation, vol. 23, no. 106, pp. 221–230, 1969.

[117] M. D. Webster, M. A. Tatanf, and G. J. McRae, “Application of the prob-

abilistic collocation method for an uncertainty analysis of a simple ocean

model,” Tech. Rep. 4, 1996.

[118] E. E. Tyrtyshnikov, “A matrix view on the root distribution for orthogo-

nal polynomials,” Structured Matrices: Recent Developments in Theory and

Computation, Nova Science, New York, pp. 149–156, 2001.

[119] A. H. C. Smith, A. Monti, and F. Ponci, “Uncertainty and worst-case analysis

in electrical measurements using polynomial chaos theory,” IEEE Transac-

tions on Instrumentation and Measurement, vol. 58, no. 1, pp. 58–67, 2009.

[120] L. G. Crespo, D. P. Giesy, and S. P. Kenny, “Robustness analysis and robust

design of uncertain systems,” AIAA Journal, vol. 46, pp. 388–396, 2008.

[121] M. Zettler and J. Garloff, “Robustness analysis of polynomials with polyno-

mial parameter dependency using Bernstein expansion,” IEEE Transactions

on Automatic Control, vol. 43, no. 3, pp. 425–431, 1998.

[122] M. Matsutani, T. Gibson, J. Jang, L. G. Crespo, and A. Annaswamy, “An

adaptive control technology for safety of a GTM-like aircraft,” in Proceedings

of American Control Conference, 2009, pp. 3238–3243.

191



BIBLIOGRAPHY

[123] L. G. Crespo, M. Matsutani, J. Jang, T. Gibson, and A. Annaswamy, “Design

and verification of an adaptive controller for the generic transport model,” in

Proceedings of AIAA Guidance, Navigation, and Control Conference. AIAA

2009-5618, 2009.

[124] G. T. Cargo and O. Shisha, “The Bernstein form of a polynomial,” Journal

of Research of the National Bureau of Standards, vol. 70B, no. 1, pp. 79–81,

1966.

[125] S. N. Bernstein, “Démonstration du théorème de weierstrass fondée sur le
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Appendix A: Recurrence relations

for orthogonal polynomials

The weight functions (w(δ)) and the recurrence relations that generate the basis

of orthogonal polynomials in Table 3.1 are given as follows, [136]:

Gauss-Hermite:

w(δ) = e−δ
2 −∞ < δ <∞

Φq+1(δ) = δΦq − qΦq−1(δ) (2)

Gauss-Laguerre:

w(δ) = δαe−δ α > −1, 0 < δ <∞

(q + 1)Φα
q+1(δ) = (−δ + 2q + α + 1)Φα

q − (q + α)Φα
q−1(δ) (3)

Gauss-Legendre:

w(δ) = 1 − 1 < δ < 1

(q + 1)Φq+1(δ) = (2q + 1)δΦq − qΦq−1(δ) (4)
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Gauss-Jacobi:

w(δ) = (1− δ)α(1 + δ)β α, β > −1,−1 < δ < 1

cqΦ
(α,β)
q+1 (δ) = (dq + eqδ)Φ

(α,β)
q − fqΦ(α,β)

q−1 (5)

where the coefficients cq, dq, eq and fj are given by:

cq = 2(q + 1)(q + α + β + 1)(2q + α + β)

dq = (2q + α + β + 1)(α2 − β2)

eq = (2q + α + β)(2q + α + β + 1)(2q + α + β + 2)

fq = 2(q + α)(q + β)(2q + α + β + 2)
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