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ABSTRACT 

Rapid phenotype identification and screening is a relatively unexplored field compared with 

genotype screening probably owing to a lack of appropriate technology. The Lensless microscope 

has a large field of view and allows the capture of the diffraction pattern from a large number of 

cells simultaneously, its potential to screen growth phenotypes will be evaluated in this thesis. A 

simple algorithm has been developed to measure intensity changes in the Airy Disc First Fringe 

(ADFF) from which length and width dimensions can be derived from scattering objects with an 

accuracy of 5%, except for those lengths below 6 microns which have diffraction-limited 

measurements. A low refractive index growth medium was developed to allow growth phenotypes 

under normal and silver-stressed conditions to be measured for the three model organisms, 

S. pombe, E. coli and S. aureus. Phenotype classification parameters were derived from the growth 

curve of these organisms from which a total of 18 growth phenotypes were identified. All three cell 

populations exhibit survival phenotypes for both transitions from planktonic to surface growth, 

typically 98%, and from natural to stressed growth conditions at sub-lethal concentrations of silver. 

In S. pombe growth phenotypes of interest involve the movement into a possible G0 growth phase of 

the cell cycle on exposure to silver and a skewed ratio of monopolar to bipolar growth rate increase 

not previously observed. S. aureus growth under silver stress displayed asymmetric growth of the 

colonies under silver stress. Analysis of the lag period parameter in the normal growth population of 

S. aureus identified 4% of the population which have the characteristics of a known growth 

phenotype, Small Colony Variants. The lag period parameter also identified two cell populations of 

E. coli under normal conditions, with 20% of the colonies demonstrating a significantly shorter lag 

period length than the remaining 80%. More importantly, a high sub-lethal dose of silver ions 

induces two growth phenotypes in E. coli, called here ‘sub-bug’ with parameters indicating an 

increased resistance to the silver stress growing slowly and a second sub-population with similar 

enhanced silver resistance that grew rapidly, a ‘super-bug’, which has a shorter lag period, a faster 

growth rate and reaches a much larger colony size. Genomic analysis demonstrated that these two 

growth types were genetically identical and are therefore a silver resistant growth phenotype. 
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1 Introduction 

Cell populations contain a degree of cell-to-cell differences, there is said to be heterogeneity 

amongst the sample[1]. Within a planktonic clonal solution the cells will have an identical genotype 

but the individual behaviour of the cell may be masked by the overall bulk behaviours of the 

population.     

The profiling and classification of the phenotype remains significantly miss-understood and the 

incidence of discovery of pathogens and groups of cells displaying unique phenotypes while having 

identical genomes is increasing[2-4]. Linking the genotype to the phenotype as now become a method 

of determining the function of genes which have been sequenced but currently have no known 

function[5]. Detailed knowledge of the phenotype may lead to new understanding of pathology such 

as the mechanisms of drug action[6]. The relationship between genotype, phenotype and 

environment, their ability to determine disease states and the subsequent approach to therapy is 

now an emerging field of research[7, 8]. There is no defined method for the classification of a 

phenotype, which individual characteristics of growth determine one phenotype from another or 

how different two characteristics must be before they are considered to be a new phenotype. 

1.1 The Determination and Classification of a Phenotype 

Genotype is defined as the genetic complement of an organism[9]. Humans and Chimpanzees 

evolved from a common ancestor between 5 and 7 million years ago, and it is reported that they 

differ by ∼35 million single nucleotides and ∼90 Mb of insertions and deletions[10]. This difference 

equates to only 4% of the genome and strains of Staphylococcus aureus have been shown to differ 

by 6%. A phenotype is conventionally described as the sum of the observable properties of an 

organism resulting from the interaction of the environment with the genotype[11]. The characteristics 

of an organism observable by experimental means[9] are those of its phenotype.  The phenotypic 

expression of a given genotypic constitution is governed by environmental factors and conditions[12]. 

Typically then, an organism phenotype is classified by the interaction of its genotype with the 

environment in which it is exposed. If a phenotype is a reaction of the genome to the environmental 

stress, then the phenotype definition must go beyond what can be observed, and to what can be 

measured. 

More recently the definition of phenotype, while remaining the observable characteristics, has 

extended to the mRNA level, as this is immediate the molecular response of the organism to the 

environment[13]. Analysis of the mRNA level of the cell quantifies the expression levels of genes at 

individual time points, this has even been shown to be possible for individual cells[14]. While this 



molecular method of phenotype analysis is now the most-used approach, studying the growth 

phenotype remains paramount in the science of classification (taxonomy), in determining the 

functions of unknown genes and to understand the processing of proteins, from the primary 

structure encoded by the genome to the tertiary or quaternary structure in which they are 

functional. For example, the human genome has 26,588 genes[15] but a number of these genes code 

for more than one protein[16], and the peptide chains encoded undergo varying degrees of post-

translational modifications yielding different protein products[17] leading to a human proteome that 

consists of approximately 1 million proteins[18]. An increasing knowledge of the genotype has lead to 

the interest in the genome-phenome interaction, to  establish the function of an unknown gene[19], [5, 

6], the phenome being the sum of an organisms phenotypic data[20]. Phenotype will change with the 

environment of the organism, gene expression changing in response to stress or overall culture age. 

The conventional growth phenotype for a population of organisms in solution is called planktonic 

growth. Observation of planktonic bacterial growth shows a characteristic growth curve with 5 

distinct growth phases: the lag period, exponential growth phase, stationary phase, death phase and 

finally long term stationary phase, Figure 1.1. At each of these stages the bacteria are expressing a 

different subset of genes dependent on the task required.  

 

Figure 1.1. A typical bacterial growth curve, highlighting the five main growth phases: the lag period (a), the exponential 
growth phase (b), the stationary phase (c), the death phase (d) and the long term stationary phase (e). 

The initial phase of the growth curve is the lag period. This is the period between inoculation of cells 

from one growth environment to another up to the point at which physical growth is detected, i.e. a 

change in dimension. During the lag phase microbes will not increase along any physical dimension, 
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however they are metabolically active, preparing for the exponential phase, repair of oxidative 

damage and the development of intracellular macromolecular stores[21]. Gene expression studies in 

the yeast Saccharomyces cerevisiae[22] show that in the early lag period, almost immediately post 

transfer to new growth conditions, there is an up-regulation in genes related to the synthesis and 

processing of RNA and proteins. The expression of these genes peaks early in the lag period and then 

falls, followed by a peak in the expression of genes encoding proteins required for chromosome 

structure, towards the end of the lag period[22]. Comparative studies conducted using the lactic acid 

bacterium, Lactococcus lactis[23], highlight the up-regulation of genes related to the purine and 

pyrimidine biosynthetic pathways, the enzymes of carbohydrate metabolic pathways and the genes 

involved in amino acid synthesis. Further studies analyse the global expression patterns during the 

lag and exponential phases of the Gram-negative pathogen Salmonella typhimurium growth (Figure 

1.2), and show the up and down regulation of more than half the genes observed[24]. Figure 1.2 

shows, in A, the full gene set of S. typhimurium, the areas highlighted in yellow show no change at 

each time point post inoculation, the areas in red indicated genes which are up-regulated and those 

in blue are down regulated. The table in Figure 1.2 B displays this data quantitatively. 



 

Figure 1.2 A. The up and down regulation of 4,619 genes relative to the expression state in the original inoculum during 
the early growth phases of S. typhimurium. B. The number of genes which change in expression at each time point, with 
a cut off of P<0.05 and an expression change of a minimum of 2-fold [Reproduced with permission from reference 

[24]
].  

These changes are consistent with the idea that during the microbial lag period the cell is assessing 

and adapting to the new nutrient surroundings. Once the assessment and preparation to growth has 

been completed, physical enlargement begins.  

During the exponential growth phase there is the up and down regulation of over half the genes 

(Figure 1.2), double the number with changed expression in the lag period of this organism.  E. coli 

under nutrient stress, as is typical at the end of the exponential growth phase, down-regulates genes 

related to both transcription and translation, consistent with cell elongation halting[25]. When the 

bacteria move into the stationary phase they enter into a state that allows them to survive in a 

nutrient hostile environment; this stationary stage state is consistent with the cells developing a 

resistance to chemical and physical stresses[26]. Approximately 1000 genes in E. coli which are 



expressed during the exponential phase are either entirely switched off or predominantly down 

regulated and instead a set of between 50 and 100 genes, down regulated in growth, begin to be 

expressed. The new set of up-regulated genes control production of storage products, gene 

regulation, energy metabolism and stress resistance, consistent with preparation for prolonged 

survival in a stress environment.  

Bacteria which grow as a culture in solution display the phenotype which is associated with the 

strain, the growth characteristics by which it is characterised. Studies of bacteria growing in the 

environments in which they are naturally occurring, infected tissues for example, are known to show 

different growth characteristics, a different phenotype[27]. One well-studied example of 

advantageous adaptation to environment is the formation of a bacterial biofilm[28-30]. Bacteria 

growing in an aquatic environment have a tendency to interact with solid surfaces, initially with 

reversible adherence, eventually becoming irreversible[31], these initiate the formation of biofilms. 

Biofilms are matrix enclosed microbial layers which adhere to surfaces, bacterial or otherwise[32].  It 

has been shown[33, 34] that biofilms are not simply groups of microbes assembled together at the 

solid-liquid interface but complex biological systems, both structurally and dynamically[32].  

Biofilms are protected by a self-secreted matrix of hydrated extracellular polymeric substances 

(EPS)[35], consisting of glycoproteins, glycolipids, proteins, polysaccharides and in cases extracellular 

DNA[36]. It is currently thought that bacteria form biofilms for one, or both, of two main reasons: 

 The surfaces provide a degree of stability. Cells stabilised close to each other may have a 

catalytic advantage, extracellular enzymes are kept close to cells by the EPS[35]; 

 Biofilms have been shown to provide a degree of physical protection against many 

environmental challenges. 

Within a biofilm of E. coli K-12 MG1655, 206 genes are up-regulated in comparison to cells of the 

same strain growing in planktonic growth during the exponential growth phase[37]. The genes of note 

here are related to energy metabolism, transport and binding. Biolfilms are known to have a 

phenotype different to that of the planktonic cells of which it consists[37], the bacteria within the EPS 

matrix behaving as a multicellular organism. Biofilms are adaptations of bacterial populations to 

survive in unfavourable environments. It is of note that the phenotype of the biofilm can be induced 

by sublethal concentrations of antibiotic[38, 39] and that the biofilm EPS layer acts as a protective layer 

against any environmental attack. The bacteria within a biofilm act as a community, and parallels 

have been drawn between a biofilm and a multicellular organism or indeed a city of micro-

organisms[40, 41]. This way of thinking about the bacterial community is exploring the concept of 



extended phenotype, the idea that a gene has extended phenotypic effects beyond the cell in which 

it is expressed[42, 43]. 

 

The extended phenotype has been described in relation to viruses and their hosts, a baculovirus 

infects the caterpillar of the gypsy moth, inducing a behaviour of climbing to the top of trees, dying 

and essentially raining the virus on the organisms below[44]. The causation of this phenomenon was 

previously unknown with no obvious mechanistic process, but a viral gene has been identified, egt, 

which induces this behaviour in Gypsy moth larvae. Hoover et al.[44] conclude that there is a genetic 

basis for the extended phenotype, whereby the genes of one organism affect the phenotype of 

another. A similar example of the extended phenotype is that of Camponotus leonardi ants 

colonised with Ophiocordyceps unilateralis fungas, the ants displaying behaviour unfavourable to 

them but favourable to the colonisation of the fungi[45]. The parasites in both these situations 

express genes which affect their host in order to make the environment more favourable to them, 

inducing a phenotype with their hosts. Other micro-organisms, instead of influencing their host, 

phenotypically change themselves in order to better survive in hostile environments. Phenotype 

switching is a phenotypic survival technique. 

 

Homogeneous populations can display more than one phenotype. Phenotypic switching, or 

phenotypic dimorphism, is the commutation between phenotypic states[46]. This is displayed by the 

yeast Candida albicans, which has the ability of switching between a number of phenotypes, 

displayed as different colony structural features[47], Figure 1.3. 



 

Figure 1.3 Two phenotypic morphologies of the Candida albicans strain WO-1, A) Flat grey and rod-like and B) Smooth, 
white and coccal, photographs represent images of 20 by 20 μm. [reproduced with permission from reference

[48]
].  

These cells, the daughters of a single cell, are able to display a number of different phenotypes, 

which are inheritable; they are passed on to subsequent offspring. Many of the switches appear 

random and are thought to occur in order to evade threatening environmental changes. In one 

switching strain, 3153A, the gene SIR2 has been identified as being involved with the switching, a 

gene involved in chromosomal silencing[49], the implication being that the genes for all different 

phenotypes are hidden in silenced regions. This phenotypic change is a change in morphology 

detectable at the micron level, a distinct change in size and shape, the change in gene expression, 

also part of the phenotype, is detectable at the molecular level. There will be no change in the 

genome. The phenotypical switching of the cell to evade unfavourable environmental change is 

detected in other micro-organisms although the change in morphology not so pronounced. 



The Gram positive coccus Staphylococcus aureus has developed a method of phenotypic switching 

which aids cell survival in both antibiotic stress and antibiotic deficient conditions[50], favourable for 

the organism as genotypic antibacterial resistance often associated with poor survival in a ‘non-

stress’ environment[51]. As discussed later in this chapter, antibiotic resistance in bacteria is brought 

about by a favourable genetic mutation which confers protection or resistance against the antibiotic 

mechanism[52]. S. aureus has developed a method of resistance to antibiotics which is displayed in a 

small subsection of the population, known as Small Colony Variants (SCVs). SCVs are typically 

defined as having a slow growing phenotype, forming micro-colonies up to 10 times smaller than 

expected[53]. It has been observed that SCVs emerging from a population exposed to the antibiotic 

gentamicin were able to switch phenotype depending on the subsequent stress environment. The 

SCVs displayed phenotypic resistance to gentamicin, when exposed to it, and then switched 

phenotype to promote better survival when the environment is gentamicin free[50]. This is an 

example of a subset displaying different characteristic from the bulk of the population. Does a single 

cell in a population display an advantageous growth phenotype? These individuals are often not 

detected when analysed with the bulk concentration and it is these which are of interest in this 

thesis. Within a population of isogenetic individuals, those with the same genotype, there is a 

variation in the expression patterns across the sample[54]. This is commonly known as phenotypic 

variation[55], the dynamic nature of the bacterial phenotype depending largely on selective gene 

expression. Even under the most uniform of environmental conditions variations in rates of 

development, morphology and molecule concentrations have been observed between clonal 

members of the same population[56]. Recognition of this population heterogeneity is only resolved in 

transfer from the bulk solution to a surface where a single cell or individual may be monitored. It is 

known that there is a fraction of cells, displaying a different growth phenotype, that survive on 

exposure to stress but on re-growth and re-exposure to the same stress they remain sensitive to it[3]. 

One population of these cells is known as persister cells. 

Persister cells are those cells, which are believed to form randomly in a microbial population, that 

become dormant and highly resistant to antibiotics[4, 57]. Persister cells, phenotypic variants of the 

wildtype[58], occur in a maximum of 1% of the population, and whilst tolerant of antibiotics it is 

perhaps more accurate to state that, while persister cells do not die in high antibiotic 

concentrations, they will not grow either[59]. Persister cell populations have arisen in eukaryotic and 

prokaryotic cells alike with examples seen in the yeast Candida albicans, the Gram-negative 

bacterium E. coli[4] and the Gram-positive bacterium S. aureus[60]. The bacteria in a persister cell 

population appear to have developed a tolerance to antibiotics via a phenotypic mechanism unlike 

conventional resistance[4]. The cell appears to enter a dormant state so that all potential antibiotic 



targets are essentially turned off[4]. The validity of this statement has been confirmed by a gene 

expression profile of E. coli persister cells which show a down regulation of biosynthetic pathways[61]. 

E. coli cells were grown on media containing 10× Minimum Inhibitory Concentration (MIC) of various 

antibiotics, ensuring only the persister cells would survive on the plate. It was these survivors which 

were analysed for their gene expression. While persister cells form via a random process in any 

microbial culture, the prevalence of persister cells arising from two other phenotypes discussed 

here, cells in the stationary phase and cells in a biofilm, can be up to 100 fold higher[59]. It has been 

shown that microbes at different stages of growth display different growth phenotypes, cells 

growing slowly may be at the  beginning of the growth curve or at the end, bacteria growing in 

association with other may be part of a phenotype which work together to form a protective 

layer[32].  

We have been developing the concept of phenotype as the sum of the observable properties of an 

organism resulting from the interaction of the environment with the genotype[62]; changing the 

growth environment of the cells induces a change in the transcriptome, the complement of RNA 

molecules, of the organism. Consequently, a phenotype can be defined as the set of protein/enzyme 

concentrations of a cell, theoretically identifying a continuous distribution of phenotypes at any 

given time point, equation ( 1 ): 

          

( 1 ) 

Where   is proteins and so      is the compliment of enzymes within a cell giving rise to a specific 

phenotype    at any given time/cell cycle stage,  . A cell arrives on the surface of the flow cell as its 

own unique phenotype, each cell, at each cell cycle stage will have differing levels of cell wall 

proteins and regulatory proteins, including the enzymes that control the metabolism and so the rate 

of growth. Therefore a phenotype is defined as the metabolome plus the transcriptome of the 

organism, the metabolites plus the gene expression set present in the cell. The description of the 

phenotype in such a way indicates that the phenotype is fluid, constantly evolving, at any given time 

a cell may have a phenotype more favourable to the environment than the others around it. Bacteria 

grown planktonically in a rich growth media may display growth and physiological phenotypes which 

make them distinguishable as a strain from others and can be classified into groups according to 

how they look, grow and behave in different environments. 

The initial classification of bacteria into the current genera involved observation of growth 

phenotype and morphology[63]. In the Final Report of the Committee of the Society of American 



Bacteriologists on Characterization and Classification of Bacterial Types in 1919, Winslow et al.[64] 

outlined classifications into classes initially using basic morphology, size and shape, then further 

classification into orders depending on either growth characteristics, the ability to metabolise 

certain substrates, or both. The incidence of bacterial phenotype variation, as described here, is 

correlated in many circumstances to the number of other bacteria in the vicinity. The transcriptome 

of an organism can be influenced by other environmental factors, typically those associated with 

stress. 

1.2 Influencing the Phenotype.  

The phenotype of an organism is strongly influenced by the growth conditions suggesting the 

hypothesis: genotype + environment = phenotype. The phenotype observed in a laboratory setting 

and used to classify the organism is that of an organism grown in optimum growth conditions. It is 

known that infections are often caused by opportunistic pathogens, that is those bacteria, present in 

the environment or the host’s natural flora, which take the opportunity to grow in a less than 

favourable environment[65]. Bacteria have adapted mechanisms by which they survive in hostile 

environments, often changing phenotype rapidly to cope with a dramatic shift in conditions: 

 Heat shock[66] 

 Nutrient starvation[67] 

 Silver Stress[68] 

 Antibiotic Stress[69] 

While all of the above conditions involve a rapid change in expression patterns of a vast number of 

genes, as a study based on the rapid detection of Hospital Acquired Infections, Here we discuss the 

known effects of two major stress conditions used as antimicrobial measures in the health care 

industry and how they can subsequently induce resistance. 

1.2.1 Inheritable Reduction in Sensitivity Towards Antibiotics 

The World Health Organisation[70] describe antimicrobial resistance as the resistance of a 

microorganism to an antimicrobial medicine to which it was originally sensitive. Bacteria typically 

infer a reduction in sensitivity to antibiotics via a change such as chromosomal rearrangements[71] 

(deletions, inversions, duplications or translocations[72]) or the acquisition of genetic components, 

plasmids, transposons and bacteriophage[52]. These genetic changes enable the bacteria to 

demonstrate a tolerence to the antibiotic attack by one of three ways[71, 73]: 

1. Chemically modifying the antibiotic via enzyme interaction[73]; 

2. Altering the bacterial antibiotic target site[74]; 



3. Altering bacterial membrane permeability and antibiotic efflux[75]. 

The β-lactam antibiotics are broad spectrum antibiotics which are grouped together because they 

share the common structure of a β-lactam ring. The antibiotics inhibit bacterial growth by 

inactivating between 4 and 8 enzymes involved in cell wall synthesis[76]. β-lactamases are enzymes 

produced by antibiotic resistant bacteria which attacks the β-lactam ring of the β-lactam antibiotics, 

hydrolytically cleaving it[77]. While the first of these enzymes, penicillinase, was isolated from E. coli 

these enzymes are now present in a wide range of bacteria which display a reduced sensitivity to 

antibiotics[73]. 

The macrolide family of antibiotics, Erythromycin for example, inhibit bacterial protein synthesis by 

binding to and inhibiting the formation of the 50s ribosomal subunit[78]. Resistant bacteria secrete an 

enzyme which methylates an adenine residue in its ribosomal RNA (rRNA), it is thought that this 

modification induces a conformational change in the ribsosome of the bacteria, the ribosome is still 

able to function but the antibiotic is unable to bind[79].  

Membrane bound efflux proteins are transport proteins involved in the removal of toxic molecules 

to outside of the cell[80]. The drug-specific efflux by Gram-negative bacteria is known to be the key 

component of the resistance mechanism to the antibiotic tetracycline[81]. Tetracycline inhibits 

protein synthesis by preventing the binding of tRNA to the ribosomal acceptor site[82] and while 

genes for the tetracycline efflux proteins have been found in both Gram positive and Gram negative 

bacteria and some eukaryotic cells, Gram negative bacteria are intrinsically more resistant to 

antibiotics due to the activity of their drug efflux systems[80]. Drug specific efflux systems are 

associated with mobile genetic elements, the acquisition of which is enough to confer antibiotic 

resistance[83].  

As discussed above certain bacteria have an inherent resistance to certain antibiotics. However, the 

emergence of antibiotic resistance has shown that within a clonal bacterial population there is a 

subset of bacteria which display antibiotic resistance. Bacteria can gain genetic antibiotic tolerance 

in one of two main ways:  

1. acquisition of genetic material from another bacterium (lateral gene transfer)[84]; 

2. a random genetic mutation[85]. 

Horizontal (or lateral) gene transfer is a mechanism of inheritance of genetic information, from 

another organism via a recombination event which does not require sequence homology[86]. 

Horizontal gene transfer describes the movement of transposable genetic material from one 

genome to a related genome or one genome to an unrelated genome. Moveable genetic elements 



within cells are genetically discrete and structurally separate from the organism chromosome[87], 

such as plasmids, and can be inserted into other organisms at several insertion sites. Enterococci 

have two plasmids conferring antibiotic resistance, one providing erythromycin resistance and 

another tetracycline resistance[88] and these plasmids can be transferred to other bacteria.  

A favourable mutation in the bacterial DNA, which may result in the formation of any of the three 

resistant mechanisms described above, will lead to survival where others do not and will then be 

passed onto subsequent generations. Mutations in the genes coding for efflux pumps have been 

discovered in a diverse range of bacteria resistant to tetracycline, chloramphenicol, and 

quinolones[85]. These bacteria, including Neisseria gonorrhoeae[89], Burkholderia cepacia[90] and 

Campylobacter jejuni[91], over-express the genes for efflux proteins, meaning they are better 

equipped to clear  the cell of toxins. These methods of antibiotic resistance have seen the incidence 

of antibiotic resistance has now reached a point where there are resistant strains of the bacteria 

which cause diarrhoea, sepsis, urinary infections and respiratory infections to name but a few[71], 

the percentage of ventilator-associated pneumonia infections caused by Methicillin Resistant 

Staphylococcus aureus (MRSA) increasing from 40% to 60% in a three year period[92]. While the 

major mechanisms of antibiotic resistance are genotype change related and so therefore out of the 

scope of this thesis, there are incidences of bacterial tolerance to antibiotics which have been 

identified as phenotypic only.  

Previously in this chapter, I have described four examples of bacteria displaying a resistance to 

antibiotics, the switching phenotype of S. aureus, antibiotic resistance in biofilms, the emergence of 

a resistant phenotype during the extended stationary phase of the bacterial growth curve and the 

phenomenon of persister cells[93]. Phenotypic tolerance to antibiotics tends to be a transient 

reversible change as opposed to the permanent change brought about by the genetic mutations of 

typical antibacterial resistance[93]. Phenotypic tolerance may be one of the reasons for failures in 

antibiotic treatments of infection and researching the mechanisms of phenotypic tolerance is key in 

moving forward in infection control, although the incidence of this phenomenon is not reported[93]. 

An example which does induce a quantifiable phenotypical change when introduced into the 

environment of both eukaryotic and prokaryotic cells is silver. The use of silver ions in wound care as 

a broad spectrum antimicrobial agent is widespread in the western world.   

1.2.2 Silver stress  

In a move to reduce the use of antibiotics to treat infection, silver was introduced[94] as bactericidal 

measure in wound dressings[95] and as coating for medical devices[96]. Although previously silver was 



first introduced as part of a sulphonamide antibiotic in burn management[95] and eventually the 

merit of silver as an antimicrobial agent was extended to the width it is currently used.  

The silver (I) ion is thought to disrupt biological processes via the following mechanisms: 

1. Reactivity of the silver ion with sulphur containing elements within the cell[94, 97, 98].  

2. Displacement of native metal ions from their natural binding sites[99]. 

Sulphur is present in the cell in two of the 20 amino acids, methionine and cysteine. The methionine 

amino acid has a methyl group attached to the sulphur ion, whereas the cysteine amino acid sulphur 

is bound to hydrogen. The methyl group in methionine results in this amino acid being less reactive, 

more hydrophobic and physically larger[100]. The disulphide bridges formed between two cysteine 

residues aid stabilisation of both the tertiary and quaternary structures of proteins[101], the thiol 

groups of cysteine residues (-SH) are present in the active sites of enzymes, reversible oxidation 

leading to reaction catalysis[102] and the redox potential of cells has been linked to the reversible 

formation of disulphide bridges within proteins[103].  

The proteins of various species contain between 0.5 and 2.5%[104] cysteine. Figure 1.4 shows how 

many proteins encoded by the genomes of Humans, Drosophila, Saccharomyces cerivisae, E. coli and 

Haloarcula marismortui contain at least one cysteine residue. 



 

Figure 1.4 The percentage of proteins containing one or more cysteine residues (black) compared with the percentage of 
cysteine free proteins (white) encoded in the genome of 5 organisms, Humans, Drosophila, Saccharomyces cerevisae, 
Escherichia coli and Haloarcula marismortui [With permission from reference 

[104]
]. 

Over 80% of proteins in E. coli contain at least one cysteine molecule, Figure 1.4, the percentage of 

proteins containing cysteine being even higher for eukaryotic cells. Silver(I) will covalently bind to 

any sulphur complex, the strongest interaction being with a thiol group[105], the group present on the 

cysteine side chain. From these two facts we can conclude that the presence of silver ions in the cell 

growth environment can lead to the potential disruption of upwards of 80% of the proteins within a 

cell. H. marismortui is a member of the Archaea, which thrives in the Dead Sea. It is used to 

conditions of high light intensity, low oxygen availability and high salinity. It is these facts which 

verify the lack of cysteine residues in the genome of this bacterium. 

Silver can further disrupt the tertiary structure of proteins by covalently bonding two thiol groups 

together to form additional disulphide bridges[106], the silver catalysing reactions between the thiol 



groups on cysteine residues and oxygen molecules present in the cell; both these scenarios leading 

to irreversible conformational changes in protein structure, either changing the function or 

denaturing it completely. 

It is hypothesised that the binding of Ag+ to an iron-sulphur cluster[107] may inhibit the activity of 

succinate dehydrogenase, an enzyme involved in both the electron transport chain and the citric 

acid cycle[108]. Further to this hypothesis it was demonstrated that silver competes for sites which 

should be bound to copper and so silver presence in a cell may lead to copper deficiency[107]. Copper 

concentration is tightly homeostatically controlled within a cell, too high and it can cause the 

oxidation of proteins but it is required as a cofactor of redox enzymes[109]. It has been shown that 

following treatment with silver ions cells experience iron leakage, corroborated by transcriptome 

analysis which demonstrates the up regulation of a number of iron transport genes in 

Staphylococcus epidermis[110]. The displacement mechanism can therefore disrupt the respiratory 

chain and lead to the formation of reactive oxygen species[99]. When the cell cannot detoxify the 

number of reactive oxygen species as quickly as they accumulate, the build up of reactive oxygen 

species leads to oxidative stress. The reactive oxygen species target DNA, RNA, proteins and lipids, 

altering membrane permeability, creating lesions in DNA which block replication, protein-protein 

cross linking and peptide fragmentation[111]. 

As with any hostile environment, when in the presence of silver, a stress response will be initiated in 

the microbes. Analysis of the transcriptome of E. coli K-12 after exposure to silver ions showed the 

up-regulation of 273 genes and the down-regulation of 224 genes[112]. It was revealed that the 

groups of genes up-regulated included those involved in protein unfolding, iron uptake, sulphur 

metabolism and iron sulphur cluster assembly. The gene sets down-regulated included those 

involved in RNA processing, aerobic respiration and translation.  

Incidences of silver resistance have been reported, arising in a number of environmental conditions. 

In silver contaminated environments a number of resistant bacteria have been discovered and more 

importantly there have been silver resistant transposable elements discovered in E. coli[113]. Both 

silver and antibiotics are used in the treatment and prevention of infection in hospital but increasing 

levels of resistance to both has lead to the increase in Hospital Acquired Infections (HAIs). 

1.3 Pathogenic Bacteria and Hospital Acquired Infections 

Pathogenic microorganisms are present in the environment in a great many settings[114], the food 

industry[115], the medical industry[116], the water purity industry[117] and in potential bioterrorism[118] 

events to name a few. Therefore the identification of pathogenic organisms is an ongoing field of 

research because the conventional methods of bacterial identification tend to be complex, lengthy 



and expensive[119-121]. The rapid identification of pathogenic microorganisms usually starts with a 

genome-level analysis made possible by a set of new rapid sequencing technologies[122]. The 

complete genome of 7407 organisms has been sequenced[123] following the development of this 

technology and has brought about a sudden decrease in cost associated with whole genome 

sequencing; the National Human Genome Research Institute (NHGRI) reporting a reduction on cost 

from $95,263,072 in 2001 to $5,826 in 2013[124]. Organisms are classified by their genetic 

relatedness[125], their genotype, further down the dendrogram of classification the number of 

clusters of closely related species increases. Genera of the same family may be related by 50% 

homology, species within a genus related by 70% and individual strains related by 90%. Complete 

genomic analysis of Staphylococcus aureus has shown a 6% difference between a methicillin 

resistant and a methicillin susceptible strain[126].   

HAIs are those which have been acquired by the patient after admission to hospital[127], are usually 

antibiotic resistant and acquired as the result of a healthcare intervention. Statistics from the World 

Health Organisation state that for every 100 patients hospitalised in developed countries, 7 of them 

will develop an infection secondary to the cause of admission[128]. The Health Protection Agency cites 

the environment, the patient’s own flora and other infectious patients as the main three sources of 

infection and lists the following measures which can help prevent the further spread of infection[129]: 

 Patient isolation 

 Regular cleaning 

 Healthcare professionals wearing Personal Protection Equipment and adhering to correct 

hand washing procedures 

 Careful use of antibiotics to minimise the increase in antibiotic resistance[130]. 

I have discussed the resistance of bacteria to antibiotics as a consequence of the over-use of broad 

spectrum antibiotics, treating an infection before the specific bacterial cause has been identified, 

promoting the possible incidence of favourable point mutations. Treating or targeting the specific 

infecting bacteria with a narrow spectrum antibiotic can only be carried out once it has been 

identified and classified. Clinical hospital laboratory classification of bacteria employs traditional 

culture-based identification methods, which require extended growth periods for a successful 

identification lasting several days, such as the Gram stain,  identification of biochemical markers 

unique to species and growth culture[131]. Further to the conventional culture based methods 

described here Hospital Acquired Infections are diagnosed in laboratories using molecular analysis 

techniques including Polymerase Chain Reaction (PCR) and Nucleic Acid Sequence-Based 

Amplification (NASBA)[132]. Sequencing of a whole genome is not required to determine the presence 



of a specific organism. In the case of MRSA, for example, the organism is detected by the presence of 

the specific methicillin resistance gene mecA and one other, Staphylococcus specific gene[133]. While 

these methods have reduced the time to positive identification of microbe of choice and have the 

ability to detect bacterial concentrations as low as 10 complete cells[133], these techniques still 

require trained individuals, a laboratory setting and do not distinguish between viable and non-

viable cells[132]. An infection cannot be left without medical intervention while the cause of infection 

is identified, so contributing to leading to the over use of a broad spectrum antibiotic, an antibiotic 

which will inhibit the growth of a wide range of bacteria. One method of reducing the over 

prescription of the incorrect/non-specific antibiotic is to know what is being treated before it is 

treated. This has lead to an increase in the area of research of rapid identification of pathogens, 

specifically as a point of care device to further reduce time between test and diagnosis.  

1.3.1 The Evolution of Rapid Unicellular Identification at the Point of Care (POC) 

A point of care device is a device for analysis which can be operated outside of a laboratory setting 

and is such that it can be transported to the vicinity of the patient[134]. A POC device needs to be 

accurate, rapid, affordable, simple to operate and generate results within the same health-care 

visit[119, 135], up to 3 hours after the appointment. Peeling et al[120] outline these requirements for an 

‘ideal test’ as the ASSURED scale (Table 1.1), the test should be affordable, sensitive and specific. The 

test should be user friendly, i.e. requiring minimal training to carry out a few simple steps; robust 

and rapid, meaning results are available in sub 30 minutes and all tests can be stored at room 

temperature; equipment minimal; and easy to make available to all that require it. 

Table 1.1. The ASSURED criteria for the ideal rapid POC test [adapted from reference
[120]

]. 

A  Affordable  

S  Sensitive  

S  Specific  

U  User Friendly  

R  Robust and Rapid  

E  Equipment Minimal  

D  Deliverable to those who need them  

 

An example of a simple point of care test which appears to meet all of the criteria in Table 1.1 is the 

pregnancy test; it is affordable, requires no prior training to operate, sensitive enough for the 



application, requires no extra equipment to operate and provides a rapid result. This test however, is 

qualitative, i.e. the data can be observed but not measured[136]. The pregnancy test also has an 

incidence of false negative result (up to 33%)[137], more likely in very early pregnancy as there is a 

threshold level of hormone required for a positive test and certain medications can skew the results 

of the test[138]. Point-of-Care devices for highly infectious diseases or bioterrorism events cannot 

afford to wait for a threshold level of pathogen before they detect it, neither is it advisable to know 

whether it is present in the sample or not without knowing at what level it is.  

Recently the development of devices for the rapid detection of HAIs has increased significantly and a 

volume of work has been performed focused on the rapid detection of Multi-Resistant 

Staphylococcus aureus[139]. The basic platform of these devices can, theoretically, be applied to the 

detection of any pathogenic bacteria and so the rapid quantitative detection methods of MRSA are 

reviewed in Table 1.2. 

  



Table 1.3 A review of devices developed for sub 24hr detection of HAIs. Sensitivity is the true positive rate, the 

proportion of positives measured as positives and specificity is the true negative rate, the number of negative results 
measured as negatives. The table also highlights the potential advantages and disadvantages of each of the methods. 

Test How it works Sensitivity 
Advantages Disadvantages Test 

Duration 
References 

BacLite Rapid 
MRSA 

After growth in 
selective media, 
cells are lysed 
and the level of 
the 
housekeeping 
enzyme 
adenylate kinase 
are detected 
using 
bioluminescence. 

90.4% Detects only 
viable cells 

Requires 45 
minutes of 
technician time 
A result takes 5 
hours to 
achieve 

6 hours [139-141] 

StaphyloResist Multiplex PCR 
assay with 
results within 24 
hours. 

98% Result in 2.5-
4 hours is 
possible. 

Not a point of 
care  
device, requires 
a laboratory 
setting with 
significant 
levels of 
specialised 
equipment. 

4 hours [142] 

Xpert MRSA Purification and 
concentration of 
target organism 
followed by PCR 
amplification of 
the SCCmec 
cassette 

90% On demand 
results in 66 
minutes or 
less 
Early assay 
termination 
leading to 
faster results 
Hands on 
time of 1 
hour only 

 SCCmec 
cassette 
has proven 
to be 
unstable 

 Moderately 
complex 
test to be 
performed 
by lab 
personnel. 

Sub 2 
hours 

[143-145] 

BD GeneOhm 
MRSA 

Real time PCR 
assay, detecting 
half a unique 
S.aureus 
sequence and 
half the SCCmec 
cassette 

89%   Results 
in two 
hours 
directly 
from a 
nasal 
sample 

 SCCmec 
cassette 
has proven 
to be 
unstable 

 Requires a 
degree of 
laboratory 
processing 
prior to the 
PCR. 

2 hours [146-148] 

Current rapid identification of pathogenic microorganisms is distinctly split into two groups, 

culture/growth based methods and Nucleic Acid Amplification Tests (NAATs). None of the tests here 

are 100 % sensitive, 100 % specific or able to detect a single pathogenic cell within a sample. A 



comparison of all tests has been performed extensively elsewhere[149]. Rapid identification will 

decrease the requirement for antimicrobial therapy and improve patient care[150]. 

These technologies are the current solution and a compromise between the POC device described in 

Table 1.1 and the current limit to technology. Recently there have emerged new technologies which 

have concentrated on the specific issues relating to rapid detection. The Verigene Gram-Positive 

Blood Culture (BC-GP) nucleic acid test[151], for example, detects a number of pathogens directly 

from a blood sample[152] using gold-nanoparticle labelled probes. The rapid identification of 

pathogens directly from blood can reduce mortality rates by reducing the overall test time 

significantly. 

These methods of single cell detection are restricted by cost limitations, initial cell numbers and the 

requirement of trained healthcare professionals. Results take hours to be obtained and any further 

information about the sample is lost as it has first been purified to increase the concentration of the 

target molecules. A method of rapidly screening microbial growth phenotype is required. As 

discussed above the bacterial stress response is very rapid, the up-regulation of numerous genes 

occurring almost immediately after exposure[112]. The ability to detect this change in bacterial 

expression is potentially quicker than current genomic and growth methods. The Lensless 

Microscope is proposed for this application. 

1.4 The Technique of Lensless Microscopy  

Conventional imaging of objects which cannot be seen by the naked eye is performed using the light 

microscope with a number of limitations: 

1. Limited depth of field[153]; 

2. Relatively small Field of View[154]; 

3. The accurate size measurement of images is limited by the diffraction limit. 

4. Need for focussing fluid for high magnification 

A light microscope has a short focusing lens in close proximity to the sample to be imaged and a long 

focusing lens in the eye-piece. The depth of field is related to the magnification factor used in the 

eye-piece, decreasing as the magnification increases[153]. At a magnification of 40x on a light 

microscope it is estimated that the field of view is 0.036mm2, and so the capability to observe 

simultaneously only a small number of cells[155]. By using the Lensless microscope we seek to address 

some of the limitations of the light microscope while also creating a device which is cost effective, 

simple to operate and possible to operate at the POC. The Lensless microscope has previously been 



applied to measure the lengths and morphologies of nematode worms[156] and to discriminate 

between cell types in a blood plasma sample[157]. 

The Lensless microscope as a device to image cell diffraction patterns was first described both 

theoretically and practically by Ozcan & Demirci in 2008[158]. This initial Lensless microscope has a 

CCD chip with pixels of 9.2 µm, a field of view of 37.25 mm × 25.70 mm and has the potential to 

image the diffraction patterns of between 11 and 35 microparticles per square mm. In this case this 

is a field of view of over 2 orders of magnitude larger than conventional light microscopy. Ozcan’s 

device is a proof-of-principle system which demonstrates that a primitive form of the Lensless 

microscope and simple counting software is able to count the number of diffracting objects, of a 

particular size, in a sample. Development of this idea by ‘The Ozcan Research Group’[159] has 

explored the extent to which this simple idea can be exploited. Further publications[160, 161] 

demonstrate that with improvements to experimental set up and digital recording the Lensless 

microscope and related processing software has the ability to determine between different cell 

types from the variation in diffraction signatures[162]. The diffraction pattern can be holographically 

reconstructed into a 3D image of the object, replacing the complex optics with the signal 

processing[163, 164], [157, 165] and producing images which one would expect to see from a light 

microscope.  

The process of holographic reconstruction involves the raw diffraction pattern image being rebuilt 

into the image of the scattering object. There are a number of methods of achieving this, each 

having their own benefits[154]. Here we describe one method used by The Ozcan Research Group[159], 

an Interferometric Phase-Retrieval Technique. The steps of this process involve iterating the image 

back and forth between the initial hologram image, located at the screen, and a virtual image plane. 

This process gradually focuses the hologram, producing an image recognisable as a light microscope 

image. The typical images produced by this process are shown in Figure 1.5. The figure further 

demonstrates how this method is able to distinguish between cell types in a mixed sample. Even 

without holographic reconstruction, the diffraction patterns appear different, the cells produce 

diffraction patterns dependent on their size, position, shape and physical components. These 

differences will be discussed further in chapter 2. 

 

 



 

Figure 1.5 A demonstration of the images which can be reconstructed holographically from the corresponding diffraction 
patterns [reproduced with permission from reference 

[157]
]. These cells were individually identified, by their diffraction 

pattern, from a mixed cell sample. 

The group[159] has shown that the identification of cells in an environment which is not conducive 

to growth can be done very successfully, they have demonstrated that diffraction patterns, and 

subsequent holographic reconstruction, is enough to identify cell types in a mixed solution of cells, 

and have developed complex algorithms to extract data of the highest quality from small poor 

scattering objects such as bacterial cells. They show that this technology can be refined to work on 

the most common of platforms, a basic mobile telephone[166, 167]. A further cellphone device acts as 

both optofluidic device and a cell imager, recording movies of fluorescent labelled cells flowing 

through the microfluidic channel[168]. The software on the cell phone has the capability to rapidly 

process the movie stills to count the number of cells and the cell density. The benefits of these cell 

phone systems are that the experimental chamber is disposable, light weight[169] and can be 

attached to a device already owned by the operator[170]. This method collects the size and shape 

data from individual cells, and we propose that the Lensless microscope technology can be adapted 

to record the phenotypic data from single cells over time. 

1.5 Aims and Objectives 

The rapid detection of organisms beyond the genotype is important as there are increasing cases of 

pathogens adapting to their environment phenotypically[3, 21, 48, 57]. A great deal is known about the 



genome of organisms, with 7407 full genomes sequenced and the cost of sequencing a genome 

reducing by 99% in 22 years[123]. Understanding the phenotype will lead to better understanding of 

the functions of unknown genes and the way in which bacteria work together synergistically to form 

a stronger multicellular organism. 

The Aim of the thesis is: 

To design a Lensless microscope device and to assess the performance of this Lensless microscope to 

perform rapid phenotype screening. The device will be tested for a potential application in rapid 

identification of organisms. 

Thesis objectives are: 

1) Development of the Lensless microscope technology and a new analysis algorithm. 

2) To use the Lensless microscope to accurately measure growth phenotypes; 

3) Derive a potential set of growth phenotype classification parameters and interrogate their 

distributions;  

4) Investigate phenotype adaptation in response to a silver-stress induced growth phenotypes 

to classify: 

a. Single cellular behaviours of eukaryotic Schizosaccharomyces pombe; 

b. Phenotypes of single cells and small colonies of the Gram-negative prokaryote 

Escherichia coli; 

c. Phenotypes of single cells and small colonies of the Gram-positive prokaryote 

Staphylococcus aureus; 

5) Perform genetic validation of the presence of a phenotype over genetic conferred tolerance 

where required.  

Initially I will demonstrate modification of the lensless microscope technology for the measurement 

of eukaryotic and prokaryotic growth and analyse the diffraction patterns of single cells grown on 

surfaces. The diffraction patterns recorded by the Lensless Microscope will be interrogated with a 

new, simple algorithm which negates the requirement for current holographic image reconstruction 

methods, while not discarding any useful information, and converts this information into useful, 

tangible size calibration. Chapter 2 explains the theory behind the Lensless microscope, the 

development of the device and the analysis of the diffraction patterns. This chapter takes an initial 

look at the calculation of the length and width of a model eukaryotic unicellular organism, S. pombe 

as confirmation of the analysis and calibration methods. 



In Chapter 3 I aim to apply this analysis method to study the phenotypic growth of a single 

eukaryotic cell, S. pombe, producing growth curves for N = 100 single cells and extracting 11 growth 

parameters. The parameters of this growth will be compared to the same parameters when N = 100 

cells are grown under silver stress (AgNO3). The distributions of these growth parameters will be 

analysed using tests of normality and non-parametric distribution comparison methods, to 

determine whether, within the growth parameters, phenotypic variability can be determined and to 

explore the new phenotype induced by the silver stress. 

Chapter 4 aims to explore the growth phenotype of single cells and small colonies of the model 

Gram negative organism E. coli K-12 MG1655 under controlled growth conditions and silver stress 

conditions. The growth parameters will be extracted and phenotypes, which arise in both the normal 

growth conditions and as a result of growth in the presence of silver ions, will be identified using the 

same distribution analysis techniques. Colonies displaying different growth phenotypes will be 

sequenced and the genotype compared to the known genomic sequence of E. coli K-12 MG1655. 

The genotype validation attempts to show the favourable changes in growth are genotypic or 

phenotypic. 

The growth phenotype of the Gram positive organism S. aureus with and without the presence of a 

sub-lethal concentration of silver ions is the aim of chapter 5. As with chapter 4 this chapter will 

analyse the growth phenotype of colonies which arise from single cells and small colonies. The 

chapter will study the effect of Gram positive cell wall on the ability to survive hostile environmental 

conditions and the known ability of small colony variants to switch phenotype. 

Prior to collection of growth data, extraction of growth parameters, analysis of parameter 

distributions or challenging microbial growth with environmental stress conditions the use of the 

Lensless microscope for this application must be assessed. In chapter 2 I aim to develop the Lensless 

Microscope device, develop a simple method of analysing the collected diffraction patterns and to 

prove that this method provides credible data with the use of calibration spheres and the model 

eukaryotic rod shaped organism, S. pombe. 

  



1.6 References 

 
1. Altschuler, S.J. and L.F. Wu, Cellular Heterogeneity: Do Differences Make a Difference? Cell. 

141(4): p. 559-563. 
2. Stewart, P.S. and J. William Costerton, Antibiotic resistance of bacteria in biofilms. The 

Lancet, 2001. 358(9276): p. 135-138. 
3. Balaban, N.Q., et al., Bacterial Persistence as a Phenotypic Switch. Science, 2004. 305(5690): 

p. 1622-1625. 
4. Lewis, K., Persister Cells. Annual Review of Microbiology, 2010. 64: p. 357. 
5. Bacterial genomics: Connecting genotypes and phenotypes. Nat Rev Micro, 2012. 10(9): p. 

595-595. 
6. Nichols, R.J., et al., Phenotypic Landscape of a Bacterial Cell. Cell, 2011. 144(1): p. 143-156. 
7. Thorisson, G.A., J. Muilu, and A.J. Brookes, Genotype-phenotype databases: challenges and 

solutions for the post-genomic era. Nat Rev Genet, 2009. 10(1): p. 9-18. 
8. GEN2PEN. Project Summary and Objectives.  2011  [cited 2013 2nd December]; Available 

from: http://www.gen2phen.org/about-gen2phen/project-summary-and-objectives. 
9. Brock, T.D., D.W. Smith, and M.T. Madigan, Biology of Microorganisms. 1984, USA: Prentice-

Hall International. 
10. Varki, A. and T.K. Altheide, Comparing the human and chimpanzee genomes: Searching for 

needles in a haystack. Genome Research, 2005. 15: p. 1746-1758. 
11. Nester, E.W., et al., Microbiology. 2nd ed. 1978, USA: Holt, Rinehart and Winston. 
12. Schlegel, H.G. and K. Schmidt, General Microbiology. 6th ed. 1988, Cambridge: Cambrige 

University Press. 
13. Bochner, B.R., Global Phenotypic Characterization of Bacteria. FEMS Microbiol. Rev., 2009. 

33(1): p. 191. 
14. Ramskold, D., et al., Full-length mRNA-Seq from single-cell levels of RNA and individual 

circulating tumor cells. Nat Biotech, 2012. 30(8): p. 777-782. 
15. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-

1351. 
16. Brodky, G., et al., The human GARS-AIRS-GART gene encodes two proteins which are 

differentially expressed during human brain development and temporally overexpressed in 
cerebellum of individuals with Down syndrome. Human Molecular Genetics, 1997. 6(12): p. 
2043-2050. 

17. Boulter, D., B. Parthier, and L. Beevers, Post-Translational Modifications, in Nucleic Acids and 
Proteins in Plants I. 1982, Springer Berlin Heidelberg. p. 136-168. 

18. MÃ¼ller, A., R.M. MacCallum, and M.J.E. Sternberg, Structural Characterization of the 
Human Proteome. Genome Research, 2002. 12(11): p. 1625-1641. 

19. Dutilh, B.E., et al., Explaining microbial phenotypes on a genomic scale: GWAS for microbes. 
Briefings in Functional Genomics, 2013. 

20. Freimer, N. and C. Sabatti, The human phenome project. Nature genetics, 2003. 34(1): p. 15-
21. 

21. Rolfe, M.D., et al., Lag phase is a distinct growth phase that prepares bacteria for 
exponential growth and involves transient metal accumulation. Journal of Bacteriology, 
2012. 194(3): p. 686. 

22. Brejning, J., L. Jespersen, and N. Arneborg, Genome-wide Transcriptional Changes During the 
Lag Phase of Saccharomyces cerevisiae. Archives of Microbiology, 2003. 179(278). 

23. Larsen, N., et al., Differential Expression of Proteins and Genes in the Lag Phase of 
Lactococcus lactis subsp. lactis Grown in Synthetic Medium and Reconstituted Skim Milk. 
Applied Environmental Microbiology, 2006. 72(2): p. 1173. 

http://www.gen2phen.org/about-gen2phen/project-summary-and-objectives


24. Rolfe, M.D., et al., Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for 
Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, 
2011. 194(3): p. 686-701. 

25. Chang, D.E., D.J. Smalley, and T. Conway, Gene expression profiling of Escherichia coli growth 
transitions: an expanded stringent response model. Molecular Microbiology, 2002. 45(2): p. 
289-306. 

26. Ishihama, A., Adaptation of gene expression in stationary phase bacteria. Current Opinion in 
Genetics & Development, 1997. 7(5): p. 582-588. 

27. Costerton, J.W., et al., Bacterial Biofilms in Nature and Disease. Annual Review of 
Microbiology, 1987. 41: p. 435. 

28. Davies, D.G., et al., The Involvement of Cell-to-Cell Signals in the Development of a Bacterial 
Biofilm. Science, 1998. 280(5361): p. 295-298. 

29. Hoffman, L.R., et al., Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 
2005. 436(7054): p. 1171-1175. 

30. O'Toole, G., H.B. Kaplan, and R. Kolter, Biofilm Formation as Microbial Development. Annual 
Review of Microbiology, 2000. 54: p. 49-79. 

31. Zobell, C.E., The Effect of Solid Surfaces upon Bacterial Activity. Journal of Bacteriology, 1943. 
46(1): p. 39. 

32. Hall-Stoodley, L., J.W. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural 
environment to infectious diseases. Nat Rev Micro, 2004. 2(2): p. 95-108. 

33. Doyle, R., ed. Microbial Growth in Biofilms, Part A: Developmental and Molecular Biologial 
Aspects. Methods in Enzymology. 2001, Academic Press: Kentucky. 469. 

34. Doyle, R., ed. Microbial Growth in Biofilms, part B: Special Environments and Physiochemical 
aspects. Methods in Enzymology. 2001, Academic Press: Kentucky. 337. 

35. Flemming, H.-C. and J. Wingender, The Biofilm Matrix. Nature Reviews: Microbiology, 2010. 
8: p. 623. 

36. Flemming, H.-C., T.R. Neu, and D.J. Wozniak, The EPS Matrix: The "House odf Biofilm Cells". 
Journal of Bacteriology, 2007. 189(22): p. 7945. 

37. Schembri, M.A., K. Kjærgaard, and P. Klemm, Global gene expression in Escherichia coli 
biofilms. Molecular Microbiology, 2003. 48(1): p. 253-267. 

38. Hoffman, L.R., et al., Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 
2005. 436: p. 1171. 

39. Linares, J.F., et al., Antibiotics as intermicrobial signaling agents instead of weapons. 
Proceedings of the National Academy of Sciences of the United States of America, 2006. 103: 
p. 19484. 

40. Nikolaev, Y.A. and V.K. Plakunov, Biofilm-"City of microbes" or an Analogue of multicellular 
organisms. Microbiology and Molecular Biology Reviews, 2007. 76(2): p. 125-138. 

41. Shapiro, J.A., Thinking about bacteria as multicellular organisms. Annual Review of 
Microbiology, 1998. 52: p. 81-104. 

42. Dawkins, R., The Extended Phenotype: The Long Reach of the Gene. 1999: Oxford University 
Press. 

43. Whitham, T.G., et al., COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE 
EXTENDED PHENOTYPE. Ecology, 2003. 84(3): p. 559-573. 

44. Hoover, K., et al., A Gene for an Extended Phenotype. Science, 2011. 333: p. 1401. 
45. SandraÂ B.Â Andersen, et al., The Life of a Dead Ant: The Expression of an Adaptive Extended 

Phenotype. 2009, The University of Chicago Press for The American Society of Naturalists. p. 
424-433. 

46. Sousan, A.M., I. Machado, and M.O. Pereira, eds. Phenotypic Swtiching: An opportunity to 
bacteria thrive. Science Against Microbial Pathogens: Communicating Current Research and 
Technological Advances, ed. A. Mendez-Vilas. 2011. 



47. Soll, D.R., High-Frequency Switching on Candida albicans. Clinical Microbiology Revies, 1992. 
5(2): p. 183-203. 

48. Sonneborn, A., B. Tebarth, and J.F. Ernst, Control of White-Opaque Phenotypic Switching 
inCandida albicans by the Efg1p Morphogenetic Regulator. Infection and Immunity, 1999. 
67(9): p. 4655-4660. 

49. Dean, L. and J. McEntyre, eds. How Candida albicans switches phenotype-and back again. 
Coffee Break: Tutorials for NCBI Tools. 1999, National Centre fir Biotechnology Information 
(US). 

50. Massey, R.C., A. Buckling, and S.J. Peacock, Phenotypic switching of antibiotic resistance 
circumvents permanent costs in Staphylococcus aureus. Current Biology, 2001. 11(22): p. 
1810-1814. 

51. Angst, D.C. and A.R. Hall, The Cost of Antibiotic Resistance Depends on Evolutionary History 
in Escherichia coli. BMC Evolutionary Biology, 2013. 13(163): p. 1. 

52. Silva, J., Mechanisms of antibiotic resistance. Current Therapeutic Research, 1996. 57(13): p. 
30-35. 

53. von Eiff, C., Staphylococcus aureus small colony variants: a challenge to microbiologists and 
clinicians. International Journal of Antimicrobial Agents, 2008. 31(6): p. 507-510. 

54. Rocco, A., A.M. Kierzek, and J. McFadden, Slow Protein Fluctuations Explain the Emergence 
of Growth Phenotypes and Persistence in Clonal Bacterial Populations. PLoS ONE, 2013. 8(1): 
p. e54272. 

55. Smits, W.K., O.P. Kuipers, and J.-W. Veening, Phenotypic Variation in Bacteria: the role of 
feedback variation. Nature Reviews: Microbiology, 2006. 4: p. 259. 

56. McAdams, H.H. and A. Arkin, It's a noisy business! Genetic regulation at the nanomolar scale. 
Trends in Genetics, 1999. 15(2): p. 65-69. 

57. Keren, I., et al., Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 
2004. 230(1): p. 13-18. 

58. Spoering, A., M. Vulic, and K. Lewis, GlpD and PlsB Participate in Persister Cell Formation in 
Escherichia coli. Journal of Bacteriology, 2006. 188(14): p. 5136. 

59. Wood, T.K., S.J. Knabel, and B.W. Kwan, Bacterial Persister Cell Formation and Dormancy. 
Applied and Environmental Microbiology, 2013. 

60. Allison, K.R., M.P. Brynidsen, and J.J. Collins, Metabolite-enables eradication of bacterial 
persisters by aminoglycosides. Nature, 2011. 473: p. 216. 

61. Keren, I., et al., Specialized Persister Cells and the Mechanism of Multidrug Tolerance in 
Escherichia coli. Journal of Bacteriology, 2004. 186(24): p. 8172-8180. 

62. Nester, E.W., et al., Microbiology. 2nd ed. 1978, USA: Holt, Rinehart and Winston. 
63. Chang-Li, X., et al., Microcalorimetric study of bacterial growth. Thermochimica Acta, 1988. 

123(0): p. 33-41. 
64. Winslow, C.-E.A., et al., The Families and Genera of the Bacteria: Final Report of the 

Committee of the Society of American Bacteriologists on Characterization and Classification 
of Bacterial Types. Journal of Bacteriology, 1919. 5(3): p. 191. 

65. Casadevall, A. and L.-a. Pirofski, Host-Pathogen Interactions: Redefining the Basic Concepts 
of Virulence and Pathogenicity. Infection and Immunity, 1999. 67(8): p. 3703-3713. 

66. Feder, M.E. and G.E. Hofmann, HEAT-SHOCK PROTEINS, MOLECULAR CHAPERONES, AND THE 
STRESS RESPONSE: Evolutionary and Ecological Physiology. Annual Review of Physiology, 
1999. 61(1): p. 243-282. 

67. Kjelleberg, S., et al., How do non-differentiating bacteria adapt to starvation? Antonie van 
Leeuwenhoek, 1993. 63(3-4): p. 333-341. 

68. Percival, S.L., P.G. Bowler, and D. Russell, Bacterial resistance to silver in wound care. Journal 
of Hospital Infection, 2005. 60(1): p. 1-7. 

69. Gefen, O. and N.Q. Balaban, The importance of being persistent: heterogeneity of bacterial 
populations under antibiotic stress. FEMS Microbiology Reviews, 2009. 33(4): p. 704-717. 



70. WorldHealthOrganisation. Antimicrobial resistance 2013  [cited 2013 15th November]; 
Available from: http://www.who.int/mediacentre/factsheets/fs194/en/. 

71. Neu, H.C., The Crisis in Antibiotic Resistance. Science, 1992. 257(5073): p. 1064-1073. 
72. Griffiths, A.J.F., et al., Modern Genetic Analysis. 1999, New York: W. H. Freeman. 
73. Wright, G.D., Bacterial resistance to antibiotics: Enzymatic degradation and modification. 

Advanced Drug Delivery Reviews, 2005. 57(10): p. 1451-1470. 
74. Lambert, P.A., Bacterial Resistance to ANtibiotics: modified target sites. Advanced Drug 

Delivery Reviews, 2005. 57(10): p. 1471. 
75. Poole, K., Efflux pumps as antimicrobial resistance mechanisms. Annals of Medicine, 2007. 

39(3): p. 162-176. 
76. Spratt, B.G. and K.D. Cromie, Penicillin-Binding Proteins of Gram-Negative Bacteria. Reviews 

of Infectious Diseases, 1988. 10(4): p. 699. 
77. Bush, K., Characterization of B-lactamases. Antimicrobial Agents and Chemotherapy, 1989. 

33(3): p. 259. 
78. Champney, W.S. and R. Burdine, Macrolide antibiotics inhibit 50s ribosomal subunit 

assembly in Bacillus subtilis and Staphylococcus aureus. Antimicrobial Agents and 
Chemotherapy, 1995. 39(9): p. 2141. 

79. Leclercq, R. and P. Courvalin, Bacterial Resistance to Macrolide, Lincosamide, and 
Streotogramin Antibiotics by Target Modificatiom. American Society for Microbiology, 1991. 
35(7): p. 1267. 

80. Webber, M.A. and L.J.V. Piddock, The importance of efflux pumps in bacterial antibiotic 
resistance. Journal of Antimicrobial Chemotherapy, 2003. 51(1): p. 9-11. 

81. Li, X.-Z. and H. Nikaido, Efflux-Mediated Drug Resistance in Bacteria. Drugs, 2004. 64(2): p. 
159. 

82. Tetracycline Resistance. ARDB-Antibiotic Resistance Genes Database  2013  [cited 2013 14th 
November]; Available from: http://ardb.cbcb.umd.edu/browse/tetracycline.shtml. 

83. Poole, K., Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 
2005. 56(1): p. 20-51. 

84. Davison, J., Genetic Exchange between Bacteria in the Environment. Plasmid, 1999. 42(2): p. 
73-91. 

85. Chopra, I. and M. Roberts, Tetracycline Antibiotics: Mode of Action, Applications, Molecular 
Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology 
Reviews, 2001. 65(2): p. 232-260. 

86. Krishnapillai, V., Horizontal Gene Transfer. Journal of Genetics, 1996. 75(2): p. 219. 
87. Cohen, S.N., Transposable Genetic Elements and Plasmid Evolution. Nature, 1976. 263: p. 

731. 
88. Clewell, D.B., Movable genetic elements and antibiotic resistance in enterococci. European 

Journal of Clinical Microbiology and Infectious Diseases, 1990. 9(2): p. 90-102. 
89. Lucas, C.E., et al., The MtrR repressor binds the DNA sequence between the mtrR ans the 

mtrC genes in Neisseria gonorrhoeae. Journal of Bacteriology, 1997. 179: p. 4123. 
90. Burns, J.L., et al., Nucleotide sequence analysis of a gene from 

Burkholderia(Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in 
multiple antibiotic resistance. Antimicrobial Agents and Chemotherapy, 1996. 40: p. 307. 

91. Charvalos, E., et al., Evidence for an efflux pump in multidrug-resistant Campylobacter jejuni. 
Antimicrobial Agents and Chemotherapy, 1995. 39: p. 2019. 

92. Gruson, D., et al., Rotation and Restricted Use of Antibiotics in a Medical Intensive Care Unit. 
American Journal of Respiratory and Critical Care Medicine, 2000. 162(3): p. 837-843. 

93. Corona, F. and J. Martinez, Phenotypic Resistance to Antibiotics. Antibiotics, 2013. 2(2): p. 
237-255. 

94. Morones, J.R., et al., The Bacterial Effect of Silver Nanoparticles. Nanotechnology, 2005. 16: 
p. 2346. 

http://www.who.int/mediacentre/factsheets/fs194/en/
http://ardb.cbcb.umd.edu/browse/tetracycline.shtml


95. Leaper, D.J., Silver dressings: their role in wound management. International Wound Journal, 
2006. 3(4): p. 282-294. 

96. Rupp, M.E., et al., Effect of silver-coated urinary catheters: Efficacy, cost-effectiveness, and 
antimicrobial resistance. American Journal of Infection Control, 2004. 32(8): p. 445-450. 

97. Matsumura, Y., et al., Mode of Bactericidal Action of Silver Zeolite and Its Comparison with 
That of Silver Nitrate. Applied and Environmental Microbiology, 2003. 69(7): p. 4278-4281. 

98. Gupta, A., M. Maynes, and S. Silver, Effects of Halides on Plasmid-Mediated Silver Resistance 
in Escherichia coli. Applied and Environmental Microbiology, 1998. 64(12): p. 5042-5045. 

99. Leung, B.O., et al., Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. 
Inorganic Chemistry, 2013. 52(8): p. 4593-4602. 

100. Brosnan, J.T. and M.E. Brosnan, The Sulfur-Containing Amino Acids: An Overview. The Journal 
of Nutrition, 2006. 136(6): p. 1636S-1640S. 

101. Wirtz, M. and M. Droux, Synthesis of the sulfur amino acids: cysteine and methionine. 
Photosynthesis Research, 2005. 86(3): p. 345-362. 

102. van Montfort, R.L.M., et al., Oxidation state of the active-site cysteine in protein tyrosine 
phosphatase 1B. Nature, 2003. 423(6941): p. 773-777. 

103. Wouters, M.A., S.W. Fan, and N.L. Haworth, Disulphides as Redox Switches: from Molecular 
Mechanisms to Functional Significance. Antioxidants & Redox Signalling, 2010. 12(1): p. 53. 

104. Miseta, A. and P. Csutora, Relationship Between the Occurrence of Cysteine in Proteins and 
the Complexity of Organisms. Molecular Biology and Evolution, 2000. 17(8): p. 1232-1239. 

105. Bell, R.A. and J.R. Kramer, Structural chemistry and geochemistry of silver-sulfur compounds: 
Critical review. Environmental Toxicology and Chemistry, 1999. 18(1): p. 9-22. 

106. Davis, R.L. and S.F. Etris, The development and functions of silver in water purification and 
disease control. Catalysis Today, 1997. 36: p. 107. 

107. Ghandour, W., et al., The uptake of silver ions by Escherichia coli K12: toxic effects and 
interaction with copper ions. Applied Microbiology and Biotechnology, 1988. 28(6): p. 559-
565. 

108. Oyedotun, K.S. and B.D. Lemire, The Quaternary Structure of the Saccharomyces cerevisiae 
Succinate Dehydrogenase: HOMOLOGY MODELING, COFACTOR DOCKING, AND MOLECULAR 
DYNAMICS SIMULATION STUDIES. Journal of Biological Chemistry, 2004. 279(10): p. 9424-
9431. 

109. Florianczyk, B., Copper in the organism: Transport and Storage in the cells. Annales 
Universitatis Mariae Curie Skłodowska Sectio D Medicina, 2003. 58(1): p. 85. 

110. Gordon, O., et al., Silver Coordination Polymers for Prevention of Implant Infection: Thiol 
Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction. 
Antimicrobial Agents and Chemotherapy, 2010. 54(10): p. 4208-4218. 

111. Cabiscol, E., J. Tamarit, and J. Ros, Oxidative Stress in Bacteria and Protein Damage be 
Reactive Oxygen Species. International Microbiology, 2000. 3: p. 3. 

112. McQuillan, J., Bacterial-Nanoparticle Interactions. 2010, University of Exeter. p. 250. 
113. Summers, A.O., et al., Metal cation and oxyanion resistances in plasmids of gram-negative 

bacteria. Microbiology, ed. D. Schlessinger. 1978: American Society of Microbiology. 
114. Jones, K.E., et al., Global trends in emerging infectious diseases. Nature, 2008. 451(7181): p. 

990-993. 
115. Gracias, K.S. and J.L. McKillip, A review of conventional detection and enumeration methods 

for pathogenic bacteria in food. Canadian Journal of Microbiology, 2004. 50(11): p. 883-890. 
116. Jarvis, W.R. and W.J. Martone, Predominant pathogens in hospital infections. Journal of 

Antimicrobial Chemotherapy, 1992. 29(suppl A): p. 19-24. 
117. Levine, A.D. and T. Asano, Peer Reviewed: Recovering Sustainable Water from Wastewater. 

Environmental Science & Technology, 2004. 38(11): p. 201A-208A. 
118. Hodge, J.G., Bioterrorism Law and Policy: Critical Choices in Public Health. The Journal of 

Law, Medicine & Ethics, 2002. 30(2): p. 254-261. 



119. Dheda, K., et al., Point-of-care diagnosis of tuberculosis: Past, present and future. 
Respirology, 2013. 18(2): p. 217-232. 

120. Peeling, R.W. and D. Mabey, Point-of-care tests for diagnosing infections in the developing 
world. Clinical Microbiology and Infection, 2010. 16(8): p. 1062-1069. 

121. Vickerman, P., et al., Detection of gonococcal infection:pros and cons of a rapid test. 
Molecular Diagnosis, 2005. 9(4): p. 175. 

122. Pass, M.A., R. Odedra, and R.M. Batt, Multiplex PCRs for Identification of Escherichia coli 
Virulence Genes. Journal of Clinical Microbiology, 2000. 38(5): p. 2001-2004. 

123. Genomes_Online_Database. Complete Genome Projects.  2013  [cited 2013 2nd December]; 
Available from: http://www.genomesonline.org/cgi-
bin/GOLD/index.cgi?page_requested=Complete+Genome+Projects. 

124. Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing 
Program (GSP).  2013  [cited 2013 2nd December]; Available from: 
http://www.genome.gov/sequencingcosts/. 

125. Baron, E.J., Classification, in Medical Microbiology. 1996, University of Texas Medical Branch: 
Galveston. 

126. Holden, M.T.G., et al., Complete genomes of two clinical Staphylococcus aureus strains: 
Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National 
Academy of Sciences of the United States of America, 2004. 101(26): p. 9786-9791. 

127. Plowman, R., et al., The rate and cost of hospital-acquired infections occurring in patients 
admitted to selected specialties of a district general hospital in England and the national 
burden imposed. Journal of Hospital Infection, 2001. 47(3): p. 198-209. 

128. WorldHealthOrganisation. Health Care-Associated Infections: FACT SHEET. Patient Safety - A 
World Alliance for Safer Health Care  2013  [cited 2013 20th November]; Available from: 
http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf. 

129. PublicHealthEngland. General Information on Healthcare associated infections (HCAI).  2013  
[cited 2013 18th November]; Available from: 
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/HCAI/GeneralInformationO
nHCAI/#type. 

130. Schrag, S.J., V.r. Perrot, and B.R. Levin, Adaptation to the fitness costs of antibiotic resistance 
in Escherichia coli. Proceedings of the Royal Society of London. Series B: Biological Sciences, 
1997. 264(1386): p. 1287-1291. 

131. Kaleta, E. and D.M. Wolk, Bacterial Identification: Where Mass Spectrometry Meets 
Microbiology. Clinical Laboratory News, 2012. 38(5). 

132. Keer, J.T. and L. Birch, Molecular methods for the assessment of bacterial viability. Journal of 
Microbiological methods, 2003. 53: p. 175-183. 

133. Struelens, M. and O. Denis, Rapid molecular detection of methicillin-resistant Staphylococcus 
aureus: a cost-effective tool for infection control in critical care? Critical Care, 2006. 10(2): p. 
128. 

134. Park, S., et al., Advances in microfluidic PCR for point-of-care infectious disease diagnostics. 
Biotechnology Advances, 2011. 29(6): p. 830-839. 

135. Yager, P., G.J. Domingo, and J. Gerdes, Point-of-Care Diagnostics for Global Health. Annual 
Review of Biomedical Engineering, 2008. 10: p. 107. 

136. Patton, M.Q., Qualitative Research, in Encyclopedia of Statistics in Behavioral Science. 2005, 
John Wiley & Sons, Ltd. 

137. Valanis, B.G. and C.S. Perlman, Home Pregnancy testing kits: prevalence of use, false-
negative rates, and compliance with instructions. American Journal of Public Health, 1982. 
72(9): p. 1034-1036. 

138. NHS. How Accurate are Home Pregnancy Tests.  2012  [cited 2013 27th November]; Available 
from: http://www.nhs.uk/chq/pages/2308.aspx?categoryid=54. 

http://www.genomesonline.org/cgi-bin/GOLD/index.cgi?page_requested=Complete+Genome+Projects
http://www.genomesonline.org/cgi-bin/GOLD/index.cgi?page_requested=Complete+Genome+Projects
http://www.genome.gov/sequencingcosts/
http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/HCAI/GeneralInformationOnHCAI/#type
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/HCAI/GeneralInformationOnHCAI/#type
http://www.nhs.uk/chq/pages/2308.aspx?categoryid=54


139. Sturenbury, E., Rapid detection of methicillin-resistant Staphylococcus aureus directly from 
clinical samples: methods, effectiveness and cost considerations. German Medical Science, 
2009. 7: p. 1. 

140. Brown, D., et al., Joint Working Party of the British Society for Antimicrobial Chemotherapy; 
Hospital Infection Society; Infection Control Nurses Association. Guidelines for the laboratory 
diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J 
Antimicrob Chemother, 2005. 56: p. 1000 - 18. 

141. OHara, S., Novel Rapid Culture-Based Detection Method for Methicillin-Resistant 
Streptococcus aureus. Journal of Clinical Microbiology, 2008. 46(9): p. 3181-3182. 

142. Leven, M., et al., Evaluation of a real-time PCR assay and an multiplex-reverse hybridisation 
system for the detection of methicillin-resistant Staphylococcus aureus, in 17th European 
Congress of Clinical Microbiology and Infectious Diseases (ECCMID) & 25th International 
Congress of Chemotherapy (ICC), B.E. Edegem, Editor. 2007. 

143. Rossney, A.S., et al., Evaluation of the Xpert Methicillin-Resistant Staphylococcus aureus 
(MRSA) Assay Using the GeneXpert Real-Time PCR Platform for Rapid Detection of MRSA 
from Screening Specimens. Journal of Clinical Microbiology, 2008. 46(10): p. 3285. 

144. Wolk, D.M., et al., Multicenter Evaluation of the Cepheid Xpert Methicillin-Resistant 
Staphylococcus aureus (MRSA) Test as a Rapid Screening Method for Detection of MRSA in 
Nares. Journal of Clinical Microbiology, 2009. 47(3): p. 758-764. 

145. Wolk, D.M., et al., Rapid Detection of Staphylococcus aureus and Methicillin-Resistant S. 
aureus (MRSA) in Wound Specimens and Blood Cultures: Multicenter Preclinical Evaluation of 
the Cepheid Xpert MRSA/SA Skin and Soft Tissue and Blood Culture Assays. Journal of Clinical 
Microbiology, 2009. 47(3): p. 823-826. 

146. Farley, J.E., et al., Comparison of the BD GeneOhm Methicillin-Resistant Staphylococcus 
aureus (MRSA) PCR Assay to Culture by Use of BBL CHROMagar MRSA for Detection of MRSA 
in Nasal Surveillance Cultures from an At-Risk Community Population. Journal of Clinical 
Microbiology, 2008. 46(2): p. 743-746. 

147. Boyce, J.M. and N.L. Havill, Comparison of BD GeneOhm Methicillin-Resistant Staphylococcus 
aureus (MRSA) PCR versus the CHROMagar MRSA Assay for Screening Patients for the 
Presence of MRSA Strains. Journal of Clinical Microbiology, 2008. 46(1): p. 350-351. 

148. Paule, S.M., et al., Performance of the BD GeneOhm Methicillin-Resistant Staphylococcus 
aureus Test before and during High-Volume Clinical Use. Journal of Clinical Microbiology, 
2007. 45(9): p. 2993-2998. 

149. Luteijn, J.M., et al., Diagnostic accuracy of culture-based and PCR-based detection tests for 
methicillin-resistant Staphylococcus aureus: a meta-analysis. Clinical Microbiology and 
Infection, 2010. 17(2): p. 146-154. 

150. Fothergill, A., et al., Rapid Identification of Bacteria and Yeasts from Positive-Blood-Culture 
Bottles by Using a Lysis-Filtration Method and Matrix-Assisted Laser Desorption 
Ionizationâ€“Time of Flight Mass Spectrum Analysis with the SARAMIS Database. Journal of 
Clinical Microbiology, 2013. 51(3): p. 805-809. 

151. Samuel, L.P., et al., Evaluation of a Microarray-Based Assay for Rapid Identification of Gram-
Positive Organisms and Resistance Markers in Positive Blood Cultures. Journal of Clinical 
Microbiology, 2013. 51(4): p. 1188-1192. 

152. Scott, L., VerigeneÂ® Gram-Positive Blood Culture Nucleic Acid Test. Molecular Diagnosis & 
Therapy. 17(2): p. 117-122. 

153. Forster, B., et al., Complex wavelets for extended depth-of-field: A new method for the fusion 
of multichannel microscopy images. Microscopy Research and Technique, 2004. 65(1-2): p. 
33-42. 

154. Mudanyali, O., et al., Compact, light-weight and cost-effective microscop based on lensless 
incoherent holography for telemedicine applications. Lab on a Chip, 2010. 10: p. 1417-1428. 



155. Penwill, L.A., et al., Growth phenotype screening of Schizosaccharomyces pombe using a 
Lensless microscope. Biosensors and Bioelectronics, 2014. 54(0): p. 345-350. 

156. Cui, X., et al., Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis 
elegans and cell imaging. Proceedings of the National Academy of Sciences, 2008. 105(31): 
p. 10670-10675. 

157. Seo, S., et al., High-Throughput Lens-Free Blood Analysis on a Chip. Analytical Chemistry, 
2010. 82(11): p. 4621-4627. 

158. Ozcan, A. and U. Demirci, Ultra wide-field lens-free monitoring of cells on-chip. Lab on a Chip, 
2008. 8(1): p. 98-106. 

159. Ozcan, A. The Ozcan Research Group: Inovation Through Photonics.  2009  [cited 2013 26th 
November]; Available from: http://innovate.ee.ucla.edu/. 

160. Seo, S., et al., Multi-color LUCAS: Lensfree On-chip Cytometry Using Tunable Monochromatic 
Illumination and Digital Noise Reduction. Cellular and Molecular Bioengineering, 2008. 1(2-
3): p. 146-156. 

161. Su, T.-w., et al., Towards Wireless Health: Lensless On-Chip Cytometry. Opt. Photon. News, 
2008. 19(12): p. 24-24. 

162. Mudanyali, O., et al., Lensless On-chip Imaging of Cells Provides a New Tool for High-
throughput Cell-Biology and Medical Diagnostics. Journal of Visualised Experiments, 2009. 
34: p. e1650. 

163. Mudanyali, O., et al., Compact, light-weight and cost-effective microscope based on lensless 
incoherent holography for telemedicine applications. Lab on a Chip, 2010. 10(11): p. 1417-
1428. 

164. Moon, S., et al., Integrating microfluidics and lensless imaging for point-of-care testing. 
Biosensors and Bioelectronics, 2009. 24(11): p. 3208-3214. 

165. Tseng, D., et al., Lensfree Microscopy on a Cellphone. Lab on a Chip, 2010. 10(14): p. 1. 
166. Zhu, H., et al., Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab 

on a Chip, 2011. 11(2): p. 315-322. 
167. Isikman, S.O., et al., Lensfree On-Chip Microscopy and Tomography for Biomedical 

Applications. Selected Topics in Quantum Electronics, IEEE Journal of, 2012. 18(3): p. 1059-
1072. 

168. Zhu, H., et al., Optofluidic Fluorescent Imaging Cytometry on a Cell Phone. Analytical 
Chemistry, 2011. 83(17): p. 6641-6647. 

169. Mudanyali, O., et al., Integrated rapid-diagnostic-test reader platform on a cellphone. Lab on 
a Chip, 2012. 12(15): p. 2678-2686. 

170. Zhu, H., U. Sikora, and A. Ozcan, Quantum dot enabled detection of Escherichia coli using a 
cell-phone. Analyst, 2012. 137(11): p. 2541-2544. 

 

  

http://innovate.ee.ucla.edu/


2 Lensless Microscope Technique 
Development and Analysis for Growth 
Phenotype Screening using the model 
organism Schizosaccharomyces pombe 

 

2.1 Introduction 

Rapid detection techniques are generally targeted at the detection of a specific known pathogen, for 

example MRSA, C. difficile or gentamicin-resistant E. coli[1] bacteria which have a genetic resistance 

to a treatment method. It has been discussed in the Chapter Error! Reference source not found. 

that the incidence of phenotypic resistance is on the increase, demonstrated in populations such a 

biofilms[2], persister cells[3] and Small Colony Variants (SCVs)[4]. Individuals from these populations 

infer no genotypic resistance, they are genetically identical to the non-resistant wildtype but have 

growth phenotypes. By monitoring and extracting the cell phenotypes, the populations containing 

these will be separated simply from the bulk, using their individual growth parameters as 

discriminating factors. 

Extracting phenotypic growth data from the individual growth curves of single-celled organisms can 

be a lengthy procedure:  

 Bacterial growth curves are recorded over time courses of several hours; 

 Analysis of single cell growth characteristics is conventionally performed using a light 

microscope, collecting time-lapse photography images; 

 Many bacteria are motile, moving out of field of view and focal plane rapidly. 

To image successfully a bacterium which has a diameter of 1 µm the optical microscope will have to 

be operated using high magnification, it has been calculated for a light microscope with a 40x 

magnification that the Field Of View (FOV) is only 0.036 mm2.  Empirically it has been noted that 

during time lapse imaging of non-motile eukaryotic cells they often move out of the field of view and 

the focal plane changes especially in the early phase of the time course experiments where thermal 

equilibration is not complete. E. coli is known to be able to swim up to 50 times its diameter per 

second[5]. The Lensless microscope however does not suffer from the thermal variations of the focal 

plane and has a significantly larger FOV. Hence large numbers of cells may be observed growing 

simultaneously from which rapid growth phenotype populations can be derived. The Lensless 



Microscope[6, 7], as discussed previously, has a FOV limited only by the size of the detection sensor 

CCD chip. Even for the simplest cameras this can produce a FOV of two orders of magnitude greater 

than the conventional light microscope. As a result, the Lensless microscope can monitor a cell as it 

moves through a flow cell or large numbers of organisms simultaneously. Vertical movement of a 

particle along the focal plane, the plane in which the object image is in focus, is a limitation for both 

the Light microscope and the Lensless Microscope, particles leaving the focal plane change the 

apparent size in both instruments. However, the Lensless microscope is able to still monitor these 

cells and adjust size measurements accordingly. The Lensless microscope can image through a flow 

cell of more than 4 mm deep, all cells throughout this depth can be recorded and monitored[8]. In 

contrast to this the phase contrast microscope has a much narrower depth of field, ranging from 

1.0 µm at a 40x magnification to 0.2 µm at 100x magnification.  Further to this the detection of an 

organism rapidly is limited by the length of time it takes to grow (length of lag period, rate of growth 

etc, Chapter 1). The concept of ‘Phenotype Fingerprinting’ has been devised to address this 

limitation and preliminary investigations presented in this thesis. 

The presentation of protein on the cell surface varies with organism type. At the most simple level of 

phenotype distinction, a Gram positive organism presents the polysaccharide teichoic acid on its 

surface[9, 10] while the Gram negative organism does not. These surface structures can be detected 

rapidly with fluorescence labelled antibodies or a stain, at this level conferring immediate distinction 

between Gram positive and Gram negative. Sub-lethal levels of silver stress have been shown to up-

regulate the genes related to a number of surface-presenting proteins in E. coli[11] within 10 

minutes[12]. The level of these proteins on the cell surface following exposure to silver ions will 

increase, changing the cell surface presentation, potentially displaying a different, identifiable 

surface phenotype.  Coupled with the phenotypic growth behaviour in the early stages of the growth 

curve, the identification of surface proteins by labelled antibodies can be described as the 

‘phenotype fingerprint’ and has the potential to be unique to the organism. The Lensless microscope 

and corresponding analysis algorithm have been used to determine the difference between cells in a 

mixed solution[13], to count the number of cells in a sample[8] and to detect cells with fluorescent 

elements attached[14]. The advantage of using a Lensless microscope to detect fluorescence is that 

the method is able to determine between fluorescence which is bound to a cell and fluorescence 

which is present but not associated with a cell, increasing the sensitivity and specificity of the 

detection. Further to this the device and the corresponding analysis algorithm will be applied here to 

monitor the changing parameters of microbial growth; the growth phenotype.  



Optimum bacterial growth must be supported by nutrient-containing growth medium, maintained at 

a constant, often elevated, temperature with a moist and oxygenated environment. Lensless 

microscope configurations reported to date are illuminated by a single wavelength of light, to 

improve the image quality and to simplify the ease of image reconstruction. The total holographic 

reconstruction of diffraction patterns to complete cell images requires the application of a complex 

integral which was outlined in Chapter 1. This method requires significant (but not insurmountable) 

computing to reconstruct an image containing a high level of structural information but the 

extraction of simple dimension measurements may considered  appropriate for growth phenotype 

classification and indeed phenotype fingerprinting. Holographic reconstruction methods[15, 16] are not 

realistic in the proposed Lensless microscope Point Of Care (POC) setting for the following further 

reasons: 

1. White light illumination is used to prevent the detrimental effects on organism growth 

observed with a single wavelength[17] 

2. Single wavelength illumination provides a sharper diffraction pattern, the most detailed 

patterns coming from illumination in the longer wavelengths. A hologram illuminated with 

white light source is constructed of numerous images, one from each wavelength of light in 

the range. Each image will have a different set of parameters, size, angle of 1st dark fringe 

and distance from centre. When reconstructed these will superimpose on another, impairing 

the image and cancelling each other out. 

3. Images are acquired through a flow cell which is 1mm thick, the medium volume chosen to 

ensure oxygenated growth, thus reducing associated redox stress responses which are in 

themselves phenotypic changes. 

4. The flow cells contain a growth surface chosen for each organism; in the case of S. pombe 

the slide is lectin coated. Thin layer interference effects were observed from the top and 

bottom of the flow cell components but can be removed successfully using an initial 

background image subtraction. 

Imaging the diffraction patterns of cells with relatively low refractive indices, and poor scattering 

properties, have been discussed previously, Chapter Error! Reference source not found.. The E. coli 

cell images with diffraction patterns recorded by the Ozcan group are imaged in PBS, a medium with 

a low refractive index, with iso-osmotic properties to maintain cell integrity whilst maintaining the 

optical contrast of the E. coli cells. The construction of a Lensless microscope using existing and cost 

effective cell phone technologies has been demonstrated[6]. It is proposed that the algorithm 



described in this chapter can further simplify the cell phone device, making cell size analysis more 

robust. 

2.2 Aims and Objectives 

This chapter aims to construct a temperature-stable Lensless microscope device with a removable 

and reusable growth chamber. The analysis of the diffraction patterns recorded by the Lensless 

microscope will be performed with a new, simple algorithm which negates the requirement for 

holographic image reconstruction methods. The analysis method should be robust, stable and will 

extract from the diffraction pattern data the dimension information required to construct 

phenotype growth parameters. 

The rod shaped fungus S. pombe will be imaged and analysed to verify that the algorithm and 

subsequent calibration curve can be applied to measure the length and widths of organisms with an 

aspect ratio. The distribution of single cell length (Lt0) and width (Wt0) collected will be compared to 

the distributions published in the literature to determine the validity of the measurement and 

further analysis of the evolution of the cell over time to determine whether growth measurement is 

feasible. 

2.3 Lensless Microscope 

The concept of the Lensless microscope[18]will be applied to study the evolution of the Airy Disc 

diffraction pattern over time, as the diffracting object grows. The Lensless microscope is a device to 

measure the diffraction pattern cast on a sensor when a light wave encounters an object in its path. 

In this case, the sensor is a Charge Coupled Device (CCD) and the diffracting objects are 

microspheres, bacteria and fungi. 

2.4 Diffraction and the formation of the Airy Disc 

The Lensless microscope monitors diffraction patterns created by light scattered by small diffracting 

objects in its path. Circular and spherical objects cast patterns known as Airy Discs surrounded by an 

Airy pattern, a central bright node surrounded by concentric rings of alternating low and high 

intensity called fringes, Figure 2.1.The plotted cross section of the centre of the Airy Disc is called an 

intensity profile curve. As the object in Figure 2.1 from which the diffraction pattern is formed is 

spherical, any cross section of the diffraction pattern should be the same. 



 

Figure 2.1. A typical Airy disc pattern (A) of a sphere 30 µm in diameter and the horizontal cross section of this sphere 
plotted as an intensity distribution curve (B). 

The Airy disc is the bright circular spot in the centre of the diffraction pattern in Figure 2.1 A, and is 

surrounded by concentric dark and light rings, referred to as the Airy pattern[19]. The formation of 

the Airy Disc and the surrounding Airy Pattern fringes is now discussed. 

2.4.1 Diffraction 

The Huygens Principle is used to describe light propagation as waves and states that when light 

encounters a slit or aperture in the path of travel every point along the wave of light at the slit may 

be considered to be a secondary light source, or a wavelet, which radiates circular waves[20]. Plane 

waves diffracting around an object have a phase difference between one side of the object and the 

other.  When the lights waves recombine in phase they show constructive interference and when 

they are in anti-phase the show destructive interference, Figure 2.2 B and C. 
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Figure 2.2. (A) the basic properties of a monochromatic light wave. In the unit time of this graph the wave has a 
frequency of 4.5, an amplitude, A and a wavelength, λ. When the waves in (B) interfere they have constructive 
interference and result in an increase in magnitude. When the waves in (C) interfere they have deconstructive 
interference and result in a decrease in magnitude. 

As light diffracts around an object, the waves interfere, at some points constructively and at others 

destructively. The diffraction pattern that propagates to a screen, in this case a CCD chip, from the 

point of diffraction is dependent on the size of the diffracting object, the wavelength of the light, the 

working distance – the distance from the diffracting object to the screen – and the proximity of 

other objects to the diffracting object in question. The 2D representation of the Airy Disc, the 

intensity profile in Figure 2.1 can be re-created using the idea that a cross-section of a small particle, 

with width a, is similar to two thin slits on a screen separated by a. 

2.4.2 Young’s Double Slit 

The theory of diffraction is exemplified in the Young’s double slit experiment the findings of which 

were published in a paper entitled ‘Experiments and Calculations Relative to Physical Optics’[21]; the 

concepts may be considered schematically, Figure 2.3. 
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Figure 2.3 Young’s double slit setup. Monochromatic coherent light propagated through two slits separated by distance 
a, to a screen a distance of z from the slits. 

Light from a coherent light source is propagated though two slits separated by distance a. The 

incident, plane-wave propagating light at the slits is considered to be two point sources with circular 

(spherical) symmetry after the slits. Coherent superposition of the waves leads to constructive and 

destructive interference and the characteristic fringe patterns when projected onto a screen, shown 

in Figure 2.4. 
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Figure 2.4. The fringe pattern projected on the screen from the Young’s double slit setup, lit by monochromatic light 
with wavelength λ, with the slits and screen separated by distance z. The red line indicates peaks of intensity of the light 
wave and the black lines the troughs. The black arrows indicate areas of constructive interference and the dash arrows 
areas of destructive interference. 

Using the parameters in Figure 2.3 the distances between the areas of bright intensity can be 

calculated using equation ( 1 ). 

         

( 1 ) 

where   is an integer (the central bright peak occurs where   = 0). When   is small,      can be 

approximated as 
 

 
 resulting in the equation ( 2 ) for the position of the bright fringes: 

  
  

 
  

( 2 ) 

A comparison between the two slits and the two sides of the diffracting object may be drawn to 

allow and effective diameter of the sphere to be determined, a. The working distance, the distance 

from the point of diffraction and the screen, is the distance z and the screen is the CCD chip. The 

determination of object size from the diffraction pattern in dependent on other factors such as the 

diffraction limit and the diffractive index differences between object and surrounding medium. 

λ
z



2.4.3 Diffraction Limit  

All imaging systems illuminated in the far-field are restricted by the diffraction limit[22, 23] although 

there is a considerable field of investigation into techniques that are not confined by the diffraction 

limit such as those using near-field imaging[24]. Ernst Abbe showed that whenever objects are imaged 

in light, those objects smaller than half of the wavelength of that light are not present in the final 

image[25]. Abbe proposed the following equation ( 3 ) to determine the diffraction limit for each 

system[26]: 

   
 

     
 

( 3 ) 

where DL is the diffraction limit; λ the wavelength of diffracting light; and NA the numerical aperture 

of the system. For the Lensless microscope optical configuration, the NA = 1 giving a simple limit of 

diffraction as λ/2. The shorter the illuminating wavelength of light the smaller an object the system 

is able to accurately view. This explains how the electron microscope is able to image much smaller 

objects than a light microscope as it illuminates with wavelengths 100,000 times shorter than visible 

light associated with the de Broglie wavelength of the electrons. When objects are close together 

they cannot be distinguished separately due to the diffraction limit and the Rayleigh criterion, a 

continuation of the Abbe limit of diffraction. 

Considering the nature of the images recorded by the CCD of a Lensless microscope, the Rayleigh 

criterion[27] is the minimum resolvable distance between two objects. Rayleigh Criterion accounts for 

the wavelength of the illuminating light, size of diffracting object and the distance from point of 

diffraction to the screen. Images are said to be not resolved when the first dark fringe of one 

diffraction pattern overlaps with the central bright node of another[28]. The Rayleigh Criterion for a 

circular aperture is given, equation ( 4 ), containing the correction factor of 1.22: 

         
 

 
 

( 4 ) 

The parameters here are defined in Figure 2.3. The correction factor is approximately the first zero 

of the Bessel function of the first kind, of order one, divided by π. Equation ( 4 ) can be adjusted to 

account for the refractive index of the diffracting object. An object with a larger refractive index than 

the medium in which it is surrounded will slow the travel of the light, adjusting the   parameter in 

equation ( 4 ). The larger the refractive index contrast, the larger the retardation in  , and 

subsequently the larger the angle of spread of the diffraction fringes. 



2.4.4 Lensless Microscope Configuration 

The conventional configuration for the Lensless microscope is shown in Figure 2.5 and has been 

described by others elsewhere[6, 29]. The Lensless microscope configuration maximises the diffraction 

pattern stability and intensity whist controlling the environmental parameters such as temperature, 

light intensity and wavelength stability, nutrient concentration and humidity. The current 

configuration of the Lensless microscope is designed to study microbial growth with growth medium 

in a flow cell and this has some significant challenges: refractive index contrast, image stability, 

temperature stability, turbulence and thermal lensing. Due to these varied demands we aim to 

develop a simple algorithm to extract the aspect ratio and therefore growth parameters of the 

imaged objects over time. The configuration, therefore, needs to be stable over a period of 24 hrs – 

72 hrs and the flow cell must hold sufficient media volume to prevent nutrient starvation in this time 

and be liquid tight to avoid drying out. The proposed final device design is displayed in Figure 2.5, 

with a technical drawing in Figure 2.6. 

 

Figure 2.5 The basic Lensless microscope flow-cell configuration. For all experiments described here the distance dis 
15cm and the working distance z is 1100 µm. The white light source, insert top right, has a peak intensity of 595nm and a 
range from 405-740nm. The CCD has 3.45mm
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Figure 2.6 A Technical drawing of the Lensless Microscope setup. A complete component list is included in Appendix 1 
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The light from a white light source was chosen so as not to affect the growth of the organisms 

adversely. The emission spectrum of an LED is shown in the inset of Figure 2.5. Light propagates over 

a distance, d, of 15 cm before reaching the flow cell where it will interact with the diffracting objects 

of interest, microspheres and S. pombe cells. The resulting Airy Disc pattern is collected on a CCD 

camera, with pixels with an area of 3.45 µm2 and a total sensor area of 39 mm2(IM 3.2, Jenoptik). 

The CCD is a colour CCD chip, a colour filter provided by a Bayer pattern filter, a checkerboard of 3 

colours, red, green and blue applied to 4 pixels, twice as many pixels filtered green than red or blue. 

The raw colour values for each pixel are 8-bit digitised to give a value between 0 and 256 for red, for 

green and for blue. 

The flow cell is formed from two cover slips sealed with an inert silicone gel and petroleum jelly. The 

flow cell has a constant thickness of ~ 1 mm and a total volume of 174 µL. The cell has entrance and 

exit flow ports to allow medium to enter and leave the flow cell: the ports remained closed in these 

experiments. The flow cell is tightly clamped directly to the surface, the diffracting objects set at a 

working distance, z, typically 1 mm from the sensor surface. The working distance is chosen to 

ensure the Airy disc patterns cover 20 × 20 pixels on the camera but not allow the patterns from 

nearby cells to overlap. The diffracting light waves spread out from the point of diffraction until 

interception by the screen (Figure 2.4); smaller z is the smaller the diffraction pattern on the screen. 

The physical restraint of the flow cell ensures the working distance is temperature and mechanically 

stable to allow signal averaging. The clamping also reduces chances of inconsistent lensing effects 

caused by the glass elements of the cell heating up and reduces the cell drying out, which also 

causes unwanted lensing effects. 

The entire Lensless microscope instrument is housed in a temperature controlled, light excluding 

box. The temperature is thermostatically controlled to within ±2 °C at lower temperatures and ±4 °C 

at higher temperatures. Figure 2.7 shows a time course of temperature monitoring overnight from 

17:00 hours for 10 hours.  The mean temperature at a nominal 25 OC was 24.9 (+0.2 -0.1) °C and for 

the elevated growth temperature, of 37 (+0.4 -0.1) °C constant over a 600 minute period. 

The S. pombe growth temperature was maintained at 25 °C, the temperature over the period of 600 

minutes had a mean of 24.9 (+0.2 -0.1)°C and a standard deviation of 0.7 °C and all other 

experiments were carried out at 37 °C and were maintained to a mean of 37 (+0.4 -0.1) °C with a 

standard deviation of 0.9 °C. Long term temperature stability is important for the growth of 

unicellular organisms. A change in temperature of the growth environment of E. coli and S. pombe 

can change the rate of growth[30] and induce a heat shock stress response[31]. In the case of E. coli the 



cell volume at division is also affected by temperature fluctuations[32]. Now the device is stable for 

temperature it can be assessed for stability of images captured. 

 

 

Figure 2.7. The stability of the temperature within the device housing at both 25 °C (purple) and 37 °C (blue) over a time 
course of 600 minutes. The temperature controlled to 25 °C has a range of 2.4 °C with a mean of 24.9 (+0.2 -0.1) °C. The 
temperature controlled to 37 °C has a range of 4 °C and a mean of 37 (+0.4 -0.1) °C. Red lines indicate the target, 
reported temperature for the setup. 

2.5 Image Processing 

The CCD chip is connected via IEEE 1394a FireWire to the operating computer and images were 

collected at a frame rate of one image every 0.6 seconds by the proprietary software 

ProgRes Capture Pro v.2.8.8.1. The images are collected in 8-bit vertical resolution and stored in TIFF 

format. The data collected by the Lensless microscope described here could be analysed using the 

full holographic reconstruction methods described in Chapter 1. The images contain all the 

information of a light microscope image but the growth phenotype analysis only requires in length 

and so a simple major and minor axis measurement algorithm the analysis process has been 

designed, rendering it more suitable for operation at the point of care. 
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The Lensless microscope configuration used in this thesis is shown schematically, Figure 2.5, and 

produces an Airy disc diffraction pattern covering ~ 20 × 20 pixels, however larger objects may 

extend to ~50 × 50 pixels. Extraction of the major and minor axes dimensions from the Airy disc 

requires a robust algorithm to measure the brightness between the fringes. The Airy disc diffraction 

pattern consists of a bright central spot surrounded by concentric rings of dark and bright diffraction 

fringes. By measuring the intensity profiles along the major and minor axis of the pattern the lengths 

along each axis and the aspect ratio of the diffracting object can be derived as a function of time. 

Airy disc patterns are analysed using an algorithm designed here, and in Appendix 2, to determine 

the intensity brightness difference between the centre and first fringe of the Airy disc (Figure 2.8). 

The centre of the Airy Disc, the bright spot, is selected by the user manually. It is possible to select all 

Airy Disc patterns on the FOV of the CCD chip automatically using thresh-holding algorithms, but 

here is it performed manually to avoid analysing an air bubble or dust particle. The difference 

between the central bright spot maxima and the first dark fringe is chosen as the ΔI measurement as 

it was observed that poor “scatterers” such as Gram negative bacterial cells produce a diffraction 

pattern which has well defined central maxima and first minima only. 

A virtual mask is located over the centre of the pattern and the first fringe and the intensity is then 

integrated as a function of the anticlockwise angle. The major axis is located as the maximum ΔI; the 

minor axis is defined perpendicular to the major axis; together this for the basis of the Airy Disc First 

Fringe (ADFF) analysis procedure. Figure 2.9 shows the evolution of the shape of the mask using 

model data as expected for a spherical object, and Figure 2.10 using model data for an object with 

aspect ratio of 2:1. In these preliminary experiments, elements such as mask width and mask 

positioning have been controlled, the variations and associated errors discussed subsequently. 



 

Figure 2.8 (A) The calculation of ΔI, the intensity difference between the central bright spot and the average of the first 
dark fringes, the initial dark ring.The graph shows an intensity cross-section of the Airy disc diffraction pattern, insert). 
This is the typical pattern observed for a sphere of 30 µm. (B) The intensity cross section taken at the maximum ΔI 
position for the sphere sizes from 12 µm (red), to 20 µm (blue) and finally 30 µm (green).It is to be noted that although 
this figure shows spheres of sizes larger than 12 µm in diameter, this trend is observed for all sphere diameters 
measured, starting at 1 µm. 

5 10 15 20 25 30 35 40 45 50 55
2

2.1

2.2

2.3

2.4

2.5

2.6

x 104

(1) The central bright fringe

(2) The first dark 
fringes

ΔI= (1) – average (2)

A

10 20 30 40 50
65

70

75

80

85

90

95

100

105

Pixel position

In
te

n
si

ty

B

5 10 15 20 25 30 35 40 45 50 55
2

2.1

2.2

2.3

2.4

2.5

2.6

x 104

(1) The central bright fringe

(2) The first dark 
fringes

ΔI= (1) – average (2)

A

10 20 30 40 50
65

70

75

80

85

90

95

100

105

Pixel position

In
te

n
si

ty

B

5 10 15 20 25 30 35 40 45 50 55
2

2.1

2.2

2.3

2.4

2.5

2.6

x 104

(1) The central bright fringe

(2) The first dark 
fringes

ΔI= (1) – average (2)

A

10 20 30 40 50
65

70

75

80

85

90

95

100

105

Pixel position

In
te

n
si

ty

B



 

Figure 2.9. The plots created by the ADFF models of one quarter in size (B), one eighth in size (C) and one eighth 
averaged with the opposite eighth (D) using the simple model data (A). This data is how it would expected that a perfect 
sphere central node and initial dark fringewould appear. 
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Figure 2.10 The plots created by the ADFF models of one quarter in size (F), one eighth in size (G) and one eighth 
averaged with the opposite eighth (H) using the simple model data (E). This data is how it would expected that a rod 
shaped objects central node and initial dark fringe would appear. 

Optimising the mask structure, Figure 2.10, shows the best ADFF performance occurs when the mask 

is smaller than a quarter of the circle to enhance the sensitivity of the location of the major axis; 

smaller than an eighth of the circle and the mask and high frequency noise especially from ‘real’ data 

reduces the accuracy of the measurement. Further, data are prone to noise from neighbouring 

diffracting objects and small local changes may enhance the ΔI erroneously. There are other errors 

which can be introduced into the data by this mask method, namely ‘jitter’ and mask misalignment. 

The software mask has automated corrections for ‘jitter’ and mask misalignment. The Airy disc 

centre is not completely fixed by the mechanical configuration of the microscope and the algorithm 

chooses the central 3 pixels, which have the highest intensity within an area of 6 × 6 pixels defined 

by the original choice.  The algorithm is set to fail if the central ΔI is calculated as lower than the 

average ΔI of the first dark fringes. Figure 2.11 shows what happens to the calculated ΔI of model 

data if the mask is not corrected for jitter and mask misalignment.  
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Figure 2.11 The effect mask width and mask misalignment/jitter have on the ΔI calculated by the bowtie ADFF. Blue lines 
are the data from ideal situations, red lines from the misalignment. A and B show the effects on calculations when the 
masks central radius is too small, similar effects occur if the outer radius is too large. C and D show the calculation errors 
when the mask is misaligned, the greater the misalignment the larger the error. C in particular demonstrates how if the 
mask is misaligned the Airy Disc analysed could appear to have an aspect ratio of something other than 1. 

The figures above demonstrate the mask optimisation and tracking procedure, showing how the 

calculated ΔI varies with mask thickness and positioning. The mask thickness has been set for each 

organism type analysed, too thick and discrete changes are not observed, too thin and the data 

become dominated by high frequency noise resulting in measurement error. The mask thicknesses 

were all optimised using spheres of known diameters with aspect ratios assumed to be 1. The full 

ADFF software program is included as an appendix to this thesis, Appendix 2. 

The stability of this method was characterised over extended time periods required for the growth 

phenotype monitoring.   
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Figure 2.12 The measured ΔI of a 30 µm sphere over a time course of 600 minutes. The range is 5.8, deviating a 
maximum of ± 13% from the mean of 21.1 (+0.4 -0.2). A conversion to size is required to calculate the actual size 
measurement error associated with this algorithm. 

Confident that errors attributed to image analysis have been reduced the calibration of ΔI with 

respect to size of the scattering object needs to be considered. 

2.6 Dimension Calibration 

The ADFF algorithm produces a size-dependent intensity difference that needs to be calibrated over 

the length scales required for the growth experiments, in the case of S. pombe the 1st cell division 

only is of interest, a maximum range of 3 – 20 µm. The experiments with E. coli (Chapter 4) require 

an extended range of 1 – 60 µm to account for colony growth. It is important to be certain of the 

stability within this range. The size of any object can only be measured to within the diffraction limit, 

which is 0.3 µm for the current illumination source. 

For these calibration experiments the same spheres were used as for the stability experiments, 

polystyrene microspheres (Sigma-Aldrich Microparticles, 80177, 72938, 95531, 59336, 87896, 88511, 

72822 and 80304). All spheres used were length verified using light microscope images, 40x 

microscope objective (Carl Zeiss, PrimoStar and AxioCam ERc5s). These images were captured from a 

fixed position calibration slide used for all stability experiments presented here. The analysis of the 
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Airy Disc patterns produced in this setup from the range of microspheres show the width of the 

diffraction pattern does not change significantly with size. The parameter of the diffraction pattern 

which does change with size is ΔI, changing along a linear trend, Figure 2.8. When using the curve to 

calibrate cells it must first be corrected for the refractive index (RI) of the individual diffracting 

objects. The calibration is created using spheres with a RI of 1.55 whereas the Gram negative E. coli 

has an RI of 1.395[33] and the yeast (eukaryotic) cell has an RI of 1.399[34].  

The sources of error in the ADFF have been reduced by averaging the image over a number of 

acquired frames. Figure 2.13 displays the differences between a single frame capture diffraction 

pattern for a 30 µm sphere (A) and the same sphere averaged over 225 frames. The noise reduction 

is shown in, Figure 2.14 as a function of the number of frames averaged. The theoretical noise 

reduction should reduce by 1/√n, where n is the number of frames.  

 

Figure 2.13 A raw diffraction pattern of a thirty micrometre sphere (A) and the same sphere after the images have been 
averaged 255 times (B). 

A B



 

Figure 2.14 The reduction in error between size measurements of 20, 30 µm spheres when frames are averaged over a 
range of 4 to 225 images. 

Figure 2.14 shows that the error in the ADFF measurements reaches 5 % at 196 frames averaged. 

The maximum error is only marginally larger at 144 frames averaged but with a significant reduction 

in the image processing and acquisition times. Using the 5 % error target, 196 images can be 

captured in 120 seconds which allows data points to be collected every 2 minutes during the 

doubling time of E. coli for example. It suggests a lower limit to the accurate determination of a 

growth phenotype event of about two minutes or one 196-frame collection period. The Lensless 

microscope, as with all far-field illuminated instruments, has a fundamental limit to the accuracy 

with which a length dimension can be measured – the diffraction limit. This fundamental limit and 

the overall error propagation in the ADFF procedure can be compared for the measurement of the 

diameter of calibration spheres and is summarised in, Figure 2.15. 
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Figure 2.15. The largest error associated with each sphere diameter, blue, the diffraction limit error; red, the error 
associated with the ADFF calculation; and green, the error associated with the light microscope measurements.  Sub 
6 µm the error is dominated by the diffraction limit of 0.3µm, above this the error is 5% for measurements calculated by 
the ADFF and from optical measurements. 

At smaller sphere diameters the error is dominated by the diffraction limit which for a 1 µm sphere 

is 30%. The uncertainty in determining the diameter of a 2 µm sphere is also controlled by the 

diffraction limit which is dependent on the wavelength. The error for the 2 µm sphere for λ = 600 nm 

(λ max of the emission spectrum of the lamp) is ± 7.5%.There are three measurement errors 

associated with the Lensless microscope. For objects of sizes below 6 µm the error is dominated by 

the diffraction limit error of 0.3 µm. For objects above 6 µm the error is 5%. This error associated 

with ADFF calculations is attributed to mask calculation error, interaction between close diffracting 

objects and imaging artefacts. For measurements from the optical microscope we calculate an error 

of 5%. This error can be attributed to interaction with surface structures and focal plane through the 

object. 
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Figure 2.16. Calibration curve for averaging of 225 images for the whole annulus averaged ADFF, the line fit errors (blue) 
and the error bars (red). The error bars show the maximum possible error for each sphere, horizontal bars measured 
optically and the vertical bars the error output from the ADFF algorithm. 

 

Figure 2.17 The correlation between the optically measured image size and the corresponding ADFF calculation using the 
calibration curve. The slope of the line is 0.992, indicating that this method calculates the correct size of a diffracting 
object, in the range of 1 – 60 µm, to within 1 %. R

2
 is 0.997. 
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The final calibration for the complete Lensless microscope instrument is shown in Figure 2.16 for 

calibration spheres over the range 1 – 60 µm.  The diameter of a sphere was measured by light 

microscopy with a 40x magnification to produce the sphere size vertical error, the horizontal error 

coming from the error in the ΔI size calibration, the errors displayed in Figure 2.15. The line of best 

fit has an error of R2 = 0.997 and an intercept of -0.1 (+1.0-1.20) µm, the perfect measurement line 

having R2 = 1 and an intercept 0. The 95 % CI fit errors are displayed in blue and the maximum 

calculated error for each individual size displayed as error bars, horizontally for the error in sphere 

size within the sample and vertically for the measurement acquired by the ADFF. The calibration is 

further verified by comparing the ADFF size measurement with the optical measurement of 30 

spheres, Figure 2.17. The slope of the fitted line is 0.992 (+0.003-0.004), predicting that there is, on 

average, a 0.8 % error between the optically measured and ADFF calculated sizes. To ensure that the 

same spheres were measured by both the optical and Lensless microscope the spheres were bound 

to a lectin surface (further details in section 2.7.1) to prevent movement within the flow cell. The 

spheres were first imaged using a AxioCam ERc 5s light microscope and camera, the position marked 

with a coloured dot. The flow cell was transferred to the Lensless microscope in the same 

orientation, the coloured dot located and the sphere imaged and measured. 

The ADFF method of diffraction pattern analysis is able to extract the dimensions of a symmetrical 

object with relatively high refractive index (RI = 1.55) compared to the surrounding medium 

(RI = 1.334). The dimension information calculated from the diffraction patterns correlates highly 

with the dimensions measured from optical microscope images, with an R2 value 0f 0.997. Above 

6 µm the experiment is limited to an error of 5 % but below 6 µm, this is still dominated by the 

diffraction limit. Biological growth, however, is rarely symmetrical and so for this method to be 

successful it must now be tested with a particle with aspect ratio. For this purpose the eukaryotic 

fungus S. pombe has been selected. 

2.7 Schizosaccharomyces pombe 

S. pombe, the eukaryotic fission yeast is used in the study of the diffraction of rod shapes. S. pombe 

is a rod-shaped fission yeast widely used as a model organism in the study of the cell cycle and so 

the growth of a single cell is well characterised[35]. The S. pombe cell has a well defined width which 

remains fixed during cell growth, which occurs from the two ends of the rod only[36, 37]. The cell has 

an average width of 3.9 µm[38] and a length of 7 µm at birth extending to 13-14 µm prior to 

division[39-41]. It is this fixed aspect ratio control which makes the S. pombe length (Lt0) and width 

(Wt0) parameters ideal as a proof-of-principle that the analysis algorithm returns the correct value 

for objects which are not symmetrical. Further S. pombe studies can be found in Chapter 3. 



2.7.1 Experimental Setup 

An exponential phase growth culture of S. pombe in YE5S was diluted to OD = 0.01, in the same 

growth media, and 100 µL of cell suspension was deposited in the flow cell, the lower surface of 

which was coated in lectin (Sigma-Aldrich, Lectin from Glycine max, L1395, 100 µg/mL). After 2 

minutes the excess solution was removed, leaving only the cells that had adhered to the lectin-

coated surface. The chamber in the control sample was filled with YE5S broth containing a 3-point 

calibration of microspheres (sizes 6, 12 and 30 µm) and sealed with the second cover slip. 

The flow cell was imaged first using the light microscope and immediately after on the Lensless 

microscope experiment to allow comparison of optical and Lensless dimensions. Details of the 

growth conditions and the confirmation of appropriate growth conditions in the flow cell are 

described in detail in Chapter 3.This set up was then used for subsequent growth experiments in 

Chapter 3.  

2.7.2 Results 

The microscope images and diffraction patterns of 18 fission yeast cells were collected and 

compared to establish the characteristics of single cells and their dimension variability. These 

findings are displayed in Figure 2.18, the cells were identified as the same cell on both microscopes 

using the same registration method as described in section 2.6. 



 

Figure 2.18 A comparison between 18 S. pombe microscope images and the corresponding Airy Discs. Images are not as 
clear as a traditional Airy Disc as these images are heavily influenced by the lectin surface and the depth of the 
surrounding liquid. 

A typical growth curve of S. pombe is displayed in Figure 2.19; a total of 11 parameters can be 

identified and extracted; a histogram of each is displayed in Figure 2.20. It is the subject of this thesis 

to find, amongst all of the parameters of microbial growth, characteristics of growth which indicate a 

phenotype. The 11 parameters are potential phenotype classification parameters and a method for 

assessing their potential has been derived. The 11 parameters extracted are: 

 Major and Minor Dimensions at t0 minutes / µm  

 Length of lag period / minutes ;  



 Maximum growth rate / µm min-1; 

 Average growth rate / µm min-1; 

 Time between lag period and cytokinesis (Atime) / minutes; 

 Length at cytokinesis (Asize) / µm; 

 Estimated birth length (LB) / µm; 

 Length of the cell cycle (tcell) / minutes; 

 Aspect Ratio t0(ARt0); 

 Maximum Aspect ratio (ARmax). 

 

Figure 2.19. A typical S. pombe growth curve displaying some of the growth parameters which may be extracted from 
the data: the length and width at t0 minutes (Lt0/Wt0); the length of the lag period (λ);the two growth rates µ1and µ2; the 
time in the growth curve that the maximum size is reached (Atime) andthe maximum size the colony or cell reaches (Asize). 
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Figure 2.20 The histogram distributions of all 11 parameters extracted and calculated from the growth curve of 
S. pombe. From top left, Length (Lt0); Width (Wt0); Length of lag period (λ); Atime; Asize; LB; tcell; Average growth rate; 
Maximum growth rate; ARt0; ARmax. 

Analysis of the full parameter set will be performed in Chapter 3. The analysis of the Length and 

Width at t0minutes parameters are now presented as a proof of principle. The ePDFs presented in 

Figure 2.21 are histograms normalised to an area of 1. Further discussion and explanation of 

graphical representation methods is in section 2.8.3. 

The ePDFs and Boxplots with overlays of Beeswarm plots of length and width of N = 100 S. pombe 

cells at t0 minutes are shown in Figure 2.21, these are also further explored and explained in section 

2.8.3. 
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Figure 2.21 The normalised histograms and Box plots for the distributions of A + B major axis at t0mins and C + D minor 
axis at t0mins for N=100 S. pombe. The major axis length converges on a median of 9.2 (+0.6 -0.9) µm and the minor axis 
width converges on a median of 3.9 (±0.15) µm. The Box plot displays a red line to indicate the median, the box edges 
indication the 75

th
 and 25

th
 percentile of the data and the whiskers extending to the range of the data. The whiskers (w) 

are set at a default length of +/–2.7σ with data outside of this indicated as outliers where σ is the standard deviation of 
the sample. Outliers are classified as either larger than q3 + w(q3 – q1) or smaller than q1 – w(q3 – q1) where q1 and q3 
are the lower and upper quartile values respectively 

The distributions of both length and width in Figure 2.21, the display of which is discussed further in 

section 2.8.3, are the first look at two possible phenotype parameters which must be interpreted 

correctly for phenotype analysis. The distributions do not appear normal. The median of the length 

distribution is 9.2 (±0.6) µm and the median of the width distribution is 3.9 (±0.15) µm.The width 
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distribution Box plot highlights 4 data outliers. The method of analysis of these parameters will now 

be discussed fully. For discussion on the way in which these values compare with those published in 

the literature, refer to chapter 3. 

2.8 Distribution Analysis – The Classification of a Phenotype 

The first distributions of growth phenotype classification parameters have now been measured and 

a series of tools must be developed to evaluate their potential. Each individual cell is its own 

phenotype so its location in the distribution is a classifier. However, individuals may be grouped by 

growth performance such as a stratification to identify a smaller number of growth phenotypes in a 

population. A phenotype will be determined in one of two ways: 

1. As a second distribution or population of outliers at the edge of the main parameter’s 

distribution; 

2. The relative position an individual holds in each of the distributions (the phenotype 

trajectory). 

The distributions must be analysed for the strata to identify secondary phenotypes, the two 

prominent identifiers of phenotype being outliers and bimodal distributions. Data with normal 

distributions are likely to be a single phenotype with a random spread of properties. The following 

distributional analysis techniques are methods which may be employed to determine whether the 

data are normally distributed, or whether the data have a bimodal or skewed distributions and 

whether the data have significant outliers. All of these distributional characteristics have the 

potential to highlight groups of phenotypes within the population, and point towards survivors in 

unfavourable growth conditions. The aim of this thesis is to find phenotype variation within 

distributions using the parameters of growth. A typical microbial growth curve is displayed in Error! 

Reference source not found., with the growth parameters which can be extracted from this 

information. 

Each bacterium type analysed in this thesis will have a slightly different set of parameters dependant 

on the ways in which they grow. As stated in the aims and objectives the analysis of S. pombe is the 

analysis of the growth parameters of single cells whereas the analysis of E. coli and S. aureus looks at 

the growth parameters of small colonies.  

The parameters of growth, some of which are displayed in Error! Reference source not found., are 

extracted from the curves collected by the ADFF. These data sets can yield up to 16 separate 

parameters and so a method has been developed to screen these parameters to determine the ones 



which have the strongest possibility of identifying individual growth phenotypes. This method is now 

referred to as Phenotype Classification Parameter Analysis. 

2.8.1 Phenotype Classification Parameter Analysis 

A method of parameter analysis is designed to filter the parameters into those which will 

discriminate between phenotypes uniquely and those which are highly correlated with others. A 

simple correlation matrix (corrcoef function in Matlab) is used to determine correlation coefficient 

between each of the parameters in the set. The function produces a correlation matrix based on the 

matrix of input parameters. The correlation matrix for all of the parameters identified in Figure 2.19 

and Figure 2.20 are presented in Table 2.1. 

Table 2.1. The process of creating a correlation coefficient matrix on the right from a matrix of parameters, highlighting 
strong correlations between the parameters in grey to the right of the diagonal. The diagonal line of value 1 comes from 
the correlation of one parameter with itself, perfect positive correlation. 

 

The correlation coefficient matrix assigns a correlation coefficient between paired parameters; 

Length t0 and Length t0 are the same parameter and so, as with all positions on the leading diagonal 

of the matrix, produces a correlation coefficient of exactly 1. A reasonable negative linear 

correlation is seen between the parameters Length t0 and Atime, the value of coefficient being -0.667 

(limiting value -1), whereas the Length t0 and Width t0 do not correlate strongly, indicated by a 

correlation coefficient of 0.205 (limiting value of 0 for no correlation). For the purposes of this 

analysis be have set the correlation threshold at 0.6. Values of correlation below 0.6 (or above -0.6) 

are not considered as strong correlations and the parameters are not considered to correlate. 

Correlations between parameters can occur because they are related (length and volume for 

example)  although correlation does not always imply causation[42], accidental or misleading 

correlations[43] can occur between parameters. Using the (+-) 0.6 upper correlation threshold, 

parameters which correlate with other parameters are removed from all subsequent analysis; those 

parameters that pass the filter will be considered as potential phenotype classification parameters. 

In the case of Table 2.1 the parameters Length t0, Width t0, Lag period length (λ), Average growth 



rate, LB and tcell will be taken forward to further analysis in Chapter 3.The parameters which were 

removed were the aspect ratio measurements, clearly related to the Length and Width parameters 

and the parameters Asize and Atime, the former correlated with Length and tcell; the latter being 

directly related to LB. Once the parameters of interest have been identified, their distributions can 

be displayed and tested to determine outliers, distribution shape and to identify possible phenotype 

groups. The simplest phenotype would suggest a random variation which would suggest a normal 

distribution in a parameter derived from a population. Tests for normality on the distribution are 

clearly then fundamental to the phenotype analysis.  

2.8.2 Describing a Distribution as ‘Normal’ 

The standard Normal distribution[44] is a bell-shaped distribution with a mean (the first moment[45]), 

a mode and median of 0 and a standard deviation (the square root of the variance or second 

moment[46]) of 1. The distribution is totally symmetric with no bias either side of the mean 50% of 

the distribution mean and 50% smaller. To standardise data to compare it to a standard normal 

distribution (SND) or z-statistic the mean (µ) of the data must be subtracted from the distribution 

and then this new distribution must be divided by the standard deviation (σ), equation ( 5 ): 

  
    

 
 

( 5 ) 

Randomly occurring events are normally distributed; therefore cell growth variations, which arise as 

the result of many controlled small random fluctuations in enzyme concentrations are the simplest 

definition of a phenotype, are unlikely to be so. Many of the phenotype parameter distributions are 

not expected to be normally distributed if they are to show phenotypes, and phenotypes will be 

detectable in parameter distributions that are not highly correlated with other parameters. 

Phenotypes are expected to appear everywhere in the distributions but those with extraordinary 

growth properties such as persister cells may be present as in the upper percentiles of the 

distributions or outliers; in extreme cases the distribution may split becoming bimodal or multi-

modal. However it is important to test the distributions for normality as a starting point and 

establish confidence in the initial assignment. In a review published in 2005, Henderson shows that 

the tests for normality should follow a specific route[47], graphical representation of Histograms, 

Boxplots and Q-Q plots and normality testing with either the Anderson-Darling test or the 

Shapiro-Wilk test for example. The Anderson-Darling test is approved by the Food and Drug 

Association[48] for testing the normality of non-parametric distributions. 



Nonparametric statistics are those which do not assume that the data have a characteristic or 

standard distribution which can be well represented by a known equation.  Nonparametric models 

make fewer assumptions, are generally applied to data where little is known about the outcome and 

are generally considered to be more robust. Nonparametric graphical representations include 

histograms and kernel density estimators, nonparametric statistical tests include the Anderson-

Darling test for normality and the Mann Whitney U test to determine whether two samples are from 

the same continuous distribution. These tests all use the data median as the parameter by which to 

compare distributions. The 95 % CI’s for all distributions parameters are calculated by bootstrapping 

them for N = 1000[49].Bootstrapping takes the data available, treats it as a sample of a full population 

and creates a number of phantom data to better estimate the values asked of it, in this case the 

95 % confidence limits[50]. 

2.8.3 Graphical Representation 

The simplest distribution display is the histogram, Figure 2.22. Histograms are conventionally  

density estimators[51] and make no assumptions of parametric or non-parametric distributions . The 

frequency of an observation is derived by dividing the distribution into a number of bins chosen 

either by the user or through a number of automated processes. The bin number choice is an 

important consideration as picking too few bins over-smoothes the data arbitrarily loosing 

information, and too many bins under-smoothes it, making the distribution appear noisy[52]. There 

are many rules published for the choice of binwidth, including Sturges’s proposal[53] and the more 

recent work of Scott[51]. The bin number here is set to 10 for all data sets unless the width of the bins 

brought about by this is less than the increment of the unit measured. Meaning that, as there are 10 

bins across the range of the data, the bin width for each parameter will be different. Conventionally, 

the histograms are a plot of frequency against bin but to make a comparison with the probability 

distribution of the observable, the phenotype parameter as cell cycle time, the histogram is 

normalised. When normalised to an area of 1, the histogram is referred to as empirical Probability 

Density Functions (ePDFs) and are mathematically the phenotype parameter probability 

distributions.  Histograms are the simplest graphical method of viewing a distribution there are 

others that will be useful in thesis, especially in interrogating the distribution characteristics. 

A box plot displays the distribution of the data about the median, the mathematical centre of the 

distribution when the observations are ranked in order from lowers to highest[54], Figure 2.22. The 

Box plot displays a red line to indicate the median, the box edges indication the 75th and 25th 

percentile of the data and the whiskers extending to the range of the data. The whiskers (w) are set 

at a default length of +/–2.7σ with data outside of this indicated as outliers where σ is the standard 

deviation of the sample. Outliers are classified as either larger than q3 + w(q3 – q1) or smaller than 



q1 – w(q3 – q1) where q1 and q3 are the lower and upper quartile values respectively. Adding the 

data points as a Beeswarm plot to the Boxplot provides a second graphical presentation of the 

distribution. Outliers in the distributions maybe the first indication of an infrequent phenotype and 

so with this graphical representation it is possible to see the onset of distribution structure such as 

deviations from normal. Data with bimodal populations will then appear obviously in the 

boxplot/beeswarm plot, meaning that analysing the data at the tails of the distribution will provide 

us with information about a second phenotype distribution. The Q-Q plot is a graphical method of 

visualising the deviations a data set have from the data from a defined distribution type. 

A Quantile-Quantile plot[55]takes the frequencies of the input distribution and compares it to the 

frequency of a reference distribution such as normal and then linearised for presentation; taking the 

quantiles of the input distribution and the theoretical quantiles of a reference distribution and 

plotting one against the other another produces the Q-Q plot, top right Figure 2.22. The quantiles of 

a distribution are evenly spaced points taken from the cumulative density function of a data set, 

quantiles taken over 100 points are termed percentiles, and a quantile taken over 2 points is termed 

the mean. The comparison of the two distributions should form a straight line, deviations from the 

line shows the distribution does not fit the reference distribution. The Q-Q is usually plotted for the 

normal distribution and this is seen in Figure 2.22. The departures from linearity are an excellent 

graphical representation and may show the onset of bimodality. The Q-Q plot is further used to 

distinguish graphically between bimodal distributions in Figure 2.23. 



 

Figure 2.22 Selection of output from the Normality Program on model, randomly generated ‘normal’ data of N=100 
samples. The histogram is constructed with 10 bins, the QQ-plot, comparing the quantile values of the input distribution 
to those of a reference normal distribution, the Boxplot, show the median, 25

th
 and 75

th
 percentiles, range (whiskers) 

and outliers of the data and the Probability plot, no longer used in our analysis. 

A program was written in Matlab to perform a series of normality tests on any distribution. These 

tests were performed on model and measured data Figure 2.22 and Table 2.2 (See 2.8.5). The 

program file can be viewed in Appendix 2. 

Distributions with clear departures from normality or other reference parametric distributions will 

then be analysed non-parametrically. However, the graphical representation may be insufficient and 

other parameter of the distribution may be considered to assess its shape. The distributions can 

analysed using normality tests and the parameters of kurtosis and skewness, the ‘shape’ of the 

distribution. 

2.8.4 Distribution Shape Parameters[56] 

Skewness is a measure of the symmetry of the distribution about the sample mean and is the third 

moment of a distribution[57]. A negative skewness coefficient means that the distribution is more 

spread below (to the left of) the mean, a positive coefficient the distribution is more spread to the 

right of the mean. Any perfectly symmetrical distribution, normal or otherwise, will return a 

coefficient of 0. The calculation used here for skewness uses equation 8: 
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( 6 ) 

where µ and σ (the sample mean and standard deviation) have been described previously,  is the 

datum and        is the expected value of     . Adistribution highly skewed in either direction 

is of interest here as the skewed area may be indicative of a phenotype. Distributions are skewed 

because of a natural limit on one side of the data, for example the pureness of a product is skewed 

because it cannot be more than 100% pure, with a negative skewness parameter. Distributions with 

a high positive skewness parameter come from incidences such as maximum length of time of a call 

received by a call centre in minutes, where the natural limit is 0 minutes. The skewness may extend 

to the extremes of the distribution and this is captured in the Kurtosis of a distribution, fourth 

moment[58]and another parameter which can be used to determine whether a distribution contains a 

second (or more) phenotype distribution. 

Kurtosis described as ‘a measure of how outlier-prone a distribution is’[59] i.e. the ‘weight’ of the data 

in the tails of the distribution. A normal distribution has a kurtosis coefficient of 3; a distribution with 

wider tails (more outlier-prone) has a kurtosis value of more than 3 and is termed platykurtic; a 

narrower tailed-distribution has a value of less than 3 and is termed leptokurtic[60]. It is expected that 

new phenotype populations will be found in distributions which display a wider spread of data, so 

those with higher kurtosis values. So there are specific tests developed to test the normality of a 

distribution and these tests can be used to reject the data on the basis of it being normally 

distributed. 

2.8.5 Tests for Normality 

The two statistical tests for normality used here are the Anderson-Darling test[61] and the 

Shapiro-Wilk test[62], the two tests recommended for use by Henderson[63], for non-parametric 

distribution analysis and recommended by the FDA[64]. The Anderson-Darling (A-D) test tests 

whether a sample of data comes from a reference distribution, in one case this is normal 

distribution. The A-D  test measures the distance between the reference (normal) distribution and 

the empirical cumulative density function (eCDF), normalised to 1 of the input data set[65]. The test 

accepts the null hypothesis H0 that the distribution is normal and derives a P-value, the probability of 

rejecting the hypothesis by change alone. The A-D test places more weight on the discrepancies of 

the data in the tails of the distribution than standard tests for normality[66], the areas at which may 

contain interesting growth phenotypes making it comparable to the graphical Q-Q plot. A further 

test is the S-W test is used; together these two tests are the state-of-the-art tests for Normality 



testing. P should be less than 0.05 for hypothesis tests in order for there to be a less than 5 % chance 

that the null hypothesis would be accepted by chance alone. 

Table 2.2 The output moment statistics of the randomly generated model data. All errors are bootstrapped for 1000 
samples to derive 95% confidence limits. The h value for the statistical tests determines whether the null hypothesis was 
excepted or not (H=0 accepts null hypothesis, 1 rejects it) and the p-value is the degree of confidence in the decision. 

Parameter Value 

Range  4.625 

Mean -0.075 

ErrorMeanL -0.260 

ErrorMeanH 0.122 

Median 0.037 

ErrorMedianL -0.189 

ErrorMedianH 0.200 

Mode 0.002 

ErrorModeL -0.234 

ErrorModeH 0.321 

StDev 0.979 

95th Percentile 1.642 

65th Percentile 0.296 

Kurtosis 3.082 

ErrorKurtosisL 2.675 

ErrorKurtosisH 3.321 

Skewness -0.340 

ErrorSkewnessL -0.763 

ErrorSkewnessH 0.432 

SWh 0.000 

SWp 0.209 

ADh 0.000 

ADp 0.021 

 

The distribution parameters in Table 2.2 are the mean, mode and median with the associated upper 

and lower 95 % bootstrapped confidence limits; the range and the standard deviation (StDev); the 

distribution shape parameters, skewness and kurtosis and the 95% bootstrapped confidence limits 

and the two tests for normality (SWh and ADh) with the calculated P-values (SWp and ADp). The 

parameters can be used to determine whether a data set is bimodal or not, by applying them to data 

sets created to be bimodal. It is important to determine between bimodal distributions as a 

phenotype discriminator. It must be determined at what level of separation between the 

distribution meanswe lose the ability to distinguish between them. Four distributions each created 

from two normal distributions with differences between the means of 8, 4, 2 and 0.5 are displayed 



as Q-Q plots in Figure 2.23. A full description of the statistical parameters used in this thesis are in 

Appendix 3. 

 

Figure 2.23 The evolution of the QQ plot as the difference between the mean of two bimodal normal distributions 
decreases from Eight (A), to four (B), two (C) and 0.5 (D). These plots show distinctly what our normality analysis shows, 
that they cannot be distinguished between as two separate continuous distributions when the means are separated by 
less than 1. 

The Q-Q plot provides a simple graphical inspection to determine the normality of data. The Q-Q 

plot in Figure 2.23 D was compiled of two normal distributions: one centred on a mean of 0 and the 

other on a mean of 0.5. The SW and AD test both reject that null hypothesis that it is normal but the 

Q-Q plot is similar to the Q-Q plot in Figure 2.22 for a normal distribution. 

2.8.6 Distribution N-bias 

Bias is an important concept in distributional analysis and can come from a number of sources. 

There can be observer bias with a user rejecting a cell from an observation selecting only data they 

expect to ‘fit’ the experiment. Any exclusion criteria may perturb the sample. The Lensless 

microscope eliminates this in part, in that the user cannot select a “good” diffraction pattern based 

on any characteristic of a cell. The second source of N-bias is the size of the sample and how 

accurately the sample size properties represent the properties of the parent distributions. The size 
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of a sample required to perform a statistical hypothesis test between to parameters in different 

populations is the power of a test[67]. Only once the size of the effect that is to be tested is known 

can the power calculation be performed accurately. The experiments presented in this thesis are the 

necessary prospective studies that would inform a power calculation.  

All distributions contain 100 observations in this thesis, each single data point representing 1 % of 

the distribution. The theory of distribution convergence[68] states that a sequence of seemingly 

random sampled events can converge on a behaviour that is essentially unchanging. Assuming that 

the experimental conditions here do not introduce a bias into the sampling of these cells, the 

distribution convergence theory can be applied to the data here and tested. In Figure 2.24 the 

convergence of the median and bootstrapped errors of our width at t0 distribution as N increases 

from 10 to 100 is displayed. 
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Figure 2.24 The convergence of the median of the distribution of the Width t0 minutes parameter (blue) and the 
bootstrapped 95% confidence limits (green, upper and red, lower). 

 

 The length and width data from the S. pombe preliminary tests will be analysed following these 

parameters and discussed further in Chapter 3. 

2.9 Discussion 

The Lensless microscope has been used to monitor the growth of S. pombe over a time period in 

excess of 600 minutes. The flow cell has been demonstrated to support microbial growth and the 

temperature control of the device environment has been shown to be stable over the same time 

course. The simple algorithm for the extraction of aspect ratio parameters accurately calculates the 

size of the diffracting objects, R2 = 0.997, so validating the simple ADFF analysis technique to extract 

sufficient information from the Airy Disc patterns to determine the size and aspect ratio of a 

diffracting object and hence screen for growth phenotype parameters. The method of data 

collection and measurement is automated reducing the population distribution errors related to the 
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user; there is no bias over selection of cells which appear to fit the distribution or discrepancies in 

measurement between cells. There are three measurement errors associated with the Lensless 

microscope. For objects of size sub 6 µm the error is dominated by the diffraction limit error of 

0.3 µm. For objects over this range the error is 5 %. Intensity change errors, This error is attributed 

to mask calculation error, interaction between close diffracting objects and imaging artefacts, for 

measurements from the optical microscope an error of 5 % is calculated. The measurement error 

can be attributed to interaction with surface structures and focal plane through the object.  

The growth measurement experiments allow a growth curve to be measured from 100 objects from 

which 11 parameters may derived. A correlation screening process rejects highly correlated 

parameter leaving in the case of S. pombe 11 potential phenotype parameters of growth. The 

parameter correlation screening method produces a set of parameters which can be considered the 

growth phenotype parameters of S. pombe but is a general method. The parameter distributions are 

analysed for normality and assessed for shape forming a set of standard analysis technques for 

phenotype screening. Data are plotted as ePDFs and Boxplots (Beeswarm). The distribution shape 

estimators are Kurtosis and Skewness and will be extracted, along with the mean and standard 

deviation, median and range. These parameters are bootstrapped to obtain 95 % confidence limits 

for 1000 re-samples. Finally each distribution is tested for normality using both the A-D and S-W 

tests. The Q-Q plot is not going to be used as it contains graphical data tested in the A-D test. The 

parameters of Kurtosis[59] and Skewness[69] determine a measure for one aspect of the distribution, 

based heavily in changes in the tails of the distribution only whereas the tests for normality use 

several parameters of the distribution to determine whether it is normal[70]. It can also be observed 

that the bootstrapped 95 % confidence limit errors for the parameter values often have a large 

range. It can be concluded that while Kurtosis and Skewness calculations return important 

information about the shape of the distribution they are not to be relied upon as measurements of 

distribution normality. The A-D test[65] is the only approved for use as the normality test of choice by 

the FDA[64] and has been shown to be a strong measure of normality for non-parametric 

distributions[63]. 

Cells growing in any environment may exhibit growth characteristics which differ from the 

genetically identical population, these phenotypes may lead to cancerous growth, film formation or 

persister cells. These cells will be identifiable from the bulk distributions as outliers; the data will not 

be normally distributed and may be bimodal. The Q-Q plot appeared to identify distributions which 

differ from the normal distribution at the fringes of the data, by our definition identifying the 

potential different phenotype groups. The Q-Q plot, even for the data produced to be normal, 
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highlights deviation at the edges of the distributions. This method, therefore, provides a misleading 

visual representation of the data with no quantitative measure of a deviation from normal 

distribution parameters. 

The tests for normality are performed on data sets with a sample size N=100. N was chosen as 100 

so that each cell in the experiment represents 1 % of the distribution. The experiments here, as 

discussed previously, are not biased by user choice. The diffraction patterns selected at t0minutes 

are largely indistinguishable from each other and so the whole population is selected regardless of 

initial appearance. It has been demonstrated that the median of the distributions together with the 

bootstrapped confidence limits converge after N = 80, Figure 2.24. If there was a phenotype 

identified which appeared to be of interest then perhaps it would be desirable to increase N to be 

something significantly higher. When deciding what N is high enough, however, it is valuable to think 

about the prisoner of war John Kerrich and his coin toss experiment, it was only when he reached 

N = 10,000 coin tosses that he reached a 99 % confidence on the probability of returning a tail on the 

coin toss as 50 %[71].  

Having defined the method by which a set of phenotype parameters is extracted from the 

parameters of growth and the analysis of the specific organisms of interest has been defined, the 

thesis will explore phenotype classification of growth phenotypes in the following model organisms; 

S. pombe, E. coli and S. aureus. 

2.10 Conclusions 

It has been shown that the diffraction patterns recorded by the Lensless microscope instrument can 

be analysed and converted to two dimensional size information using a simple algorithm, with no 

requirement for full holographic reconstruction of the intensity data to a full image. The device has 

been shown to be stable over time for two elevated temperatures and a known size microsphere. 

It has been demonstrated that the calibrated diameters for spheres calculated by the algorithm 

concur with the measurements for the same spheres obtained using the light microscope, the R2 of 

the calibration plot is 0.997, Figure 2.17.The calibration method has been demonstrated for micron 

sized living objects with an aspect ratio which compared favourably with those determined from the 

light microscope Figure 2.18. Further to this it has been shown that the length and width parameters 

measured of the organism S. pombe compare to those previously published in the data. The 

methods of analysing these distributions highlight regions which may contain new phenotypes and 

methods to remove distributions from our analysis if they will not provide phenotypic information. 
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It was the aim to apply the data collection, analysis and display methods to analyse the growth 

parameters of the organism S. pombe over a full cell division time course. Phenotypes were 

extracted from these data and the growth phenotypes from this control sample were compared to 

those from a sample of cells grown under silver stress conditions. These analyses are in Chapter 3. 
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3 Eukaryotic cell response to sub lethal silver 

stress – Schizosaccharomyces pombe. 

3.1 Introduction 

The eukaryotic fungus S. pombe is studied as a model for the eukaryotic cell cycle, having many 

features in common with higher eukaryotes[1]. In 2002 it became the 6th eukaryotic organism to have 

the full genome sequenced[2] and contains a total of 13.8 Mb distributed between 3 chromosomes: I 

(5.7-Mb), II (4.6-Mb) and III (3.5-Mb[3] and codes for 4929 genes[2]. The growth phenotype of single, 

wild type S. pombe cells under control conditions has been the subject of extensive research and so 

thegrowth parameters appear to be well known[4-6] although their potential for classification of 

growth phenotypes has not been studied. 

Additional growth phenotypes will be studied for growth under silver stress which provides a radical 

change to the growth environment and hence potential phenotypes of S. pombe. The toxicity of the 

silver ion to cells via a number of mechanisms has been well documented[7-11], and discussed 

previously (Chapter 2).  

The antimicrobial mechanism of silver action which has been observed in prokaryotes is directly 

applicable to eukaryotic cells, and has also been observed in human cells[12]. Silver is used in many 

wound dressing environments to prevent infection from bacteria but there is clearly the potential 

for the silver to affect adversely the wound healing process itself. In their study of silver stress in 

eukaryotic cells, Haaseet al. report that silver nanoparticles induce oxidative stress responses in 

human macrophages[13] and silver nanoparticle exposure has been shown to cause morphological 

cell changes, decreases in mitochondrial function and damage to DNA, proteins and cell membrane 

components[14]. The silver ions in silver dressings, therefore, while proving their worth as 

antibacterial dressings, preventing infection in deep tissue wounds may be detrimental to the 

healing of the cells which the dressing is meant to be aiding.  

This chapter explores the evolving growth phenotype of wild type S. pombe and the observable 

change in growth phenotype which takes place when S. pombe is exposed to a known environmental 

stress, specifically the presence of a sub-lethal concentration of silver ions. The growth phenotypes 

observed in this chapter are those of a single cell, sufficiently isolated on the surface of the flow cell 

to avoid the effects of quorum sensing[15]. The chapter addresses the concept of individual 

phenotype and by extending these ideas to a set of phenotype parameters they can be used to 
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predict a cell’s ability to survive the silver shock, an individual capacity to survive environmental 

stress as a phenotype. 

Understanding the phenotype as a level of proteins within the cell means that analysis of the cell 

cycle and determination of the key regulators of growth will lead to predictors of the disruption and 

resulting phenotype brought about by the silver environmental shift. The concept of the organism 

having a Minimum Inhibitory Concentration (MIC) means that at some level S. pombe is able to cope 

with the disruptive nature of low concentrations of silver ions. Analysis of the effect of silver on the 

cell cycle and the specific silver targets can be described as a determination of the MIC for an 

individual organism on a molecular level. Understanding the S. pombe growth cycle and the levels of 

proteins at each critical check point means that the survival phenotype may be determined. The 

control of the cell cycle and its vulnerability of silver stress will now be discussed further. 

3.1.1 S. pombe cell cycle 

The cell cycle is a process by which a cell replicates its DNA content, segregates its chromosomes and 

undergoes cytokinesis to produce two genetically identical daughter cells[1]. The eukaryotic cell cycle 

is divided into four distinct sections, the same in S. pombe as in humans. The cycle events are 

S-phase, where DNA synthesis occurs and M-phase, where nuclear division occurs[16], and are 

interspersed with two growth phases, G1 and G2. The cycle is regulated at many points by checkpoint 

controls[17], which keep the events of the cell cycle occurring in an orderly manner[18].The cell cycle of 

S. pombe is represented schematically in Figure 3.1, G2 spanning approximately 75 % of the cell cycle 

and M, G1 and S the remaining 25 %. 
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Figure 3.1Schematic representation of S. pombe cell cycle, to scale, divided into the four distinct sections of G1, S-phase, 
G2 and M-phase, the cell spending 75% of the time of the cell cycle in G2, the remaining 25% divided between the three 
phases of M, G1 and S. The arrow depicts the direction of travel through the cell cycle and blue highlights on the pink 
cells indicate areas of growth. [adapted from Martin & Chang [6]]. 

It has been predicted that the minimal control machinery of the cell cycle comprises of seven 

regulatory components Slp1, Cdc2, Cdc13, PP1, APC, Cdc25  and Wee1[19].  

Cdc2 is the control protein in both S and M-phases, and contains three cysteine residues[20]. Cdc2 

controls, in part, the commitment-to-divide checkpoint, called START[21] in G1 and triggers mitosis 

during G2
[22]. Cdc2 is therefore key to cell cycle progression in the two stages of the cell cycle and 

conventionally, initiation of cell cycle regulator pathways by Cdc2 is reported to be cell length 

dependent[23]. Here, we define the ‘reaching of a critical mass’ as the accumulation ofCdc2 to 

beyond a limiting threshold level to trigger cell cycle events. The level of Cdc2 in a cell, therefore, is a 

strong growth phenotype at the molecular level using the ideas of equation (1), and the correlation 

of silver stress survival with the level of Cdc2 in a cell on exposure is to be expected. 

The localisation of Cdc2 in the nucleus for mitotic initiation is controlled by Cdc13, has 3 cysteine 

residues in its structure, and it has been postulated[24] that mitosis will not occur, regardless of the 

level of Cdc2 in the cell, if the mechanism of cdc13 is disrupted. Cells which have deficiencies in 
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Cdc13 as part of their phenotype, on silver exposure, may arrest prior to mitosis. Cdc25 and Wee1, 

are also involved in mitotic induction[25] and have  amino acid sequences containing 12 cysteine 

residues and 6 respectively[26].The control of mitosis is inhibited by the wee1 gene product[27] and 

activated by Cdc25. Wee1 phosphorylates Cdc2, keeping it in an inactive state , while Cdc25 

dephosphorylates Cdc2, activating it[28]. The fact that these four proteins are implicated in mitosis 

control, and all contain cysteine residues, implies that the initiation of mitosis is a check point which 

will be heavily influenced by silver. Further, the level of each protein in the cell on silver exposure 

defines a phenotype which may or may not be able to survive better. 

PPI, protein phosphate 1, has roles in mitosis, the control of polarised growth and endocytosis[29] and 

has a protein structure containing 11 cysteine residues[26]. The implication of PP1 in the control of 

polarised growth could influence the ability of the cell to undergo NETO, a phenomenon which can 

be monitored here. Slp1, the protein involved in marking the end of M-phase[19], has 9 cysteine 

residues in its secondary protein structure of 587 amino acids[26] and the major protein complex 

required by the cell to move through mitosis into anaphase is the Anaphase-promoting Complex, 

APC/C[30], containing 15 subunits, each with at least one cysteine residue. 

It can be concluded, from this group of 7 proteins that that predominant control of the S. pombe cell 

cycle occurs at the G2/M-phase intersection and beyond. As these proteins make up the minimum 

set of proteins required for cell completion of the cycle, deficiencies or surplus levels of these 

proteins will give rise to either unfavourable or favourable phenotypes in both control and silver 

stress growth environments.  

The sets of genes expressed to produce the proteins required for each cell process may or may not 

be expressed at every stage of the cell cycle. There have been many attempts to characterise the 

number of genes which have expression profiles during the cell cycle[31-33] with estimates ranging 

from 407 to 1373 genes whose expression oscillate. At the S-phase/G2 junction expression of genes 

related to telomere and histone production is at a peak, at mid G2 the expression of genes involved 

with Cdc2 (related to mitotic control) and those for ribosomal biogenesis is highest. It is concluded 

that over 2000 S. pombe genes display weak cell cycle oscillations41. 

The vulnerability of the cell to silver via the protein cysteine content points to a direct link between 

the thiol content of proteins at the molecular level and a µm-level phenotype that can be observed 

by the Lensless microscope. Similar molecular mechanisms will be possible for all of the growth 

parameters such as conservation of cell width and how this may be affected by the silver stress. The 

percentage of proteins containing cysteine in yeast is 85 %, and so the disruption of growth at the 
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molecular level is also 85 %. The set of proteins and their concentration properties will be 

interrogated at the µm-level.  

The effect of silver environmental stress on the S. pombe phenotype has not been reported 

previously but the phenotype of the wild type cell under control conditions has been well 

documented[4], [34], [35]. The growth phenotype properties identified thus far are summarised in Table 

3.1 and is the reference set by which the growth phenotype parameters determined in this study will 

be  compared. 

Table 3.1. The  published values for the key wild type S. pombe growth parameters when grown at 25°C, Birth length is 
the length immediately post division, Division length is the length immediately prior to division and Generation time is 
the length of time between divisions. N indicates the number of cells analysed in each case. 

Parameter Mean Value N Reference 

Birth Length / µm 7.5 ± (0.5)  24 [4] 

   8.2 ± (0.52)   164 [36] 

Division Length / µm 15.8  ± (1.6)  12 [4] 

  13.48 ± (1.05)   88 [35] 

 
14.4 ± (0.85)  164 [36] 

Cell Cycle Length / mins 310  ± (40)  12 [4] 

 
188.4 ± (26.4)  88 [35] 

 228* 200 [34] 

 148 ± (16)  164 [36] 

*No published error 

The parameter values represented in Table 3.1 vary significantly within the population (the range of 

the parameters), particularly those for cell cycle length. The cell cycle length is influenced by a 

number of factors and a phenotypic growth parameter we can monitor here. Cells which are growing 

under conditions of starvation, or which become crowded in planktonic cultures may react with 

changes in their cell cycle. A depletion of nutrients leads to a number of consequences: 

 An arrest in the cell cycle in either G1 or G2 and the cell entering G0, the stationary phase[1]. 

 Nitrogen starvation, in particular, causes the cells to divide at shorter lengths than expected, 

length correlated to length of time a cell is exposed to nitrogen starvation[37]. 

 If both mating types are present a diploid organism may form.  

The above lists clear changes in the growth phenotype brought about by an environmental shift. The 

Lensless microscope can monitor a number of growth phenotypes: 

 cell length at t0 minutes; 

 cell width at t0 minutes; 
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 length of lag period; 

 cell length at NETO; 

 change of growth rate at NETO;  

 time to NETO 

 cell length at division 

 length of time to division 

From the growth curve of the S. pombe growth phenotype parameters can be derived for phenotype 

classification under both growth conditions.  

3.1.2 Aims and Objectives 

This chapter aims to apply the analysis methods developed in Chapter 2 to study the phenotypic 

growth of a single eukaryotic cell, S. pombe, producing growth curves for N = 100 single cells and 

extracting growth phenotype parameters. The same analysis will be performed under growth 

stressed conditions with a sub-lethal dose of AgNO3 of 1 µg/mL. Growth parameters will be derived 

from N = 100 viable cells that grow to cytokinesis and the survival rate for silver stress will also be 

recorded.  

The distributions of the growth parameters for wild type and silver-stressed organisms will be 

analysed using tests of normality and non-parametric distribution comparison methods to assess the 

structure of the distribution and identify potential growth phenotype populations. The phenotype 

parameter distributions will be compared with those observed under silver stress conditions to 

explore the new stressed-induced phenotypes. 

3.2 Materials and Methods 

The Lensless microscope configuration was used as described in Chapter 2 without alteration.  

S. pombe (WT 972 h-) was grown and handled using standard methods[38, 39]. All experiments were 

performed in YE5S medium at 25°C (yeast extract with added 250 mg/L histidine, adenine, leucine, 

uridine and lysine). The experimental set-up is described pictorially in Figure 3.2.  
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Figure 3.2 The experimental set up for the control and silver stress growth chambers. The set up is identical for both 
conditions until the final step, the silver stress environment filled with broth containing a concentration of silver nitrate 
and the control with broth only. The cells in the silver stress environment are not exposed to silver until this point. 

A log-phase growth culture of S. pombe in YE5S was diluted to OD = 0.01, in the same growth media, 

and 100 µL of cell suspension was deposited in the flow cell, the lower surface of which was coated 

in lectin (Sigma-Aldrich, Lectin from Glycine max, L1395, 100 µg/mL). After 2 minutes the excess 

solution was removed, leaving only the cells that had adhered to the lectin-coated surface. The 

chamber in the control sample was filled with YE5S broth containing a 3-point calibration of 

microspheres (sizes 6, 12 and 30 µm) and sealed with the second cover slip. 

A series of experiments were performed to measure the MIC for S. pombe under planktonic growth 

condition from which a sub-lethal concentration was derived. YE5S broth with varying AgNO3 

concentrations were inoculated with a exponential-phase growth culture of S. pombe. The cultures 

were incubated at 25°C with a shake of 200 rpm. Cell growth was measured at regular intervals by 

recording the OD600 of the cultures. 
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The chamber in the silver stress sample was filled with YE5S broth supplemented with the same 3 

control spheres and the sub-lethal concentration of AgNO3. The Lensless microscope was placed in 

an optically dark, temperature controlled chamber. The temperature of this chamber was 

maintained at 25°C (±1), this remained stable over the time course of the experiment. The 

temperature of the growth cultures was maintained at 25°C. The control growth experiment was 

repeated 12 times, with each repeat containing between 6 and 12 cells. The silver growth 

experiment was repeated 14 times with each repeat containing between 4 and 9 viable cells. 

3.3 Results 

To collect the growth data presented here the growth experiment was performed 10 times under 

control conditions and 14 times under silver stress conditions. The Lensless microscope monitored 

growth, during the experiments exposing cells to silver, remained stable for over 2000 minutes, the 

constant, consistent measurement of the minor axis verifying this. The cells were grown in the flow 

cell, without the use of flow. This means that the media within the cell is not constantly oxygenated. 

S. pombe is known to not grow well under anaerobic conditions but the collusion of our growth data 

with that of data obtained from cells grown in aerobic planktonic conditions confirms that either the 

cells are not affected by the dwindling supply of oxygen or that, within the time course, oxygen does 

not become limited. 

The preliminary silver stress growth experiments were conducted in planktonic conditions[40], 

Figure 3.3, using YE5S as the growth medium supplemented with a range of silver nitrate 

concentrations. 
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Figure 3.3. The planktonic growth curve, measured in optical density, for S.pombe when grown in YE5S broth (red), YE5S 
with 0.5 µg/mL AgNO3 (blue), 1µg/mL AgNO3 (green), 2 µg/mL AgNO3 (purple) and 4 µg/mL AgNO3 (pink). Error bars are 
± standard deviation. Each data set is the average of 3 biological repeats. 

These experiments were all performed using the same initial cell inoculum in the same YE5S medium 

at the same temperature, 25°C. The minimum inhibitory concentration (MIC) of silver, the lowest 

concentration of antimicrobial which will inhibit visible growth after overnight incubation[41], is 

2 µg/mL. We have selected 1 µg/mL as the sub-lethal silver concentration in which to observe the 

growth phenotype shift in silver stress conditions for S. pombe 

The cell viability on transfer from the planktonic culture to the flow cell in the control experiments 

was > 98 %, assessed for N = 100, viability defined here as a cell which increases along at least one 

dimension during the experimental time course. A typical silver stress experiment resulted in the 

transfer of 12 cells into the flow cell to a total of 156 cells deposited throughout the course of the 

stress response analysis. 100 viable cells grew to cytokinesis and, allowing for a 2 % attrition rate on 

transfer to the surface (derived from the control) the 1 µg/mL AgNO3sub-lethal concentration causes 

35 % of cells to die/prevents them from growing to cytokinesis within the time scale of the 

experiment, of 1000 minutes. 
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3.3.1 Growth Curves 

The typical recorded growth curves for a single S. pombe cell, on a lectin surface, in YE5S broth at 

25°C with and without silver stress are displayed, Figure 3.4. The growth along the major and the 

minor axesis displayed, from which the growth parameters are derived, chapter 2 and below.  

 

Figure 3.4 Typical growth curves, recorded by the Lensless microscope, for S. pombe under control conditions (A) and 
silver stress conditions (B), showing both the extension along the major axis (red) and the minor axis (blue). The time 
course for a single cell division under silver stress is over 4 times longer than the time course for the cell grown under 
control conditions. 

The growth curve may be characterised by a number of parameters shown in Figure 3.5 which are 

the length at t0 (Lt0), the width at t0 (Wt0), the lag time (λ),the initial growth rate (µ1), the post-

inflection point growth rate (µ2), the time to cytokinesis (Atime) and length at cytokinesis (Alength). The 

rate parameters were determined as the maximum of the numerical differentiated Pchip fit of the 

growth, NETO identified as a step change in this plot. A was determined as the numerical maximum 

of the major axis growth curve and the end of the lag period was identified when the maximum 

length was larger than 2 × σ of the noise. 
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Figure 3.5. The growth parameters extracted from all cell growth observations: cell length at t0 minutes (Lt0), cell width 
at t0 minutes (Wt0), length of lag period (λ), growth rates µ1 and µ2, the size at A (Alength), and the time that A is reached 
(Atime). Other parameters, such as tcell,LBand average growth rates are calculated from these data sets. 

NETO and the parameters associated with it (µ1, µ2, size at RCP, time elapsed at RCP the µ2/µ1 

ratio) are not observed in the growth curves recorded from the silver stressed S. pombe cells and so 

are analysed separately from the following silver stress data. 

The choice of N = 100 S. pombe is based on a reasonable collection time and the number of cells 

reported in the literature for each of the cell parameters, so as to maintain consistent accuracy. Cells 

were analysed in each growth condition and a full set of parameters extracted. N = 100 here 

compares to or exceeds the number of cells measured in other publications[4],[35], the length and 

width parameters defined in Chapter 2  consistent with those in the literature and the bootstrapped 

median of these parameters shown to converge before N = 100. 

3.3.2 Phenotype Classification Parameter Screening  

The correlation matrix screening process, detailed in Chapter 2, identified 11 parameters that fall 

below the 0.6 correlation threshold and the correlation matrix for the wild type and silver stressed 

growth parameter analyses are presented in Table 3.2 and Table 3.3 respectively.  
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Table 3.2 The correlation coefficient table for the control S. pombe sample. Strong correlations are highlighted in grey to 
the right of the table. 

 

Table 3.3 The correlation coefficient table for the sample of S. pombe cells which have been grown in silver stress 
conditions. The strong correlations are highlighted in grey on the right hand side of the table. 

 

The correlation analysis for both growth conditions give different results for the phenotype 

parameter sets, there are 6  common which will be taken forwards for phenotype screening: : 

 Length at t0mins / µm 

 Width at t0mins / µm 

 Length of lag period / minutes 

 Average growth rate / µm min-1 

 Birth length (LB)/ µm 

 tcell / minutes 

For the comparison of two data sets we have developed the ePDF mirror plot, which is displayed 

with the other graphical comparison methods in Figure 3.6. 

Length t0 Width t0 Lag Atime Asize Lb CCL Av rate Max rate ARt0 ARmax

Length t0 1.000 -0.667 0.913

Width t0 0.205 1.000 -0.649

Lag -0.152 -0.027 1.000

Atime -0.667 -0.080 -0.023 1.000 0.759 -0.644

Asize 0.246 0.053 0.155 -0.116 1.000 1.000 0.553 0.718

Lb 0.246 0.053 0.155 -0.116 1.000 1.000 0.553 0.718

CCL -0.127 0.089 -0.180 0.759 -0.287 -0.287 1.000

Av rate -0.380 -0.113 0.301 -0.117 0.553 0.553 -0.594 1.000

Max rate -0.090 -0.068 0.063 0.025 0.428 0.428 -0.165 0.341 1.000

ARt0 0.913 -0.203 -0.130 -0.644 0.216 0.216 -0.177 -0.326 -0.066 1.000

ARmax 0.055 -0.649 0.134 -0.053 0.718 0.718 -0.299 0.498 0.400 0.317 1.000

Length t0 Width t0 Lag Atime Asize Lb CCL Av rate Max rate ARt0 ARmax

Length t0 1.000 -0.665 0.882

width t0 -0.181 1.000 -0.758

Lag -0.470 -0.081 1.000

Atime -0.514 0.142 0.172 1.000 0.678

Asize 0.401 0.089 -0.462 -0.391 1.000 1.000

Lb 0.401 0.089 -0.462 -0.391 1.000 1.000

CCL 0.182 -0.054 -0.029 0.678 -0.437 -0.437 1.000 -0.733

Av rate -0.665 0.208 0.183 -0.091 0.299 0.299 -0.733 1.000 0.634 -0.624

Max rate -0.354 -0.096 0.152 -0.085 0.276 0.276 -0.432 0.634 1.000

ARt0 0.882 -0.575 -0.365 -0.464 0.307 0.307 0.168 -0.624 -0.239 1.000 0.690

ARmax 0.371 -0.758 -0.196 -0.334 0.522 0.522 -0.214 0.008 0.266 0.690 1.000
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Figure 3.6. The graphical representations of the length at t0mins distributions for both the control sample (left) and the 
silver stressed sample (right).  The distributions are displayed as fixed bin number histograms, Q-Q plots, Box plots with 
the individual data points spread below (bottom left) and a histogram ‘mirror plot’ of the median shifted 
distributions(bottom right). We conclude from this that the distributions are best compared and represented by the 
mirror plot. 

The mirror plot is a histogram for each data set, the control data above the x-axis and the silver 

stressed data below the x-axis. The control distribution histogram bins were set automatically to 10 

and the same bin width was chosen for the silver stress. The graphical comparison of the 

distributions such as range, skewness and kurtosis is best performed on the median-shifted 

distributions which are aligned on the mirror plots indicated by the dotted vertical line. For 
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comparison the data is displayed as both the raw data and the median shifted mirror plot in each 

case. 

The distributions of the length of the cell populations at t0 in both growth conditions is presented in 

Figure 3.7, the parameters of these distributions are summarised in Table 3.4. 

Table 3.4 The measured distribution parameters of the length at t0mins parameter for three classes of cells the control 
(dark grey), all cells arriving on the surface in the silver experiment and the viable cells in the silver experiment (both 
silver columns). Values in brackets are the 95% confidence limits, bootstrapped for N = 1000. 

Parameter Control All on surface Viable cells 

Skewness 0.49(+0.33-0.29) 0.36(+0.26-0.24) 0.12 (±0.28) 

Kurtosis 2.16 (+0.7-0.4) 2.11(+0.42-0.20) 2.01 (+0.32 -0.3) 

St. Dev 2.1 (+0.23 -0.21) 2.26(+0.22-0.18) 1.81 (±0.18) 

Range /µm 8.0 (-0.2) 8.4 (-0.3) 6.9 (-0.1) 

Mean /µm 8.9 (±0.3) 9.6 (±0.2) 9.9 (±0.3) 

Median /µm 9.2 (±0.6) 9.3 (±0.6) 9.9 (±0.6) 
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Figure 3.7. Top: The Box plot and Beeswarm plots of the raw data for Length at t0minutes, the control sample in blue, 
the silver surface arrivers in green and the silver surface survivors in purple. Bottom: The mirror plot of the median 
shifted distributions of the lengths at t0mins for both the control (top) and silver stressed (bottom) samples. The wider 
dashed line represents the median of the data and the thinner dashed lines represent the range of the distribution of 
the viable cells, those at t0mins which grew to cytokinesis. 

 

Both the S-W test and the A-D test show that all three distributions are not normally distributed, 

with the control and the silver t0 distributions returning P-values for both tests of <0.001 and the 
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viable cell under silver conditions distribution returning P-values <0.04. Other tests for normality, 

Skewness of 0 and a Kurtosis value of 3, indicate that the viable cell distribution under silver stress 

has a closer to normal distribution. The distribution of lengths at t0 under control and silver stress 

growth conditions are from the same distribution (Mann-Whitney U) but with a P-value of 0.4, the 

probability of accepting the null hypothesis by chance alone being 60 %. The three distributions have 

the same median within the bootstrapped 95 % confidence limit error. The range of the distributions 

is however different. The range of the control growth conditions is 8 µm compared with those 

reaching cytokinesis under silver growth conditions of 6.9 µm. Cells of extreme dimension either 

short or long are compromised in the silver-stress survival process. . 

The distribution of widths at t0 minutes is shown in Figure 3.8 and the accompanying parameters 

summarised in n Table 3.5. 

Table 3.5 The measured distributions parameters of the width at t0mins parameter for three classes of cells the control 
(dark grey), all cells arriving on the surface in the silver experiment and the viable cells in the silver experiment (both 
silver columns). Values in brackets are the 95 % confidence limits, bootstrapped for N=1000. 

Parameter Control All on surface Viable cells 

Skewness 0.19(+048 -0.53) 0.26(+0.51-.39) 0.15 (+0.53-0.4) 

Kurtosis 3.38 (+1.1 -0.8) 3.23 (+1.49 -1) 3.1 (+1.1 -0.67) 

St. Dev 0.35(+0.06-0.04) 0.37 (+0.5 -0.6) 0.39(+0.07-0.05) 

Range/µm 1.8 (-0.15) 2 (-0.15) 2 (-0.15) 

Mean/µm 4.1 (+0.15-0.2) 3.8 (± 0.15) 3.8 (±0.15) 

Median/µm 

studens 

3.9 (±0.15) 3.8 (± 0.15) 3.9 (±0.15) 
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Figure 3.8 Top: The Box plot and Beeswarm plots of the raw data for Width at t0minutes, the control sample in blue, the 
silver surface arrivers in green and the silver surface survivors in purple. Bottom: The mirror plot of the median shifted 
distributions of the widths at t0mins for both the control (top) and silver stressed (bottom) samples. The dashed line 
represents the median of the data. The addition of the cells which fail to grow in the silver environment does not 
significantly change the distributions. 

The S-W and the A-D test for both the control and all cells at t0 under silver stress reject the null 

hypothesis that the width distributions are normal at the 95 % confidence level with P-values <0.01.  

The distribution of the viable cells at t0 in the silver sample is normal, in both the S-W and A-D test, 

the probability of accepting the null hypothesis by chance is 88 %. The normal values for kurtosis and 

skewness (3 and 0 respectively) are within the bootstrapped errors for all three distributions. The 
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median and the range of the distributions are the same, the error for the median limited by the 

diffraction limit error.   

The lag period, the length of time between deposition of the cell into a new environment and the 

onset of elongation along the major axis, in the control sample and the silver stress sample are 

displayed in Figure 3.9, with the distribution parameters in Table 3.6.  

 

Table 3.6 The measured distributions parameters of the lag period parameter for two classes of cells the control (dark 
grey) and the viable cells in the silver experiment (silver column). Values in brackets are the 95 % confidence limits, 
bootstrapped for N = 1000. The length of the lag period is over 10 times longer when the S. pombe cell is under silver 
stress. 

Parameter Control Silver 

Skewness 0.92 (-0.4+0.54) 0.09 (-0.45 +0.4) 

Kurtosis 4.00  (-1.2+1.9) 2.82 (-0.5 +0.9) 

St. Dev 12.8 (-1.7 +2.7) 97.8(-10.2+13.8) 

Range/µm 64 (-1) 516 (-7) 

Median/µm 149 (+3 -2) 1521 (+35 -28) 

Mean/µm 150 (+3 -1) 1518 (±20) 
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Figure 3.9 Top: The Box plot and Beeswarm plots of the raw data for length of lag period, the control sample in blue and 
the silver surface survivors in purple. Bottom: The mirror plot of the median-shifted distributions of the lag period 
lengths for both the control (top) and silver stressed (bottom) samples. The dashed line represents the median of the 
data sets. 
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The lag period has a median of 1521 (+35 -28) minutes under silver stress, 10 times the length of the 

lag period under control conditions and a range of 516 (-7) minutes, 8 times the range under control 

conditions. Under control conditions both normality tests return a P-value <0.001, confirming that 

this distribution is not normal. The lag phase is normally distributed at the 95 % confidence limit but 

with P of 0.6. Both the skewness and the kurtosis values confirm this relative proximity to normal, 

the values for normal within the bootstrapped error. The distributions are not from the same 

distribution with the Mann-Whitney U test rejecting the null hypothesis with a P-value <0.001. 

The birth length, LB defined as half the cell length at cytokinesis (Asize). It is then adjusted for the 

correction factor for two cells dividing, based on the increase in length which occurs at septation 

when two cells transition from joined with straight ends to separate with hemispherical ends[35]. LB is 

the predicted size of a cell at birth based on the fact that a cell doubles in size during 1 cell cycle[34, 35] 

and the length it reached at division. Figure 3.10 is the distribution of LB for both the control and 

silver stress samples and Table 3.7 the distributional parameters. 

Table 3.7 The measured distributions parameters of the birth length (LB) parameter for two classes of cells the control 
(dark grey) and the viable cells in the silver experiment (silver). Values in brackets are the 95 % confidence limits, 
bootstrapped for N = 1000. The cells divide shorter under silver stress conditions. 

Parameter Control Silver 

Skewness 1.5 (-0.43 +0.62) -0.32(-0.43 +0.3) 

Kurtosis 5.78(-1.71+3.14) 2.53(-0.53+1.24) 

St. Dev 0.8 (-0.15 +0.21) 0.51(-0.05+0.09) 

Range 4.2 (-0.5) 2.5 (-0.2) 

Median 7.1 (+0.2 -0.1) 6.6 (+0.1 -0.2) 

Mean 7.6 (±0.2) 6.5 (±0.1) 
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Figure 3.10 Top: The Box plot and Beeswarm plots of the raw data for LB, the control sample in blue and the silver 
surface survivors in purple. Bottom: The mirror plot of the median shifted distributions of the calculated LB for both the 
control (top) and silver stressed (bottom) samples. The dashed line represents the median of the data sets. 

The tests reject the null hypothesis of normality for both distributions with P-values all <0.01. The 

distributions are not part of the same continuous distribution according to the Mann-Whitney U test 

with a P-value <0.01. The control distribution is skewed towards longer birth length (Skewness 

coefficient 1.5), reflected in the large kurtosis value of 5.78 (normal = 3). The silver stress 
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distribution is skewed towards the shorter lengths at birth, but this is less significant than the 

skewness of the control sample (kurtosis 2.53).  

The length of the cell cycle is the growth time between cytokinesis and lag, corrected for the ratio 

between LB and length at t0mins, and is calculated using equation ( 2 ) derived here:  

       
  

 
      

 ( 2 ) 

wheretA is the time of cytokinesis in minutes, λ the length of the lag period in minutes, LB our 

predicted length at birth in µm,  the length of the cell measured at t0 and tcell the cell cycle length in 

minutes. Figure 3.11 and Table 3.8 are the distribution and analysis of the calculated cell cycle length 

for both the control and the silver stress data sets. 

 

Table 3.8 The measured distributions of the cell cycle length (tcell) parameter for two classes of cells the control (dark 
grey) and the viable cells in the silver experiment (silver). The cell cycle time increases by over 4 times when the cells 
grow under silver stress. 

Parameter Control Silver 

Skewness -0.28(-.32+0.38) 0.60(-0.73+0.98) 

Kurtosis 2.94(-0.53+0.86) 4.80(-2.36+3.87) 

St. Dev 66.8(-8.1 +10.1) 195(-26.4+49.3) 

Range / mins 324 (-19) 1214 (-24) 

Median / mins 207 (+8 -13) 881 (+29 -75) 

Mean / mins 200 (+12 -10) 900 (+40 -38) 
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Figure 3.11 Top: The Box plot and Beeswarm plots of the raw data for tcell, the control sample in blue and the silver 
surface survivors in purple. Bottom: The mirror plot of the median shifted distributions of the Cell Cycle Length (tcell) for 
both the control and silver stressed samples. The dashed line represents the median of both the data. The cell cycle 
length has a much larger range when the cells grow under silver stress. 

 

Neither of the tcell distributions in normal or stressed growth conditions are normally distributed 
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sample P-values <0.001. The two distributions are not from the same continuous distribution, when 

tested with the Mann-Whitney U test, with a P-value <0.001. Both distributions contain the normal 

values for kurtosis and skewness in the bootstrapped range of values for these parameters. The 

median cell cycle time is length of the cell cycle is 4 times larger when the cell is under silver stress. 

This is the only distribution in which the silver stress sample becomes less normal, very outlier prone 

and more skewed. The length of the cell cycle increases over 4 fold to 881 (+29 -75) minutes under 

silver stress, with the range of the distribution increasing 3.7 times. 

The average rate of growth is calculated over all the points between the end of the lag phase (λ) the 

time to cytokinesis, this excluding µ1 and µ2 as the rate changing point of NETO is not observed 

under silver stress. The distributions of average growth rate and corresponding parameters are 

displayed in Figure 3.12 and Table 3.9 respectively. 

Table 3.9 The measured distributions of the average growth rate parameter for two classes of cells the control (dark 
grey) and the viable cells in the silver experiment (silver). The average growth rate decreases by over 5 times under 
silver stress. 

Parameter  Control Silver  

Skewness 0.8 (-0.3 +0.6)  0.82 (-0.3 +0.52)  

Kurtosis  4 (-0.8 +1.2)  3.4 (-0.9 +2)  

St. Dev  0.01(0.001+0.004) 0.003 (-0.001) 

Range / µm min-1 0.05 (-0.001) 0.013 (-0.002) 

Median /µm min-1 0.027(±0.003) 0.005 (±0.001) 

Mean / µm min-1 0.027 (±0.002)  0.005 (±0.001) 
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Figure 3.12 Top: The Box plot and Beeswarm plots of the raw data for average growth rate, the control sample in blue 
and the silver surface survivors in purple. Bottom: The mirror plot of the median shifted distributions of the average 
growth rates for both the control (top) and silver stressed samples (bottom). The dashed line represents the median of 
the distributions. The cells under silver stress have a much smaller range than those under normal conditions as the 
average growth rate is 5 times slower. 
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The median growth rate of the control sample was 0.027 (±0.003) µm min-1, the median growth rate 

for the sample under silver stress was over 5 times slower than the control at 

0.005 (±0.001) µm min-1. It is to be noted that this is the only distribution in which the silver stress 

phenotype has a narrower range than the control sample. The silver stress distribution is normal 

according to both the S-W and A-D tests for normality but the null hypothesis accepted with the 

change of it being normal happening by chance being 75 %. The control distribution is not normal 

according to both tests for normality, with P-values <0.01. There are other rate parameters 

associated growing S. pombe, specifically the RCP indicating NETO. These are discussed next. 

3.3.3 New End Take Off and Sub Population Correlations 

NETO was only observed in the control growth and not in the silver growth conditions. The 

measurement of the time to NETO is determined by locating the RCP  in the growth curve and 

determining the change in growth rate, typically 31 %[36]. The prevalence of NETO in the cell 

population was 62 %; the 62nd percentile of our data is 9.9 µm. The rate of growth before and after 

the RCP and the ratio of the two growth rates are displayed in Figure 3.13 and Table 3.10. 

 

Figure 3.13 The mirror plot of the median shifted distributions of the widths at t0mins for both the control and silver 
stressed samples. The dashed line represents the median of the data. The addition of the cells which fail to grow in the 
silver environment does not significantly change the distributions. 
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Table 3.10 The measured distributions of the growth rate parameters for the cells which undergo NETO, µ1, the rate of 
growth before NETO and µ2, the rate of growth after NETO. 

Parameter  µ1 µ2 

Skewness 0.55 (+0.6-0.5) 0.63 (±0.6) 

Kurtosis  3.3 (+1.3 -0.8) 3.3 (+1.6 -0.9) 

St. Dev  0.01 (±0.003) 0.01 (±0.003) 

Range / µm min-1 0.06 (-0.001) 0.06 (-0.001) 

Median /µm min-1 0.03 (+0.01) 0.05 (+0.003) 

Mean / µm min-1 0.035 (±0.004) 0.05 (±0.003) 

 

The modal rate increase between µ2 and µ1 is 1.34, but the distribution is highly skewed (skewness 

coefficient 2.19). None of the three distributions is normally distributed according to the tests of 

normality, with P-values all <0.01. The distributions of µ1 and µ2 are not from the same distribution 

with a P-value <0.01. 

The distribution of cell length at t0 of the control sample is shown in Figure 3.14and compared with 

subset of cells lengths at t0 that go on to show NETO. Table 3.11 summarise the distributional 

analysis parameters. For clarity, Figure 3.16 is not a mirror plot; the distribution above and below 

the x-axis is the total sample distribution with below the axis the subset of the distribution showing 

NETO. The bin number is set as 11. 
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Figure 3.14 A comparison mirror plot of the length at t0 of all the cells on the surface in the control sample (top) and 
those cells which later went on to display NETO (bottom). 

Table 3.11. The parameters of the distributions of length at t0mins for the whole control sample (dark grey) and the 
distribution just of the cells which contain a RCP during the growth period (pink). 

Parameter Control Showing NETO 

Skewness 0.49 (+0.33-0.29) 0.32 (-0.34 +0.37) 

Kurtosis 2.16 (+0.7-0.4) 2.07(-0.41 +0.65) 

St. Dev 2.1 (+0.23 -0.21) 0.99 (-0.11 +0.14) 

Range / µm 8 (-0.2) 3.6 (-0.2) 

Median / µm 8.9 (±0.3) 7.9 (-0.3 +0.2) 

Mean / µm 9.2 (±0.6) 8.0 (-0.3 +0.2) 

 

The range of lengths of cells which display NETO is half the size of the range of lengths of all the cells 

deposited on the flow cells surface, 8 µm reduced to 3.6 µm. The NETO sub-population lengths have 

a lower median, 7.9 (-0.3 +0.2) µm compared to 8.9 (±0.3) µm, significantly different with a 

-4 -2 0 2 4 6
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Median shifted length at t0mins / m 

eP
D

F



120 
 

P-value = 0.01. The cells which arrive on the surface at a length of less than 9.8 µm have not 

undergone NETO previously and so display it during the monitored growth curve. 

The distribution of LB for all cells in the control sample is compared to sub-population of LB which 

underwent NETO shown in Figure 3.15, with the distribution parameters in Table 3.12. 

 

Figure 3.15 A comparison mirror plot of the calculated LB of all the cells on the surface in the control sample (top) and 
those cells which later went on to display NETO (bottom). 

Table 3.12 The parameters of the distributions of the calculated LB for the whole control sample (dark grey) and the 
distribution just of the cells which contain a RCP during the growth period (pink). 

Parameter  Control Showing NETO  

Skewness 1.5 (-0.43 +0.62)  1.94 (-1.8 +1.26)  

Kurtosis  5.78 (-1.71+3.14)  10.7 (-7.5 +9.4)  

St. Dev  0.8 (-0.15 +0.21) 0.6 (-0.16 +0.36)  

Range / µm 4.2 (-0.5)  3.8 (-1.7)  

Median / µm 7.1 (+0.2 -0.1) 7.0 (-0.1 +0.2)  

Mean / µm 7.6 (±0.2) 7.0 (-0.1 +0.2)  
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Neither LB distribution is normal, with the P-values from both the S-W and the A-D test returning 

P-values <0.01. Both distributions are skewed towards the longer lengths at birth and have large 

values of kurtosis, not one of these parameters straddle the values of a normal distribution within 

the errors. Due to one outlier in the LB showing NETO distributions the two data sets have 

comparable ranges, medians and means. 

3.4 Discussion 

The Lensless microscope and associated image processing algorithm accurately monitored the 

growth of 100 S. pombe cells in a control sample under normal growth conditions and a further 100 

cells that survived to cytokinesis under silver-stressed growth conditions; in a total, 24 experiments 

were performed. Before cells even begin to grow they display a phenotype, transition to the flow cell 

surface results in 98 % viability. Then under silver stress conditions there are 35 % of cells which do 

not grow, perhaps not having reached a threshold of a protein required for survival.  

It has been demonstrated that the distributions of growth parameters are significantly different 

after environmental condition shift by AgNO3. The phenotype parameter screen reduced the 

number of growth parameters uncommon to both growth media from 11 to 6. A summary of the 

growth parameters calculated here are compared with the literature values in Table 3.13. 

Table 3.13 A summary of some published growth parameters compared with the parameters calculated here and the 
parameters observed when S. pombe is grown under silver stress conditions. 

Parameter 
 

Literature Mean 
Value 

Average Mean and 95% 
CI for Control 

growth 

Mean and 95% 
CI for Silver 

stress growth 

Birth Length / µm 7.5 ± (0.5)  7.9 7.1 (+0.2 -0.1) 6.6 (+0.1 -0.2) 

   8.2 ± (0.52)    

Division Length / µm 15.8  ± (1.6)  14.6 14.2 (+0.4 -0.2) 13.2 (+0.2 -0.4) 

  13.48 ± (1.05)     

 
14.4 ± (0.85)     

Cell cycle time / mins 310  ± (40)  218 207 (+8 -13) 881 (+29 -75) 

 
188.4 ± (26.4)    

 228*    

 148 ± (16)     

Width / µm 3.9 ± (0.09) 3.9 3.9 (±0.15) 3.8 (± 0.15) 
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The growth parameters were screened and reduced from a possible 11 to the 6 phenotype 

parameters presented above: 

1. Length at t0 / µm; 

2. Width at t0 / µm; 

3. Lag Period / mins 

4. Birth Length(LB) / µm; 

5. Growth rate / µm min-1; 

6. NETO 

The parameters calculated here are more representative of the population as using the Lensless 

microscope no user collection or measurement bias is introduced. The number of cells analysed in 

the published data sets varies from 12 to 200[4,19,22,46] with an average of 98, further supporting the N 

choice of 100 cells in these preliminary screening experiments. Cell growth phenotype parameters 

are not expected to be normally distributed unless the simplest phenotype associated with single 

random fluctuations in the concentrations is observed. Normal distributions come from random 

fluctuations no biased outcome favouring growth or a set of parameter such as length or capacity to 

resist the silver stress. Cell growth events are not random and each cell deposited on the flow cell in 

these experiments has a unique combination of proteins and is at a different phase of the growth 

cycle, the fact that the growth parameters do not give rise to normal distributions is to be expected 

and explains the 98 % survival during environment transfer. 

The effect that silver has on the proteins within the cell has been discussed briefly here and at length 

in Chapter 1. It has been highlighted that the vulnerability of a cell to silver is linked to the reactivity 

of the silver ion to the amino acid cysteine, specifically the sulphur containing thiol group. The 

specific proteins which control the S. pombe cell cycle have been described above and we now link 

these proteins to the action silver might have on them to describe the change in phenotype induced 

by silver stress. Each of the 11 growth phenotype parameter distributions will now be considered din 

turn.  

Cell Length and Width at t0 

Cell length and width at t0 of the wild type control sample have been discussed in chapter 2, have 

been used to verify this Lensless microscope pattern analysis technique[39] and are further discussed 

here.  

The width does not change with silver stress and this is expected due to the high level of control that 

exists in the S. pombe width parameter[42]. The width of the cell is already determined by the time 
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the cells are exposed to silver and it appears that once set the structure will not change. However as 

the cells begin to grow the structural integrity may be lost. The width over time may be something to 

further to analyse. If this indeed were the case then in would account for the shorter division length 

at division for cells grown in the presence of silver, if division is governed by a threshold protein 

concentration related to volume as opposed to cell length. The volume of a cell as a phenotype is 

described in equation ( 1 ). The higher the cell volume the higher the number of proteins in a cell and 

possibly the better able the cell is to overcome environmental stress. 

The length of cells deposited on the surface in the silver stress experiment is the same distribution as 

the length of the cells at t0 in the control sample, as expected as cells are taken from log phase of 

growth in a planktonic culture prepared in the same way with the same clone of cells in the same 

nutrient conditions each time. The cells which survive are from the centre of the length distribution, 

the upper quartile (top 25 %) and the lowest decile (10 %) of the distribution are not viable under 

the silver stress, the extremes of the sample die/enter G0, a stable dormant state[37].  

Cells which are close to passing the START check point, either because they have just divided or are 

just about to divide, do not pass this checkpoint in the presence of silver. The protein, Cdc2, which is 

implicated in the initiation of mitosis and the control of entry to both S and M phase, contains three 

cysteine residues[20], and therefore 3 points of vulnerability to silver. As Cdc2 controls the cell 

progression around the cycle at G1 and at G2, it controls the growth of cell lengths at the two 

extremes of the distributions. The cells which have not entered S-phase will not be able to without 

Cdc2 and cells which have finished the growth phase of G2 and reached their final linear length will 

not be able to enter M-phase without Cdc2. It suggests that cells which have an immediate 

requirement for Cdc2 on exposure to silver ions will not survive, as the protein is silver-labile. The 

mechanism is at its most vulnerable when the cells are at the extremes of length, the MIC is much 

lower for cells at this point that at any other stage of the cell cycle, indicating a G0 phenotype. 

It is not possible using this measurement technique, however, to determine whether the cells which 

have not grown are not viable or dormant. Although not yet documented in S. pombe it is possible 

that a proportion of the cells which show no growth characteristics beyond initial characterisation, 

are not dead but in a state much like that of the bacterial persister cell.  

Lag Period 

The median lag period observed here is 150 minutes for the control sample with a skew towards the 

longer lag times. A skewed phenotype can be associated with a differential ability to adapt to new 

surroundings. Based on previous statements it can be hypothesised that a time of 2.5 hours is taken 
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for the cell to adjust to very similar environments as previously, on transfer from exponential phase 

growth in YE5S to YE5S in the flow cell. The cells are taken from the exponential phase of growth and 

this, coupled with microscope images (Chapter Error! Reference source not found.), verify that the 

cells are of good structural integrity although osmotic stress cannot be ruled out. The lag period in 

S. pombe is rarely studied, there are no published studies. Studies on the induction on genes in 

brewing yeasts in the lag and early exponential phases of the cell cycle showed that during this time 

the gene for an enzyme implicated in nucleotide biosynthesis Ade17p is up-regulated and 

subsequently deregulated before the end of the lag period[43]. One gene in S. pombe which is 

involved in nucleotide biosynthesis belongs to the thi  family for the biosynthesis of thiamine[44], is 

the thi4 and it codes for 9 cysteine residues - 9 points of vulnerability within the protein. Additionally 

proteins with more than one cysteine residue, can be structurally modified by silver ions by bonding 

one thiol residue to another to create additional disulphide bridges[10]. It has been empirically 

measured to be approximately two hours in planktonic growth. 

 The lag period has a median of 150 minutes in the control and under silver stress conditions has a 

median length of 1518 minutes, over 10 times longer. Drawing on what is known from the bacterial 

lag phase,  it is thought to be the period of time, before the exponential growth phase, in which the 

bacterium is adjusting to the new environmental conditions[45], repairing oxidative damage and 

developing intracellular macromolecular stores[46]. Analysis performed on bacterial cells during the 

lag period has shown that these cells are metabolically active. Lag time length in bacteria is said to 

be influenced by a number of factors, increasing in length with reduced inoculum size, poor 

physiological cell state and a vast gulf between the nutrient conditions of the new and existing cell 

growth environments[47].  

We can assume that the silver stress phenotype requires 10 times longer than the control phenotype 

to adjust to the conditions in which it finds itself, not only is the cell acclimatising to a change in 

nutrient conditions but also the detrimental effects the nutrient change has. The silver stress does 

not just affect the cell at the start of the growth curve but continues to throughout cell extension. 

The distribution of lag period indicates directly there is a range of phenotypes associated with the 

ability to adjust to the change of the environment from the broth culture to the surface.  

It can be proposed that the cells with the shortest lag times have a set of proteins or enzymes that is 

best suited to rapid preparation of growth under the new conditions. Broadly, this may attributed to 

the lower quartile of the distribution. If the short lag period indicated an ability to grow faster, then 

the cells in the lower percentile of the lag period would appear in the upper percentile of the 

distribution of growth rates. This relatedness is a cell phenotype, by analysing the data this way, and 
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comparing it to the same analysis in the silver stressed distributions we can demonstrate if and 

when silver disrupts S. pombe growth.  

LB 

The length at cytokinesis is another parameter distribution which is shifted under silver stress.LB is 

half the length at cytokinesis, corrected using the 1.11 correction factor for two dividing cells[48] and 

tells us the predicted length at birth. The average (mean in the literature) length at birth is expected 

to be between 7 and 8 µm[4] and found to be true in both the silver stress and control samples. The 

control sample distribution of LB is skewed towards the long lengths (Skewness 1.5) and the silver 

stress distribution is skewed towards the short lengths (-0.32). As opposed to hypothesising that the 

cells which skew the control conditions were in the upper quartile of the distribution at birth it is 

thought that these cells divide long. This identifies a group of cells with a phenotype susceptible to 

significantly long growth prior to division. One possible explanation for the long division length 

distribution was thought to be that the cells arrived on the surface at a length close to cytokinesis 

and so grown past a ‘normal’ length. It has been reported by others[35] that these cells which grow 

far past the median length expected take more than one cell cycle to adjust and return to a dividing 

length within the range expected because the cell cycle of S. pombe can only be shortened by 1/4[35]. 

Both the tables of correlation coefficients and subpopulation analyses show that while some cells 

which are in the top 5th percentile for length on arrival at the surface are “long dividers” there is not 

a strong correlation between length at t0 minutes and length at cytokinesis. Miyata et al. showed in 

1978[49] that the average length at plate formation was tightly controlled between 12 and 15 µm, 

with a mean length at formation of 13.4 µm.  The distribution had outliers defined as small as 

10.5 µm and as large as 16.5 µm, verifying that there are outliers in the distribution. The range of the 

distribution of the LB parameter of the control sample is 4.2 µm, the range of the distribution under 

silver stress is 2.5 µm. The environmental shift reducing the range of predicted birth lengths by 

40 %.The unknown mechanism by which the cells extend past the average maximum length range is 

inhibited by the silver ion. The effect that silver has on the cell cycle as a whole is an accumulation of 

the disruption of all the cell processes, and the ability of the cell to overcome that is reflected in the 

time the cell takes to complete a full round of division. 

Cell Cycle 

In this chapter we have defined the cell cycle using equation ( 2 ). This is based on the assumption 

that the length of time between the commencement of linear extension in the flow cell and the time 

of cell division is a fraction of the time the cell spends in the cell cycle. To calculate total cell cycle 
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length, the time period       can be adjusted for the ratio between birth length and length at t0 

minutes. This equation can be rearranged to give us equation ( 3 ) for tcell:  

      
      

    
 

( 3 ) 

The published cell cycle length in wild type S. pombe at 25°C is approximately 3.1 (±0.44) hours[5, 6], 

calculated for 88 cells. The length of tcell, conventionally calculated using time-lapse optical 

images[4],[35], [34]. The cell cycle here has a median length determined by equation 2 is 207 (+8 -13) 

minutes, 3.4 (+0.1 -0.2) hours, for N = 100 cells. Taking into account the error on both of these 

measurements it can be concluded that these cell cycle time measurements are the same, 

confirming for the first time the cell cycle length is related to the birth length. The relationship 

between birth length and cell cycle length can be described as the length as a proxy for 

concentration as discussed above. For example, the longer the birth length, the higher the levels of 

proteins within the cell and the shorter the resulting time to complete the cell cycle and vice versa. 

The range of the tcell distribution is interesting, it is thought that the length of G2 in S. pombe is non-

variable in length, when the cell cycle needs to adjust to cells which have grown past the normal 

length range it can only be shortened by ¼, often taking 2 or 3 cycles to reach normal cell lengths at 

division[35]. These results show that this previous observation is not the case.  

It has been reported that the cell cycle control can be reduced to the action of 7 proteins or protein 

complexes, Slp1, Cdc2, Cdc13, PP1, APC/C, and Cdc25 along with Wee1[19].As discussed previously 

each of these proteins of complexes contain one or more cysteine residue. This means that the cell 

cycle is vulnerable from silver attack at every stage, at the S-phase check point with Cdc2, during 

polarised growth and anaphase with PP1 and the ACP/C complex respectively and numerous 

initiators and controllers of mitosis. The role of PP1 in the cell cycle and controlling cell polarity is of 

increased interest when we report that of the N = 100 cells analysed under silver stress conditions 

none of them displayed the rate changing point of NETO. 

Cells subjected to silver stress do not display a RCP in the linear extension phase of growth, Figure 

3.4. The Lensless microscope method coupled with the image processing algorithm developed here 

only records the overall changes in length and does not record the features that are present on the 

image such as septation. It is not possible therefore to distinguish between single end growth and 

slow growth at one end.  There are two considerations: 

1. The cell polarity mechanism is damaged by the silver ion, the new end does not take off 
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2. The new end commences growth but the rates of growth are not determined by the Lensless 

microscope.  

The cell polarity, as discussed previously, is controlled by a number of proteins[6], the damage of any 

of which will cause the polarity changes to be lost, , to occur much later or to distort the shape of 

the cell beyond the rod shape. We have shown previously that the PP1 sequence contains cysteine 

residues, and the recruitment of PP1 to the cell tip is important for the regulation of polarised 

growth[29]. Another protein involved in NETO Tea1p, of which knockout mutants grow but in a 

monopolar fashion, contains 7 cysteine residues in its amino acid sequence[26]. Either of these 

processes could therefore be disrupted by the ongoing presence of silver ions in the environment. 

It is, however, more likely that the cell does undergo NETO, the new end does start growing, but the 

change in rate is so small that it is within the detection noise and so not detectable by diffraction 

pattern analysis. This could have been verified by staining mid-G2 cells with calcofluor, using a 

method such as the one described by Calonge et al. in 2000[50]. This stain stains the septal material 

and cells walls, as the cell divides the two new ends are left with dark scar tissue, which remains at 

the tip of the cell until this end starts to grow. Cells which have never grown from this new end will 

all have one dark tip[5]. 

Average Growth Rates 

The rate of cell growth is related, in part, to the cell cycle with the median rate of growth decreasing 

by over 5 times from 0.027 (±0.003) µm min-1to 0.005 (±0.001) µm min-1under silver stress. This 

reduction is growth rate is to be expected as each of the 7 key cell cycle control proteins are silver 

labile and so are likely to be affected at some level by a silver containing growth environment. It is to 

be noted that this is the only distribution in which the silver stress phenotype has a narrower range 

than the control sample. This could be due to device measurement limitations, the Lensless 

microscope set-up, due to the diffraction limit, does not have the capability to measure the more 

discrete changes in rate which may occur when the cells are growing so slowly. The more interesting 

cell phenotype growth rates are those of NETO. 

NETO  

The NETO parameters distributions are well determined for the control sample and show a median 

time to NETO of 78 (+10 -7) minutes and a modal ratio of fast to slow growth rates of 1.35. The 

average percentage of cell growth rate increase has been published as 30 % but the skewed 

phenotype of ratios has not been observed before. The is an upper length to the cells length at t0 

which shows NETO of 9.8 µm, at the upper limit of the published values of length range 9 –10.4 µm  
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published for  NETO[5, 6], observed in a distribution of 44 cells. In wild type cells, the NETO event is 

thought to be controlled by the cell cycle and the septation events, figure whatever,  typically within  

35 % of the start of the cell cycle and a cell size of above 9 µm[51].  

S. pombe Growth Phenotypes under normal and Ag-stressed growth conditions 

In conclusion there are a potential six growth phenotype parameters for S. pombe derived from both 

the silver and normal growth conditions. Analysis of these parameter distributions indicates a 

number of growth phenotype classifications:  

 G0 phenotype; 

 Long length at division (LB); 

 Modal quartile of lengths at t0 survive silver stress; 

 A ratio of NETO rates larger than 1.35; 

 NETO not apparent in silver stress distribution; 

 Lag period length skewed towards longer recovery times; 

 Long length at t0 leads to long length at division 

3.5 Conclusion 

This chapter aimed to determine whether there are growth parameters within the control growth 

sample which indicate that there may be phenotypes within the data. All parameters showed 

distributions that were non-normal but not bimodal; phenotype is therefore only defined as the 

relative position in a distribution. In terms of the length at t0 there is a survival phenotype based on 

position in the distribution. It appears that cells in the lower 10 % and upper 25 % of the length 

distribution do not grow, position of the cell in the distribution indicating viable entry into the 

subsequent growth cycles. 

The distribution for LB is skewed towards long length at birth. The length at birth is reported to be 

conserved to be between 6 and 8 µm with no known mechanism published to explain a reason for 

cells growing significantly longer than the median of the distribution. This conclusion therefore alerts 

us to the fact that the “long dividing” phenotype is not an advantageous phenotype and those cells 

which display it are less able to respond to a hostile environment. The range of phenotypes under 

silver stress is greater compared to the median of the control however compared to its own median 

the range is narrower. Relatively, silver stress slows down every cell process, distributions are more 

spread, perhaps, because an accumulation of proteins which would ordinarily take 1 minute takes 10 

minutes in silver stress.  
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Further, phenotypes identified in this chapter are growth related changes which may, in planktonic 

growth, be masked by the bulk changes of the population. Some of these phenotypes have a low 

prevalence, the long LB phenotype occurring in 9 % of the population. The Lensless microscope can 

be used as a screening method to identify the individuals with different phenotypes which can then 

be selected for molecular level investigation. 

Silver stress significantly changes the growth phenotype of S. pombe. The length of the lag period, 

the time the cell takes to adjust to new environmental conditions, is increased by over 10-fold, the 

rate of growth reduced over 5 times and the cell cycle time, tcell, increased by over 4 times. More 

subtly cells, with short or long cell cycles, in the upper and lower quartiles or tails of the data are 

more likely to be effected by the change in environmental conditions at the introduction of silver 

nitrate, reflected in the length at t0 distribution compared with the length at t0 of the cells which 

survive. 

Generally, the distributions produced from cells under silver stress tend to approximate to a normal 

distribution are less prone to outliers and less skewed. Outliers are therefore more generally 

different phenotypes compared with the averages to the normal wildtype expression set, the hostile 

silver environment is a filter for phenotype. These outliers, while they may appear favourable, are 

not present in the distributions of the surviving cells under silver stress, implying that these either 

require more energy than absolutely necessary for cell survival (LB) or that they are, in the 

expression of a different gene set, more vulnerable to the effects silver has on cysteine residues in 

proteins. 

The significant change in the cell cycle length implies that the silver stress environment is not 

something that the cell manages to overcome during the lag period. The cell does not build up an 

immunity or resistance to the silver and it continues to cause disruption to the essential proteins of 

S. pombe growth and division.  
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4 Escherichia coli Colony Growth Phenotypes 

under Optimal and sub lethal silver stress 

conditions.  

4.1 Introduction  

This chapter focuses on the growth phenotypes of the model Gram negative prokaryote Escherichia 

coli to silver stress. The growth dynamics of single cells are only a small part of the growth 

phenotype which is now dominated by colony growth. The transcriptome-level response of E. coli to 

silver stress had been studied previously[1, 2] and now the growth phenotypes which arise from 

control and silver stress growth environments are compared. 

E. coli is a rod-shaped, Gram negative bacterium which divides by binary fission to form two 

genetically identical daughter cells. The cell grows longitudinally from each pole, with very little 

change in the cell width[3]. However, there is some evidence to suggest that in periods of rapid 

growth the cell becomes thinner, but returning to its original thickness upon division[4]. The cells are 

typically 2 µm in length[5] and between 0.5 and 1 µm in width[6],[7], with an average cell volume[8] of 

0.6-0.7 µm3.  

The strain of E. coli used here is a derivative of E. coli K-12, and is referred to as MG1655. The 

genome was  sequenced in 1997 and reported to contain 4,639,221 base pairs, with  4288 protein-

coding genes, 38 % of which have no known function[9]. The genome was updated in 2006, reporting 

discrepancies of < 1 bases in 13,000 in the initial sequencing and a genome size of 4,639,675 base 

pairs[10] contained in one circular chromosome. Stress responses in E. coli have been well 

characterised and the response of the cell to osmotic stress[11], oxidative stress[12] and heat shock[13] 

are all well documented. Each of these stress responses demonstrates an up-regulation of a 

different subset of genes, conferring a phenotype in order to survive in the environment in which 

they find themselves; “The life of a bacterial cell is feast or famine. To survive the bacterium must 

rapidly adapt to changing environmental conditions”[14]. It is these environment-driven phenotype 

changes that will be studied in this chapter. 

The identification of the 7 key cell cycle control proteins in S. pombe led to the identification of 

stages of cell cycle arrest and the prediction of growth phenotypes associated with the vulnerable 

phases of the eukaryotic cell cycle when exposed to silver stress. Knowledge of the proteins and 
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processes involved in the control of the cell cycle will lead to understanding of the changes in 

phenotype the bacteria may exhibit. Of the proteins encoded by the E. coli genome, 85% contain 

cysteine and therefore 85% of the proteins will be susceptible to disruption on exposure to silver. 

The phenotype parameters measured here are the reflection, on the growth level of the cell’s 

proteins at the molecular level, and how these levels influence subsequent growth.  

4.2 E. coli Cell Cycle 

The bacterial cell cycle is conventionally divided into three stages; the B-period, the time between 

birth and chromosome replication initiation, the C-period, the time it takes to replicate the 

chromosome, and the D-period, the time between chromosome replication completion and cell 

division[14], Figure 4.1. The cells divide at a maximum reported growth rate approximately every 20 

minutes.  

 

Figure 4.1 A simplified representation of the E. coli cell cycle from birth at the start of the B period, through the initiation 
of chromosome replication at the beginning of the C period to the termination of the DNA replication and the initiation 
of cell division at the junction between C and D periods. The cells are depicted as purple rod shapes, the singular 
chromosome as a blue ring. [Figure adapted from reference 

[14]
].  

The start of the cell cycle and so the start of metabolic cell control of division occurs at the initiation 

of chromosome replication[15]. The initiation of chromosome replication occurs when DnaA binds to 

the origin of replication, OriC, the highly conserved segment of DNA that is able to promote E. coli 

specific initiation of replication[16, 17]. The binding of DnaA causes the DNA at the site of replication[17] 

to unwind, so beginning the binding of the replication machinery[14] and the start of chromosome 

replication is dependent upon DnaA concentration. The fact that replication is controlled by DnaA is 

reinforced by studies showing increased concentrations of DnaA leads to over-initiation[18] and 

studies blocking DnaA synthesis inhibiting chromosome replication[19]. The diaA gene encodes for a 

the 196 amino acid long DnaA protein, which contains 4 cysteine residues[20] and synthesis of which 

is initiated by the decrease in concentration of nucleotides[15]. Therefore, initiation of chromosomal 

replication is coupled to the nutrient conditions surrounding the bacteria[14]. It has also been shown 

that this major cell cycle control point is controlled by a cell mass and cell growth rate. The 

accumulation of DnaA is growth rate dependent; levels sufficient to initiate replication are achieved 

at the ‘initiation mass’[22],[23].  

B period C period D period
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DNA replication in E. coli begins at the single origin (OriC) and proceeds bi-directionally around the 

circular chromosome[17]. The process of chromosome elongation is heavily reliant on the presence of 

nucleotides, the pool needing to be constantly replenished[14]. The synthesis of nucleotides is, in 

part, controlled by ribonucleotide reductase, R1[15]. The radical-based reaction involving synthesis 

involves five cysteine residues, two redox-active, two at the carboxyl end of the protein and one 

initiator of the reaction[24]. The rate of chromosome replication, therefore, is reliant on the rate of 

nucleotide synthesis, controlled by the presence of ribonucleotide reductase R1. The completion of 

the round of DNA replication is the point at which the cell is committed to division[25]. As stated 

previously, at optimum conditions the generation time of “fast-growing” E. coli cells is approximately 

20 minutes, but the time taken for chromosome duplication in these same conditions can be up to 

40 minutes[26].  

Fast growing cells are defined as such by the fact that their mass doubling time is less than the 

length of time taken to proceed through the C and D period of the cell cycle[14]. The current 

explanation for the apparent paradox is rapidly growing bacterial cells appear to begin a round of 

DNA replication  before the first replication is complete[27]. Cooper and Helmstetter[28] show that, 

using the concept of multi-fork replication, each new, partially replicated chromosome initiates 

another round of replication before the old one has completed during rapid cell growth, Figure 4.2. 

 

Figure 4.2 Chromosome replication in E. coli. a. displays the typical chromosome replication of a cell which has a moss 
doubling time of longer than the length of time that cell takes to complete C and D phase and b. displays the multi-fork 
replication of the chromosome which occurs in fast growing E. coli cells [Reproduced with permission

[14]
]. 

Under conditions where the C period is longer than the cell mass doubling time, the cells may have 

numerous copies of the chromosome close to the OriC origin but only one copy of the chromosome 

near the terminus of replication[29]. The initiation of replication replies on a threshold level of DnaA, 
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and the level of DnaA is controlled by the nutrient conditions of the environment and the cell growth 

rate, the multifork replication model appears feasible[30]. The bidirectional replication of the 

chromosome is halted by three separate termination regions. The region terC1 has the ability to stop 

the anticlockwise replication fork from proceeding further than a position of 180° from oriC, the 

clockwise replication is terminated by the regions terC2 and terC3[31]. Segregation of the 

chromosomes following replication termination acts as a checkpoint for the cell, in conditions of 

nutrient stress the high levels of small nucleotide complexes cause replication to terminate 

immediately prior to segregation[32]. Following successful chromosome segregation the cell can 

proceed into division. 

Cell division is controlled by the group of fts genes. Specifically the FtsZ protein forms a plate, 

indicating the division plane, and recruits other proteins, including FtsA forming a complex which 

ultimately forms the septum[33]. For division to occur there is a ratio of FtsZ and FtsA which must be 

recognised. Dai & Lutkenhaus show that cells with high levels of FtsZ are division inhibited, a 

situation which can be overcome by increasing levels of FtsA and vice versa[34]. The protein FtsA is 

420 amino acids long, 9 of which are cysteine residues, the FtsZ protein consists of 383 amino acids 

but not one cysteine residue[20]. 

The E. coli cell cycle has been shown to be heavily nutrient reliant, the initiation of chromosome 

replication inhibited strongly in conditions of nutrient stress. The bacterial growth observed in this 

chapter is that of small colonies. This growth is therefore influenced by the growth of neighbouring 

cells, reminiscent of the growth in biofilms, discussed previously. Single cells have their own 

individual phenotypes, a colony of cells has the potential to take the favourable elements of each 

member, producing a stronger phenotype as a community. The combination of organisms working 

synergistically, creating an environment more favourable to their survival, forming an extended 

phenotype. 

4.3 E. coli colonies as a multicellular organism  

Whilst bacteria in the laboratory are grown under controlled conditions and so have the variables of 

temperature and osmolality tightly controlled, there are other variables which cannot be 

experimentally controlled; pH and nutrient availability, for example, within the microenvironment 

variations, dominating growth. Bacteria have adapted phospho-relay systems to allow them to sense 

and respond to environmental factors, up or down regulating genes accordingly[35]. Environmental 

factors can include proteins expressed by bacteria in close proximity and as discussed previously 

studies have shown that bacteria growing in a biofilm, a community of bacteria on a solid surface 

encased in an exo-polysaccharide matrix, have an increased resistance to antimicrobial agents, 
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specifically these are dangerous in infection scenarios[36]. The study of susceptibility to metal toxicity 

has shown that biofilms are between 2 and 64 times less susceptible to metal toxicity than the 

equivalent cells in planktonic growth[37, 38]. The bacteria within a biofilm are vulnerable to influence 

by other bacteria in the same matrix. One form of bacterial communication relevant to the 

biofilm/colony state is called quorum sensing and enables the control of gene expression in a 

bacterial colony in response to the changing cell density[39]. Quorum sensing is used to explain how 

biofilms form, to distinguish between like cells and intruders, and to initiate whole colony death[40].  

The chapter aims to determine the phenotypic growth changes within a colony derived from a single 

cell grown under control conditions and silver stress conditions. I also aim to determine the 

phenotypic shift between growth in the control environment and growth in the silver stress 

environment. The reaction of silver with cysteine-containing proteins has been discussed in chapter 

1, and the effect on the eukaryotic cell cycle demonstrated in chapter 3. The effect of silver ions on 

the E. coli transcriptome has been previously analysed[1, 2] and is discussed below. 

4.4 Response to Silver Stress 

The response of prokaryotic cells to silver stress is of particular interest to the medical industry, with 

silver ions present in wound dressings[46] and as a surface coating for implanted medical 

instruments[47, 48]. Silver is used in medical devices in an attempt to prevent microbial attachment 

which can lead to the promotion of infection at the site of insertion[49] and as an antimicrobial agent 

in circumstances where infections have become antibiotic resistant[46]. Silver ions are known to 

possess a broad spectrum of antimicrobial properties, and have been conventionally reported to 

have no detrimental effects on normal mammalian cells[50], although the findings in chapter 3 appear 

to contradict this. Silver ions are shown to slow bacterial growth and inhibit subsequent cell 

divisions, increase membrane permeability and E. coli cells under silver stress appear to undergo 

morphological changes[51].  

The phenotypic changes which occur in a planktonic E. coli suspension when exposed to silver stress 

have been observed on a molecular level[1, 2]. These studies show that post treatment with silver ions 

there is a down-regulation of genes related to transcription and translation, indicating a slowing of 

protein synthesis. The genes which are up-regulated in these studies include the ones implicated in 

sulphur metabolism, protein unfolding and iron-sulphur cluster assembly[2]; in total 497 genes are 

differentially regulated within 10 minutes. 

4.5 Aims and Objectives.  

This chapter aims to explore the growth phenotype of single cells and small colonies of the model 

Gram negative organism Escherichia coli K-12 MG1655 under controlled growth conditions and silver 
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stress conditions. The growth parameters will be extracted and the phenotypes characterised arising 

from both the normal growth conditions and as a result of growth in the presence of silver ions. 

These parameters will be identified using the distribution analysis techniques discussed in Chapter 2. 

Colonies displaying different growth phenotypes under the influence of silver stress will be 

sequenced and genotypically compared to a control sample and the known genomic sequence of 

Escherichia coli K-12 MG1655. The comparison process determining whether favourable changes in 

growth are genotypic or phenotypic. 

4.6 Materials and Experimental Methods  

The Lensless microscope detailed in Chapter 2 was used without further modification to the optics 

and image collection protocol. The flow cell surface, previously a lectin surface, was replaced with a 

layer of Matrigel (BD-Biosciences) in the experiments for E. coli growth. Materials are detailed 

below.  

4.6.1 Growth Media  

All materials were purchased from Sigma unless otherwise stated and used without further 

purification. Escherichia coli K12 MG1655 (CGSC #7740) was purchased from the Coli Genetic Stock 

Centre (CGSC, Yale University, USA), and the stock maintained at -80°C, and on Luria Agar at 37°C. 

E. coli was cultured in Luria Broth (LB) (pH 7.5, 5 g/L yeast extract, 10 g/L Tryptone, 10 g/L NaCl, the 

agar equivalent modified with the addition of 1.5% (w/v) agar). The cultures were shaken at 200 

rpm, at 37°C and under aerobic conditions. Cultures were grown to the exponential growth phase, 

Optical Density at 600 nm (OD600) 0.3/0.4 and diluted 1/1000 in fresh LB broth at 37°C to form the 

stock cell solution.  

To determine the MIC of AgNO3 for E. coli the stock cell solution was used to inoculate LB dosed with 

different concentrations of AgNO3. The cultures were shaken at 200 rpm at 37°C and under aerobic 

conditions. The OD600 was measured at regular intervals to determine the growth of E. coli in each 

culture. 

The bottom of the flow cell was lined with BD Matrigel™ (Basement Membrane Matrix, Growth 

Factor Reduced (GFR), Phenol Red-free, 10 mL LDEV-Free 356231) under aseptic conditions, Figure 

4.3. The Matrigel solution stored in aliquots of 100 µL and thawed when required on ice. Then, 90 µL 

of Matrigel was added to the flow cells, forming a layer on the bottom. The layer was dried at 37°C 

for 5 minutes and washed 5 times with fresh LB broth, 15 minutes for each wash. 
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Figure 4.3 The basic flow cell set up for the experiments with E.coli cells. 

Matrigel is the basement membrane from mouse sarcoma, consisting of approximately 60% laminin, 

30% collagen IV, and 8% entactin, the entactin acting as a cross-linker between the laminin and 

collagen IV. The Matrigel is a liquid when thawed on ice, rapidly gelling at temperatures above 

22°C[52]. When solidified the Matrigel has a refractive index of 1.3406 to 1.3407 at 20 OC. 

20 µL of stock E. coli solution were added to the washed Matrigel and left to equilibrate for 2 

minutes; 20 µL of a solution of three sizes of microspheres diluted in LB broth to a concentration 

equating to approximately 3 spheres of each dilution were then added to the flow cell. The flow cell 

was then topped up with fresh LB, ~150 µL, sealed with the lid cover slip. The process was the same 

for the silver stress experiments but the cell was topped up with LB containing the relevant 

concentration of silver nitrate prior to sealing with the cover slip. 

The remaining stock solution was used to measure the colony forming units (CFUs) in the sample. 

Ringers solutions was prepared by dissolving 6.5 g NaCl, 0.42 g KCl, 0.25 g CaCl2 and 1 mole of 
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sodium bicarbonate in one litre of distilled water. The sample was serially diluted 10-fold in Ringers 

solution, and then 50 µL of each dilution spread onto LB plates in triplicate. The colonies were 

counted after an overnight incubation at 37°C to calculate CFU / mL, and the result used to derive 

the number of cells in the 20 µL added to the flow cell.  

Colonies exhibiting new growth phenotypes were tested for genotypic changes by selecting those 

colonies and culturing them in LB. These cells were then re-exposed to the stress environment in 

which they arose and the survival rates and production of new growth phenotypes recorded.  The 

growth phenotypes were also tested for genomic changes using sequencing technology. 

4.6.2 Illumina DNA Genome Sequencing 

A series of experiments was performed to sequence the genome of different phenotypes using the 

Illumina platform. After 3 hours of monitored growth the colonies of interest were removed into 

Eppendorf tubes containing a small volume of LB with a spreading loop, the Lensless microscope 

setup enables the user to identify the colony of interest on the computer screen, using this visual to 

guide the spreading loop. The colonies were selected according to growth phenotype observed and 

in order to harvest a sufficient level of DNA, each sample for sequencing was the culmination of 

between 5 and 10 individual colonies displaying the same phenotype.  

The E. coli DNA was isolated using the GenElute™ Bacterial Genomic DNA Kit (Sigma Aldrich NA2110) 

according to the manufacturer’s protocol, the quality checked on a 0.8% agarose gel and the 

quantity of dsDNA was determined using the Qubit® dsDNA BR Assay Kit (Life Technologies, 

Q32850). The DNA was fragmented by 15 min sonication (Bioruptor, Diagenode) on medium power 

cycling for 25s on and 25s off, in an ice bath.   Sequencing libraries were prepared using Solid Phase 

Reversible Immobilization cartridges with TruSeq indexed adapters and 300-600 bp size selection. 

Libraries were amplified by 15 cycles of PCR, the primers removed using AmpureXP beads, and 

quantified on a Bioanalyser DNA 7500 chip (Agilent). DNA was denatured and diluted to 6.5 pM, 

clustered on a cBOT (Illumina) and 100 PE sequencing undertaken on HiSeq2000 (Illumina).  

4.7 Results 

From a series of 10 growth experiments the survival rate on the transfer to the Matrigel surface 

estimated from colony density and deposited volume is greater than 95 % in all experiments under 

control conditions with no flow. A typical growth curve under control conditions along both the 

major and minor axis is displayed in Figure 4.4. The growth along the major and minor axis from the 

calibration suggests that growth starts from a single cell (within the diffraction limit error) to form a 

colony.  
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Figure 4.4. A typical growth curve for E. coli K-12 MG1655 on a Matrigel surface, surrounded by LB, in the flow cell 
fabricated here and monitored by the Lensless microscope device. Growth along both the major (red) and minor (green) 
axis are presented here. 

The curve in Figure 4.6 shows the conventional growth curve trend, the lag period of a single cell, 

the growth of the single cell into a colony and the dynamics associated with colony expansion, and 

finally the slowing of the colony extension indicating the environment is nutrient limited. 

Silver stress challenges were performed at 1 µg/mL and 3 µg/mL with the MIC on the Matrigel 

surface verified to be the same level as the level established in planktonic growth, Figure 4.5, as 

8 µg/mL.  
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Figure 4.5 The determination of the MIC of silver ions on planktonic E. coli growth displaying growth curves under 
varying levels of silver stress, red, the control; blue 1 µg/mL; green 2 µg/mL; purple 4 µg/mL and turquoise 8 µg/mL.  

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time / minutes

O
D

6
0

0



143 
 

 

Figure 4.6 A typical E. coli growth curve indicating the growth parameters which can be extracted; Major (a) and Minor 
(b) Dimensions at t0 minutes / µm;  Major (c) and Minor (d)  lag period / minutes; Major (e) and Minor (h)  maximum 
growth rate / µm min

-1
; Major (f) and Minor (i)  time to maximum growth rate / mins; Major (g) and Minor (j)  average 

growth rate / µm min
-1

; Major (k) and Minor (l)  maximum size reached / µm; Major (m) and Minor (n)  time to 
maximum size / mins; Aspect Ratio t0; and Maximum Aspect ratio. 

The parameters of growth were extracted from the growth curves, Figure 4.6. The full list of 

parameters is as follows below (all parameters having an equivalent parameter for both the major 

and minor axis apart from the aspect ratio parameters): 

 Major (a) and Minor (b) Dimensions at t0 minutes / µm  

 Major (c) and Minor (d)  lag period / minutes ;  

 Major (e) and Minor (h)  maximum growth rate / µm min-1; 

 Major (f) and Minor (i)  time to maximum growth rate / mins; 

 Major (g) and Minor (j)  average growth  

 rate / µm min-1 ; 

 Major (k) and Minor (l)  maximum size reached / µm; 

 Major (m) and Minor (n)  time to maximum size / mins; 

 Aspect Ratio t0; 

 Maximum Aspect ratio 
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The parameters analysed using the correlation matrix method in detailed in Chapter 2, the full 

correlation in all three growth conditions are in Table 4.1 (control), Table 4.2 (1 µg/mL) and Table 4.3 

(3 µg/mL). 
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Table 4.1 The table of correlation coefficients for the control sample of E.coli, N=100. Above the diagonal of the table highlights the parameters with a correlation coefficient greater than 
0.6. 
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Table 4.2 The table of correlation coefficients for E. coli k-12 MG1655 when grown in the presence of a low level, 
1 µg/mL, of AgNO3, N=100 

 

Table 4.3 The table of correlation coefficients for E. coli k-12 MG1655 when grown in the presence of a higher level, 
3 µg/mL, of AgNO3, N=100  

 

It is observed from Table 4.1 that the data for one parameter along the major axis correlate with the 

corresponding data along the major axis. For example, Length at t0 minutes is highly correlated with 

Width at t0 minutes (0.8), length of lag period along the major axis is highly correlated to length of 

lag period along the minor axis (0.99) and the maximum size along the major axis is highly correlated 

to the maximum size along the minor axis. The observation of the high correlation between major 

and minor axis has meant that all subsequent analyses of growth phenotypes are performed using 

just the parameters collected along the major axis. From the phenotype parameter classification 

analysis, the following parameters have been identified as potential growth phenotype parameters: 

 Length at t0 minutes / µm 

 Width at t0 minutes / µm 

 Length of lag period / minutes 

 Maximum growth rate / µm minute-1 

 Maximum length reached / µm 
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At the lower level of silver stress (1 µg/mL AgNO3) the calculated survival rate is in the range 60 - 

63%, falling to 44 – 47 % for the higher silver concentration (3 µg/mL AgNO3).  

Data is displayed using Box-plots with Beeswarm plots underneath them, as detailed in chapter 2 

and mirror plots, as detailed in Chapter 3. The MIC of E. coli is higher than that of S. pombe and so 

the effect of two concentrations of AgNO3 on the growth parameters was tested here.  

The length distributions of viable cells and colonies for the control sample and both the silver stress 

conditions are shown in Figure 4.7, with the distribution parameters in Table 4.4. 

Table 4.4 The parameters of the three length distributions of viable cells.  

Parameter Control 1 µg/mL 3 µg/mL 

Skewness 1.56 (+0.54-0.62) 1.45 (+0.52-0.56) 0.72 (±0.4) 

Kurtosis 6.54 (+2.69-1.87) 5.0 (+3.00 -2.29) 3.2 (+1.1 -0.86) 

St. Dev 1.8 (+0.55 -0.34) 1.0 (+0.36 -0.27) 1.0 (+0.21 -0.17) 

Range / µm 9.4 4.2 4.2 

Mean  / µm 3.3 (+0.39 -0.33) 3.0 (+0.30 -0.24) 3.7 (+0.3 -0.3) 

Median  / µm 2.9 (+0.5 -0.2) 2.9 (+0.2 -0.1) 3.6 (±0.4) 
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Figure 4.7 Comparison of viable cells lengths at t0mins distributions for the control, low and high Ag stressed medium. The Box plot (A) showing the control sample, light blue, the low 
silver stress sample, navy blue and the high silver stress sample, purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver 
stress conditions (B), the control (top) and the high level silver stress conditions (B) and the low level (top) and high level silver stress conditions (C), dotted red line indicating the median 
of the data sets, N=100 
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The length at t0 has a median of 2.9 (+0.5 -0.2) µm under control conditions and remains unchanged 

in the viable colony length for minutes under a low level of silver stress. When the silver 

concentration is increased to 3 µg/mL the length median increases to 3.6 (±0.4), and is no longer 

part of the same continuous distribution (Mann-whitney U P-value<0.01). The length distributions 

are all skewed towards the long lengths, the degree of skewness reducing as silver concentration 

increases, and all prone to outliers, the kurtosis value also reducing as the silver concentration 

increases. None of the distributions are normal, with the A-D and S-W tests both returning 

P-values<0.01. The ranges of both the viable colony length data sets under silver stress are the same 

and under half the range of the distribution of viable colony lengths under control conditions. The 

narrowing in the range of the data sets under silver stress coming from both the upper and lower 

percentiles of the control distribution. 

Width at t0 distribution parameters are compared in Table 4.5 and Figure 4.8.  The range of viable 

colony widths is the same for both no silver stress and high silver stress, the range reducing by over 

25% for colonies arising from exposure to low silver stress. All three distributions are skewed 

towards the longer widths, the values of Skewness the same within the error. The Kurtosis of the 

distributions of cells in the control and high silver stress sample is slightly higher than the values for 

a normal distribution and the kurtosis of the low silver stress distribution is slightly lower. However 

within the bootstrapped errors these values are the same. The colonies surviving after exposure to a 

low level of silver stress are wider than those surviving from the control environment and the high 

level of silver stress, with a median of 2.1 µm compared with 1.1 µm and 1.5 µm respectively. 
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Figure 4.8 Comparison of cell width distributions of the viable cells at t0mins. The Box plots (A) show the control sample, (extreme left, light blue), the low silver stress sample, (centre 
navy blue) and the high silver stress sample,(extreme right purple). The median-shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress 
conditions (B), the control (top) and the high level silver stress conditions (C) and the low level (top) and high level silver stress conditions (D), dotted red line indicating the median of the 
data sets. 
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Table 4.5 The parameters of the three distributions of widths at t0mins of viable cells.  

Parameter Control 1 µg/mL  3 µg/mL  

Skewness 0.92(+0.35-0.28)  0.28 (0.73-0.51)  0.32 (+1.0-0.51)  

Kurtosis 3.15(+1.4-0.79)  2.94 (+1.90-0.86)  3.97 (+2.62-0.99)  

St. Dev 0.86 (+0.13-0.11)  0.55(+0.14-0.09)  0.71 (+0.19 -0.14)  

Range / µm 3.6  2.6  3.6  

Mean / µm 1.22 (+0.17-0.16)  2.14 (±0.16)  1.55 (+0.19-0.17)  

Median / µm 1.1 (+0.2 -0.3)  2.1 (+0.2 -0.18)  1.45 (+0.2 -0.1)  

 

The length of the lag period is shifted by silver stress conditions and the distributions are displayed 

graphically in Figure 4.9, with the parameters compared in Table 4.6. 
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Figure 4.9 Distribution of lag periods of the three E. coli populations: the control sample (dark grey), low level of silver 
stress, 1 µg/mL (mid grey) and higher level of silver stress, 3 µg/mL (light grey). The medians of each sample are 
indicated by dashed red lines. 

Table 4.6. The parameters of the three distributions of lengths of lag period in all of viable colonies.  

Parameter Control 1 µg/mL  3 µg/mL  

Skewness -0.9 (±0.3)  0.3 (±0.4) -1 (±0.4) 

Kurtosis 2.5 (+1 -0.8)  2 (+0.7 -0.4)  4 (+1.7 -1.3)  

St. Dev 40.2 (+5 -5)  13.8 (+2.2 -1.7)  17.3 (+4.3 -3.3)  

Range / mins 135 (-1)  48 (-1)  80 (-1)  

Mean / mins 96.7 (+7.4 -7.6)  192.6 (+4.1-3.7)  218.5 (+4 -4.5)  

Median / mins 111 (+5 -3)  192 (+5 -6)  220 (+4 -6)  

 

In general, the median lag period in minutes for each of the colony distributions increases with the 

concentration of silver ions to which the E. coli cells are exposed, increasing from 111 minutes, to 
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192 minutes under low silver stress and 220 minutes under higher silver stress. The parameters in 

Table 4.6 show that the distributions of colony lag period are skewed towards the short time lengths 

in both the high silver stress distribution and in the control sample distributions. The separation in 

the distributions of both of these data sets indicate that they are bimodal, separating each data set 

into two and testing them with the Mann-Whitney U test indicates that the data sets for the control 

lag period and the high silver concentration lag period are bimodal. Under control conditions, 20% of 

the colonies have a short lag period, defined as short by being less than 50mins. The other 80% have 

a lag period of above 60mins. The short lag time distributions have a median of 28 (+5 -8) minutes 

and the long lag distribution have a median of 115 (+5 -7) minutes. Similarly the distribution of lag 

periods of colonies grown under high levels of silver stress have a bimodal distribution, 12% with a 

short lag period with a median of 182 (+3-2) minutes and the remaining 88% of the data having a 

median of 223 (±2) minutes. 

The tests for normality show that none of the distributions are normal, with both the SW and AD 

tests returning P-values<0.001. Comparisons of the distributions using the Mann-Whitney U test 

show that the distributions come from separate continuous distributions, all comparisons with 

P-values<0.01.  

The effect that silver stress has on the maximum growth rate of the colony along the major axis is 

shown in Figure 4.10 and in Table 4.7. 
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Figure 4.10 Comparison of the maximum growth rate of E. coli grown under three silver concentrations. The Box plot (A) showing the control sample, light blue, the low silver stress 
sample, navy blue and the high silver stress sample, purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress conditions 
(B), the control (top) and the high level silver stress conditions (C) and the low level (top) and high level silver stress conditions (D), dotted red line indicating the median of the data sets 
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Table 4.7 The parameters of the three distributions of the maximum growth rates of the viable colonies.  

Parameter Control 1 µg/mL  3 µg/mL  

Skewness 0.1 (+0.5 -0.3)  0.17 (+0.43 -0.44)  1.5 (+0.82-0.65)  

Kurtosis 2.1 (+1.1 -0.43)  2.4 (+0.8 -0.52)  3.9 (+4.1 -1.6)  

St. Dev 0.3 (+0.04 -0.03)  0.11 (+0.02 -0.17)  0.42 (+0.1 -0.09)  

Range / µm min-1 1.5  0.47  1.62  

Mean / µm min-1 1.0 (+0.07 -0.06)  0.44 (±0.03)  0.4 (+0.12 -0.10)  

Median/ µm min-1 1.0 (+0.13 -0.16)  0.44 (0.05 -0.04)  0.21 (+0.05 -0.03)  

 

The median growth rate decreases as the silver ion concentration of the growth conditions 

increases. The distribution under a silver concentration of 3 µg/mL is significantly skewed towards 

the faster growth rates (Skewness 1.5 and Kurtosis 3.9), reflected in the population of outliers in 

Figure 4.10 A. The SW and AD tests reject the null hypothesis that the distributions are normal, 

returning P-values of <0.01 for all three distributions. Further to this test, the Mann-Whitney U 

comparisons of the distributions show that the three medians all come from separate continuous 

distributions.  

Further analysis of the distributions indicates that the distribution of growth rates of colonies grown 

at the higher level of silver stress is bimodal. The larger distribution, consisting of 87% of the 

population, has a median of 0.19 (+0.02 -0.03) µm min-1 and the secondary distribution, consisting of 

the remaining 13% of the data set, has a median of 1.05 (+0.08 -0.01) µm min-1. 

The maximum length reached for each of the groups of cells is displayed in Figure 4.11 and further 

analysed in Table 4.7. 
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Figure 4.11 Comparison of the maximum lengths reached for control, low and high stress environments. The Box plot (A) shows the control sample, light blue, the low silver stress sample, 
navy blue and the high silver stress sample, purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress conditions (B), the 
control (top) and the high level silver stress conditions (C) and the low level (top) and high level silver s tress conditions (D), dotted red line indicating the median of the data sets. 
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Table 4.8 The normality-testing parameters of the three distributions of maximum lengths of viable colonies.  

Parameter Control 1 µg/mL  3 µg/mL  

Skewness 0.09 (+0.29 -0.27)  0.25 (+0.57 -0.39)  1.5 (+0.88-0.65)  

Kurtosis 2.40 (+0.51 -0.35)  2.61 (+1.3 -0.57)  3.72 (+3.9 -1.6)  

St. Dev 21.0 (+2.4 -2.3)  10.2 (+2.3 -1.5)  89.4 (+17.0 -19.5)  

Range / µm 84  45.4  293.23  

Mean / µm 55.6 (+4.4 -4.1)  74.3 (+3.0 -2.4)  102.6 (+24 -21)  

Median / µm 54.5 (+5.2 -6.0)  74.9 (+1.7 -5.05)  63.9 (+3.8 -7.2)  

 

The distributions arising from the lower two levels of silver stress have Skewness parameters which 

are comparable to the normal value, within error and are both slightly leptokurtic. All three 

distributions are not normal, returning values for the S-W and A-D tests of <0.01. The median 

lengths of colonies increases between the control and the low level of silver stress from 54.5 µm to 

74.9 µm. The data appear to be following a trend with increasing silver concentration, more 

positively skewed, shorter range and larger colony length. The distribution of colony lengths arising 

from the 3 µg/mL silver stress environment do not follow this trend as the distribution is bimodal. 

The primary distribution, consisting of 87% of the population, has a median maximum length of 58.7 

(+4.3 -3.8) µm and the secondary distribution has a median maximum length of 237 (+12.3 -8.9) µm. 

The typical growth curves for an E. coli cell under control conditions and the two populations of cells 

produced by a silver concentration of 3 µg/mL are displayed in Figure 4.12. The silver concentration 

of 3 µg/mL induced two populations of cells, separated the medians of three growth parameters:  

 Lag period 

 Final length 

 Growth rate 

The two phenotypes produced under high silver stress are named ‘super-bugs’ and ‘sub-bugs’, the 

‘super-bugs’ colonies belonging to the distributions of faster growth rate, larger final size and 

shorter lag period and the ‘sub-bugs’ are the colonies belonging to the distributions of slower 

growth rate, smaller final size and longer lag period. 
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Figure 4.12. The typical growth curve for the growth along the maximum axis for the control E.coli sample (a) and the 
two populations observed during growth under a silver concentration of 3 µg/mL: the sub-bug population (b) and the 
‘super-bug’ population (c).  

Colonies were selected as being in one group or the other based on satisfying the three phenotype 

parameters of each group. Sub-bugs have a lag period longer than 200 minutes, a length after 400 

minutes of less than 80 µm and a maximum growth rate of less than 0.4 µm min-1. Super-bug 

colonies have a lag period shorter than 190 minutes, a length after 400 minutes longer than 100 µm 

and a maximum growth rate above 0.9 µm min-1. The colonies were analysed and removed from the 

surface for genome analysis as detailed in 4.6.2 and compared to the NIS GenBank reference sample 

using the Illumina Sequencing Technology, the control, the sub- and the super-bug.  
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Figure 4.13 The percentage of each genome sequenced, the inner purple ring indicates the genome from the control 
sample, the central purple ring the genome from the sub-bug population and the outer blue ring the genome from the 
superbug population. 

In total, 39 Single Nucleotide Polymorphisms (SNPs) were detected between the genbank E. coli K-12 

reference genome and the three samples obtained in these experiments, 36 between the samples 

and the references and just three between the samples. Algorithms for the calculation of SNPs 

incorporate probable errors which may occur from base calling, alignment and assembly, returning 

the probability error as a Phred score, here calculated as less than 1%. The nature of each individual 

SNP is given in Table 4.9. 

Escherichia coli  
K-12 MG1655
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Table 4.9 The nature of each SNP detected from the comparative Illumina sequencing; *pseudogene. 

SNP Type Position (bp) Gene Gene Function 

Reference No Silver  “Sub-Bug” “Super-Bug”     

T A A A Non-silent 1129576 flgA Assembly protein for flagellar basal-body periplasmic P ring 

G T T T Non-silent 1139601 flgL Flagellar hook-filament junction protein 

A G G G Non-silent 1169059 ycfS L2CD-transpeptidase linking Lpp to murein 

A G G G 
Silent 

1189203 phoP 
DNA-binding response regulator in two-component regulatory system with 
PhoQ 

G C C C Non-silent 1232827 nhaB Sodium:proton antiporter 

T G G G Non-silent 1304760 oppF Oligopeptide transporter subunit 

A G G G Non-silent 1335418 acnA Aconitate hydratase 1 

C T T T Non-silent 1351453 sapD Antimicrobial peptide transport ABC system ATP-binding protein 

T C C C Non-silent 1356883 puuP Putrescine importer 

A T T, G T  1395266 non-coding  

A G G G  1395269 non-coding  

A T T T Non-silent 1641703 ydfU Qin prophage 3B predicted protein 

T C C C Non-silent 1650355 intQ Qin prophage; predicted defective protein 

G A A A Non-silent 1975381 flhC DNA-binding transcriptional dual regulator with FlhD 

C A A A Non-silent 2038457 yedY Membrane-anchored 2C periplasmic TMAO 2C DMSO reductase 

C A A A  2041546 serU Endodeoxyribonuclease RUS (Holliday junction resolvase) 

A T T T  2796921 non-coding  

T G G G Silent 283759 yagF CP4-6 prophage 3B predicted dehydratase 

G A A A Non-silent 2865477 rpoS RNA polymerase sigma factor 

T G G G Non-silent 3386063 aaeB p-hydroxybenzoic acid efflux system component 

T C C C Non-silent 3398523 mreB Cell wall structural complex MreBCD actin-like component MreB 

T G G G Non-silent 3563505 glgP Glycogen phosphorylase 

C A A A  3705970 non-coding  

C A A A Non-silent 3764026 rhsA RhsA element core protein RshA 

C A A A Non-silent 3801973 waaB UDP-D-galactose: glucosyl lipopolysaccharide-6-D-galactosyltransferase 

C, T C, G, T C, G, T C, G, T Indel 3813952 Rph* Defective ribonuclease 

C T T T  3957957 non-coding  

C A A A Non-silent 3986426 hemX Predicted uroporphyrinogen III methyltransferase 

T C C C  4221661 iclR Pyruvate DNA binding transcriptional repressor 

T G G G  4508261 non-coding  

G T, A T T 
Indel/Non-

silent 519233 ybbA 
Predicted transporter subunit: ATP-binding component of ABC superfamily 

A G G G Silent 547694 ylbE* Function unknown 

G A G G Silent 565468 ybcC DLP12 prophage; predicted exonuclease 

T C C C Silent 578054 borD DLP12 prophage predicted lipoprotein 

T C C C  578350 non-coding  

T C C C  578357 non-coding  

G A A A Silent 578494 ybcV DLP12 prophage predicted protein 

A G G G Silent 578608 ybcV DLP12 prophage predicted protein 

A G G G Silent 578725 ybcV DLP12 prophage predicted protein 
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4.8 Discussion  

The Lensless microscope and ADFF algorithm successfully monitors the growth of single and small 

groups of E. coli cells over time.  Matrigel replaced agar as the growth surface as it ensures the 

refractive index contrast between the cell and the background is sufficient to record the diffraction 

patterns accurately for objects as small as the single E. coli cell, 2 µm x 0.5 µm (restricted by the 

diffraction limit of 0.3 μm). Matrigel has a refractive index of 1.34 RIU[52], lower than that of the 

E. coli cell, reportedly 1.40 RIU[53]. Preliminary investigations showed that the growth under these 

conditions, on a solid Matrigel surface, surrounded by LB was comparable to E. coli growth on solid 

agar. The Matrigel medium is designed as a support matrix for growth without influencing the 

growth in anyway. It is predicted that this does not induce a phenotypic stress response as the cells 

are surrounded in LB, much like planktonic growth conditions.  

The Matrigel surface in this experimental set up and the Lensless microscope instrument can 

monitor the growth of single cells within the diffraction limit of 0.3 µm.  A cell with a width of 0.5 µm 

will have a diffraction-limited error of ± 30 % when illuminated with white light centred at 667 nm 

and so this study has been about the analysis of the phenotypic growth properties of colonies of 

cells and the ability of the colonies to act as a multicellular organism, responding to extra cellular 

signals and the growth environment, a particular consideration in the healthcare setting.  

The growth phenotypes arising from growth under control conditions, without induction of 

phenotypes with silver stress, are discussed first.  

4.8.1 Growth Phenotypes under normal growth conditions  

Of the possible growth parameters extracted from the E. coli growth curve 6 parameters were 

analysed and now discussed in further detail. 
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Length and Width at t0  

The length and width (major and minor axis) of a single E. coli cell is 2 µm by 0.5-1 µm, a single E. coli 

cell prior to division will have a length of 4 µm, approximately double. There is a fundamental limit in 

the determination of the length of dimensions of each measurement and this is the diffraction limit 

determined by the wavelength of the radiation. A single cell length measurement of 1 μm has an 

error of +/- 0.15 μm, for it to be a single cell it must have a width parameter no larger than 1.15 µm.  

The length distribution under control conditions contains 56 colonies which have both lengths and 

widths within the one cell range reported here and 44 colonies with either the length, width or both 

dimensions longer than a single cell.  From these statistics it can be observed that 56 % of the 

analysis results from colonies derived from a single cell whereas 44 % derive from two cells, verified 

by the fact that the length and widths at t0 minutes under controlled conditions are skewed towards 

the longer dimension measurements 

Cells deposited on the flowcell surface had undergone repeated pipetting to generate turbulence 

and separate the cells into singles for deposition on the flow cell surface.  However, the Matrigel 

surface is not a smooth surface and E. coli cells are motile and so in the initial settling/association 

stage of the setup it is likely that the cells will settle in micro-valleys in the Matrigel surface 

morphology. Consequently the cells which are sheltered by the Matrigel may have an altered 

phenotype, in this control environment governed by the nutrients available to the cell, the cells no 

longer surrounded by nutrients.   

Lag period length 

The length of the lag period appears to be split into two populations, indication two phenotypes; 

those which have a lag period with a median of 28 minutes, the Lag1 phenotype and those with a 

median of 115 minutes, the Lag2 phenotype, Figure 4.9. The length of the lag period in many bacteria 

is reported to decrease with inoculum size[54], however, these cells are found in all experiments and 

occur in 20 % of the cells and each experiment contains a similar size inoculum, between 60 and 70 

cells in 20 µL. 

Cells which have passed a certain checkpoint within the cell cycle in the exponential growth phase in 

planktonic growth exhibit little, or none, of a lag period and are able to divide almost at the time 

expected prior to the cell transfer. Lag period is defined as the lull in growth, after transfer to a new 

environment, where the cells are adjusting before starting exponential growth[55] and it appears that 

these cells, for whatever reason, do not require this time to adjust. It is possible that the cells which 

are the product of fewer divisions are very quick to divide, the lag period length is affected by the 
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number of division cycles in which the cell has taken part[56]. The study in which the age of the cell 

was related to the subsequent length of lag period, however, was performed on cells from a 

stationary population, a population which has been shown to carry a higher degree of heterogeneity 

already[57],and does not collaborate with the experimental conditions created here.  

A study of the first three division times of cells post transfer to a new environment showed that the 

time to initial division was over three times that of the times to subsequent divisions[58]. The time 

between divisions then rapidly stabilised. It can be proposed that the 20 % of cells observed to have 

a significantly shorter lag period are those cells which have arrived on the cell surface having 

terminated DNA replication, at the end of the C-phase of the cell cycle, and committed to division, 

they will be the youngest cells in the population. 

The colonies which exhibit a short lag period, Lag1, are not in the upper or lower quartiles of the lag 

period distribution, 40 % of the growth curves exhibiting short lag periods coming from the single 

cell length and 60 % coming from 2-cell colony length and width parameters. They do not grow 

faster or slower than the other 80 % of the population, get larger, or stay smaller. They are neither 

the larger colonies at t0 nor the smaller ones. It does not appear that in a control environment that 

these cells have any phenotypical survival benefits over the 80 % which appear to have a lag period 

in-line with the length of adjustment on a new surface published in the literature[59].  

Average Growth rate 

The growth rate under control conditions appears to contain a complex number of growth rates, 

with a possible bimodal distribution, indicating phenotypes GR1 and GR2 although not one which can 

be easily determined. The position in the growth rate distribution is not correlated to the position in 

the length distribution, the fastest growing colonies arise from both single and multicellular 

dimensions at t0. The position in the growth rate distribution also not affected by position in the lag 

period distribution, the Lag1 distribution having positions in the lower, modal and upper quartiles of 

the growth rate. 

Maximum colony length 

The maximum colony rate has a small range and is not skewed significantly towards longer or 

shorter lengths. It appears that regardless of previous growth rate, initial colony length or lag period 

cells reach similar colony length prior to slowing in growth. This indicates that the maximum colony 

size is a parameter related purely to nutrient availability. It also highlights that previous discussion 

points about the position in Matrigel perhaps limiting nutrients to some cells is not valid. 
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4.8.2 Silver-Stress E. coli Growth Phenotypes,  

The survival phenotypes under the two levels of silver stress are; 63 % survive in the low silver stress 

conditions and 47 % under the higher levels of silver stress. 

Length and Width at t0 

The lengths and width distribution of the viable colonies at t0 remain mostly unchanged between the 

control and silver samples, with none of the distributions being normally distributed. The longest 

dimension colonies from the control sample not present in either of the silver stress samples. 

Comparison of the t0 distributions from the control sample and the survivors from the low and high 

silver stress conditions show that the range of lengths at t0 is significantly shorter under silver stress 

with no cell viable under with stress condition with a t0 length of greater than 6.2 µm. The arrival on 

the surface as a double cell or becoming a double-cell colony as a result of initial motility on the 

surface would be advantageous to survival with two cells mounting an effective stress response. The 

distribution of single and double-cell initial colonies is shown in Table 4.10.  

Table 4.10 A comparison of colony size types of the viable colonies in all three experimental conditions, the control, and 
the silver concentrations of 1 µg/mL and 3 µg/mL. 

Colony size Control 1 µg/mL  3 µg/mL  

One cell 56%  4% 28% 

Larger than one 44% 96% 72% 

 

Under control conditions over 50 % of the growth curves measured were those produced by a single 

cell and not a double cell initial colony but under low levels of silver stress the viable cells fall 

significantly to only 4 %. 

The three silver Phenotypes 

There are three main silver stress phenotypes identified in this chapter, the viable cells which grow 

in low levels of silver stress (S1) and the two viable phenotypes arising from high silver stress (‘Super-

bugs’ and ‘sub-bugs’). Each of these phenotypes is the combination of significant differences from 

the control in three growth parameters, the length of the lag period, the final length of the colony 

and the maximum colony growth rate. 
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The formation of the two phenotypes in the presence of a starting concentration 3 µg/mL of silver 

nitrate occurred both when E. coli was grown on a solid agar surface with the toxin below it and 

when grown on a Matrigel surface with the toxin surrounding it. The Matrigel / LB set up was also 

beneficial in maintaining a moist environment for cell growth and easily transferable to experimental 

circumstances which would involve the use of flow (see Chapter 7).   

Preliminary experiments and the literature indicate  that the closer the colonies are to neighbouring 

colonies the smaller the overall colony size, the size limited by the accumulation of metabolic 

inhibitors within the medium[60]. Given the kill rate, the surface is sparely occupied so inter-colony 

communication and nutritional stress will not be a limit for these cells. The rate of growth, under 

silver stress is reduced for both concentrations which is a systems-level response propagated at the 

molecular level perhaps at the cell cycle. The cell cycle is regulated by a number of proteins; the 

initiation of chromosome replication for example is controlled by DnaA, replication commencing 

when a threshold level of the molecule is achieved. The secondary structure of DnaA protein 

contains 4 cysteine residues and attack from the silver ion on these proteins would mean that that 

accumulation of the protein to the threshold level would be delayed triggering the slower growth 

rate. Once this hurdle has been cleared the rate of chromosome elongation relies, in part, on the 

ribonucleotide reductase R1, a protein shown to have 5 cysteine residues in the active site alone. 

Further to this the division of cells requires the cooperation of the two proteins FstA and FstZ, levels 

of one protein without the other shown to inhibit cell division. While the protein sequence of FstZ 

contains no cysteine residues, the FstA sequence does, this possibly leading to a high level of FstZ 

compared to FstA, inhibiting septum formation.  

4.8.3 Super-bug and Sub-bug Growth Phenotypes 

The maximum growth rate of the bacteria in the three growth groups (control, 3 µg/mL sub-bug and 

3 µg/mL super-bug) is compared to the time this maximum growth rate is achieved, in Figure 4.14. 

The high silver stress colonies are clustered predominantly top left in this 2D space indicating a long 

delay to start growing with a slow growth rate, accounting for 87 % of the distribution, these are the 

sub-bug population. It is clear to see that at a high level of silver stress a second phenotype is 

induced, indicated by the small cluster of cells in purple, 13 % of the population which reach a faster 

growth rate at a much shorter time. These cells also have the property of a shorter lag period and 

are displayed in Figure 4.15 when compared to the maximum growth rate. The genetic analysis 

confirms this as a genotype so the superbug phenotype is a phenotypical resistance to the higher 

silver stress.  
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The low silver stress phenotype, forms one cluster, indication a single growth phenotype under this 

concentration of silver. The bimodal lag period phenotype, Lag1 and Lag2, splits the control 

distribution, giving it the curved shape appearance, and indicating that the top 20 % of the lag period 

distribution (Lag1) have a wide range of maximum growth rates. 

 

Figure 4.14. A comparison between the correlation between the maximum growth rate of an E. coli colony and the time 
this maximum rate is reached for the control E. coli sample (N = 100, light blue), the low silver stress sample (1 µg/mL, 
N = 48, navy blue) and the high silver stress sample (3 µg/mL, N = 60, purple). 

It is clear to see that at a high level of silver stress a second phenotype is induced, indicated by the 

small cluster of cells in purple which reach a faster growth rate at a much shorter time. These cells 

also have the property of a shorter lag period and are displayed in Figure 4.15 when compared to 

the maximum growth rate. 
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Figure 4.15 A comparison between the correlation between the maximum growth rate of an E.coli colony and the lag 
period length for the control E.coli sample (N = 100, light blue), the low silver stress sample (1 µg/mL, N = 48, navy blue) 
and the high silver stress sample (3 µg/mL, N = 60, purple). 

These cells have been termed super-bugs and the other E. coli population within this distribution 

sub-bugs and are discussed in the following section, the difference in growth curve between these 

two phenotypes was presented in Figure 4.12. 

Super-bug colonies have the following distinguishing characteristics:  

 a lag period shorter than 190 minutes,  

 a length after 400 minutes longer than 100 µm  

 maximum growth rate above 0.9 µm min-1 

 time to maximum rate less than 80 minutes. 

Sub-bug colonies have the following distinguishing characteristics:  

 a lag period longer than 200 minutes,  

 a length after 400 minutes of less than 80 µm  

 maximum growth rate of less than 0.4 µm min-1 

 time to maximum rate more than 80 minutes. 
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The resistance to silver is striking these phenotypes and an obvious explanation wold be some 

genetically conferred resistance. The genetic sequence for each sub population was tested and the 

three genomes, within error, are shown to be the same, indicating that the cells confer no genotypic 

variation which could confer the measured resistance to silver ions. The polymorphisms between the 

different isolates, which are summarised in Table 4.10. However, as these changes occurred in the 

bacteria exposed to no silver in addition to the observed sub- and super-bug phenotypic variants this 

may reflect random mutation during the cultivation of bacterial stocks (revival from cryo-storage 

and routine culture for experiments).  

The growth phenotype analysis produced six parameters from which a number of phenotypes could 

be identified. The phenotypes identified in the control and silver stress growth and their prevalence 

in distribution are summarised in Table 4.11. 

Table 4.11 The main growth phenotypes identified from both control and silver stressed E. coli growth. All of the 
phenotypes, except the short lag phenotype, consist of differences in more than one phenotype parameter.  

Phenotype Prevalence 

Survivors under low silver stress 63% 

Survivors under high silver stress 47% 

Short lag under control conditions 20% 

Long lag under control conditions 80% 

‘super-bugs’ under high silver stress viable colonies 6% 

‘sub-bugs’ under high silver stress viable colonies 41% 
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4.9 Conclusion  

The growth phenotype screening process developed for single cells in S. pombe has been extended 

successfully to colony growth monitoring for E. coli. The screen identified six parameters to classify 

the growth phenotypes. There is significant heterogeneity in E. coli cells taken from the exponential 

growth phase which is separated following the transition to a biofilm surface growth phenotype. The 

resulting colonies, whether starting from single or double cells, show significantly different lag 

periods. Previous studies have reported that cells taken from a culture in this phase of growth show 

uniformity in their growth parameters[57]. The colony forming unit (CFU) density is implicated in 

producing a bimodal distribution of doubling times, a population below 100 CFU mL-1 displayed a 

bimodal distribution of doubling times[61] The results of this study support evidence for the 

heterogeneity observed in the biofilm colonies monitored by the Lensless microscope. The growth 

appears not to be nutrient limited in the flow cell and in the in vivo growth environment as E. coli are 

facultative anaerobes[61]. We have demonstrated that the transfer from planktonic growth also 

produced heterogeneity in the response of the cells under normal growth conditions, inducing a 

complex growth rate distribution.  

It has been demonstrated that under silver stress conditions cell populations have an increased 

length of lag period and a slower growth rate, and these can be coupled to the effect that silver has 

on the major proteins of cell cycle regulation. Further to this it can be demonstrated that growth in 

the presence of a silver concentration of 3 µg/mL results in the production of two separate growth 

phenotypes, super-bugs and sub-bugs, separated by length of lag period, growth rate and maximum 

size reached. These sub-populations show growth phenotypes for silver resistance.   

 The promotion of the favourable super-bug phenotype has implications in the use of silver ions in 

the medical industry. Lethal concentration of silver may prevail proximal to the silver dressing but as 

the silver concentration falls distal to the dressing there is a concentration gradient and the potential 

to select for resistance. This, in turn, may promote the formation of Gram-negative superbugs which 

could thrive in environments containing silver, free from competition with other, non-resistant 

microorganisms.  Further, the eukaryote response to silver suggests the wound healing may also be 

compromised. 

Escherichia coli has been used as a model organism to investigate the effect of silver stress on the 

prokaryotic Gram negative cell cycle and I have identified a phenotype arising from this stress. In 

chapter 5 the focus changes to look at the effect of silver stress in the cell cycle of the model 

organism for the Gram positive bacteria, Staphylococcus aureus. 
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5 Growth Phenotypes in Colonies of 

Staphylococcus aureus under normal and 

silver stressed Growth Conditions  

5.1 Introduction 

E. coli is a Gram negative bacterium which has a thin cell wall, sandwiched between two cell 

membranes; by contrast the Gram positive bacterium S. aureus has a thicker cell wall outside of one 

cell membrane. This organism is of interest for two main reasons, initially it provides a basic 

structural first level comparison to the results we have collected in Chapter 4, the comparison of the 

effect of silver stress on Gram positive and Gram negative organisms. Secondly S. aureus is strongly 

implicated in the causation of HAIs, during a three year study in the hospitals of the United States 

64 % of all HAIs were caused by Gram positive organisms, with 16 % attributed to S. aureus[1]. The 

high incidence of infection caused by this bacterium is attributed to S. aureus’ presence in the 

‘normal’ skin flora[2], the fact that it colonises areas in close proximity to possible wound sites. In 

particular, the patient nasal carriage of staphylococcus plays a key part in the pathogenesis of 

infection[3], with up to 20% of the population being long term S. aureus carriers[4]. 

The S. aureus reference genome consists of one circular chromosome, containing 2872 genes, 

encoding 2767 proteins[5] and an appearance phenotype typically classified by the golden yellow 

coccal appearance. The cells are 0.5 - 1.5 µm in diameter[6], spherical in shape and divide by binary 

fission. The label Gram-positive means the cells have a cell wall, approximately 0.25 µm thick[7] 

consisting of a higher level of peptidoglycan than the Gram-negative cell wall, and teichoic acid 

residues, both factors implicated in virulence[8], and the ability of the bacteria to cause septic shock 

when colonised in a host[9]. So if a silver covered implant were to cause a growth phenotype such as 

the one detected in E. coli, it could be a real problem with subsequent systemic infections. S. aureus 

also confers virulence via its genome, containing a large number of such genes which are 

transposable elements subject to lateral gene transfer[10]. It is this readiness to transfer and accept 

DNA from others which is responsible for the continuously evolving genotype. 

S. aureus is implicated in the incidence of hospital acquired infections, notably MRSA strains in ~50 % 

in affected hospitals. Therefore the use of a new antimicrobial agent is required to address the rise 

in infections which are no longer susceptible to attack by the conventional methods. Silver ions have 
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been shown to affect S. aureus cells morphologically, causing the cell membrane to detach from the 

cell wall and shrink slightly[11]. Studies on the level of viable S. aureus cells present at the site of a 

wound, with and without the treatment plan containing silver, show significantly lower levels of 

infection in the presence of silver[12].This chapter looks at the effect that silver has on the growth 

phenotypes of S. aureus, below the growth and structure of S. aureus is discussed, highlighting the 

proteins related to cell growth which may be susceptible to attack by silver ions.  

5.1.1 S. aureus Growth Phenotype and Structure. 

S. aureus cells divide by binary fission along one of three planes x, y and z, and have been observed 

by phase-contrast microscopy to divide along the planes in sequence with sister cells remaining 

attached to each other after division[13]. These are grape-like ‘clumps’ of cells which fail to separate 

fully after division. The daughter cells are attached to one other at any point along the septal disk 

which separated them to begin with but they do have the ability to shift with respect to each other 

while still remaining attached[13]. In the early stages of colony formation, three morphological forms 

are observed, linear, square and ‘crooked’, arising from the direction of the initial two cell 

divisions[14]. The staphylococcal mode of division means that colonies of S. aureus will very rapidly 

become three dimensional, the colony shape being an interesting phenotype to study.  

The cell wall of the Gram-positive organism is credited, partially, with the protection of the bacteria 

from antimicrobial attack[15]. The cell wall makes up approximately 20% of the total dry weight[16] of 

the staphylococcus cell and there are two main components of the cell wall; teichoic acid[17], 

approximately 40%, and peptidoglycan[18], approximately 50%.  There are two main classes of 

techoic acid, wall teichoic acid (WTA) and the lipoteichoic acid (LTA). LTA links the cell membrane to 

the cell wall and the WTA attaches to the wall peptidoglycan, extending beyond the cell[19]. The 

teichoic acid in S. aureus consists of repetitive polyol phosphate subunits such as ribitol phosphate 

(Rbo-P) or glycerol phosphate (Gro-P)[20] and has been implicated with cell protection against 

environmental stress and also bacterial ability to colonise the host. Cells with mutations in the 

S. aureus modifications of WTA demonstrate higher susceptibility to neutrophil attack[8] and the 

antibiotic vancomycin[21]. Further studies into the role of WTA have shown that it is essential in the 

colonisation of the bacteria within the anterior nares[22], an important consideration which it has 

been shown that approximately 40% of the population are S. aureus carriers[23] and in turn this has 

been implicated in the spread of HAIs[3]. Whilst the biosynthetic pathway for WTA remains largely 

unknown[24] it has been demonstrated that mutations in the tarI′J′ gene, which codes for the enzyme 

TarJ’ responsible for the rate limiting step in ribitol formation, effects levels of teichoic acid in the 

cell wall[25]. As mentioned previously the other component in high proportion in the Staphylococcal 

cell wall is peptidoglycan. Peptidoglycan features in both the Gram positive and Gram negative cell 
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wall and so the effect that the environmental stress of silver has on it will be evident in both bacteria 

studied, not inducing a new comparable phenotype. S. aureus cell walls are also associated with 

other extra cellular proteins; these cells are implicated in the cells ability to bind extracellular protein 

complexes, similar to the growth conditions of the Matrigel in the flow cell used in this thesis as a 

growth chamber. Extracellular proteins are often associated with bacterial virulence, the small 

colony protection which the proteins provide creating an extended phenotype environment. 

Virulence genes have been identified in S. aureus which enhance their level of pathogenicity. 

Virulence factors are typically exoprotiens, proteins expressed outside the cells, which aid cell 

adherence and host attack[26]. The virulence of S. aureus is controlled by the agr locus which controls 

a two component signalling pathway[27]. There are 4 types of agr which classify the S. aureus into 4 

groups[28]. Other pathways of virulence include the sar and sae and, while none of these are directly 

related to a measureable growth phenotype, the effect silver has on the expression of these genes 

may become a consideration if classifying the bacteria using the ‘Phenotype Fingerprinting’ idea 

introduced in Chapter 3. The fact that the extracellular proteins are excreted means that changes in 

levels of the expression of these proteins will be detectable. S. aureus resistance against antibiotics 

is one of the reasons why silver ions are now so widely used in hospital equipment. The rapid 

formation of antibiotic resistant strains recently has led to the knowledge that MRSA is a prevalent 

hospital acquired infection. 

5.1.2 Antibiotic Resistance and the Effect of Silver 

S. aureus strains are resistant to penicillin due to the acquired gene mecA which encodes a penicillin-

resistant peptidoglycan transpeptidase[29], there now emerging S. aureus strains which have a higher 

resistance to methicillin and other antibiotics due to genes which are thought to code for a thicker 

cell wall[30]. All currently isolated strains of vancomycin resistant S. aureus have acquired resistance 

due to mutation and consequent thickening of cell wall due to accumulation of additional   

peptidoglycan[31]. The emergence of these strains made it apparent that the bacteria will acquire 

resistance to new antibiotics in time and following this there is no reason why S. aureus, over time, 

can acquire resistance to silver ions as well.  

Silver dressings have been shown to have both antimicrobial and barrier affects against strains of 

MRSA[32]. Silver has been shown to lyse S. aureus cells at high concentration and cause the cell 

membrane to separate from the cell wall at low concentration[33] and has obvious benefits as it is a 

broad spectrum antimicrobial substance. when first developed had no bacteria which displayed 

resistance to it[34]. A review published in 2005 reported the increase in the incidence of silver 

resistant microorganisms[35], reporting that that the silver resistance is most likely to be found in 
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environments associated with the greatest levels of silver use. A silver resistance gene in S. aureus 

has been identified, silE[36] and isolated from infections in both humans and pets, although with no 

known function.  

It has been shown, in Chapter 4 however, that a population of cells in an E. coli sample display a 

phenotypic advantage in the presence of silver stress, it is an advantage such as this which is of 

interest in this study. 

It has been discussed in Chapter 1 the incidence of phenotypic antibiotic resistance which is 

displayed in S. aureus in the form of Small Colony Variants (SCVs). The frequency of detection of 

these and their specific characteristics are outlined next.  

5.1.3 Small Colony Variants 

Some of the morphological changes observed in SCV cells manifest as cells growing large and an 

increased production of intercellular substances[37], Figure 5.1. 

 

Figure 5.1 Gram stains (A) and scanning electron micrographs at low resolution (B) and high resolution (C) of S. aureus 
SCVs (a,b) and the wild type S. aureus strain (c) are shown. There are two SCV phenotypes: 'fried egg' SCVs (a) and pin-
point-colony SCVs (b). Arrows indicate large cells in Aa and Ab, in Ca and Cb arrows point to the increase in excreted 
protein that is present in SCVs compared with wild-type S. aureus. Original magnification of image is 6,700 (B) and 
35,000 (C) [Reproduced with permission from reference

[38]
] 
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The SCV is a phenotype which can easily be identified by the Lensless microscope due to these very 

obvious changes in growth phenotypes. The phenotype indicated in Figure 5.1 Aa and Ab are a large 

cell phenotype and the increase in extracellular proteins between wild type and SCVs are displayed 

in Ca and Cb. The up-regulation of extracellular proteins implying a higher metabolic rate meaning 

that the cell has a slower relative growth rate. The SCV of S. aureus behaves much the way that a 

conventional bacterial biofilm might[39], having increased resistance to silver and antibiotics. These 

phenotypic changes alone do not make SCVs of any particular interest. They are the subject of such 

study because the specific set of phenotypic characteristics are linked to an ability to persist within a 

mammalian host and the fact that they are less susceptible to antibiotics than the bulk of the 

population[38]. It is this link between growth phenotype and pathogenic properties which make the 

extraction of these cells from a population of many cells the aim of this chapter.  

5.1.4 Aims and Objectives 

This chapter aims to extract the growth parameters from the growth curves of the Gram positive 

bacterium S. aureus. It is the aim to monitor the response of S. aureus to silver stress and to 

determine, from distributional analysis, the phenotype variations within both the control population 

and the silver stress population. Eight parameters will be screened from the growth curves of 

S. aureus, and, as in previous chapters, the phenotype parameters extracted.   

This chapter will analyse the growth of a Gram positive organism which divides in three dimensions, 

previously the microorganisms analysed grew along one dimension, dividing along this dimension at 

the end of the cell cycle. The difference in growth and response to silver between Gram positive and 

Gram negative will be explored. 

5.2 Materials and Methods 

The Lensless microscope was operated as in Chapter 2 with no further modifications. All growth 

experiments were performed at 37°C.  

S. aureus was cultured in Luria Broth (LB), pH 7.5, 5 g/L yeast extract, 10 g/L Tryptone, 10 g/L NaCl, 

the agar equivalent modified with the addition of 1.5% (w/v) agar. The cultures were shaken at 200 

rpm, at 37°C and under aerobic conditions. Cultures were grown to the exponential growth phase, 

OD 0.3/0.4 and diluted 1/1000 times in fresh LB broth at 37°C to form the stock cell solution. 

The bottom of the flow cell was lined with BD Matrigel™ (Basement Membrane Matrix, Growth 

Factor Reduced (GFR), Phenol Red-free, 10 ml *LDEV-Free 356231) under aseptic conditions. The 

Matrigel solution stored in aliquots of 100 µL and thawed when required on ice. 90 µL of Matrigel 



178 
 

was added to the flow cells, forming a layer on the bottom. The layer was dried at 37°C for 5 minutes 

and washed 5 times with fresh LB broth, 15 minutes each wash. 

Of a stock S. aureus solution, 20 µL was added to the washed Matrigel and left to equilibrate for 2 

minutes; 20 µL of a solution of three sizes of microspheres diluted in LB broth to a concentration 

equating to approximately 3 spheres of each dilution was then added to the cell. The cell was then 

topped up with fresh LB, ~150 µL, sealed with the lid coverslip. The process was the same for the 

silver stress experiments but the cell was topped up with LB containing the relevant concentration of 

silver nitrate prior to sealing with the coverslip. 

The remaining stock solution was used measure the colony forming units (CFUs) in the sample. The 

sample was diluted into a 10-fold serial dilution in Ringers solution, and then 50 µL of each dilution 

spread onto subsequent LB plates in triplicate. The plates were counted after an overnight 

incubation at 37°C to calculate CFU / mL, and adjusted to calculate the number of cells in the 20 µL 

added to the flow cell.  

5.3 Results 

From a series of 14 growth experiments the survival rate on the transfer to the Matrigel surface 

estimated from colony density and deposited volume is greater than 97% in all experiments under 

control conditions with no flow. The MIC of S. aureus within this experimental set up was calculated 

as 4 µg/mL, Figure 5.2. 
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Figure 5.2 The determination of the MIC of silver ions on planktonic S. aureus growth displaying growth curves under 
varying levels of silver stress, red, the control; green, 1 µg/mL; and blue 4 µg/mL. 

Silver stress challenges were performed at 1 µg/mL and 2 µg/mL, the cell survival rate at 1 µg/mL 

was 62% and at 2 µg/mL there was a 33% survival rate. The parameters of growth were extracted 

from the growth curves as for E. coli, chapter 4. The full list of parameters is as follows below (all 

parameters having an equivalent parameter for both the major and minor axis apart from the aspect 

ratio parameters): 

 Major and Minor Dimensions at t0 minutes / µm  

 Major lag period / minutes ;  

 Major maximum growth rate / µm min-1; 

 Major time to maximum growth rate / mins; 

 Major average growth rate / µm min-1 ; 

 Major maximum size reached / µm; 

 Major time to maximum size / mins; 
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The parameters detailed were subjected to the correlation screening with the resulting matrices:  

Table 5.1, the control population parameters; Table 5.2 those from a low level of silver stress, 

1 µg/mL; and Table 5.3 a higher level of silver stress 2 µg/mL. 

Table 5.1 The correlation coefficient table for the control S. aureus sample. Strong correlations are highlighted in grey to 
the right of the table. 

 

Table 5.2 The correlation coefficient table for the growth of S. aureus under silver stress conditions of 1 µg/mL. Strong 
correlations are highlighted in grey to the right of the table. 

 

Table 5.3 The correlation coefficient table for S. aureus under silver stress conditions of 2 µg/mL. Strong correlations are 
highlighted in grey to the right of the table. 
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From the phenotype parameter classification analysis, the following parameters have been 

identified as potential growth phenotype parameters: 

 Length at t0 minutes / µm 

 Width at t0 minutes / µm 

 Length of lag period / minutes 

 Maximum growth rate / µm minute-1 

The ePDF mirror plots compare the two silver concentrations B and C with the control and then with 

one another D.  In each case, N = 100 viable cells surviving the transition to the surface and the initial 

toxic shock are screened. The length at t0 distributions for all experimental Figure 5.3, the 

parameters of these distributions are in Table 5.4. 
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Figure 5.3 Comparison of viable cells lengths at t0mins, N = 100. The Box plot (A) showing the control sample, light blue, the low silver stress sample, navy blue and the high silver stress 
sample, purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress conditions (B), the control (top) and the high level 
silver stress conditions (B) and the low level (top) and high level silver stress conditions (C), dotted red line indicating the median of the data sets.
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Table 5.4 The distribution parameters for the length at t0 of S. aureus grown at all three silver concentrations, the 
control, 1 µg/mL and 3 µg/mL. 

Parameter Control 1 µg/mL 2 µg/mL 

Skewness  0.48(+0.34-0.29)  0.62(+0.44-0.39)  0.8(+0.67-0.42)  

Kurtosis 2.4 (+0.65-0.42)  2.3(+0.98-0.51)  3.42(+2.9-0.99)  

St. Dev 0.59(+0.08-0.05)  0.63(+0.10-0.08)  0.5(+0.14-0.08)  

Range / µm 2.5 (-0.1) 2.3 (-0.1) 2.2 (-0.1) 

Mean / µm 1.82(+0.13-0.1)  1.74(+0.16-0.15)  1.6 (+0.14-0.11)  

Median / µm 1.7(±0.2)  1.3 (+0.3-0.2)  1.6 (+0.1-0.15)  

 

The distributions for cell length become more skewed towards the longer lengths the as the silver 

ion concentration increases. Within the error, all three distributions have a similar kurtosis valve, 

with the distributions; the number of outliers in the silver stressed distributions is appears larger 

than in the control. The three distributions have comparable ranges and the same median length 

within the error. The A-D and S-W tests show that these distributions are not normal with P-values 

all <0.01. The distributions from the control and low silver stress are from the same continuous 

distribution according to the Mann-Whitney U test, P-value <0.2. The distribution of viable lengths 

under higher silver stress is not from the same distribution as the other two distributions but with a 

P-value of 0.43. 

The distribution of colony widths at t0 for three experimental growth conditions is displayed in 

Figure 5.4 and Table 5.5. The width parameter was not rejected, regardless of the high correlation it 

has with the length parameter as a combination of both length and width provides information 

about shape which may indicate a range of phenotypes. 



184 
 

 

 

Figure 5.4 Comparison of viable cells width at t0mins. The Box plot (A) showing the control sample, light blue, the low silver stress sample, navy blue and the high silver stress sample, 
purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress conditions (B), the control (top) and the high level silver stress 
conditions (B) and the low level (top) and high level silver stress conditions (C), dotted red line indicating the median of the data sets. 
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Table 5.5 The distribution parameters for the width at t0 of S. aureus grown at all three silver concentrations, the 
control, 1 µg/mL and 3 µg/mL. 

Parameter Control 1 µg/mL 2 µg/mL 

Skewness  1.38(+0.53-0.39)  1.0(+0.6-0.47)  1.1(+0.7-0.4)  

Kurtosis 4.5 (+2.4 -1.4)  3.10(+1.98-1.0)  3.2(+2.8-1.0)  

St. Dev 0.49(+0.11-0.08)  0.54(+0.12-0.08)  0.47(+0.12-0.07)  

Range / µm 2.3 (-0.1) 2 (-0.1) 1.9 (-0.1) 

Mean / µm 1.1 (+0.1-0.09)  1.45(+0.14-0.12)  1.38(+0.12-0.11)  

Median / µm 1 (-0.05)  1.2(+0.2-0.1)  1.2(-0.35+0.2)  

 

The kurtosis for the control distribution is significantly larger that than the theoretical value of 3 for 

a normal distribution and the Skewness is significantly different from the theoretical value of 0, 

within the 95 % confidence limits. The Skewness and Kurtosis for the silver distributions tend toward 

the theoretical values for a normal distribution. All three distributions fail the A-D and S-W tests for 

normality. Unlike the distributions for length, all three of these distributions come from the same 

continuous distribution when tested with the Mann Whitney U test accepting the null hypothesis 

with P-values <0.1. Within the error the silver stress distributions have the same range, with the 

control distribution being marginally wider. The three distributions have the same median. 

The length of the lag period in minutes increases as the concentration of silver ions in the growth 

environment increases. The data are presented in Figure 5.5 and Table 5.6. 
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Figure 5.5 Distribution of lag periods of the three S. aureus populations: the control sample (dark grey), low level of 
silver stress, 1 µg/mL (mid grey) and higher level of silver stress, 2 µg/mL (light grey).  

Table 5.6 The distribution parameters for the length of the lag period of S. aureus grown at all three silver 
concentrations, the control, 1 µg/mL and 3 µg/mL. 

Parameter Control 1 µg/mL 2 µg/mL 

Skewness  0.24(+0.7-0.5)  0.62(+0.59-0.60)  -0.13(±0.70)  

Kurtosis 3.6 (+1.6-1.2)  3.7 (+2.3-1.1)  3.4(+1.6-1)  

St. Dev 21.7 (+4.4-2.8)  35.7(+8.2-6.4)  11.6(+2.5-1.8)  

Range / mins 119 (-8) 176 (-12) 63 (-4) 

Mean / mins 131 (+3.9-4.3)  194(+9.2-8.2)  286.6(+3.0-2.7)  

Median / mins 131(+3-7)  194.5(+8.5-10.5)  289(+3-2.5)  

 

The low level of silver stress has the largest range, spanning 176 minutes compared to 119 minutes 

under control conditions and 63 when exposed to a higher level of silver stress. All the distributions 
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are slightly skewed, the two lower levels of silver stress skewed towards the longer times and the 

highest level of silver stress skews the distribution towards the shorter times. The distribution of lag 

times of bacteria grown under 2 µg/mL passes the hypothesis test for normality and are surprisingly 

for this thesis, normal after testing with both the A-D and the S-W test accepting the null hypothesis 

with a P-value <0.1. Neither of the other distributions are normal, with all P-values <0.3. The Mann-

Whitney U test confirms what the medians show that the distributions are not from the same 

continuous distribution. 

 The data for the average colony growth rate under three levels of silver stress are displayed in Table 

5.7 and Figure 5.6. 

Table 5.7 The distribution parameters for average colony growth rate of S. aureus grown at all three silver 
concentrations, the control, 1 µg/mL and 3 µg/mL.. 

Parameter Control 1 µg/mL 2 µg/mL 

Skewness  1.5(+0.9-0.7)  2.0 (+1.3-1.2)  0.71(+0.62-0.38)  

Kurtosis 6.9(+7.7-3.9)  9.7(+9.0-5.6)  2.9(+2.0-0.7)  

St. Dev 0.2(+0.07-0.03)  0.09(+0.05-0.02)  0.04(±0.007)  

Range /µm min-1 1.2  0.51  0.16  

Mean /µm min-1 0.33(+0.04-0.03)  0.14(+0.03-0.02)  0.10(±0.01)  

Median /µm min-1 0.31(±0.04)  0.13(+0.04-0.02)  0.09(+0.01-0.02)  
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Figure 5.6 Comparison of average growth rate, N = 100. The Box plot (A) showing the control sample, light blue, the low silver stress sample, navy blue and the high silver stress sample, 
purple. The median shifted mirror histograms, from left to right, comparing the control (top) and the low level silver stress conditions (B), the control (top) and the high level silver stress 
conditions (B) and the low level (top) and high level silver stress conditions (C), dotted red line indicating the median of the data sets. 
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The average growth rate reduces as the silver ion concentration increases, with the rate of growth 

under 2 µg/mL over three times slower than the median growth rate of the control sample. The 

range of the data also reduces with increasing silver ion concentration. The distribution of growth 

rates at 1 µg/mL has the highest kurtosis parameter, but as with the other two distributions the 

error of the kurtosis value straddles the value for normal. Each of the distributions are skewed 

towards the longer growth rates. None of the distributions are normal, P-values <0.1, and the 

distributions are not from the same continuous distribution (P-values <0.3). 

5.4 Discussion 

The growth of single and small groups of S. aureus cells over time was successfully monitored by the 

Lensless microscope and ADFF algorithm. Preliminary investigations showed that the growth under 

these conditions, on a solid Matrigel surface, surrounded by LB was comparable to S. aureus growth 

on solid agar. 

Growth was successful and 100 viable cells were imaged, for each growth condition. The survival 

rate of cells under the low level of silver stress was 63 %, the survival rate of cells under high silver 

stress was 33 %. The parameter screen was performed and produced a correlation matrix which 

showed that all parameters derived from the growth curve could be usefully included in the 

characterisation of growth phenotypes. The correlation between length and width in the control 

growth conditions is high and would have been rejected but it becomes decoupled from the length 

under conditions of silver stress: a first indication of different growth phenotype.  

The Lensless microscope instrument can monitor the growth of single cells within the diffraction 

limit of 0.3 µm.  A cell with a width of 0.5 µm will have a diffraction-limited error of ± 30 % when 

illuminated with white light centred at 667 nm and so this study, the same as Chapter 4, has been 

about the analysis of the phenotypic growth properties of colonies of cells, the percentage of single 

and more than one cell colonies at t0 minutes for each experimental condition is displayed in Table 

5.8. 

Table 5.8 A comparison of colony size types of the viable colonies grown at all three silver concentrations, the control, 
1 µg/mL and 3 µg/mL. 

Colony size Control 1 µg/mL  2 µg/mL  

One cell 46% 33% 27% 

Larger than one 54% 67% 73% 
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The growth parameters were screened and reduced from a possible 8 to the 4 phenotype 

parameters presented below:  

7. Length at t0 / µm; 

8. Width at t0 / µm; 

9. Lag Period / mins 

10. Growth rate / µm min-1; 

The identification of growth phenotypes in the distributions of the screened parameters is now 

discussed. Length and width at t0 

Cells with shorter widths in the lower 20 % of the width distribution for growth under normal 

conditions in the control appear not to be present in the silver stress distributions at either 

concentration. The silver lower width cut-off is 0.9 µm compared with 0.5 µm in the control set.  The 

shorter cell colonies appear to be less well able to with stand the silver stress, a length phenotype, 

L1. Conversely, the larger cell colonies perhaps reflecting a capacity to mount an effective stress 

response.  

Colonies of S. aureus excrete extra cellular proteins which are implicated in host pathogenicity and 

protein matrix binding[37]. A larger colony may then have a greater capacity to produce the 

protective proteins in larger concentration and so mount an effective stress response, the larger 

colony benefiting from an extended phenotype. 

S. aureus colonies, unlike the colonies of E. coli, show a high correlation between width and length at 

t0 which could indicate an unbiased growth direction possibly associated with continuing association 

either on the surface or in planktonic growth.  It has been reported that the colonies of S. aureus 

appear circular after 4 divisions[14] suggesting a symmetric growth phenotype. This symmetry is 

broken however with the silver stress; the length and width parameters become significantly 

uncoupled indicating an asymmetric colony.   

Length of Lag period 

The analysis of lag period in E. coli identified two phenotypes under control growth conditions and 

two distinct phenotypes under high levels of silver stress. The distribution of lag period for S. aureus 

does show a very small long lag phenotype accounting for 4 % of the population potentially a 

bimodal distribution.  These colonies have a significantly longer lag period, with a median of 189 

minutes compared to the majority of the colonies which have a median lag time of the distribution 

of 119 minutes. This apparent dormant behaviour is consistent with SCVs. SCVs are defined as 
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having a slow growth rate and remaining dormant for longer than other cells in the distribution. The 

small subset of cells could be identified as SCVs morphologies or slower growth rates.  

The ranks of the four colonies in the lag phase distribution are 96-100 which may be compared with 

their position in the length at t0 distribution 10th, 27th, 49th and 68th percentiles, and width at t0 of 

12th, 23rd, 59th and 62nd, demonstrating no correlation between the colony size at t0 and the resulting 

position in the lag period distribution. The colonies are, however, all in the lower 15 % of the 

average growth rate distribution, they are among the slowest growing of all the S. aureus cells 

screened under control conditions. It is, therefore, reasonable to suggest that the 4 colonies in the 

upper extreme of the lag period distribution are SCVs indicating prevalence of 4 % under normal 

growth conditions.   

The second possible lag phenotype is a more complex one. The lag period of S. aureus under low 

silver stress appears to contain more than one distribution:  

 Approximately 10 % of the cells have a lag period comparable with the mode of the 

population of cells grown under control conditions; 

 Approximately 30 % of the population have a lag period comparable to that of the secondary 

distribution of the cells grown under control conditions; 

 Approximately 10 % of the cells have a lag period comparable with the median of the higher 

silver stressed population. 

As with the control sample, the 10 % of the distribution which have a comparatively slow lag period 

could be identified as SCVs, however these cells are not lowly ranked in the rate distribution, and do 

not fit the classification of SCVs suggested above.  The cells with a short lag period, in the lower 10 % 

of the distribution could be classified as colonies much like the ‘super bugs’ identified in the E. coli 

growth distributions. However, of the 10 cells in this distribution, 5 of them have growth rates which 

were among the skewed region of the growth rates and 5 did not. It is possible that this identifies 

5 % of the distribution which have a ‘super-bug’ phenotype but this would require further 

classifications. 

Growth Rate 

The average growth rate reduces as the silver ion concentration increases, with the rate of growth 

for the highest silver stress concentration over three times slower than the median growth rate of 

the control sample. On average 85 % of the proteins within the genome are vulnerable to silver 

based on their cysteine residue content[40] and so a silver dose-dependent decreases in the growth 
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rate is expected and consistent with the results. The range of the parameter distribution reduces 

significantly with increasing silver dose; the distributions of cells grown under control conditions and 

low silver stress conditions having fast growing outliers defined the Boxplot. The outliers of the 

control growth rate distribution account for 6 % of the population in the upper limit and are similarly 

in the upper 20 % of the length at t0 distribution. On division, S. aureus cells remain closely 

associated[13] and can be considered as one individual with an extended phenotype54. If the ability to 

withstand the silver stress depends on threshold levels of particular proteins within an organism and 

the attainment of a particular cell volume (as discussed in Chapter 3) then the larger S. aureus colony 

will have reached or attained these protective or critical concentrations more rapidly and therefore 

grow faster; the colony  growing synergistically. Similarly, for low silver stress, the top 2 % of cells 

with the fastest growth rate are also in the top 5 % of the length at t0 distribution. These two 

classifications corroborate that the size phenotype confers protection to the environment. Larger 

colonies do not however dominate the viable cells in the high silver stress growth. The formation of 

SCVs in populations of S. aureus has been well documented[41-43] and SCVs characterised 

phenotypically by a slow growth rate and  have an atypical cell morphology[44]. There is a reasonable 

case for SCVs to also have long lag phases on transition to surface growth. The prevalence of the 

possible SCV colonies is small, to better quantify this phenotype the screening should be repeated 

for a larger starting N. 

The Lensless microscope collected only a 2D diffraction pattern which does however contain the 

information for the 3D image re-construction. The ADFF calibration technique does not, however, 

produce the 3D image preferring the multi-wavelength illumination to not hinder growth. As a result 

the dimension derived from the colonies are 2D reflecting a projection of the dimensions of what is 

known to be a 3D colony growth pattern in S. aureus[14].  In addition, the rates of growth and, less 

likely, lag may not represent the growth dynamics of the colonies, which would need to be 

characterised potentially along all three axes. Disruption of the 3D growth by silver could then show 

directional dependence.   

Nevertheless, there are some interesting phenotypes extracted from the 4 parameters that survived 

the screening process. This investigation has identified 5 possible growth phenotypes: 

1. Longer survivors under silver stress conditions; 

2. The complex distribution containing 2 or more phenotypes for lag period under low levels of 

silver stress; 

3. The long lag period outliers in the control growth data; 

4. The fast growth rate outliers correlated to length in the low silver stress conditions; 
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5. The fast growth rate outliers correlated to length in the control growth data; 

The prevalence of the lag phase SCV candidate is low at 4 % which suggests a much larger study 

would be required. The multi-dimensional classification however suggests the potential for 

automated classifications based on an algorithm looking simultaneously position or rank in a number 

of distributions to provide a phenotype classification.  

5.5 Conclusion  

The running theme of the thesis is the growth phenotype derived from a common genotype that is 

triggered in response to the environment. This chapter aimed to determine whether there are 

growth parameters within the control and silver stress growth samples which indicate that there 

may be phenotypes within the data. The length and widths of colonies at t0 minutes show that the 

lower percentiles of the distributions, in both silver stressed growth environments, are not viable. 

The smallest colonies have not got the required volume of proteins to overcome silver stress. The 

MIC of silver for S. aureus is lower than that for E. coli but not S. pombe. The lower MIC coupled with 

the fact that silver does not induce favourable stress phenotypes in S. aureus, as it does in E. coli, 

suggests that being Gram positive is not advantageous in a silver shifted growth environment. 

The response to the environment and the time it takes to responds is the lag period. Some cells do 

not survive the transition and others have longer or short delays before growth starts. This is a 

systems-level response and in S. aureus, S. pombe and E. coli this seems to have provided a number 

of candidate phenotypes. The range of lag period under low levels of silver stress is high, indication 

that the range of phenotypes of lag periods is high under low silver stress. The range of the lag 

period distribution is three times wider than the range of lag periods under higher silver stress, the 

distribution of cells grown under high levels of silver stress having a median of 289 (+3 -2.5) minutes, 

the same length as the extreme outliers on the low silver stress growth distribution. Relatively, silver 

stress slows down every cell process; distributions are more spread, perhaps, because an 

accumulation of proteins which would ordinarily take 1 minute takes 10 minutes in silver stress.  

Silver stress significantly changes the growth phenotype of S. aureus. The length of the lag period, 

the time the cell takes to adjust to new environmental conditions, is increased by over 2-fold, the 

rate of growth reduced over 3 times and the viable cells have to have passed a threshold size to 

survive under silver stress. 

The growth phenotypes of observed under control growth conditions of this Gram positive bacteria 

can be compared to those observed under control conditions for Gram negative bacteria, in-order to 

build up an initial look at the discrimination between cells based on their growth phenotypes. In 
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Chapter 6 the distributions collected and analysed here and in Chapter 4 will be compared to the 

data obtained from unknown cells from dirty environments to assess the validity of this technique as 

a microbial discrimination technique.  
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6 Conclusions and Future Work 

The aim of the investigations in this thesis was to assess the performance of the Lensless microscope 

technology for the rapid identification of growth phenotypes with potential for rapid identification 

of organism at point of care. The first objective was to develop the Lensless microscope technology 

to measure accurately growth of organisms monitoring larger numbers of cells or colonies 

simultaneously in the large field of view. The instrument supports and monitors microorganism 

growth at an elevated temperature and is temperature stable over 600 minutes, the elevated 

temperature having no detrimental effects on the image collection. An image processing algorithm 

was invented to extract 2-dimensions from the Airy Disc diffraction pattern at the accuracy of the 

diffraction limit below 6 microns and with 5 % accuracy up to 600 microns. The algorithm was 

successful and the length and the width of spherical and rod shaped organisms we measured to 

within 5% and an R2=0.997 with optically validated images.  

A method for deriving, and screening, a set of growth phenotype classification parameters has been 

developed which were then used for the subsequent classification of phenotypes whether from 

within an extended parameter distribution or the evolution into a bimodal distribution. The methods 

of determining phenotypes have been applied to analyse the growth parameters of three model 

organisms; 

a. Single cellular behaviour of eukaryote S. pombe; 

b. Phenotypes of single cells and small colonies of the Gram-negative prokaryote 

E. coli; 

c. Phenotypes of single cells and small colonies of the Gram-positive prokaryote 

S. aureus. 

In total, 19 different growth phenotypes were identified for all three organisms under normal and 

silver stressed growth condition. The characteristics of a phenotype have been developed in this 

thesis and the most promising definition is: a phenotype is the response of a genotype to its 

environment. The growth parameters that reflect this directly are the survival rate for organism 

moving from planktonic to surface growth with and without silver. There is a lag time or period of 

adjustment to the new environment which again appears point strongly to the phenotype 

identification. The most striking phenotype identified from lag time alone produced the most 

promising results of the thesis.  
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The growth parameters lag time and growth rate identified phenotypes of E. coli under silver stress 

growth conditions. The 64 % of cells that survive the transition to the silver stressed growth medium, 

54 % for two distinct sub populations classified by their lag period, growth rate and large final colony 

size. These two phenotypes were termed ‘super-bug’ and ‘sub-bug’ both of which have a phenotypic 

resistance to the growth on silver. Several colonies were screened using the Lensless microscope and 

sent for genetic sequencing using the Illumina platform in-house. The genomes match the reference 

genome within comparison error confirming the phenotype resistance. Similar phenotypic resistance 

is seen in the sub-bug population but with a slower growth rate.  These findings have implications in 

the medical industry in the use of silver in wound care. The data imply that at some sub-lethal level 

of silver, distal to the silver-impregnated wound site results in the promotion of these ‘super-bugs’ 

can occur. Silver is included in wound dressings to act as a broad spectrum antimicrobial, so aiding 

wound healing. Wound healing is also affected by the effect silver has on the growth of the 

eukaryotic cell, if the growth of S. pombe is an indicator of eukaryotic growth. The growth 

phenotypes identified in the eukaryotic S. pombe display several interesting properties most 

importantly a significant elongation of the cell cycle which is related to wound repair. The median of 

the cell cycle is over 4 times longer than the median of the cell cycle in the phenotype grown 

without silver nitrate. The cells also display a significantly longer lag period, a slower growth rate and 

a shorter division length. Cells above the 85th percentile, on exposure to silver, are unlikely to 

subsequently grow and divide.  

The analysis of S. aureus growth phenotypes shows that there are outliers in the lag period 

distribution, under normal growth conditions which may be the first indicator of a distribution of 

small colony variants. S. aureus has implications in HAIs, the use of antibiotics too high, causing the 

introduction of silver as an antimicrobial agent. This thesis has demonstrated that, while silver 

appears to have only a detrimental effect on S. aureus growth, the effect on the phenotype of E. coli 

is pronounced. However these results should be verified using the alternative silver delivery by 

nanoparticle as the nanoparticle will induce higher local silver ion concentration.  

S. aureus cells gain resistance readily from other bacteria by lateral gene transfer. Lateral gene 

transfer between clonal populations will likely not give rise to resistant genotypes as there is no 

introduction of new resistant genetic material. The analysis of mixed colonies is a first look at the 

ability of the device to perform in a point of care environment. The analysis here can be combined 

with the growth parameters determined in the previous chapters for a first look at grouping 

organisms based on their individual growth phenotypes. Future expansion of this data can take one 

of a few routes.  
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The Lensless microscope has been demonstrated as a successful screening instrument for growth 

phenotypes and can be used to identify and potentially classify phenotypes and for further analysis. 

E. coli shows a bimodal wild type lag period phenotype and a bimodal silver stress growth 

phenotype, both observed by the Lensless microscope. The cells can be removed from the surface 

and analysed for proteomics and metabolomics using Atmospheric pressure matrix-assisted laser 

desorption/ionization (AP MALDI TOF) as we have verified that the cells from these distributions do 

not vary in genome composition. Persister cells have been known for some time in E. coli but their 

study is hampered by identification techniques. The Lensless microscope can identify these colonies 

rapidly and then progress further experiments.  

Extending the method of simple distributional analysis may achieved by considering the evolution of 

the phenotype in time and how it might change position or rank in a distributions. A method of 

classification of growth phenotypes can therefore be considered a trajectory, indeed the trajectory 

itself may be consider the phenotype. For example, the position a cell occupies in the length 

distribution over time defines its constantly changing phenotype and is surely related to the 

complement of proteins within a cell, as was discussed in chapter 1 that a cell in a clonal population 

may have a larger concentration of one protein than another cell. This population heterogeneity, the 

effect that specific protein levels have on growth, is what the Lensless microscope can rapidly 

determine.  

Another trajectory analysis would look at whether the position an organism occupies in the 

distribution of one parameter is a predictor of where it would be in a subsequent distribution. An 

initial look at how this might separate interesting phenotypes is displayed in Figure 6.1 for E. coli 

cells grown in control conditions.  Here the lines take the position of each colony (percentile) in the 

distribution between the parameter distributions, colour coded for starting colony size.  
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Figure 6.1 The evolution of individual cell phenotypes through various distributions colour coded for a combination of 
their lengths and widths at t0, blue cells are single cells, purple cells are calculated to be two cells and green cells are 
those which are likely to be small colonies. 

The trajectory analysis in Figure 6.1, while demonstrating general trends, does not show groups of 

cells with comparable phenotype or help demonstrate whether a long length at t0 has implications 

on the positioning in subsequent distributions. To develop this method further would require 

development or evaluation of analysis techniques such as cluster analysis (ksmeans). Another 

analysis could take the trajectories through the parameters distributions and analyse them to 

determine emerging phenotypes. The Lensless microscope has many advantages as a device to 

monitor bacterial growth over the phase-contrast microscope found traditionally in the laboratory. 

The Lensless microscope can monitor the growth of 100s of cells simultaneously over a time course, 

recording and analysing the growth parameters of all the cells in the population. The device has a 

flow cell which closely mimics the growth conditions of planktonic growth and surface growth and is 

thermostatically regulated for favourable growth conditions. The Lensless microscope is able to track 

a single cell as it moves, having a depth of focus of at least 4000 times that of the phase contrast 

microscope and a field of view of two orders of magnitude larger. The Lensless microscope images 

the whole sample at one time, meaning that if there is only one cell in the sample it will be easily 

detected and monitored, and the internal calibration allowing for initial user assembly error. This 

method can be used, without modification, to investigate the effect of various antimicrobials on cell 

populations, the effects of stress types on the cell population and the emergence of persistor cells in 
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different environmental conditions. The Lensless microscope has the potential to replace the light 

microscope within the laboratory to provide basic aspect ratio data about the cells imaged, as this 

device requires no calibration or focusing, and has its own measurement algorithim, results will be 

more rapid. 

To conclude, this thesis has identified 19 growth phenotypes in three different microorganisms, 

S. pombe, E. coli and S. aureus, Table 6.1. 

Table 6.1 A table of all the growth phenotypes identified in this thesis. 

Organism Phenotype Prevalence 

S. pombe G0 phenotype; 35% 

 Long length at division (LB); 12% 

 Modal quartile of lengths at t0 survive silver stress; 65% 

 A ratio of NETO rates larger than 1.35; 8% 

 Long length at t0 leads to long length at division 9% 

 Lag period length skewed towards longer recovery times; 10% 

 NETO not apparent in silver stress distribution; 100% 

E. coli Survivors under low silver stress 67% 

 Survivors under high silver stress 43% 

 Short lag under control conditions 20% 

 Long lag under control conditions 80% 

 ‘super-bugs’ under high silver stress viable colonies 6% 

 ‘sub-bugs’ under high silver stress viable colonies 41% 

S. aureus Long lag period under control conditions 4% 

 Survivors under low silver stress 63% 

 Survivors under high silver stress 33% 



203 
 

 Threshold width of survival under silver stress 80% 

 Fast growth rate outliers correlated to length 4% 

 

The field of phenotype identification is significantly behind that of genotype taxonomy and the 

identification of species and yet the phenotype and extended phenotype are potential response 

identifiers for the development of resistant strains of bacteria. This thesis has identified that the 

silver stress has detrimental consequences for eukaryotic cells as well as prokaryotic cells. The 

device has the potential to explore the effects of silver on other eukaryotic cell growth, namely 

human cells, to determine whether the response of S. pombe to the presence of silver in the growth 

environment has implications to wound healing. This thesis has highlighted that there is only limited 

understanding of the response to a mixed cell sample to a stress, an environment which could be 

simulated and monitored using the Lensless microscope.  
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Appendix 1 

 

A list of components required for the 

Lensless Microscope. 
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Optical Breadboard (Thorlabs B6090AE) 

Ø1" Pillar Post Extension, L = 12" (Thorlabs, RS12) 

Ø1" Ceramic Pedestal Pillar Post, Length = 1/2" (Thorlabs, RS05PC) 

Post Mounting Clamp for Ø1" Post (Thorlabs, C1001) 

4 x 25 mm Construction Rail, L = 18" (Thorlabs, XE25L18) 

2 x 25 mm Construction Rail, L = 12" (Thorlabs, XE25L12) 

2 x 25 mm Construction Rail, L = 9" (Thorlabs, XE25L09) 

4 x Quick Corner Cube for 25 mm Rails (Thorlabs, XE25W3) 

1/4"-20 Low-Profile Channel Screws (100 Screws/Box) (Thorlabs, SH25LP38) 

2 x Black posterboard (Thorlabs, TB5) 

Newport 900PH-100 100 Micron Aperture Pinhole (Lightglass Optics) 

White mounted high power LED (Thorlabs, MWWHL3c) 

Exo Terra Ceramic Heat Emitter 100W (Blue Lizard Reptiles) 

Microclimate Prime 1 thermostat (Blue Lizard Reptiles) 

Komodo Mountable Ceramic Lamp Fixture (Blue Lizard Reptiles) 
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Appendix 2 

 

The ADFF algorithim 

The ‘normality.m’ program 
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Program Name: ADFF 

display('running find aspect ratio eighth bowtie black and white. . .'); 
pause on 
workspace; 

  
%Load data into matlab separately first 
%Chose section and input in as below (?:?,?:?) 
SUB= %insert file name here; 

  
subplot(2,4,1); 
imshow(SUB,[min(SUB(:)) max(SUB(:))]); 
drawnow; 
caption = sprintf('Airy Disc'); 
title(caption); 
axis square; 

  
%create mask 
%(cx,cy)=centre coordinates of the circle 
%(ix,iy)=size of the whole mask 
%r=radius 
cx=280; 
cy=280; 
r=150; 
ix=560; 
iy=560; 
[x,y]=meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 
c_mask=((x.^2+y.^2)<=r^2); 

  
%create a mask for the central region in the same way as above 
%r is the only element to change and note < changes to >. 
r=50; 
[x,y]=meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 
c_mask1=((x.^2+y.^2)>=r^2); 

  
%create anulus mask 
AnulusFull=c_mask.*c_mask1; 

  
AnulusFull=AnulusFull.*SUB; 

  
subplot(2,4,2) 
imshow(AnulusFull,[min(AnulusFull(:)) max(AnulusFull(:))]); 
drawnow; 
caption = sprintf('Mask'); 
title(caption); 
axis square; 

  
%__________________________________________________________________________

___________________________________________________________________% 
%ZERO Choose section to analyse 
x=[0 280 280]; %3 values for x 
y=[280 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask0 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 560 280]; %3 values for x 
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y=[0 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask0a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus0=(ThetaMask0.*ThetaMask0a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 280 280]; %3 values for x 
y=[280 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask57 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 0 280]; %3 values for x 
y=[560 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask57a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus57=(ThetaMask57.*ThetaMask57a).*AnulusFull; 

  
Anulus0=Anulus0+Anulus57; 

  
%Average the mask 
ANULUS0=sum(Anulus0); 
ANULUS0=sum(ANULUS0/(nnz(Anulus0))); 

  

  
subplot(2,4,3) 
imshow(Anulus0,[min(Anulus0(:)) max(Anulus0(:))]); 
drawnow; 
caption = sprintf('0 degrees'); 
title(caption); 
axis square; 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 260 280]; %3 values for x 
y=[300 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask1 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 540 280]; %3 values for x 
y=[20 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask1a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus1=(ThetaMask1.*ThetaMask1a).*AnulusFull; 

  
%Choose section to analyse 
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x=[560 300 280]; %3 values for x 
y=[260 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask58 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 20 280]; %3 values for x 
y=[540 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask58a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus58=(ThetaMask58.*ThetaMask58a).*AnulusFull; 

  
Anulus1=Anulus1+Anulus58; 

  
%Average the mask 
ANULUS1=sum(Anulus1); 
ANULUS1=sum(ANULUS1/(nnz(Anulus1))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 240 280]; %3 values for x 
y=[320 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask2 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 520 280]; %3 values for x 
y=[40 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask2a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus2=(ThetaMask2.*ThetaMask2a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 320 280]; %3 values for x 
y=[240 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask59 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 40 280]; %3 values for x 
y=[520 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask59a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus59=(ThetaMask59.*ThetaMask59a).*AnulusFull; 

  
Anulus2=Anulus2+Anulus59; 
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%Average the mask 
ANULUS2=sum(Anulus2); 
ANULUS2=sum(ANULUS2/(nnz(Anulus2))); 

  
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 230 280]; %3 values for x 
y=[330 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask3 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 500 280]; %3 values for x 
y=[60 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask3a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus3=(ThetaMask3.*ThetaMask3a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 340 280]; %3 values for x 
y=[220 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask60 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 60 280]; %3 values for x 
y=[500 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask60a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus60=(ThetaMask60.*ThetaMask60a).*AnulusFull; 

  
Anulus3=Anulus3+Anulus60; 

  
%Average the mask 
ANULUS3=sum(Anulus3); 
ANULUS3=sum(ANULUS3/(nnz(Anulus3))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 210 280]; %3 values for x 
y=[340 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask4 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 480 280]; %3 values for x 
y=[80 0 280]; %3 values for y 
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%Turn into a mask 
ThetaMask4a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus4=(ThetaMask4.*ThetaMask4a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 360 280]; %3 values for x 
y=[200 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask61 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 80 280]; %3 values for x 
y=[480 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask61a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus61=(ThetaMask61.*ThetaMask61a).*AnulusFull; 

  
Anulus4=Anulus4+Anulus61; 

  
%Average the mask 
ANULUS4=sum(Anulus4); 
ANULUS4=sum(ANULUS4/(nnz(Anulus4))); 

  
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 190 280]; %3 values for x 
y=[360 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask5 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 460 280]; %3 values for x 
y=[100 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask5a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus5=(ThetaMask5.*ThetaMask5a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 380 280]; %3 values for x 
y=[180 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask62 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 100 280]; %3 values for x 
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y=[460 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask62a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus62=(ThetaMask62.*ThetaMask62a).*AnulusFull; 

  
Anulus5=Anulus5+Anulus62; 

  
%Average the mask 
ANULUS5=sum(Anulus5); 
ANULUS5=sum(ANULUS5/(nnz(Anulus5))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 170 280]; %3 values for x 
y=[380 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask6 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 440 280]; %3 values for x 
y=[120 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask6a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus6=(ThetaMask6.*ThetaMask6a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 400 280]; %3 values for x 
y=[160 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask63 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[560 120 280]; %3 values for x 
y=[440 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask63a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus63=(ThetaMask63.*ThetaMask63a).*AnulusFull; 

  
Anulus6=Anulus6+Anulus63; 

  
%Average the mask 
ANULUS6=sum(Anulus6); 
ANULUS6=sum(ANULUS6/(nnz(Anulus6))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 150 280]; %3 values for x 
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y=[400 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask7 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 420 280]; %3 values for x 
y=[140 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask7a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus7=(ThetaMask7.*ThetaMask7a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 420 280]; %3 values for x 
y=[140 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask64 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 140 280]; %3 values for x 
y=[420 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask64a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus64=(ThetaMask64.*ThetaMask64a).*AnulusFull; 

  
Anulus7=Anulus7+Anulus64; 

  
%Average the mask 
ANULUS7=sum(Anulus7); 
ANULUS7=sum(ANULUS7/(nnz(Anulus7))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 130 280]; %3 values for x 
y=[420 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask8 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 400 280]; %3 values for x 
y=[160 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask8a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus8=(ThetaMask8.*ThetaMask8a).*AnulusFull; 

  
% Choose section to analyse 
x=[560 440 280]; %3 values for x 
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y=[120 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask65 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 160 280]; %3 values for x 
y=[400 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask65a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus65=(ThetaMask65.*ThetaMask65a).*AnulusFull; 

  
Anulus8=Anulus8+Anulus65; 

  
%Average the mask 
ANULUS8=sum(Anulus8); 
ANULUS8=sum(ANULUS8/(nnz(Anulus8))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 110 280]; %3 values for x 
y=[440 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask9 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 380 280]; %3 values for x 
y=[180 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask9a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus9=(ThetaMask9.*ThetaMask9a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 460 280]; %3 values for x 
y=[100 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask66 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 180 280]; %3 values for x 
y=[380 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask66a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus66=(ThetaMask66.*ThetaMask66a).*AnulusFull; 

  
Anulus9=Anulus9+Anulus66; 
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%Average the mask 
ANULUS9=sum(Anulus9); 
ANULUS9=sum(ANULUS9/(nnz(Anulus9))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 90 280]; %3 values for x 
y=[460 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask10 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 360 280]; %3 values for x 
y=[200 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask10a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus10=(ThetaMask10.*ThetaMask10a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 480 280]; %3 values for x 
y=[80 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask67 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 200 280]; %3 values for x 
y=[360 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask67a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus67=(ThetaMask67.*ThetaMask67a).*AnulusFull; 

  
Anulus10=Anulus10+Anulus67; 

  
%Average the mask 
ANULUS10=sum(Anulus10); 
ANULUS10=sum(ANULUS10/(nnz(Anulus10))); 

  
subplot(2,4,4) 
imshow(Anulus10,[min(Anulus10(:)) max(Anulus10(:))]); 
drawnow; 
caption = sprintf('32 degrees'); 
title(caption); 
axis square; 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 70 280]; %3 values for x 
y=[480 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask11 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[0 340 280]; %3 values for x 
y=[220 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask11a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus11=(ThetaMask11.*ThetaMask11a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 500 280]; %3 values for x 
y=[60 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask68 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[560 220 280]; %3 values for x 
y=[340 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask68a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus68=(ThetaMask68.*ThetaMask68a).*AnulusFull; 

  
Anulus11=Anulus11+Anulus68; 

  
%Average the mask 
ANULUS11=sum(Anulus11); 
ANULUS11=sum(ANULUS11/(nnz(Anulus11))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 50 280]; %3 values for x 
y=[500 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask12 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 320 280]; %3 values for x 
y=[240 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask12a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus12=(ThetaMask12.*ThetaMask12a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 520 280]; %3 values for x 
y=[40 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask69 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[560 240 280]; %3 values for x 
y=[320 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask69a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus69=(ThetaMask69.*ThetaMask69a).*AnulusFull; 

  
Anulus12=Anulus12+Anulus69; 

  
%Average the mask 
ANULUS12=sum(Anulus12); 
ANULUS12=sum(ANULUS12/(nnz(Anulus12))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 30 280]; %3 values for x 
y=[520 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask13 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 300 280]; %3 values for x 
y=[260 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask13a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus13=(ThetaMask13.*ThetaMask13a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 540 280]; %3 values for x 
y=[20 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask70 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 260 280]; %3 values for x 
y=[300 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask70a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus70=(ThetaMask70.*ThetaMask70a).*AnulusFull; 

  
Anulus13=Anulus13+Anulus70; 

  
%Average the mask 
ANULUS13=sum(Anulus13); 
ANULUS13=sum(ANULUS13/(nnz(Anulus13))); 
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%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[0 10 280]; %3 values for x 
y=[540 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask14 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 280 280]; %3 values for x 
y=[280 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask14a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus14=(ThetaMask14.*ThetaMask14a).*AnulusFull; 

  
%Choose section to analyse 
x=[560 560 280]; %3 values for x 
y=[0 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask71 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 280 280]; %3 values for x 
y=[280 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask71a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  

  
%Multiply mask by mask by anulus matrix 
Anulus71=(ThetaMask71.*ThetaMask71a).*AnulusFull; 

  
Anulus14=Anulus14+Anulus71; 

  
%Average the mask 
ANULUS14=sum(Anulus14); 
ANULUS14=sum(ANULUS14/(nnz(Anulus14))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[10 0 280]; %3 values for x 
y=[560 10 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask15 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 260 280]; %3 values for x 
y=[300 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask15a = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Multiply mask by mask by anulus matrix 
Anulus15=(ThetaMask15.*ThetaMask15a).*AnulusFull; 

  
%Choose section to analyse 
x=[540 560 280]; %3 values for x 
y=[0 540 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask72 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 300 280]; %3 values for x 
y=[260 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask72a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus72=(ThetaMask72.*ThetaMask72a).*AnulusFull; 

  
Anulus15=Anulus15+Anulus72; 

  
%Average the mask 
ANULUS15=sum(Anulus15); 
ANULUS15=sum(ANULUS15/(nnz(Anulus15))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[30 0 280]; %3 values for x 
y=[560 30 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask16 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 240 280]; %3 values for x 
y=[320 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask16a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus16=(ThetaMask16.*ThetaMask16a).*AnulusFull; 

  
%Choose section to analyse 
x=[520 560 280]; %3 values for x 
y=[0 520 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask73 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 320 280]; %3 values for x 
y=[240 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask73a = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Multiply mask by mask by anulus matrix 
Anulus73=(ThetaMask73.*ThetaMask73a).*AnulusFull; 

  
Anulus16=Anulus16+Anulus73; 

  
%Average the mask 
ANULUS16=sum(Anulus16); 
ANULUS16=sum(ANULUS16/(nnz(Anulus16))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[50 0 280]; %3 values for x 
y=[560 50 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask17 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 230 280]; %3 values for x 
y=[330 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask17a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus17=(ThetaMask17.*ThetaMask17a).*AnulusFull; 

  
%Choose section to analyse 
x=[500 560 280]; %3 values for x 
y=[0 500 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask74 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 340 280]; %3 values for x 
y=[220 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask74a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus74=(ThetaMask74.*ThetaMask74a).*AnulusFull; 

  
Anulus17=Anulus17+Anulus74; 

  
%Average the mask 
ANULUS17=sum(Anulus17); 
ANULUS17=sum(ANULUS17/(nnz(Anulus17))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[60 0 280]; %3 values for x 
y=[560 60 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask18 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[0 210 280]; %3 values for x 
y=[340 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask18a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus18=(ThetaMask18.*ThetaMask18a).*AnulusFull; 

  
%Choose section to analyse 
x=[480 560 280]; %3 values for x 
y=[0 480 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask75 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 360 280]; %3 values for x 
y=[200 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask75a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus75=(ThetaMask75.*ThetaMask75a).*AnulusFull; 

  
Anulus18=Anulus18+Anulus75; 

  
%Average the mask 
ANULUS18=sum(Anulus18); 
ANULUS18=sum(ANULUS18/(nnz(Anulus18))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[80 0 280]; %3 values for x 
y=[560 80 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask19 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 190 280]; %3 values for x 
y=[360 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask19a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus19=(ThetaMask19.*ThetaMask19a).*AnulusFull; 

  
%Choose section to analyse 
x=[460 560 280]; %3 values for x 
y=[0 460 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask76 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[560 380 280]; %3 values for x 
y=[180 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask76a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus76=(ThetaMask76.*ThetaMask76a).*AnulusFull; 

  
Anulus19=Anulus19+Anulus76; 

  
%Average the mask 
ANULUS19=sum(Anulus19); 
ANULUS19=sum(ANULUS19/(nnz(Anulus19))); 

  
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[100 0 280]; %3 values for x 
y=[560 100 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask20 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 170 280]; %3 values for x 
y=[380 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask20a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus20=(ThetaMask20.*ThetaMask20a).*AnulusFull; 

  
%Choose section to analyse 
x=[440 560 280]; %3 values for x 
y=[0 440 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask77 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 400 280]; %3 values for x 
y=[160 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask77a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus77=(ThetaMask77.*ThetaMask77a).*AnulusFull; 

  
Anulus20=Anulus20+Anulus77; 

  
%Average the mask 
ANULUS20=sum(Anulus20); 
ANULUS20=sum(ANULUS20/(nnz(Anulus20))); 
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subplot(2,4,5) 
imshow(Anulus20,[min(Anulus20(:)) max(Anulus20(:))]); 
drawnow; 
caption = sprintf('64 degrees'); 
title(caption); 
axis square; 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[120 0 280]; %3 values for x 
y=[560 120 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask21 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 150 280]; %3 values for x 
y=[400 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask21a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus21=(ThetaMask21.*ThetaMask21a).*AnulusFull; 

  
%Choose section to analyse 
x=[420 560 280]; %3 values for x 
y=[0 420 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask78a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  

  
%Choose section to analyse 
x=[560 420 280]; %3 values for x 
y=[140 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask78 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus78=(ThetaMask78.*ThetaMask78a).*AnulusFull; 

  
Anulus21=Anulus21+Anulus78; 

  
%Average the mask 
ANULUS21=sum(Anulus21); 
ANULUS21=sum(ANULUS21/(nnz(Anulus21))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[140 0 280]; %3 values for x 
y=[560 140 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask22 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[0 130 280]; %3 values for x 
y=[420 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask22a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus22=(ThetaMask22.*ThetaMask22a).*AnulusFull; 

  
%Choose section to analyse 
x=[400 560 280]; %3 values for x 
y=[0 400 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask79 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 440 280]; %3 values for x 
y=[120 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask79a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus79=(ThetaMask79.*ThetaMask79a).*AnulusFull; 

  
Anulus22=Anulus22+Anulus79; 

  
%Average the mask 
ANULUS22=sum(Anulus22); 
ANULUS22=sum(ANULUS22/(nnz(Anulus22))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[160 0 280]; %3 values for x 
y=[560 160 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask23 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 110 280]; %3 values for x 
y=[440 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask23a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus23=(ThetaMask23.*ThetaMask23a).*AnulusFull; 

  
%Choose section to analyse 
x=[380 560 280]; %3 values for x 
y=[0 380 280]; %3 values for y 

  
%Turn into a mask 
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ThetaMask80 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 460 280]; %3 values for x 
y=[100 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask80a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus80=(ThetaMask80.*ThetaMask80a).*AnulusFull; 

  
Anulus23=Anulus23+Anulus80; 

  
%Average the mask 
ANULUS23=sum(Anulus23); 
ANULUS23=sum(ANULUS23/(nnz(Anulus23))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[180 0 280]; %3 values for x 
y=[560 180 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask24 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 90 280]; %3 values for x 
y=[460 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask24a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus24=(ThetaMask24.*ThetaMask24a).*AnulusFull; 

  
%Choose section to analyse 
x=[360 560 280]; %3 values for x 
y=[0 360 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask81a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 480 280]; %3 values for x 
y=[80 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask81 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus81=(ThetaMask81.*ThetaMask81a).*AnulusFull; 

  
Anulus24=Anulus24+Anulus81; 

  
%Average the mask 
ANULUS24=sum(Anulus24); 
ANULUS24=sum(ANULUS24/(nnz(Anulus24))); 
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%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[200 0 280]; %3 values for x 
y=[560 200 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask25 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 70 280]; %3 values for x 
y=[480 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask25a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus25=(ThetaMask25.*ThetaMask25a).*AnulusFull; 

  
%Choose section to analyse 
x=[340 560 280]; %3 values for x 
y=[0 340 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask82 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 500 280]; %3 values for x 
y=[60 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask82a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus82=(ThetaMask82.*ThetaMask82a).*AnulusFull; 

  
Anulus25=Anulus25+Anulus82; 

  
%Average the mask 
ANULUS25=sum(Anulus25); 
ANULUS25=sum(ANULUS25/(nnz(Anulus25))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[220 0 280]; %3 values for x 
y=[560 220 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask26 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 50 280]; %3 values for x 
y=[500 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask26a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
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Anulus26=(ThetaMask26.*ThetaMask26a).*AnulusFull; 

  
%Choose section to analyse 
x=[320 560 280]; %3 values for x 
y=[0 320 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask83 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 520 280]; %3 values for x 
y=[40 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask83a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus83=(ThetaMask83.*ThetaMask83a).*AnulusFull; 

  
Anulus26=Anulus26+Anulus83; 

  
%Average the mask 
ANULUS26=sum(Anulus26); 
ANULUS26=sum(ANULUS26/(nnz(Anulus26))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[240 0 280]; %3 values for x 
y=[560 240 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask27 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 30 280]; %3 values for x 
y=[520 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask27a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus27=(ThetaMask27.*ThetaMask27a).*AnulusFull; 

  
%Choose section to analyse 
x=[300 560 280]; %3 values for x 
y=[0 300 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask84a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 540 280]; %3 values for x 
y=[20 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask84 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Multiply mask by mask by anulus matrix 
Anulus84=(ThetaMask84.*ThetaMask84a).*AnulusFull; 

  
Anulus27=Anulus27+Anulus84; 

  
%Average the mask 
ANULUS27=sum(Anulus27); 
ANULUS27=sum(ANULUS27/(nnz(Anulus27))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[260 0 280]; %3 values for x 
y=[560 260 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask28 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[0 10 280]; %3 values for x 
y=[540 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask28a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus28=(ThetaMask28.*ThetaMask28a).*AnulusFull; 

  
%Choose section to analyse 
x=[280 560 280]; %3 values for x 
y=[0 280 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask85a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[560 560 280]; %3 values for x 
y=[0 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask85= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus85=(ThetaMask85.*ThetaMask85a).*AnulusFull; 

  
Anulus28=Anulus28+Anulus85; 

  
%Average the mask 
ANULUS28=sum(Anulus28); 
ANULUS28=sum(ANULUS28/(nnz(Anulus28))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[280 0 280]; %3 values for x 
y=[560 280 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask29 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[10 0 280]; %3 values for x 
y=[560 10 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask29a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus29=(ThetaMask29.*ThetaMask29a).*AnulusFull; 

  
%Choose section to analyse 
x=[260 560 280]; %3 values for x 
y=[0 260 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask86a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[540 560 280]; %3 values for x 
y=[0 540 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask86= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus86=(ThetaMask86.*ThetaMask86a).*AnulusFull; 

  
Anulus29=Anulus29+Anulus86; 

  
%Average the mask 
ANULUS29=sum(Anulus29); 
ANULUS29=sum(ANULUS29/(nnz(Anulus29))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[300 0 280]; %3 values for x 
y=[560 300 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask30 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[30 0 280]; %3 values for x 
y=[560 30 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask30a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus30=(ThetaMask30.*ThetaMask30a).*AnulusFull; 

  
%Choose section to analyse 
x=[240 560 280]; %3 values for x 
y=[0 240 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask87 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[520 560 280]; %3 values for x 
y=[0 520 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask87a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus87=(ThetaMask87.*ThetaMask87a).*AnulusFull; 

  
Anulus30=Anulus30+Anulus87; 

  
%Average the mask 
ANULUS30=sum(Anulus30); 
ANULUS30=sum(ANULUS30/(nnz(Anulus30))); 

  
subplot(2,4,6) 
imshow(Anulus30,[min(Anulus30(:)) max(Anulus30(:))]); 
drawnow; 
caption = sprintf('96 degrees'); 
title(caption); 
axis square; 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[320 0 280]; %3 values for x 
y=[560 320 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask31 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[50 0 280]; %3 values for x 
y=[560 50 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask31a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus31=(ThetaMask31.*ThetaMask31a).*AnulusFull; 

  
%Choose section to analyse 
x=[220 560 280]; %3 values for x 
y=[0 220 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask88= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[500 560 280]; %3 values for x 
y=[0 500 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask88a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus88=(ThetaMask88.*ThetaMask88a).*AnulusFull; 
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Anulus31=Anulus31+Anulus88; 

  
%Average the mask 
ANULUS31=sum(Anulus31); 
ANULUS31=sum(ANULUS31/(nnz(Anulus31))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[340 0 280]; %3 values for x 
y=[560 340 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask32 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[60 0 280]; %3 values for x 
y=[560 60 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask32a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus32=(ThetaMask32.*ThetaMask32a).*AnulusFull; 

  
%Choose section to analyse 
x=[200 560 280]; %3 values for x 
y=[0 200 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask89 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[480 560 280]; %3 values for x 
y=[0 480 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask89a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus89=(ThetaMask89.*ThetaMask89a).*AnulusFull; 

  
Anulus32=Anulus32+Anulus89; 

  
%Average the mask 
ANULUS32=sum(Anulus32); 
ANULUS32=sum(ANULUS32/(nnz(Anulus32))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[360 0 280]; %3 values for x 
y=[560 360 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask33 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[80 0 280]; %3 values for x 
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y=[560 80 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask33a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus33=(ThetaMask33.*ThetaMask33a).*AnulusFull; 

  
%Choose section to analyse 
x=[180 560 280]; %3 values for x 
y=[0 180 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask90a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[460 560 280]; %3 values for x 
y=[0 460 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask90 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus90=(ThetaMask90.*ThetaMask90a).*AnulusFull; 

  
Anulus33=Anulus33+Anulus90; 

  
%Average the mask 
ANULUS33=sum(Anulus33); 
ANULUS33=sum(ANULUS33/(nnz(Anulus33))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[380 0 280]; %3 values for x 
y=[560 380 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask34 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[100 0 280]; %3 values for x 
y=[560 100 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask34a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus34=(ThetaMask34.*ThetaMask34a).*AnulusFull; 

  
%Choose section to analyse 
x=[160 560 280]; %3 values for x 
y=[0 160 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask91a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
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x=[440 560 280]; %3 values for x 
y=[0 440 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask91 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus91=(ThetaMask91.*ThetaMask91a).*AnulusFull; 

  
Anulus34=Anulus34+Anulus91; 

  
%Average the mask 
ANULUS34=sum(Anulus34); 
ANULUS34=sum(ANULUS34/(nnz(Anulus34))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[400 0 280]; %3 values for x 
y=[560 400 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask35 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[120 0 280]; %3 values for x 
y=[560 120 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask35a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus35=(ThetaMask35.*ThetaMask35a).*AnulusFull; 

  
%Choose section to analyse 
x=[140 560 280]; %3 values for x 
y=[0 140 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask92 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[420 560 280]; %3 values for x 
y=[0 420 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask92a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus92=(ThetaMask92.*ThetaMask92a).*AnulusFull; 

  
Anulus35=Anulus35+Anulus92; 

  
%Average the mask 
ANULUS35=sum(Anulus35); 
ANULUS35=sum(ANULUS35/(nnz(Anulus35))); 
%__________________________________________________________________________

___________________________________________________________________% 
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%Choose section to analyse 
x=[420 0 280]; %3 values for x 
y=[560 420 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask36 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[140 0 280]; %3 values for x 
y=[560 140 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask36a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus36=(ThetaMask36.*ThetaMask36a).*AnulusFull; 

  
%Choose section to analyse 
x=[120 560 280]; %3 values for x 
y=[0 120 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask93 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[400 560 280]; %3 values for x 
y=[0 400 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask93a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus93=(ThetaMask93.*ThetaMask93a).*AnulusFull; 

  
Anulus36=Anulus36+Anulus93; 

  
%Average the mask 
ANULUS36=sum(Anulus36); 
ANULUS36=sum(ANULUS36/(nnz(Anulus36))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[440 0 280]; %3 values for x 
y=[560 440 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask37 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[160 0 280]; %3 values for x 
y=[560 160 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask37a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus37=(ThetaMask37.*ThetaMask37a).*AnulusFull; 
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% Choose section to analyse 
x=[100 560 280]; %3 values for x 
y=[0 100 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask94 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[380 560 280]; %3 values for x 
y=[0 380 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask94a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus94=(ThetaMask94.*ThetaMask94a).*AnulusFull; 

  
Anulus37=Anulus37+Anulus94; 

  
%Average the mask 
ANULUS37=sum(Anulus37); 
ANULUS37=sum(ANULUS37/(nnz(Anulus37))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[460 0 280]; %3 values for x 
y=[560 460 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask38 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[180 0 280]; %3 values for x 
y=[560 180 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask38a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus38=(ThetaMask38.*ThetaMask38a).*AnulusFull; 

  
%Choose section to analyse 
x=[80 560 280]; %3 values for x 
y=[0 80 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask95a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[360 560 280]; %3 values for x 
y=[0 360 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask95 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus95=(ThetaMask95.*ThetaMask95a).*AnulusFull; 
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Anulus38=Anulus38+Anulus95; 

  
%Average the mask 
ANULUS38=sum(Anulus38); 
ANULUS38=sum(ANULUS38/(nnz(Anulus38))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[480 0 280]; %3 values for x 
y=[560 480 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask39 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[200 0 280]; %3 values for x 
y=[560 200 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask39a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus39=(ThetaMask39.*ThetaMask39a).*AnulusFull; 

  
%Choose section to analyse 
x=[60 560 280]; %3 values for x 
y=[0 60 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask96a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[340 560 280]; %3 values for x 
y=[0 340 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask96 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus96=(ThetaMask96.*ThetaMask96a).*AnulusFull; 

  
Anulus39=Anulus39+Anulus96; 

  
%Average the mask 
ANULUS39=sum(Anulus39); 
ANULUS39=sum(ANULUS39/(nnz(Anulus39))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[500 0 280]; %3 values for x 
y=[560 500 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask40a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[220 0 280]; %3 values for x 
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y=[560 220 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask40 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus40=(ThetaMask40.*ThetaMask40a).*AnulusFull; 

  
%Choose section to analyse 
x=[40 560 280]; %3 values for x 
y=[0 40 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask97a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[320 560 280]; %3 values for x 
y=[0 320 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask97 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus97=(ThetaMask97.*ThetaMask97a).*AnulusFull; 

  
Anulus40=Anulus40+Anulus97; 

  
%Average the mask 
ANULUS40=sum(Anulus40); 
ANULUS40=sum(ANULUS40/(nnz(Anulus40))); 

  
subplot(2,4,7) 
imshow(Anulus40,[min(Anulus40(:)) max(Anulus40(:))]); 
drawnow; 
caption = sprintf('128 degrees'); 
title(caption); 
axis square; 

  
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[520 0 280]; %3 values for x 
y=[560 520 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask41a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%FIVEFOURTY Choose section to analyse 
x=[240 0 280]; %3 values for x 
y=[560 240 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask41 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus41=(ThetaMask41.*ThetaMask41a).*AnulusFull; 

  
%Choose section to analyse 
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x=[20 560 280]; %3 values for x 
y=[0 20 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask98a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[300 560 280]; %3 values for x 
y=[0 300 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask98 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus98=(ThetaMask98.*ThetaMask98a).*AnulusFull; 

  
Anulus41=Anulus41+Anulus98; 

  
%Average the mask 
ANULUS41=sum(Anulus41); 
ANULUS41=sum(ANULUS41/(nnz(Anulus41))); 
%__________________________________________________________________________

___________________________________________________________________% 

  
%Choose section to analyse 
x=[540 0 280]; %3 values for x 
y=[560 540 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask42a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[260 0 280]; %3 values for x 
y=[560 260 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask42 = poly2mask(x, y, 560, 560); %560=size of whole mask 
%Multiply mask by mask by anulus matrix 
Anulus42=(ThetaMask42.*ThetaMask42a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 560 280]; %3 values for x 
y=[0 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask99a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[280 560 280]; %3 values for x 
y=[0 280 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask99 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus99=(ThetaMask99.*ThetaMask99a).*AnulusFull; 

  
Anulus42=Anulus42+Anulus99; 
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%Average the mask 
ANULUS42=sum(Anulus42); 
ANULUS42=sum(ANULUS42/(nnz(Anulus42))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 0 280]; %3 values for x 
y=[560 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask43a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[280 0 280]; %3 values for x 
y=[560 280 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask43 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus43=(ThetaMask43.*ThetaMask43a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 540 280]; %3 values for x 
y=[20 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask100a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[260 560 280]; %3 values for x 
y=[0 260 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask100 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus100=(ThetaMask100.*ThetaMask100a).*AnulusFull; 

  
Anulus43=Anulus43+Anulus100; 

  
%Average the mask 
ANULUS43=sum(Anulus43); 
ANULUS43=sum(ANULUS43/(nnz(Anulus43))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 20 280]; %3 values for x 
y=[540 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask44a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[300 0 280]; %3 values for x 
y=[560 300 280]; %3 values for y 
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%Turn into a mask 
ThetaMask44 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus44=(ThetaMask44.*ThetaMask44a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 520 280]; %3 values for x 
y=[40 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask101 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[240 560 280]; %3 values for x 
y=[0 240 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask101a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus101=(ThetaMask101.*ThetaMask101a).*AnulusFull; 

  
Anulus44=Anulus44+Anulus101; 

  
%Average the mask 
ANULUS44=sum(Anulus44); 
ANULUS44=sum(ANULUS44/(nnz(Anulus44))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 40 280]; %3 values for x 
y=[520 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask45a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[320 0 280]; %3 values for x 
y=[560 320 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask45 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus45=(ThetaMask45.*ThetaMask45a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 500 280]; %3 values for x 
y=[60 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask102a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[220 560 280]; %3 values for x 
y=[0 220 280]; %3 values for y 
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%Turn into a mask 
ThetaMask102 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus102=(ThetaMask102.*ThetaMask102a).*AnulusFull; 

  
Anulus45=Anulus45+Anulus102; 

  
%Average the mask 
ANULUS45=sum(Anulus45); 
ANULUS45=sum(ANULUS45/(nnz(Anulus45))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 60 280]; %3 values for x 
y=[500 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask46a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[340 0 280]; %3 values for x 
y=[560 340 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask46 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus46=(ThetaMask46.*ThetaMask46a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 480 280]; %3 values for x 
y=[80 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask103 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[200 560 280]; %3 values for x 
y=[0 200 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask103a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus103=(ThetaMask103.*ThetaMask103a).*AnulusFull; 

  
Anulus46=Anulus46+Anulus103; 

  
%Average the mask 
ANULUS46=sum(Anulus46); 
ANULUS46=sum(ANULUS46/(nnz(Anulus46))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 80 280]; %3 values for x 
y=[480 560 280]; %3 values for y 
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%Turn into a mask 
ThetaMask47a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[360 0 280]; %3 values for x 
y=[560 360 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask47 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus47=(ThetaMask47.*ThetaMask47a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 460 280]; %3 values for x 
y=[100 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask104a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[180 560 280]; %3 values for x 
y=[0 180 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask104 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus104=(ThetaMask104.*ThetaMask104a).*AnulusFull; 

  
Anulus47=Anulus47+Anulus104; 

  
%Average the mask 
ANULUS47=sum(Anulus47); 
ANULUS47=sum(ANULUS47/(nnz(Anulus47))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 100 280]; %3 values for x 
y=[460 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask48a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[380 0 280]; %3 values for x 
y=[560 380 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask48 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus48=(ThetaMask48.*ThetaMask48a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 440 280]; %3 values for x 
y=[120 0 280]; %3 values for y 
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%Turn into a mask 
ThetaMask105 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[160 560 280]; %3 values for x 
y=[0 160 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask105a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus105=(ThetaMask105.*ThetaMask105a).*AnulusFull; 

  
Anulus48=Anulus48+Anulus105; 

  
%Average the mask 
ANULUS48=sum(Anulus48); 
ANULUS48=sum(ANULUS48/(nnz(Anulus48))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 120 280]; %3 values for x 
y=[440 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask49a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[400 0 280]; %3 values for x 
y=[560 400 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask49 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus49=(ThetaMask49.*ThetaMask49a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 420 280]; %3 values for x 
y=[140 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask106a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[140 560 280]; %3 values for x 
y=[0 140 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask106 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus106=(ThetaMask106.*ThetaMask106a).*AnulusFull; 

  
Anulus49=Anulus49+Anulus106; 

  
%Average the mask 
ANULUS49=sum(Anulus49); 
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ANULUS49=sum(ANULUS49/(nnz(Anulus49))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 140 280]; %3 values for x 
y=[420 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask50a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[420 0 280]; %3 values for x 
y=[560 420 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask50= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus50=(ThetaMask50.*ThetaMask50a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 400 280]; %3 values for x 
y=[160 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask107a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[120 560 280]; %3 values for x 
y=[0 120 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask107 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus107=(ThetaMask107.*ThetaMask107a).*AnulusFull; 

  
Anulus50=Anulus50+Anulus107; 

  
%Average the mask 
ANULUS50=sum(Anulus50); 
ANULUS50=sum(ANULUS50/(nnz(Anulus50))); 

  
subplot(2,4,8) 
imshow(Anulus50,[min(Anulus50(:)) max(Anulus50(:))]); 
drawnow; 
caption = sprintf('160 degrees'); 
title(caption); 
axis square; 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 160 280]; %3 values for x 
y=[400 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask51 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[440 0 280]; %3 values for x 
y=[560 440 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask51a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus51=(ThetaMask51.*ThetaMask51a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 380 280]; %3 values for x 
y=[180 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask108 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[100 560 280]; %3 values for x 
y=[0 100 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask108a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus108=(ThetaMask108.*ThetaMask108a).*AnulusFull; 

  
Anulus51=Anulus51+Anulus108; 

  
%Average the mask 
ANULUS51=sum(Anulus51); 
ANULUS51=sum(ANULUS51/(nnz(Anulus51))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 180 280]; %3 values for x 
y=[380 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask52 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[460 0 280]; %3 values for x 
y=[560 460 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask52a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus52=(ThetaMask52.*ThetaMask52a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 360 280]; %3 values for x 
y=[200 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask109 = poly2mask(x, y, 560, 560); %560=size of whole mask 
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%Choose section to analyse 
x=[80 560 280]; %3 values for x 
y=[0 80 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask109a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus109=(ThetaMask109.*ThetaMask109a).*AnulusFull; 

  
Anulus52=Anulus52+Anulus109; 

  
%Average the mask 
ANULUS52=sum(Anulus52); 
ANULUS52=sum(ANULUS52/(nnz(Anulus52))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 200 280]; %3 values for x 
y=[360 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask53 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[480 0 280]; %3 values for x 
y=[560 480 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask53a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus53=(ThetaMask53.*ThetaMask53a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 340 280]; %3 values for x 
y=[220 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask110a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[60 560 280]; %3 values for x 
y=[0 60 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask110 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus110=(ThetaMask110.*ThetaMask110a).*AnulusFull; 

  
Anulus53=Anulus53+Anulus110; 

  
%Average the mask 
ANULUS53=sum(Anulus53); 
ANULUS53=sum(ANULUS53/(nnz(Anulus53))); 
%__________________________________________________________________________

___________________________________________________________________% 
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%Choose section to analyse 
x=[560 220 280]; %3 values for x 
y=[340 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask54 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[500 0 280]; %3 values for x 
y=[560 500 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask54a= poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus54=(ThetaMask54.*ThetaMask54a).*AnulusFull; 

  
%Choose section to analyse 
x=[0 320 280]; %3 values for x 
y=[240 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask111 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[40 560 280]; %3 values for x 
y=[0 40 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask111a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus111=(ThetaMask111.*ThetaMask111a).*AnulusFull; 

  
Anulus54=Anulus54+Anulus111; 

  
%Average the mask 
ANULUS54=sum(Anulus54); 
ANULUS54=sum(ANULUS54/(nnz(Anulus54))); 
%__________________________________________________________________________

___________________________________________________________________% 
%Choose section to analyse 
x=[560 240 280]; %3 values for x 
y=[320 560 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask55 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Choose section to analyse 
x=[520 0 280]; %3 values for x 
y=[560 520 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask55a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus55=(ThetaMask55.*ThetaMask55a).*AnulusFull; 
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%Choose section to analyse 
x=[0 300 280]; %3 values for x 
y=[260 0 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask112 = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
% Choose section to analyse 
x=[20 560 280]; %3 values for x 
y=[0 20 280]; %3 values for y 

  
%Turn into a mask 
ThetaMask112a = poly2mask(x, y, 560, 560); %560=size of whole mask 

  
%Multiply mask by mask by anulus matrix 
Anulus112=(ThetaMask112.*ThetaMask112a).*AnulusFull; 

  
Anulus55=Anulus55+Anulus112; 

  
%Average the mask 
ANULUS55=sum(Anulus55); 
ANULUS55=sum(ANULUS55/(nnz(Anulus55))); 
%__________________________________________________________________________

___________________________________________________________________% 
pause(1); 
print Figure1; 

  
%create the centre circle 
%create a mask for the central region in the same way as above 
%r is the only element to change and note < changes to >. 
r=7; 
[x,y]=meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy)); 
Centre=((x.^2+y.^2)<=r^2); 

  

  
%Mask the Image 
Circle=Centre.*SUB; 

  
%Average making 
ImageC=sum(Circle); 
ImageC=sum(ImageC/(nnz(Circle))); 
%__________________________________________________________________________

___________________________________________________________________% 
ANULUS0=ImageC-ANULUS0; 
ANULUS1=ImageC-ANULUS1;  
ANULUS2=ImageC-ANULUS2 ; 
ANULUS3=ImageC-ANULUS3; 
ANULUS4=ImageC-ANULUS4 ; 
ANULUS5=ImageC-ANULUS5;  
ANULUS6=ImageC-ANULUS6 ; 
ANULUS7=ImageC-ANULUS7 ; 
ANULUS8=ImageC-ANULUS8 ; 
ANULUS9=ImageC-ANULUS9 ; 
ANULUS10=ImageC-ANULUS10 ; 
ANULUS11=ImageC-ANULUS11 ; 
ANULUS12=ImageC-ANULUS12 ; 
ANULUS13=ImageC-ANULUS13 ; 
ANULUS14=ImageC-ANULUS14 ; 
ANULUS15=ImageC-ANULUS15 ; 
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ANULUS16=ImageC-ANULUS16 ; 
ANULUS17=ImageC-ANULUS17 ; 
ANULUS18=ImageC-ANULUS18 ; 
ANULUS19=ImageC-ANULUS19 ; 
ANULUS20=ImageC-ANULUS20; 
ANULUS21=ImageC-ANULUS21; 
ANULUS22=ImageC-ANULUS22; 
ANULUS23=ImageC-ANULUS23; 
ANULUS24=ImageC-ANULUS24; 
ANULUS25=ImageC-ANULUS25 ; 
ANULUS26=ImageC-ANULUS26 ; 
ANULUS27=ImageC-ANULUS27 ; 
ANULUS28=ImageC-ANULUS28; 
ANULUS29=ImageC-ANULUS29; 
ANULUS30=ImageC-ANULUS30; 
ANULUS31=ImageC-ANULUS31; 
ANULUS32=ImageC-ANULUS32; 
ANULUS33=ImageC-ANULUS33; 
ANULUS34=ImageC-ANULUS34 ; 
ANULUS35=ImageC-ANULUS35 ; 
ANULUS36=ImageC-ANULUS36 ; 
ANULUS37=ImageC-ANULUS37; 
ANULUS38=ImageC-ANULUS38; 
ANULUS39=ImageC-ANULUS39; 
ANULUS40=ImageC-ANULUS40; 
ANULUS41=ImageC-ANULUS41; 
ANULUS42=ImageC-ANULUS42; 
ANULUS43=ImageC-ANULUS43; 
ANULUS44=ImageC-ANULUS44; 
ANULUS45=ImageC-ANULUS45; 
ANULUS46=ImageC-ANULUS46; 
ANULUS47=ImageC-ANULUS47; 
ANULUS48=ImageC-ANULUS48; 
ANULUS49=ImageC-ANULUS49; 
ANULUS50=ImageC-ANULUS50; 
ANULUS51=ImageC-ANULUS51; 
ANULUS52=ImageC-ANULUS52; 
ANULUS53=ImageC-ANULUS53; 
ANULUS54=ImageC-ANULUS54; 
ANULUS55=ImageC-ANULUS55; 

  
%Collect into vectors 
tbow=0:3.25:180; 
arbow=[ANULUS0 ANULUS1 ANULUS2 ANULUS3 ANULUS4 ANULUS5 ANULUS6 ANULUS7 

ANULUS8 ANULUS9 ANULUS10 ANULUS11 ANULUS12 ANULUS13 ANULUS14 ANULUS15 

ANULUS16 ANULUS17 ANULUS18 ANULUS19 ANULUS20 ANULUS21 ANULUS22 ANULUS23 

ANULUS24 ANULUS25 ANULUS26 ANULUS27 ANULUS28 ANULUS29 ANULUS30 ANULUS31 

ANULUS32 ANULUS33 ANULUS34 ANULUS35 ANULUS36 ANULUS37 ANULUS38 ANULUS39 

ANULUS40 ANULUS41 ANULUS42 ANULUS43 ANULUS44 ANULUS45 ANULUS46 ANULUS47 

ANULUS48 ANULUS49 ANULUS50 ANULUS51 ANULUS52 ANULUS53 ANULUS54 ANULUS55]; 
% Then, we locate the min: 
Low = find(arbow == min(arbow)); 

  
% Do the same for the max: 
High = find(arbow == max(arbow)); 

  

  
ANULUS=[tbow(High) tbow(Low) arbow(High) arbow(Low)]; 
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Program Name: Normality 

 
function normality(x) 
%Function returns the following parameters: 
%   Range of the data 
%   Mean of the data and the bootstrapped errors associated with this 
%   Median of the data and the bootstrapped errors associated with this 
%   Mode of the data and the bootstrapped error associated with this 
%   The Standard deviation of the data 
%   The 95th and 65th percentiles of the data 
%   The kurtosis cooefficient of the data: Kurtosis is a measure of how  
%       outlier-prone a distribution is. The kurtosis of the normal  
%       distribution is 3. Distributions that are more outlier-prone than  
%       the normal distribution have kurtosis greater than 3; distributions  
%       that are less outlier-prone have kurtosis less than 3.  
%   The Skewness of the data: Skewness is a measure of the asymmetry of the 
%       data around the sample mean. If skewness is negative, the data are  
%       spread out more to the left of the mean than to the right. If  
%       skewness is positive, the data are spread out more to the right.  
%       The skewness of the normal distribution (or any perfectly symmetric  
%       distribution) is zero.  
%   The Shapiro-Wilk parametric hypothesis test and associated P-value:  
%       Shapiro-Wilk test to determine if the null hypothesis of 
%       composite normality is a reasonable assumption regarding the 
%       population distribution of a random sample X. 
%   The KS test and associated P-value: The one-sample Kolmogorov-Smirnov  
%       test is a nonparametric hypothesis test that evaluates the 

difference  
%       between the empirical cdf of the data and the cdf of the 

hypothesized  
%       distribution over the range of x in the data set. 
%   The AD test and associated P-value: The Anderson-Darling test returns  
%       a test decision for the null hypothesis that the data in vector x  
%       is from a population with a normal distribution. 
%Function also plots a fixed 10 bin histogram, a Q-Q plot, a Boxplot and a 
%   P-P plot separately and on the same figure for a snap shot of the data. 

  

  
X={'Range';'Mean';'MeanErrorLow';'MeanErrorHigh';'Median';'MedianErrorLow';

'MedianErrorHigh';'Mode'; 

'ModeErrorHigh';'ModeErrorLow';'StDev';'95thPercentile';'65thPercentile';'K

urtosis';'Skewness';'ShapiroH';'ShapiroPval';'KSH';'KSPval'}; 
a=max(x)-min(x); 
b=mean(x); 
c=bootci(1000,@mean,x); 
d=median(x); 
e=bootci(1000,@median,x); 
f=kurtosis(x); 
g=skewness(x); 
[h,i]=swtest(x); 
[j,k]=kstest(x); 
l=std(x); 
m=mode(x); 
n=bootci(1000,@mode,x); 
o=prctile(x,95); 
p=prctile(x,65); 
Y=[a b c(1) c(2) d e(1) e(2) m n(1) n(2) l o p f g h i j k]'; 

  
Data=dataset(X,Y) 
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figure;hist(x); 
xlabel('Data Range') 
ylabel('Frequency') 
figure;qqplot(x); 
figure;boxplot(x,'notch','on'); 
ylabel('Data Range') 
figure;probplot(x); 

  
figure; 
subplot(2,2,1); 
hist(x,10); 
xlabel('Data Range'); 
ylabel('Frequency'); 
drawnow; 
caption = sprintf('Histogram'); 
title(caption); 

  
subplot(2,2,2); 
qqplot(x); 
drawnow; 
caption = sprintf('Q-Q Plot'); 
title(caption); 

  
subplot(2,2,3); 
boxplot(x,'notch','on'); 
ylabel('Data Range') 
drawnow; 
caption = sprintf('Boxplot'); 
title(caption); 

  
subplot(2,2,4); 
probplot(x); 
drawnow; 
caption = sprintf('Probability Plot'); 
title(caption); 

  
end 
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Appendix 3 

 

The statistical analyses used in this thesis 
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Range – The difference between the lowest and highest numbers in a data set. 

Mean – The average of a data set. 

Median – The middle value of a data set, when the data are lined up in ascending numerical order. 

Mode – The most frequently occurring value within a data set. 

Standard deviation – A value for the data set which shows how much variation from the mean exists. 

Percentile – A percentile indicates the value at which a certain percentage of the data fall below, for 

example, the 10th percentile is the value of which 10% of the data fall below.  

Kurtosis – A measurement of the shape of the distribution, the ‘peakedness’. Platykurtic 

distributions have values below 3 and are described as flat and broad. Leptokurtic distributions have 

values above 3 and are described as narrow and peaky. 

Skewness – A measurement of the asymmetry of the distribution. A negative skewed distribution 

has a longer or fatter tail to the left of the mean and vice versa. 

Quantile-Quantile plot – A plot where the quantiles of one distribution are plotted against the 

quantiles of another distribution, in this case a standard normal distribution. Quantiles are equal 

divisions of a distribution, quantiles where the distribution is divided into 100 equal parts are called 

percentiles. 

empirical Probability Density Function – A histogram which has been normalised to an area of 1. This 

method of data display means that histograms containing varying numbers of N can be compared 

visually.  

Pchip - yi = pchip(x,y,xi) returns vector yi containing elements corresponding to the elements of xi and 

determined by piecewise cubic interpolation within vectors x and y. The vector x specifies the points 

at which the data y is given. If y is a matrix, then the interpolation is performed for each column 

of y and yi is length(xi)-by-size(y,2). 
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Growth phenotype screening of 

Schizosaccharomyces pombe using a 

Lensless microscope 

Lynsey A. Penwill, Gwendoline E. Batten, Stefania Castagnetti, Andrew M. Shaw 
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