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Abstract: This research investigates the potential of improved wastewater treatment plant control for 

the cost-efficient reduction of greenhouse gas (GHG) emissions, providing a detailed exploration of the 

decision variable search space. Key operational parameters identified using global sensitivity analysis 

are sampled to provide sets of values for testing in two pre-defined control strategies. It is shown that 

significant reductions in emissions and costs can be realized by improved selection of parameter 

values. The importance of considering GHGs when selecting a control strategy is also highlighted, as 

the two strategies tested are shown to produce effluent of a similar quality but with significantly 

different emissions and operating costs. 

Keywords: control; global sensitivity analysis; greenhouse gas; operation; wastewater treatment 

Introduction 

Global warming is an internationally recognised problem and the significance of 

greenhouse gas (GHG) emissions resulting from wastewater treatment processes has 

been highlighted in numerous studies (e.g. Rothausen and Conway 2011). Water 

companies are tasked with reducing their GHG emissions to assist in reaching 

national targets, yet they must remain economically viable and ensure adequate 

treatment standards are maintained.  

Appropriate wastewater treatment plant (WWTP) operation can contribute greatly 

to the reduction of GHG emissions (Gori et al. 2011) and it has been shown that 

significant emission reductions can be realized by the implementation of automatic 

control (Flores-Alsina et al. 2011). Previous studies (Flores-Alsina et al. 2014, Guo et 

al. 2012b) have explored the effects of implementing a selection of different control 

strategies and of using different setpoints; however, conclusions drawn regarding 

WWTP control and performance are based on only a small number of modelled 

scenarios. A thorough investigation into the benefits achievable and required trade-

offs is therefore required. 

Multi-objective optimisation has been used to obtain a clearer picture of the trade-

offs between GHG emissions, operational costs and effluent quality (Sweetapple et al. 

2014). However, the results cannot be used to prescribe a specific control strategy that 

will provide a cost efficient reduction of GHG emissions, due to the use of a short 

simulation period and the potential for reduced performance when evaluated over a 

full year. 

The objective of this work is to investigate the potential of improved control 

strategy design and parameterisation for the reduction of GHG emissions from 

WWTPs, taking into account the need to produce an acceptable effluent quality whilst 

remaining cost efficient and considering long term performance. Global optimisation 

of control strategies based on dynamic performance over an extended period is 

challenging due to the high computational demand of mechanistic WWTP models and 

large number of model evaluations required. In this study, therefore, two control 

strategies are considered and operational parameters to which GHG emissions, 



operational costs and effluent quality are found to be most sensitive are sampled using 

the factorial sampling design approach to provide a search of the decision variable 

space.  

Material and Methods 

Wastewater treatment plant model 

Wastewater treatment processes are simulated in BSM2-e (Sweetapple et al. 2013), a 

version of the Benchmark Simulation Model No. 2 (BSM2) (Jeppsson et al. 2007) 

modified for modelling of dynamic GHG emissions. The plant consists of a primary 

clarifier, five activated sludge reactors, a secondary settler, a sludge thickener, an 

anaerobic digester and a dewatering unit. Simulations are carried out as in BSM2, 

using 200 days of constant influent to allow the model to reach steady state then 609 

days of dynamic influent, of which the last 364 are used for evaluation. 

Sources of GHG emissions modelled include: aerobic substrate utilisation, biomass 

decay and denitrification in the activated sludge reactors, leakage and combustion of 

biogas from the anaerobic digester, stripping of methane (CH4) from solution in the 

dewatering unit, generation of energy imported, manufacture of chemicals, offsite 

degradation of effluent, and transport and offsite degradation of sludge. Nitrous oxide 

(N2O) emissions associated with nitrification are omitted due to a lack of consensus 

on suitable modelling techniques (models exist but have been found unable to 

accurately and consistently reproduce experimental data (Sperandio et al. 2014)). It is 

recommended that future work investigate the impact of control strategies developed 

in this study on such emissions, since the net impact on emissions may be less 

desirable than anticipated.  

Emissions are reported in units of kg CO2e/m
3
 treated wastewater, using global 

warming potentials of 21 and 310 for CH4 and N2O respectively (IPCC 1996). 

Operational costs and effluent quality are assessed using an operational cost index 

(OCI) and effluent quality index (EQI) respectively, as defined by Jeppsson et al. 

(2007), and compliance is assessed with regard to the Urban Waste Water Treatment 

Directive requirements (European Union 1991). It must be noted that the results 

obtained from this model are not directly comparable with those from BSM2 due to 

alteration of the activated sludge model to include four-step denitrification.  

Control strategies 

Two different arrangements of sensors, controllers and actuators providing dissolved 

oxygen (DO) control are investigated, since it is known that DO control affects both 

operational costs (due to the impact on energy consumption (e.g. Åmand and Carlsson 

2012)) and GHG emissions (e.g. Aboobakar et al. 2013). Sensitivity analysis has also 

shown aeration intensities in the aerobic activated sludge reactors to be key control 

handles for the reduction of GHG emissions, operational costs and effluent pollutant 

loadings (Sweetapple et al. in press). 

Firstly, the BSM2 default closed loop (DCL) control strategy (Nopens et al. 2010) 

is implemented; and secondly, one in which the DO spatial distribution is controlled 

using three independent control loops (3-DO control strategy). Both are illustrated in 

Figure 1. The BSM2 DCL control strategy with default parameter values (Nopens et 

al. 2010) represents the base case. The 3-DO control strategy has previously been 

shown to provide an acceptable effluent quality at an acceptable cost (Vanrolleghem 

and Gillot 2002) and Guo et al. (2012a) found this strategy to provide the greatest 



reduction in N2O emissions. Given that N2O is a significant contributor to total GHG 

emissions from wastewater treatment and the source with greatest potential for 

improvement (Sweetapple et al. in press), it is thought that this control strategy may 

provide cost-efficient reduction of emissions. Provisionally, a setpoint of 1 g O2/m
3
 

and offset of 200 d
-1

 (Vanrolleghem and Gillot 2002) is set for every controller in this 

strategy. 

 

Figure 1 Control of the activated sludge unit in: a) the DCL control strategy; and b) the 3-DO control 
strategy. 

Selection of sensitive control handles for further adjustment in this study is based 

on the results of global sensitivity analysis (GSA) using Sobol’s method (Sobol 

2001), which enables identification of significant individual and interaction effects 

(Sweetapple et al. in press) as shown in Figure 2. 

 

Figure 2 Sensitivity indices for WWTP operational parameters, calculated using Sobol’s method, 
based on EQI, OCI and GHG emissions. Based on results of Sweetapple et al. (in press). 

GHG emissions, OCI and EQI are all shown to be highly sensitive to wastage flow 

rate (Qw) and Flores-Alsina et al. (2011) has shown significant reduction in GHG 

emissions to be achievable by adjustment of Qw to change the sludge retention time 

(SRT). As WWTPs are subject to seasonal effects, optimal controller setpoints differ 

throughout the year (Stare et al. 2007) and different wastage flow rates may be 

implemented in order to maintain sufficient biomass in the system during winter 

months (e.g. Flores-Alsina et al. 2011). In this research, it is decided to implement 



three different wastage rates (with values to be decided) in both control strategies 

throughout the year, dependent on temperature: Qwlow (when t ≤ 13.2°C), Qwmedium 

(when 13.2°C < t ≤ 16.8°C) and Qwhigh (when t > 16.8°C). Limits are set so as to 

provide three equal width bands, based on the observed annual temperature range. 

Decision variable sampling 

Factorial sampling is selected as it can provide good coverage of the search space 

within a relatively small number of simulations; Monte Carlo sampling, despite 

providing greater coverage, is not suitable due to the time taken for each model 

evaluation. 

A 10-level factorial sampling design is used to generate a set of values for Qwlow, 

Qwmedium and Qwhigh within the range 93.5 to 506.5 m
3
/d for the DCL control strategy. 

This contains 1,000 samples, reduced to 220 when instances in which Qwlow > 

Qwmedium or Qwmedium > Qwhigh are removed. Samples evaluated in the 3-DO control 

strategy are restricted to 84 in which Qwlow > 139.5 m
3
, since these were consistently 

found to produce a compliant effluent in the DCL control strategy. 

Given that the control handle KLa5 is also shown to be key for the reduction of 

GHG emissions and is classified as sensitive or highly sensitive based on all three 

performance indicators (Sweetapple et al. in press), the DO set point for reactor 5 in 

the 3-DO control strategy is also considered as a decision variable. This is sampled 

within the range 0.5 to 2.5 g O2/m
3
 using 5-level factorial sampling for each 

combination of wastage flow rates. 

Results and Discussion  

Wastage flow rate adjustment 

Performance of control strategies with adjusted wastage flow rates which produce a 

compliant effluent is shown in Figure 3. It is observed that implementation of 

different combinations of Qw values can enable a reduction of both GHG emissions 

and OCI simultaneously whilst maintaining compliance in both control strategies.  

In the DCL control strategy, GHG emissions can be reduced by up to 6.0% with 

respect to the base case whilst also reducing the OCI by 2.3%. The lowest emission 

solution uses a constant wastage flow rate of 185.3 m
3
/d – corresponding to a 

significantly longer SRT than in the base case (28 days mean compared with 15 days). 

The predominant source of reduction in operating costs is the reduction of sludge 

produced for disposal, not reduction in pumping costs as may be expected. Energy 

costs actually increase due to increased aeration requirements to maintain the 

specified setpoint. Reduction in GHG emissions associated with a reduction in energy 

required for pumping is also negligible (0.1% contribution). Change in N2O emissions 

from the activated sludge reactors provide 131% of the net reduction in emissions 

whilst non-N2O emissions from the activated sludge reactors provide -61% (i.e. they 

increase). This supports the observation of Flores-Alsina et al. (2011) that a high SRT 

increases direct non-N2O emissions from the bioreactor and indirect emissions 

resulting from electricity use. 

The reduction in GHG emissions and OCI achievable by adjustment of wastage 

flow rate in the default open loop control strategy also corresponds with an increase in 

EQI (although all solutions presented remain compliant, and in some instances the 



 

Figure 3 WWTP performance with adjusted control strategy wastage flow rates (compliant solutions 
only). 

impact on effluent quality is minor); all solutions which reduce the EQI increase 

operational costs. GHG emissions and EQI can be reduced simultaneously through 

improved control of wastage flow rates, but this is at the expense of OCI. 

Solutions in the 3-DO control strategy have significantly lower GHG emissions and 

operating costs than those with a comparable effluent quality in the DCL control 

strategy. This highlights the importance of evaluating a range of alternative control 

options and suggests that, of the two studied, the 3-DO control strategy offers superior 

performance with regard to GHG emissions, operational costs and effluent quality. It 

also supports recommendation that implementation of the 3-DO control strategy 

would be economically wise (Vanrolleghem and Gillot 2002). 

Using the 3-DO control strategy, an equivalent effluent quality to that of the base 

case can be maintained whilst reducing GHG emissions by 6.3% and also cutting 

operational costs by 2.0%, by implementing wastage flow rates of 231.2, 231.2 and 

277.1 m
3
/d for Qwlow, Qwmedium and Qwhigh respectively. This solution provides a mean 

SRT of 22 days – again, significantly greater than that of the base case. 

It may be thought that selection of a control strategy in which energy recovery from 

biogas combustion is reduced would be undesirable in terms of both operational costs 

and GHG emissions. This specific solution, however, exhibits a net decrease in both 
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OCI and GHG emissions despite enabling less energy recovery than the base case 

control strategy: the increase in operational costs as a result of reduced energy 

recovery is less than the cost saving resulting from reduced sludge production, and the 

total indirect emissions resulting from net energy import decrease due to the reduction 

in energy required for pumping and aeration. 

It is also found that implementing solutions providing a shorter SRT can be of 

benefit with regard to cost and emissions: the solution providing the greatest emission 

reduction (7.6%) in the 3-DO control strategy has a constant Qw value of 506 m
3
/d 

(upper limit of range tested) and a mean SRT of 11 days and provides a reduction in 

both N2O and non-N2O emissions from the activated sludge unit. However, this also 

causes a 7.7% increase in EQI. 

These contrasting combinations of Qw values shown to provide a reduction in net 

GHGs with no additional operational costs demonstrate that an emission reduction is 

achievable with different approaches to SRT control, each of which affects different 

sources of emissions. Given the trade-off in EQI observed with a high wastage flow 

rates, however, it is suggested that a high SRT solution may be preferable. 

Furthermore, emissions not included in this study are likely to be significant in low 

SRT solutions: for example, N2O emissions from biological hydroxylamine oxidation 

occur mainly at high NH4
+
 and low NO2

-
 concentrations (Wunderlin et al. 2012), 

which are likely to be present with a low SRT. 

Dissolved oxygen setpoint adjustment 

Figure 4 shows that adjustment of DO concentrations in the final aerobic reactor (by 

manipulation of the DO setpoint) in addition to Qw enables the development of 

solutions which further improve upon the base case GHG emissions and OCI whilst 

having negligible impact on effluent quality. Conversely, selection of too high a 

setpoint is found to increase GHG emissions and OCI. 

 

Figure 4 WWTP performance with adjusted reactor 5 DO setpoint in the 3-DO control strategy and 
adjusted wastage flow rates in both (compliant solutions only); colour denotes EQI, with a darker shade 
representing a better quality effluent. 

The cluster of solutions found to perform best with regard to OCI and GHG 

emissions all have a reduced DO setpoint of 0.5 g O2/m
3
. To enable analysis of the 

effects of Qw adjustments on different contributors to operational costs and GHG 



emissions, two solutions in this cluster are compared in Table 1: Solution A provides 

the lowest GHG emissions and OCI but at the expense of effluent quality, solution B 

provides a smaller (but still significant) emission and cost reduction with regard to the 

base case but with no loss in effluent quality.  

Table 1 Comparison of solutions, with percentage contribution of component change to total change in 

performance indicator in brackets. Only GHG and OCI components of interest are shown. Components 

worsened with respect to the base case are highlighted. 

Solution Base case A B 

Aeration control DCL 3-DO 3-DO 

Mean SRT (days) 15.5 11.4 23.2 

GHG 

components 

(kg 

CO2e/m
3
) 

N2O from activated sludge 0.50 0.34 (83%) 0.31 (111%) 

Non-N2O from activated sludge 0.39 0.35 (20%) 0.43 (-24%) 

Pumping energy 0.01 0.01 (0%) 0.01 (0%) 

Aeration energy 0.05 0.04 (4%) 0.05 (1%) 

Sludge transportation and degradation 0.05 0.06 (-1%) 0.05 (2%) 

OCI 

components 

(-) 

Energy use 5560 4975 (95%) 5369 (70%) 

Energy recovery -6425 -6693 (44) -6089 (-123%) 

Sludge for disposal 7938 8178 (-39%) 7519 (153%) 

Performance 

indicators 

Total GHGs (kg CO2e/m
3
) 1.35 1.16 1.18 

OCI 9472 8860 9200 

EQI 5722 6298 5670 

As with the DCL control strategy, a high SRT solution results in an increase in non-

N2O emissions from the activated sludge but this is offset by the decrease in N2O 

emissions to give a net reduction. 

In solution A, the cost reduction is achieved primarily through a reduction in energy 

use and an increase in energy recovery. Solution B, however, provides significantly 

less energy recovery than the base case yet still offers a reduction in overall 

operational costs and GHG emissions and a greatly improved effluent quality. This 

again suggests that solutions providing the greatest energy recovery from biogas 

production may not necessarily be the most desirable in terms of net benefits. 

Conclusions 

This study has investigated WWTP performance with regard to GHG emissions, 

operational costs and effluent quality under two different control strategies and with a 

range of wastage flow rates and DO setpoints. It is found that independent control of 

aeration in each aerated activated sludge reactor, in particular when using a low 

reactor 5 DO setpoint, enables significant reduction in both GHG emissions and 

operational costs whilst maintaining a high effluent quality. However, in both control 

strategies analysed, significant improvements can be achieved through better control 

of wastage flow rates alone. 

The results emphasise the importance of considering the effects of emission 

reduction measures on emissions from a range of different sources rather than 

focussing on just one high priority source. Increasing the SRT, for example, can result 

in emission and cost reduction but direct non-N2O emissions are increased. 

Furthermore, it is suggested that developing control strategies to provide the greatest 

possible energy recovery may not always be necessary (or desirable) with regard to 

reducing GHG emissions and operational costs, since the effects of reduced energy 

recovery can be offset by the reduction in cost and emissions associated with sludge 

disposal, and a greater effluent quality may be achieved. 
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