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Abstract

Statistical models are necessary to quantify and understand the risk from natural

hazards. A statistical framework is developed here to investigate the effect of de-

pendence between the frequency and intensity of natural hazards on the aggregate

risk. The aggregate risk of a natural hazard is defined as the sum of the intensities

for all events within a season. This framework is applied to a database of extra

tropical cyclone tracks from the NCEP-NCAR reanalysis for the October to March

extended winters between 1950 and 2003.

Large positive correlation is found between cyclone counts and the local mean vor-

ticity over the exit regions of the North Atlantic and North Pacific storm tracks.

The aggregate risk is shown to be sensitive to this dependence, especially over

Scandinavia. Falsely assuming independence between the frequency and intensity

results in large biases in the variance of the aggregate risk. Possible causes for the

dependence are investigated by regressing winter cyclone counts and local mean

vorticity on teleconnection indices with Poisson and linear models. The indices for

the Scandinavian pattern, North Atlantic Oscillation and East Atlantic Pattern

are able to account for most of the observed positive correlation over the North

Atlantic.

The sensitivity of extremes of the aggregate risk distribution to the inclusion of

clustering, with and without frequency intensity dependence, is investigated using

Cantelli bounds and a copula simulation approach. The inclusion of dependence is

shown to be necessary to model the clustering of extreme events.

The implication of these findings for the insurance sector is investigated using

the loss component of a catastrophe model. A mixture model approach provides

a simple and effective way to incorporate frequency-intensity dependence into the

loss model. Including levels of correlation and overdispersion comparable to that

observed in the reanalysis data results in an average increase of over 30% in the
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200 year return level for the aggregate loss.
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Chapter 1

Introduction

1.1 Motivation

In 2011, natural hazards resulted in a total of 27,000 fatalities and $380 billion in

damages worldwide, of which $105 billion was insured (Source: Munich Re. Nat-

CatService1). These losses were due to 820 distinct hazard events, including the

Tohōku earthquake, the Thailand floods, Hurricane Irene and European extra trop-

ical cyclone Joachim. Although 2011 saw the highest economic losses on record, it

can be viewed as part of a global trend of increasing losses from natural hazards

(see Fig.1.1). Socio-economic losses from natural hazards have been increasing

since 1950, mainly due to increases in the global population and exposed values

which are often concentrated in vulnerable regions (Smolka, 2006).

The United Nations International Strategy for Disaster Reduction2 (UNISDR) de-

fine a natural hazard as a natural process or phenomenon that may cause loss of

life, injury or other health impacts or property damage. The UNISDR state that

there is no such thing as a “natural” disaster, only a natural hazard. By decreas-

ing societies exposure to hazards and increasing their resilience the damage caused

by a natural hazard can be reduced, and disaster averted. Scientific assessment

of the risk posed by hazards plays a vital role in improving resilience by inform-

1https://www.munichre.com/touch/naturalhazards/en/natcatservice/natcatservice/index.html
2http://www.unisdr.org

12
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Figure 1.1: Economic losses from natural hazards between 1980-2012. Source:

Munich Re. NatCatSERVICE

ing government policy, building regulations and emergency response preparations

(Rougier et al., 2013). Insurers assist in mitigating the impact of natural hazards

by providing protection to industry and civilians; around 40% of economic losses in

industrialised countries are absorbed by the insurance industry (Kunreuther et al.,

2013). The insurers therefore need to be able to reliably assess their exposure to

risk; natural hazards can have a severe impact on an insurer if they have a high

concentration of policies in a hazard prone area (Grossi and Kunreuther, 2005).

Being able to estimate the total claims which could arise from natural hazards

within a year is thus crucial for insurers in determining premiums and capital

reserves, as well as how much coverage they should provide in a specific loca-

tion. The short records and trends in the loss data make historic loss experience

an unreliable estimator for future claims (Kukush et al., 2004). Instead natural
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catastrophe insurers use scientific models of natural hazards, known as catastrophe

(CAT) models. These models are developed using a combination of observational

data, knowledge of physical laws and expert judgement (Grossi and Kunreuther,

2005). Many insurers develop in-house catastrophe models, as well as using propri-

etary models from the three main catastrophe modelling firms; Risk Management

Solutions (RMS), Applied Research Insurance(AIR) and EQECat (Banks, 2005).

To ensure CAT models are as reliable as possible they are regularly updated to

include the latest research developments in the fields of atmospheric science and

engineering (Clark, 2002).

Catastrophe models often make simplifying assumptions about complex physical

processes (Rougier et al., 2013). Insurers and catastrophe modelling firms use

different approaches to model the same hazard, a consequence of which is that

investigating the risk from the same hazard event using different models can result

in significantly different modelled losses (Cole et al., 2010). This ambiguity is a

cause of concern for model users; their perceived risk depends upon their choice

of model, and assessing models is not straightforward. Open-source CAT models

have been developed for hurricane (Vickery et al., 2006) and earthquake hazards

(Kircher et al., 2006) with the stated aim of creating a standard methodology for

estimating losses from natural hazards (Grossi and Kunreuther, 2005). However

for most other regions and hazards the methodology used in constructing a CAT

model is not publicly available thereby hindering scientific discussion (Clark, 2013).

This thesis develops a framework for the statistical modelling of the aggregate

risk of natural hazards. Here the aggregate risk refers to the distribution of total

loss from the sum of all hazard events in a season or year. Aggregate risk is the

main focus as it has received relatively little attention in the literature, despite

its importance to the insurance industry. Previous studies have considered hazard

counts within a season, which is a special case of an aggregate loss where the inten-

sity is unity for each event. Therefore, studying the distribution of aggregate loss is
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a natural extension of previous research on the distribution of hazard counts. The

framework is used to assess the impact of different modelling assumptions on the

aggregate risk. Statistical methods are used to investigate the role of atmospheric

forcing and other physical processes in determining the aggregate risk of natural

hazards. An investigation is then conducted on how to implement relevant findings

into the financial component of a catastrophe model.

Figure 1.2: Map of natural hazards occurring in 2011 which resulted in enough

socio-economic loss to be classified as a catastrophe. Source: Munich Re. NatCat-

SERVICE

Almost every region of the globe is at risk from natural hazards in different forms

(Fig. 1.2). These hazards can loosely be categorized into geological and hydro-

meteorological events. Geological hazards are those caused by subterranean faults

and magma chambers, such as earthquakes and volcanoes (Woo, 1999). Hydro-

meteorological hazards are events caused by atmospheric, hydrological or oceano-

graphic processes, such as floods, tropical and extra tropical cyclones (Rougier

et al., 2013). Between 1950 and 2009 windstorm hazards (tropical and extra tropi-

cal cyclones) were responsible for 80% of all natural hazard related insured losses3.

3https://www.munichre.com/touch/naturalhazards/en/naturalhazards/meteorological-
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In Europe extra tropical cyclones have caused tens of billions of Euros in insured

losses since 1990, and quantifying the risk of further losses has been identified as

being of the highest priority for the global reinsurance industry4. For this rea-

son extra tropical cyclones have been used as a case study throughout the thesis.

Modelling the aggregate risk of extra tropical cyclones is of particular interest due

to the temporal clustering of storms in the Northern Hemisphere (Mailier et al.,

2006). Clusters of extra tropical cyclones can result in economic losses comparable

to those of a U.S. hurricane, and due to the structure of reinsurance contracts a

cluster of events can cost more than a single event with the same total loss (Vi-

tolo et al., 2009). Climate models have been shown to underestimate clustering

(Kvamstø et al., 2008) and the physical drivers of clustering remains an active

area of ongoing research (e.g. Hanley and Caballero (2012); Pinto et al. (2013).

Catastrophe modelling firms have recently attempted to include clustering into

their windstorm models but as the models are not open to scrutiny it is difficult to

assess how effectively this has been accomplished5. Here the impact of clustering

will be considered within a broader aggregate risk framework that includes storm

intensity as well as the frequency. This research is relevant to other natural hazards

which have been shown to cluster, e.g. floods and hurricanes (Villarini et al., 2013;

Mumby et al., 2011).

1.2 Research questions

The aim of this research is to develop a flexible framework which can be used to

quantify and understand the aggregate risk of natural hazards. This framework will

be used to investigate the sensitivity of the aggregate risk to different modelling

assumptions. This thesis will address the following main questions:

hazards/storm/index.html
4http://www.willisresearchnetwork.com/research-and-impact/natural-hazard-and-

risk/european-windstorm.html
5http://www.air-worldwide.com/Publications/AIR-Currents/2010/European-Windstorms-

Implications-of-Storm-Clustering-on-Definitions-of-Occurrence-Losses/



Thesis plan 17

• Is there dependence between the frequency and mean intensity of hazards

within a season/year?

• How does frequency intensity dependence affect the distribution of aggregate

losses (aggregate risk)?

• How can the dependency be diagnosed and incorporated into the loss com-

ponent of catastrophe models?

1.3 Thesis plan

Chapter 2 provides a brief overview of relevant statistical techniques for modelling

the risk from natural hazards. Extra tropical cyclones are introduced as a case

study, and the database of storm tracks used later in the thesis is described.

Chapter 3 develops a framework for quantifying the aggregate risk of natural haz-

ards. This framework is applied to the database of extra tropical cyclones. The

variance of the aggregate risk of winter storms is found to be very sensitive to co-

variance between the frequency and intensity. Regression models using large-scale

atmospheric indices as covariates are invoked to explain this covariance.

Chapter 4 considers extremes in aggregate loss. The impact of frequency-intensity

dependence on extremes of the aggregate risk. The inclusion of this dependence is

also shown to be necessary to model clustering of extreme events. The performance

is compared of parametric, non-parametric and simulation methods in modelling

the aggregate risk.

Chapter 5 presents a mathematical formulation of the loss component in catastro-

phe models. This component is then extended to allow the inclusion of frequency-

intensity dependence. The impact of frequency-intensity dependency on a hypo-

thetical insurer’s loss distribution is investigated.
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Chapter 6 summarised the main findings of this thesis and discusses potential

areas for future research.



Chapter 2

Background

2.1 Aim

This chapter first discusses statistical methods that are used for modelling the risk

of natural hazards which are relevant to this thesis. The second part of the chapter

provides a brief overview of the scientific literature for extra tropical cyclones and

the risk they pose to Europe. The dataset of extra tropical cyclone tracks used

throughout the thesis is then introduced.

2.2 Quantifying the risk to society from natural

hazards

Collin’s Dictionary defines risk as “the chance of disaster or loss” (Sinclair-Knight,

2002). Natural hazards such as floods, earthquakes and windstorms present a ma-

jor source of risk to society and the cost is measured in human lives and damage

to infrastructure and ecosystems as well as in financial loss. Decision makers such

as governments and insurers need to be able to quantify the risk from such events

in order to manage it. For example, European insurers have legal requirements

to maintain sufficient capital to ensure that claims will be paid promptly and the

insurer can remain solvent (Banks, 2005). These capital requirements are part of

19
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the Solvency II regulatory framework1, and are defined using estimates of the Prob-

able Maximum Loss (PML), which often corresponds to a high quantile (e.g. the

0.995 quantile - the 200 year return value) of an insurer’s modelled loss distribution

(Woo, 2002).

The rarity of extreme natural hazards coupled with trends in the observations

make empirical estimates of the PML using historic data unreliable (Grossi and

Kunreuther, 2005). For example, an earthquake may occur along a fault line

once every twenty, fifty or one hundred years, in comparison to other types of

insured risk such as car accidents or household fires which occur in most countries

on a daily basis. Insurance claims have risen dramatically over the past decades

for many different natural hazards such as U.S. hurricanes (Pielke Jr and Land-

sea, 1998), European windstorms (Barredo, 2010) and Japanese typhoons (Kukush

et al., 2004). Trends in the loss data are largely due to socio-economic changes (pop-

ulation growth, migration) resulting in changes in the exposure to natural hazards

(Pielke Jr et al., 2008). However, the hazards themselves are also non-stationary

due to forcing by the atmosphere and ocean (Rougier et al., 2013), resulting in

annual and decadal variability in the loss data.

Statistical analysis has been widely used in the literature to assess the risk posed

by natural hazards. The methods used vary depending upon the data available

and the modeller’s objectives, but studies have typically focused on estimating

return levels using extreme value techniques and quantifying trends and the role

of atmospheric forcing with regression analysis (Rougier et al., 2013, Chapter 5).

Some of the fundamental concepts used in the literature and in this thesis are now

introduced.

1http://ec.europa.eu/internalmarket/insurance/docs/solvency/solvency2/faqen.pdf
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2.2.1 Point process models

The point process framework has been widely used for understanding and predicting

the risk from natural hazards, such as earthquakes, floods and hurricanes (Vere-

Jones, 1995; Rossi et al., 1984; Katz, 2002). Events occur at irregular times Ti with

variable intensities Xi, where i = 1, ..., N(t) (Stephenson, 2008). The homogeneous

Poisson process is the canonical point process, where the number of points N(t)

follows a Poisson distribution,

Pr(N = k|λt) =
λke−λt

k!
. (2.1)

Homogeneous refers to the rate parameter λ remaining constant in time, see (Rice,

2007, Section 2.1). The mean and variance of the homogeneous Poisson distribution

are defined by the rate parameter such that E[N ] = V ar(N) = λ. Equality of the

mean and variance for count data is known as equidispersion. However, count data

frequently exhibit over dispersion V ar[N ] > E[N ] (Cameron and Trivedi, 2013).

Following the approach of Mailier et al. (2006) a dispersion statistic φ, can be

defined as

φ(N) =
V ar[N ]

E[N ]
− 1,

For a homogeneous Poisson process φ(N) = 0, and for overdispersed data φ(N) >

0. Overdispersion in count data is commonly modelled by using a distribution

with more flexibility in the choice of the variance, such as the Negative Binomial

distribution (Cameron and Trivedi, 2013). If N ∼ NB(p, r) is negative binomially

distributed with parameters p, r, then the probability that N = k is

Pr(N = k) = (1 +
p

r
)−r

Γ(r + k

k!Γ(r)

(
p

p+ r

)k
,

and E[N ] = p, V ar[N ] = p + p2/r (Rice, 2007). Therefore the negative binomial

is always over dispersed.
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2.2.2 Generalised linear modelling of rates

Regression analysis is widely used in studies on hydro-meteorological hazards to

assess the influence of climatic factors on attributes of a natural hazard, such as

the frequency or intensity. The motivation for using regression models is improv-

ing understanding of the physical mechanisms that govern hazards and developing

models for prediction/forecasting purposes, (Rougier et al., 2013, Chapter 5). The

use of regression analysis for prediction is particularly common in Atlantic hurri-

cane studies, such as in Elsner and Jagger (2006) where the May-June averaged

North Atlantic Oscillation (NAO) and Southern Oscillation indexes are used to

predict July-November U.S. hurricane counts.

Let Y be the time series of some hazard attribute (e.g. the counts), Y = {Yj, j =

1, ...,m}. The dependence of the mean of Y , on k time varying factors Z1, .., Zk

can be modelled using the Generalised Linear model (GLM) framework (Davison,

2003, Section 10.3). The probability distribution of the response variable Y is cho-

sen from the exponential family of distributions. The mean of Y at time j, E[Yj],

is related to the explanatory variables linearly, via some link function g;

g(E[Yj]) = β0 +
k∑
i=1

βizi,j, (2.2)

where zi,j is the realisation of the ith explanatory variable at time j. The intercept

parameter (β0) and slope coefficients (βi) can be estimated by Maximum Likelihood

methods (Cameron and Trivedi, 2013, Section 2.3). Considering the case of count

data, the Poisson process provides the simplest model; the rate parameter λ for a

Poisson distributed random variable N is related to explanatory variables Z, and

g is the log-link function;

N |Z1, ..., Zk ∼ Poisson(λ) (2.3)

log(λj) = β0 +
k∑
i=1

βizi,j, (2.4)

and therefore the mean and variance of N both vary with the explanatory vari-

ables. A Poisson regression approach was used in Mailier et al. (2006) to investi-
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gate whether large-scale flow indices could explain overdispersion of extra tropical

cyclone counts. That is, for a Poisson regression model the rate is no longer homo-

geneous and the dispersion is

φ(N) =
V ar[eβ0+β1z1+...+βkzk ]

E[eβ0+β1z1+...+βkzk ]
,

and therefore for a log-link φ ≥ 0 (Mailier et al., 2006).

2.2.3 Random effects and mixture models

There are often further unobserved explanatory variables in addition to the ob-

served ones (Aitkin et al., 2009, Chapter 8). Such unobserved variables can be

included in regression models by extending Eqn. 2.2,

g(E[Yj]) = β0 +
k∑
i=1

βizi,j + γW, (2.5)

where γ is the regression coefficient for the unobserved random variable W , which

is assumed to have some known probability distribution. Models of this type are

called random effects models (Cameron and Trivedi, 2013, Section 9.4). A special

case of this is when Eqn. 2.5 consists only of the random effects term and a linear

link function, E[Yi] = γW . This type of model can be used for modelling over

dispersion in count data. A Poisson process with a stochastic rate Λ = γW is

called a Poisson mixture distribution.

pN(k) = P (N(t) = k) =

∫ ∞
0

e−λt(λt)k

k!
dFΛ(λ);

where pN(k) is the probability the random variable N takes the value k Pr(N = k),

(Rolski et al., 2009, Section 8.5). The resulting Poisson mixture is always over-

dispersed since

E[N ] =
∞∑
k=1

kpN(k) =

∫ ∞
0

ke−λ
λ

k!
dFΛ(λ)

=

∫ ∞
0

λdFΛ(λ) = E[λ]

and

E[N2] =
∞∑
k=0

k2pN(k) = E[Λ] + E[λ2].
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The variance of N is then

V ar[N ] = E[N2]− E[N ]2 = E[Λ] + V ar[Λ]

and therefore V ar[N ] > E[N ] (McNeil et al., 2005). The Negative Binomial dis-

tribution can be shown to be a mixture of Poisson distributions where the rates

are Gamma distributed, (McNeil et al., 2005, Section 10.2). The mixture model

approach has been widely used for modelling over dispersion and dependence in

Credit Risk (Frey and McNeil, 2003). Similar ideas are used in Chapter 5 of this

thesis for modelling financial losses for natural hazards.

2.2.4 Copulas

The risk presented by a natural hazard cannot be characterized by a single at-

tribute in most cases, for example river management depends upon both flood

peak and flood volume (Salvadori, 2007). These attributes or variables may not

be independent. Copulas provide a useful tool in risk modelling for describing

the dependence between random variables. The joint distribution of the random

variables is decomposed into the individual (marginal) distributions and a copula

which models the dependence between them. A d dimensional copula C is a dis-

tribution function on [0, 1]d, with standard uniform margins (McNeil et al., 2005).

The following theorem from Sklar (1973), states all multivariate density functions

can be represented by copulas.

Theorem Let F be a joint distribution function, with marginal distributions

F1, ..., Fd. Then there exists a d copula C such that

F (x1, .., xd) = C(F1(x1), .., Fd(xd)). (2.6)

For the proof see e.g. (Sklar, 1973; McNeil et al., 2005). The marginal distribu-

tions and associated parameters of F1, . . . , Fd can be estimated as usual, a suitable

“family” for the copula (e.g. Gaussian, Gumbel, Clayton), can be obtained through

analysis of the dependence between the marginals. For example, if observations of

two random variables X and Y , with arbitrary marginals suggested upper but not
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lower tail dependence then a Gumbel copula may be appropriate. The copula can

then be calibrated by estimating the dependence between X and Y using copula

based dependence measures such as the rank correlation and tail dependence co-

efficients (McNeil et al., 2005). Rank correlation measures are used for calibrating

copulas to data as they depend only on the bivariate distribution of a copula and

not on the marginal distributions.

The implementation of a Gaussian copula is presented in Chapter 4 of this thesis.

2.2.5 Extreme value analysis

It is often necessary to quantify properties of extremes beyond what can be esti-

mated empirically from observational data. Extreme value theory provides useful

models for the behaviour of extremes in the tail. Extreme value techniques are

derived from a limit theorem, which states that the block maxima of stationary

random observations tend asymptotically to one of the generalized extreme value

(GEV) distributions (Coles, 2001). The use of only the maxima discards potentially

useful information. An alternative approach is the peaks over threshold method

(POT), where all values above a (high) threshold are included. The amount by

which an event exceeds the threshold u can be modelled by the generalized Pareto

distribution,

Pr(X > x|X > u) =

[
1 + ξ

(
x− u
σ

)]−1/ξ

. (2.7)

where the parameter σ determines the scale of the GPD distribution and ξ the

shape of the tail (Embrechts et al., 1997). The POT approach has been used in

hazard modelling for floods (Katz et al., 2002), Atlantic hurricanes (Jagger and

Elsner, 2006) and European extra tropical cyclones (Kunz et al., 2010).

The risk posed by a particular type of hazard is often expressed in terms of the

return period for an observed variable (Della-Marta et al., 2009). The return pe-

riod T is the reciprocal of the exceedance probability, i.e. T = 1/Pr(X > x). The

return level xT is the quantile having return period T , i.e. the 1 − 1/T quantile.
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Equation 2.7 can be rewritten in terms of the return level xT , that is if ξ 6= 0,

and the number of events in a year follows a Poisson process with rate λ then the

T -year return level is,

xT = u+
σ

ξ
[1− (λT )−ξ], (2.8)

(Coles, 2001). When ξ = 0 the T -year return level is, xT = u+ σlog(λT ).

In risk management, capital requirements are often based on the expected value of

losses exceeding some T year return level (McNeil and Frey, 2000). This quantity

can be derived from the GPD model by first calculating the 1 in 200 year threshold

u, then the mean excess of X exceeding u is

E[X − u|X > u] =
σu

1− ξ
(2.9)

(Embrechts et al., 1997). An introduction to statistical modelling of extremes is

covered in Coles (2001), and a more specialized treatment from a financial perspec-

tive can be found in Embrechts et al. (1997). A GPD is used in Chapter 4 of this

thesis to model the 1-200 year return level losses.

2.2.6 Catastrophe modelling

Catastrophe models are designed to simulate large datasets of synthetic events

(Banks, 2005). These synthetic hazards are designed to be physically plausible,

and are intended to represent the diversity of events which can occur. These sim-

ulated hazards are then applied to the users exposure (e.g. a portfolio of insured

properties) to estimate the resulting damages were the hazards to occur. Catas-

trophe modelling is described in more detail in Chapter 5 of this thesis, and for

an introduction to the development and use of a catastrophe model see Grossi and

Kunreuther (2005).

All approaches to modelling natural hazards have limitations. While extreme value

analysis provides a useful tool for modelling the PML from an individual event,

it does not inform the user about the total PML due to all events. Similarly re-

gression analysis has been widely used to improve understanding of the frequency
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and intensity of natural hazards, but the subsequent implications for the aggregate

loss are rarely considered. One exception to this has been U.S. hurricanes, where

model fitting for total annual losses is appealing due to a public available set of

normalized 21st century losses (Pielke Jr and Landsea, 1998; Pielke Jr et al., 2008).

These total loss models typically consist of two independent components, one for

the occurrence of events and one for the losses associated with individual events

(Katz, 2002). However many of the studies make questionable assumptions. For

example, even though the frequency and magnitude of claims are often regressed

on the same set of climate covariates, past studies have not explicitly considered

dependency between the frequency and intensity (Jagger et al., 2008; Katz, 2002).

A framework for investigating the aggregate loss and the underlying modelling

assumptions is introduced in the next chapter.

2.3 Extra tropical cyclones

In Europe, extra tropical cyclones are a major source of insured loss. For exam-

ple, in Germany alone these extreme ‘windstorm’ events have been estimated to

account for over 50% of all natural hazard related insured losses (Klawa et al.,

2003). Examples of such events include windstorm Lothar, which made landfall

in December 1999, resulting in 110 fatalities and $5.9 billion in insured losses and

windstorm Daria which caused 94 fatalities and $5.1 billion in insured losses in

January 1990 (see Table 2.1).

Extra tropical cyclones play a crucial role in determining the climate of the mid-

latitudes. They are important for the transport of heat and moisture polewards

(Wallace and Hobbs, 2006). One of the earliest publications providing an overview

of the life cycle of an extra-tropical cyclone was Bjerknes and Solberg (1922) and is

referred to as the Norwegian model. In the Norwegian model, cyclones are assumed

to occur due to instabilities in a pre existing front. A front or frontal zones are

sharp horizontal gradients or discontinuities in wind and temperature (Wallace and

Hobbs, 2006). In Bjerknes and Solberg (1922) it was proposed that cyclones form
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(cyclogenesis) along the polar front which separates cold air over higher latitudes

from the warmer southern latitudes. The Norwegian model is a largely qualitative

model, developed without access to upper air measurements (Mailier et al., 2006).

The Norwegian model has remained influential to subsequent research, but it is

now accepted that cyclones occur as a consequence of large scale forcing associated

with horizontal temperature gradients and that the existence of a polar front is not

a necessary condition for cyclogenesis (Carlson, 1991).

2.3.1 Storm track identification

Many extra-tropical cyclones start to grow in the cyclogenesis regions over the

east coasts of North America and Asia. The warm waters of the Gulf stream and

Kuroshio and the cold air from the continents result in the low level temperature

gradients required for cyclone formation (Hoskins and Valdes, 1990). The subse-

quent cyclones are then steered by the westerly winds across the North Atlantic

and North Pacific before decaying (cyclolysis) near western Europe and the west

coast of North America (Hoskins and Hodges, 2002). The Atlantic and Pacific of

enhanced cyclone activity are often referred to as storm tracks. It should be noted

that the term storm tracks is used to refer to the path taken by an individual

cyclone during its life cycle, as well as to describe a region of enhanced cyclone

activity. In this thesis the latter definition of a storm track is used.

Most studies on extra tropical cyclones have used one (or both) of two method-

ologies for exploring storm tracks (Hoskins and Hodges, 2002). The first approach

involves measuring statistics, such as the variance, at grid points for atmospheric

variables (e.g. sea level pressure) which are relevant to extra tropical cyclones for

synoptic timescales (one day to one week). This is sometimes called an Eulerian

approach, and has been used in studies such as Hoskins and Valdes (1990) to in-

vestigate the behaviour of storm tracks. An Eulerian approach has the advantage

of being straightforward to implement and provides a general storm track activity

measure. The second approach involves observing individual storms throughout
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their life cycles which can be done manually using synoptic charts or by using au-

tomated feature tracking methods, e.g. Hodges (1994). This is referred to as a

Lagrangian approach and has become more widely used in recent years due to the

increased accessibility of automated tracking algorithms.

Hoskins and Hodges (2002) compared the Eulerian and Lagrangian approaches

for diagnosing storm track statistics for the ECMWF reanalysis (ERA-15) using

a range of atmospheric variables, such as mean sea level pressure (MSLP) and

vorticity. The Eulerian method was to consider the band passed filtered variance

of these variables, while the Lagrangian approach used Hodges tracking algorithm

(Hodges, 1994) to identify and track individual cyclonic and anti-cyclonic features

as defined by these variables. Both approaches identified the North Atlantic and

North Pacific storm tracks and provided measures of the activity. The Lagrangian

approach had the advantage of being able to differentiate between cyclonic and

anti-cyclonic systems as well as provided information about individual systems.

2.4 European extra tropical cyclone risk

Accurate assessments of the frequency and intensity of extra tropical cyclones is

crucial for those working in fields such as engineering and reinsurance (Della-Marta

et al., 2009). Few studies have modelled the risk of extra tropical cyclones in finan-

cial terms due to a lack of available loss data for researchers (Pinto et al., 2007).

Studies relying on loss data for extra tropical cyclones are also hampered by the

non-stationarity of economic losses due to changes in economic and societal vulner-

ability (Barredo, 2010). Instead a large number of studies have been conducted on

extra tropical cyclone data using both reanalyses and Global Circulation Models

(GCM) (Ulbrich et al., 2009). The conclusions of these studies are sensitive to

the choice of dataset, which cyclone attribute is considered and how it is tracked

(Raible et al., 2008). A comparison of tracking methods found that agreement was

generally higher between methods for stronger cyclones than weaker cyclones and

that for cyclone count statistics there was a strong qualitative agreement with the
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exception of certain regions, particularly the Mediterranean (Neu et al., 2012). A

study comparing cyclone statistics between the NCEP-NCAR and ERA40 datasets

found reasonably good agreement over northern Europe and eastern North Amer-

ica, but not over the extra tropical oceans (Wang et al., 2006).

Trends

Past and future changes in extra tropical cyclone activity due to anthropogenic cli-

mate change is an area of interest for researchers. Investigations into such changes

is complicated by changes in observational data, such as the spatial and temporal

density and the observing systems, which can result in spurious trends in the data

(Bengtsson et al., 2004). For the Northern Hemisphere however, there has been

found to be general agreement in the reanalysis datasets, with few sudden shifts or

inhomogeneities (Ulbrich et al., 2009).

Although historical trends are sensitive to the data and methodology used there

are some broad conclusions that can be drawn from the literature for the Euro-

Atlantic region. A study using the ERA-40 and NCEP-NCAR reanalyzes found a

decreasing trend in counts over central Europe but an increasing trend over north-

ern Europe for both datasets (Trigo, 2006)). These findings agree with (Wang

et al., 2006) where a decrease in cyclone frequency was found over the mid-latitude

North Atlantic and an increase over Northern Europe, due to a northward shift of

the storm track.

Climate change experiments

GCM output has been used in the literature to quantify projected changes in extra

tropical cyclone activity under different greenhouse gas emission scenarios. Simu-

lations of future climate using models from the Coupled Model Inter comparison

Project (CMIP5) were used in Zappa et al. (2013), where there was found to be a

small but significant increase in the number of all cyclones over the British Isles,

and an increase in the mean wind speed of the most intense cyclones over the same
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region and central Europe between December and February when considering the

multi-model means. These conclusions agreed qualitatively with earlier studies us-

ing single climate models (Leckebusch and Ulbrich, 2004) . In Sansom et al. (2013)

an investigation of the robustness of cyclone frequency changes to the choice of

CMIP5 models was conducted, and it was concluded that climate change signals

were statistically significant and not dependent upon the choice of model.

As well as the changes in the physical attributes of extra tropical cyclones, cli-

mate models have been used to investigate the change in loss potentials for Europe

under future climate conditions (Pinto et al., 2007; Leckebusch et al., 2007). Both

of these studies estimate losses using a loss index developed in Klawa et al. (2003),

using the upper 2% quantile of windspeeds and population data. The conclusions

were similar with both studies showing increased loss potential for parts of Europe

under a no adaptation hypothesis. A similar approach using a proprietary loss

model instead of the loss index was considered in Schwierz et al. (2010). Here the

change in return levels for the annual mean loss, and the 10,30 and 100 year re-

turn periods were shown to increase for a European market portfolio under climate

change projections. All three studies considered the exposure (population, insured

property values) constant, therefore changes in future loss distributions were due

solely to projected changes in extra tropical cyclone activity.

Modulation by climate modes

The level of activity along the storm tracks and their position exhibits variability

on timescales ranging from days to decades. This variability can partly be ex-

plained by changes in the large scale atmospheric circulation patterns which also

vary over these timescales (Stephenson et al., 2006; Seierstad et al., 2007; Raible,

2007). For example, positive phases of the North Atlantic Oscillation pattern have

been shown to be associated with increased cyclone occurrence and a polewards

shift of the position of the North Atlantic storm track (Rogers, 1997). Conversely

negative phases of the NAO are associated with a southward shift of the storm
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track and decreased cyclone occurrence. This relationship arises as the NAO mod-

ulates environmental factors such as the position of the jet stream which in turn

influences cyclone steering (Pinto et al., 2009). As well as cyclone steering the

positive phase of the NAO is linked to larger areas with suitable growth condi-

tions for extreme cyclones (Pinto et al., 2009). Here extreme cyclones were shown

to occur more frequently during strongly positive phases of the NAO, as well as

having longer lifetimes and higher intensities. An extreme value approach used in

Sienz et al. (2010), where the NAO index was used as a covariate for the parameters

of a GPD fitted to cyclone intensity measures, broadly supported these conclusions.

Much less attention has been paid in the literature to the relation between the

Scandinavian pattern (SCP) and the East Atlantic Pattern (EAP) and extra trop-

ical cyclone activity. Although the NAO is the dominant driver of cyclone activity

over much of the North Atlantic ocean, over mainland Europe regression studies

have consistently found the SCP coefficient to be significant (see e.g. Mailier et al.

(2006) Fig. 8c, Vitolo et al. (2009) Fig. 11 e,f and Seierstad et al. (2007) Fig. 4

c). Therefore inclusion of these patterns is also important in extra tropical cyclone

risk studies for Europe.

2.4.1 Clustering

An area of ongoing research, which is of substantial interest to the insurance com-

munity, is the clustering of windstorms over Europe. The first rigorous statistical

analysis of the clustering of extra tropical cyclones was presented in Mailier et al.

(2006). The NCEP-NCAR reanalysis was used to investigate the clustering of

monthly cyclone counts over the Northern Hemisphere. Overdispersion in cyclone

counts was found to be greater than expected by chance over the exit region of the

North Atlantic storm track and the central North Pacific. The cyclone counts over

the western Atlantic and North Pacific regions of the storm track were more regular

than to be expected by chance (under-dispersed counts). Mailier et al. (2006) used

a Poisson regression approach, as described in Section 2.2, is used to investigate
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possible atmospheric drivers of clustering. Two possible physical mechanisms pro-

posed in the study to explain the clustering of extra tropical cyclones are described

below.

Secondary cyclogenesis was first proposed along with the Norwegian model in Bjerk-

nes and Solberg (1922). Here the primary or parent cyclone creates a front in its

wake along which new secondary cyclones can form. The existence of secondary cy-

clogenesis has been validated in later studies, for example Dacre and Gray (2009),

which showed that not all North Atlantic extra tropical cyclones that form over the

Gulf Stream make it to western Europe. Instead some cyclones dissipate over the

middle of the Atlantic after giving rise to secondary cyclones which track further

eastwards towards Europe.

However, the clustering process of secondary cyclogenesis does not occur for most

observed storm clustering. For example, an analysis of the Christmas storms of

1999 shows that the spatial separation between Lothar and Martin at the time of

genesis for Martin was 3500km, making secondary cyclogenesis unlikely (Mailier

et al., 2006) . The second mechanism suggested in Mailier et al. (2006) for clus-

tering is the rate varying affect of background atmospheric conditions. Large-scale

flow patterns such as the NAO associated with the position and strength of the

jet stream, can result in increased numbers of cyclones following similar trajecto-

ries,and thereby clustering. In Mailier et al. (2006) it was concluded that clustering

was largely due to this rate variation as shown in the residuals of the Poisson re-

gression.

The dependence of clustering on the length of winter and the individual cyclone

intensity was further investigated in Vitolo et al. (2009). Clustering was found to

increase with winters up to 6 months in length, as well as with intensity threshold

(see Fig. 2.1). As in Mailier et al. (2006), the relationship between cyclone counts

and large scale flow patterns was analyzed. As well as the NAO, the EAP and the
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SCP were found to be key drivers of the observed cyclone clustering over parts of

Europe. The increased clustering for more intense storms was discussed in Hanley

and Caballero (2012), where it was shown that the same atmospheric conditions

were responsible for cyclone steering and intensification.

Figure 2.1: Dispersion statistic (solid line) and 90% bootstrap confidence interval

(dashed) of the 3-monthly cyclone counts at the approximate location of Berlin

(12.5E,52N) as a function of the 850 hPa relative vorticity threshold used to select

the most intense cyclones

Clustering of extra tropical cyclones has also been investigated in climate model

output (Kvamstø et al., 2008). The ARPEGE general circulation model was able

to reproduce the spatial patterns of extra tropical cyclone clustering although with

diminished magnitude. The relationship between the large scale flow patterns and

cyclone counts was not well reproduced by the ARPEGE model. Clustering under

future climate conditions were investigated in Pinto et al. (2013). A large ensemble

of ECHAM5/MPI-OM1 (European Centre Hamburg Version 5 /Max Planck Insti-

tute Version - Ocean Model Version 1) global climate model (GCM) simulations

was used to investigate the ability of climate models to reproduce clustering and

changes in clustering over the North Atlantic under future climate conditions. Clus-
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tering of cyclone counts in the ensemble over western Europe was found to decrease

under present greenhouse gas emission scenarios between 2060-2100, particularly

for intense cyclones.

2.4.2 Aggregate risk

Several studies have estimated return periods for extra tropical cyclones, based on

physical variables (Della-Marta et al., 2009; Kunz et al., 2010; Sienz et al., 2010)

and financial loss (Rootzén and Tajvidi, 1997; Schwierz et al., 2010). As discussed

at the end of Section 2.2.6, these methods are unsuitable for calculating insurer’s

PML, which depends on the aggregation of all losses in a year, not just individual

events. Insured losses from extreme European windstorms, taken from the Extreme

Windstorm Catalogue2 (XWS), are reported in Table 2.1. The cluster of cyclones

which struck Europe in December 1999 resulted in over $ 14 billion in insured

losses, of which the most expensive event, Lothar, accounts for only around half

(Table 2.1). Similarly for the January/February 1990 cluster (including Wiebke

and Herta), which resulted in a total of $16.7 billion in insured losses, the most

expensive event Daria was again responsible for only around half. Therefore mod-

elling the behaviour of extreme events individually is not sufficient in quantfying

the aggregate loss distribution.

Wang et al. (2006) introduced a measure of seasonal aggregate extra tropical cy-

clone activity, defined as the sum of the mean intensities (determined using mean

sea level pressure (MSLP)) of all cyclones in a season. This aggregate measure

was used to compare cyclone activity between the NCEP-NCAR and ERA40 re-

analysis, which found the datasets to be in good agreement over northern Europe

and eastern North America. However the study did not consider return periods

for this metric, or the relation with large scale flow patterns or any other mod-

elling assumptions. Similarly a measure of the aggregate daily storm severity was

introduced in (Leckebusch et al., 2008), to investigate storm severity under anthro-

2http://www.europeanwindstorms.org
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progenic climate change, but not the relation between aggregate cyclone activity

and clustering or large scale flow patterns.

Insurers need to be able to reliably assess the risk from the aggregation of ex-

treme events. However, no published studies have formally assessed the aggregate

risk of extra tropical cyclones, particularly with regards to clustering or climate

change. In Pinto et al. (2013) and Vitolo et al. (2009) the potential for cluster-

ing to result in large cumulative losses is discussed anecdotally but not formally

investigated. A framework for aggregate loss that can investigate the effect of clus-

tering, climate change and environmental factors that influence cyclone steering

and intensification would allow more accurate assessment of the risk for decision

makers.
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Name Date Insured

losses

(USD)

Maximum

Vorticity

Affected countries

Daria 25/1/1990 8.2bn 11.9 BEL, FRA, DEU, NLD, GBR

Lothar 26/12/1999 8.0bn 6.43 FRA, DEU, SWI

Kyrill 18/1/2007 6.7bn 8.6 AUT, BEL, FRA, DEU, IRL,

NLD, GBR

87J 16/10/1987 6.3bn 10.2 FRA, GBR

Vivian 26/2/1990 5.6bn 9.5 BEL,FRA, DEU, NLD, GBR

Klaus 24/1/2009 3.5bn 9.3 AND, FRA, DEU, ITA,ESP, SWI

Martin 27/12/1999 3.3bn 9.2 FRA, ITA, SWI

Xynthia 27/2/2010 2.9bn 9.6 BEL, FRA, DEU, POL, PRT,

ESP, SWE, GBR

Anatol 3/12/1999 2.6bn 11.0 DNK, DEU, SWE

Erwin 8/1/2005 2.2bn 9.8 DNK, IRL, NOR, SWE, GBR

Herta 3/2/1990 1.5bn 13.4 BEL, FRA, DEU, NLD, GBR

Wiebke 28/2/1990 1.4bn 7.8 BEL, FRA, DEU, NLD, SWI,

GBR

Emma 29/2/2008 1.4bn 9.6 AUT, BEL, CZE, DEU, NLD,

POL, SWI

Gero 11/1/2005 0.6bn 8.6 IRL, GBR

Ulli 3/1/2012 0.2bn 10.2 GBR

Dagmar 26/12/2011 0.04bn 8.6 FIN, NOR

Table 2.1: European windstorms that have resulted in high insured losses (Source:

Extreme Wind Storms (XWS) Catalogue). The insured losses have been adjusted

to 2012 values. Country codes are, Austria (AUT), Andorra (AND), Belgium

(BEL), Czech Republic (CZE), Denmark (DEN), Finland (FIN), France (FRA),

Germany (DEU), Great Britain (GBR), Ireland (IRL), Italy (ITA), Netherlands

(NLD), Norway (NOR), Poland (POL), Portugal (PRT), Spain (ESP), Sweden

(SWE), Switzerland (SWI).
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2.5 Data

This thesis has used historical storm tracks from two reanalysis datasets. Reanal-

ysis datasets are derived from numerical weather prediction models (NWP) which

have assimilated historic observations.

2.5.1 Cyclone track database

The cyclone tracks considered here were obtained from the 6-hourly reanalyzes of

the extended October-March winters between 1950/1 - 2002/3, which was produced

jointly by the National Centers for Environmental Prediction and the National

Center for Atmospheric Research (NCEP-NCAR reanalysis) (Kalnay et al., 1996;

Kistler et al., 2001), as well as the ERA40 reanalysis of the October-March win-

ters between 1958-2002/3 produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF) in collaboration with many institutions (Uppala

et al., 2005). The mean sea level pressure (MSLP) and the zonal and merid-

ional 850mb wind components were extracted. This dataset has been widely used

in previous extra tropical cyclone studies e.g. Mailier et al. (2006); Vitolo et al.

(2009); Zhang et al. (2004).

An objective tracking algorithm was used on the data extracted from the NCEP-

NCAR reanalysis to provide storm tracks defined at 6-hourly intervals, from Oc-

tober 1950 to March 2003 (Hodges, 1994; Hodges et al., 1995; Hodges, 1999). The

tracking algorithm calculates the following intensity variables: vorticity, sea level

pressure and max wind speed (Fig. 2.2). In this thesis relative vorticity ξ850 is

used as an intensity measure, which is less influenced by the background state of

the atmosphere than MSLP as it focuses on smaller spatial scales. The vorticity

has also been used effectively as the cyclone intensity measure in previous studies

on extratropical cyclone risk (Mailier et al., 2006; Vitolo et al., 2009).
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Figure 2.2: Cyclone tracks for the October 1989 to March 1990 extended winter.

Only a subset of tracks is plotted: ones where any 6-hourly MSLP value reached

below 960hPa. Nadir positions are denoted with solid circles (Source Economou

et al. (2014)).

As in Mailier et al. (2006) a spatial grid covering the Northern Hemisphere

between [180W, 180E] in longitude and [20N, 80N ] in latitude was used to provide

a set of reference points. Here the spatial resolution was 2.5◦ in both longitude and

latitude. At each grid point the vorticity of cyclones as they passed within ±10◦

was recorded (Fig 2.3). Time series of the total winter counts and winter local mean

vorticity could then be constructed for all grid points for each winter. Previous

studies have typically used aggregation periods of one or three months (e.g. Vitolo

et al. (2009)). Here the extended winter (six month) aggregation period is used

instead as it reflects the aggregation period of losses which would be used by an

insurer.
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Figure 2.3: Time series of cyclone transits passing near Gothenburg [12.5◦E, 57.5◦N]

between October 1989 and March 1990.

The results of any analysis of cyclone tracks will be sensitive to the database,

tracking algorithm and cyclone intensity measure used (Ulbrich et al., 2009). To

assess the robustness of any analysis to the choice of database parts of the analysis

conducted in this thesis was also repeated for the ERA 40 reanalysis (European

Centre for Medium-Range Weather Forecasts 40 Year Re-analysis) and shown in

Chapter 3. Alternative tracking methods and intensity measures were not consid-

ered here, however an investigation into extra tropical cyclones using an alternative

tracking method and intensity measure was found to produce qualitatively simi-

lar results to alternate studies which used Hodges algorithm and vorticity as an

intensity measure (Pinto et al., 2013).

2.6 Summary

Previous studies have focused on individual attributes of hazards such as their fre-

quency or intensity, or the risk from individual extreme events. An exception to

this is U.S. hurricanes, where a few studies have considered total losses under re-
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strictive conditions, e.g. Katz (2002); Jagger et al. (2008). In this thesis, a general

framework for aggregate losses is introduced and modelling assumptions are inves-

tigated in detail. Particular attention will be paid to modelling the extremes of the

aggregate loss due to the relevance of this quantity for society and the insurance

sector.

This chapter has described methods used in the literature. Extra tropical cy-

clones have been introduced as a relevant case study for developing a framework

for modelling aggregate risk. The same database of extra tropical cyclone tracks

as used in Mailier et al. (2006) and Vitolo et al. (2009) is used here.



Chapter 3

Understanding the aggregate risk

of extra tropical cyclones

3.1 Aim

In this chapter the aggregate risk of Northern Hemisphere extra tropical cyclones

is investigated. Models for the aggregate risk using teleconnection indices as ex-

planatory variables are then analyzed. The robustness of these results is considered

by testing sensitivty to choice of reanalysis data.

3.2 Collective risk models

The risk posed to society by natural hazards is often accumulative involving both

the frequency of occurrence and the intensity of events. To fully quantify the ag-

gregate risk from extra tropical cyclones one requires a measure of cyclone activity

which includes both the frequency and intensity. Such a metric exists in the risk

management community called the annual aggregate loss (AAL) and is defined as

the sum of the intensities (losses) for all events in a year. The distribution of the

AAL can be investigated using a collective risk model (Prabhu, 1961). In this

section the basic formulation of a collective risk model is described and applied to

extra tropical cyclones.

42
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Collective risk theory has its roots in the actuarial literature, dating back to the

start of the 20th century (Houston, 1960). In the collective risk model formulation

both the number of claims and size of individual claims are assumed random. The

AAL is therefore modelled as the sum of a random number of random variables

and so is sometimes also called the random sum model (McNeil et al., 2005). Col-

lective risk theory was developed by Filip Lundberg between 1909-1939, however it

was not widely adopted by the actuarial community as the relatively large amount

of computational power required to apply the theory made it of little practical

use (Borch, 1967). Increases in computer power allowing the implementation of

techniques such as Monte Carlo simulation have resulted in collective risk theory

becoming widely adopted by the insurance industry over the latter half of the 20th

century, and collective risk models are now considered the bread and butter of in-

surance mathematics (Embrechts et al., 1997). Collective risk theory also has the

potential to be used in climate science, for example to model annual U.S. hurricane

losses (Katz, 2002) or total monthly precipitation (Katz and Parlange, 1998).

3.2.1 Frequency and intensity

Extremes in a single meteorological variable at a specific location can be modelled

as a marked point process (see Section 2.2). Events occur at irregular times Ti

with variable intensities Xi (see Fig. 3.1). For natural hazards the occurrence of

events is typically modelled as a Poisson process, where N(t) denotes the number of

occurrences in a time interval [0, t] (McNeil et al., 2005). Each individual occurrence

has a mark or intensity1 X1, ..XN (see Fig. 3.1). The number of occurrences N

is a non negative integer valued random variable, while the intensities Xi are real

valued random variables. The aggregate risk, also referred to here as the aggregate

loss, S is the aggregate total intensity of the N events that occur in a given time

1Intensity is often used to refer to the rate parameter of the Poisson distribution. In this thesis

intensity refers to the mark size X.
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Figure 3.1: Example of a marked point process

period (e.g. over a season or year);

S = X1 + ...+XN =
N∑
i=1

Xi.

The mean expected aggregate loss can be expressed using the law of total expec-

tation by conditioning on the number of events N

E[S] = EN [
N∑
i=1

E[Xi|N ]] = E[N ]E[Y ] + Cov(N, Y ),

where Y is the mean intensity; (Y =
∑N

i=1 Xi/N). The variance of the aggregate

risk from the law of total variance is

V ar(S) = EN [(
N∑
i=1

Xi|N)] + V arN(E[
N∑
i=1

Xi|N ])

= Cov(N2, Y 2)− [Cov(N, Y )]2 − 2Cov(N, Y )E[N ]E[Y ]

+ V ar(N)E[Y ]2 + V ar(Y )E[N2]

(3.1)

see Appendix A for details.
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3.3 Climatology of aggregate risk

Here the aggregate risk of extra tropical cyclones for the Northern Hemisphere is

investigated using the storm tracks obtained from the NCEP NCAR reanalysis as

described in Chapter 2. The aggregate risk of extra tropical cyclones is estimated

at each grid point as the sum of the vorticities of all cyclones passing within ±10o

of latitude over the extended winter (Oct-Mar).

The mean cyclone counts n̄ (see Fig. 3.2 a) show the location of North Atlantic

and North Pacific storm tracks, agreeing with that shown in Hoskins and Hodges

(2002). Areas of high cyclone activity can be seen in the lee of the Rockies in

North America and east of the Urals as in Hoskins and Hodges (2002). The sample

variance in cyclone counts s2
n (Fig. 3.2b) is greatest over the storm tracks with

the maximum towards the exit region of the storm tracks. These findings agree

qualitatively with those of the mean and variance of monthly counts in Mailier

et al. (2006) and the 3 monthly counts in Vitolo et al. (2009), where both studies

considered winter storm tracks from the NCEP-NCAR reanalysis.

Maxima of the sample local mean vorticity ȳ can be noted over the North At-

lantic and North Pacific storm tracks (Fig. 3.2 c). The variance in winter local

mean vorticity is greatest along the north/south edges of the storm track, as well

as a maxima over the North Western Pacific (Fig. 3.2 d).

The sample mean aggregate risk for the 6 month winter, s̄, and variance s2
s, shows

a broadly similar pattern to the sample mean and variance of the cyclone counts

(Fig. 3.2 e,f). This suggests that regional variation in the mean and variance of

the aggregate loss might possibly be largely accounted for by regional variation in

cyclone counts.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: (a) Sample mean n̄ cyclone counts per 6 month winter and (b) sample

variance s2
n of winter cyclone counts, (c) sample winter local mean vorticity ȳ (d)

sample variance s2
y , (e) sample winter mean s̄ of the aggregate loss and (f)

sample variance s2
s
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To quantify sources of variation in the aggregate risk, the sample variance of s

is expressed in terms of y, as in Eqn. 3.1, as s2
s = Vn + Vy + Vc, where

Vn = s2
nȳ

2

Vy = s2
yn̄

2

Vc = cov(n2, y2)− cov(n, y)2 − 2cov(n, y)ȳn̄

(3.2)

and cov(.) is the sample covariance between n and y (see Appendix A for details).

The terms Vn, Vy are non-negative as the sample mean and variance of the counts

and vorticity is non-negative. The Vc can be negative if there is negative covariance

between n and y. From Eqns. 3.1 and 3.2, positive covariance will increase the

variance of the aggregate loss (both sample and population variance), conversely

negative covariance results in lower s2
s and V ar[S]. The component due to variance

in counts, Vn, accounts for a large proportion (50 − 80%) of the variance in the

aggregate loss of extra tropical cyclones over the North Atlantic and North Pacific

storm tracks (see Fig. 3.3 a). Over the Kuroshio and the Gulf Stream, which are

the primary regions of cyclogenesis for the storm tracks, Vn > s2
s (therefore Vc < 0)

and over North Western Europe and the edges of the North Pacific storm track

Vn accounts for less than half of s2
s. The variance component due to variance in

intensity, Vy, (Fig. 3.3b) account for less of the variance in s than Vn however

still makes a significant contribution over the Gulf Stream and the Kuroshio. The

variance component due to covariance between counts and intensity, Vc, (Fig. 3.3

c) accounts for the least of the variance in s along much of the storm tracks but

is non-negligible and positive (negative) over the cyclesis(cyclogenesis) regions for

the storm tracks. Including covariance between frequency and intensity is thus nec-

essary for accurately modelling the variance in the aggregate risk of extra tropical

cyclones.
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(a) (b)

(c)

Figure 3.3: Proportion of variance in s accounted for by a) counts Vn/s
2
s b)

cyclone intensities Vy/s
2
s c) covariance between the frequency and intensity Vc/s

2
s

3.4 Quantifying the frequency-intensity depen-

dency and its impact on aggregate risk

It is of interest to further diagnose the magnitude and extent of correlation between

the frequency and intensity. In this section correlation between frequency and

intensity is quantified both for original and detrended time series of counts and

local mean vorticity. Three parametrizations of a collective risk model are then

proposed to investigate the impact of various modelling assumptions.
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3.4.1 Sample correlation

Figure 3.4 shows a map of the (Pearson’s) sample correlation r between n and

y. Positive correlation between the frequency and mean intensity of extra tropi-

cal cyclones along the North Atlantic storms track can be seen over Scandinavia,

Northern Germany and the Benelux countries (r = 0.2 − 0.6), as well as negative

correlation over the Gulf Stream (r = −0.3). The North Pacific storm track shows

similar patterns, with positive correlation towards the exit region of the storm track

and negative correlation over the Kuroshio.

(a) (b)

(c) (d)

Figure 3.4: (a) Map of the correlation between n, y. b) Map of the correlation

between ∆n,∆y. Correlation between c) n and y and d)∆n,∆y which is

significant at the 5% level determined using the cor.test function in R.
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Previous studies have shown that there are increasing trends in intense cyclone

counts for the NCEP NCAR reanalysis between 1950-2003 (e.g. Mailier et al.

(2006); Vitolo et al. (2009)). The time series of n and y at each grid point was de-

trended using a first order differencing method to assess if the observed correlation

was due to trends in both the counts and local mean vorticity. Here we define ∆n

and ∆y as

∆yt = yt − yt−1,

∆nt = nt − nt−1,

where t is the extended winter. Figure 3.4 b shows the map of the correlation

between ∆n and ∆y. For the North Atlantic storm track the magnitude and sign

of the correlation between ∆n and ∆y is roughly equal to the correlation between

n, y (Fig. 3.4 b) . The statistical significance of the correlation was assessed using

the cor.test function in R, and values of cor(n, y) and cor(∆n,∆y) which were

significant at the 5% level are shown in Fig. 3.4 c,d. The positive correlation over

northern Europe and negative correlation over the Gulf stream can both be seen

to be statistically significant at the 5% level, while much of the positive correlation

over the North Pacific is insignificant after detrending. From this we can infer

that the correlation between frequency and intensity of Northern European extra

tropical cyclones is not primarily due to trends in the data. Increasing trends

in Pacific cyclone frequency and intensity were investigated in Graham and Diaz

(2001), where it was shown that these trends were unlikely to be an artifact of

the observations or of reanalysis procedures, but are instead attributed to slow

changes in background conditions such as increasing sea surface temperatures in

the western tropical Pacific.

3.4.2 Covariance between the frequency and intensity

Three parametrizations of a collective risk model are proposed here for the mean

and variance of S (see Appendix A.2 for detailed derivations). The purpose of

these models is to test assumptions such as N and X are independent, and Xi and
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Xj independent for i 6= j. The first parameterization, M1, assumes there is linear

dependence between N and X, and only allows for covariance between consecutive

cyclones. Covariance is considered between consecutive cyclones as there may be

some dependence due to secondary cyclogenesis, however there is no reason to

assume non-neighboring cyclones will be related. The first model assumes that:

µX |N = β0 + β1N

σXX |N =


σ2
X for i = j

ρσ2
X for i = j ± 1

0 otherwise,

(3.3)

where ρ,σXX is the correlation and covariance between consecutive cyclone inten-

sities respectively. The mean and variance of S can then be shown to be given

by

µS = β0µN + β1(σ2
N + µ2

N)

σ2
S = σ2

XµN + 2(µN − 1)ρσ2
X + β2

0σ
2
N + β2

1σ
2
N + 2β0β1(µN3 − µNµN2)

(3.4)

(see Appendix A.2). Sample estimates for σ2
X (s2

x), ρ (cor(xi, xj)) were calculated

from the dataset at each grid point, along with maximum likelihood estimates and

standard errors for β̂0, β̂1 which were calculated using the lm function in R (not

shown). Figure 3.5 shows the modelled variance σ2
S of the aggregate risk as well

as the ratio of the modelled variance to the sample variance (σ2
S/s

2
s). From Figure

3.5a,b σ2
S can be seen to provide a reasonable approximation to the sample variance

s2
s, as it is within ±5% for most grid points

For the second model parameterization, M2, X and N are assumed independent

and Eqn. 3.3 becomes E[Xi] = β̂0 = x̄. Figure 3.5 c,d shows σ2
S underestimates

s2
s by between 10− 50% over the storm tracks, with the greatest discrepancy over

northern Europe and the eastern Pacific. For regions of cyclogensis over the Gulf

Stream and eastern China, σ2
S is greater than the sample variance s2

s by up to 50%.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Left column; modelled variances σ2
S , right column; ratio of the

modelled variance to the sample variance σ2
S/s

2
s . a,b) M1 c,d) M2 e,f) M3

For the third model parametrization, M3, X and N are again assumed linearly

related but Xi, Xj are now assumed independent (ρ = 0). The modelled variance

σ2
S (Fig. 3.5 e,f)) provides a reasonable approximation for s2

s although there is some
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under estimation to the east of the Scandinavia.

The collective risk model is able to account for variance in the aggregate risk S,

under suitable modelling assumptions. When X and N are assumed independent

the model underestimates the variance of S over the exits of the storm track, and

overestimates variance over the Gulf stream and the Kuroshio. Assuming indepen-

dence between the intensities of consecutive cyclones does not significantly effect

the modelled variance.

3.4.3 Sensitivity to choice of reanalysis data: NCEP-NCAR

and ERA40

The sensitiviy of the existence of correlation to the choice of dataset was assessed

using the ECMWF reanalysis (ERA-40). Cyclone tracks were obtained from the

ERA-40 reanalysis using the same methodology as for the NCEP-NCAR reanalysis.

Figure 3.6 shows the map of the correlation between n and y for both reanalysis

datasets. Positive correlation is seen in both datasets over the same region of

northern Europe as well as over the Pacific, and negative correlation can be seen

over the east coast of the United States and eastern China. The main difference

is that the positive correlation in ERA-40 over North Europe (North Pacific) is of

smaller magnitude and extent than for the NCEP-NCAR reanalysis. Differences

in storm tracks in the NCEP-NCAR and ERA-40 reanalysis has been noted in the

literature (Trigo, 2006), but the findings here regarding the location and sign of

the correlation between the datasets are in broad agreement.
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(a) (b)

(c)

Figure 3.6: a) Map of the correlation between n, y for the NCEP-NCAR

Reanalysis between 1958:2000. b)Map of the correlation between n, y for the

ERA-40 Reanalysis between 1958:2000 c) Map of the correlation between n and y

for the subset of the 50% most intense cyclones at each grid point for

NCEP-NCAR 1958:2003

The correlation was also considered between the subset of the 50% most intense

cyclones at each grid point for the NCEP-NCAR dataset (Fig. 3.6 c). The positive

correlation over Scandinavia remain the most robust feature. The regions of nega-

tive correlation over the Gulf stream and Kuroshio have both dissapeared though,

meaning the negative correlation is a feature of the weaker systems.
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3.5 Can climate modes explain the frequency-

intensity dependence?

This section investigated whether correlation between frequency and intensity could

be due to joint forcing by underlying large-scale flow patterns (see Fig. 3.7). To test

this hypothesis, winter cyclone counts and local mean vorticity are both regressed

on the same set of climate indices as explanatory variables. Similar approaches have

been successful in previous studies for explaining the clustering of extra tropical

cyclones (Mailier et al., 2006; Vitolo et al., 2009).

Figure 3.7: Schematic showing the suggested relationship between large scale flow

patterns, frequency and intensity and the aggregate risk.

3.5.1 Large scale flow patterns

Barnston and Livezey (1987) identified 10 teleconnection patterns which describe

the state of the large scale flow for the Northern Hemisphere. Monthly indices for

these teleconnection patterns between 1950-2003 were obtained from the Climate
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Prediction Center2. The indices were calculated using Rotated Principal Com-

ponent analysis applied to monthly mean 700-mb geopotential height anomalies

between January 1964 - July 1994, then for every month, 10 leading orthogonal

functions (EOFs) are selected and the amplitudes are standardized to zero mean

and unit variance. The teleconnection indices are mutually uncorrelated by defi-

nition, making them useful as a basis of explanatory variables in regression models.

The North Atlantic Oscillation (NAO), the leading mode of climate variability

in the Northern Hemisphere, is characterized by a meridional dipole of pressure

anomalies of opposite sign located over Iceland (low) and the Azores (high). The

positive phase, which corresponds to below normal pressure over Iceland, has al-

ready been linked to increased cyclone activity over the North Atlantic in previous

studies (Pinto et al., 2009; Rogers, 1997). The East Atlantic pattern (EAP) and

Scandinavian pattern (SCP) are also important modes of variability in the winter

months, and describe changes in pressure and in the position and speed of the

North Atlantic jet stream which can influence cyclone activity (Woollings et al.,

2010; Bueh and Nakamura, 2007). Plots of the 700mb stream function (Ψ700) re-

gressed on 6 month winter mean values of the NAO, EAP and SCP are shown in

Fig. 3.8. The Azores-Iceland dipole pattern can be seen for the NAO (Fig. 3.8

a). For the SCP, the primary center of action can be seen over Scandinavia, with

weaker centers of opposite sign to the west of Europe and over Mongolia (Fig.

3.8b). The EAP shows a similar pattern to the NAO but shifted south-east (Fig

3.8c).

2http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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(a) (b)

(c)

Figure 3.8: Maps of the linear regression coefficient of the a) NAO b) SCP c)

EAP index winter mean regressed on the 700mb stream function Ψ700

Extra tropical cyclones passing within ±10◦ north or south of the grid point

nearest Gothenburg (Sweden) [12.5◦E,57.5◦ N] were analyzed in detail as this loca-

tion exhibits the strongest positive correlation between the frequency and intensity

(r = 0.47). Cyclones passing the grid point closest to Barcelona (Spain) [2.5◦E, 40◦

N] were also investigated as this is a location which has low negative correlation

between n and y (r = −0.10). Correlation maps of n, y and the 700mb stream func-

tion were used to identify possible teleconnection patterns driving both frequency

and mean intensity of extra tropical cyclones. The 700mb stream function was

chosen as it had been used in a previous study investigating the relation between

large-scale flow and extra tropical cyclone activity in the same region (Bueh and
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Nakamura (2007)).

(a) (b)

(c) (d)

Figure 3.9: Plots of the correlation between the stream function Ψ700 and (a)

Gothenburg cyclone counts n (b) Gothenburg mean vorticity y (c) Barcelona

cyclone counts n (d) Barcelona mean vorticity y.

Correlation maps for n and y with Ψ700 at Gothenburg (Fig. 3.9a,b) show a

broadly similar pattern, which shows a strong resemblance to the SCP shown in

Fig. 3.8b, with a centre of action over Scandinavia and another of opposite sign

over western Europe. The correlation of Ψ̄700 and n for Barcelona shows a centre

of action centred over central Europe, with two other centres; one of opposite sign

over west Russia/Kazakhstan, and another of the same sign located over the Gulf

Stream (see Fig. 3.9(c)). The map of the correlation between the mean intensity

y and Ψ700 also shows a tripole pattern, except the centre of action over Central
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Europe is now the weakest of the three, and the location of the other two centres

has been shifted northwards. A possible cause for the lower correlation between

Barcelona frequency and intensity is due to the different atmospheric mechanisms

which appear to be driving the steering and intensification.

3.5.2 Regression modelling of frequency and intensity

Regression models were developed for the frequency N and mean intensity Y to for-

mally assess the association with large-scale flow patterns. Two models for counts

and two for local mean vorticity were considered in this analysis. The first model

for N and Y used teleconnection patterns considered particularly relevant for the

North Atlantic region as explanatory variables. As well as the three North Atlantic

teleconnection patterns discussed above, there is the East Atlantic/West Russian

(EWP) pattern and the Polar/Eurasian (POL) pattern active in the region for

some winter months. The second set of explanatory variables which was consid-

ered briefly were the teleconnection patterns relevant for the Pacific region.

As mentioned in Chapter 2, the occurrence of natural hazards can be modelled

using a Poisson distribution. The winter cyclone counts N for Gothenburg and

Barcelona were modelled as Poisson distributed with rate parameter λn (see e.g.

Aitkin et al. (2009) for more on Poisson regression in R). The mean number of cy-

clone counts was related to the winter means of the teleconnection patterns using

the following generalised linear model:

N ∼ Poisson(λn)

log(λn,t) = β0 +
6∑

k=1

βkzk,t,

see Chapter 2. Here k = 1, . . . , 6 and t = 1, . . . , 53 is the year and z2,t, , ..., z6,t

are the values of the extended winter means of the teleconnection indices for the

North Atlantic in year t. The Polar/Eurasian pattern z6,t is inactive during Octo-

ber, November and March and is set to zero for these months. The coefficient β1

accounts for any linear time trend, and β2, ..β6 are the dependence of the cyclone
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counts on the teleconnection patterns.

The goodness of fit for a generalized linear model can be assessed using the deviance

residuals. When the model is well specified then the deviance residuals should be

normally distributed with mean zero. A plot of the quantiles of the deviance resid-

uals against a theoretical normal distribution is shown in Fig. 3.10a. Apart from

a slight deviation in the lower tail (suggesting the model is not as appropriate for

years with low counts), the deviance residuals are well-behaved. The plot of the log

fitted values against the deviance residuals (Fig. 3.10 b) also suggests a good fit

for the model; the residuals are evenly spread around zero and with approximately

constant variance.

(a) (b)

Figure 3.10: a) QQ- plot of standardized deviance residuals. b)Deviance residuals

plotted against log fitted values

Following Vitolo et al. (2009), a Lagrange multiplier test is used to formally

assess if there is overdispersion/underdispersion not accounted for by the Poisson

regression. This is done by testing for overdispersion against the Katz system where

the test statistic is

TLM = 0.5
m∑
i=1

[(ni − µi)2 − ni]/

√√√√0.5
m∑
i=1

µ2
i ,
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see Cameron and Trivedi (2013) Sec. 5.4.1. At Gothenburg, there was found to

be some (residual) underdispersion of counts, but it is not significant at the 5%

level. From this and the residual analysis the Poisson GLM is concluded to be an

appropriate model for the winter cyclone counts.

Maximum likelihood estimates for the coefficients (β̂k)for the winter count models

for Gothenburg and Barcelona are given in Table 3.1. For the grid point closest

to Gothenburg, only the SCP showed a significant (according to a t-test at the

5% level) relationship with the winter cyclone counts. The SCP is negatively as-

sociated with the number of cyclones passing near Gothenburg. For extra tropical

cyclones passing near Barcelona only the NAO shows a significant (negative) re-

lationship with counts. These findings are consistent with those of Vitolo et al.

(2009); Mailier et al. (2006), where the SCP slope estimate was significant over

most of Scandinavia, including the Gothenburg grid cell.

Indices zk Gothenburg β̂k Barcelona β̂k

Time z1 0.17 (0.14) -0.23(0.19)

NAO z2 0.09 (0.06) -0.20 (0.09)

EAP z3 0.02 (0.05) 0.11 (0.07)

SCP z4 -0.19 (0.06) -0.04 (0.09)

EWP z5 0.03 (0.08) -0.09 (0.11)

POL z6 -0.03 (0.08) -0.21 (0.11)

Table 3.1: The regression coefficient estimates in the Poisson regression of cyclone

counts over Gothenburg and Barcelona. Standard errors are in brackets, estimators

with p ≤ 0.05 are in bold.

Normal linear regression was found to be suitable for modelling winter local

mean vorticity Y , with the modelled intensity regressed against the same telecon-

nection indices as the modelled counts. The extended winter local mean vorticity
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is then

Y ∼ N(µy, σ)

µy,t = α0 +
6∑

k=1

αkzk,t.

The zk,t is the same as for the Poisson model, and the regression coefficient esti-

mates αk have the same interpretations as above except they are (linearly) related

to winter local mean vorticity instead of cyclone counts.

The linear model fit is assessed using plots of the residuals. As with the deviance

residuals for the Poisson models, the residuals should be Normally distributed, with

mean zero and constant variance. The plot of the residuals against fitted values

(Fig. 3.11 a) shows no evidence of heteroscedasticity (funelling) and so gives no

reason to question the model fit. The quantile-quantile plot (Fig. 3.11 b) of the

sample residuals against theoretical also support the model fit, although there is

some deviance from the 45o line in the tails.

(a) (b)

Figure 3.11: a) Left: Density estimate of the residuals. Right: Normal QQ- plot

of the residuals. b)Residuals vs fitted

Maximum likelihood estimates for the regression coefficients for Gothenburg

and Barcelona mean vorticity (α̂k) are given in Table 3.2. The estimate for the
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Indices zk Gothenburg α̂k Barcelona α̂k

Time z1 0.91 (0.29) 0.04 (0.38)

NAO z2 -0.12 (0.29) 0.08 (0.17)

EAP z3 -0.04 (0.10) -0.23 (0.14)

SCP z4 -0.58 (0.14) 0.18 (0.18)

EWP z5 0.09 (0.17) 0.22 (0.22)

POL z6 -0.10 (0.17) -0.39 (0.22)

Table 3.2: The regression coefficient estimates in the linear regression of cyclone lo-

cal mean vorticity over Gothenburg and Barcelona. Standard errors are in brackets,

estimators with p ≤ 0.05 are in bold.

time trend coefficient α̂1 is highly significant over Gothenburg suggesting non-

stationarity in the winter mean intensity. This is consistent with Vitolo et al.

(2009) where non-stationarity was found for the counts of intense cyclones over the

same region, but not for all cyclones. In Vitolo et al. (2009) it was suggested the

increase in the rate of intense cyclones could be due to either climatic change or

inhomogeneities in the reanalysis dataset. The SCP coefficient (α̂4)is also highly

significant for Gothenburg winter mean vorticity, suggesting this may be a driver

of cyclone intensity. The model of Gothenburg mean vorticity has an R2 value of

0.49 meaning just under half the variance in local mean vorticity is explained by

the model. For Barcelona there none of the teleconnection indices are significant

at the 5% level, although the EAP and POL are significant at the 10% level. The

Barcelona model has a lower R2 value of 0.22, suggesting large scale flow patterns

are of less use in explaining winter mean intensity over this region.
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3.5.3 Modelled covariance

The modelled covariance between N̂ and Ŷ for Gothenburg can be expressed as

Cov(N̂ , Ŷ ) = cov(eα0+α1z1+....α6z6 , β0 + β1z1 + ...β6kz6)

= cov(eα1z1 , β1z1) + cov(eα2z2 , β2z2) + cov(eα3z3 , β3z3) + cov(eα4z4 , β4z4)

+ cov(eα5z5 , β5z5) + cov(eα6z6 , β6z6).

(3.5)

since the teleconnection indices are uncorrelated by definition and so cov(zi, zj) = 0

when i 6= j. From Eqn 3.5 the modelled correlation can be estimated for Gothen-

burg, cor(n̂, ŷ) = 0.32 (compared to the observed correlation Cor(n, y) = 0.48).

The regression models using teleconnection indices as explanatory variables account

for two thirds of the correlation over Gothenburg. Using the same methodology for

Barcelona the modelled correlation is Cor(N̂ , Ŷ ) = −0.02. Regression models us-

ing teleconnection indices as explanatory variables are thus suitable for reproducing

the positive correlation between N and Y .

3.6 Regression models for all grid points

The analysis conducted at Gothenburg and Barcelona was repeated for all North-

ern Hemisphere grid points. The regression coefficients for the linear trend term,

the NAO,SCP and EAP were significant for the models for N and Y over much

of the North Atlantic and Europe. Reduced models with only these 4 explanatory

covariates are now assessed.

The maximum likelihood estimates of the North Atlantic regression parameters

for local mean vorticity and cyclone counts, α̂k and β̂k , k = 1, .., 4 are shown in

Fig. 3.12 and 3.13 respectively. Statistical significance was determined with a t

test at the 5% level. There is a clear relationship between large scale flow patterns

and both winter cyclone counts and winter local mean vorticity (Figs. 3.12, 3.13 ).

The NAO parameter for counts is statistically significant over much of the North

Atlantic (Fig. 3.13b). The positive phase of the NAO is associated with an increase

in extra tropical cyclones across Canada, Greenland and Iceland as well as north
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Great Britain, as well as with a decrease in cyclones over the North West coast

of Africa. Although the NAO appears to be the single greatest driver in cyclone

counts of the 3 teleconnection indices considered here, it is not significant for the

modelled winter cyclone counts over the region of Europe (Scandinavia, North Ger-

many, Great Britain, Benelux) where the positive correlation was observed. The

NAO parameter for local mean vorticity is significant over Iceland and most of the

Norwegian sea. There appears to be very few grid points where the NAO parameter

is significant for both the frequency and intensity.

(a) (b)

(c) (d)

Figure 3.12: Estimates of αk which were significantly different from zero

(according to a t-test at the 5 % confidence level) for (a) linear time trend (b)

North Atlantic Oscillation (c) Scandinavian pattern (d) East Atlantic Pattern.

From Fig. 3.13 c, the SCP coefficient for counts is significant over a region
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extending from the east coast of Greenland, over Scandinavia and into eastern

Europe. The SCP coefficient estimate for local mean vorticity is significant over

Scandinavia, north Germany and the Benelux countries. From these plots it would

seem likely that, as with Gothenburg, the SCP coefficients account for much of the

correlation because of its importance for explaining both counts and mean intensity

in many locations.

(a) (b)

(c) (d)

Figure 3.13: Estimates of βk which were significantly different from zero

(according to a t-test at the 5 % confidence level) for (a) linear time trend (b)

North Atlantic Oscillation (c) Scandinavian pattern (d) East Atlantic Pattern.

The EAP coefficient is significant for cyclone counts over the Atlantic to the

south and east of the United States (Fig. 3.13 d) . The EAP coefficient is also

significant for local mean vorticity over some grid points in the eastern United
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States and to the south east of Greenland (Fig. 3.12 d). There are few grid

point where the EAP coefficient is significant for both counts and intensity. The

time trend coefficient for counts is significant for part of the United States eastern

seaboard and for a few grid point over and around the north of Great Britain.

For local mean vorticity the time trend coefficient is significant for a large region of

North Europe and over Canada. This agrees with the findings in Vitolo et al. (2009)

where a linear time trend was not found to be significant for Poisson regression of 3

monthly counts over most grid points, but was found to be significant over Canada

and north western Europe.

(a) (b)

Figure 3.14: Plots of the correlation between the winter counts and local mean

vorticity a) Sample b) Modelled correlation with North Atlantic teleconnection

patterns as explanatory variables.

The coefficient estimates for the SCP are significant for both counts and mean

intensity over much of the Scandinavian peninsula, as well as parts of Northern

Germany and the Benelux countries. The plot of the modelled correlation (Fig.

3.14) shows that the large scale flow patterns account for much of the observed

positive correlation for the Atlantic region.
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(a) (b)

(c) (d)

Figure 3.15: Estimates of αk which were significantly different from zero

(according to a t-test at the 5 % confidence level) for a) PNA b) EPA. Estimates

of βk for c) PNA d)EPA.

The analysis was repeated for the North Pacific region using a linear time trend

and 4 teleconnection indices relevant for the region; the West Pacific pattern (WP),

East Pacific/North Pacific pattern (EP), Pacific/North American pattern (PNA)

and the Tropical Northern Hemisphere pattern (TNH). As well as the linear time

trend, the PNA pattern and EPA were both found to be associated with changes

in the frequency and intensity (see Fig. 3.15). The regression models with indices

for the NPA and EP and a linear time trend as explanatory variables were able to

reproduce most of the positive correlation over the North Pacific (Fig. 3.16).
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Figure 3.16: Plot of the modelled correlation from the regression models with North

Pacific teleconnection indices as explanatory variables.

3.7 Discussion about possible physical mechanisms

The Scandinavian pattern modulates both cyclone frequency and mean intensity,

and thereby induces positive correlation between the frequency and the intensity.

Possible physical mechanisms are discussed here for how the Scandinavian pattern

interacts with extra tropical cyclones. The negative correlation observed over the

Gulf stream is also briefly considered.

3.7.1 Positive correlation

In the previous section it was shown that negative phases of the Scandinavian pat-

tern are associated with increased cyclone activity; more occurrences with higher

mean intensity. It is important to distinguish between cause and effect, as increased

cyclone activity may also result in persistent negative SCP index values. The po-

tential for synoptic scale activity, such as cyclones to influence the state of the

background flow has been discussed in the literature, such as in Pinto et al. (2009)

where it explains that cyclones themselves may play a major role in steering the

phase of the NAO. However, in Whitaker and Sardeshmukh (1998) it was shown
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that while transient eddies/cyclones can affect the background upper tropospheric

circulation, the latter is more important in initiating eddy formation and control-

ling intensification.

Four key environmental factors which control cyclone intensification were consid-

ered in Pinto et al. (2009): latent energy (equivalent potential energy 850 hPa),

upper air baroclinicity, horizontal divergence and jet stream strength. The growth

of extreme cyclones was shown to be related to these four explanatory variables,

with the jet stream location and velocity in particular showing a clear connection

to extreme cyclone intensification. The major (i.e. NAO, EAP, SCP) extra tropi-

cal teleconnections esssentialy describe jet stream variability over the ocean basins

(Woollings et al., 2010).

In Raible (2007) the occurrence of extreme intensified cyclones in Northern Eu-

rope are linked to a rotated NAO like pattern, which corresponds to the SCP as

identified here and discussed in Section 3.5.1. In Hanley and Caballero (2012)

it was also shown that intense European extra tropical cyclones occurred during

an eastward shifted NAO-like pattern, which is again qualitively similar to a nega-

tive phase of the Scandinavian pattern. The large scale low-pressure system located

over the Scandinavian peninsula, associated with negative values of the SCP index,

helps steer extra tropical cyclones into Northern Europe, as well as generating an

intense baroclinic jet streak which acts to intensify cyclones. In particular, a case

study of extreme storm Daria was conducted which showed that the background

atmospheric conditions preceded Daria’s birth (Hanley and Caballero, 2012) .

Most of the studies cited above have investigated the link between environmen-

tal factors and cyclone clustering over synoptic time scales. Synoptic variability

over the North Atlantic and Europe is related to the NAO and other teleconnec-

tion patterns, which in turn has been related to the occurence and development

of cyclones over synoptic time scales (Pinto et al., 2009). However this thesis has
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considered aggregate cyclone activity over a longer 6 month extended winter period

due to its relevance for the insurance industry. The same arguments put forward

for linking teleconnection patterns and extra tropical cyclone activity for shorter

time periods remain valid for the 6 month aggregated period. In particular the win-

ter mean NAO has been linked to inter annual variability in the mid Tropospheric

baroclinicity (Baldwin et al., 1994). The baroclinicity in the mid Troposphere is

related to surface temperature gradients which in turn influence cyclone activity

(Raible, 2007).

The relation between the Scandinavian pattern and its climatic impact, as well

as possible forcing mechanisms is discussed in Bueh and Nakamura (2007). For

negative phases of the SCP the 200mb zonal wind anomalies are observed over

Northern Europe over the same region positive correlation is observed (see Fig.

3.17), as well as increased baroclinicity over the same area. It was shown in Bueh

and Nakamura (2007) that there is positive feedback over the exit region of the

North Atlantic storm track between the Scandinavian pattern and passing cy-

clones. This positive feedback between extra tropical cyclones and the background

atmospheric flow is a possible mechanism for the frequency-intensity dependence

found here, as well as the observed clustering of intense cyclones shown in Vitolo

et al. (2009); favourable environmental conditions result in increased cyclone ac-

tivity through enhanced steering and intensification, which in turn help maintain

these conditions.
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Figure 3.17: Maps of the linear regression coefficient for the 200mb zonal wind U200

on the 6 month SCP index.

3.7.2 Negative correlation

The negative correlation discovered over the Gulf stream is also possibly due to

some interaction between the background atmospheric flow and extra tropical cy-

clones. However none of the regression coefficients from either the North Atlantic

or North Pacific local mean vorticity models are significant over the Gulf stream.

One possible mechanism is the velocity and position of the North Atlantic subtrop-

ical and/or eddy driven jet stream. In Pinto et al. (2009) factors contributing to

the development of extreme North Atlantic cyclones was considered. It was shown

that during strongly positive phases of the NAO the jet stream over North America

is enhanced, resulting in increased cyclogenesis and more extreme storms over the

North Atlantic. However extra tropical cyclones originating from the West At-

lantic/North American east coast typically develop slowly, not reaching maximum

intensification until further East into the Atlantic (Dacre and Gray, 2009). In Pinto

et al. (2009) it can be seen that during strongly negative NAO phases, although

there are fewer extreme cyclones, they reach their point of maximum intensification

closer to the eastern U.S.
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3.8 Summary

A framework for quantifying aggregate risk is introduced in Section 3.2. This

framework is then applied to extra tropical cyclones using a database of tracks

for the Northern Hemisphere (covering October-March winters from 1950-2003).

Statistical models were used to investigate the sensitivity of the variance of the

aggregate risk to dependence between the frequency and intensity of cyclones as

well as dependence between successive events.

Statistically significant correlation was found between the frequency and intensity

of extra tropical cyclones over parts of northern Europe including Scandinavia,

Germany and Great Britain as well as the eastern end of the North Atlantic storm

track. The findings for extended winter cyclones counts agreed with those of Vitolo

et al. (2009), concerning linear trends in intense cyclones over Scandinavia, and the

effect of large scale flow patterns on cyclone counts.

Joint modulation by large-scale flow patterns is shown to be responsible for gen-

erating the covariance between cyclone frequency and mean intensity. The Scan-

dinavian pattern in particular is strongly negatively correlated with both counts

and local mean vorticity over much of northern Europe. Regressing the counts

and local mean vorticity on the Scandinavian pattern index is able to reproduce

most of the observed correlation. Other important teleconnection indices for both

frequency and intensity are the North Atlantic Oscillation and the East Atlantic

pattern.

The correlation between the frequency and local mean vorticity was also considered

for the subset of the 50% most intense cyclones at each grid point. The positive

correlation for the North Atlantic was largely unchanged when considering the

subset of more intense cyclones. The negative correlation was found to be mainly

a feature of the weaker systems. As more intense events are responsible for the

majority of insured losses the negative correlation is not considered further in the
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thesis. The sensitivity of the results to the choice of dataset was also assessed. The

sign and location of the correlation was shown to be the same for storm tracks in

the ERA-40 reanalysis.



Chapter 4

Modelling the influence of

frequency-intensity dependence

on the risk of extreme aggregate

loss

4.1 Aim

The aim of this chapter is to quantify the effect of frequency-intensity dependency

on the extremes of the aggregate loss distribution. Section 4.2 discusses the need for

insurers to be able to quantify and understand extremes of the aggregate loss, and

the influence of clustering and frequency-intensity dependence on these extremes.

Methods for exploring the extremes are then introduced in Section 4.3 and applied

to extratropical cyclones over Europe in Section 4.4.

4.2 Managing aggregate extremes of natural haz-

ards

Although extremes of most types of natural hazards are usually rare they can ac-

count for a disproportionately large share of damage (Stephenson, 2008). Extremes

75
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Figure 4.1: Plot of sample local mean vorticity y against counts n for cyclones

passing near Gothenburg. Contours of the aggregate risk, S = NY , have been

added for S = 80, 100, 120, 140, 160, 180, 200. The solid line is the linear regression

line of n on y.

of aggregate losses are due to either an above average number of occurrences, the

occurrence of one or more high intensity events, or a combination of both (see Fig

4.1). These extremes are of particular interest to insurers as they have legal capital

requirements based upon the probable maximum loss (PML) they can expect to

occur (see Chapter 2 ).

Exceedance probability curves are widely used in the insurance industry to assist

in visualizing the distribution of losses and determining a suitable PML metric

(Grossi and Kunreuther, 2005). For the aggregate loss S = X1 + ... + XN the

aggregate exceedance probability (AEP) is

AEP (s) = 1− Pr(S ≤ s) = 1− FS(s), (4.1)

where FS is the cumulative distribution function (cdf) of S (see Fig. 4.2). A natural

choice for the PML index could be a suitably high quantile of of S (Woo (2002)).

In risk management this is called the value-at-risk V aRp, which is defined as the
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Figure 4.2: Example of an annual aggregate loss exceedance probability curve. The

vertical solid black line is the V aR0.995(s) and the dashed black line is the ES0.995(s)

smallest value such that the probability V aRp is exceeded is 1− p 1

V aRp = F−1
S (p),

where F−1
S is the quantile function of S (McNeil et al. (2005) Section 2.2). The

V aR is subject to a number of limitations, in particular it does not provide any

information on losses above the quantile defined threshold and is not a coherent

risk measure, as defined by the axioms of coherence (see Appendix B). Coherence

of a risk measure is desirable for a number of reasons, in particular because it

is necessary for a risk measure to be used in portfolio diversification (Dowd and

Blake, 2006). An alternative risk measure to the V aRp is the expected shortfall,

ESp,

ESp(s) =
1

1− p

∫ 1

p

V aRp(s)du = E(S|S > V aRp),

which is the average loss given V aRp has been exceeded; the ESP is never less

than the V aRp . The expected shortfall thus gives information on extreme losses

1Usually denoted by α, here p is used instead as α is used later in this chapter for confidence

intervals.
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exceeding V aRp as well as being a coherent risk measure (see McNeil et al. (2005)

Section 6.1). Both of these risk measures will be used in this chapter to investigate

the extremes of the aggregate loss.

The impact of temporal clustering of extremes on the PML for European wind-

storms has been of concern for the insurance community in recent years (see Chap-

ter 2). The frequency-intensity dependence investigated in the previous chapter

could have implications for modelling the clustering of extremes, which in turn

could influence the V aRp and ESp. This chapter will seek to quantify the effect

of clustering and frequency-intensity dependence on the extremes of the aggregate

loss distribution. Before considering specific methods for investigating extremes of

the aggregate loss distribution, it is possible to show, using the Poisson process

limit for extremes, that the clustering of extreme events will be ineffective without

frequency-intensity dependence.

4.2.1 Clustering of extremes

Theorem (Coles, 2001) Section 7.3 Consider a sequence {N,Xi} , where N is the

number of occurences and Xi (i = 1, ..., N) is the individual occurence magnitude.

Let S be the length of the sequence exceeding a threshold u,

S =
N∑
i=1

I(Xi > u),

where I is the indicator function. If X and N are independent, and Xi, Xj are

independent for all 1 < i, j < N, i 6= j, then the dispersion of S,

φ(S) =
V ar[S]

E[S]
− 1→ 0,

as u→∞, irrespective of the distribution of N .

Proof. If the random variable Xi has cumulative distribution function FX such

that FX(u) = 1−q, then X has probability q of lying within the region [u,∞). Let

Q be a Bernoulli random variable; Q ∼ Ber(q). If N and Xi are independent then
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the total number of events in a year which exceed a threshold u, S, is a Binomial

distribution

S ∼ Bin(N, q).

The expectation of S is then

E[S] =
N∑
i=1

Qi = E[N ]q,

and from the law of total variance,

V ar[S] = E[N ]V ar(Q) + V ar(N)(E[Q])2

= E[N ]q(1− q) + q2V ar(N).

The dispersion of S given u is

φ(S) =
E[N ]q(1− q) + q2V ar(N)

qE[N ]
− 1

=
q2V ar(N)− q2E[N ]

qE[N ]
= q

[
V ar[N ]

E[N ]
− 1

]
.

(4.2)

As the intensity threshold increases the probability that a loss Pr(Xi ≥ u) = q → 0,

hence as u→∞, φ(S)→ 0.

Considering the case when N is Poisson distributed with E[N ] = V ar[N ] = λ then

Eqn. 4.2 becomes

φ(S) =
q2λ− q2λ

qλ
= 0.

as expected. This shows that if the frequency N and intensity X are independent

then the distribution of counts for events exceeding an intensity threshold u will

converge to a Poisson process with increasing u. This contradicts what has been ob-

served in for European extra tropical cyclones, where the overdispersion parameter

has been shown to increase for more extreme events (Vitolo et al., 2009).
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4.3 Methods for exploring extremes of the aggre-

gate risk

This section introduces methods for investigating the sensitivity of the extremes of

the aggregate loss distribution to clustering and frequency-intensity dependence.

4.3.1 Non-parametric methods

Non-parametric methods can be used to estimate risk measures from the data

without making distributional assumptions. This relies on a large amount of loss

data being available, and empirical estimation of risk measures for the 1 in 200

year return level is impossible using a dataset of shorter length (McNeil and Frey,

2000). The empirical AEP can be calculated from a sample of aggregate losses

s1, ...sm as

AEP (u) = 1− Fs(u) = 1− 1

m

m∑
i=1

I(si ≤ u)

where I is the indicator function and Fs is the empirical distribution function for

si (Harmantzis et al. (2006)). The empirical V aRp is

V aRp(s) = F−1
s (p) = s(i), pε

(
i− 1

m
,
i

m

)
where F−1

s (p) is the pth empirical quantile and s(1) ≤ .... ≤ s(m) are the order

statistics. Finally, the empirical ESp is

ESp(s) =

∑m
i=mp s(i)

m−mp
.

As only 53 years of data was available from the NCEP-NCAR reanalysis the

exceedance probability for the aggregate risk of extratropical cyclones considered

in the previous chapter can only be calculated up to (1 − p) ≈ 0.019. Another

limitation of this empirical method is that by estimating the risk measures directly

from the sample aggregate loss s, nothing is learned about the effect of frequency-

intensity dependency.
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Bootstrap confidence intervals can be constructed for the empirical AEPs to inves-

tigate if frequency-intensity dependence effects the return levels of the aggregate

loss. By assuming independence between the frequency and intensity a block boos-

trapping method can be used to construct confidence intervals for the return level

at T years (and thus the exceedance probabilities p = 1− 1/T ) as follows.

For r in 1, ..., R;

1. Construct a resampled (with replacement) time series of cyclone counts n∗1,r, ..., n
∗
m,r.

2. Construct a resampled (with replacement) time series of cyclone local mean

vorticity y∗1,r, ..., y
∗
m,r.

3. Calculate the corresponding time series of aggregate losses s∗1,r, ..., s
∗
m,r for

each r, from the resampled counts and local mean vorticity.

4. Calculate the new resampled return levels; q∗p,r(s). Here q∗p,r(s) is the empirical

quantile estimate for the rth resampled time series of aggregate losses s.

Then the 90% confidence intervals for the pth quantile are the 5th and 95th

percentiles of the resampled q∗p,r(s). As n and y are assumed independent in this

bootstrapping algorithm, if the empirical AEP curve for s diverges outside of the

confidence intervals this would provide an indicator that inclusion of frequency-

intensity dependence is necessary to model extremes of the aggregate loss.

4.3.2 Parametric methods

In the parametric approach extremes are modelled using a suitable distribution (or

distributions) which are chosen through past experience, diagnostic plots and statis-

tical analysis. Having selected a distribution the parameters can be estimated from

the available data through method of moments, maximum likelihood or otherwise.

Analytic results for compound distributions such as FS are not typically available

beyond the mean and variance (McNeil et al. (2005), Section 10.2). However this

issue can be circumvented by fitting a distribution directly to the sample aggregate
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loss s without considering the underlying frequency and intensity distributions or

their covariance. Extreme value distributions are used here to investigate the be-

haviour of the tail of the aggregate loss distribution beyond levels which can be

estimated empirically.

The peaks over thresholds approach introduced in Chapter 2 is used here to model

the extremes of the aggregate losses. As well as modelling individual extreme

events (Della-Marta et al., 2009; Kunz et al., 2010) the generalised Pareto distri-

bution has been applied to aggregate claims data (McNeil et al. (2005), Chapter

10). The aggregate loss S is modelled as a GPD distribution,

S ∼ GPD(ξ, σ),

where ξ, σ are the shape and scale parameters (Chapter 2). The AEP and V aRp

can be calculated from Eqn. 2.8,

V aRp = u+
σ

ξ
[1− (

λ

1− p
)−ξ].

The ESp can be calculated from the mean excess function (Eqn. 2.9);

ESp =
V aRp

1− ξ
+

σu
1− ξ

.

This approach does not explicitly consider the effect of frequency-intensity depen-

dence and clustering on the risk estimates. Instead the estimated V aR and ES will

be compared with those obtained using the simulation methods in the following

section to determine if it is possible to avoid consideration of the frequency and

intensity distributions and model the aggregate losses directly.

Parameter estimation

For the GPD model the sample mean excess em(u) is defined as

em(u) =

∑m
i=1(si − u)I(si > u)∑m

i=1 I(si > u)

(Coles (2001) Section 4.3). If the data over a threshold u supports a GPD model

then the mean excess function will become approximately linear, which means a
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plot of the mean excess against threshold can be used to assist in determining a

suitable u (McNeil et al., 2010). A mean excess plot with an increasing linear

trend indicates a positive shape parameter ξ, a linear downward trend indicates a

negative shape parameter and a horizontal line indicates ξ = 0. Having chosen a

suitable threshold u, the shape ξ and scale parameters σ can be estimated by using

numerical techniques to maximise the log-likelihood;

l(σ, ξ) = −klogσ − (1 + 1/ξ)
m∑
i=1

log(1 + ξsi/σ)

(Coles, 2001) Chapter 4. Here the maximization was done using the gpd.fit

function from the R package ismev. This function provides confidence intervals

for the return levels using the delta method (Coles (2001), Chapter 4).

4.3.3 Monte Carlo methods

The third approach considered here for evaluating the aggregate loss risk measures

is Monte Carlo simulation. The processes generating losses are modelled, then a

large number of simulations can be produced to approximate the loss distribution.

This method is more flexible than the previous two approaches and allows for a

high level of complexity in the model. The calculation of the AEP, VaR and ES

from the simulated losses are the same as in the empirical approach. For estimating

risk measures from the upper tail of the aggregate loss distribution this simulation

approach will take a long time to converge (McNeil et al., 2005, Section 8.5). This

means many thousands of simulations are required, and the Monte Carlo method

is a brute force approach.

Four models are proposed to investigate the sensitivity of the aggregate loss to

different modelling assumptions regarding dependence and clustering. One ap-

proach to modelling the dependence between the frequency and intensity would be

to introduce a mixing variable Z which is related to both N and X to mimic the

effect of the large scale forcing shown in Chapter 3. However the use of a mixture

model will result in overdispersion in N , (see Section 2.2). An approach which
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introduces dependence without inducing overdispersion is required here to be able

to investigate the impact of frequency-intensity covariance with and without clus-

tering. A copula based approach presents such a method and is used here to model

dependence between the frequency and mean intensity, without necessarily intro-

ducing overdispersion. The models for generating the frequency N and intensity

X and thus the aggregate loss S are now described.

Model M1 - no clustering, X,N i.i.d. - the frequency of losses is Poisson dis-

tributed with constant rate λ, and the individual losses are gamma distributed

with constant shape and rate parameters α, β,

N ∼ Pois(λ)

X ∼ Ga(α, β).

Model M2 - clustering, X,N i.i.d. - the losses are gamma distributed as in M1.

To allow for overdispersion the frequency of occurrence is Negative Binomially

distributed with parameters p, r as in Section 2.2.1,

N ∼ NB(p, r).

X ∼ Ga(α, β).

Model M3 - no clustering, X,N dependent - both the mean and the variance of

the individual losses are modelled as random variables E[X] = Y ,V ar[X] = W

and are related to the number of losses N , and each other, by a copula C. The

multivariate distribution FNYW , is the joint distribution of the number of losses N ,

the mean intensity Y and the variance of the intensity W . The joint distribution

can be written in terms of the marginal distributions of N , Y , W and the copula

CNYW ;

FNYW (n, y, w) = CNYW (FN(n), FY (y), FW (w)).

The marginal distribution of the frequency is Poisson with parameter λ. The mean

intensity Y is normally distributed with mean parameter µY and variance σ2
Y . The

variance of the individual intensities W is also modelled as normally distributed
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with mean µW and variance σ2
W . Here C is a Gaussian copula with covariance

matrix Σ. The frequency and intensity of losses for M3 is then,

N ∼ Pois(λ)

Y ∼ N(µY , σ
2
Y )

W ∼ N(µW , σ
2
W )

X ∼ Ga(Y 2/W, Y/W ).

Model M4 - clustering, X,N dependent - the same model formulation as M3

except the marginal distribution of N is Negative Binomial as in M2.

FNYW (n, y, w) = CNYW (FN(n), FY (y), FW (w)),

N ∼ NB(p, r),

Y ∼ N(µY , σ
2
Y ),

W ∼ N(µW , σ
2
W ),

X ∼ Ga(Y 2/W, Y/W ).

Parameter estimation

For M1,M3 the parameter λ is estimated from the sample counts n as

λ̂ = n̄

For M2,M4 the Negative Binomial parameters are estimated from n by the method

of moments as,

p̂ = n̄, r̂ =
n̄2

s2
n − n̄

,

(Rice (2007) Section 8.7). The estimator for r requires s2
n > n̄; the data must be

overdispersed to permit a negative binomial distribution.

The estimates for α̂ and β̂ for models M1,M2 are estimated from the sample losses

x by optimizing the log likelihood for α using the R function fitdistr;

mlogα̂−mlogx̄+
m∑
i=1

logxi −m
Γ′(α̂)

Γ(α̂)
= 0,



Methods for exploring extremes of the aggregate risk 86

and then substituting α̂ into

β̂ =
α̂

x̄
,

(Rice (2007), Section 8.5). For the models M3,M4 the parameters of the marginal

distributions of Y are calculated from the sample mean intensity ȳ (see Section

3.2.1)

µY = ȳ, σ2
Y = s2

y

and for the W ;

µW = w̄, σ2
W = s2

w

The parameters of the Gamma distribution for X in models M3,M4 are then

stochastic,

β̂ =
Y

W
, α̂ =

Y 2

W
.

The estimated covariance matrix Σ̂ for the Copula will have diagonal elements

(1, 1, 1) and off diagonals (ρτ (N, Y ), ρτ (N,W ), ρτ (Y,W )) where ρτ is Kendall’s cor-

relation coefficient (see e.g. Joe (1997) Section 2.1). To simulate the variables N ,

Y and W from a Gaussian copula, first generate a vector D = (D1, D2, D3) from a

multivariate standard normal distribution with dimension 3 and correlation matrix

Σ. Then D is transformed using the standard normal density function Φ to obtain

uniform variables U = (U1, U2, U3). Using a quantile transformation U can then

be converted into the marginal distributions of N ,Y and W . The result is a multi-

variate distribution with density function FNYW = C(FN , FY , FW ). The algorithm

for generating from a Gaussian copula is thus,

• Generate D ∼ N3(0,Σ)

• Calculate U = (Φ(D1),Φ(D2),Φ(D3))

• Calculate N = F−1
N (U1),Y = F−1

Y (U2),N = F−1
W (U3)

see McNeil et al. (2005) Section 5.1 for a more detailed explanation.
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4.3.4 Uncertainty assessment

The accuracy of estimates of the empirical AEP curve and the GPD parameters are

constrained by the quantity and quality of observations available. For the Monte

Carlo method the number of simulations which can be generated will be constrained

by the resources (time and computing power) available to the modeller. Measures

of variability are required to assess the closeness of the estimated AEP curves and

associated risk measures to the true values.

Cantelli bounds

Upper bounds for the AEP curve can be calculated from Cantelli’s inequality (Roy-

den, 1953). This states that for a positive real random variable S with mean µs

and variance σ2
S

Pr(S ≥ µS + kσS) ≤ 1

1 + k2
=

1

T
(4.3)

where k ≥ 0 , and T is the return time. As well as calculating upper bounds

for the empirical AEP estimates, Cantelli bounds can be used to consider the

effect of covariance between the frequency and intensity on the aggregate loss S

for exceedance probabilities beyond that which have been observed. To do this

two cases are considered, in the first the frequency and intensity are considered

independent, and µS, s2
S are estimated as,

s̄ = n̄ȳ

s2
s = Vn + Vy,

as in Section 3.3. In the second case, the the sample mean and variance of s are

s̄ = n̄ȳ + cov(n, y)

s2
s = Vn + Vy + Vc,

which will result in increased Cantelli bounds in Eqn. 4.3, when cov(n, y) > 0, and

reduced Cantelli bounds when cov(n, y) < 0.
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DKW bounds

Bounds for the AEP curve which depend upon the sample size could be used to

help assess the number of simulations required in the Monte Carlo approach for the

estimates of the tail to converge. Such an approach is suggested in Rougier et al.

(2013); the uncertainty regarding the difference between the empirical distribution

and the actual distribution can be quantified with the Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality (Massart, 1990). The DKW inequality states that for a natural

number m, and random variables S1, ..., Sm with distribution function FS and em-

pirical distribution function F̂s,m, then the probability that F̂s,m differs from FS by

more than ε is

P (sup|Fs,m(l)− FS(l)| > ε) ≤ 2e2mε2 (4.4)

for every ε > 0. Then rearranging 4.4 to obtain ε in terms of the confidence bands

of width 1− α gives

ε =

(
ln(2/α)

2m

) 1
2

.

Here the DKW inequality is used to assess the number of simulations that should

be conducted to be able to estimate the upper tail of the aggregate loss distribution.

Bootstrapping for high quantiles

A bootstrapping method which resamples n and y has already been suggested

for investigating the assumption of independence on the estimation of exceedance

levels. However when investigating confidence limits for high quantiles of a distri-

bution, such as the V aR0.995, uncertainty may be very large, and for sample sizes of

m < 1000 confidence intervals will tend to be unreliable Rougier et al. (2013) Sec-

tion 2.5. More reliable confidence intervals for V aR0.995 can be constructed using

a bootstrapping approach with variance stabilisation as follows. First the sample

estimate for V aR0.995 is obtained from the data as in Section 4.3.1, denoted here

as q̂ = V aR0.995(s). The basic bootstrap (1− 2α) confidence intervals, θ̂ are

θ̂α = 2q̂ − q̂∗(R+1)(1−α), θ̂1−α = 2q̂ − q̂∗(R+1)(α)
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where q̂∗ is the sample statistic calculated from a simulated dataset (through boot-

strap resampling), R denotes the number of repetitions of the resampling, q̂∗((R+1)(α))

is the αth quantile of the resampled quantiles , and the confidence level is 1− 2α

Davison (1997), Section 2.7 and 5.2. The accuracy of the bootstrap confidence

intervals will depend upon the original sample size m as well as the number of

replications R. A suitable transformation of q̂ can stabilize the variance of the re-

sampled quantile estimator and considerably improve the accuracy of the bootstrap

confidence limits (Davison (1997), Section 5.2). Here, as in Rougier et al. (2013)

Section 2.5.4, using a loose analogy with the exponential distribution the bootstrap

is applied to the log of q̂. The transformed bootstrap confidence intervals become

θ̂α = g−1
(
2g(q̂)− g(q̂∗((R+1)(1−α)))

)
, θ̂1−α = g−1

(
2g(q̂)− g(q̂∗((R+1)(α)))

)
,

where g(q̂) = log(q̂). Throughout this thesis the number of replications is R = 999.

4.4 Results

The methods introduced in the previous section are used to investigate the extremes

of the aggregate loss distribution of extratropical cyclones. The results are parti-

tioned into three sections; non-parametric, parametric and Monte Carlo methods.

As in the previous chapter, cyclones passing the grid point nearest Gothenburg

were analysed to investigate the effect of positive dependence on extremes of the

aggregate risk, where vorticity is used as a proxy for financial loss. Cyclones pass-

ing the grid point closest to Barcelona are also analysed to consider the case when

there is no significant correlation between the frequency and intensity. Throughout

this section the V aR0.995 and ES0.995 are considered for (the 200 year return level)

due to the importance of these values to insurers.

4.4.1 Non-parametric

The empirical AEP curves for s at Gothenburg and Barcelona are shown in Fig.

4.3. As only 53 years of data are available the V aR0.995 and ES0.995 cannot be

estimated empirically. The bootstrapped confidence intervals can be seen to provide
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a tighter measure of variability than the DKW bounds (Fig. 4.3). However the

bootstrap intervals assume the sample counts n and local mean vorticity y are

independent. For Gothenburg (Fig. 4.3 a) this assumption is not valid, and the

empirical AEP curve is outside of the bootstrapped intervals for the upper and

lower tails, suggesting extremes of the aggregate loss (both high and low) are

sensitive to frequency-intensity dependence. The Barcelona sample aggregate loss

is contained within the intervals, suggesting that the small amount of negative

dependence at this location does not significantly effect the extremes. The sample

aggregate risk will always be contained within the DKW bounds, with or without

dependence, though for a small sample size (m = 53) the 95% confidence band is

large ( ε = ±0.187 ).

(a) (b)

Figure 4.3: Empirical AEP curves, Cantelli bounds and bootstrapped confidence

intervals for a) Gothenburg and b) Barcelona. Grey shading indicates the DKW

95% confidence bands.

The Cantelli bounds provide a (high) upper bound for the AEP curves and

do not present a practical method for estimation of quantiles. However they can

be used to investigate the behaviour of the tail of the aggregate loss. At Gothen-

burg the Cantelli bounds with and without dependence diverge with decreasing

exceedance probabilities, where the upper bound for s is greater when dependence
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is included (Fig. 4.3 a). At Barcelona the relation is reversed; the Cantelli bound

with dependence has lower exceedance levels than the bound without dependence,

although the difference between bounds is less than at Gothenburg (Fig. 4.3 b). As

with the bootstrapped confidence intervals this suggests that positive dependence

between the frequency and intensity results in an increase in the extremes of the

aggregate loss. Conversely negative dependence may result in a decrease.

The percentage change in the Cantelli bounds for V aR0.995 (T = 200 in Eqn

4.3) with the inclusion of dependence was +13.0% at Gothenburg and −5.0%

at Barcelona. The ratio for the V aR0.9 (1 in 10 year return level) with depen-

dence/without dependence and V aR0.995 with dependence/without dependence

were calculated for all Northern Hemisphere grid points (Fig. 4.4). Similar con-

clusions can be drawn as from Gothenburg and Barcelona; locations with positive

(negative) dependence show an increase (decrease) in the upper bound for the V aR

when dependence is allowed and the difference between the bounds increases with

greater return periods.

(a) (b)

Figure 4.4: Plots of the ratio of the Cantelli bounds at each grid point with

dependence/without dependence for (a)V aR0.9(s) (b) V aR0.995(s)

The empirical models for the aggregate loss are inadequate for estimating the

risk measures for the 1 in 200 year return level. The Cantelli bounds and boot-
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strapped confidence intervals suggest that not accounting for positive (negative)

dependence will result in underestimation (overestimation) of the extremes of the

aggregate loss.

4.4.2 Parametric

(a) (b)

(c) (d)

Figure 4.5: Time series of sample s for a) Gothenburg and b) Barcelona. The

horizontal dashed line indicates the choice of threshold u for the GPD model.

Mean excess plots for s at c) Gothenburg d) Barcelona. Vertical dashed lines

indicate the choice of threshold parameter u for the GPD model.
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Parameters for the GPD distribution were estimated for s at Gothenburg and

Barcelona. Time series of s at each grid point are shown in Fig. 4.5 a, b. The

mean excess plots were used to assist in determining suitable thresholds u for the

GPD model, along with quantile-quantile plots of the fitted models (Fig 4.5 c, d).

For Gothenburg a threshold of u = 150 was selected, and at Barcelona u = 60.

The corresponding mle and standard errors of the parameters for Gothenburg were

σ = 57.7(13.1), ξ = −0.68(0.19). For Barcelona the estimates were σ = 21.5(4.64)

and −0.55(0.16). The negative shape parameter indicates a physical upper limit

to the process at both locations.

The fit of the theoretical GPD cdf can be partially assessed by the quantile-quantile

plots (Fig 4.6); the less scatter around the 45◦ line the better the skill of the model

to reproduce the sample cdf. For both locations the GPD models provide a rea-

sonable fit; the points are tightly scattered around the 45◦ line.

(a) (b)

Figure 4.6: Quantile-quantile plots showing the fit of the theoretical GPD

distributions for the a) Gothenburg grid point b) Barcelona grid point. Grey lines

indicate the 95% confidence intervals. The solid black line is the 45◦ line

The AEP curves for the models are shown in Fig. 4.7. The empirical AEP

curves are contained within the 95% (delta method) confidence intervals for all re-
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turn levels. The risk measures obtained from the fitted GPD models are, at Gothen-

burg, V aR0.995 = 231(224, 239) and ES0.995 = 233,and at Barcelona, V aR0.995 =

96(91, 101) and the ES0.995 = 97. Despite the more sophisticated approach used

here compared to the empirical estimates, at Gothenburg there is little difference

between the maximum observed aggregate loss and the modelled V aR0.995 (Fig.

4.7 a). The upper limits imposed by the model may be too low, resulting in the

underestimation of the actual risk. This suggests that modelling the aggregate loss

directly, without consideration of the underlying frequency and intensity distribu-

tions may not be effective.

(a) (b)

Figure 4.7: AEP curves for the theoretical GPD models at a) Gothenburg b)

Barcelona. Grey shading indicates the 95% delta method confidence intervals.

The dashed black line is the empirical exceedance probabilities.

4.4.3 Monte Carlo methods

The parameters for the four models described in Section 4.3.3 were fitted to cy-

clones passing the Gothenburg grid cell. The estimated rate parameter for the

Poisson distribution was λ̂ = 30.9 , and for the Negative Binomial distribution

p̂ = 30.9, r̂ = 148.9. The gamma distribution for models M1,M2 had parameters

α̂ = 5.47, β̂ = 1.01 The quantile-quantile plot of the fitted Gamma distribution
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against the sample vorticities indicates a reasonable fit (Fig. 4.8 a). The normal

distribution parameters for the mean intensity and variance of the intensity were

µ̂Y = 4.97, σ̂Y = 0.50 and µ̂W = 4.40, σ̂W = 1.35 respectively. There is some evi-

dence that the tails of the fitted normal model is heavier than those of the sample

local mean vorticity y, although the model again shows a reasonable fit, along with

that of the vorticity variance w (Fig. 4.8 b, c).

(a) (b)

(c)

Figure 4.8: Quantile-quantile plots of a) the fitted Gamma model b) Normal

model for y and c) Normal model for w. Lines as in Fig. 4.6
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(a) (b)

(c)

Figure 4.9: Plots of Gothenburg cyclone time series; a) Winter cyclone counts n

and local mean vorticity y b) n and winter vorticity variance w c) n and y

To help assess whether a Gaussian copula was appropriate for modelling the

dependence between N , Y and W , plots of the three variables are considered (Fig

4.9). If upper or lower tail dependence is present between N , Y and W this

would suggest that another copula that allows for such extremal dependence, e.g.

a Gumbel or Clayton copula, may be more suitable (McNeil et al. (2005) Section

5.1). Considering Fig. 4.9 there is no suggestion of extremal dependence between
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any of the three variables, and thus a Gaussian copula is deemed suitable for use

in the Monte Carlo simulations. The parameters for the correlation matrix Σ for

the random vector [N, Y,W ]T were;

Σ =


1.00 0.37 0.28

0.37 1.00 0.45

0.28 0.45 1.00

 .
The aggregate losses were simulated from models M1,M2 as follows.

For i in 1, . . . ,m,

1. Simulate the number of losses ni

2. Simulate the individual losses xi,1 . . . , xi,ni
from Ga(α̂, β̂)

3. Calculate the aggregate loss si = xi,1 + ...xi,ni
.

For the models M3,M4 the losses were simulated as follows.

For i in 1, . . . ,m

1. Simulate di ∼ Nd(0,Σ)

2. Calculate ui = (Φ(d1,i),Φ(d2,i),Φ(d3,i))

3. Calculate ni, wi, yi from F−1
N (ui,1), F−1

Y (ui,2), F−1
W (ui,3).

4. Simulate the individual losses xi,1 . . . , xi,ni
from Ga(y2

i /wi, yi/wi)

5. Calculate the aggregate loss si = xi,1 + ...xi,ni
,

To determine the number of simulations m required for the tail of the simulated

loss distribution to converge, the model M1 was approximated for different values

of m (Fig. 4.10). For each m the Cantelli bounds, DKW bounds and bootstrapped

confidence intervals for V aR0.995 are shown. The simulated mean loss and boot-

strapped confidence intervals are reported in Table 4.1. For all simulation run

lengths m the Cantelli bounds are greater than the DKW confidence bands. The
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Cantelli bounds are therefore not used further in the simulation study, as they offer

no additional insight for the aggregate loss distribution.

(a) (b)

(c) (d)

Figure 4.10: Simulated AEP curves for the aggregate loss distribution for model

M1 (black solid line) with 95% DKW confidence bands (grey shading), Cantelli

bounds (dotted line), V aR0.995 (vertical solid black line) and 95% bootstrapped

confidence intervals for V aR0.995 (vertical black dashed lines) for a) m = 500

simulations b) m = 1000, c) m = 10, 000 and d) m = 100, 000.

The mean annual aggregate loss for all simulation run lengths is within 1% of
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the sample mean aggregate loss (Table 4.1). The estimates of the risk measures

were all reasonably consistent (≈ 3% difference between the smallest and largest

estimates). Considering the bootstrapped confidence intervals for the V aR0.995,

when m = 500, there is a proportional uncertainty of ≈ 12%, decreasing to ≈

0.8% when m = 100, 000. It is desirable to ensure that any differences between

simulated risk measures is due to the different modelling assumptions and not

variation inherent in the Monte Carlo simulation process. For this reason the

models M1,M2,M3,M4 are simulated m = 100, 000 times each. The effect of

different modelling assumptions on the risk measures is now considered.

m s̄ V aR0.995(s) ES0.995(s) DKW

500 −0.0% 242 (235,262) 247 0.061

1000 +0.2% 235 (231,244) 250 0.043

10,000 +0.4% 240 (238,244) 252 0.014

100,000 +0.0% 238 (237,239) 250 0.004

Table 4.1: Simulated aggregate losses for M1 using different numbers of simulations

m. The mean annual aggregate loss s̄ is reported as the percentage difference from

the sample estimate from the Gothenburg observations. Bootstrapped confidence

intervals for the V aR0.995 are reported in brackets.

In Figure. 4.11 the AEP curves, from 100,000 simulations each, of models M1,

M2, M3 and M4 are shown. Comparing the curves, the inclusion of clustering and

dependence can be seen to increase the exceedance levels for all exceedance prob-

abilities less than 0.2. From visual inspection of the plot the following preliminary

inferences can be made. Firstly, overdispersion in the counts distribution increases

the tail of the aggregate risk distribution. Secondly including frequency-intensity

dependence also increases the tail of the aggregate risk distribution, and has a

greater effect than overdispersion alone. Thirdly, the inclusion of both frequency-

intensity dependence and overdispersion increases the tail of the aggregate risk,

and has a greater impact than clustering or frequency-intensity dependence indi-

vidually.
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Figure 4.11: Plot of the simulated AEP curves for Gothenburg for the models

M1,M2,M3,M4. The horizontal line marks the V aR0.995

The risk measures for the model M1 are used as the baseline values to quan-

tify the changes in the V aR0.995 and ES0.995 when clustering and dependence are

included. The ratio of the V aR0.995 for M2/M1 is 1.04; introducing overdispersion

into the counts but assuming frequency and intensity independence, has resulted

in a 4% increase in the 200 year return level for the aggregate loss. The ratio of

the V aR0.995 for M3/M1 is 1.12; so frequency-intensity dependence has resulted in

an increase of 12% in the risk measure, without allowing for clustering. Finally

the ratio of the V aR0.995 for M4/M1 is 1.15; a 15% increase when clustering and

frequency intensity dependence are included in the aggregate loss model. The ra-

tios of the expected shortfalls, ES, show approximately the same changes for the

inclusion of clustering and dependence.
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s̄ s2
s V aR0.995(s) ES0.995(s)

Gothenburg 154.84 1588.3 - -

M1 +0.0% −42.0% 238 (237,239) 250

M2 +0.1% −31.7% 249 (248,250) 262

M3 +0.2% −8.2% 268 (266,269) 285

M4 +0.1% +4.2% 277 (275,278) 295

Table 4.2: Simulated aggregate losses for Gothenburg. The sample mean s̄ and

variances2
s for each model are reported as the percentage difference from the sam-

ple mean and variance from the Gothenburg observations. For the V aR0.995 the

bootstrapped confidence intervals are reported in brackets.

To help assess which model most closely reflects the observed behaviour of the

aggregate losses, the mean and variance of the aggregate loss as well as the dis-

persion of extreme events for the models is compared to the sample values for

Gothenburg. From the summary statistics in Table 4.2, the simulated mean aggre-

gate annual loss s̄ for all models is within 1% of the sample mean aggregate loss for

Gothenburg. The variance for the simulated losses is between 30− 42% lower than

the sample variance at Gothenburg for the models without frequency-intensity de-

pendence (M1,M2). The variance of the simulated aggregate losses for the model

with frequency-intensity dependence but without clustering (M3) is lower than the

variance of the Gothenburg losses (−8%), but provides a better approximation

than either M1 or M2. The model M4 with dependence and clustering provides the

closest approximation to the observed variance in the aggregate losses (+4%).
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Figure 4.12: Plot of the dispersion in counts for each model M1,M2,M3,M4 for in-

creasing vorticity thresholds. The circles indicate the sample dispersion for Gothen-

burg.

The dispersion of counts exceeding an intensity threshold for the 4 models and

for the observed Gothenburg counts is shown in Fig. 4.12. The dispersion of the

models with dependence, M3,M4, can be seen to most closely reflect the disper-

sion at Gothenburg. The model M1 with Poisson distributed N , is equidispersed

(φ(N) = 0)for all intensity thresholds. The model M2 with negative binomially

distributed N , has dispersion φ(N) = 0.2 for all counts, but this decreases with in-

creasing intensity threshold. Considering the dispersion of counts for M2 exceeding

the 50th percentile of the intensity distribution, φ(Nu) = 0.11 ≈ 0.1, as expected

from Eqn. 4.2 (q = 0.5; φ = 0.5 ∗ 0.2 = 0.1). The model M3 is equidispersed

when considering all counts (φ(N) = 0), but increases to around φ(Nu) = 0.6 when

considering the subset of events exceeding the 70th percentile of the intensity dis-

tribution. Therefore when N and X are positively dependent the occurrence of
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extremes will cluster regardless of the choice of frequency distribution. For M4, the

dispersion for all counts is φ(N) = 0.2, increasing to φ = 1 for events exceeding

the 70th percentile, before decreasing to φ = 0.7 for events exceeding the 95th

percentile.

The decrease in dispersion for the most intense events for both the observed disper-

sion and models M3 and M4 is somewhat counter-intuitive. This behaviour may

partially be due to the scarcity of data; the uncertainty surrounding the behaviour

of extremes is high. Bootstrapped confidence intervals were constructed for the

3-monthly counts (see Fig. 2.1) but these provide loose bounds and are not par-

ticularly informative. Also, the relation between the mean intensity and counts is

not necessarily linear (hence the use of copulas) and there may be some physical

upper limit to the clustering of extreme cyclones.

The V aR0.995 estimates from the GPD model for Gothenburg are outside of the

bootstrapped confidence intervals of M2,M3,M4. Only the M1 V aR0.995 contains

the GPD model values within its limits, and this model was shown to underesti-

mate the sample variance of the aggregate risk. This would further indicate that the

GPD model is unsuitable for modelling the aggregate loss of extra tropical cyclones.

Alternative simulation models were also considered briefly for Barcelona (not shown).

As Barcelona cyclones had low correlation between the frequency and intensity, and

counts were not over-dispersed (φ(N) ≈ 0.0), there was little different between the

models M1 −M4.

4.5 Summary

Methods for exploring the behaviour of extremes of the aggregate loss distribution

have been discussed. The effect of frequency-intensity dependence on extremes

of the aggregate loss distribution have been investigated, as well as the sensitivity

of the aggregate loss to clustering with and without frequency intensity dependence.
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Non-parametric Cantelli bounds and bootstrap confidence intervals were used to in-

vestigate the effect of frequency-intensity dependence on the empirical exceedance

levels for extra tropical cyclones passing near Gothenburg and Barcelona. Pos-

itive (negative) dependence was shown to result in a increase (decrease) in the

exceedance levels. Due to the length of the data set (53 years), empirical models

were found to be inadequate for estimating the value-at-risk V aR and expected

shortfall ES for the 1 in 200 year return period.

Generalised Pareto distributions were used to investigate if the aggregate loss dis-

tributions could be modelled directly, avoiding considerations of the distribution of

the frequency and intensity of individual losses and the covariance between. These

models showed an adequate fit for the observed return levels, but it was concluded

that the models could be underestimating extremes of the aggregate distribution.

A Monte Carlo simulation approach was then used to investigate the effect of

frequency-intensity dependence and clustering on the extremes. Dependence re-

sulted in clustering of extremes, whether or not the frequency distribution included

overdispersion. Conversely without frequency-intensity dependence extremes did

not cluster even when the frequency distribution was overdispersed.

Dependence between the frequency and intensity of events increased the risk mea-

sures for the aggregate risk distribution; V aR0.995 and ES0.995, by around 12%

without allowing for clustering in the model formulation. Clustering was found to

result in a 4% rise in the risk measures without frequency-intensity dependence.

The inclusion of both dependence and clustering in the model resulted in an in-

crease of 15% compared to the model with neither.



Chapter 5

Incorporation of dependency into

the loss component of

Catastrophe Models

5.1 Aim

Catastrophe models are widely used in the insurance/reinsurance industry to quan-

tify the financial risk posed by natural hazards (Grossi and Kunreuther, 2005). The

output of these models is an event loss table which is used to approximate the dis-

tribution of financial losses which could result from a particular type of hazard.

This chapter briefly outlines the structure of a catastrophe model. Models for the

annual aggregate losses which are compatible with the event loss table are then

introduced. The purpose of these models is to investigate how best to incorporate

the findings of the previous two chapters regarding frequency-intensity dependence

and clustering into the catastrophe model framework. The performance of these

models is then illustrated using the event loss table of a hypothetical insurer.

105
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5.2 Catastrophe models

Natural hazards have a low frequency and a high severity in comparison to other

forms of insured risk (Clark, 2002). A consequence of this is that traditional actuar-

ial techniques which rely on a high frequency/low severity of claims are inadequate

for managing the risk from natural hazards (Banks, 2005). Alternative approaches

which use statistical and deterministic methodologies to model the physical risk of

a hazard and translate it into financial loss have been developed, usually referred

to as catastrophe models (Woo (2002); Grossi and Kunreuther (2005)).

Although the need for a more sophisticated approach to managing risk has been

advocated in the literature since the 1970s (see Friedman (1972)), catastrophe mod-

els were not widely adopted by the insurance community until the unprecedented

natural catastrophe losses of the early 1990s. These losses included the series of

windstorms which affected Europe in 1990, hurricane Andrew in 1992 and the

Northridge earthquake of 1994 (Grossi and Kunreuther, 2005). Hurricane Andrew

alone resulted in 9 insurers becoming insolvent when it caused around $15.5 billion

in insured losses. In the years since Andrew, catastrophe models have become in-

creasingly sophisticated as well as receiving greater recognition from the insurance

community (Clark, 2002). The construction of a catastrophe model varies between

modellers but the same basic approach is used. A natural hazard is defined in terms

of its physical parameters, then the hazard is applied to an inusrance portfolio and

the resulting financial loss is calculated through a vulnerability function (Grossi

and Kunreuther, 2005). The formulation of a catastrophe model is described in

the next section.

5.2.1 Mathematical formulation of a catastrophe model

The objective of a catastrophe model is to quantify the financial risk from a par-

ticular type of natural hazard. The input for a catastrophe model is the physical

parameters of the hazard and the insurer’s portfolio, and the output is a table of

losses and their frequency of occurrence. Catastrophe models consist of four main
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components; the exposure database, the hazard module, the vulnerability module

and the financial loss module (see Figure 5.1).

Figure 5.1: Component modules in a catastrophe model.

Exposure database - a database of insured properties, this is the insurer’s

exposure for a given region. For loss estimation the most important information

is the location and construction type of the property. The location is necessary

to be able to apply the local intensity of the hazard, and the damage caused by

a given hazard intensity is largely a function of hazard intensity and construction

type (Grossi and Kunreuther (2005)). For each construction type k = 1, 2, . . . , K

at location j = 1, 2, . . . , J there are variables ek(sj), where sj is the location, and

ek(sj) is the exposure (total insured value). The exposure ek(sj) is an aggregation

of properties of type k within a specified region, usually defined by post codes.

Hazard module - a catalogue of historical and simulated hazard events, each

of which is characterized by an annual rate of occurrence and spatial maps of the

hazard’s intensity (e.g. maximum wind speed). For most types of hazard, only the

variables for a small number of historic events will be available. Most of the events

in the catalogue will be perturbations of historic events or synthetic events which

have been simulated from a parametric or numerical weather prediction (NWP)

model. Each event in the catalogue is of the form (i, ρi, hi(s)), where i = 1, 2, ..., I

is the event id, ρi is the annual rate of occurrence and hi(s) is the hazard intensity
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at location s.

Vulnerability module - the vulnerability of a building of a construction type

k is a function of the hazard h. This vulnerability function is usually estimated

from historical data using engineering expertise (Grossi and Kunreuther, 2005). A

typical form is

Vk(hi, sj) = ΦkV (hi(sj), sj),

where Φk is a multiplicative factor to model the effect of construction type. The

insured loss of buildings of type k at location sj due to hazards hi is then given by

li,j,k = ek(sj)ΦkV (hi(sj), sj).

The vulnerability Vj,k is a damage ratio in the interval [0, 1]; the loss corresponding

to a given hazard h and exposure e is a fraction of the total insured value exposed.

The total loss due to event i, Li is the sum of the losses for each construction type

at each location,

Li =
J∑
j=1

K∑
k=1

li,j,k =
J∑
j=1

K∑
k=1

ek(sj)ΦkV (hi(sj)).

An upper bound for the loss Li is given by Ei =
∑J

j=1

∑K
k=1 ek(sj), which is the

total exposure of all construction types at all locations. This assumes the vulner-

ability function is deterministic. However, the loss can also be defined where the

vulnerability is a stochastic function of the hazard hi. This results in secondary

uncertainty for the loss of event i, the primary uncertainty being related to the

occurrence of the event. This secondary uncertainty is due to variation within the

damage of exposures of the same construction type experiencing the same hazard

intensity. The secondary uncertainty is not considered here, but for a discussion

of the effect of secondary uncertainty in the event losses on the resulting aggregate

loss see Diers (2008).

Financial loss module - once the monetary losses due to a hazard have been

modelled via the vulnerability function the insured losses can then be calculated.
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This is done by taking into consideration policy cover limits and deductibles, loss

triggers, attachment points etc (Grossi and Kunreuther, 2005). The final output

of the catastrophe model is called an event loss table (ELT), and is of the form

(i, ρi, E[Li], V ar[Li], Ei). The parameters i and ρi are the same as in the hazard

module. Here, E[Li] = µi is the expected loss, V ar[Li] = σ2
Li

the secondary uncer-

tainty, and Ei the total exposure (maximum loss) for the ith row.

The ELT can then be to approximate the annual losses for the user’s portfolio

(see Section 5.3). These losses are often represented using exceedance probability

(EP) curves. As well as the aggregate exceedance probability (AEP) which was

considered in Chapter 4, the conditional exceedance probability (CEP) and occur-

rence exceedance probability (OEP) are of interest to insurers. The conditional

exceedance probability is the probability that the loss of a single event exceeds a

threshold x,

CEP (x) = Pr(X > x) = 1− FX

where FX is the cumulative distribution function of X. The OEP is the probability

that the maximum loss in a year Xmax = max(X1, ...XN) exceeds a threshold x;

OEP (x) = Pr(Xmax > x).

5.3 Methods

In this section probability models for annual losses are introduced which are com-

patible with event loss tables. The parameters of the ELT are used to specify the

distributions of the frequency N and intensity X of losses, which in turn determine

the distribution of the annual aggregate loss S = X1 + ... + XN and the annual

maximum loss Xmax. For the rest of the chapter it is assumed that there is no

secondary uncertainty for the individual rows of the ELT; for event i the loss is

Xi = µi.
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5.3.1 Current Practice

Typically the individual rates are assumed to be stationary in time and the rows

in an ELT are independent of one another. Each row of the ELT is then modelled

as a compound Poisson or Negative Binomial process, and the aggregate loss is the

the sum of the losses over all the rows:

S =
I∑
i=1

Si =
I∑
i=1

NiXi,

where N ∼ Pois(ρi), and Xi is the expected loss for row i. The mean and variance

of S is

E[S] =
I∑
i=1

E[NiXi] =
I∑
i=1

ρiµi

V ar[S] =
I∑
i=1

V ar[NiXi] = ρiµ
2
i

as E[Ni] = V ar[Ni] = ρi, E[Xi] = µi, V ar[Xi] = 0 and Cov(NiYi, NjXj) = 0 if

i 6= j. The cumulative distribution function of S is denoted FS(x) = P (S ≤ x).

As in Chapter 4, FS can be approximated using Monte Carlo simulation methods.

If each row is simulated individually then estimating FS requires the simulation of

thousands of compound processes thousands of times each. However the following

property of Poisson compounds greatly simplifies the simulation process.

Theorem For some natural number I, let S = S1 + ... + SI be the sum of in-

dependent Poisson compounds S1, . . . , SI , where Si ∼ CPois(ρi, FXi
), i = 1, . . . , I.

Then S has a compound Poisson distribution,

S ∼ CPois(ρ, FX),

where

ρ =
I∑
i=1

ρi, FX =
I∑
i=1

ρi
ρ
FXi

.

(for a proof see Rolski et al. (2009) Section 4.2.2). The annual losses can then be

simulated as follows; first the number of losses are simulated fromN ∼ Pois(ρ) then

N individual losses are selected by sampling from FX (e.g. by bootstrap resampling
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of the Li). The CEP for the event loss table with no secondary uncertainty (Xi =

µi) is

CEP (x) = 1− Pr(X ≤ x) =

∑
µi>x

ρi∑I
i=1 ρi

, (5.1)

where
∑

µi>x
ρi is the sum of all rates whose expected loss µi exceeds x. The as-

sumption of stationarity for the rates is not appropriate for many types of natural

hazard. Studies have shown that extra tropical cyclones, Atlantic hurricanes and

U.S. floods exhibit overdispersion which is caused by rate-variation due to changes

in the background atmospheric conditions with time (Mailier et al. (2006); Vi-

tolo et al. (2009); Villarini et al. (2013)). In Chapter 3, it was also shown that

background atmospheric conditions result in covariance between the frequency and

intensity of extra tropical cyclones. Models which allow for this time variation in

the rates and frequency-intensity dependence are now introduced.

5.3.2 Mixture model approach

The mixture model approach outlined in this section is already widely used in credit

risk modelling (Crouhy et al. (2000); Frey and McNeil (2003)). Credit risk portfo-

lios take a similar form to event loss tables; a portfolio will consist of a bank’s loans

each of which is characterized by a probability of defaulting and a corresponding

loss. Although loans are assumed to default independently of each other they can

be affected by the same set of background factors such as the rate of inflation,

interest rates etc. To include this in the credit risk models the loans are regressed

on a common set of random variables which represent these factors. In this section,

similar techniques have been adapted for catastrophe modelling (Fig. 5.2).
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Figure 5.2: Schematic of the relationship between the observed variables S,N, Y ,

the event loss table parameters and any additional unobserved model variables.

The rate of hydro-meteorological hazards are assumed to depend upon the back-

ground atmospheric conditions. The effect of changes in the atmospheric conditions

can be included in the annual losses by the introduction of a random variable Z.

Here Z is some measure of the state of the climate during the relevant time period.

For example, if the aggregate loss is due to winter extra tropical cyclones over

Europe, then Z might represent the winter mean of the NAO index. The stochas-

tic rates are denoted λi and are related to Z deterministically through some link

function g;

g(λi) = β0,i + β1,iZ,

where the parameters β0,i,β1,i are selected such that E[λi] = ρi so that the mean

number of times each row is sampled remains unchanged. A Poisson process with a

stochastic rate λi is called a Poisson mixture distribution. A consequence of mixing

the rates is that the counts are now more variable; V ar[N ] > E[N ] (see Chapter

2). Although the rows are now related to a common factor, they are conditionally

independent of each other given Z, and the aggregate loss can still be modelled as

a single compound process for each realization of Z (McNeil et al., 2005). Specific
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forms for the link function g and climate variable Z are now investigated.

Bernoulli model. Here the state of the climate is modelled for simplicity with a

binary random variable Z ∼ Ber(θ). The rates are related to Z by a linear link

function,

λi = β0,i + β1,iZ. (5.2)

The intercept parameter is non-negative, β0,i ≥ 0, otherwise if Z = 0, then λi < 0.

The expectation of λi is E[λi] = ρi and

E[λi] = β0,i + β1,iθ = ρi,

then rearranging for β0,i

β0,i = ρi − θβ1,i

and as β0,i ≥ 0,

β1,i ≤
λi
θ

(5.3)

Log normal mixture. Here the mixing variable follows a standardized normal

distribution Z ∼ N(0, 1), and is related to the rates with a log-link function

log(λi) = β0,i + β1,iZ. (5.4)

This approach has the advantage that as Z is now continuous it can reflect the full

range of variability in the climate. The log-link function is the usual form for Pois-

son regression studies of count data (e.g. Mailier et al. (2006); Katz (2002)). The

log transformation also ensures that λi is non-negative, allowing greater flexibility

in the parameterization of β0,i, β1,i.

5.3.3 Parameter estimation: constant dispersion

The mean number of losses from each row annually is specified by the rate param-

eter E[Ni] = ρi, but not the variance of the counts, V ar[Ni]. Here it is assumed

that although the variance in the total annual number of losses, V ar[N ] , is not

defined by the ELT it is known to the modeller, and so φ(N) = V ar[N ]/E[N ]− 1

is also known to the modeller. Then if the mean and variance of N are known the
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beta parameters can be estimated using the Method of Moments. In this section

the dispersion for each row is assumed to have the following form,

V ar[Ni]/E[Ni] = φρi + 1 (5.5)

similar to that of the negative binomial distribution. The overdispersion parameter

φ is specified by the modeller and does not depend on i (hence constant dispersion).

Note that from Eqn. 5.5 the variance of the ith row V ar[Ni] is a function of the

rate parameter ρi but not the intensity µi.

If V ar[N ] and E[N ] are known then the dispersion parameter φ can be estimated.

First note that the variance of N is

V ar[N ] = E[λ] + V ar[λ], (5.6)

see Section 2.2.3. The expectation of λ is, E[λ] = E[λ1 + ...λI ] = ρ. The variance of

λ, where λi is related to the mixing variable Z via a log or link function as specified

in the previous section, can be shown to be,

V ar[λ] = φ

(
I∑
i=1

ρi

)2

see Appendix C. Then rearranging Eqn. 5.6 for φ

φ =
V ar[N ]−

∑I
i=1 ρi(∑I

i=1 ρi

)2 =

(
V ar[N ]

E[N ]
− 1

)
1∑I
i=1 ρi

. (5.7)

As V ar[N ], E[N ] and
∑I

i=1 ρi are all known φ can thus be calculated for the models

with linear or log link.

Bernoulli model. A Bernoulli model for the aggregate loss, with rate as specified

in Eqn. 5.2 has mean

E[λi] = β0,i + β1,iθ

and variance

V ar[λi] = β2
1,iθ(1− θ). (5.8)



Methods 115

As these moments are known then β0,i and β1,i can be determined. Equation 5.8

can be rearranged for β1,i;

β2
1,iθ(1− θ) = φρ2

i

β1,i = ±ρi

√
φ

θ(1− θ)

(5.9)

and β0,i is then

β0,i = ρi − β1,iθ. (5.10)

For this choice of dispersion the rates for the Bernoulli model scale identically with

Z. This can be shown by expressing β0,i, β1,i in terms of θ, ρi, φ using Eqns. 5.9,

5.10,

λi = ρi

(
1 +

φ

θ(1− θ)
(Z − 1)

)
= ρic1,

where c1 is a constant and does not depend on i. A consequence of this is that the

CEP remains unchanged for different values of Z,

CEP (x) = 1− FX(x) =

∑
µi>x

λi∑I
i=1 λi

=

∑
µi>x

ρic∑I
i=1 ρic

=

∑
µi>x

ρi∑I
i=1 ρi

which is the CEP for the current practice model with stationary rates (Eqn. 5.1).

Therefore X is independent of Z.

Log normal model The same approach as in the Bernoulli model can be used

to calculate the regression coefficients and dispersion parameter. The log normal

model with a stochastic rate as specified in Eqn 5.4 has mean and variance

E[λi] = E[eβ0,i+β1,iZ ] = eβ0,i+β
2
1/2

V ar[λi] = e2β0,i+β
2
1,i(eβ

2
1,i − 1).

see e.g. Aitkin et al. (2009) Section 8.3. Since E[λi] = ρi and V ar[λi] = φρ2
i ,

φ = ρi(e
β2
1 − 1),

rearranging for β1,

β1 =
√
log(1 + φ) (5.11)
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and β0,i is then

β0,i = log(ρi)−
1

2
log(1 + φ). (5.12)

As in equation 5.3.3 the ratio of the rates λi will scale with Z, with constant c2

where

c2 = e−(1/2)log(1+φ)+log(1+φ)1/2Z .

5.3.4 Intensity dependent dispersion

With constant dispersion all the ELT rates scale identically with Z and thus the

conditional exceedance probability (and the mean loss per event) is independent of

Z. Therefore the frequency N and intensity X remain independent. As discussed

in Chapters 3 and 4 independence is not a valid assumption for some natural

hazards and results in the underestimation of the extremes of the aggregate loss.

The parameter β1,i is now assumed to depend on µi and the dispersion parameter

φi is now modelled as a function of the ith rows intensity,

φi = f(µi, ρi).

To estimate β0,i,β1,i a method of moments approach as in the previous section

is used, except the dispersion of counts exceeding an intensity threshold u, φ(Nu)

is now considered. For the linear link function the variance of counts exceeding a

threshold u is,

φ(Nu)E[Nu] =

(∑
µi>u

ρi
√
φi

)2

, (5.13)

where E[Nu] is the mean number of events exceeding u; E[Nu] =
∑

µi>u
ρi. To

calculate φi, it is first necessary to sort the event loss table by the expected

loss µi; largest to smallest. The dispersion parameter for the first row (largest

expected loss) φ1, can then be calculated by first noting that the dispersion of

the 1st row V ar[N1]/E[N1] − 1 is equal to the dispersion of counts exceeding µ1;

V ar[Nu]/E[Nu]−1, where u = µ1. The dispersion parameter can then be calculated

from
V ar[N1]

E[N1]
=
V ar[Nu]

E[Nu]
= φ1ρ1 + 1 (5.14)
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by rearranging for φ1 as V ar[Nu]/E[Nu] is assumed to be known to the modeller.

For the rest of the rows j = 2, . . . , I,expressions for φj can be obtained by rear-

ranging Eqn. 5.13,

φj =

(√
φ(Nµj)

∑j
i=1 ρi −

∑j−1
i=1 ρi

√
φi

)2

ρ2
j

(5.15)

where φ(Nµj) is the dispersion of counts exceeding µj. The same approach can be

used with the log-link function, of first calculating the variance of the most intense

event and then the variance of the rows j = 2, ..., I (see Appendix C).

Bernoulli model The parameters of the Bernoulli model are calculated as in

the previous section, except with non-constant dispersion φi;

β1,i = ρi

√
φi

θ(1− θ)

β0,i = ρi − β1,iθ,

(5.16)

where φi is calculated from Eqns 5.14, 5.15.

Log normal model Similarly the log normal parameters can be calculated as

β1,i =
√
log(1 + φi)

β0,i = logρi −
1

2
log(1 + φi).

(5.17)

The dispersion φi now depends upon the intensity of the ith row, and the CEP for

the mixture models no longer scales with Z. For the Bernoulli model,

c1 = ρi

(
1 +

φi
θ(1− θ)

(Z − 1)

)
which is no longer constant for all i. Similarly for the log-normal model

c2 = e(−(1/2)log(1+φi)+log(1+φi)
1/2Z),

which also depends on i.
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5.4 Model implementation

In this section the performance of the different loss models introduced in this chap-

ter is investigated using a synthetic event loss table. This table was developed

with input and feedback from the reinsurance industry and is structurally simi-

lar to those derived from European windstorm catastrophe models. Although the

ELT used here it is not identical to any individual insurer’s event loss table it has

the same typical characteristics of those currently in use. In particular it contains

thousands of unique events characterised by their annual frequency and expected

loss, each with very low individual probability of occurrence.

The event loss table used here contains 55, 000 events (see Fig. 5.3), with total rate

E[N ] = 8 loss events per year, expected annual aggregate loss E[S] = 6, 400, 000

and mean loss per event E[Y ] = 800, 000. Here 5 models including a model repre-

senting current practice were considered. The models differ in their parameteriza-

tion of the rates λi.

Figure 5.3: Plot of log of the expected loss µi against the log of the rate ρi for an

ELT.
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Model M1 Stationary Poisson process with constant rates, no overdispersion.

λi = ρi

Model M1 is representative of current practice, and the frequency and loss distribu-

tions are stationary. This model is used as the baseline against which the mixture

models are compared.

Model M2 the rates are related to a Bernoulli mixing variable through the identity

(linear) link function, and with constant dispersion parameter φ,

θ = 0.5,

Z1 ∼ Ber(θ),

φ(N) = 0.3,

λi = β0,i + β1,iZ1.

The β0,i, β1,i parameters can be calculated with φ(N) and θ from Eqns 5.9,5.10.

The model M2 has clustering but not frequency-intensity dependence.

Model M3 the rates are related to a Normal mixing variable through the log

link function, and with constant dispersion parameter φ,

Z2 ∼ N(0, 1),

φ(N) = 0.3,

log(λi) = β0,i + β1,iZ1.

The dispersion parameter φ can be calculated with φ(N) in Eqn. 5.7 and the

β0,i, β1,i parameters can then be calculated with φ from Eqns. 5.11,5.12. The

model M3 has clustering but not frequency-intensity dependence.

Model M4 the rates are related to a Bernoulli mixing variable through the identity
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(linear) link function, and with intensity dependent dispersion parameter φi,

θ = 0.5,

Z1 ∼ Ber(θ),

φ(Nu) = 0.3, for all u such that; 1 ≥ CEP (u) > 0.05

λi = β0,i + β1,iZ1.

The intensity dependent φi can be calculated from Eqns. 5.14,5.15 and then the

β1,i, β0,i parameters from Eqn. 5.16. However an upper limit for β1,i is given by

Eqn. 5.3, so for any i which violate this constraint the beta parameter is set as

βi = ρi/θ. The model M4 has clustering and frequency-intensity dependence.

Model M5 Log-link function, mixing distribution Z2 ∼ N(0, 1), non constant

dispersion parameter φi;

Z2 ∼ N(0, 1),

φ(Nu) = 0.3, for all u such that; 1 ≥ CEP (u) > 0.05

log(λi) = β0,i + β1,iZ1.

The intensity dependent φi can be calculated as in appendix C.2 and then the

β1,i, β0,i parameters can be calculated from φi. The model M5 has clustering and

frequency-intensity dependence.

5.5 Results

The annual aggregate losses were simulated for each model as follows.

1. Simulate m = 100, 000 values of the random variable zj, where j = 1, . . . ,m.

Then for each j;

2. Calculate the rates λi,j = h−1(β0,i + β1,izj) for i = 1, . . . , I.

3. Simulate nj from a Poisson distribution nj ∼ Pois(
∑I

i=1 λi,j)

4. Sample with replacement nj losses from the event loss table with probability

of i being selected λi,j/λj
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5. Calculate the aggregate loss sj = x1,j + ...xnj ,j

6. Calculate the maximum loss xmax,j = max(x1,j, ..., xn,j)

5.5.1 Aggregate exceedance probability

Figure 5.4 shows the simulated AEP curves for the annual loss models M1 −M5.

From the AEP curves little difference can be seen between the models M1,M2

and M3 for all exceedance probabilities. The models M4 and M5 with intensity

dependent φi have diverged from the other models by the 0.05 (1 in 20 year)

exceedance probability. The AEP curves for M4, M5 remain close until the 0.02

(1 in 50 year) exceedance probability after which the exceedance levels for M5

increase at a faster rate than those of M4. As with the Gothenburg aggregate loss

models, inclusion of frequency-intensity dependence has resulted in increases of the

extremes of the aggregate loss. The extremes also appear to be sensitive to the

choice of mixing distribution and link function.
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Figure 5.4: Plot of the AEP curves for the loss models. Grey shading indicates the

95 % DKW bands.

Summary statistics for the simulated aggregate losses are reported in Table 5.1.

The value-at-risk V aR0.995 for the models M2, M3 are not significantly different

from that of M1; the bootstrapped confidence intervals for M2,M3 contain the

V aR0.995 for M1. For M4, V aR0.995 is 18% greater than for the model M1, and the

difference for M5 is even greater at +32%. The bootstrapped confidence intervals

for both of these models do not overlap with either M1 or each other. The dif-

ference between the expected shortfalls ES0.995 is even more pronounced, with M5

50% greater than that of M1. All models have the same expected annual aggregate

loss E[S] =
∑I

i=1 ρiµi, as desired.

The findings for the AEP curves from the event loss table are therefore qualitatively

similar to those of the previous chapter; positive frequency-intensity dependency

increases the extremes of the aggregate risk.
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s̄ φn V aR0.995(s) ES0.995(s)

M1 6.4 0.00 26.8 (26.4,27.1) 30.5

M2 +0% 0.30 +1.4(−0.1,+2.8)% +3%

M3 +0% 0.32 +1.3(−0.0,+2.6)% +3%

M4 +0% 0.27 +17.1(+15.7,+18.9)% +19%

M5 +0% 0.29 +32.9(30.6, 35.7)% +50%

Table 5.1: Summary statistics from the simulated annual losses. For the models

M2,M3,M4,M5 the change in the statistics compared to the values for the model

M1 (%) are reported. The bootstrapped confidence intervals for V aR0.995 are re-

ported, in brackets, as the percentage change from the M1 V aR0.995(S) = 26.8

Figure 5.5 shows the AEP curves for the loss models M2 −M5 conditional on

the values of the mixing variables Z1/Z2. For all mixture models the upper tail

of the aggregate loss distribution can be seen to depend upon the mixing variable.

The effect of the mixture model on the aggregate loss can be seen to be greatest for

the models with intensity dependent dispersion (Fig 5.5 c,d). The AEP curves for

M5 show a greater variation for different values of the continuous mixing variable

Z2 compared to the AEP curves for the model M4 with binary mixing variable Z1.

This could be a possible reason for the divergence of the AEP curves for M4 and

M5 in Fig. 5.4.
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(a) (b)

(c) (d)

Figure 5.5: Plots of the AEP curves for the mixture models conditional on the

mixing variables Z1, Z2. Grey shading indicates the 95% DKW bands. a) M2 b)

M3 c) M4 d) M5
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5.5.2 Conditional exceedance probability

(a) (b)

(c) (d)

Figure 5.6: Plots of the CEP curves for the simulated losses x conditional on the

mixing variable z. The CEP curve for M1 has been included for in all plots (solid

black line). Grey shading indicates the 95% DKW bands, a) M2 b) M3, c) M4 d)

M5.

The effect of the mixing variables on the CEP is now considered. Figure 5.6 shows

the CEP curves for the loss models conditional on the mixing variables Z1, Z2. As

discussed in Section 5.3.4 for the models with constant dispersion parameter φ the

ratio of the rates scale with Z. Consequently there is no difference between the
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CEP curves for M2, M3 which are identical to that of M1 for all values of the

mixing variables Z1, Z2. The CEP curves for M4 and M5 do depend upon the

mixing variable Z1 and Z2; the CEP(x), Pr(X > x) increases with Z. The mean

loss per event Y for M4,M5 conditional on Z1, Z2 is shown in Fig. 5.7. For the

model M4, the mean loss per event ȳ when Z1 = 0; ȳ = 530, 000 and when Z1 = 1;

ȳ = 990, 000, therefore the mean expected loss per event (E[Y ]) is almost doubled

for years when Z1 = 1. Similar conclusions can be drawn for the model M5 with

continuous mixing distribution; Y is positively (non-linearly) dependent upon Z2.
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(a) (b)

(c) (d)

Figure 5.7: Densities of the simulated mean loss per event conditional on the

Bernoulli mixing variable; z1 = 1 and z1 = 0 a) M2 c) M4. Plots of the mean

simulated loss per event y against the normal mixing variable z2, with a Lowess

line b) M3 d) M5
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5.5.3 Occurence exceedance probability

The OEP curves for the 5 models are shown in Fig. 5.8. There is no visible

difference between the 5 models. The distribution of the maximum loss FXmax

is thus insensitive to clustering with or without frequency intensity dependence.

Some differences can be seen when considering the OEP curves conditional on the

mixing variables Z1, Z2. The occurence exceedance levels for the models M4 and

M5 are much smaller when Z1 = 0 and Z2 < −1 respectively. For larger values

of the mixing variable the OEP curves have converged by the 0.005 exceedance

probability. This is due to the structure of the ELT; an upper limit is imposed on

the distribution of the maximum losses by the largest loss µi in the dataset.

Figure 5.8: Plot of the OEP curves for the loss models. Grey shading indicates the

95% DKW bands
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(a) (b)

(c)

(d)

Figure 5.9: Plots of the OEP curves for the mixture models conditional on the

mixing variables z1, z2. Grey shading indicates the 95% DKW bands. a) M2 b)

M3 c) M4 d) M5
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5.5.4 Clustering and frequency-intensity dependence

In Section 5.5.2 the distribution of individual losses, the CEP, was shown to de-

pend upon Z, for the models with intensity dependent dispersion. There is also

dependence between N and Z for all models with or without frequency intensity

dependence. Correlations between the mean loss and the mixing variables as well

as the number of losses are reported in Table 5.2. The sample correlations between

the simulated variables are approximately equal for M2 and M3 and for M4 and

M5. The relationship between N ,X and Z is therefore determined by the choice

of dispersion parameters φi and not by the link function or mixing variable. Due

to the mutual dependence on the mixing variable the frequency of loss events and

mean loss are also correlated for M4 and M5 ( Fig. 5.10).

cor(n, z) cor(y, z) cor(s, z) cor(y,n)

M1 0.00 0.00 - 0.00

M2 0.46 0.00 0.23 0.00

M3 0.45 0.00 0.23 0.00

M4 0.46 0.37 0.49 0.18

M5 0.46 0.33 0.49 0.17

Table 5.2: Sample correlations between the frequency n, mean loss per event y =

s/n and mixing variable z
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(a) (b)

(c) (d)

(e)

Figure 5.10: Plots of the simulated number of losses n against the simulated

mean loss y, with lowess lines. a) M2 b) M3 c) M4 d) M5
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Figure 5.11: Plot of the dispersion of counts N against intensity thresholds for the

5 loss models.

Figure 5.11 shows the dispersion of counts exceeding a loss threshold. The

models M2 −M5 have been parametrised such that φ(N) = 0.3 when considering

all counts. The dispersion of M2 and M3 decays linearly with increasing intensity

threshold, which is consistent with the findings of Chapter 4; when the frequency

and intensity (loss) are independent the occurrence of extreme events converges to

a Poisson process. The decrease in the dispersion can be calculated from equation

4.11 (Chapter 4); if the dispersion of all counts is φN the dispersion of events above

the 50th percentile of the loss distribution FX is 0.5φN = 0.5 ∗ 0.3 = 0.15, (see Fig.

5.11). For the model M4 dispersion remains reasonably constant at φ ≈ 0.27 until

the higher percentiles of the loss distribution FX after which dispersion decays.

This is due to the upper limit for the φi parameters imposed by Eqn 5.3. The

dispersion for M5 stays roughly constant (0.28 < φ(Nu) < 0.29)for all individual

loss thresholds up to and including the 95th percentile. It thus seems likely that
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the differences between the upper tail of the AEP curves for M4 and M5 is due

to the restrictions on the dispersion parametrisation for M4 (Eqn 5.3), rather than

the differences in the mixing-variable and link function.

From this simulation study using an ELT similar conclusions can be drawn as

from the copula simulation approach of Chapter 4. Frequency-intensity depen-

dence is necessary for the clustering of extremes, which in turn increases the risk

measures for the AEP. Additionaly the distribution of maximum losses (OEP) has

been shown to be insensitive to frequency-intensity dependence and clustering.

5.6 Conclusions

This chapter has explored the modelling of the financial risk from natural haz-

ards using catastrophe loss models. In particular the assumptions used in the

financial component for modelling the annual losses has been investigated. The

performance of the current practice approach of modelling losses using a station-

ary Poisson process has been compared with a variety of mixture models. The

purpose of the mixture models was to investigate the effect of including over dis-

persion and frequency-intensity dependency on the loss distributions.

Here two choices of mixing distribution Z (Bernoulli and Normal) with two choices

of link function (linear and log) were considered, along with different parametriza-

tions of the dispersion. The aggregate annual losses were found to be sensitive to the

inclusion of frequency-intensity dependence through the dispersion parametriza-

tion. As was found in the previous chapter, this relation is necessary to capture

the clustering of extreme events. The inclusion of clustering and frequency-intensity

dependence in the financial loss models resulted in increases in the risk measures

V aR0.995(+33%) and ES0.995(+50%).

The choice of mixing variable was found to be of less importance than the dis-

persion parametrization. The main advantage of using the log link/normal mixing
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distribution was that it allows greater flexibility in the dispersion parametrization

than the linear/Bernoulli mixing combination. The Bernoulli mixing distribution

with intensity dependent dispersion could not fully capture the variability in ex-

tremes due to constraints in the choice of beta parameters. This in turn resulted in

an underestimation of the extremes of the annual aggregate loss. The distribution

of maximum losses was found to be insensitive to the mixture models.

For the models with intensity dependent dispersion, the dispersion was assumed

constant at φ(Nu) = 0.3 for all intensity thresholds u up to the 95th percentile.

It may be that the dispersion of losses for a particular natural hazard increases

with the intensity threshold, such as with Gothenburg windstorms, where disper-

sion increased to φ = 1 for events exceeding the 70th percentile of the intensity

distribution. If the dispersion for windstorm related losses shows similar behaviour

then the difference between the current practice model and the intensity-dependent

mixture models will likely be even greater.



Chapter 6

Discussion and Conclusions

6.1 Summary of findings

This thesis has developed and tested a framework for modelling the aggregate risk

of natural hazards. Previous studies have focused on estimating individual at-

tributes of natural hazards, such as the frequency or intensity, without allowing

for dependency between them. This is the first study to rigorously investigate the

effect of climatic factors and physical processes such as clustering on the distribu-

tion of aggregate losses.

Collective risk models, which are used in insurance and risk management for mod-

elling total claim amounts, have been extended here to model the aggregate loss

distribution for natural hazards. In Chapter 3, this framework was applied to extra

tropical cyclones (ETCs) using a gridded database of cyclone tracks for the North-

ern Hemisphere, covering October-March winters from 1950-2003. Extra tropical

cyclones were selected as the case study for this thesis as they are responsible for

large cumulative insured losses over Europe. The aggregate losses from such events

have also been of concern for the insurance community in recent winters due to

prominent clusters of storms, such as those of the recent 2013/14 winter over the

UK.

135
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Using the framework, the variance of the aggregate loss distribution for ETCs was

shown to be sensitive to covariance between the frequency and mean intensity of

events. Substantial positive correlation was found between the frequency and mean

intensity over the exit regions of the North Atlantic and North Pacific storm tracks,

and negative correlation over the Kuroshio and Gulf Stream. Assuming no positive

correlation resulted in large biases in the variance of the aggregate loss. The inclu-

sion or omission of dependence between the intensities of consecutive cyclones was

found to not significantly effect the modelled variance. It was hypothesised that the

positive correlation over Europe between the frequency and intensity was due to

joint modulation by underlying large-scale flow patterns. Regression of the cyclone

counts and local mean vorticity onto the SCP, NAO and EAP indices was shown

to reproduce most of the observed positive correlation over Northern Europe. The

East Pacific Pattern and North Pacific/Atlantic patterns accounted for most of the

positive correlation over the North Pacific. Large scale flow patterns however were

not able to account for the negative correlation, over the Gulf Stream and Kuroshio.

The correlation between the frequency and local mean vorticity was also considered

for the subset of the 50% most intense cyclones at each grid point. The positive

correlation was largely unchanged when considering the subset of more intense cy-

clones. However the negative correlation diminished and so was predominantly due

to joint trends in the weaker systems. The negative correlation was not considered

further as it was located in regions with no exposure. The results were found to

be robust to the choice of reanalysis dataset.

Statistical methods were used in Chapter 4 to explore the extremes of the ag-

gregate loss distribution. Cyclones passing near two locations were considered;

Gothenburg and Barcelona. At Gothenburg there was statistically significant pos-

itive correlation between the frequency and local mean vorticity (r = 0.47), and

at Barcelona there was weak negative correlation (r = -0.1). The non-parametric

empirical estimates for the exceedance probabilities were constrained by the length
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of the dataset (53 winters). To make non-parametric inferences about the effect of

frequency-intensity dependence on the annual aggregate loss distribution beyond

this level, Cantelli bounds were used to investigate the effect of frequency-intensity

dependence on the upper bounds of the exceedance levels. Inclusion of the positive

frequency-intensity dependence at Gothenburg resulted in higher upper bounds for

the extremes of the aggregate loss distribution compared to the case without de-

pendence. Conversely, the weak negative dependence at Barcelona resulted in a

small decrease in the upper bounds with dependence for the extremes of the annual

aggregate loss compared to the bounds without dependence. Generalized Pareto

distributions (GPD) were fitted to the aggregate risk distribution at both locations

to model extremes of the aggregate risk parametrically. The GPD model performed

well for the observed exceedance probabilities but was unsuitable for modelling the

1 in 200 year losses. This was due to an upper bound to the fitted distribution

which appeared to be to low; the maximum possible aggregate loss according to

the model was not much larger than the observed maximum loss from 53 winters

of data.

The sensitivity of extremes of the aggregate loss distribution to the inclusion of

clustering, with and without frequency-intensity dependence, was investigated us-

ing a Monte Carlo simulation approach. The inclusion of frequency-intensity de-

pendence was shown to be necessary to model the clustering of extreme events.

When the underlying rates were overdispersed, but the frequency and intensity of

events were independent, the occurrence of extreme events converged to a Poisson

process. The inclusion of frequency-intensity dependence increased the loss mea-

sures for the 1 in 200 year return level of the aggregate loss by around 11 − 12%

without allowing for clustering in the model formulation. Clustering was found to

result in a 4% rise in these risk measures when dependence was not included in the

model. The inclusion of both dependence and clustering in the model resulted in

an increase of 15% in the risk measures at the 200 year return level.
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Chapter 5 investigated how to incorporate the findings of the previous two chap-

ters into the financial component of a catastrophe loss model. Clustering was in-

troduced with and without frequency-intensity dependence using a mixture model

approach, where the mixing variable represented the state of the climate. The per-

formance of the current practice approach of modelling losses using a stationary

Poisson process was compared with the mixture models. Two choices of mixing

distribution (Bernoulli and Normal) and two choices of link function (linear and

log) were considered. The log-link with Normal mixing distribution was found to

be preferable as it allowed for greater flexibility in the parameter estimation. As

in Chapter 4, frequency-intensity dependence was necessary to capture the clus-

tering of extreme events in the loss model. Clustering without frequency-intensity

dependence resulted in a 2% increase in the 200 year return level loss measures

for the financial models aggregate loss distribution, rising to a 32% increase when

frequency-intensity dependence was included. It was assumed for simplicity in

Chapter 5 that the amount of overdispersion observed in insured losses would be

the same as that observed in the physical measure of the hazard (vorticity).

6.2 Thesis questions revisited

• Is there dependence between the frequency and mean intensity of hazards

within a season/year?

For extra tropical cyclones over northern Europe and the eastern North Pa-

cific there is substantial positive dependence between the frequency and mean

intensity (vorticity) of events within a season. There is also some evidence of

negative dependence between the frequency and intensity of these cyclones

over the Gulf stream and Kuroshio.

• How does frequency-intensity dependence affect the distribution of aggregate

losses (aggregate risk)?
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The variance and extremes of the aggregate loss distribution are highly sen-

sitive to frequency-intensity dependence. Falsely assuming independence be-

tween the frequency and intensity is shown to result in large biases in the

variance of the aggregate risk. The inclusion of positive dependence is shown

to be necessary to model the clustering of extreme event.

• How can the dependency be diagnosed and incorporated into the loss compo-

nent of catastrophe models?

The dependency was diagnosed using a variety of statistical methods ap-

plied to time series of the frequency and mean intensity of extra tropical

cyclones. A mixture model approach was found to be a simple and effective

way of including dependency into the loss component of a CAT model. The

inclusion of frequency intensity dependence resulted in increases in the 200

year return level of the aggregate loss of around 32%.

6.3 Discussion

During the course of this project several different approaches for introducing clus-

tering and frequency intensity dependence into an insurer’s event loss table were

considered which were not included in the thesis. For example, one alternative

was to divide the event loss table loosely into strong and weak events using Prin-

cicpal Component Analysis. The clustering algorithm was then specified so that

the probability of an event being sampled from either the strong or weak groups

was dependent upon the simulated climate variable. These methods were more

straightforward than the approach presented in Chapter 5 but allowed for less con-

trol over the tuning of the intensity thresholded dispersion.

It should also be mentioned that event loss tables often contain information re-

garding the location and physical intensity (e.g. mean sea level pressure or storm

severity index) of the loss events. This additional data could be used to assist in
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estimating the parameters for the sampling algorithm presented in Chapter 5.

Another important consideration when developing a clustering method was that

the methodology would need to be understandable and acceptable to the insurance

community. As mentioned in Chapter 5 the mixture model approach is already

widely used in credit risk management. The work here has merely extended the

models to allow for the different nature of the relationship between the mixing vari-

able and event rates in natural hazard modelling as opposed to credit risk modelling.

The clustering method for extra tropical cyclone ELTs was intended to be suf-

ficiently general to applied to the ELTs for other types of hazard, such as flood

or tropical cyclones. However some further considerations would need to be taken

into account before applying the method to other hazards. Consider flood events,

where as well as clustering of events due to clustering of the meteorological triggers

(e.g extra tropical cyclones) there can be a clustering of events at different locations

along the same river due to a single meteorological trigger. Therefore some further

consideration would be required and changes made to the algorithm before it could

be applied to a flood portfolio. One suggestion would be to model the frequency

using a self exciting Poisson, or a Poisson clustered process (e.g. Poisson-Poisson),

to more closely reflect the nature of the clustering of flood events.

6.4 Possible directions for future work

Extra tropical cyclones have been used here as a test bed for developing models for

the aggregate risk of natural hazards. One suggestion for future work is to apply

the framework developed here to other hydro-meteorological natural hazards such

as tropical cyclones or floods. However it would be necessary to make alterations

when applying the algorithm to different natural hazards as discussed above.

As with previous studies which provided the motivation for this investigation, no

spatial aspect was considered for the statistical models. A potentially very impor-

tant extension to this work would be to include a spatial aspect and have freedom
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from the grid, as in (Economou et al., 2014).

Another possible extension to this work would be to consider covariance between

the aggregate risks of different types of natural hazards. For example the covariance

of the aggregate risk of Atlantic tropical cyclones (hurricanes) and extra tropical

cyclones could be investigated. This work would be of benefit for the insurance

community for use in the diversification1 of portfolios. If two hazards are uncorre-

lated or negatively correlated an insurer could reduce their risk from extremes of

either type by spreading their exposure between both. Conversely if two types of

hazard were positively correlated, an insurer with exposure to both but modelling

them as independent would be underestimating their financial risk.

Finally it would be of interest to use climate model projections and this frame-

work to investigate how the aggregate risk of storms may change in the future.

1Diversification - a risk control technique that spreads loss exposures over a myriad of areas

http://www.irmi.com/online/insurance-glossary/terms/d/diversification.aspx



Appendix A

A.1 Collective risk models

In the collective risk model the aggregate loss, S, is modelled as the sum of a

random number N of random intensities Xi,

S = X1 + . . . XN =
N∑
i=1

Xi.

The mean of S in terms of the frequency N and individual intensity Xi, from the

law of total expectation is

E[S] = EN [
N∑
i=1

E[Xi|N ]]

The expectation of S can be expressed in terms of N and mean intensity Y =

(1/N)
∑N

i=1 Xi, as,

E[S] = E[NY ] = E[N ]E[Y ] + Cov[N, Y ],

since Cov[N, Y ] = E[NY ]−E[N ]E[Y ]. If N and X, Y are independent and Xi, Xj

independent then the expectation becomes

E[S] = E[N ]E[X] = E[N ]E[Y ].

The variance of S, from the law of total variance, is in terms of X;

V ar[S] = EN [V ar[
N∑
i=1

Xi|N)]] + V arN [E[
N∑
i=1

Xi|N ]],
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see e.g. McNeil et al. (2005) Section 10.2. The variance of S in terms of Y ;

V ar[Y N ] = E[N2Y 2]− E[NY ]2.

Then by noting that;

E[N2Y 2] = Cov[N2, Y 2] + E[N2]E[Y 2],

the variance of S can be decomposed into seperate contributions from N ,Y and

the covariance between them;

V ar[NY ] = Cov[N2, Y 2] + E[N2]E[Y 2]− (Cov[N, Y ] + E[N ]E[Y ])2

= Cov[N2, Y 2]− (Cov[N, Y ])2 − 2Cov[N, Y ]E[N ]E[Y ]

+V ar[N ]E[Y ]2 + V ar[Y ]E[N2].

For the case N and Xi, Y are independent, the variance is

V ar[S] = E[N ]V ar[X] + V ar[N ]E[X]2

= V ar[N ]E[Y ]2 + V ar[Y ]E[N2]

see Frishman (1971).

A.2 Analysis of modelling assumptions

To investigated the effect of modelling assumptions, such as N and X independent,

a collective risk model was proposed where,

µX |N = β0 + β1N

σXX |N =


σ2
X for i = j

ρσ2
X for i = j ± 1

0 otherwise,

where σXX is the covariance and ρ the correlation between Xi and Xj. This gives

µS = EN
[
β0N + β1N

2
]

= β0µN + β1

(
σ2
N + µ2

N

)
σ2
S = EN [Nσ2 + 2N(N − 1)ρσ2] + V arN

(
β0N + β1N

2
)

= σ2µN + 2 (µN − 1) ρσ2

+ β2
0σ

2
N + β2

1σ
2
N2 + 2β0β1 (µN3 − µNµN2)

(A.1)
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since V ar (β0N + β1N
2) = β2

0V ar[N ] + β2
1V ar[N

2]2 + 2β0β1Cov[N,N2]

and Cov[N,N2] = µN3 + µNµN2

A.3 Sample estimators

Consider a dataset with years t = 1, 2, ..., T . Each year there are nt events, and

for each event there is a severity measure x1,t, x2,t...xnt,t. The estimators for the

sample mean and variance of variable n are denoted n̄, s2
n,

n̄ =
1

T

T∑
t=1

nt

s2
n =

1

T − 1
(
T∑
t=1

nt − n̄)2.

The mean vorticity yt in year t is

yt =
1

nt

nt∑
i=1

xi,t

ȳ =
1

T

T∑
t=1

yt.

s2
y =

1

T − 1
(
T∑
t=1

yt − ȳ)2

The sample estimator for the covariance between n and y is

cov(n, y) =
1

T − 1

T∑
t=1

(nt − n̄)(yt − ȳ).

The sample aggregate risk is

st =
nt∑
i=1

xi,t

s̄ =
1

T

T∑
t=1

st.

s2
s =

1

T − 1
(
T∑
t=1

st − s̄)2
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Is the sample correlation biased?

Is the correlation between y and n in Chapter 3 biased since estimates for the mean

vorticity at time t, yt depend on the sample size nt? That is, will estimates of the

mean vorticity yt increase with sample size nt, even if there is no physical reason

for underlying dependence? Given yt = (1/nt)
∑nt

i=1 xi, the mean and variance of

the sample estimator for the mean vorticity yt is

E[yt] = µY , V ar[yt] =
σ2
X

nt
.

where µY is the population mean vorticity, and σ2
X is the population variance of the

individual intensities (see Rice (2007) Section 7.3.3). Therefore the expectation of

the mean vorticity yt is not dependent upon the sample size but the variance of the

estimator for the mean vorticity1. However it is straightforward to show that the

sample correlation of n and y requires only E[yt] and not V ar[yt]. The expectation

of the sample estimator for the population covariance σ2
NY is;

E[cov(n, y)] =
1

T − 1

T∑
i=1

E
[
niyi −

ni
T

T∑
j=1

yj −
yi
T

T∑
j=1

nj +
1

T 2

T∑
j=1

nj

T∑
j=1

yj

]
=

1

T − 1

T∑
i=1

[
E[yini]−

1

T

T∑
j=1

E[niyj]−
1

T

T∑
j=1

E[njyi] +
1

T 2

T∑
j=1

T∑
k=1

E[njyk]
]

=
1

T − 1

T∑
i=1

[
σNY + µNµY −

2(σNY + µNµY )

T
− (T − 1)µNµY

T
+
T (T − 1)µNµY

T 2

+
(σNY + µNµY )

T

]
=

(T − 1)σNY
T − 1

= σNY

as E[niyi] = σNY + E[ni]E[yi], and E[yi] = µY , which does not depend upon the

sample size (ni). The expectation of the estimator for the variance of the mean

E[s2
y] = σ2

Y ;

E[s2
y] =

1

T − 1
E
[ T∑
i=1

(yi − ȳ)2
]
...

which can be expanded as with the covariance and shown to require only estimates

of E[yi] and not V ar[yi]. The correlation estimator of n and y is therefore unbiased;

cor(n, y) =
cov(n, y)√

s2
ns

2
y

.

1Note: The variance of the estimator for the mean vorticity V ar[yt] is not the same as the

variance of the mean vorticty σ2
Y



Appendix B

B.1 Axioms of coherence

The main function of risk measures are for determining risk capital, portfolio man-

agement and premium pricing (McNeil et al., 2005). It is desirable for a risk

measure to be coherent as defined by the axioms of coherence. As in McNeil et al.

(2005) we define S1, S2 as losses from 2 distinct portfolios and % as the risk measure

(e.g. the value-at-risk or the expected shortfall). The risk measure % is coherent if

the following hold

• translation invariance - for every wεR we have %(S + w) = %(S) + w

• positive homogeneity for every v > 0 %(vS) = v%(S)

• sub-additivity for all S1, S2 we have %(S1 + S2) ≤ %(S1) + %(S2)

• monotonicity If S1 ≤ S2 then %(S1) ≤ %(S2)

see for example Dowd and Blake (2006) for more on the axioms of coherence.

Translational invariance is necessary as it states that by adding or subtracting an

amount to a loss (or position) alters the users capital requirement by exactly that

amount. Positive homogeneity means that the risk from a portfolio is proportional

to its size. Monotonicity implies that if the losses from the first portfolio S1 are

greater than losses from the second portfolio S2 then the risk should be greater.

Sub-additivity is the most important for diversification as it states that an aggre-

gate portfolio made up of smaller portfolios is not exposed to greater risk than the
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sum of the constituent portfolios.

To show that the V aR is not sub-addative a counter example is used, as in Dowd

and Blake (2006). Consider two portfolios which are at risk from independent

claims S1,S2, which for simplicity are both binary random variables which take the

values 0 or 100, and Pr(S1 = 100) = Pr(S2 = 100) = 0.04. Considering the aggre-

gate portfolio which is exposed to both claims, the probability of the loss being 0

is 0.962 = 0.9216, the probability of the loss being 200 is 0.042 = 0.0016, and a loss

of 100 with probability 1 − 0.042 − 0.962 = 0.0768. The V aR0.95(S1 + S2) = 100,

but V aR0.95(S1) + V aR0.95(S2) = 0. Therefore the V aR violates sub-additivity.



Appendix C

C.1 Parameter estimation: Linear link function

Let λi be linearly related to the mixing variable Z;

λi = β0,i + β1,iZ

where the mean and variance of λi are E[λi] = ρi, V ar[λi] = φρ2
i = β2

i,iV ar[Z].

The variance of a Poisson variable Ni, with random intensity λi is

V ar[Ni] = E[λi] + V ar[λi] = (φρi + 1)ρi,

see Section 2.2.3. For the linear link function the covariance between the rate

parameters for two rows of the ELT λi and λj is

Cov[λi, λj] = E[λiλj]− E[λi]E[λj]

= E[(β0,i + β1,iZ)(β0,j + β1,jZ)]− E[(β0,i + β1,iZ)]E[(β0,j + β1,jZ)]

= β1,iβ1,jV ar[Z] =
√
φiφjρiρj

since V ar[λi] = φρ2
i = β2

1,iV ar[Z]. The variance of λi + λj is,

V ar[λi + λj] = V ar[λi] + V ar[λj] + 2Cov[λi, λj]

= ρ2
iφi + ρ2

jφj + 2ρiρj
√
φi
√
φj = (ρi

√
φi + ρj

√
φj)

2.

Using the same approach the variance of V ar[λi + λj + λk] can be derived,

V ar[λi + λj + λk] =
(
ρi
√
φi + ρj

√
φj + ρk

√
φk

)2
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and for an ELT with i = 1, . . . , I rows

V ar[λ] =

(
I∑
i=1

ρi
√
φi

)2

where λ =
∑I

i=1 λi. For constant dispersion parameter φ which does not depend

upon i,

V ar[λ] =

(
I∑
i=1

√
φρi

)2

= φ

(
I∑
i=1

ρi

)2

(C.1)

C.2 Parameter estimation: Log link function

Let λi be log-linearlly related to the mixing variable Z;

log(λi) = β0,i + β1,iZ

where the mean and variance of λi are E[λi] = ρi, V ar[λi] = φρ2
i = e2β0,i+β

2
1,i(eβ

2
1,i−

1). The variance of a Poisson variable Ni, with random intensity λi is

V ar[Ni] = E[λi] + V ar[λi] = (φρi + 1)ρi.

The variance of two log-linearly related variables, λi + λj is

V ar[λi + λj] = V ar[λi] + V ar[λj] + 2Cov[λi, λj],

and the covariance is

Cov[λi, λj] = ρiρj(e
√
log(1+φi)

√
log(1+φj) − 1)

When φi does not depend on i the covariance becomes

Cov[λi, λj] = ρiρj(e
log(1+φi) − 1) = ρiρjφ

and thus the expression for V ar[λ] for the linear function holds (Eqn C.1). When

φi does depend on i (intensity dependent dispersion) then the covariance is

Cov[λi, λj] = ρiρj((1 + φj)
βi/2 − 1).

The variance of λi + λj is then

V ar[λi + λj] = ρ2
iφi + ρ2

jφj + 2ρiρj((1 + φj)
βi/2 − 1). (C.2)
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The same approach can then be used as with the linear link function in Section

5.3.4; the rows of the ELT can be sorted by their expected loss µi and the parame-

ters for the most intense event µ1 can be calculated. Then Eqn. C.2 can be solved

using numerical techniques for φj, as all other terms are known.



Glossary of Acronyms

AAL Annual Aggregate Loss

AEP Aggregate Exceedance Probability

CEP Conditional Exceedance Probability

CMIP5 Coupled Model Inter Comparison Project 5

CPC Climate Prediction Centre

EAP East Atlantic Pattern

ELT Event Loss Table

EP East Pacific/North Pacific

ETC Extra Tropical Cyclone

ERA-40 European Centre for Medium-Range Weather Forecasts

40 Year Re-analysis

EWP East Atlantic/ West Russian

GCM Global Climate Model

GPD Generalised Pareto Distribution

MLE Maximum Likelihood Estimator

NCEP-NCAR National Centers for Environmental Prediction and the

National Center for Atmospheric Research

NAO North Atlantic Oscillation

NWP Numerical Weather Prediction

OEP Occurrence Exceedance Probability

PML Probable Maximum Loss

PNA Pacific North American

POL Polar/Eurasian

Q-Q Quantile-Quantile

SCP Scandinavian Pattern

TNH Tropical Northern Hemisphere

UNISDR United Nationals International Strategy for Disaster Reduction

WP West Pacific
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Glossary of Notations

Ber(.) Bernoulli probability density function

Cov[., .] covariance between . and .

C(., .) copula describing the joint distribution of . and .

ek(.) the insured exposure of construction type k at location .

Ei the total insured exposure for all construction

types at all locations which are exposed to event i.

E[.] expected value of .

ESα expected shortfall of .

F (.) cumulative distribution function F (.) = Pr(X ≤ .)

F−1(.) quantile function

Ga(.) Gamma probability density function

g(.) link function

hi(.) hazard intensity for event i at location .

i parameter index i = 1,

j parameter index j = 1, . . . , J

k parameter index k = 1, . . . , K

li,j,k the insured loss from building type k at location j

from event i

Li the total insured loss from all locations for all

property types exposed to hazard i

m number of observations or simulations

nt value of variable n at time t

N(.) Normal probability density function

NB(.) Negative Binomial probability density function

n̄ sample mean of the variable n

Pois(.) Poisson probability density function

r Pearson’s correlation

ρτ Kendall’s tau

152



sj location j

s2
n sample variance of the variable n

t time index t = 1, .., T

u threshold

Vk(., .) vulnerability of construction type k

to hazard intensity . at location .

V ar[.] variance of .

V aRα value at risk

xt value of variable x at time t

yt value of variable y at time t

zk,t value of explanatory variable zk at time t

(1− α) confidence interval width

α0, β0 intercept parameters

αk, βk regression coefficients associated with explanatory variable zk

θ mean parameter for the Bernoulli distribution

ρi rate parameter for the ith row of the event loss table.

µi expected loss for the ith row of the event loss table.

µN mean parameter for N .

λ rate parameter of the Poisson distribution

ξ shape parameter

φi dispersion parameter for the ith row of the event loss table

φ(.) dispersion of .

Φ standard normal density function

σ standard deviation or scale parameter

σ2 variance parameter

Σ covariance matrix∑I
i=1 xi summation of the variables xi, for i = 1, . . . , I
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Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling extremal events:

for insurance and finance, Volume 33. Springer, pp648.

Frey, R. and A. J. McNeil (2003). Dependent defaults in models of portfolio credit

risk. Journal of Risk 6, 59–92.

Friedman, D. G. (1972). Insurance and the natural hazards. The ASTIN Bulletin:

International Journal for Actuarial Studies in Non-Life Insurance and Risk The-

ory 7 (1), 4–58.

Frishman, F. (1971). Statistical Distributions in Scientific Work. Dordrecht, New

York: Reidel, pp401–406.

Graham, N. E. and H. F. Diaz (2001). Evidence for intensification of North Pa-

cific winter cyclones since 1948. Bulletin of the American Meteorological Soci-

ety 82 (9), 1869–1893.

Grossi, P. and H. Kunreuther (2005). Catastrophe modeling: A new approach to

managing risk, Volume 25. Springer, pp245.

Hanley, J. and R. Caballero (2012). The role of large-scale atmospheric flow and

Rossby wave breaking in the evolution of extreme windstorms over Europe. Geo-

physical Research Letters 39 (21).

Harmantzis, F. C., L. Miao, and Y. Chien (2006). Empirical study of value-at-

risk and expected shortfall models with heavy tails. Journal of Risk Finance,

The 7 (2), 117–135.



BIBLIOGRAPHY 157

Hodges, K. I. (1994). A general method for tracking analysis and its application

to meteorological data. Monthly Weather Review 122 (11), 2573–2586.

Hodges, K. I. (1999). Adaptive constraints for feature tracking. Monthly Weather

Review 127 (6), 1362–1373.

Hodges, K. I. et al. (1995). Feature tracking on the unit-sphere. Monthly Weather

Review 123 (12), 3458–3465.

Hoskins, B. J. and K. I. Hodges (2002). New perspectives on the Northern Hemi-

sphere winter storm tracks. Journal of the Atmospheric Sciences 59 (6), 1041–

1061.

Hoskins, B. J. and P. J. Valdes (1990). On the existence of storm-tracks. Journal

of the atmospheric sciences 47 (15), 1854–1864.

Houston, D. B. (1960). Risk theory. The Journal of Insurance 27 (1), 77–82.

Jagger, T. H. and J. B. Elsner (2006). Climatology models for extreme hurricane

winds near the United States. Journal of Climate 19 (13).

Jagger, T. H., J. B. Elsner, and M. A. Saunders (2008). Forecasting US insured

hurricane losses. Climate extremes and society , 189–208.

Joe, H. (1997). Multivariate models and dependence concepts: Monographs on

statistics and applied probability, 73. Chapmann & Hall, London, pp399 .

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell,

S. Saha, G. White, J. Woollen, et al. (1996). The NCEP–NCAR 40-year reanal-

ysis project. Bulletin of the American meteorological Society 77 (3), 437–471.

Katz, R. (2002). Stochastic modeling of hurricane damage. Journal of Applied

Meteorology 41 (7), 754–762.

Katz, R. W. and M. B. Parlange (1998). Overdispersion phenomenon in stochastic

modeling of precipitation. Journal of Climate 11 (4), 591–601.



BIBLIOGRAPHY 158

Katz, R. W., M. B. Parlange, and P. Naveau (2002). Statistics of extremes in

hydrology. Advances in water resources 25 (8), 1287–1304.

Kircher, C. A., R. V. Whitman, and W. T. Holmes (2006). Hazus earthquake loss

estimation methods. Natural Hazards Review 7 (2), 45–59.

Kistler, R., W. Collins, S. Saha, G. White, J. Woollen, E. Kalnay, M. Chelliah,

W. Ebisuzaki, M. Kanamitsu, V. Kousky, Y. Zhu, A. Leetmaa, R. Reynolds,

M. Chelliah, W. Ebisuzaki, W. Higgings, J. Janowick, K. Mo, C. Ropelewski,

J. Wang, R. Jenne, and D. Joseph (2001). The NCEP-NCAR 50-year reanalysis:

Monthly means cd-rom and documentation. Bulletin of the American Meteoro-

logical society 82 (2), 247–267.

Klawa, M., U. Ulbrich, et al. (2003). A model for the estimation of storm losses

and the identification of severe winter storms in Germany. Natural Hazards and

Earth System Science 3 (6), 725–732.

Kukush, A., Y. Chernikov, and D. Pfeifer (2004). Maximum likelihood estimators

in a statistical model of natural catastrophe claims with trend. Extremes 7 (4),

309–336.

Kunreuther, H., E. Michel-Kerjan, and N. Ranger (2013). Insuring future climate

catastrophes. Climatic change 118 (2), 339–354.

Kunz, M., S. Mohr, M. Rauthe, R. Lux, and C. Kottmeier (2010). Assessment of

extreme wind speeds from regional climate models–part 1: Estimation of return

values and their evaluation. Natural Hazards and Earth System Science 10 (4),

907–922.

Kvamstø, N. G., Y. Song, I. A. Seierstad, A. Sorteberg, D. Stephenson, et al.

(2008). Clustering of cyclones in the ARPEGE general circulation model. Tellus

A 60 (3), 547–556.

Leckebusch, G. C., D. Renggli, and U. Ulbrich (2008). Development and appli-

cation of an objective storm severity measure for the northeast atlantic region.

Meteorologische Zeitschrift 17 (5), 575–587.



BIBLIOGRAPHY 159

Leckebusch, G. C. and U. Ulbrich (2004). On the relationship between cyclones

and extreme windstorm events over Europe under climate change. Global and

planetary change 44 (1), 181–193.
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