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Abstract 
!
This thesis aims to investigate how well associative learning can account for human 

sequence learning under incidental conditions. It seems that we can learn complex 

sequential information about events in our environment, for example language or music, 

incidentally, without being aware of it. Awareness is, however, a complex issue with 

arguments for (Dienes, 2012) and against (Shanks, 2005) the existence of implicit 

learning processes. A dual process account proposes that there exist two different 

learning systems, one based on conscious, controlled reasoning and rules, and the other 

based on automatic association formation, which can take place outside of awareness 

(McLaren, Green, & Mackintosh, 1994). This thesis attempts to use the predictions of 

an associative account in conjunction with a suitable method for investigating implicit 

learning: sequence learning (Destrebecqz & Cleeremans, 2003). The research involves a 

collection of serial reaction time (SRT) tasks whereby participants respond to on-screen 

stimuli that follow a sequence that they were (intentional learning) or were not 

(incidental learning) informed of. Following on from the experimental design of Jones 

and McLaren (2009) this thesis provides evidence that humans differ in their ability to 

learn different sequential contingencies. After training sequences of trials where the 

current trial location was twice as likely to be either: the same as (Same rule); or 

different to (Different rule) the location two trials before this, participants were far 

better at learning the latter rule. I found that this result was not adequately simulated by 

the benchmark associative model of sequence learning, the Augmented SRN 

(Cleeremans & McClelland, 1991), and present a revised model. This model, amongst 

other attributes, represents all the stimuli experienced by participants and can therefore 

learn stimulus-response contingencies. These seem to block learning (to some extent) 

about the Same rule thus providing an associative explanation of the advantage for 

acquisition of the Different rule. Further predictions regarding the role of additional 

stimuli alongside sequence learning were then derived from this associative account and 

tested on human participants. The first of these was that additional stimuli within the 

task will interact with sequence learning. I found that human participants show 

increased Same rule learning when additional, concurrently presented stimuli follow the 

previous element in the sequence. I demonstrate that when participants perform an SRT 

task where responses are predicted by the colour of a cue, they are able to learn about 

this relationship in the absence of awareness. Using this cue-response learning I further 
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investigate cue-competition between sequences and colours under incidental conditions 

and find evidence that suggests between cue associations may alter the influence of cue 

competition. These results altogether suggest that stimuli – both simple and sequential – 

can be learned under incidental conditions. This thesis further proposes that learning 

about simple and more complex relationships between stimuli interacts according to the 

predictions of an associative account and provides evidence that contributes to a dual 

process understanding of human learning. 
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Chapter 1. General Introduction 
 

“Learning without thought is labour lost” 

Confucius 

 

The central aim of this thesis is to investigate how humans learn sequences incidentally. 

The first challenge in doing so is demonstrating that humans can, in fact, learn without 

awareness or intention. Whilst Confucius may suggest that we require thought to learn, 

it seems obvious that we are able to acquire a number of skills and behaviours without 

understanding the complex underlying rules that define them (Cleeremans & Dienes, 

2008) and this subject as a result has attracted great debate (Mitchell, De Houwer, & 

Lovibond, 2009; Newell & Shanks, 2014; Shanks & St John, 1994). Sequence learning 

is perhaps the most popular paradigm in which to study incidental learning 

(Destrebecqz & Cleeremans, 2003), as participants find it difficult to notice sequential 

patterns in serial reaction time (SRT) tasks even though they show evidence of learning 

through improved performance on these sequences after training (Lewicki, Czyzewska, 

& Hoffman, 1987; Nissen & Bullemer, 1987). How this occurs is not fully understood, 

as in addition to establishing whether this learning does or does not occur explicitly, it is 

possible that humans can automatically learn sequential information in a number of 

ways. Theories regarding incidental sequence learning and implicit learning more 

generally converge on the notion that we are somehow able to extract abstract, 

statistical regularities from the environment without being aware of them (Dienes, 

2012). It is suggested that an associative learning process similar to that proposed to be 

found in animals underlies implicit human learning (McLaren, Green, & Mackintosh, 

1994). This thesis attempts to investigate the specific predictions of an associative 

account of sequence learning using computational modelling to simulate and generate 

predictions regarding how altering various properties of the SRT task affects human 

sequence learning under incidental conditions.  

 

In the introduction to this thesis I will firstly discuss theories of human learning more 

generally, covering the debate between single and dual process accounts and how these 

impact on the study of sequence learning. I will then discuss why the study of sequence 

learning is a key issue in understanding human cognition, and not only because it lends 
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itself to demonstrating the existence of automatic learning processes. The ability to 

learn sequences is a phenomenon worthy of understanding in itself, as sequential order 

is an intrinsic property of many skills and activities acquired by humans; for example, 

motor skills, music and language. Specific accounts of how we learn sequences are 

discussed and their implications are situated within human learning in general. 

Computational models are also discussed, as they remain a popular way of investigating 

sequence learning and attempt to formalise and therefore test theories of how these 

processes occur. Studies of sequence learning are reviewed in terms of the specific 

issues associated with and development of the paradigm over the last quarter of a 

century. I will then discuss our current understanding of how humans learn sequences in 

terms of the variations that have been investigated within a simple SRT task: the 

influence of time and trial order; as well as the role of stimuli and responses. This leads 

me to consider the relationship between stimuli and responses within a task, and 

predictions about cue-competition between elements in a sequential learning SRT from 

an associative perspective are also discussed.  

 

1.1. Human learning processes  

One of the most noteworthy and commonly observable phenomena of the human mind 

is our ability to learn. We can acquire motor skills, language, concepts and categories to 

such a complex and extensive degree that these learned processes and information are 

themselves the subject of intensive study. How our mind understands and is able to 

interact with the world relies on learning: a process of vital importance to human beings. 

How do we learn? 

 

If we begin with perhaps the original research method employed by psychologists (see 

Watson, 1913): introspection, we can think of our own experience of learning to drive; 

playing an instrument; or learning languages, facts or ideas. We can sit down with the 

words and music to a song and learn to sing it, and our learning is the product of 

effortful study and intentional diligence. This, however, doesn’t seem to be the only 

way we can learn, as we may find ourselves singing a song we have heard a few times 

before and observe that some learning has occurred by accident without even being 

aware of it. Whilst this idea of being able to learn without awareness is intuitively 

acceptable, that we can learn both with and without awareness is heavily contested 
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(Beckers, Miller, De Houwer, & Urushihara, 2006; Brewer, 1974; De Houwer, 2009; 

Mitchell, De Houwer, & Lovibond, 2009; Shanks, 2010; Shanks & St John, 1994). 

 

It is generally accepted that humans are able to learn by some conscious, rule-based, 

verbalisable problem solving; whereby mental models or representations of the task are 

built in some way (De Houwer, 2009; Johnson-Laird, 1983; Matthews, Buss, Stanley, 

Blanchard-Fields, Cho, & Druhan, 1989). Indeed, the issue is not that these explicit 

learning processes can be denied; but that these cannot account for all learning observed 

in humans (McLaren, Forrest, McLaren, Jones, Aitken, & Mackintosh, 2014; Mitchell 

et al., 2009). A range of authors claim that there is a need to posit a further, separable 

learning system in humans that is functionally distinct from intentional and conscious 

learning and it characterized as an automatic process that operates outside of control and 

intention, that occurs in the absence of awareness of what is being learned (Evans, 

2003; Lewicki, 1986; McLaren, Green, & Mackintosh, 1994; McLaren et al., 2014; 

Reber, 1967; 1989).  

 

These dichotomous learning processes are popularly defined by the terms explicit and 

implicit (Shanks & St John 1994), which stem from the work of Reber (1967) who 

coined the term ‘implicit learning’ to describe the improved performance participants 

demonstrated on trained artificial grammars without being able to describe any rules or 

relationships. That there is more of a debate on the processes that underlie learning now 

than in the early days of psychology (Shanks, 2010) may come as a surprise to the naïve 

reader, for whom the existence of these two processes may seem introspectively 

obvious and beyond dispute. The following sections aim to summarise accounts of 

learning that are still as heavily contested today as they were when Reber (1967) 

discussed them over forty years ago (Cleeremans & Dienes, 2008). 

 

1.1.1. A dual-process approach 

One of the “oldest and most deeply entrenched dual-system theories in the behavioral 

sciences” is the dual-process account of human learning (Mitchell et al., 2009, p. 183). 

The appeal of a dual-system approach can been seen across psychology, with sets of 

two processes for memory (Squire, 1992); control (Forrest, 2012); social cognition 

(Chaiken & Trope, 1999) to name but a few. The human mind as a whole has itself been 

proposed to be constructed of these two systems (Kahneman, 2011) and this basic 
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explicit, controlled, conscious versus implicit, automatic and unconscious binary 

distinction pervades theorising across both the discipline and as a generally held belief 

regarding our behaviour. 

 

These two learning systems are described in a number of ways: procedural and 

declarative (Willingham, Nissen, & Bullemer, 1989); implicit and explicit (Reber, 

1967); automatic and controlled (Shiffrin & Schnieder, 1977). Essentially, a dual-

process approach to learning suggests that there “exist two qualitatively different types 

of learning” (McLaren, Green, & Mackintosh, 1994, p. 315). Therefore, whilst the 

names and processes involved might differ across theories, dual-process accounts argue 

that a single-system account does not fully explain human learning: as learning can 

operate automatically outside of control, intention and awareness.  

 

Mowrer (1947) suggested that psychologists should see conditioning and problem-

solving as two, functionally separable learning processes. He stressed the nature of the 

two systems, one (associationism) biologically linked with the autonomic nervous 

system; the second (hedonism), driven by the central nervous system. McLaren, Green, 

& Mackintosh (1994) formalised this distinction in contemporary terms and propose 

two systems: a rule-based system that employs verbalisable hypothesis testing by which 

to learn information; and an automatic system that learns through the automatic 

formation of associations (similar to the learning processes believed to occur in 

animals). Human learning and memory processes have also been explained in terms of 

both a rule based system (e.g., Simon & Lea, 1974; Nosofsky, Clark, & Shin, 1989) and 

an instance based system, that simply stores each event experienced (e.g. Medin & 

Schaffer 1978); however, the more popular explanation of implicit learning is based on 

the automatic formation of links between mental representations (Mitchell et al., 2009). 

 

1.1.2. A single-process approach 

The single-process approach suggests that there is no need to posit an additional, 

automatic learning system when a single, rule-based or propositional system can 

account for all instances of human learning. Proponents of this view (e.g. Beckers et al., 

2006; De Houwer, 2009; Mitchell et al., 2009) suggest that the automatic, associative 

links do not occur; and instead all learning is underpinned by qualified mental 

propositions with truth values, and therefore for learning of a contingency to occur 
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people must be aware of their relationship for an explicit propositional relation to be 

learned.  

 

The role of some form of automaticity within mental processes as a whole cannot be 

denied (Cleeremans, Destrebecqz, & Boyer, 1998) as it is introspectively obvious that 

we do not have explicit access to the intricate workings of our minds. However, 

Mitchell et al. (2009) outline clearly that their claims regarding the absence of 

automaticity refer entirely to learning, as perceptual and memory processes may or may 

not act in an automatic fashion. Cheng & Novick (1992) suggest that learning occurs 

through judgements that are based on observed contingencies (positive or negative) 

between stimuli, but that these must be observed. As a result, one can consider the 

defining maxim of a single-process account as: awareness of the relationship between 

events in the environment is the minimum requirement for learning.  

 

1.1.3. Central characteristics of dissociable learning systems 

The central issues surrounding the number of learning processes are those of awareness, 

rationality, and control. Evidence for the automatic component of a dual-process 

account can be inferred when learning is involuntary, if it occurs without any 

consciously accessible knowledge, or if it does not produce rational outcomes or 

behaviour. These definitive characteristics of dissociable learning processes are defined 

briefly here in the context of wider associative theory, as well as considering the 

implications for the study of sequence learning.  

 

1.1.3.1. Awareness 

Generally speaking, many of the arguments for and against a secondary, associative 

system centre around awareness. One essential difference between the two accounts is 

the presence or absence of explicit knowledge regarding a relationship between events. 

An associative learning system does not require this information to be absent, but 

suggests that this is not a necessary condition for learning. Therefore, a situation in 

which learning has occurred, but contingency knowledge is absent is one of the gold 

standards in support of dual learning processes. In an early review of the associative 

literature Brewer (1974) suggested that there existed no such demonstration, which is 

supported by recent critiques of current evidence for learning in the absence of 

awareness (Mitchell et al., 2009; Shanks & St John, 1994; Shanks, 2010). 
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However, the case has also been made that a variety of associative and implicit learning 

studies do provide convincing evidence of an absence of awareness and that selective 

citation is required to conclude that human learning is a single process (Dwyer, Le 

Pelley, George, Haselgrove and Honey, 2009). The issue of demonstrating an absence 

of awareness, however, is fraught with methodological issues, which will be discussed 

further in this section. Nevertheless, for implicit learning to be studied we must strive to 

achieve conditions whereby participants are unaware of what they are learning about to 

entertain the possibility that this learning cannot be accounted for by a single, explicit 

process. 

 

1.1.3.2. Rationality 

Another argument used in both criticism and defense of associative learning is 

rationality. Single-process accounts suggest that one, cognitive, explicit account can 

produce learning effects through propositions, rules and logical inferences that humans 

can and do make (De Houwer, 2009). Any instances of learning that do not appear to 

follow rational thought, therefore, can be suggested to support evidence of an automatic 

process (Dickinson, 1988; Shanks, 2007; Shanks & Dickinson, 1990). How we define 

rationality is key, though, and in this sense refers to sub-optimal behaviour as a result of 

learning (Shanks, 1995). This is unlikely in the context of a sequence learning 

experiment, as the nature of the task means that participants who learn the sequence will 

respond quicker and more accurately (Nissen & Bullemer, 1987) and therefore learning 

has a positive pay-off. Mitchell et al (2009) also point out that whilst propositions have 

a ‘truth’ value, this does not itself have to be rational, or indeed true. Consequently, 

sequence learning and this thesis have relatively little to do with the concept of 

rationality, which itself can be difficult to define and interpret (Shanks, 1995).  

 

1.1.3.3. Instructions and control 

The role of controlled cognitive effort is heavily relied upon in the study of implicit 

processes, as without the ability to unequivocally demonstrate that participants are 

unaware, another approach is to define a process by the volitional conditions under 

which it occurs (Jacoby, 1991). Learning can therefore be defined as intentional (with 

intention and control) or incidental (without intention and outside of control). 

Participants who demonstrate that they have learned information when they did not 

actively attempt to do so are used to provide evidence for implicit learning processes 
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(Dienes & Berry, 1997). This is the standard manipulation of most implicit learning 

tasks, which consequently involve some cover story or instructions that avoid reference 

to learning in order to ensure that participants do not attempt to engage any explicit 

learning process (Perruchet & Pacton, 2006). 

 

Given a simple instruction, however, participants can produce a large number of 

learning effects that are supposedly associative in nature. With no previous training, if 

instructed that there exists a contingency between two events (Cook & Harris, 1937) 

participants are able to produce the appropriate response with no need for the gradual 

build-up of associations. Similarly, given associative training schedules that should 

result in conditioned responding, participants are able to withhold a response if 

instructed to do so (Colgan, 1970; Lovibond, 2003). It seems that instructions can 

subsequently produce, alter, reduce and stop apparently automatic processes. These 

results are used to provide support for a single learning process, as it suggests that 

learning is not automatic and is in fact under our control (Mitchell et al., 2009). These 

results, however, do not exclude the possibility that implicit learning did or can occur; 

as this would imply that humans are able to control the expression of automatic mental 

processes (Jones & McLaren, 2009). Indeed, a study by Wan, Dienes, and Fu (2008) 

found that participants were able to intentionally choose from two implicitly learned 

artificial grammars without being aware of them. Therefore, it may be possible that 

participants can stop themselves from expressing implicitly learned information; or 

produce explicit learning effects that mimic those that seem automatic. However, these 

do not provide evidence that the implicit learning process was affected or controlled in 

any way, as the production of an associatively acquired response may simply be 

overpowered by explicit knowledge in these tasks.  

 

1.1.4. Conceptual issues in studying dual learning processes 

1.1.4.1. Restriction of a binary framework 

The case of control, as discussed above, provides an example of how defining dual 

learning processes as binary opposites (e.g. implicit versus explicit) provides us with a 

research framework with which to study them. For example, if we propose that explicit 

learning involves control, then we can expect that people will be able to explicitly 

choose to not learn; whereas implicit learning cannot be controlled and therefore will 

occur regardless of the intention of a person (Jacoby, 1991). Indeed, the understanding 
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of implicit or unconscious systems is generally framed in terms of a definition of the 

explicit or conscious (Reber, 1989). These dissociable, binary characteristics are the 

fundamental components of a structuralist understanding of the human world, where our 

understanding of one concept is meaningless without its complement (Hawkes, 2003).  

 

A binary pair of processes, however, is often insufficient to capture what are not two 

distinct functional systems but a continuum on which two things may seem the polar 

opposites but simply take up very different points on the same scale (for example, 

gender, Hird, 2000). Defining a mental function as a set of binary polar opposites may 

then, provide us with a framework that is introspectively agreeable but which restricts 

our ability to explore the functional properties of these systems. So it is possible that a 

dual-process account limits our understanding in an attempt to describe divergent 

phenomena. Indeed, research on the development of explicit knowledge in sequence 

learning tasks suggests that with gradual practice participants become aware as a result 

of the increasing strength of memory representations about the sequence (Shanks, 

Wilkinson, & Channon, 2003). This is a single process account that suggests that 

explicit knowledge is not the defining characteristic of one of two learning systems, but 

instead the product of greater learning within a single learning dimension (Cleeremans, 

2006; Shanks, 2005).  

 

1.1.4.2. Falsification of a single process account 

Gilbert (1999) suggests, however, that the term ‘dual’ is used instead of ‘two’ as the 

fundamental aim of psychology in understanding the mind is not to number the amount 

of processes that it may use, but to infer that a single process is not sufficient itself to 

account for the phenomena. Based on the ideas of both parsimony and falsifiability, 

whilst one system that can account for all behaviours is the ideal, the dual process logic 

proposes that the existence of instances that cannot be accounted for by a single system 

suggest the need for (at least) dual processes. This is a subtly different use of a dual-

process theory as framework and method, as it focuses more on inductive logic with a 

proof in principle and less on understanding, and is the logic most often employed in the 

study of implicit learning. As Shanks (2007, p. 297) points out in reference to human 

learning, a higher order set of problem solving processes are not refuted, there are 

simply those who suggest there “might be a separate type of thinking (associative) when 

people make instinctive judgements under conditions of less reflection”.  
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This is a popular approach to the study of implicit learning, but there are inherent 

problems with attempting to falsify a single process account of learning. Importantly for 

the study of incidental learning is the issue of attempting to find evidence for the 

absence of awareness, which (issues with measurement aside), predicts the null 

hypothesis (the demonstration of no explicit learning). Null-hypothesis statistical testing 

(NHST) cannot provide us with evidence that something has not been explicitly learned, 

a problem for the conventional statistical method employed across psychology. NHST, 

however, is not the only statistical method for the interpretation of results and there 

have been a number of suggestions to circumvent this fundamental issue. Qualitative 

differences (Jiménez, Vaquero, & Lupiáñez, 2006); dissociations (Perruchet, 1985); 

state-trace analysis (Bamber, 1979); and Bayesian analyses (Dienes, in press) are all 

proposed as solutions to this issue, and the use and associated issues with these 

proposed solutions are discussed in Chapters 2 and 5 of this thesis. 

 

1.1.4.3. The case for ignoring the absolute number of learning processes 

Witnauer, Urcelay and Miller (2009) argue that a comparison between the two accounts 

as opposing theories of learning is flawed, as each is concerned with a different level of 

analysis. Indeed, the arguments surrounding the number of processes are considered by 

some to have little value, as Cleeremans and Dienes (2008, p. 401) assert: 

The verbal question of how many learning systems there are is in danger of 

being vacuous. If God were to tell us how many learning systems there were 

with a single number (one? two? three?), we would have learned nothing. 

Simply attempting to demonstrate implicit learning as a proof of principle, or to falsify 

a single system account is neither a sound theoretical approach nor the aim of this thesis. 

Rather than attempting to quantify the number of processes involved per se, this thesis 

attempts to investigate incidental sequence learning in humans and assumes the 

possibility that humans may be able to learn automatically. In doing so I aim to better 

understand whether or not automatic associations can form in humans as observed in 

animals (McLaren, Green, & Mackintosh, 1994), and how this occurs.  

 

As associative learning in humans is proposed to exist alongside explicit learning within 

a dual-process framework; any investigation of these processes must consider the 

single-process account and associated issues of studying a possibly implicit process. 
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This is important as we must consider the influences of explicit learning, as well as the 

possibility that this account more parsimoniously accounts for human learning. 

Therefore, whilst proving the occurrence of automatic, associative processes would be a 

challenge for any researcher (Shanks, 2010); couching an investigation of associative 

sequence learning processes within a single versus dual process argument is important.  

 

1.2. Studying implicit learning from an associative perspective 

Before moving on to discuss theories of how humans learn sequences, this section will 

briefly review attempts to study implicit associative learning processes in humans, with 

the conclusion that one of the most beneficial and methodologically promising is 

sequence learning in the SRT task. There are a number of literatures that investigate 

automatic or implicit learning processes in humans, which have considerable overlap in 

the subject of interest but can diverge widely in terms of theoretical and methodological 

position. Implicit learning, human associative learning and statistical learning research 

strands each attempt to determine how we learn, but are generally concerned with a 

different level of analysis. As a whole, the implicit learning literature has been 

concerned with methodological issues surrounding the elimination of an explicit 

explanation and defining the conditions under which implicit learning might occur, with 

less functional consideration given to the underlying processes and how these might 

occur. Associative learning research operates at a more detailed level of analysis, which 

functionally (and algorithmically) attempts to understand learning processes. Statistical 

learning research falls somewhere in the middle, borrowing concepts, paradigms and 

language from both pre-existing literatures (Perruchet & Pacton, 2006). Whilst these 

areas have by no means developed exclusively, the literatures could still offer much to 

one another in studying automatic or implicit learning in humans.  

 

As a general rule, associative learning studies attempt to further understand how 

humans come to learn associations between events; but they largely ignore the issues 

posed by a single-process, explicit account of the data. Implicit learning research, on the 

other hand, has developed through attempts to uncover the presence of unconscious 

learning processes and is hence suited to the study of human learning. In contrast, 

associative learning in humans has developed from the existing framework for animal 

learning, consequently methodological issues have not been so extensively considered. 

However, the functional explanations offered by associative learning elegantly explain 
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observed learning effects and the emergent, seemingly explicit phenomena produced by 

associative models provide an extensive and detailed account of human learning 

(Shanks, 2009). I will argue that the study of sequence learning offers an ideal 

experimental setting within which to investigate associative processes in humans that 

circumvents the issues faced by other paradigms.  

 

1.2.1. Human associative learning paradigms 

Research into human associative learning stems from a tradition of animal learning 

research, beginning with the famous Pavlov’s dogs (1927) and the first demonstration 

that learning occurred between repeatedly presented, temporally contiguous events in 

the environment. Classical or Pavlovian conditioning, as it is known, is one of the basic 

learning effects observed in species as simple as the sea slug Aplysia (Carew, Walters, 

& Kandel, 1981). The basic effect involves training an unconditioned stimulus (US), 

which evokes some autonomic, unconditioned response (e.g. salivation, eye-blink), 

alongside a neutral, conditioned stimulus (CS) such as a light, tone or odour. This CS is 

neutral in that presenting it alone should produce no response, and yet after training 

where the CS is presented before the US the CS comes to evoke a response when 

presented alone. CS-US pairings are usually defined by their temporal contiguity so a 

CS occurs before (trace conditioning) or overlaps the start of the US (delay 

conditioning).  

 

In humans, a variety of stimuli have been used as a US to provide evidence of 

conditioning responding, for example: aversive noises (Neumann & Waters, 2006); 

images (Levey & Martin, 1975); electric shocks (McAndrew, Jones, McLaren, & 

McLaren, 2012; Vervliet, Vansteenwegen, Baeyens, Hermans, & Eelen, 2005); flavors 

(Chambers, Mobini, & Yeomans, 2007); odours (Marinkovic, Schell, & Dawson 1989); 

as well as air puffs to the eye (Perruchet, 1985; Weidermann, Tangen, Lovibond, & 

Mitchell, 2009). However, participants are not necessarily unaware of the contingencies 

between CS and US. Whilst authors argue that certain stimuli have an automatic, 

stimulus-driven impact (Bliss-Moreau & Barrett, 2009), there exists the possibility that 

conscious expectation of a US following the presentation of the CS could lead to an 

explicitly produced response to the CS (Mitchell et al., 2009, although see Perruchet, 

1985). 
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Studies of causal reasoning in humans are themselves perhaps the biggest influence on 

the study of associative learning processes in humans after Dickinson, Shanks and 

Evenden (1984; Shanks, 1985) observed that when performing these tasks humans 

demonstrated the sort of associative effects shown in animals. These paradigms involve 

training participants that certain stimuli lead to certain outcomes, and their judgements 

of the likelihood of such an outcome given the stimuli are then measured to assess 

learning. Such research on humans is often conducted using elaborate scenarios, such as 

the allergist paradigm; where the participant plays the role of a doctor who is supposed 

to work out the nature of a hypothetical person’s food allergy. Participants rate the 

likelihood that a person is going to have an allergic reaction (the outcome, O) when 

presented with one or more food items as stimuli (e.g. an apple, A and a banana, B). If 

participants learn that A leads to O and B does not lead to O, we see their ratings of the 

likelihood of this event increase and decrease respectively when presented with A and B. 

Thus, simple discrimination learning and a host of other associative learning effects (e.g. 

blocking, Le Pelley, Oakshot, & McLaren, 2005; backwards blocking, Shanks, 1985) 

are demonstrated in such tasks.  

 

However, a number of papers have sought to demonstrate that propositions are used to 

solve causal reasoning tasks and not an associative system (Beckers, De Houwer, 

Pineño, & Miller, 2005; Lovibond, 2003). In defense of associative learning, studies 

with complex designs that produce convincing, non-rational learning effects that seem 

to occur outside of awareness and follow the predictions of an associative account have 

been provided (Haselgrove, 2009; Le Pelley, Oakshot, & McLaren, 2005; Karazinov & 

Boakes, 2007), which are hard to reconcile with conscious, explicit reasoning-based 

accounts. However, two fundamental issues with such paradigms exist, both of which 

centre around the use of elaborate cover stories. The first issue is that participants are 

asked throughout the task to make predictive judgements and therefore whilst the cover 

story means the task is not presented to the participants as a learning task, participants 

are explicitly required to attend to contingencies between events; violating the maxims 

for incidental learning and making learning possibly the product of explicit intentions 

accounted for by a single propositional process (Vadillo, Orgaz, & Matute, 2008). The 

second issue is that participants may rely on pre-established causal frameworks within 

these tasks (Waldmann & Holyoak, 1992). Participants making judgments about the 

relationship between symptoms and diseases were capable of learning associatively 
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only when the symptoms predicted the disease, and not when the disease predicted the 

symptoms. Waldmann and Holyoak (1992) suggest that participants rely on a pre-

conceived concept of causality to perform these tasks, suggesting that the process is not 

automatic nor based entirely on learning simple associations.  

 

1.2.2. Implicit human learning paradigms 

As there is a consensus that designing associative experiments where conscious and 

explicit, propositional processes cannot influence learning is incredibly difficult 

(Boakes, 2009; Seger, 1994; Shanks, 2007); I will now discuss evidence from studies 

that attempt to fulfill this criterion with a focus on identifying the most effective 

paradigm for the study of human associative learning.  

 

Reber (1967, p. 855) coined the term “implicit learning” when he employed an artificial 

grammar on which participants were trained across seven blocks. Letter strings of six to 

eight items in length formed the experimental stimuli, which were constructed from a 

Markovian grammar. These were presented once to participants for five seconds, who 

were required to immediately reproduce the stimulus in its absence. Reporting the 

number of errors participants made, whilst identical across the first two blocks, 

performance of participants in the control group (a random set of letter strings) 

plateaued, whereas participants who were experiencing letter strings constructed by the 

artificial grammar continued to improve. Due to being unable to verbally report the 

rules of the grammar, Reber (1967; 1989) suggested the presence of an unconscious 

system that could acquire abstract knowledge.  

 

Artificial grammar learning tasks have been used to study implicit learning processes 

across implicit (Dienes, Broadbent, & Berry, 1991), associative (Dienes, 1992), and 

statistical (Saffran, Aslin, & Newport, 1996) research areas. The grammatical stimuli 

involve complex underlying relationships within an abstract structure, which are hard 

for participants to verbalise and demonstrate explicit knowledge of (Cleeremans & 

Dienes, 2008).  The implicit learning literature also contains experimental designs based 

on visual search tasks (Chung & Jang, 1999); dynamic system control (Berry & 

Broadbent, 1984; Broadbent, Fitzgerald, & Broadbent, 1986); hidden covariation 

detection (Lewicki, 1986); probability learning (Reber & Millward, 1968); as well as 

sequence learning (Nissen & Bullemer, 1987; Lewicki, Czyzewska, & Hoffman, 1987).  
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In an attempt to avoid the influence of explicit processes, these paradigms all share or 

involve one or more of the characteristics outlined in Table 1.1. They share the common 

feature of complex, hard-to-detect, contingencies between events that Reber (1989) 

suggests is key in the design of implicit learning studies. If we present participants with 

simple contingencies, Reber (1989) suggests this will contravene the conditions 

necessary for the observation of implicit learning, as the simple nature of this 

relationship is readily dealt with by the explicit system. Whilst the implicit processes 

available are indeed capable of learning such simple associations, increasing complexity 

of the information to learn will not only reduce the ability of participants to employ an 

explicit, verbalisable set of rules to learn which may overshadow implicit learning; it 

will also make effective use of the implicit learning process and give preference to its 

deployment. 

 
Table 1.1. General characteristics of implicit learning tasks 

Shared characteristics Additional manipulations 

High contingency complexity Cognitive load (e.g. Le Pelley et al., 2005) 

Low contingency detectability Attention (e.g. Curran & Keele, 1993) 

Time pressure Subliminal stimuli (e.g. Weins & Öhman, 2002) 

 Low stimulus discriminability (e.g. Stevenson & Boakes, 2004) 

 

1.2.3. Sequence learning tasks  

Sequence learning tasks have become the dominant paradigm in the study of implicit 

learning (Cleeremans & Dienes, 2008) and take the form of a serial reaction time (SRT) 

task. Participants are usually required to respond to different on-screen stimuli that 

appear in a certain location with a different key press response as quickly and accurately 

as possible. The instructions given to participants simply encourage them to be fast and 

accurate and make no mention of learning or that the stimuli will follow some sequence. 

Whilst not without their own methodological issues, these studies circumvent the issues 

with explicit biases based on propositions shown in other implicit learning studies. An 

example would be tasks using cover stories such as an economic challenge, perhaps in a 

factory where wages, employee happiness, productiveness, etc. are manipulated by the 

participants who are instructed to simply alter these variables to produce the best 

solution; a task on which they show evidence of learning without rule knowledge (Berry 

& Broadbent, 1984; Broadbent, Fitzgerald, & Broadbent, 1986). However, these 
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paradigms, along with artificial grammar tasks, may be affected by the preconceptions 

of participants who “may be guided towards (or diverted from) the discovery of its 

underlying structure by prior knowledge of related real situations” (Perruchet & Pacton, 

2006, p. 237). 

 

By separating the contingency to be learned across time and trials this decreases the 

opportunity for participants to notice or look for contingencies (Jones and McLaren, 

2009) and avoids perceptual issues with training certain concurrent stimulus sets. This 

criticism is true for artificial grammar tasks (Shanks & St John, 1994) as well as in 

visual search tasks1. Participants in sequence learning tasks are instructed to respond 

quickly and accurately, which means there is not need to provide participants with an 

elaborate cover story to mask learning. To some extent, this also provides conditions of 

cognitive load or divided attention (although manipulations on cognitive load and 

attention in sequence learning investigate these influences further, e.g. Curran & Keele, 

1993; Stadler, 1995), as participants are aware of stimuli and responding to them but the 

speeded nature of the task and motivation to perform well may reduce the influence of 

explicit processes.  

 

1.2.4. Conclusions 

In this thesis, I therefore use sequence learning as the paradigm within which to study 

incidental associative human learning for the following reasons. Firstly, because this 

implicit learning task does not rely on stimuli whose properties carry explicit or 

perceptual significance that may provide an alternative explanation for any observed 

learning. Secondly, unlike other associative tasks with elaborate cover stories, this task 

was designed to be performed incidentally, and therefore offers an opportunity to 

investigate simple contingency learning from an associative perspective; without the 

influence of explicit learning processes. Whilst it is by no means the first study of 

associative incidental sequence learning (Cleeremans & McClelland, 1991; Jones & 

McLaren, 2009; Lee & Livesey, 2013) and automatic associations should occur 

regardless of the condition, the literature points to sequence learning as the best method 

to investigate implicit learning (Destrebecqz & Cleeremans, 2003) and therefore it is the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 At the Meeting of the Experimental Psychology Society (EPS) January 10, 2014 David Shanks (Vadillo, Beesley, & 
Shanks, 2014) presented results from implicit learning studies using visual search tasks (including Beesley & Shanks, 
2012), of which Mike Burton offered this critique. This is discussed further in Chapter 6, but similar to Shanks & St 
John’s (1994) criticism of the artificial grammar task, participants may have been learning about some perceptual 
feature of the visual stimuli that is not captured by the explicit measures on the task. 



38  Chapter 1: General introduction 

!

optimal paradigm to select in order to investigate automatic, associative processes in 

humans.  

 

1.3. Theories of human sequence learning 

In the previous section I argued that sequence learning is the ideal task to investigate 

associative learning in humans, as it is the best implicit learning task available 

(Destrebecqz & Cleeremans, 2003) and it is these incidental conditions under which we 

expect associations to form and therefore associative learning to be observed (McLaren, 

Green, & Mackintosh, 1994). Further to this, and central to this thesis, is that sequence 

learning itself is a phenomenon worthy of study in its own right. Sequences of motor-

actions, phonemes and words make up our behaviours, speech and language; not to 

mention how we understand music and learn to play sports or perform any skill. 

Lashley (1951) noted that serial order was a key issue in understanding human 

cognition and behaviour, and various theories and computational models have since 

been developed to account for how humans learn sequences.  

 

It is not in dispute that humans can learn sequences, the literature is concerned primarily 

with what is learned (Dennis, Howard, & Howard, 2006). This thesis aims to address 

the next level of analysis in asking the fundamental issue of how sequences are learned. 

Both dual-process theories of human learning and theories of sequence learning 

converge on an associative perspective, but I will first consider alternative implicit and 

explicit accounts. I will further discuss computational models of sequence learning, 

which is a popular research strand as representing time and serial order in models of 

learning is a complex issue that is much debated within psychology and computing. It is 

also a major theoretical and methodological component of this thesis.  

 

1.3.1. Rule learning 

The most parsimonious account of sequence learning in humans is that we can simply 

learn rules in order to account for the apparent structure that is experienced when 

performing tasks. This follows a propositional perspective and requires the common 

features of a sequence to manifest as a mental representation of their abstract structure 

(De Houwer, 2009; Mitchell et al., 2009). This has early origins in the study of 

sequence learning in humans, with the work of Restle (1970) suggesting that 
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participants explicitly learn sequences by applying tree-like structural rules in order to 

understand and then acquire these sequences. Without intention to learn, research into 

the development of explicit knowledge in sequence learning tasks suggests that 

participants can form propositional rules just from experiencing a task, which can 

produce a step-increase in performance that correlates with self-reports of awareness 

(Hoffmann & Koch, 1997; Koch, 2007). These studies, however, also show evidence of 

gradual performance increases before this occurrence which suggest that early learning 

was occurring that did not rely on rule-based propositions (Rünger, 2012).  

 

1.3.2. Memory  

One defining aspect of all theories of sequence learning is that in some way they must 

account for the problem that contingencies between sequential elements are separated 

by time. This nearly always involves the influence of some form of memory (Hsiao & 

Reber, 2001) and consequently this leads some researchers to suggest that the most 

parsimonious explanation of sequence learning is simply an instance based account 

(Shanks & Perruchet, 2002; Shanks, Wilkinson, & Channon, 2003), where the 

experience of each trial and is stored in memory, and that increased training of certain 

trial orders would make certain instances gain stronger memory representations, thus 

producing improved response latencies. As a consequence of these strengthening 

memories, participants would also be increasingly likely to report and have conscious 

access to these instances, from which they could derive knowledge about underlying 

contingencies, sequences or rules (Shanks, 2005). This is not an incompatible approach 

to the associative perspective put forward in this thesis (Fu, Fu, & Dienes, 2008), as it 

does not specify how memory representations are formed.  

 

1.3.3. Chunking 

A variety of models of sequence learning involve some system that can classify 

instances according to their wider context within a sequence, for example: that the 

current trial was preceded by the same stimulus location. This leads to a model that 

involves a combination of chunks and hierarchic representation derived from the 

seminal work of Lashley (1951). As a model of sequence learning chunking has had 

mixed results (Curran, 1995): but it can describe explicit sequence learning effects well 

(Gordon & Meyer, 1987; Povel & Collard, 1982; Restle & Burnside, 1972); However, 

chunking itself does not offer a functional explanation of learning processes, as some 
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method by which chunks are formed and then learned is required. One suggestion for 

this is through the formation of associations, although other chunking models based on 

perceptual properties exist (e.g. the Elementary perceiver and memorizer [EPAM], 

Feigenbaum & Simon, 1962; 1984). When applied as a simple explanation of sequence 

learning under incidental conditions, chunking has descriptive strength, yet a 

computational instantiation is yet to demonstrate that simply chunking or grouping 

together trials into sub-sections sufficiently accounts for human performance on such 

tasks (Spiegel & McLaren, 2006). 

 

1.3.4. Chaining 

One of the oldest theories in representing serial order is that of chaining (Ebbinghaus, 

1964) where pairs of sequential elements are associated together, as on each trial the 

current stimulus is the cue for the next stimulus (Lashley, 1951). Simple chaining 

models only consider these pairwise associations, which are problematic for longer or 

more complex sequences that share many elements (Hartley & Houghton, 1996). 

Models can contain these pairwise associations as part of a common trace formed across 

the experiment (e.g. the sequential pairwise associative memory [SPAM] model, 

Wallace & Fountain, 2002), which avoids these issues, however these models are 

unable to ignore non-predictive elements within a probabilistic sequence, leading to 

interference and a lack of learning (Spiegel & McLaren, 2006). 

 

1.3.5. The simple recurrent network (SRN) 

Jordan (1986) suggested that a model of learning needed to encode for time in some 

way and produced a network that involved recurrent connections between output and 

input units within a three-layer connectionist neural network. This network involved 

input and output layers, with a layer of hidden units in between these that encode an 

internal representation of the input before this is passed to the output. Hidden layers are 

suggested to be essential to modelling more than simple contingencies between events 

(McClelland & Rumelhart, 1986) and are the component of such networks that give 

them such emergent power (Ellis & Humphreys, 1999). The recurrent connection 

between output and input meant that output on trial t would be copied back into the 

model at t + 1, therefore, a memory for the last trial would appear within the model 

when making a prediction about the current trial. 
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Jordan networks were, ultimately unsuccessful in producing a model of a wide range of 

sequential phenomena, as Elman (1990) refined the application of a recurrent loop 

within a neural network with far superior success in accounting for human performance. 

This network - the SRN is shown in Figure 1.1 and involves a similar structure to a 

Jordan net, but recurrence occurs with the activations of the hidden units on t being fed 

back into the model at t + 1. Thus a memory for the internal representation of the last 

trial is fed back into the model as input on the next trial. It is a connectionist neural 

network that is organised into layers of units that constrain the directional flow of 

activation. A set of input units are activated according to local or distributed external 

input to represent task stimuli and activation passes forward (hence the term feed-

forward, McClelland & Rumelhart, 1986) through multiple connections to a set of 

output units. The activation of these output units are used to train the network, 

representing the responses or task outcomes – in sequence learning the SRN is trained 

to predict the next element in the sequence. The difference between the expected output 

and actual outputs activation is used to calculate an error term. This is passed backwards 

(back-propagation) through the model connections, updating the weights according to 

an error correction rule (Rumelhart, Hinton, & Williams, 1986).  

 

 
Figure 1.1. The simple recurrent network (SRN, Elman, 1990). Input units feed forward 

external activation to a hidden layer of units which create a distributed, internal representation 

of that input. This is fed-forward to output units, which are trained to produce the outcome 

expected in the task through some supervised error correction. This error is back-propagated: i.e. 

passed backwards through the model, updating the strength of connections between the units. 

On each trial the hidden unit activations are copied back into context units, which act then as 

input alongside external input on the next trial. 
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The SRN is the most popular model in simulating not only sequence learning but a 

variety of other forms of implicit learning with great success (Dienes, 1992; Dienes, 

Altmann, & Gao, 1999), although adaptations to the basic model are required for it to 

account for certain human learning effects (Beesley & Le Pelley 2010; Cleeremans & 

McClelland, 1991). The SRN is able to learn complex, probabilistic sequential rules and 

abstract structures that give it extraordinary explanatory power in accounting for varied 

and diverse phenomena (Beesley, Jones, & Shanks, 2012). 

 

1.3.6. Other models 

There are a number of computational models that can deal with learning structure over 

time in the associative literature as well as the SRN: the linear associative shift-registrar 

(Gureckis & Love, 2010); the augmented SRN (AugSRN, Cleeremans & McClelland, 

1991); the auto-associative recurrent network (AARN, Dienes, 1992; Maskara & 

Noetzel, 1993); the temporal recurrent network (TRN, Dominey, 1998); domain-

transfer SRN (Dienes, Altman, & Gao, 1999); and the APECS SRN (Jones, Le Pelley, 

& McLaren, 2002). Further parallel neural models (Hikosaka et al., 1999), synaptic 

cluster models (Dehaene, Changeux, & Nadal, 1987), hidden markov models (Baum, 

1972) and adaptive resonance theory models (ARTMAP, Carpenter, Grossberg, & 

Reynolds, 1991) all represent time and memory in some way as this is a fundamental 

challenge for any learning model. Further to this, dual process models (e.g. Keele, Ivry, 

Mayr, Hazeltine, & Heuer, 2003; Sun, Slusarz, & Terry, 2005) attempt to account not 

just for implicit sequence learning performance, but further explicit and attentional 

components of sequence learning that I do not consider here.  

 

Therefore, as the aim of this thesis is the development of understanding of human 

associative learning using an incidental sequence learning task; the model I will employ 

as the starting point for my investigations is the Augmented SRN (AugSRN, 

Cleeremans & McClelland, 1991), which is a version of the SRN that attempts to not 

only simulate sequence learning, but also to account for sequential effects (which are 

discussed in detail in section 1.5.1.2). As SRT tasks involve both associative learning of 

sequences as well as some possible short-term priming of the previous trials, this model 

incorporates both, and has been successful in simulating the complex pattern of 

subsequence learning effects demonstrated by Jones and McLaren (2009). The AugSRN 

is discussed in full detail in Chapter 3, but essentially in adopting this model I intend to 
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use it to investigate automatic associative processes in humans. The model is therefore 

chosen based on its prior success in modelling sequence learning and used as a 

functional complement to associative theory in predicting human behaviour on 

incidental sequence learning tasks. I do not subsequently propose that a better account 

of sequence learning itself does not exist; as this thesis examines to what extent the 

AugSRN can account for human data and thus how effective (this computational model 

of) associative learning theory is when applied to the incidental learning of sequences.  

 

1.4. Measuring human sequence learning  

Now that I have considered how we might account for human sequence learning I will 

provide a brief overview of the key developments that have occurred in the literature 

since Nissen & Bullemer (1987) produced evidence of apparently implicit learning on 

the SRT task, starting with the measurement of explicit knowledge. This is a key 

concern of this thesis as evidence of truly implicit learning is difficult to obtain. This 

section converges on the use of both explicit tests of knowledge (despite the issues 

associated with taking these after the learning event occurs) alongside a computational 

approach based on associatively predicting human sequence learning in order to find 

evidence for automatic, associative processes. 

 

1.4.1. The general SRT paradigm  

Whilst not all tasks are the same, sequence learning tasks involve participants 

responding to stimuli (usually on-screen shapes or lights) that appear in certain 

locations. The number of stimuli and locations differs between experiments, but 

participants are required to make accurate speeded responses with (usually) spatially 

compatible key-presses to each stimulus. Therefore, SRT tasks of sequence learning are 

characterised as visuo-spatial speeded motor response tasks. The first demonstration of 

implicit learning in SRT tasks is attributed to Nissen and Bullemer (1987) but the task 

was also used by Lewicki, Czyzewska and Hoffman (1987).  

 

Tasks usually involve three phases: training, test and post-experimental explicit 

knowledge tests. Training and test phases involve responding to the SRT task, which in 

training follows a certain sequence that participants are not told about (incidental 

conditions). Test phases involve responding to sequences of trials that are either random 
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or follow the sequence on some occasions but not others. After the SRT task has 

finished participants are then usually asked to perform some test that intends to 

ascertain the extent of their explicit knowledge about the sequences involved in the task.  

 

Measurements are taken in terms of both response latencies (reaction time, RT) and 

error rates are taken as an index of incidental performance on the task, as increased 

speed and less errors on trials that follow the sequence are taken to suggest that 

participants have learned this sequence and are therefore faster and more accurate 

(Nissen & Bullemer, 1987). Measurements of explicit learning are discussed in more 

detail in section 1.4.3 and vary from simply asking participants what they know about 

the task (Reber, 1967) to more complicated task designs, for example the process 

dissociation procedure (Jacoby, 1991). Measurement issues in SRT tasks of sequence 

learning are therefore discussed first, before I move on to examining the sort of 

sequences used in SRT tasks. 

 

1.4.2. Measuring implicit learning in the SRT task 

An SRT task is ideal for measuring implicit learning as it employs an indirect measure 

of learning in RTs and error rates. Asking participants to predict what will happen next, 

as in prediction learning tasks (e.g. Reber & Millward, 1968), or indeed how much they 

know about contingencies or what rules they think may be in play all attract attention to 

the relationship of the trained stimuli (Shanks & St John, 1994), which is an obvious 

problem for an incidental task. Such tests can be considered direct, where participants 

are explicitly asked about their knowledge in some way; on the other hand tests can be 

indirect, where learning is measured without letting participants know this is being 

measured (Merikle & Reingold, 1991). RTs and errors can therefore provide an indirect 

and objective measure of incidental learning, however, there are a number of 

considerations that must be taken into account.  

 

The first is simply the use of appropriate controls, as speeded responding on a task 

across training does not provide evidence of learning per se and may represent a non-

learning priming effect. SRT tasks of sequence learning must, therefore provide a 

suitable control group who perform the same task without the presence of sequences 

(Nissen & Bullemer, 1987) to ensure that improved responding is due to the presence of 

the sequence itself in the sequence-trained group. Some studies use a within-subject 
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control of untrained or random sequences (e.g. Jiménez & Vázquez, 2005) or a post-

training random test or transfer phase (Shanks & Perruchet, 2002) in order to reduce the 

number of subjects required for the task. I will demonstrate in section 1.5.1.2 that this is 

not an adequate design in controlling for other associated issues in SRT tasks. 

One important criticism leveled at many studies of sequence learning that otherwise 

involve a strong experimental design (Anastasopoulou & Harvey, 1999; Shanks & 

Johnstone, 1999) is the issue of speed-accuracy trade off (Jones & McLaren, 2009). If a 

group of sequence-trained participants demonstrates reduced response latencies 

compared to a control group, this may be as a result of faster but less accurate 

responding in the sequence-trained groups. The presence of a sequence may cause 

participants to respond differently, but this may not be an improvement over the control 

group, nor the result of incidental learning. Many studies in the implicit learning 

literature as a whole, not to mention the sequence learning literature, only report either 

the reaction times or accuracy of participants. It is, therefore, important to detail both 

measures of performance on an SRT task to eliminate the possibility that participants 

trained on sequences are not becoming simply quicker but less accurate, or vice versa, 

compared to the control groups.  

 

1.4.3. Measuring explicit learning in the SRT task 

Measuring the presence or absence of conscious mental processes is a complex area of 

debate, and similar to all psychological measurements suffers from attempting to 

measure latent psychological processes through manifest variables (Newell & Dunn, 

2008). Generally, tests of learning can be organised into three groups, tests of: 

acquisition, knowledge and retrieval (Cleeremans et al., 1998). As well as indirect and 

direct tests as described above (Merikle & Reingold, 1991), tests can also be classified 

as objective, where a measurement compares learning against chance performance, or 

subjective, where participants report their belief in their own knowledge (Dienes, 2004). 

The title of the section is somewhat misleading as measuring any explicit learning is not 

what researchers wish to do in implicit studies. Whilst researchers wish to demonstrate 

the absence of explicit learning, in doing so we must ensure that explicit processes are 

given every chance to appear on test in order to provide convincing evidence they do 

not, therefore a suitable measure of explicit learning is given far greater attention than 

the implicit learning measures themselves.  
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Classically, arguments surrounding tests of explicit knowledge begin with the 

discussion of verbal self-report, as employed by Reber (1967) and in original sequence 

learning studies (Nissen and Bullemer, 1987); which are criticised for a lack of 

sensitivity as they do not measure learning at the detailed level that implicit measures, 

discussed in the next section do (Shanks & St John, 1994). Forced choice tasks are 

suggested to provide some test of conscious knowledge at a more sensitive level, which 

usually involve making recognition judgements (Perruchet & Amorim, 1992), fragment 

completion (Willingham, Nissen, & Bullemer, 1989), or sequence generation – where 

participants are asked to predict which trial comes next or produce a sequence (Jiménez 

et al., 2006). However, these direct measures of explicit knowledge are not free of 

automatic bottom-up responses when presented with stimuli that have been learned and 

cannot be assumed to be exclusive of the influence of automatic processes (Merikle & 

Reingold, 1992).  

 

Subjective measures of explicit knowledge have also been proposed as an index of 

explicit knowledge, as asking participants whether they are guessing or not can give a 

criterion of whether participants are engaging in explicit processes (Cheesman & 

Merikle, 1984; Dienes & Berry, 1997). This is difficult to instantiate during a sequence 

learning task, as asking questions about the task as it progressed would reveal the nature 

of learning that was meant to be implicit. Therefore, questions regarding participants 

introspective performance are insensitive and could be influenced by decay over time or 

indeed bias (Dienes, 2004). A further suggestion is the zero-correlation coefficient, 

which suggests that if subjective confidence ratings in performance do not correlate 

with objective learning measures then there is no evidence of explicit awareness of what 

has been learned (Dienes & Berry, 1997). However, a corollary of this argument is that 

subjective and objective measures are independent of one another and are not 

influenced by the other, which is unlikely to be the case (Jacoby, 1991; Merikle & 

Reingold, 1992).  

 

Most studies of associative learning attempt to demonstrate the absence of explicit 

knowledge (Cleeremans et al., 1998) rather than acquisition, as this is measured post-

learning. Whilst RT and error rates across training provide learning curve data with 

which to analyse on-line acquisition of learning, explicit tests post-SRT task can always 

be argued to suffer from memory decay or interference (Shanks & St John, 1994). 
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Explicit tests that occur after the SRT task therefore may not capture a learning process 

that occurred through (now inaccessible) explicit propositions (Shanks & St John, 1994).  

 

Consequently, sequence learning tasks offer no definite solution to assess the extent to 

which participants may or may not have engaged in explicit learning processes, as the 

nature of implicit serial response tasks ultimately require that explicit checks on 

learning are conducted post-training. This is due to both keeping participants from 

uncovering the nature of the task and so as to avoid disruption of the speeded nature of 

responding and thus the learning of the sequences. Both subjective and objective 

measures of explicit knowledge were taken in the studies in this thesis after a test 

(extinction) phase of the experiments, which are consequently subject to criticism for 

the reasons discussed here. Whilst I acknowledge these criticisms, alongside 

investigating learning under incidental conditions and predicting human learning 

performance on the basis of associative theory I hope to provide a convincing account 

of automatic processes, as I will discuss in the following section.  

 

1.4.4. Other methods to demonstrate incidental learning 

Rather than relying on explicit tests entirely, Seth, Dienes, Cleeremans, Overgaard and 

Pessoa (2008) provide a review of behavioral and biological measures of explicit 

processes, and conclude that a variety of measures are required to converge on any 

assumptions about the nature of the processes involved. This section briefly considers 

additional measures or tests that further attempt to understand what sort of learning 

occurs in SRT tasks.  

 

1.4.4.1. Process purity 

Firstly, it is worth restating here that, although tests may be classified as direct, indirect, 

subjective, objective, or any other classification; it does not logically follow that they 

measure any particular mental process (Newell & Dunn, 2008). Reaction times and 

accuracy on a task, for example, do not exclusively measure performance in the absence 

of conscious attention and motivation (Merikle & Reingold, 1992). We cannot isolate 

the study of a mental process such as learning without the influence of explicit thought 

as well as a whole host of other perceptual and cognitive processes at work, so we 

cannot assume that any test is process-pure (Jacoby, 1991). Assuming that all measures 

of learning are therefore capturing other mental processes, which is the best in this case 
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to use? Indeed, they do not just measure learning, but also the amount of knowledge that 

is stored, and are therefore linked intrinsically with memory systems. Combined with 

other task demands, perceptual influences, variables such as motivation and how well 

participants understand the instructions it is very difficult to compare the results of any 

two different tasks and be sure of what this difference might mean.  

 

Shanks and St John (1994) propose that this is an intrinsic problem for implicit learning 

studies that can only be solved under the assumption that measuring learning after the 

learning event should be used as a marker for what was learned during the event, as to 

assume that it decays before this point would suggest that the learning is too weak to be 

of interest. If this is the case, we must measure both implicit and explicit knowledge at 

the same time, with matched sensitivity. The process dissociation procedure (PDP, 

Jacoby, 1991) attempts to do just this in order disentangle the two processes, originally 

used in the context of implicit and explicit memory.  

 

In the context of a sequence learning task (Destrebecqz & Cleeremans, 2001; Wilkinson 

& Shanks, 2004) this involves two tests (whose order may be counterbalanced) where 

participants are required to: produce responses that follow the trained sequence 

(inclusion test); and produce responses that do not follow the trained sequence 

(exclusion test). Implicit knowledge will act to encourage responses consistent with the 

trained sequences on both tests, whilst explicit knowledge will only positively influence 

correct sequence generation on the inclusion test. Using this procedure with a response-

stimulus interval of 0 seconds (as discussed in Karazinov & Boakes, 2007) participants 

provided evidence for sequence learning in the exclusion test and therefore of implicit 

learning. However, Wilkinson and Shanks (2004) failed to replicate the results and a 

variety of other authors have called this procedure into question (Curran & Hintzman, 

1997; Dodson & Johnson, 1996; Graf & Komatsu, 1994). 

 

1.4.4.2. Biological solutions 

A proposed solution is to employ a biopsychological or neuropsychological measure as 

an index of learning. fMRI (Willingham, Salidis, & Gabrieli, 2002); event related 

potentials (Fu, Bin, Dienes, Fu, & Gao, 2013); eye-tracking (Marcus, Karatekin, & 

Markiewicz, 2006); PET (Destrebecqz et al., 2005) have all been used to demonstrate 

some support for implicit learning of sequences. These offer sophisticated and real-time 
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measures of on-line learning, unlike direct tests. These methods, however, are often 

costly and give little clear evidence of implicit learning, as we must still infer their 

index of implicitness from the studies whose status as implicit is the issue under 

question.  

 

Another solution is to use clinical populations, which may be impaired on learning tasks 

(e.g. amnesiacs, Clark & Squire, 1998; McGlinchey-Berroth et al., 1997; Squire, 1992), 

where we can compare performance with normal participants and assess learning in 

comparison to participants who are unable to learn. Whilst this provides evidence for 

the sort of neurological structures that may be involved in learning, this has a multitude 

of issues, namely in comorbidity of deficits and a lack of understanding regarding the 

nature of the learning impairment, as the brain area may selectively impair perception, 

attention, acquisition, retrieval or a variety of other associated components of the 

learning process.  

 

1.4.4.3. Computational considerations 

In a comprehensive review of measures of implicit and explicit knowledge Seth et al. 

(2008) conclude that there is no definitive measure of either implicit or explicit 

knowledge, and recommend a combination of measures. This thesis takes their view, 

that measurements should provide results which build on understanding and that an 

integrated approach based on some theoretical framework offers a way in which to 

provide greater understanding of these processes. Hence, associative learning theory 

will be used to make specific, behavioural predictions about how humans learn 

sequences incidentally; and these will be tested experimentally.  

 

As previously discussed, all tests, implicit and explicit; direct and indirect; biological or 

behavioural are all problematic as they may not simply measure learning per se, indeed, 

all psychological measures suffer from being simply manifest variables of the latent 

variables that we wish to measure (see Newell & Dunn, 2008). Rather than combining 

behavioral and neurological measures, which both suffer from this manifest issue, a 

computational approach means that one can directly measure any aspect of the model, 

then manipulate and quantify the learning processes at work. A computational model of 

human sequence learning can therefore be used to provide researchers with substantial 

explanatory power. Indeed, Cleeremans and Dienes (2008, p. 401) suggest that in the 
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study of human learning processes “what we really need to know are the principles by 

which a working computational model of human learning could be built”. Given that the 

thesis attempts to investigate associative processes in humans, there seems no better 

method than to examine the predictions of a computational, associative model and test 

these on humans. 

 

1.5. Variations within the standard SRT task 

There are a number of features that have been varied across the standard SRT sequence 

learning paradigm that have led to various methodological refinement and also provide 

insight into how learning of sequences occurs. The obvious variable that one might 

manipulate within a sequence learning task is the sequence itself, which is discussed 

first in terms of the sequences used in SRT tasks. Participants demonstrate different 

learning effects depending on various sequence attributes: whether they are fixed or 

probabilistic or conditional; their length and the number of sequential elements that they 

involve. Further to this, participants demonstrate different response effects in an SRT 

task based on various attributes of the task trial order and these sequential effects are 

discussed in terms of both controlling for and accounting for these effects within a 

model of human incidental sequence learning. Sequences are not only defined by their 

trial order, but also by time itself and how this is manipulated within SRT tasks of 

sequence learning is also discussed. Finally, I will consider the two elements of the SRT 

task: perceptual characteristics of the stimuli and the nature of the motor responses 

required, and consider what manipulations of these can tell us about sequence learning 

and discuss how they are currently represented within models of human sequence 

learning. 

 

1.5.1 Sequence learning and sequential effects 

This section deals with difference between sequence learning and sequential effects. 

Throughout the thesis I refer to sequence learning as evidence of learning about the 

trained sequential patterns or contingencies intended by the experimenter. Sequential 

effects are generally defined as the influence of trial order on speeded responding in an 

SRT task (Anastasopoulou & Harvey, 1999) and, when considered, are generally taken 

as an experimental confound to be controlled for in sequence learning tasks (Jones & 

McLaren, 2009). It is entirely possible that participants automatically learn about many 
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aspects of the task outside of the sequence of interest, including random elements of 

trial order. Whilst sequential effects attract theoretical interest and themselves , for the 

purpose of this thesis they are considered separately to learning about the trained 

sequence itself for purposes of clarity.  

 

1.5.1.1. Sequence learning 

As mentioned in this section introduction, there are a variety of sequences that have 

been used in the sequence learning literature. These can be divided into roughly two 

paradigms, the first being those experiments that use one or more fixed, repeating 

sequences to train participants. Participants in Nissen and Bullemer’s (1987) original 

demonstration of implicit sequence learning, for example, were required to press four 

different keys for four different stimuli (A, B, C and D) that followed the sequence: D-

B-C-A-C-B-D-C-B-A continuously ten times in a block for eight blocks (with no 

demarcation between each sequence). The second type of sequence learning studies use, 

instead of this repeating sequence, some sequential structure. Rather than trial locations 

following a fixed sequence, they can follow a set of underlying rules that results in an 

abstract structure. Cleeremans and McClelland (1991), for example, employed the same 

Markovian structure used by Reber (1967) to construct his artificial grammars.  

 

The first, fixed sequential structures are used in most of the early sequence learning 

literature (Stadler & Neeley, 1997), which lead to a variety of issues. These sequences 

in some instances do not control for the number of stimulus presentations in each 

location, therefore participants in Nissen and Bullemer’s (1987) study may have been 

able to respond less to 'D' and 'A' and more to 'B' and 'C' to give them some advantage 

on the task (DeCoster & O’Mally, 2011). They also involve increased likelihood of 

certain first order transitions, for example B is followed by C twice, but never by A; as 

well as there being no possibility that stimuli can repeat. There are therefore two 

essential problems with fixed sequences: the first being that some elements or structural 

components within a sequence may be learned, rather than the whole sequence itself. 

This suggests that explicit knowledge tests may fail the information criterion (Shanks & 

St John, 1994) as well as demonstrating that participants may not be demonstrating 

sequence learning at all (Stadler & Neeley, 1997).  
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The second problem is that certain trial orders may naturally produce response 

differences, for example participants may be faster to respond to a repetition compared 

to an alternation (Soetens, Boer, & Huetings, 1985). These sequential effects are a vital 

point of consideration for sequence learning studies when attempting to demonstrate 

learning, as well as being worthy of interest in their own right (see section 1.5.1.2). The 

presence of these sequential effects is an issue as many studies not only use a fixed 

sequence that may suffer from them but the same fixed sequence used by Nissen & 

Bullemer (1987; Stadler, 1992), or a similar 12-item fixed sequence introduced by 

Reber and Squire (1998; DeCoster & O’Mally, 2011).  

 

Probabilistic sequential structures do not follow the same, fixed sequence throughout, 

with a propensity to discourage explicit processes (Cleeremans, 1993); they have an 

abstract structure (Cleeremans et al., 1998); following the maxim of complex, abstract 

stimuli relationships suggested by Reber (1989) and hence are preferred in the study of 

sequence learning (Jones & McLaren, 2009). However, this does not exclude them from 

sequential effects, as artificial grammars such as the one used by Cleeremans and 

McClelland (1991) do not control for the number of stimulus presentations in each 

location nor the number of first order transitions between trials (Anastasopoulou & 

Harvey, 1999). Reed & Johnson (1994) suggest instead that the SRT task should always 

use second order conditional (SOC) sequences, where the location of the response 

stimulus on each trial is uniquely determined the previous two trial locations. These 

match for the number of locations and first order transitions between stimuli, although 

these often do not allow repeats to occur, which introduces a sequential effect in itself. 

Whilst first order transitions can be balanced, there will be an influence of higher order 

sequential effects (i.e. the effect of trial orders preceding the previous trial; 

Anastasopoulou & Harvey, 1999; Soetens, Boer, & Huetings, 1985).  

 

If we balanced the number of trial orders precisely in a task then we can propose there 

would be nothing to learn about, as trial order would be controlled and thus 

pseudorandom with every possible response location and transition equally likely 

(Anastasopoulou & Harvey, 1999). Therefore, in order to control for the inevitable 

influence of sequential effects when a sequence is introduced, we must compare not 

only performance to a control group who have not experienced these sequential effects, 

but we must eradicate the influence of these sequential effects in a matched, 
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pseudorandom test phase where learning in the sequence-trained groups can be 

demonstrated compared to control participants.  

 

Studies that have been successful in controlling for these sequential influences 

(Anastasopoulou & Harvey, 1999; Shanks & Johnstone, 1999), as well as presenting a 

full account of both RT and error data are limited (Jones & McLaren, 2009). I recognise 

that controlling for sequential effects produces significant methodological constraints in 

terms of the type of sequences that participants can learn, the need for a between subject 

control, and the need for a test phase. Following Jones and McLaren (2009) this thesis 

involves a two-choice SRT task, which enables a simpler control for sequential effects, 

as the number of stimuli, and therefore of first-order transitions, and therefore higher-

order transitions are limited and more easily balanced. This structure also allows for a 

simple, probabilistic structure to be introduced to relationships between stimuli (Jones 

& McLaren, 2009; Lee & Livesey, 2013), for example, the likelihood of a first-order 

repeat or alternation can be changed in the sequence-trained group; and controlled for 

by the pseudorandom control group where either is equally likely.  

 

1.5.1.2. Sequential effects 

Whilst sequential effects have been proposed as something that sequence learning 

studies are required to control for (Anastasopoulou & Harvey, 1999) they make up a 

thriving research literature in and of themselves in understanding human perception and 

performance (Soetens, Melis, & Notebart, 2004). I want to outline how this impacts 

upon a computational associative account of sequence learning.  

 

Computational models of sequence learning such as the AugSRN (Cleeremans & 

McClelland, 1991) have attempted to account for these effects, primarily the effect of 

the previous trial (t – 1) on the current trial (t) in order to better account for the variance 

in human performance on the task. The first-order effect observed by Bertelson (1961, 

1963) that participants are faster at responding when the t is in the same location as t – 1 

(a first-order repeat) was incorporated in the model by adding response-units which 

introduced short-term priming of the previous response. Jones and McLaren (2009) 

observed this first-order repeat preference and it was well modelled by the AugSRN, 

which provided a good explanation of human behaviour on the task. Therefore, the 

model contains a non-associative (no long-term learning occurs with respect to this 
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response priming) component in order to account for certain response patterns. This 

thesis aims to similarly account for human response preferences with a computational 

model, and so sequential effects as well as sequence learning will be considered.  

 

1.5.1.3. Associative predictions 

As mentioned previously, Jones and McLaren (2009) provide a demonstration of 

sequence learning that is not confounded by either sequential effects or a speed-

accuracy trade off, thus making it the methodological starting point for the experimental 

work presented in this thesis. Additionally, the account that Jones & McLaren (2009) 

provide of their data is associative, and the AugSRN and human performance under 

incidental conditions are equivalent, in terms of both sequence learning and sequential 

effects. The specific details of the paper are discussed at length in the introduction to 

Chapter 2, but in brief the amount of sequence learning that occurs under incidental 

conditions differs in the task depending on the particular trial order of certain 

‘subsequences’, which are all taken from a probabilistic structure based on the same 

underlying rule.  

 

The AugSRN provides evidence that these differences are the result of competition 

between trial-by-trial associations, which reduces the error term for certain sequences 

that hence restricts learning. Jones and McLaren (2009) therefore suggest that learning 

about relationships between previous trials can block learning about sequences on 

subsequent trials. This might also suggest, however that participants in the task are not 

able to extract the abstract sequential structure trained on the task and instead learn 

specific instances. Consequently, the first Chapter in this thesis aims to further 

investigate these claims regarding competition between trial-by-trial associations within 

a similar SRT task design, but using a different underlying stochastic structure to the 

trials experienced by their (Jones and McLaren's) sequence-trained participants to 

investigate the associative predictions regarding sequence learning.  

 

1.5.2. Time 

The study of sequence learning is primarily concerned with variations in trial order, as 

this is the essential information that is acquired when learning a sequence. The 

influence of time itself on sequence learning has attracted considerable attention in 

recent years. SRT sequence learning tasks are generally fast paced, a design feature 
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borne out of attempting to avoid the explicit development of propositions (i.e. rule 

induction) that is shared by human associative learning studies (e.g. Karazinov & 

Boakes, 2007). This suggests that explicit processes are thought to occur given greater 

time between stimuli within an SRT task, and indeed this was found by Destrebecqz 

and Cleeremans (2001; 2003) as manipulating response to stimulus interval (RSI) had 

no effect on incidental learning, but participants demonstrated explicit knowledge when 

RSIs were increased to 1500 milliseconds (ms). Further authors were unable, however, 

to replicate these results (Fu et al., 2008; Norman, Price, & Duff, 2006; Wilkinson & 

Shanks, 2004). Indeed, Frensch and Miner (1994) propose that time has the opposite 

effect on learning, and suggest that increasing the RSI produces a reduction in learning. 

Researchers tend however, to agree that RSI has little influence on incidental learning, 

however fixed or patterned RSIs produce greater incidental sequence learning than 

random RSIs (Shin, 2008), which suggests that time is encoded and learned about when 

learning about sequences (Miyawaki, 2006; Rünger, 2012). This is not something that 

models of sequence learning such as the SRN account for as time is simply represented 

in a step-wise trial-by-trial fashion (Destrebecqz & Cleeremans, 2003). 

 

In addition to this, time has a differential effect on sequential effects (Soetens, Melis, & 

Notebart, 2004) as increases in RSI tend to produce a change in first-order response 

preferences from repeats to alternations. This is again suggested to be due to the 

influence of explicit expectations, this time akin to a gambler’s fallacy heuristic where 

participants expect an alternation to be more likely (Jarvik, 1951). This suggests that 

both sequence learning and sequential effects may interact with one another and time to 

produce the pattern of responding in humans. Jones and McLaren (2009) used a fixed 

RSI of 500 ms in their task, which is shorter than the ‘explicit’ RSI manipulation used 

by Destrebecqz and Cleeremans (2001; 2003) but also longer than similar experiments, 

such as Cleeremans and McClelland (1991). Jones and McLaren (2009) accordingly 

increase the learning rate of the AugSRN to better capture the longer RSI, which 

crudely represents time. The influence of time on sequence learning is addressed by the 

simulations involved in Chapter 3 of this thesis, which consider the influence of time 

and order within each trial, as well as between each trial.  
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1.5.3. Stimuli and responses 

One much debated element of sequence learning tasks is to what extent the perceptual 

and motor components of the task are learned and represented. Whilst Willingham 

(1999) demonstrated that learning about sequences can be entirely response based; other 

demonstrations suggest that sequence learning can occur to stimuli that are purely visual 

in nature (Heyes & Foster, 2002; Howard, Mutter, & Howard, 1992; Marcus, Karatekin, 

& Markiewicz, 2006) with no responses whatsoever. In a study by Mayr (1996) 

participants were trained in a task where both the shape of the stimuli and the location 

of the stimuli followed two, different, independent sequences. Participants showed 

evidence of being able to learn both sequences when required to respond to shapes and 

not locations, suggesting that participants were able to learn both response-based 

sequences regarding shapes alongside stimulus-based sequences regarding locations 

(Mayr, 1996). It is debated whether sequence learning involves associations between 

stimuli (S-S learning, Heyes & Foster, 2002; Howard, Mutter, & Howard, 1992); 

responses (R-R learning, Nattkemper & Prinz, 1997); or the previous response and 

current stimulus (R-S learning, Ziessler & Nattkemper, 2001). Whilst studies are 

concerned with which one of these occurs, it is entirely possible that more than one 

occurs.  

 

Models of sequence learning may consider stimuli and responses a moot point, as when 

represented locally within a computational model, responses (if correct) can be 

represented in the same way as stimuli. Associative models of sequence learning 

generally represent a sequential element as a single event (t) that predicts the next 

sequential element (t + 1). I will argue in this thesis that this does not accurately 

represent the task conditions experienced by humans in an SRT task. It is entirely 

possible that an associative system can learn S-S, R-R and R-S associations, as well the 

often overlooked associations (in this context anyway) between stimuli and responses 

(S-R learning). Participants are not required to associatively learn that each stimulus in 

the task requires certain responses, as they are instructed how to respond, which is why 

models and theories are not concerned with stimulus-response learning; as this is not 

involved in the learning of sequences. However, there is a perfect contingency between 

these stimuli (e.g. the light that flashes) and the required response (e.g. the key to be 

pressed), so we can expect that practice will have some effect on the strength of the 
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stimulus-response association. Whilst these stimulus-response associations are not a 

necessary condition for learning about sequences associatively, I will investigate to 

what extent an associative model predicts how these associations might interact with 

incidentally learned sequences. Similar to the account of sequential learning effects 

observed in Jones and McLaren’s (2009) study, stimulus-response associations may 

compete with sequence learning and produce a differential effect.  

 

1.6. Variations on the standard SRT task 

There have been a number of variations on the SRT task that introduced dual tasks 

(Cohen et al., 1990; Curran & Keele, 1993; Jiménez & Mendez, 1999) in order to 

investigate whether sequence learning requires cognitive effort or selective attention. 

Whilst these produce interesting results that can inform our understanding of sequence 

learning, this section will focus on the variations on the standard SRT task that, 

following from the previous section regarding stimuli and response, associative learning 

theories may provide specific, testable predictions about. These tasks are those that 

include additional stimuli, which may be expected to interact with the sequence 

learning in some way. The number of such studies to date is small and I will conclude 

that they provide no suitable evidence that incidental learning about two sets of 

contingencies interact. Finding an associatively predicted effect of cue-competition in 

implicit learning literature as a whole is lacking when the presence of such an effect 

achieved under incidental conditions would provide strong evidence for the occurrence 

of automatic, associative processes (Beesley & Shanks, 2012). A central aim of this 

thesis is therefore to investigate how additional stimuli or cues within a sequence 

learning task have an effect on the incidental learning of these sequences in order to 

demonstrate associative learning in humans.  

 

1.6.1. Additional concurrent stimuli 

Sequence learning tasks usually involve visuo-spatial stimuli, but some tasks also 

involve additional stimuli or stimulus elements (e.g. colour or shape). In recent studies 

by Abrahamse and colleagues (Abrahamse, Lubbe, Verway, Szumska, & Jaskowski, 

2012), sequence learning tasks have investigated the claim that sequence learning can 

be potentiated by concurrent stimuli that also follow the sequence (Robertson & 

Pascual-Leone, 2001; Robertson, Tormos, Maeda, & Pascual-Leone, 2001). Robertson 
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and colleagues demonstrated that the learning of sequences of stimulus locations or 

colours of sequences was stronger when these two sequences were contingent than 

when only locations or only colours were used alone; however, they did not use the 

same sequences nor the same tasks at test to assess learning correctly. In doing so 

Abrahamse et al. (2012) found that participants show no difference between learning 

about locations alone compared to when colours were congruent with these. This 

suggests that other stimuli have little effect on sequence learning, and that sequence 

learning is strongly linked to responding. This merits further investigation, as 

Abrahamse et al. (2012) investigated location alone sequence learning with a single 

colour stimulus, whereas the location and congruent colour condition involved four 

colours and locations. It is possible therefore that colour-location associations in fact 

interfered with learning about the sequence, or that the colour information was not 

perceived as separate to the location information and the one colour-response unit was 

represented as a single compound stimulus.  

 

1.6.2. Additional between-trial stimuli 

Nissen and Bullemer (1987) provided evidence that in a dual-task version of their SRT 

task that an additional counting task that involved tones presented during the RSI 

disrupted incidental sequence learning. They took this to suggest that reduced attention 

to the sequence led to reduced learning, indicating that implicit learning requires some 

element of selective attention. Stadler (1995) provides a different account of these 

results and suggests that the concurrent tone counting task actually disrupts the 

sequential order as it is encoded, and that it is not attention but interference from these 

additional tone stimuli that impairs sequence learning. This, to some extent, may be 

interpreted associatively, as a representation of a separate element within the RSI may 

influence the associations made between the sequential stimuli or responses. Indeed, if 

the responses are the only element of the task implicated in the learning of sequences 

then additional between-trial stimuli should not have an effect on sequence learning, 

however, if stimuli also drive sequence learning then we can expect associations 

between these stimuli to be disrupted.  

 

It is not clear in these dual tasks, however, to what extent incidental processes are 

interfering with one another, as the secondary task is made explicit to participants and 

therefore a host of influences including working memory, perceptual and cognitive load 
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could produce these effects. In this thesis I will aim to investigate further the possibility 

that sequence learning is affected by additional stimuli presented concurrently within 

the SRT task. However, instead of examining these stimuli as part of an additional dual-

task scenario where additional, explicit influences on processing may account for 

differences in performance, I will investigate how the associations formed between 

these additional stimuli and existing elements of the task interact with the learning of 

sequences. 

 

1.6.3. Additional cues 

Further to this, there are a number of studies that investigate sequence learning 

alongside learning about additional contingencies. Beesley and Shanks (2012) proposed 

that excellent support for the presence of associative learning processes in humans 

would be provided if a task could show that learning about two contingencies competed 

with one another following established learning effects observed in animals, for 

example blocking (Kamin, 1969). Whilst they found no evidence of cue-competition in 

humans using a visual search task, I will argue in Chapter 6 of this thesis that such a 

task may not involve two forms of competing incidental learning, and further examine 

whether we can find evidence of an interaction between learning about two incidentally 

acquired contingencies. This would provide strong evidence that humans were learning 

associatively and is therefore a central aim of this thesis.  

 

In the context of SRT tasks, Cleeremans (1997, p. 74) investigated a novel version of 

the SRT task where the colour of the stimuli on each trial predicted the next response in 

the sequence, which was “inspired by work on overshadowing in conditioning 

experiments with animals”. With an aim to investigate whether colour-response learning 

would overshadow sequence learning, Cleeremans (1997) found that whilst participants 

learned about colours that this did not interact with sequence learning, providing no 

evidence of overshadowing and therefore no evidence for associative processes. This 

conclusion, however, may be flawed for a number of reasons. Firstly, participants were 

instructed about the presence of colour contingencies and therefore this learning is 

likely to have been explicit, which could explain the lack of an associative interaction 

between the two learning processes (Jiménez & Méndez, 1999).  
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Jiménez and Méndez (1999) adapted Cleeremans’ (1997) task and provided evidence 

from a version of the study where participants did not receive explicit colour-

contingency information. They were trained incidentally that colours predicted the next 

trial alongside sequence learning and no evidence colour-response learning, nor of an 

interaction between the two was found. Jiménez and Méndez (1999) concluded that 

there was no evidence of associative overshadowing, however, both of these studies did 

not provide a control group for sequence and colour contingency learning, which is an 

investigation that will be conducted within this thesis. Furthermore, the studies did not 

entertain the possibility that blocking or overshadowing may occur in the other 

direction: with the colour contingency learning being overshadowed by the sequence 

learning. Both studies assume that colour learning will be stronger as it is firstly a 

simple relation to learn, however, this presupposes that associative learning systems 

have some advantage when learning simple conditional probabilities over more abstract 

stochastic structures. On the one hand this makes some intuitive sense, but the rich 

variety of complex and abstract sequences that a simple SRT model have been shown to 

learn suggest that an associative system is ideally suited for learning these stochastic 

relationships (Beesley, Jones, & Shanks, 2012). The authors (Cleeremans, 1997; 

Jiménez & Méndez, 1999) further suggest that overshadowing of sequences is expected 

by colours due to the temporal contiguity of colours with the next response, whereas 

sequences occur with greater latencies before the trial to be predicted. Issues of time 

were discussed previously, and whilst no conclusive answer was reached, it is of course 

possible that learning increases over time, which was suggested and functionally 

modelled by McClelland (1979). 

 

1.6.4. Summary 

Altogether, these variations on the SRT task provide no conclusive evidence for or 

against automatic, associative learning processes. The methodologies of the various 

tasks outlined do not properly control for the number of stimuli across conditions 

(Abrahamse et al., 2012) or provide control groups for sequence or additional 

contingency learning for comparison (Jiménez & Méndez, 1999). Subsequently, authors 

have been unable to conclude that there is evidence for an interaction between stimuli or 

contingencies and sequence learning; which would provide insight into how incidental 

learning processes occur. Following Beesley and Shanks (2012) this thesis attempts to 

investigate cue-competition between contingencies within an SRT as would be expected 
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if human incidental learning were indeed associative, thus providing strong evidence 

that automatic learning processes occur through association formation. 

 

1.7. Concluding remarks 

Instead of “fighting old battles” (McLaren et al., 2013, p. 194) and merely attempting to 

demonstrate the presence of implicit learning, this thesis assumes the possible presence 

of automatic learning processes and aims to investigate whether, under incidental 

conditions, we can reliably study and computationally model human associative 

learning. To best study associative processes in humans, a sequence learning approach 

is adopted which is considered the best task to investigate incidental human learning 

(Destrebecqz & Cleeremans, 2003). Further to the methodological advantages provided 

by investigating associative learning using this task, sequence learning is an interesting 

phenomenon in and of itself.  

 

This thesis aims to investigate human incidental learning at the intersection of 

computational, implicit and associative approaches. I will examine human learning 

under incidental conditions and ask whether an associative model can capture the 

sequential learning observed in participants, as well as the sequential effects that occur 

in humans. Further to this I will investigate the effect that additional stimuli and 

contingencies between cues and responses in the SRT task have on incidental sequence 

learning. Through this, the intention of the thesis is to investigate evidence of the 

automatic formation of links between events in the environment and to investigate 

functionally how these associative processes may occur in the human mind.  

 

Jones & McLaren’s (2009) results demonstrate that the trial order of the sequences 

themselves produce effects that, according to associative predictions, can come to 

interfere with learning about certain sequences. This provides the basis for the first 

experiment in this thesis, which investigates further the possibility that associations 

formed between trial-by-trial random orders compete with learning about stochastic 

structures (trained, probabilistic elements of the trial order) within an incidental 

sequence learning task. Chapter 3 takes a computational approach in order to investigate 

how a model of sequence learning (the AugSRN, Cleeremans & McClelland, 1991) 

accounts for the human data provided in Chapter 2. As outlined in this introduction, the 

issues of trial order, timing and the role of stimuli and responses are all key variables 
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within the SRT task, which are addressed in the context of this modelling work. Chapter 

4 investigates the role of additional concurrent stimuli within a SRT sequence learning 

task using predictions of the model outlined in Chapter 3. Further predictions regarding 

the learning of incidental cue-response contingencies are tested in Chapter 5, which are 

then incorporated alongside sequence learning in Chapter 6 to investigate whether 

evidence for cue-competition between two incidental contingencies can be found.  
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Chapter 2. Sequence learning, subsequence learning 

and sequential effects 
 

In this chapter I investigated sequence learning under both incidental and intentional 

conditions in an experiment inspired by the work of Jones and McLaren (2009). In two 

experiments presented here, participants were trained across two sessions on a two-

choice SRT task that followed a stochastic structure determined by one of two rules. 

Both rules involved the trial before the last, so the current trial could be predicted based 

on whether the trial two trials previous was a left or a right two thirds of the time. Jones 

& McLaren (2009) observed a double dissociation between learning of the subsequence 

XXX under incidental and intentional conditions. As part of learning of a sequential 

rule, participants demonstrated an absence of learning about XXX under incidental 

conditions, but exclusively learned this subsequence intentionally. Learning of this 

subsequence in Experiment 1 presented here suggests that impaired learning of 

subsequence XXX depends on the structure of sequential contingencies, providing 

support for an associative account of learning under incidental conditions. Experiment 2 

provided evidence of learning under intentional conditions that was extremely similar to 

Experiment 1, and these results are discussed in the context of methodological issues 

with dissociations and state-trace analysis (Bamber, 1979). The results of Experiment 1 

provide a detailed set of sequence learning and sequential effects that provide a 

framework within which to investigate computational models of learning in Chapter 3.  

  

2.1. Introduction 

2.1.1. Jones and McLaren (2009) 

Chapter 1 argued that sequence learning provides an ideal paradigm in which to study 

implicit or incidental learning in humans, as this involves complex sets of contingencies 

that are hard to notice. Sequence learning also provides a challenge for traditional 

models of associative learning, as learning contingencies between events that are 

separated by time and intervening stimuli is beyond simple associative models that have 

no means of representing previously experienced stimuli (i.e. some memory). This is an 

issue for associative explanations of automatic learning in humans, when learning about 
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sequences and series of events across time. In this section I will outline the procedures 

and results obtained in the sequence learning task devised by Jones and McLaren (2009), 

which forms the basic experimental design for Experiments 1 and 2. Jones and McLaren 

(2009)’s account of the pattern of results, supported by the simulations of the 

Augmented SRN (AugSRN, Cleeremans & McClelland, 1991), suggest that competing 

contingencies between events in the sequence produce learning effects for certain trial 

orders. 

 

Participants were trained over six sessions (two for the intentional participants) of 

roughly one hour on a simple two-choice serial reaction time (SRT) task that involved 

pressing one of two keys to one of two on-screen stimuli. These stimuli were simply 

white circles that always appeared in the same location, either on the left or right hand 

side of the screen. Under incidental conditions participants were told that the task was 

simply measuring reaction times (RTs) and accuracy to these stimuli, and no mention 

was made of the sequence learning that could occur. Under intentional conditions 

participants were told to look for patterns and sequences and work out what was going 

on to help them in the task. 

 

As discussed in Chapter 1, this sequence learning was not of repeating strings of trials, 

but the trials were constructed with a probabilistic structure whereby some trial orders 

were twice as likely as others. This meant that with only two stimuli, sequential effects 

could be adequately controlled for within-subjects. The number of right and left stimuli; 

the number of repeats and alternations experienced between the current trial (t) and the 

previous trial (t – 1); as well as between t -1 and the trial before this (t – 2) were equal 

for each subject, and therefore no difference in the distribution of these sequential 

features could explain the observed learning. The unavoidable nature of training certain 

trials orders as more likely however, results in a possible sequential confound, as 

improved performance in a group trained on certain trial orders could be due to some 

preference for responding to these trial orders and therefore a (between-subjects) control 

group is required to control for these sequential effects.   

 

The trial orders trained (i.e. those more likely to occur) were based on an exclusive-or 

rule, a classic learning problem in connectionist modeling literature (Minsky & Papert, 

1969; Rumelhart, Hinton, & Williams, 1985). This rule is based on two items, which 
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produce either an ‘exclusive’ case (both items are the same) or an ‘or’ case (both items 

are different). Translated into the current task, if the rule occurred on 100% of trials: 

when one receives two consecutive stimuli on the right side of the screen, or two on the 

left (the exclusive-case) then the next trial would be a right trial, for example. If the two 

trials just experienced swapped from right to left, or left to right (the or-case) then the 

current trial would be a left trial. These contingencies, however, did not occur on 100% 

of trials and were trained by way of a stochastic structure whereby participants could 

use this rule to predict the current stimulus location on two thirds of trials during 

training (although the trials were pseudorandom and the rule predicted the response at 

50% during test). 

 

Within this structure, therefore, there was a stochastic, underlying sequential exclusive-

or rule to the trial order that participants could learn about. Due to this structure, certain 

runs of trials to t – 2 were more likely. Taking the example above where exclusive-case 

= right stimulus (R) and or-case = left stimulus (L) then the trial orders: RRR, LLR, 

RLL and LRL were twice as likely to occur than: RRL, LLL, RLR, LRR. Consequently, 

as well as investigating the extent to which humans can learn the probabilistic 

sequential exclusive-or rule, learning could be broken down into these triplets or 

“subsequences” (Jones & McLaren, 2009, p. 541). As the exclusive-or rule was 

counterbalanced across participants between right and left stimuli, they are referred to in 

terms of Xs and Ys rather than Rs or Ls. Jones and McLaren (2009) provide evidence of 

differential learning of each of these subsequences; and so it follows that an associative 

model of human learning must account for these subsequence learning effects (for 

example, more learning of RRR compared to RLR) as well as sequential effects (the 

effect of the previous trial order – trained or untrained – on responding) and sequence 

learning (learning of the rule that underlies the probabilistic structure). 

 

2.1.3. Cue competition and subsequence learning  

This subsequence learning is investigated further in this chapter, as Jones and McLaren 

(2009) observed that under intentional conditions, participants only demonstrated 

learning of the subsequence XXX (and not XYY, YXY, or YYX). The opposite was 

true of participants who completed the task incidentally, who showed no evidence of 

learning the subsequence XXX nor XYY, some of YXY and evidence of learning of 

YYX. The explanation of XXX learning in the intentional case and not the incidental 
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case was that participants simply noticed this salient string of trials and therefore 

explicitly performed better on these trials, as evidenced by reports obtained in a 

structured interview following the task. Learning of this subsequence, Jones and 

McLaren (2009) suggest, can therefore be used as a marker of whether participants are 

engaging with rule-based, hypothesis testing.  

 

The apparent dissociation between the incidental learning of subsequences is difficult to 

reconcile with an explicit rule-based account. An explanation, however, can be provided 

by the AugSRN, which provides a convincing simulation of human performance on the 

task. The AugSRN (as described in Chapter 1 and in more technical detail in Chapter 3) 

learns by way of two sets of connection weights between the units in the model, both 

with their own learning rates. The ‘slow’ weights (lower learning rate, no decay) are 

simply the associative connections that learn the underlying statistical structure of the 

contingencies in play: these weights learn the exclusive-or sequential contingencies and 

simulate sequence learning. The ‘fast’ weights (higher learning rate, experience decay) 

were introduced by Cleeremans and McClelland (1991) to account for short-term 

priming effects observed in SRT tasks: transient learning of trial-by-trial mappings that 

produce sequential effects observed in humans. Jones and McLaren (2009) suggest that 

it is the competition that occurs between these fast, transient associations and the 

learning of the underlying statistical contingencies that influences the learning of 

subsequences.   

 

Jones and McLaren (2009) propose that for the XXX case, the trial-by-trial mappings 

are the same (X [t – 2] leads to X [t – 1], followed by X [t – 1] leads to X [t]). This leads 

to an effect akin to blocking: the transient learning of these trial-by-trial contingencies 

by the fast weights reduces the error term involved in calculating the amount of learning 

that can occur. This restricts learning of the mapping between t – 1 and t, which is the 

crucial trial on which the exclusive-or rule predicts a response. As a result, due to the 

competition between transient trial-by-trial learning (sequential effects) and the more 

permanent learning of the stochastic structure, simulations of the AugSRN (and humans 

under incidental conditions) are impaired on learning of this subsequence. This cue 

competition account of sequential effects and sequence learning not only accounts for 

the observed subsequence learning differences, but as such provides excellent evidence 

for automatic cue competition and therefore associative processes in humans. 
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It may also, however, be possible that participants under incidental learning were using 

some chunking, or instance based learning, which resulted in the differential learning of 

some sequences due to some attentional bias towards or away from subsequences with 

repetitions; or some other motor or perceptual preference for certain subsequences. 

Indeed, these results could provide strong support for such a theory, suggesting that 

participants were not learning the stochastic exclusive-or rule at all, but simply learning 

some of these subsequences as instances. It could also be possible that learning under 

incidental conditions is limited, and participants were restricted to learning only a small 

number of subsequences, chunks or instances. This seems unlikely, as there were only 

four subsequences of three trials to learn in total.  

 

This chapter aimed to investigate Jones & McLaren’s (2009) associative cue 

competition account of subsequence learning in a similar task under both incidental and 

intentional conditions, matched for training length unlike in the original experiments. 

The experiments sought to investigate further whether competition from within-

subsequence contingencies were responsible for the learning deficit of XXX under 

incidental conditions, or whether a chunking-based instance account could explain this 

result. This experimental chapter was further designed in order to generate additional 

learning effects that a computational model would be required to account for (which are 

discussed in Chapter 3). The experiments finally attempted to assess whether 

participants trained on the subsequence XXX have “the potential to be used as a marker 

as to whether people are engaging error-correcting associative learning or rule-based 

hypothesis-testing” (Jones & McLaren, 2009, p. 540). 

 

2.2. Experiment 1: Incidental sequence learning 

Instead of using a counterbalanced exclusive-or rule for the construction of the 

sequential contingencies that participants were trained on, this experiment involved a 

between-subject design comparing learning of one set of sequential contingencies to 

another. These contingencies followed the same rule structure: one could predict the 

current trial based on the trial before the last. This differs from the Jones & McLaren 

(2009) sequential contingency, as the exclusive-or contingency depends on both the 

previous trial and the trial before the previous trial jointly determining the likelihood of 

either response on the current trial. The between-subject manipulation was 

complementary: one group was trained that the current trial was more likely to be the 
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same as the trial two trials previous (Same), and the other group could predict the 

current trial as more likely to be the opposite response to the one two trials previous 

(Different).  

 

Both Same and Different groups experienced the same number of left and right stimuli 

and the same number of repeats and alternations between responses. The two groups 

differed only in respect to the construction of their training trial order, which comprised 

of subsequences of XXX, YYY, XYX and YXY for Same, and XXY, YYX, XYY and 

YXX for Different (described in more detail below, see section 2.2.1.3.). As the 

subsequence learning observed under incidental conditions by Jones & McLaren (2009) 

suggested greater learning of the subsequences YYX and YXY, with some difficulty in 

learning the subsequences XXX and XYY (those ending in a repeat), this suggests that 

learning about the Same rule may be reduced compared to the Different rule. However, 

the Different rule group was trained on the subsequence XYY, which was also learned 

poorly under incidental conditions (albeit less so than the subsequence XXX).  

 

As mentioned above, participants needed to be sensitive to both of the two previous 

trials in order to predict the current trial in Jones and McLaren’s (2009) study, however 

this was not the case in Experiment 1. In the Same group (who are trained with XXX), 

the middle X is not required for a prediction; they are also trained with XYX. Therefore, 

Experiment 1 alters the stochastic structure of the sequence rule in order to assess the 

effect of trial-by-trial contingencies on sequence learning. The influence of short-term 

learning of previous trial order that Jones and McLaren (2009) suggest competes with 

sequence learning (reducing learning of subsequence XXX) may be altered if the 

relationship between the sequence elements that leads to these sequential effects is 

changed. Evidence for this interaction between sequence learning and effects would 

provide support for some competition between the two producing differential 

subsequence learning, as suggested by Jones and McLaren (2009). However, if 

subsequence XXX is not learned under incidental conditions then an instance or 

chunking based account that suggests that this subsequence is simply harder learn may 

provide a better explanation of the result. 
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2.2.1. Method 

2.2.1.1. Participants 

96 participants (aged between 18 and 29 [M = 21.1]; 70 female and 26 male) were 

recruited from undergraduate students at the University of Exeter and were awarded £10 

for participation. Participants provided informed consent prior to taking part in two 

sessions lasting roughly one hour each. Participants were randomly allocated into one of 

the four possible conditions, described in more detail in section 2.2.1.3. 

 

2.2.1.2. Materials and Stimuli 

The experiment was run on an Apple iMac with Superlab software. Participants were 

seated roughly 50cm from the screen, which contained two white circle outlines on a 

black background throughout the task. These white circle outlines were 19 mm in 

diameter and positioned vertically in line with the screen centre, and 22 mm either to 

the left or the right of the screen centre horizontally. The response stimulus was a white 

filled circle (18.5 mm diameter) that was placed within one of the two circle outlines, 

giving the white circle outline the appearance of lighting up or filling in. Participants 

were required to press the spatially compatible ‘x’ and ‘>’ key presses on a QWERTY 

keyboard to the left or right response stimulus, respectively.  

 

2.2.1.3. Design 

The experiment was a two-choice SRT task comprising two sessions of twenty blocks 

each. Each of these blocks contained 120 trials, with all twenty blocks of the first 

session and first fifteen blocks of the second session acting as training; and the final five 

blocks acting as test. Depending on the group that participants were assigned to, across 

training participants received either blocks containing sequential contingencies 

(Experimental) or no sequential contingences (Control). There were no sequential 

contingencies present in any group during the five blocks of test. Participants were 

randomly allocated either Same or Different sequential contingencies to learn (a dummy 

variable for the Control group). See Table 1.1 for the between-subject design of 

Experiment 1. 

 

Pseudorandom block construction. The construction of the trial order of left and right 

response stimuli experienced in each block followed Jones and McLaren (2009): 

subsequences were used to construct both training blocks containing sequential 
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contingencies as well as pseudorandom test blocks. Within a two choice task there are 

eight possible trial orders that a run of three trials may take (R and L are used here for 

right and left, respectively): R-R-R; R-R-L; R-L-R; R-L-L; L-L-L; L-L-R; L-R-L; and 

L-R-R. For pseudorandom blocks (for all Control groups and for the five blocks of test 

for all groups) all of these eight triplets (5 instances of each: 40 triplets in total) were 

randomly ordered and concatenated to make a continuous string of 120 right or left 

trials. The amount of right and left trials in total, as well as the number of repeats and 

alternations experienced up to two trials before the current trial was therefore controlled 

for. On any given trial there was no way of using any information from the previous 

trial(s) to predict the current trial location. Therefore the probability of predicting the 

correct response on any trial, based on none or any of the previous trials, was 50%. 

 

Table 2.1. Table showing the between-subject design of Experiment 1, with 24 

participants in each of the four possible conditions of the 2 x 2 design (Rule: Same or 

Different; Group: Experimental or Control). Each cell contains the type of sequential 

contingencies that participants experienced for 35 blocks of training and 5 block of test, 

where all groups received pseudorandom blocks.   

 Same Rule Different Rule 

 Experimental Control Experimental Control 

     
Training Same Pseudorandom Different Pseudorandom 

Test Pseudorandom Pseudorandom Pseudorandom Pseudorandom 

 

Training block construction. For training blocks in the experimental groups, a similar 

triplet procedure was used, but instead of using all eight possible triplets, a subset of 

half of these were selected (what Jones & McLaren, 2009, p. 541, term “subsequences”). 

Participants in the Experimental Group were trained on either Same or Different rules, 

which I will describe in turn. The Same rule involved the triplets RRR; RLR; LLL; and 

LRL – all of which followed the same pattern: that the first and third item in the triplet 

is the same. Training blocks for participants in the Same condition were constructed 

using 10 of each of these four triplets, randomly ordered and concatenated to make 120 

with equal likelihood of right or left trials, as well as repeats or alternations.  

 



Incidental human sequence learning 71 

Unlike the pseudorandom blocks, participants could use the sequential contingencies 

between the current trial and the one two trials back to help them predict the response 

stimulus location and therefore their own response. Due to the triplet structure, on every 

third trial in the block participants were able (in principle) to predict the response 

stimulus location based on the trial before the previous trial 100% of the time. It is 

important to note that this structure was not made explicit to participants and trials 

occurred in series with no demarcation of triplets or any special status attributed to third 

trials as participants were required to respond to each trial. Every third trial was one of 

the four trained subsequences. On all other first and second trials in the block of a triplet, 

this sequential contingency occurred by chance – as the arbitrary ordering of the trained 

subsequences meant that all possible triplets occurred across a block. For example, RRR 

followed by LRL and LLL produced the following trial order: RRRLRLLLL. This set 

of nine trials therefore contains, on a trial by trial basis, the following triplets: Trial 1 

and 2 – no triplet (not enough previous trials); Trial 3 – RRR (consistent with Same 

rule); Trial 4 – RRL (inconsistent with Same rule); Trial 5 – RLR (consistent); Trial 6 – 

LRL (consistent); Trial 7 – RLL (inconsistent); Trial 8 – LLL (consistent); and Trial 9 – 

LLL (consistent). Whilst every third trial had a 100% likelihood of the trained 

subsequences, on the first and second trial of each triplet participants had a 50% 

probability of being able to predict the current trial based on the trial two trials previous.  

Overall, this adds up to a partial reinforcement schedule of two out of three trials 

following the Same rule, a 67% probability of being able to predict the current trial as 

the same response location as the one that occurred before the last. 

 

Those participants in the Experimental group and the Different condition were trained 

with the complementary rule, that the current trial could be predicted on 67% of trials as 

the opposite response location to the one that occurred two trials previously. The 

training blocks for these groups were constructed in the same way as for the Same 

condition, with ten of each of the subsequence triplets RRL; RLL; LLR; and LRR 

randomly ordered and concatenated for each block. This produced a 100% sequential 

contingency following the Different rule on every third trial and chance on other trials, 

leading to the same 67% sequential contingency as outlined for the Same group above. 

 

During both training and test, it was therefore possible to compare how participants 

perform in both speed and accuracy of responding to trials that are consistent with those 
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subsequences that they have been trained on, as well as those subsequences that are 

inconsistent with the trained sequential contingencies. However, these Consistent and 

Inconsistent trials did not occur with equal frequency throughout training, hence five 

pseudorandom test blocks containing an equal likelihood of trials that were consistent or 

inconsistent with the trained sequential rule allowed for a matched comparison between 

Experimental and Control groups. Trials in the Control groups were also given dummy 

Consistent or Inconsistent labels, depending on whether participants were assigned the 

Same or Different condition. There were no differences between these two Control 

groups, who received 40 pseudorandom blocks with no sequential contingencies to 

learn, apart from the arbitrary label of each trial as Consistent or Inconsistent that 

depended on whether they were labeled as belonging to the Same or Different dummy 

conditions. 

 

2.2.1.4. Procedure 

After obtaining informed consent, participants were instructed to simply respond as 

quickly and accurately as possible to the stimuli, and that the task was investigating 

how practice had an effect on peoples’ speed and accuracy of responding to simple 

stimuli. No mention was made of any contingencies, relationships, sequences or 

learning. Participants were reminded of these instructions at the beginning of the second 

session. 

 

At the beginning of each block participants were instructed to press any key to start. 

Each trial began with an inter-trial interval of 500 ms where a black background with 

two white circle outlines was presented. The response stimulus (the left or right white 

circle) would then appear on screen until either the participant made a keypress 

response or the trial timed out after 4000 ms from the presentation of the response 

stimulus. RTs were measured from the onset of the response stimulus. If participants 

pressed an incorrect key, or the trial timed out, the computer issued a beep sound.  

 

At the end of each block participants saw a white screen that told them their average RT 

and the percentage of trials on which they made an error for that block. Participants 

were not able to move to the next block for 30 seconds, during which a countdown 

timer was displayed on screen underneath their performance feedback. They were 

instructed to rest for these 30 seconds, with the next block beginning with a ‘press any 
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key’ command so participants could have rested for longer if required. Deviating from 

Jones and McLaren (2009), no monetary incentive was given for speed or accuracy, 

which was a decision based entirely on practical constraints. I hoped that participants 

were incentivised enough to perform quickly in order to minimise the time spent 

performing the task and that their errors would be tempered by the use of the loud beep 

tone when making an error, as well as the presentation of error feedback, which, 

anecdotally, participants seemed very aware of and encouraged them to improve 

throughout.  

 

A short verbal structured interview was given at the end of the second session, in which 

participants were asked about what they had noticed in the experiment. They were 

asked structured questions that led from asking what they thought about the task; to 

whether they noticed anything interesting about the task; to whether they noticed any 

patterns or sequences; and finally whether they could describe or guess at any patterns 

or sequences. Participants were finally debriefed and thanked for their participation.  

 

2.2.2. Results 

Average reaction times (RTs) and proportion of errors were taken on each trial for each 

participant. Trials following an error were excluded from the analysis (Laming, 1979), 

and errors were counted only from those trials where participants made the incorrect 

response (e.g., pressed the ‘x’ key instead of the ‘>’ key) and not for any other incorrect 

key press or trials that timed out (these and the following trial were excluded from the 

analysis). Each trial (apart from the first two in each block) was considered in terms of 

the preceding two trials, and therefore in each block there were eight possible trial types 

corresponding to each possible triplet. For example, every R trial preceded by two R 

trials was classified as a RRR trial. Therefore, depending on the rule underlying trained 

contingencies the eight subsequences can be divided into four consistent and four 

inconsistent subsequences, preceded by RR, RL, LL, or LR. Consistent sequences for 

the Same group are RRR, RLR, LLL, and LRL and inconsistent: RRL, RLL, LLR, and 

LRR; the opposite for the Different rule group. These Consistent and Inconsistent trials 

were arbitrarily assigned in the case of Control groups.  

 

An average RT and error score was calculated for each of these triplets at test. Across 

training a weighted average was calculated, as outlined by Jones & McLaren (2009). As 
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the likelihood of certain trial orders up to three trials prior to the current trial (t – 3) was 

not balanced in the experimental groups this weighted average meant that for each 

subsequence an average was first taken, for example, of each RRR trial preceded by a R 

trial (a RRRR trial) and then separately for RRR trials preceded by a L trial (a LRRR 

trial). The two of these averages were themselves averaged, providing a control for 

sequential effects up to the third order, with effects any more trials previous to this 

producing negligible effects of around one millisecond (Jones & McLaren, 2009). Jones 

& McLaren (2009) found no special status of the third trial (which was 100% consistent 

with the rule) and so no attention was paid to the position (first, second or third) of the 

trial within the triplet structure used to construct the sequences. All 118 usable trials in a 

block (117 trials in a training block because of this weighting procedure) were therefore 

included in the analysis.  

 

The weighted average procedure meant that 16 possible trial quadruplets were produced, 

each of which would occur 7.5 times per block on average if equally likely. The reduced 

likelihood of certain quadruplets of trials coupled with participant errors meant that 

simply analysing trials in one block was likely to result in missing data. Consequently, 

these averages were computed across five blocks (the next smallest factor of 35), which 

we refer to henceforth as Epochs (of which there are seven across training – 35 blocks; 

and one at test – 5 blocks).  

 

Following this weighted average a difference score was calculated, under the 

assumption that those subsequences inconsistent with the trained sequential rule were 

predicted to have higher RTs and errors, hence participants should be slower and less 

accurate on these trials. Therefore, the average RT and proportion of errors for 

Consistent triplets were taken from the Inconsistent average RT and proportion of errors 

for each triplet (e.g. RRL minus RRR; RLL minus RLR; LRR minus LRL; LLR minus 

LLL for the Same rule group. The opposite calculation was made for Difference rule 

groups). A higher difference score in participants RTs or errors indicates better 

performance. This difference score is the dependent measure plotted on the graphs and 

used to analyse performance on the task. These four Subsequences were therefore 

referred to as RR, RL, LL and LR when comparing the two groups, referring to the two 

previous trials experienced before the current trial, which differed depending on the 

Same or Different rule. 



Incidental human sequence learning 75 

Data was analysed first separately for each sequential rule group, with a mixed analysis 

of variance (ANOVA) examining the factors Group (Experimental versus Control); 

Epoch (7 sets of five training blocks); and Subsequence (RR, RL, LL, LR) across 

training, and Group and Subsequence at test. The data was then compared across the 

sequence rule groups, with training analysed by an ANOVA comparing: Group; Rule 

(Same versus Different); Epoch; and Subsequence, with test examined by Group; Rule 

and Subsequence. Both average RTs and proportion of error scores were analysed and 

within-subject main effects and interactions are reported with p values that correct for a 

departure from sphericity (Huynh-Feldt) with the unadjusted degrees of freedom.  

 

2.2.2.1. Same rule learning 

First we take the Same rule group, who were trained on the subsequences RRR, RLR, 

LLL and LRL (these were twice as likely to occur as RRL, RLL, LLR and LRR across 

training). 

 

Evidence of learning. The ANOVA revealed a main effect of Group in both RT 

difference score, F(1,46) = 160, p < .001, MSE = 1757, ηp
2 = .776; and proportion of 

errors, F(1,46) = 8.22, p = .006, MSE = .103, ηp
2 = .152, across training, suggesting that 

the Experimental group performed better on trained subsequences than inconsistent 

subsequences than the Control group, see Figure 2.1. This effect persevered at test in the 

RT difference score, F(1,46) = 49.1, p < .001, MSE = 515, ηp
2 = .571; but not quite in 

the proportion of errors, F(1,46) = 3.23, p = .079, MSE = .019, ηp
2 = .066. The influence 

of a speed-accuracy trade off can be ruled out as the direction of the non-significant 

error difference scores show higher scores for the Experimental group. This suggests 

that we have good evidence that the Experimental group have learned to perform more 

quickly and accurately on trials consistent with the trained rule.  
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Figure 2.1. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on Same 

rule subsequences. Error bars show standard error. Note: the blank between Epochs 4 and 5 

represents the break between the two sessions. 

 

There was a significant effect of Epoch, RT difference score, F(6,276) = 11.8, p < .001, 

MSE = 384, ηp
2 = .204; and proportion of errors, F(6,276) = 9.84, p < .001, MSE = .010, 

ηp
2 = .176. Figure 2.1 demonstrates the increasing trend of interest here, which indicates 

a general practice effect. The Experimental group performed increasingly better than the 

Control group as training went on, as demonstrated by a significant interaction between 

Group and Epoch in both RT difference score, F(6,276) = 9.57, p < .001, MSE = 384, 

ηp
2 = .172; and proportion of errors, F(6,276) = 3.29, p = .012, MSE = .010, ηp

2 = .067. 

This provides evidence for learning, which is not apparent in the first epoch of the 

experiment but clearly develops across training.  

 

Subsequence effects. There was an effect of Subsequence on RT difference scores 

during training, F(3,138) = 4.92, p = .011, MSE = 4865, ηp
2 = .097; and errors, F(3,138) 

= 17.9, p < .001, MSE = .027, ηp
2 = .281. This main effect does not reflect differences in 

learning of the subsequences (dealt with in the following section), and captures 
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differences in performance of the subsequences, regardless of whether participants were 

in Experimental or Control groups. Errors show a preference for responding to the 

consistent triplets RRR and LLL opposed to RRL and LLR, but the RTs show this is a 

result of a speed-accuracy trade-off, with participants performing better in terms of 

speed to the subsequences RLR and LRL compared to RLL and LRR. At test RT 

difference score is not significant, F(3,138) = 1.71, p = .184, MSE = 1079, ηp
2 = .036; 

but proportion of errors show a main effect of Subsequence, F(3,138) = 4.98, p = .009, 

MSE = .012, ηp
2 = .098. Subsequences RRR and LLL were performed more accurately 

compared to RRL and LLR than the other two trained subsequences compared to their 

inconsistent counterparts.  

 

 
Figure 2.2. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for the Same rule, Experimental (filled bars) and 

Control (open bars) groups across the four trained Subsequences. The RRR column, for 

example, shows performance on ‘consistent’ RRR trials subtracted from ‘inconsistent’ RRL 

trials. Error bars show standard error.  

 

Subsequence learning. One thing each subsequence shares in common is a difference 

score of greater than zero, which will be discussed and compared across the Rule 
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conditions in section 2.2.2.3. The main effect of Subsequence suggests only a difference 

in which subsequences are performed better, regardless of whether participants were 

trained on these subsequences or not. It is the interaction between Subsequence and 

Group that can reveal whether any subsequences were learned better than others and 

thus whether there is any difference in subsequence learning (rather than sequential 

effects described in the previous section). However, we found no evidence of such an 

interaction across training, which suggests that there is no evidence that the 

subsequences were learned differently.  

 

Learning of individual subsequences was analysed separately, taking first the 

subsequence RRR. Using ANOVA with Epoch and Group across training and Group at 

test, we find a significant effect of Group in RTs across training, F(1,46) = 30.6, p 

< .001; and at test, F(1,46) = 8.87, p < .001, but not in proportion of errors across 

training, F(1,46) = 3.10, p = .170; nor at test, F(1,46) = 1.67, p = .404. The subsequence 

LLL demonstrated learning across training RT difference score, F(1,46) = 26.0, p 

< .001, and errors, F(1,46) = 7.47, p = .018; as well as in RT difference scores at test, 

F(1,46) = 7.28, p = .019; and error difference at test, F(1,46) = 5.34, p = .046. Therefore, 

there is quite good evidence for the learning of subsequences RRR and LLL (or XXX), 

contrary to the incidental participants in Jones and McLaren (2009). The subsequence 

RLR also showed evidence of learning across training in both RT difference score, 

F(1,46) = 26.1, p < .001, and errors, F(1,46) = 7.82, p = .015. There was also learning 

evident at test in the RTs, F(1,46) = 8.46, p = .011, but not in errors, F(1,46) = .116, p 

> .9. The subsequence LRL was also learned, with a Group effect across training in RT 

difference score, F(1,46) = 19.7, p < .001 but not errors, F(1,46) = 4.28, p = .088. This 

was the same at test, with RT difference scores producing an effect of Group, F(1,46) = 

12.1, p = .002, but not errors, F(1,46) = .714, p = .805. Therefore, all subsequences in 

the Same group showed at least some evidence of learning. 

 

Subsequence showed an interaction with Epoch in RT difference score, F(18,828) = 

3.24, p = .001, MSE = 502, ηp
2 = .066; but not proportion of errors, F(18,828) = 1.17, p 

= .311, MSE = .009, ηp
2 = .025, see Figure 2.3. This Subsequence and Epoch interaction 

showed no evidence of an interaction with Group (RT difference score, F(18,828) 

= .644, p = .806, MSE = 502, ηp
2 = .014; proportion of errors, F(18,828) = .962, p = .470, 

MSE = .009, ηp
2 = .020), suggesting those Subsequence effects observed show no 
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evidence of being effected by training type or time. Across training the RTs show that 

the subsequence effect is numerically reduced, with the faster responding to RLR and 

LRL over inconsistent subsequences compared to RRR and LLL collapsing across the 

second session. 

 

 
Figure 2.3. RT (top panel) and proportion of error (bottom panel) difference scores across 

training Epochs for the Same rule groups across the four trained Subsequences. The RRR data 

points, for example, shows performance on ‘consistent’ RRR trials subtracted from 

‘inconsistent’ RRL trials. The data are collapsed across all 48 participants regardless of 

Experimental or Control groups. Error bars show standard error. 

 

Ceiling effects. The observation of good performance on the subsequences consistent 

with the Same rule regardless of group (difference scores above zero for both 

Experimental and Control groups) leads neatly to the suggestion that participants may 

be performing at ceiling and therefore they cannot perform any better on these 

subsequences, restricting learning. As Jones & McLaren (2009) propose, one can 

examine this possibility through an analysis of inconsistent trials. If we suggest that on 

the consistent RRR trials, the Same group are at ceiling, then the inconsistent RRL trials 
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cannot be at ceiling (in terms of performance) if learning had made these slower and 

less accurate. Therefore, we can assess learning from these inconsistent trials alone, 

with slower and less accurate trials in the Experimental group on these inconsistent 

subsequences providing evidence of learning that cannot be accounted for by a ceiling 

effect.  

 

Bonferroni corrected comparisons were conducted on inconsistent subsequence RTs and 

errors in a mixed ANOVA with Epoch, Subsequence and Group across training and 

Sequence by Group at test. A Group effect (demonstrating learning in the absence of a 

ceiling effect) was demonstrated across training in the RTs, F(1,46) = 5.48, p = .047, 

MSE = 13508, ηp
2 = .106, and errors, F(1,46) = 10.9, p = .004, MSE = .031, ηp

2 = .192, 

as well as at test in the errors, F(1,46) = 17.1, p = .001, MSE = 2346, ηp
2 = .271; but not 

in RTs, F(1,46) = .313, p > .9, MSE = .031, ηp
2 = .007, with the direction of the effect 

showing slower and less accurate responses to inconsistent subsequences in the 

Experimental group compared to the Control group. This suggests that learning was 

evident in the absence of a ceiling effect, as learning is not restricted to consistent 

subsequences that may suffer from a ceiling effect in response speed or accuracy. In 

summary, all of the subsequences were learned and there was no subsequence 

interaction with Group, which suggests that there were no differences in how well these 

subsequences were learned.  

 

2.2.2.2. Different rule learning 

The Different rule group, who in the Experimental group were trained on the 

subsequences RRL, RLL, LLR and LRR (these were twice as likely to occur as RRR, 

RLR, LLL and LRL across training) was analysed in the same way as the Same group 

(as described in section 2.2.2.1). 

 

Evidence of learning. There was a very strong main effect of Group for the Different 

rule participants, in both RT difference score, F(1,46) = 101, p < .001, MSE = 4618, ηp
2 

= .686; and proportion of errors, F(1,46) = 53.4, p < .001, MSE = .056, ηp
2 = .537, see 

Figure 2.4. This remained significant and was a strong effect at test, RT difference score, 

F(1,46) = 51.7, p < .001, MSE = 615, ηp
2 = .529; and proportion of errors, F(1,46) = 

28.2, p < .001, MSE = .009, ηp
2 = .380, providing good evidence of learning of Different 

rule subsequences. 
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Figure 2.4. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on 

Different rule subsequences. Error bars show standard error. Note: the blank between Epochs 4 

and 5 represents the break between the two sessions. 

 

As in the Same rule group, there was both an effect of Epoch, RT difference score, 

F(6,276) = 32.0, p < .001, MSE = 326, ηp
2 = .410; proportion of errors, F(6,276) = 7.73, 

p < .001, MSE = .005, ηp
2 = .144, and an interaction between Epoch and Group, RT 

difference score, F(6,276) = 5.55, p < .001, MSE = 326, ηp
2 = .108; and proportion of 

errors, F(6,276) = 8.02, p < .001, MSE = .005, ηp
2 = .149, across training. Figure 2.4 

demonstrates that the difference between Experimental and Control groups does 

develop somewhat across training, although this learning is apparent from the first 

Epoch, suggesting it is acquired rapidly. 

 

Subsequence effects. There was a main effect of subsequence (see Figure 2.5) across 

training in both RT difference score, F(3,138) = 9.37, p < .001, MSE = 6980, ηp
2 = .169; 

and proportion of errors, F(3,138) = 4.39, p = .021, MSE = .048, ηp
2 = .087, and in 

proportion of errors at test, F(3,138) = 7.15, p < .001, MSE = .009, ηp
2 = .135, but not at 

test in RT difference score, F(3,138) =1.25, p = .293, MSE = 615, ηp
2 = .026. This was 
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expressed as greater accuracy on RLL subsequence compared with the other 

subsequences, but better RT difference scores to RRL and LLR across training. 

Crucially, there was no evidence of an interaction between Subsequence and Group 

across training, RT difference score, F(3,138) = .727, p = .471, MSE = 6980, ηp
2 = .016; 

and proportion of errors, F(3,138) = .197, p = .783, MSE = .048, ηp
2 = .004, nor at test in 

both RT difference score, F(3,138) = 2.39, p = .096, MSE = 615, ηp
2 = .049; and 

proportion of errors, F(3,138) = .678, p = .512, MSE = .009, ηp
2 = .015. This suggests 

that there is no evidence that subsequence effects were different due to training 

experience across subsequences.  

 

 
Figure 2.5. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for the Experimental (filled bars) and Control (open 

bars) Different rule groups across the four trained Subsequences. The RRL column, for example, 

shows performance on ‘consistent’ RRL trials subtracted from ‘inconsistent’ RRR trials. Error 

bars show standard error. 

 

Subsequence learning. The learning of each subsequence was assessed through a series 

of Bonferroni corrected comparisons, taking first the subsequence RRL. Using an 

ANOVA with Epoch and Group across training and Group at test, we find a significant 
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effect of Group in RTs across training, F(1,46) = 18.9, p < .001; and in errors, F(1,46) = 

16.6, p < .001, as well as errors at test, F(1,46) = 5.95 p = .037; but not at test in RTs, 

F(1,46) = 4.78, p = .068. The subsequence LLR demonstrated learning across training 

RT difference score, F(1,46) = 26.4, p < .001, and errors, F(1,46) = 14.4, p = .001; 

again as well as in errors at test, F(1,46) = 5.88, p = .039, but not RTs, F(1,46) =2.65, p  

= .221. This is evidence for learning of the subsequences RRL and LLR. The 

subsequence RLL also showed evidence of learning across training in both RT 

difference score, F(1,46) = 50.0, p < .001, and errors, F(1,46) = 39.2, p < .001. There 

was also learning evident at test in the RTs, F(1,46) = 21.6, p < .001; and errors, F(1,46) 

= 6.94, p < .001. The subsequence LRR was also learned, with a Group effect across 

training in RT difference score, F(1,46) = 21.2, p < .001 and errors, F(1,46) = 28.1, p 

< .001. There was also strong learning at test, with RT difference scores producing an 

effect of Group, F(1,46) = 23.6, p < .001, with errors also showing evidence of learning 

at test, F(1,46) = 17.1, p < .001. Therefore we have strong evidence for the learning of 

the subsequences RRL and LLR (YYX). 

 

The Subsequence effect itself interacted with Epoch in RT difference score again, 

F(18,828) = 3.68, p < .001, MSE = 617, ηp
2 = .074; but not proportion of errors, 

F(18,828) = 1.55, p = .094, MSE = .005, ηp
2 = .032, nor Epoch and Group (RT 

difference score, F(18,828) = .918, p = .529, MSE = 326, ηp
2 = .020; and proportion of 

errors, F(18,828) = 1.19, p = .283, MSE = .005, ηp
2 = .025), suggesting that simply 

performing the task for increasing time had an effect only on the speed of responding to 

subsequences, and that differences in Subsequence learning did not change across 

training. This is shown in Figure 2.6, where we can see that the subsequences speed 

advantage for RRL and LLR, similar to in the Same group, reduces over the second 

session.  
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Figure 2.6. RT (top panel) and proportion of error (bottom panel) difference scores across 

training Epochs for the Same rule groups across the four trained Subsequences. The RRL data 

points, for example, shows performance on ‘consistent’ RRL trials subtracted from ‘inconsistent’ 

RRR trials. The data are collapsed across all 48 participants regardless of Experimental or 

Control groups. Error bars show standard error. 

 

2.2.2.3. Same versus Different rule learning 

When comparing the data across the different Rules there was a strong main effect of 

Rule in both RT difference score, F(1,92) = 469, p < .001, MSE = 3187, ηp
2 = .836; and 

proportion of errors, F(1,92) = 78.1, p < .001, MSE = .079, ηp
2 = .459 across training, as 

well as RT difference score, F(1,92) = 248, p < .001, MSE = 565, ηp
2 = .729; and 

proportion of errors, F(1,92) = 63.6, p < .001, MSE = .007, ηp
2 = .409 at test. The main 

effect of Rule comprises both Experimental and Control groups, and therefore tells us 

little about learning, but about the sequential effects underlying performance. The 

pattern of responding demonstrated by the Control groups is of interest, as this shows a 

difference score of greater than zero for the Same Control group, suggesting that the 

Same rule subsequences were overall performed faster and more accurately than the 
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inconsistent (Different rule subsequences) regardless of training. This main effect 

therefore probably reflects the overall performance preference for subsequences RRR, 

RLR, LLL and LRL.  

 

We can see this overall Rule effect in Figure 2.7, which plots the results from both 

experiments on one graph and highlights the importance of Control groups in 

controlling for sequential effects. It is immediately apparent that the Control groups are 

a reflection of one another around a difference score of zero, with better performance on 

Same rule subsequences compared to Different rule subsequences. Without these 

Controls it would appear that performance on the Same rule was far better than on the 

Different rule in the Experimental groups. However, when comparing the groups across 

their learning through the interaction between Group and Rule across training the 

converse is apparent, proportion of errors, F(1,92) = 4.20, p = .043, MSE = .062, ηp
2 

= .044 and supported by the numerical trend towards better performance on the 

Different rule in the RT difference score, F(1,92) = 3.64, p = .059, MSE = 3856, ηp
2 

= .038; and the numerical direction at test, RT difference score, F(1,92) = .325, p = .570, 

MSE = 1233, ηp
2 = 004; proportion of errors, F(1,92) = 2.30, p = .133, MSE = .007, ηp

2 

= .024. This provides evidence that the two sequential rules were learned differently, 

with the Different rule sequences learned better than the Same rule sequences.  

 

This difference between Rules across Experiment and Control groups interacts with 

Epoch across training, RT difference score, F(6,552) = 3.16, p = .007, MSE = 330, ηp
2 

= .033; but not proportion of errors, F(6,552) = 1.52, p = .184, MSE = .007, ηp
2 = .016, 

suggesting that learning of the two different sequential contingencies progressed at a 

different rate. Indeed, we can see that whilst the learning of the Different rule appears 

rapidly in the RT difference measure but then improves little across training, that the 

Same group learns steadily across the training epochs.  

 

Subsequence effects did not show evidence of an interaction with Group and Rule 

across training: RT difference score, F(3,276) = .397, p = .654, MSE = 5938, ηp
2 = .004; 

proportion of errors, F(3,276) = .529, p = .569, MSE = .037, ηp
2 = .006, nor at test: RT 

difference score, F(3,276) = 1.33, p = .266, MSE = 1095, ηp
2 = .014; proportion of 

errors, F(3,276) = .979, p = .379, MSE = .011, ηp
2 = .011.  
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Figure 2.7. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on Same 

(black lines) and Different (blue lines) rule subsequences. Error bars show standard error. Note: 

the blank between Epochs 4 and 5 represents the break between the two sessions. 

 

2.2.2.4 Post-experimental interview 

The questions in the post-experimental interview suggest that participants were unable 

to verbalise any knowledge about sequences, and were all unable to report the rule. 

Some participants, when asked “Did you notice any patterns or sequences to the 

responses that you were required to make?” did report noticing long strings of repeats or 

patterns of alternations, but these were not restricted to the Same Experimental group. 

Across each of the Experimental and Control groups, participants were just as likely to 

report noticing repeating trials, but they were also just as likely to report that they 

thought the sequence was random. A small number of participants reported trying to 

count or investigate to see whether there was a sequence, even though none had been 

mentioned, but reported that this made them slower and worse at the task so they 

quickly gave up on doing this. There were no scaled responses to how much people 

believed there was a sequence (e.g. Curran, 1997) or how confident they were in these 

judgments (Dienes & Berry, 1997) therefore no further analysis was carried out.  
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2.2.3. Discussion 

Experiment 1 provided evidence that humans are able to learn both Same and Different 

rules under incidental conditions. Whilst both groups learned the trained sequential 

contingencies, the Different rule produced more learning than the Same rule. The 

Experimental Different group learned more rapidly than the Same group and this 

learning was more robust, evidenced by the Group interaction apparent across training. 

The Group effect (the measure of learning) itself survived at test in the Different rule 

case for errors and RTs, but only in RTs in the Same group.  

 

This supports the predictions of the associative account as the Same group involved the 

subsequence XXX (both RRR and LLL); which was shown in previous work to be more 

difficult to learn due to a blocking effect (Jones & McLaren, 2009). Evidence of an 

Experimental over Control group advantage across RTs in training suggests, however, 

that participants were at least able to learn the subsequences RRR and LLL in the Same 

rule group reported here, unlike Jones & McLaren (2009). The associative account 

predicts better learning of YXY compared to XXX, which was not found here. Further 

to this, there was evidence for learning of the subsequences RLL and LRR in the 

Different rule condition, which is contrary to the findings of Jones & McLaren (2009), 

that subsequences ending in a repetition demonstrated little or no learning under 

incidental conditions. Indeed, the greatest learning under incidental conditions in 

Experiment 1 was shown for subsequence XYY (RLL and LRR). 

 

That these subsequence learning effects were not identical to Jones and McLaren (2009) 

provides evidence that humans are not simply better at learning some forms of 

subsequence, which might be proposed by some instance or chunking based account of 

learning. The difference between the two experiments is in the structure of the trained 

sequences, as in Experiment 1 participants were trained to predict t from t – 2, whereas 

the exclusive-or rule in Jones & McLaren (2009) training participants that t was 

predicted by the combination of both t – 1 and t – 2. This suggests that a difficulty in 

learning subsequences XXX and XYY was not restricted to these subsequences and 

their trial order, but also to how this related to the structure of the underlying trained 

contingency.  
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Support is therefore provided for an associative account of human learning, as altering 

the relationship between subsequence trial-by-trial order and the trained sequential 

contingencies produced a different pattern of human learning. It is possible that the 

exclusive-or rule in Jones and McLaren (2009) may have been simply more difficult to 

learn. However, Jones and McLaren (2009) trained participants for over twice the 

amount of trials as Experiment 1, which seems a convincing demonstration of the lack 

of XXX learning in the exclusive-or case rather than this simply being more difficult to 

learn; or not having enough time to emerge. If one reduced the subsequences in the 

Experiment to their structures, for example in the Same group: RRR and LLL both 

involve three of the same response (or two repeats between first and second order 

transitions) and RLR and LRL both involve two alternations; then the Same and 

Different group were only trained on two different subsequence transition structures. 

Therefore Jones & McLaren’s (2009) participants could be argued to have had a more 

difficult task and given a limited capacity for learning subsequence structures been 

unable to learn one or two of the subsequences. This suggestion, however, relies on an 

instance based account that suggests chunks are encoded on the basis of structure and 

not precise locations (left or right), which somewhat undermines the instance-based 

premise on which such a theory is built. 

 

It is also possible of course that the nature of the two training contingencies led to a 

difference in explicit strategy or verbalisable knowledge, as repeating chunks were 

more likely in the Same group of Experiment 1. In the exclusive-or case (Jones & 

McLaren, 2009) participants experienced one of either a RRR or LLL trial (as a third 

trial) on one in four trials in training blocks. Participants in the Same group experienced 

either a RRR or LLL as a third trial on one in two trials, meaning that they could have 

noticed these repeating chunks more easily and therefore some verbalisable learning of 

these subsequences is produced. However, this would provide support for the alterative 

result, that the Same rule would produce more learning (unless one assumes that a 

conscious strategy impairs learning, which in the case of Jones & McLaren, 2009 

occurred for all subsequences but XXX). 

 

The subsequence effects observed clearly and robustly demonstrated that participants 

preferred to respond to trials that have been preceded either by two of the same response 

location (e.g. RRR) as well as two alternations (e.g. RLR). These sequential effects are 
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unaffected by training or experience with the task and seem to occur either very rapidly 

or may be preexisting preferences that remain robust across the task. Performance is 

worse for the complementary Different rule subsequences, RRL and RLL (as well as 

LLR and LRR). The advantage for simply responding to Same rule subsequences could 

restrict learning of these subsequences due to ceiling performance, however a Group 

effect was demonstrated in inconsistent trials alone, suggesting this that cannot explain 

the Same-Different rule learning difference.  

 

One final thing to note is that the sequential effects observed in the Control groups of 

Experiment 1 do not match those subsequence sequential effects observed in Jones & 

McLaren (2009), whose control group performance followed the pattern (from preferred 

to least preferred): XXX, XYY, YXY, YYX, although XYY and YXY were relatively 

close around zero on their RT difference scores. The sequential effects observed in the 

Control groups in Experiment 1 suffer somewhat from speed-accuracy trade-off and in 

that case are more difficult to interpret, however, difference scores are always above 

zero for the Control performance on XXX and YXY subsequences, whereas XYY and 

YYX subsequence performance is always below zero. One explanation for this 

difference could be the length of training, as one could propose that after five sessions 

those participants trained with pseudorandom sequences would eventually begin to 

learn that all subsequences are equally likely, however Jones & McLaren (2009) do not 

provide evidence of the progression of learning nor sequential effects across training to 

analyse this possibility. The control groups in both studies were essentially identical but 

for training length and the presence of a performance reward, which could have 

influenced the speed and accuracy of responding in Jones and McLaren’s (2009) study. 

Participants were motivated to perform as quickly and accurately as possible, which 

suggests sequential effects may have been influenced by the speed of responding to 

stimuli (e.g. Frensch, 2003; Soetens, Boer, & Huetings, 1985).  

 

Altogether, this experiment provides evidence that participants can learn sequences 

based on a t – 2 probabilistic contingency under incidental conditions. Whilst these 

rules do not differ in contingency nor predictive trial order; they are nevertheless 

learned differently by participants in this experiment. Participants learn more about 

sequences that follow a rule whereby t is twice as likely to be different to t – 2 

(Different rule); over learning that t is twice as likely to be the same as t – 2 (Same rule). 
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The difference in learning seems unlikely to be explained by a rule-based account of 

learning, and suggests that, as observed by Jones and McLaren (2009), participants may 

be learning sequential contingencies associatively and therefore trial-by-trial 

contingencies can interfere with certain subsequence learning.  

  

2.3. Experiment 2: Intentional sequence learning 

Experiment 1 demonstrated some learning of the subsequence XXX compared to the 

lack of learning evident for this subsequence in Jones and McLaren (2009). This may be 

due the reduced cue competition between transient trial-by-trial contingencies and 

sequential contingences. As Experiment 1 uses Same and Different rules to train 

participants, these depend only on trial t – 2, and trial t – 1 is no longer important for the 

sequential learning as it was in Jones and McLaren’s (2009) study. The subsequence 

XXX is therefore not a marker for incidental learning, as impaired implicit learning of 

this subsequence is dependent on the trained sequential rule itself. The second study in 

this thesis aimed to investigate how participants learned these rules and subsequences 

under intentional conditions, whereby they were instructed to actively search for and 

use sequences, patterns or rules that they noticed and were explicitly told that there were 

contingencies in the task. Participants in Control groups were told the same instructions 

to control for the effect that the rule-based hypothesis testing may have on the 

sequential effects themselves. As Jones & McLaren (2009) found that participants were 

able to notice the subsequence XXX and learn about this explicitly, I expected that 

participants in the Same group would experience more learning under intentional 

conditions, possibly reversing the direction of the rule learning interaction.   

 

2.3.1. Method 

2.3.1.1. Participants 

96 participants (aged between 18 and 35 [M = 21.1]; 73 female and 23 male) were 

recruited from undergraduate students at the University of Exeter and were awarded £10 

for participation. Participants provided informed consent prior to taking part in two 

sessions lasting roughly one hour each. Participants were randomly allocated into one of 

the four possible conditions. 
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2.3.1.2. Materials and Stimuli 

The materials and stimuli were the same as for Experiment 1 (see section 2.2.1.2). 

 

2.3.1.3. Design 

The experiment designed followed that of Experiment 1 exactly (see section 2.2.1.3). 

 

2.3.1.4. Procedure 

After obtaining informed consent, participants were instructed to respond as quickly and 

accurately as possible to the stimuli, but also that the task was made up of sequences of 

trials that participants could use to improve their performance. Participants were 

explicitly made aware that whilst we would be recording their speed and accuracy, that 

the task may contain sequences that might be difficult to notice, but that they should try 

to discover it and use these sequences to help them make predictions about where the 

trial would appear next. Participants were reminded of these instructions at the 

beginning of the second session. Each trial followed the same sequence as outlined in 

the procedure for Experiment 1 (see section 2.2.1.4).  

 

As in Experiment 1, a short verbal structured interview was given at the end of the 

second session, in which participants were asked about what sequences they had noticed 

in the experiment. They were asked the same structured questions as the incidental 

group, that led from asking what they thought about the task; to whether they noticed 

anything interesting about the task; to whether they noticed any patterns or sequences; 

and finally whether they could describe or guess at any patterns or sequences. 

Participants were debriefed and thanked for their participation at the end.  

 

2.3.2. Results 

Weighted averages were calculated and analysed for each subsequence as for the 

incidental participants in Experiment 1 and separate analyses for Same and Different 

sequential rules are given first, before a comparison between the two is presented. 

 

2.3.2.1. Same rule learning 

An ANOVA investigated Epoch; Group (Experimental or Control); and Subsequence 

(RRR, RLR, LLL, LRL) across training and Group and Subsequence at test.  
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Evidence of learning. The main effect of Group (see Figure 2.8) was apparent across 

training, RT difference score, F(1,46) = 94.5, p < .001, MSE = 3256, ηp
2 = .673; 

proportion of errors, F(1,46) = 27.4, p < .001, MSE = .054, ηp
2 = .373, and in RT 

difference score at test, F(1,46) = 19.3, p < .013, MSE = 1759, ηp
2 = .295; and 

proportion of errors, F(1,46) = 9.00, p = .004, MSE = .006, ηp
2 = .164. Taken together, 

this provides evidence that the Intentional participants learned the Same rule sequences, 

which carried through to test. 

 

 
Figure 2.8. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on Same 

rule subsequences. Error bars show standard error. Note: the blank between Epochs 4 and 5 

represents the break between the two sessions. 

 

There was little evidence that the main effect of Group interacted with Epoch across 

training in either RT difference score, F(6,276) = 2.22, p = .067, MSE = 963, ηp
2 = .046; 

and proportion of errors, F(6,276) = 1.93, p = .092, MSE = .007, ηp
2 = .040. Whilst the 

Experimental group had an advantage across training, this was evident from the first 

Epoch and only numerically increased with more training. Epoch itself had a main 

effect in both RT difference score, F(6,276) = 6.02, p < .001, MSE = 963, ηp
2 = .116; 
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and proportion of errors, F(6,276) = 6.34, p = .015, MSE = .046, ηp
2 = .121. This 

suggests that training had no differential effect on Experimental and Control groups, 

and therefore that the difference between them was relatively stable throughout.  

Subsequence effects. The main effect of Subsequence was significant in the RT 

difference score across training, F(3,138) = 3.88, p = .029, MSE = 7267, ηp
2 = .078; and 

in the proportion of errors, F(3,138) = 16.1, p < .001, MSE = .020, ηp
2 = 259, see Figure 

2.9.  

 

 
Figure 2.9. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for the Experimental (filled bars) and Control (open 

bars) Same rule groups across the four trained Subsequences. The RRR column, for example, 

shows performance on ‘consistent’ RRR trials subtracted from ‘inconsistent’ RRL trials. Error 

bars show standard error. 

 

There was also a significant main effect in both RT difference score, F(3,138) = 3.85, p 

= .022, MSE = 1559, ηp
2 = .077 and proportion of error difference score, F(3,138) = 

11.8, p < .001, MSE = .005, ηp
2 = .204 at test. This Subsequence effect did not show 

evidence for an interaction with Group at training: RT difference score, F(3,138) = .363, 

p = .672, MSE = 7276, ηp
2 = .008; proportion of errors, F(3,138) = .688, p = .508, MSE 
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= .020, ηp
2 = .015, or at test: RT difference score, F(3,138) = .524, p = .605, MSE = 

1559, ηp
2 = .011; proportion of errors, F(3,138) = .178, p = .908, MSE =  .005, ηp

2 

= .004. 

 

This suggests that the Subsequence effect itself occurred regardless of whether 

participants were trained or not, and in the RTs across training and test followed the 

pattern observed in Experiment 1, that subsequences RLR is performed quicker 

compared to RRR and LRL compared to LLL, however both RRR and RLR produce 

faster responses than LLL and LRL. Again, as with Experiment 1 this takes the form of 

a speed-accuracy trade off, as the non-significant pattern of responding to subsequences 

in the errors across training show a more accurate responding to the RRR and LLL 

subsequences compared to their inconsistent counterparts than RLR and LRL, with 

higher accuracy to LRL and LLL subsequences compared to RLR and RRR 

subsequences. 

 

Intentional participants demonstrated an interaction between Epoch and Subsequence, 

RT difference score, F(18,828) = 2.91, p = .004, MSE = 1255, ηp
2 = .060; and 

proportion of errors, F(18,828) = 1.88, p = .030, MSE = .005, ηp
2 = .039, see Figure 2.10. 

These variations across block reflect the opposite pattern to Experiment 1 as the 

subsequence effects, rather than collapsing across the experiment by the second session, 

seem to increase across training and may reflect active hypothesis testing. Indeed, 

greater performance to RRR and LLL begins to emerge in both measures towards the 

end of training, suggesting greater attention and performance emerges to these 

subsequences. The interaction did not, however, provide evidence of an interaction with 

Group, RT difference score, F(18,828) = .781, p = .620, MSE = 1255, ηp
2 = .017; and 

proportion of errors, F(18,828) = .429, p = .959, MSE = .005, ηp
2 = .009, suggesting that 

any Subsequence variation across Epochs has no influence on learning.  
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Figure 2.10. RT (top panel) and proportion of error (bottom panel) difference scores across 

training Epochs for the Same rule groups across the four trained Subsequences. The RRR data 

points, for example, shows performance on ‘consistent’ RRR trials subtracted from 

‘inconsistent’ RRL trials. The data are collapsed across all 48 participants regardless of 

Experimental or Control groups. Error bars show standard error. 

 

Subsequence learning. As for Experiment 1, a series of Bonferroni corrected 

comparisons were conducted on each subsequence taking first the subsequence RRR. 

Using an ANOVA with Epoch and Group across training and Location and Group at 

test, a main effect of Group was found across training in RTs, F(1,46) = 19.8, p < .001, 

and proportion of errors, F(1,46) = 13.8, p = .001. This was supported by learning at test 

in RT difference scores, F(1,46) = 6.25, p = .032, but not proportion of errors, F(1,46) = 

1.07, p = .614. The subsequence LLL also demonstrated learning across training in both 

RTs, F(1,46) = 19.5, p < .001, and errors, F(1,46) = 20.2, p < .001; but not quite in test 

RT difference scores, F(1,46) = 4.68, p = .071; nor errors, F(1,46) = 2.45, p = .249. This 

provides some evidence of learning the subsequences RRR and LLL (XXX). There was, 

however, also learning of the subsequences RLR and LRL. RLR showed a Group effect 
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across training RTs, F(1,46) = 22.4, p < .001, and errors, F(1,46) = 15.5, p = .001, as 

well as test RTs, F(1,46) = 16.6, p < .001, but not errors, F(1,46) = 5.18, p = .055. The 

subsequence LRL also showed evidence of learning across both training measures: RTs, 

F(1,46) = 15.9, p < .001; errors, F(1,46) = 14.1, p = .001, as well as in RTs at test, 

F(1,46) = 6.46, p = .029, but not test error difference scores, F(1,46) = 4.89, p = .064. 

This suggests that participants learned the subsequences RLR and LRL (YXY) as well 

as the subsequence XXX, in contrast to the intentional participants in Jones and 

McLaren’s (2009) experiment, who learned only XXX.  

 

Ceiling effects. As suggested for the incidental Experiment 1 participants, performance 

could have been restricted by the subsequence effects experienced in the Same group, as 

responding to subsequences RRR, RLR, LLL, LRL meant that participants may have 

been responding at ceiling. RTs and errors measures may have been unable to show a 

learning effect as participants may have been responding as quickly and accurately as 

possible to consistent subsequences. Taking the inconsistent trials only (which are 

expected to be slower and less accurate for the Experimental group, and therefore do not 

suffer from this ceiling issue) learning was observed in the Same group at test in RTs, 

F(1,46) = 5.59, p = .045, MSE = 4782, ηp
2 = .108 and errors, F(1,46) = 9.00, p = .009, 

MSE = .013, ηp
2 = .164 (Bonferroni corrected for multiple comparisons). This suggests 

that participants demonstrate learning regardless of a possible ceiling-effect. However, 

again in this study there is no Subsequence by Group interaction, as all subsequences 

are learned and under Intentional conditions participants again do not learn these 

subsequences differently. 

 

2.3.2.2. Different rule learning 

An ANOVA investigated Epoch; Group (Experimental or Control); and Subsequence 

(RRL, RLL, LLR, LRR) across training and Group and Subsequence at test.  

 

Evidence of learning. The Different rule learning condition showed strong evidence of 

learning across both training: RT difference score, F(1,46) = 136, p < .001, MSE = 4457, 

ηp
2 = .747; proportion of errors, F(1,46) = 56.4, p < .001, MSE = .071, ηp

2 = .551, and 

test, RT difference score, F(1,46) = 61.9, p < .001, MSE = 708, ηp
2 = .574; and 

proportion of errors, F(1,46) = 33.2, p < .001, MSE = .008, ηp
2 = .419. This provides 

strong evidence of learning (see Figure 2.11), with the Experimental group performing 
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significantly better than the Control group. Similar to the Incidental group in 

Experiment 1 there was an interaction with Epoch, RT difference score, F(6,276) = 8.69, 

p < .001, MSE = 482, ηp
2 = .159; and proportion of errors, F(6,276) = 8.90, p < .001, 

MSE = .007, ηp
2 = .162. The learning therefore showed evidence that it developed across 

the experiment, and the Different rule group shows evidence that this learning was 

acquired rapidly, with a difference between Experimental and Control groups apparent 

from the first Epoch. 

 

 
Figure 2.11. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on 

Different rule subsequences. Error bars show standard error. Note: the blank between Epochs 4 

and 5 represents the break between the two sessions and explains the dip in performance 

observed between the two blocks. 

 

Subsequence effects. The Intentional Different group showed evidence of a 

Subsequence main effect across training in errors, F(3,138) = 6.55, p = .004, MSE 

= .045, MSE =, ηp
2 = .125; but not RTs, F(3,138) = .405, p = .601, MSE = 12351, ηp

2 

= .009, and in both the errors at test, F(3,138) = 15.5, p < .001, MSE = .014, ηp
2 = .252; 

and RT difference score, F(3,138) = 3.69, p = .037, MSE = 1764, ηp
2 = .074, see Figure 
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2.12. Therefore, regardless of whether participants were trained or not, across training 

and test they showed a performance benefit for the subsequences RLL and LRR over 

RRL and LLR in errors, and the opposite effect (a speed-accuracy trade off) in RTs, 

with faster performance to the subsequences RRL and LLR.  

 

 
Figure 2.12. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for the Experimental (filled bars) and Control (open 

bars) Different rule groups across the four trained Subsequences. The RRL column, for example, 

shows performance on ‘consistent’ RRL trials subtracted from ‘inconsistent’ RRR trials. Error 

bars show standard error. 

 

There was little evidence for an interaction between Subsequence and Group at training, 

RT difference score, F(3,138) = .364, p = .626, MSE = 12351, ηp
2 = .008; proportion of 

errors, F(3,138) = 2.52, p = .096, MSE = .045, ηp
2 = .052; although this trend in errors 

suggests that the relative learning of LRR in Experimental compared to Control groups 

(and to some extent RLL) is approaching significance and somewhat poorer than for 

RRL and LLR subsequences. There was very little evidence for an interaction at test: 

RT difference score, F(3,138) = .843, p = .415, MSE = 1764, ηp
2 = .018; proportion of 

errors, F(3,138) = .736, p = .458, MSE = .014, ηp
2 = .016. The Subsequence main effect 



Incidental human sequence learning 99 

interacted with Epoch (see Figure 2.13) in errors, F(18,828) = 2.35, p = .046, MSE 

= .025, ηp
2 = .049; but not RT difference scores, F(18,828) = 2.00, p = .055, MSE = 

1625, ηp
2 = .042; nor with Epoch and Group, RT difference score, F(18,828) = .633, p 

= .726, MSE = 1625, ηp
2 = .014; and proportion of errors, F(18,828) = .679, p = .629, 

MSE = .025, ηp
2 = .015. This suggests that these effects may not have been based on 

learning, and again as with the Same group perhaps reflect the changing attention or 

hypothesis testing of the Intentional participants, regardless of the information available 

to them, as performance on both RT and error measures increases for the subsequences 

RLL and LRR across training, regardless of the training that participants received.  

 

 
Figure 2.13. RT (top panel) and proportion of error (bottom panel) difference scores across 

training Epochs for the Different rule groups across the four trained Subsequences. The RRL 

data points, for example, shows performance on ‘consistent’ RRL trials subtracted from 

‘inconsistent’ RRR trials. The data are collapsed across all 48 participants regardless of 

Experimental or Control groups. Error bars show standard error. 
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Subsequence learning. Again using a series of Bonferroni corrected comparisons the 

subsequences were taken alone to investigate which of these were successfully learned. 

An ANOVA with Epoch and Group across training and Location and Group at test 

demonstrates a main effect of learning across training for the subsequence RRL, RT 

difference score, F(1,46) = 30.5, p < .001; proportion of errors, F(1,46) = 42.3, p < .001, 

and at test in both RTs, F(1,46) = 9.58, p = .007, and proportion of errors, F(1,46) = 

15.6, p = .001. The LLR subsequence was also learned well, with a main effect of group 

across training in both RT, F(1,46) = 26.1, p < .001, and error difference scores, F(1,46) 

= 39.7, p < .001; as well as at test in RTs, F(1,46) = 6.41, p = .030, and errors, F(1,46) = 

13.6, p = .001. Therefore, there is strong evidence for learning of the subsequence YYX, 

which is also the case for XYY, as there is evidence of learning across training in both 

measures for RLL: in RTs, F(1,46) = 42.7, p < .001, and errors, F(1,46) = 18.5, p 

< .001; as well as at test in both RTs, F(1,46) = 17.6, p < .001, and errors, F(1,46) = 

7.16, p < .001. Subsequence LRR was also learned well, with evidence from training 

RTs, F(1,46) = 16.9, p < .001, and errors, F(1,46) = 15.5, p < .001, as well as test RTs, 

F(1,46) = 15.7, p < .001, providing support for learning. Test errors, F(1,46) = 2.78, p 

= .204, do not reach significance for the subsequence LRR. Therefore, contrary to the 

findings of Jones and McLaren (2009), under intentional conditions participants seemed 

to have no trouble in learning the subsequences RRL, RLL, LLR, and LRR.  

 

2.3.2.3. Same versus Different rule learning 

I begin with an ANOVA comparing Epoch; Group; Rule and Subsequence across 

training and Group; Rule and Subsequence at test. All p values reported are corrected 

for multiple comparisons using a Bonferroni adjustment. There was a significant effect 

of Rule across training, RT difference score, F(1,92) = 329, p < .001, MSE = 3856, ηp
2 

= .781; proportion of errors, F(1,92) = 52.8, p < .001, MSE = .062, ηp
2 = .365, and test, 

RT difference score, F(1,92) = 123, p < .001, MSE =  1233, ηp
2 = .573; proportion of 

errors, F(1,92) = 60.7, p < .001, MSE = .007, ηp
2 = .398. This demonstrates the very 

strong effect of subsequences, as this main effect occurred regardless of training and 

reflects the benefit of simply performing subsequences RRR, RLR, LLL and LRL over 

RRL, RLL, LLR, LRR. Rule also interacts with Group across training, RT difference 

score, F(1,92) = 6.46, p = .013, MSE = 3856, ηp
2 = .066; and proportion of errors, 

F(1,92) = 4.96, p = .028, MSE = .062, ηp
2 = .051; and at test in proportion of errors, 

F(1,92) = 5.63, p = .020, MSE = .007, ηp
2 = .058, but not RT difference score, F(1,92) 
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= .256, p = .614, MSE = 1233, ηp
2 = .003. Figure 2.14 compares the performance of both 

Rule conditions across training and test, which shows that the Different rule is learned 

better than the Same rule. 

 

 
Figure 2.14. RT (top panel) and proportion of error (bottom panel) difference scores across 

training (left panel) and test (right panel) for Experimental and Control groups trained on Same 

(black lines) and Different (blue lines) rule subsequences. Error bars show standard error. Note: 

the blank between Epochs 4 and 5 represents the break between the two sessions. 

 

Whilst the Intentional conditions provided evidence for a difference in learning between 

the two Rule conditions under Intentional conditions, this is not qualitatively different 

from the learning observed in Experiment 1. Rule interacts with Subsequence in errors 

across training, F(3,276) = 19.6, p < .001, MSE = .032, ηp
2 = .175; but not RTs, 

F(3,276) = 2.98, p = .065, MSE = 9622, ηp
2 = .031. There was also an interaction at test 

in both RT difference score, F(3,276) = 6.58, p = .002, MSE = 1595, ηp
2 = .067; and 

proportion of errors, F(3,276) = 26.4 p < .001, MSE = .009, ηp
2 = .223. This, however, 

simply reflects the sequential effects observed in Experiment 1, that participants 

preferred responding to Same rule subsequences and struggled most with Different rule 

subsequences. These effects showed little evidence of being affected by Group: training, 
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RT difference score, F(3,276) = .396, p = .625, MSE = 9622, ηp
2 = .004; and proportion 

of errors, F(3,276) = .960, p = .377, MSE = .032, ηp
2 = .010; test, RT difference score, 

F(3,276) = .848, p = .428, MSE = 1595, ηp
2 = .009; and proportion of errors, F(3,276) 

= .829, p = .443, MSE = .009, ηp
2 = .009, suggesting that there was no evidence for the 

influence of learning on these preferences. Similarly, the interaction across training 

between Epoch, Rule and Subsequence, RT difference score, F(18,1656) = 4.07, p 

< .001, MSE = 1094, ηp
2 = .042; and proportion of errors, F(18,1656) = 2.78, p = .008, 

MSE = .013, ηp
2 = .029, was not itself affected by Group and therefore is not related to 

learning, RT difference score, F(18,1656) = .831, p = .595, MSE = 1094, ηp
2 = .009; and 

proportion of errors, F(18,1656) = .508, p = .826, MSE = .013, ηp
2 = .005.  

 

2.3.2.4. Post-experimental interview 

When asked the same questions as the incidental participants in Experiment 1 

participants in Experiment 2 gave surprisingly similar answers, even though they were 

informed about the presence of sequences. No participants reported being able to work 

out the rule, and reported that they thought the sequence was random or not with a 

similar frequency across the Experimental (19 reported that they thought there were no 

sequences) and Control group (22 participants reported that they thought there were no 

sequences). Similar to Experiment 1, participants reported noticing strings of repeats 

and alternations regardless of their group or rule, and reported either giving up on 

looking for sequences as they thought they did better by not concentrating; or that it was 

simply too hard to find a pattern and therefore they were led to assume the stimuli were 

random.  

 

2.3.3. Discussion 

Experiment 2 provided evidence of learning of both Same and Different rules under 

intentional conditions. As with Experiment 1, this learning was greater and more robust 

for the Different rule group and there was no apparent qualitative difference between 

Incidental and Intentional conditions. The prediction regarding intentional attention 

towards and consequently greater learning of the subsequence XXX (RRR and LLL, 

both Same rule subsequences) suggested that those participants using intentional rules 

would learn more in the Same rule group did not manifest in greater learning compared 

to the Different rule group.  
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That participants could learn RLR and LRL subsequences under intentional conditions 

(and as well as RRR and LLL) in this experiment when they did not in Jones and 

McLaren’s (2009) study is interesting. Why this difference between participants in 

Jones & McLaren’s (2009) intentional condition and Experiment 2? One explanation 

could be a ceiling effect as participants may be already responding as quickly and 

accurately as they can on the RRR and LLL subsequences, however an analysis of the 

inconsistent trials showed this not to be the case. Both experiments lasted for two 

sessions, however Jones & McLaren (2009) incorporated a pre-training test phase, 

where participants experienced pseudorandom control blocks before beginning their 

training. They were not told that these blocks were pseudo-random and simply 

instructed as participants were in the case of Experiment 2. Therefore, participants in 

Jones & McLaren’s (2009) intentional group would have been both: trained for fewer 

blocks in total; and would have experienced a change between pseudorandom blocks 

and those with sequential contingencies. It seems unlikely that a shorter length of 

training would produce greater learning of subsequence XXX, but the alternative 

proposal regarding 10 blocks of pseudorandom pre-training may provide an explanation 

of this difference, as Jones & McLaren (2009) did not find evidence of differential 

subsequence learning at test. This suggests that the post-training pseudorandom blocks 

led to some unlearning or withholding of information regarding subsequence learning. It 

follows then, that under intentional conditions one would expect a change in trial 

structure to produce qualitative differences in strategy and performance. If this is the 

case, it seems possible that experiencing pseudorandom trials before training produces 

an effect when these trials begin to follow a sequential structure. The sudden 

appearance after the second Epoch of more strings of repeats would perhaps have 

attracted more attention than in the case of Experiment 2, where contingencies were in 

play from the first instance in Experimental groups.  

 

There was no qualitative difference between learning in Different rule groups under 

intentional and incidental conditions, with all subsequences learned well in both cases. 

This provides some evidence that the instructional manipulation may not have had a 

huge effect on the learning processes involved. Jones & McLaren (2009, p. 546) 

reduced the six-session incidental length to two due to the probability that “participants 

would find it difficult to maintain hypothesis testing” for this length of time. Jiménez & 

Méndez (1999) suggest that participants can still demonstrate sequence learning 



104  Chapter 2: Sequence learning and effects 

regardless of whether participants experience divided attention, which may provide 

some evidence that regardless of whether participants attempt to work out subsequences, 

that the cognitive strategies they may be using might not impact on the underlying 

learning processes that seem extraordinarily similar to those observed under incidental 

conditions.  

 

The possibility that participants simply give up on hypothesis-testing suggests that 

using intentional participants in order to understand the qualitative differences between 

the two systems is not methodologically ideal, as participants (in either condition) do 

not necessarily follow these instructions. Indeed, many participants in the intentional 

condition reported that they found it easier to ‘just do’ the task, or that they gave up 

looking for sequences or patterns as they found it too difficult. Conversely, some 

participants under incidental conditions reported that they noticed or even looked for 

subsequences. It has been suggested by a variety of authors that these self-reports of 

strategies provide a post-hoc way to analyse participants (e.g. Curran & Keele, 1993), 

however this has a number of issues of control, as well as sensitivity of the information, 

which may have been the case for participants who did not report doing the task in some 

other way than instructed. A better, on-line measure of hypothesis testing could be 

derived from eye-tracking (e.g. Marcus, Karatekin, & Markiewicz, 2006) or using ERP 

markers (e.g. Fu, Bin, Dienes, Fu, & Gao, 2013) however this requires assumptions 

regarding the biopsychological measures and would still require an instructional 

manipulation (which would itself be checked by these assumed markers of hypothesis-

testing).  

 

The best evidence provided in Experiment 2 for the occurrence of conscious, rule-based, 

hypothesis testing is the changing subsequence effects across the experiment, regardless 

of whether participants were in Experimental or Control groups. This suggests that 

some shift in performance across the experiment occurs to subsequences, regardless of 

whether learning is occurring, which I suggest is explained by attentional changes to 

patterns observed in the data throughout training. That these, possibly intentional, 

processes do not interact with Group, suggests the evidence of learning that we have in 

Experiment 2 occurs outside of awareness. Whilst participants may engage with some 

hypothesis testing, this apparently has no effect on their learning.  
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Indeed, the results of the post-experimental interview reveal that participants made very 

little progress in discovering any rules underlying the task, and consequently were 

inclined to give up on their search. No participants could report the rule, or any element 

of the rule, which provides a strong indication that these Intentional participants did not 

possess explicit knowledge about the sequences. Therefore, in summary participants in 

the Intentional condition did not possess explicit knowledge. They may have been 

approaching the task differently, and attempting to uncover or search for patterns 

however it seems as if they were unable to find any patterns or rules as evidenced by the 

absence of a difference between the two conditions and the lack of explicit sequence 

knowledge exhibited by the Intentional group even after two hours of experience with 

these sequences.  

 

2.4. Comparing incidental and intentional learning  

Comparing the Incidental (Experiment 1) and Intentional (Experiment 2) experiments in 

a basic and qualitative way, as suggested by Jones & McLaren (2009) has already been 

discussed above to some extent. The two experiments do not provide evidence of a 

learning difference, as all groups learn all subsequences to some extent and the 

Different rule is learned more than the Same rule, regardless of instructions. Indeed the 

similarity between the results of the two conditions seems to suggest that participants 

under both sets of instructions learned in the same way. That this learning was entirely 

propositional, however, seems unlikely, as Experiment 2 produced evidence of 

sequential effects that differed across training, suggesting that participants shifted their 

performance across the task depending on some attention to or focus on different 

patterns or subsequence elements. Further to this, participants did not follow in either 

Experiment 1 or 2 the intentional subsequence learning observed in Jones & McLaren 

(2009) and instead both produced effects better reconciled with those produced by an 

associative model. How then are we to consider these results? 

 

2.4.1. Comparing incidental and intentional conditions 

An ANOVA with a Bonferroni correction for multiple comparisons was conducted to 

compare learning of the Same rule and, separately,  learning of the Different rule across 

the two instruction conditions. Training data was analysed by Block (7); Group 

(Experimental vs Control); Subsequence; and Condition (Incidental vs Intentional).  
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There was no interaction between Condition and Group for the Same rule nor 

interaction between Condition and any other variable, providing support for the earlier 

suggestion that participants were performing the task similarly regardless of task 

instructions. The Different rule was also not learned differently by participants under 

intentional conditions and no interaction occurred between Condition and any other 

variable. What these results tell us about functionally separable learning processes is 

unclear. Jones & McLaren (2009) found that intentional learning followed the opposite 

pattern to incidental participants, which suggests that a qualitatively different learning 

processes was involved, as an exemplar or instance was learned by participants in the 

intentional condition whereas participants learned subsequences on the basis of 

associative predictions incidentally. All participants in Experiments 1 and 2, however, 

seem to demonstrate similar patterns of behaviour and therefore can be accounted for by 

a single process. Consequently, the instructed manipulation did not engage one system 

versus the other.  

 

2.4.2. Qualitative differences and process purity 

A simple ‘qualitative differences’ account (Jones & McLaren, 2009; Shanks, 2010) of 

two learning processes has been shown to be more complex than one might assume, as 

one cannot be sure (with current measurements of human psychological processes, 

Shanks & St John, 1994) that the learning processes: (a) occur in isolation; (b) occur as 

a result of the instructed manipulation; or (c) occur in isolation as the result of an 

instructed manipulation. The dual-process account suggests that verbalisable rule-based 

learning can control and take precedence over automatic learning (e.g. Reber, 1989), but 

that the automatic system is processing at all times; forming associations between 

stimuli regardless of intention (McLaren, Green, & Mackintosh, 1994). This suggests 

that automatic processes will always occur and that under this assumption we could 

extract the influence of one from the other (e.g. Jacoby, 1991). 

 

Jones & McLaren (2009) provide evidence that intentional learners only show evidence 

of XXX learning, which could be due to explicit encoding of this sequence, but they do 

not consider why the other subsequences have not been learned. There is increasing 

influence of what some consider non-automatic processes (Shanks, 2010) such as 

attention, in the explanation of associative learning phenomena (Pearce & Hall, 1980; 

Mackintosh, 1975). Nissen and Bullemer (1987) demonstrated that attention to other 
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tasks could reduce incidental sequence learning and whilst the reason for this is debated 

(Jiménez and Méndez, 1999; Stadler, 1995) this suggests that some explicit influences 

may interrupt or interact with automatic processes, which is sometimes taken as 

evidence for the non-implicit nature of these processes (e.g. Shanks, 2010). Therefore, it 

may not be the case that there are two entirely separate systems and that automatic 

learning processes encode and learn all information available at all times (Pearce & 

Bouton, 2003). It may instead be the case that conscious effort can reduce or increase 

automatic learning by changing the amount of attention to the stimuli (Jiménez & 

Méndez, 1999) or interrupting the sequence itself (Stadler, 1995) in some way. There 

may, therefore, be a more complex interaction between the two that we are unable to 

tease out by simply instructing participants to do so one way or the other. Without 

understanding of how these two processes may interact we may be unable to dissociate 

the two (Sun, Slusarz, & Terry, 2005). 

 

2.4.3. Dissociation logic 

Many researchers concede the likelihood of an interaction between the two processes, 

for example Willingham, Nissen, & Bullemer (1989) demonstrate that increased 

awareness of stimulus regularities improved performance on the ‘implicit’ SRT task; yet 

they still suggest that the learning systems involved operate in parallel. These 

comparisons usually rely on dissociation logic, which as mentioned in the general 

introduction, has been shown to be essentially flawed (Dunn, 2003). The simple logic of 

which involves the demonstration that manipulating a given independent variable 

affects one dependent variable and not another. This single dissociation has been used 

to provide evidence for implicit learning as a functionally separate system (Jiménez & 

Méndez, 1999; Reber & Squire, 1994) but greater evidence is provided by authors who 

provide evidence of a double dissociation, where two independent variables produce 

complementary single dissociations on the same two dependent variables (Dominey et 

al., 1998; Jiménez et al., 2006; Jones & McLaren, 2009).  

 

Jones & McLaren (2009) essentially provide evidence of such a double dissociation, 

with Group (Experimental versus Control) as the independent variable, a single 

dissociation is demonstrated as learning (the dependent variable) is observed for 

subsequences YYX and YXY, but not XXX. The opposite is true under intentional 

conditions (learning of XXX and not YYX or YXY), suggesting the presence of 
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multiple systems. Loftus (1978) has criticised the use of dissociations with bounded 

variables, such as accuracy, as floor and ceiling effects can be demonstrated to produce 

dissociations. Jones & McLaren (2009) avoid this critique with their analysis of 

inconsistent trials as reported for Experiments 1 and 2 here.  

 

However, Dunn (2003) proposes that the logic of dissociations is fundamentally flawed, 

as whilst one can infer that a variable has an effect on performance of a given task, one 

can never infer that a variable has no effect on the performance of another task. In the 

case of the subsequence learning dissociation proposed by Jones & McLaren (2009) this 

means that the lack of learning for subsequence XXX under incidental conditions and 

the other subsequences under intentional conditions cannot be shown to be unaffected 

entirely by instruction. Indeed, when learning these subsequences as part of a different 

sequential structure in Experiments 1 and 2 participants do show an effect of incidental 

learning on the subsequence XXX.  

 

2.4.4. State-trace analysis 

As a solution to the study of single/multiple-process accounts of latent psychological 

processes, Dunn instead proposes the solution of state-trace analysis (Bamber, 1979; 

Dunn & Kirsner, 1988; Loftus, 1978). Instead of demonstrating single or double 

dissociations, state-trace analysis instead requires two dimensions, representing either 

one dependent variable measured under two different conditions, or two different 

dependent variables. In the case of Experiment 1 and 2 this could be the learning of 

Same and Different rule sequential contingencies. Performance is plotted across the 

trace of the experiment, i.e. across some continuous measure of time or number of 

blocks to produce the function of interest. In this case, this would correspond to plotting 

learning across the epochs of training. These plots can then be made for two or more 

independent variables of interest– these are the states. Here an example of a state 

manipulation would be both an incidental and intentional set of points. The crucial 

analysis consists of determining whether our two plots are best described as part of one 

continuous function, or require two distinct functions to capture each trace. 

 

State-trace analysis has been applied to a large number of research areas where the 

question regarding the number of processes involved in a certain phenomena are 

disputed, including: category learning (Newell, Dunn, & Kalish, 2010; Newell, 2012), 
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cognitive development (Mayr, Kleigl, & Krampe, 1996), the face inversion effect 

(Loftus, Oberg, & Dillon, 2004; Prince & Heathcote, 2009), remember-know judgments 

(Dunn, 2008; Heathcote, Bora, & Freeman, 2010) and the neuroscience of recognition 

memory (Staresina, Fell, Dunn, Axmacher, & Henson, 2013). The remember-know 

judgments fall closest to the current line of investigation, which aim to investigate two 

(explicit and implicit) memory systems, but the only investigation so far to my 

knowledge involving two distinct learning processes is the work of Forrest (2012) who 

found evidence for multiple functions (and therefore for more than one process) 

underlying task-switching under two different task instructions.  

 

2.4.4.1. State-trace analysis of Experiments 1 and 2 

A state-trace analysis was conducted on the data, as described above taking the 

incidental (Experiment 1) and intentional (Experiment 2) results separately as the two 

states that we wish to investigate the dimensionality of. The dimensions (Same and 

Different) rule learning are taken as the dependent variables of interest for the axes, 

although a further difference score has to be calculated between the Groups as the 

Experimental or Control groups alone do not produce a dependent measure of learning. 

A learning score was therefore calculated for each Experimental participant for each 

Epoch in the first session as the difference between Experimental and average Control 

performance for that Rule. A by session analysis was used as the second session starts 

with a performance dip after the break between sessions, which obscures learning as a 

simple function of training: the trace. Figure 2.15 demonstrates the resulting plots for 

both RTs and errors across training for the data produced in Experiments 1 and 2. 

 

These state-trace plots demonstrate firstly what the ANOVA showed, namely that the 

Different rule was learned better regardless of condition (note the larger scale of the 

Different rule axes compared to the Same), but the plots also seem to show that these 

functions may be separate on visual inspection (a method used by McCarley & Grant, 

2008, in the interpretation of state-trace plots). This provides support that not only have 

the instructions produced some difference in sequence learning; further to this that there 

may be two functionally separable learning processes driving this difference. The 

functions on the error plots do not meet all of the requirements, however, for a full 

state-trace analysis, as they do not follow monotonic functions and do not demonstrate 

adequate overlap to infer how many functions are produced. Indeed error data is 
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suggested as incompatible with state-trace analysis as participants may be near floor on 

the task (Newell, 2008). The RT difference data are clear, however, and do seem to 

indicate two separate functions. 

 

 
Figure 2.15. State-trace plots of RT (top panel) and error (bottom panel) learning scores across 

the first four training Epochs (all of Session 1, left panel) and first three training Epochs of 

Session 2 (right panel) for the two sequence Rules (Same: y axis and Different: x axis) in both 

Incidental (Experiment 1, shown in grey) and Intentional (Experiment 2, shown in red) 

conditions. Error bars show standard error. 

 

There are a number of statistical methods to analyse state-trace plots in the literature 

(Spearman’s Rho [Loftus, Oberg, & Dillon, 2004]; maximum likelihood estimate 

[Newell & Dunn, 2008] and Bayesian models [Prince, Hawkins, Love, & Heathcote, 

2012]), but I follow Forrest (2012) whose work on learning processes is most 

conceptually related to these data. Using a stepwise multiple regression, Same rule 

learning (arbitrarily) was predicted from Different rule learning, with Condition added 

to the model in order to assess whether this variable could significantly increase the fit 

of the model and provide evidence for multiple functions. In Session 1, adding 

Condition to the model approached significance, R2 change = 6.7%, F(1,5) = 6.28, p 
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= .057, increasing the already high R2 value from 88.1% (R2
adj = 86.1%) to 94.7% (R2

adj 

= 92.6%). In Session 2, adding Condition to the model does significantly improve the fit 

of the model, R2 change = 76.8%, F(1,4) = 13.4, p = .035, increasing the R2 value from 

5.9% (R2
adj = 1.8%) to 82.8% (R2

adj = 72.3%). This suggests that perhaps there are two 

distinct learning processes at work within the data. Whilst these Conditions may not 

have had a qualitative impact on which rule or subsequence was learned, this suggests 

that learning may have in fact involved more than one process. 

 

2.4.4.2. State-trace analysis of computational simulations 

What state-trace analysis can tell us about the dimensionality of the processes involved 

can, however, be called into question. Using a simple recurrent network (SRN, Elman, 

1990, as discussed in Chapter 1 and described in more detail in Chapter 3) to simulate 

human performance on the task, I produced the same state-trace analysis performed on 

human data on two sets of model simulations. The task, the rules, number of trials and 

blocks were identical to Experiments 1 and 2, as described above, however the model 

was not simulated under different conditions to form the states of interest, but with 

different learning rates. For a further explanation of the role of learning rates within the 

SRN, see Chapter 3, but for the purposes of this explanation, by simply increasing the 

amount of learning on each trial, the simulations of the task using an SRN produced two 

visibly divergent state-trace functions, see Figure 2.16.   

 

A model with a higher learning rate learns less about Different rule sequences relative 

to Same rule sequences, this suggests that the state-trace methodology is sensitive to 

variations within a single process (learning rate), rather than providing evidence of 

multiple processes. Therefore, that the state-trace plot for incidental and intentional 

human performance (Figure 2.15) differs does not necessarily imply that two or more 

processes were at work. This suggests that participants under intentional conditions 

could have varied in some single process parameter, for example, by analogy to the 

model simulation they could have learned more on each trial than under incidental 

conditions. Moreover, it seems that a state-trace plot may claim to circumvent the 

problems faced when attempting to uncover the number of processes underlying such 

functions (Loftus, Oberg, & Dillon, 2004) but this simulation result suggests that it may 

be sensitive to variations within a single process and coupled with the results of Ashby 

(2014) call the method into question. Importantly for this thesis, despite the difference 
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between Incidental and Intentional performance on a state-trace plot; this cannot 

provide conclusive evidence for the presence of functionally separable learning 

processes, though it is suggestive.  

 

 
Figure 2.16. State-trace plot of mean squared error (MSE) learning scores across the all seven 

training Epochs for the two sequence Rules (Same and Different) in both low (0.15) and high 

(0.40) learning rate simulations of the simple recurrent network (SRN, Elman, 1990). Error bars 

show standard error. 

 

2.5. General Discussion 

Experiment 1 provided evidence of learning under incidental conditions, with the 

stochastic Different rule learned better than the Same rule. The subsequence learning 

effects observed in Experiment 1, however, suggest that participants were not impaired 

at learning subsequence XXX under incidental conditions as shown in Jones and 
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McLaren (2009). This suggests that rather than participants struggling to learn the 

subsequence XXX per se, subsequence learning occurs differently depending on the 

stochastic structure of the trained sequence itself. While the exclusive-or rule trained in 

Jones and McLaren (2009) required that participants use both of the two trials preceding 

the current trial to predict the required response; the Same and Different rules in 

Experiments 1 and 2 only required that participants use the one trial that occurred two 

trials previous to the current, for which two explanations can be offered. 

 

The first is that participants in Experiment 1 employ a more explicit strategy, that has 

been shown to increase learning of the subsequence RRR and LLL, which occurred 

more frequently in the Same rule group than in Jones & McLaren’s (2009) exclusive-or 

rule case. Therefore, participants in Experiment 1 may have noticed the XXX 

subsequence more and, as a result, learned this subsequence more. It seems unlikely that 

this is the case, as evidenced by the intentional case (Experiment 2). If indeed the 

increased occurrence of XXX led to more noticing of this sequence and therefore more 

learning in Experiment 1, we would also expect to see this (to a greater extent) when 

participants were instructed to look for and use sequences in Experiment 2. As we do 

not see greater learning of the Same rule under intentional conditions or an interaction 

between subsequence learning and conditions it seems unlikely that some verbalisable 

strategy is accounting for the difference here. 

 

The second explanation of such a result comes from the cue competition account of 

XXX learning in Jones & McLaren’s (2009) model of the results: that the reduction in 

error term based on the previous two trials following the same mapping from previous 

to current trial (X leads to X, followed by X leads to X) would block learning of the 

sequential contingency occurring at t. In the exclusive-or case, as both mappings were 

required to accurately predict t, as the first mapping (t - 2 to t – 1) reduces the error term 

for the second case (t -1 to t), then the amount of learning is blocked. In Experiment 1 

only the relationship between the first and last items in the subsequence are important 

for learning the Same rule, therefore, participants may learn that the mapping from t – 2 

to t – 1 has no contingency with t and thus learn to disregard this mapping, with the 

resulting consequence a reduction in the cue competition effect. The effect, however, 

may not be entirely eradicated as the Same rule is still learned less well, therefore 

learning the overall structure of the sequential contingencies may not be protected from 
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the influence of some short-term carry over from the previous trial, even when this has 

no relationship to the trained contingencies.  

 

This account relies on the short-term priming system applied in the AugSRN (e.g. 

Cleeremans & McClelland, 1991), which is the subject of Chapter 3. Further work is 

required to ascertain whether the sequence learning observed with Same and Different 

rule sequences was indeed produced by this interaction between transient trial-by-trial 

sequential effects and the nature of the trained sequential contingencies. This highlights 

the advantage of a computational approach, as the precise mechanisms by which 

learning can occur can be examined in great detail. Therefore, the next aim of this thesis 

is to attempt to model the results of Experiment 1, with a very precise set of human 

learning effects provided by both previous research and the differential subsequence 

learning effects produced by the Same and Different rule structures.  

 

There was no qualitative difference between Experiment 1 and 2 as defined by a 

difference in subsequence learning, possibly suggesting that participants did not 

exclusively perform the task intentionally in this condition and that the instructional 

manipulation was not effective. Indeed participants were unable to express any 

knowledge about the sequential rule, even though they had been trained over two long 

sessions on the task. This suggests that while they may have had volitional control over 

their intention to learn on the task, that they were still unable to discover a pattern 

explicitly. It may also be the case that they discovered patterns but did not express this 

knowledge in the interview or on the task itself (Lee & Livesey, 2013).  

 

It seems that incidental processes remained present in both conditions regardless of 

intention to learn, as Different rule learning was greater in both experiments and 

sequence learning was relatively unaffected when participants employed explicit 

strategies. Whilst it might be possible to take these results as evidence for a single 

learning process that is not different depending on the volitional conditions under which 

the task is performed; the results of Jones and McLaren (2009) clearly suggest that this 

is not the case. Further evidence that both the Incidental and Intentional pattern of 

learning was driven by automatic, associative processes may be provided if the 

Different rule learning advantage can be simulated by a model of associative learning, 

which is the subject of Chapter 3.   
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The difficulty in comparing these two conditions within a dissociable framework are 

numerous, and assumptions regarding test and process purity, the lack of interaction 

between the two processes, and dissociation logic cause problems in trying to establish 

the processes that underlie learning on such tasks. State-trace analysis (Bamber, 1979) 

was offered as the best available solution to understanding the processes that underpin 

performance on a task (Loftus, Oberg, & Dillon, 2004; Newell & Dunn, 2008; Prince et 

al., 2012), but whilst functions produced by the second session of training (and to some 

extent the first) provided some evidence for multiple functions, state-trace analysis 

might reveal variation within some single process and does not necessarily suggest that 

the instructed manipulation produced a functional difference in the processes involved.  

 

This further suggests that relying on control when dealing with awareness is difficult, as 

participants are not only subject to the influence of possible automatic processes, but are 

not necessarily able to or likely to follow these instructions. In a task like this, which is 

very demanding and quite boring, participants in both Incidental and Intentional 

conditions reported a whole variety of different motivations, strategies and experiences. 

The likelihood that all participants in the Intentional condition performed with perfect 

control and were able to isolate their explicit learning and apply this on each trial is slim, 

therefore instructing participants does not ensure either the presence or absence of 

explicit learning; if ultimately participants are unable to uncover what is to be learned. 

Whether participants could notice and use these Same and Different rule sequences is a 

question not addressed in this thesis, but forms a future research strand that might 

involve longer training, the use of hints or even explicitly giving participants the rules 

and asking them to use them, although this does not always result in learning on the 

SRT task (Lee & Livesey, 2013). 

 

Further discrepancies between Jones and McLarens’ (2009) results and those reported 

here lie in the sequential effects observed in control groups under both conditions. Jones 

and McLaren (2009) simply observed a first order repetition advantage, with 

participants preferring to respond to subsequences XXX and XYY, with control 

subjects responding to YXY and YYX with a difference score of below zero. However, 

there was no difference in the control performance of participants in terms of whether 

they preferred a trial that immediately followed the same response location or not; as 

there was evidence for a speed accuracy trade-off between faster responses to first order 
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alternations, and more accurate responding to repeats. Whilst these effects were 

therefore unclear, subsequences with difference scores above and below zero were 

clearly RRR, LLL, RLR and LRL (above zero) and RRL, LLR, RLL and LRR (below 

zero). Therefore, in Experiments 1 and 2 control participants showed a preference for 

faster and more accurate responding to Same rule subsequences over Different rule 

subsequences. There should be no difference between the experience of control subjects 

between Jones and McLaren (2009) and this study, however, the length of training was 

greater in Jones and McLaren's study, and participants were given monetary rewards for 

fast and accurate responding. It is not entirely clear why either of these changes would 

influence sequential effects on control subjects, however Chapter 3 attempts to 

investigate these issues computationally.  

 

Altogether, while the disparity between the Jones & McLaren (2009) dissociation 

between intentional and incidental conditions is a convincing demonstration and 

framework within which to investigate human learning, this is based on the assumptions 

that: (1) participants followed the incidental and intentional instructions and (2) that 

these instructed conditions were able to isolate or give preference to particular learning 

processes. Experiments 1 and 2 provide evidence that an instructed comparison between 

participants may not produce clear-cut subsequence learning differences, and without an 

understanding of how the systems operate or a superior method of disentangling these 

results we are unable to use this research design to better understand human learning.  
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Chapter 3. Modelling stimulus-response associations 

and sequence learning 
 

In Chapter 3 I aim to investigate whether the sequence learning effects observed in 

Experiment 1 can be simulated by the Augmented SRN (AugSRN, Cleeremans & 

McClelland, 1991), which has previously provided a convincing account of Jones & 

McLaren’s (2009) data by means of competition between transient trial order learning 

effects and learning of the sequential contingencies. The AugSRN, however, was unable 

to demonstrate the learning observed in Experiment 1 under the parameters described 

by either Jones & McLaren (2009) or Cleeremans & McClelland (1991). Further 

investigations using an SRN (Elman, 1990) and exploring the parameter space both 

manually and using optimisation procedures provide a convincing demonstration that 

the SRN or AugSRN is unable simulate the results of Experiment 1. What these models 

lack, however, is any representation of simple stimulus-response contingencies 

experienced on each trial, which are not important for sequence learning. When 

introduced into the AugSRN these produce the learning effects observed in Experiment 

1, suggesting that cue competition between simple stimulus-response mappings and 

sequential information (as well as transient trial-by-trial learning) has an effect on 

learning of different subsequences. 

 

3.1. Introduction 

Chapter 2 presented evidence of differential sequence learning under incidental 

conditions, as participants trained on the Different rule (that the current trial [t] can be 

predicted as the opposite location to two trials previous [t – 2]) learned more than those 

trained on the Same rule (that t can be predicted as the same location as t – 2), even 

though the Different rule subsequence are performed worse than Same rule 

subsequences. As discussed in Chapter 1, the Augmented SRN (AugSRN) is a version 

of the SRN (Elman, 1990) adapted to account for the trial order effects observed in 

human serial reaction time (SRT) tasks (Cleeremans & McClelland, 1991). While the 

SRN is a seminal model regularly employed in the simulation of sequence learning 

(Beesley, Jones, & Shanks, 2012); the SRN is unable to account for trial-by-trial effects 
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such as enhanced responding to repeated stimuli, for example. Therefore, the AugSRN 

is proposed to be the best model of human sequence learning (Jones & McLaren, 2009). 

This chapter aims to investigate the detailed pattern of the learning and sequential 

effects demonstrated in Experiment 1, which provide a framework with which to 

accurately assess a computational model of human learning.  

 

As mentioned in Chapter 2, Experiment 1 showed not only greater performance of 

Same over Different subsequences in Control groups (sequential effects); but human 

participants showed evidence of greater Different rule learning compared to Same rule 

learning. Whilst the Same rule was learned less well, there was still evidence of learning 

of XXX and strong learning of XYY: although neither of these subsequences were 

shown to be learned under incidental conditions over greater training in Jones and 

McLaren’s (2009) study. The cue competition effects observed between transient trial-

by-trial contingencies could account for these results if participants had learned to 

disregard the middle trial in a subsequence, as neither group in Experiment 1 required 

this trial to predict t. To ascertain whether the relationship between transient trial order 

learning effects and more permanent learning of the underlying sequential contingencies 

within the task could produce these subsequence learning effects, the AugSRN was used 

to simulate the task. 

 

3.2. The Augmented SRN 

The AugSRN is described in detail here, with the construction and components of the 

model discussed in this section. The first aim of this Chapter was to produce a version 

of the AugSRN that matched the simulations produced by Jones and McLaren (2009). 

 

3.2.1. Model construction 

The model was constructed and simulated using MatLab software and the details of the 

construction of the model and all of the parameters and aspects of the simulations are 

described below. The model was constructed using the specifications outlined in 

previous research and incorporating the parameters given in Jones and McLaren (2009) 

for the simulation of these results. The method of simulation is also described, which 

was run in a way that attempted to approximate the human Experiment 1 as closely as 

possible. Each iteration of the model represents a trial in the human experiment, and 
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therefore 4800 iterations simulated two ‘sessions’ worth of one participant’s data. The 

connection weights and the hidden unit activations were then reinitialised, representing 

the random variation produced across different human participants (Juola & Plunkett, 

1998). The model was then run again for 4800 iterations, and this was done for each of 

the 96 total participants in Experiment 1.  

 

3.2.1.1. Model architecture 

The model is constructed of units that are organised into four layers: input, hidden, 

output and response (shown in Figure 3.1). Each unit in each layer is connected to each 

unit in the next layer, so each input unit has a connection with each hidden unit, each 

hidden unit with each output unit, and each output unit with each response unit.  

 

 
Figure 3.1. Structure of the AugSRN (Cleeremans & McClelland, 1991). Input units (bottom) 

include both left (L) and right (R) stimuli as well as a copy of the hidden units on the previous 

trial and a bias (a unit that is always on). Activation flows in the direction of the arrows, with a 

set of hidden units (middle) passing activation forward once more to output and then response 

units, again representing L and R stimulus locations and/or responses (top).  

 

Input units. There are three types of input unit, the first (shown bottom right in Figure 

3.1) simply representing the left or right stimuli experienced by participants. The second 

is a hidden bias unit (shown bottom in Figure 3.1), which is a single unit that always has 
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an activation of 1. The third are context units (shown bottom left in Figure 3.1), which 

contain a direct copy of the hidden unit activations on the previous trial. There are then, 

the same number of context units as hidden units (in this case 20); and therefore there 

were 23 input units in total in the AugSRN.  

 

Hidden units. 20 hidden units (shown in the middle in Figure 3.1) receive activation 

from the input units, which they feed-forward into the output units. On every trial the 

hidden unit activations are also copied directly into the context units, ready to feed these 

internal representations back into the model on the next trial.  

 

Output units. 2 output units (shown second from top in Figure 3.1) form the new layer, 

one for each left and right stimuli again. 

 

Response units. These form the final layer (shown top in Figure 3.1) in the network and 

there are again 2 response units, one for each left and right stimuli. 

 

3.2.1.2. Representation and activation of task input and output 

Input units and activation. The two input units that discretely represented a left or right 

stimulus were given an activation of 1 to simulate that stimulus was present; and 0 

when it was absent. Therefore, on each iteration of a simulation one of two units would 

be activated and the other not, depending on the type of trial (right or left) being 

simulated. As outlined above, activation of the two input units discretely representing 

stimuli at t (InputR and InputL) was externally manipulated to values of 1 or 0 depending 

on the trial sequence. The bias unit was always activated to a value of 1, and the context 

units were given the activation values on each trial exactly equal to the hidden unit 

activations on the previous trial: 

 

!"#$%&$!:!" ! = !!"##$%!:!"(! − 1) 
(Equation 3.1) 

 

This means that the internal representation of the previous trial was fed back into the 

model at t and is therefore the recurrent element that enables the model to learn 

contingencies across trials and to represent time. 
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Hidden units and activation. Each of the 23 input units had two connections to each of 

the 20 hidden units, which totals 920 connections through which activation flows 

forward on each trial. The amount of activation that is fed from each of these input units 

through each of the connections to each hidden unit is determined by the strength of 

each connection (w) between two units and the logistic activation function (Rumelhart, 

Hinton, & Williams, 1986). Therefore, for a unit j, receiving input from one unit I, its 

activation, !"#$! !is: 
 

!"#$! = !
1

1+ !!(!"#$!!×!!!") 

(Equation 3.2) 

 

However, as already indicated, for each unit within the AugSRN there are two 

connections (described in more detail in sections 3.2.1.3 and 3.2.1.4): a ‘fast’ (wFast) 

and ‘slow’ (wSlow) connection for each unit, so activation for the hypothetical unit j as 

part of an AugSRN would be calculated as: 

 

!"#$! = !
1

1+ !!((!"#$!!×!!"#$%!")!(!"#$!!×!!"#$!!")) 

(Equation 3.3) 

 

Thus, for each unit with multiple connections, these connection weights and activation 

values can be summed to provide a measure of net input that are converted to activation 

of the unit in question through the logistic activation function: 

 

!"#$%&'#!"##$%!
= ! (!"#$%! !×!!"#$%!"##$%!!"#$%!)+ !(!"#$%!!×!!"#$%!"##$%!!"#$%!)

+ !(!"#$%!"#$!×!!"#$%!"##$%!!"#$%!"#$)+ !(!"#$%&$!!×!!"#$%!"##$%!!"#$%&$!)
+ !(!"#$%&$!!×!!"#$%!"#!"#!!"#$%&$!)+ !… !(!"#$%&$!"!×!!"#$%!"##$%!!"#$%&$!")

+ (!"#$%! !×!!"#$!!"##$%!!"#$%!)+ !(!"#$%!!×!!"#$!!"##$%!!"#$%!)
+ !(!"#$%!"#$!×!!"#$!!"##$%!!"#$%!"#$)+ !(!"#$%&$!!×!!"#$!!"##$%!!"#$%&$!)

+ !(!"#$%&$!!×!!"#$!!"##$%!!"#$%&$!)+ !… !(!"#$%&$!"!×!!"#$!!"##$%!!"#$%&$!")! 
(Equation 3.4) 
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!"#$%&'#!"##$%! = (!"#$%! !×!!"#$%!")+ (!"#$%! !×!!"#$!!") 

(Equation 3.5) 

 

!"##$%! = !
1

1+ !! !"#$%&'#!"##$%!
 

(Equation 3.6) 

 

Output units and activation. The output units also discretely represented a left or right 

stimulus, and on each iteration the model was trained to predict the next trial. For 

example, if the first two trials experienced by participants were a right and then a left, 

the first trial would involve activation of the right input unit (InputR) to 1, and the left 

input unit (InputL) to 0. The target activation on that first trial was set for the right 

(TargetOutputR) as 0.1, and for the left (TargetOutput) as 0.9 both activations 

corresponding to that required on the next trial.  

 

The output units receive input from the hidden units in the same way, with activation 

for one output unit calculated from the net input of 40 connections (20 fast and 20 slow), 

and therefore the activation of the right output unit can be calculated as: 

 

!"#$"#! = !
1

1+ !! !"#$%&'#!"#$!"!
 

(Equation 3.7) 

 

!"#$%&'#!"#$"#! = (!"##$%! !×!!"#$%!")+ (!"##$%! !×!!"#$!!") 

(Equation 3.8) 

 

The difference between this target output and the activation of the output units (OutputR 

and OutputL; discussed in section 3.2.1.2) was taken as an index of how well the model 

predicts the next trial and therefore how much it has learned and is able to use this to 

predict the next trial. This was calculated on each trial by taking the average of the 

squared differences between target and actual output activations, a mean squared error 

(MSE): 
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!"#$"#!!"#(!) = (!"#$%&'(&)(&!(!)!!"#$"#!(!))!!(!"#$%&'(&)(&!(!)!!"#$"#!(!))!
! ! 

(Equation 3.9) 

 

The discrete response units may also be used as an index of task performance (as in 

Cleeremans & McClelland, 1991; and Jones & McLaren, 2009), but the essential 

comparison between target and actual activation is the same. The response unit MSE 

can be calculated as:  

 

!"#$%&#"!!"# ! = (!"#$%&'%()*+(%!(!)!!!"#$%&#"!(!))!!!(!"#$%&'%()*+(%!(!)!!!"#$%&#"!(!))!
!  

(Equation 3.10) 

 

MSE is therefore a measure of prediction strength that can index RT performance on the 

next trial (Jones & McLaren, 2009), as MSE will decrease with increased prediction 

strength, as one expects RTs to do with increased prediction strength. Smaller MSE 

values therefore indicate greater learning (less difference between expected and actual 

output/responses), and these reflect shorter RTs on the next trial as the MSE measures 

prediction regarding the next trial, and therefore reflects the speed of responding to the 

next trial in humans: 

 

!" ! = !"# ! − 1  

 (Equation 3.11) 

 

MSE values were taken from either Output or Response units (depending on the 

simulation, detailed below) when inputs reflect t – 1, which gives RT for trial t for the 

eight different triplets in each block. Difference scores between inconsistent and 

consistent subsequences were calculated as outlined in Experiment 1 (see section 2.2.2).  

 

Response unit activation. To capture the influence of the previous trial location or 

response, two response units were activated depending on the corresponding output unit 

on that trial, and incorporating a decayed trace (weighted by k, which takes the value of 

0.5) of the previous response:  

 

!"#$%&#"! ! = !!"#$"#! ! + !!!×! 1− !"#$"#! ! !×!!"#$%&#"!(! − 1)  
(Equation 3.12) 
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At this point, a MSE was calculated, using the equation outlined in this section. After 

this, the response units were set to the appropriate binary response required of the task, 

thus on the first trial example already given where t is right and t + 1 is left, ResponseL 

would be set to 1 and ResponseR to 0, following Cleeremans & McClelland (1991). 

Each trial is considered a correct trial as the model approximates RT responses that in 

human data were only analysed for correct trials. Further decision-making processes 

that would enable the modeling of error data (e.g. Jones, Wills, & McLaren, 1998; Wills 

& McLaren, 1997) were not employed as these elements may have interfered with the 

analysis of the purely associative processes of interest (Jones & McLaren, 2009). 

 

3.2.1.3. Error-correction and back propagation  

After the input unit activation on a single model iteration or trial had fed forward 

activation all the way to the response units, these feed-forward connection weights were 

updated according to back-propagation of error. This means that, from the output units 

backwards, a difference between target and actual activations was calculated, forming 

the basis for the amount of learning that would occur (how much each connection 

weight would change). This followed the standard back-propagation algorithm for error-

correction as developed by Rumelhart, Hinton and Williams (1986), taking the delta 

rule, whereby the amount of change in connection weight is a function of the difference 

(error) between output unit activation and the trained target activations. Thus, the error 

term for the output units was computed as follows: 

 

!!"#$"#!!"##$%! = !"#$%&'(&)(!! − !"#$"!! !×!(1− !"#$"!!)!×!!"#$"!! 

(Equation 3.13) 

 

The error is then back-propagated to connections between the input and hidden layer 

using the delta from this first set of error calculations: 

 

!!"##$%!!"#$%!
= !!"#$"#!!"##$%! !× ! !"#$!!"#$"#!!"##$%! + !!"#$!!"#!"!!"##$%!

+ !!!"#$"#!!"##$%! !× ! !"#$!!"#$"#!!"##$%! + !!"#$!"#$"#!!"##$%! !×!(1
− !"##$!!)!×!!"##$!! 

!(Equation 3.14) 



Incidental human sequence learning  125 

!

Each ‘slow’ connection weight between any two units (again the hypothetical i and j) is 

updated simply by calculating the change in weight multiplied by both the learning rate 

(α) parameter (described in section 3.2.1.5) and the activation of the unit feeding 

activation forward through the connection and adding this to the pre-existing connection 

weight: 

 

!"#$!!" = !"#$!!" + !"#$! !×!!!" !×!!!"#$ 

!(Equation 3.15) 

 

For ‘fast’ learning rates this calculation also involves an element of decay, as the 

previous connection weight is multiplied by the constant k (with a value of 0.5) and 

hence the learning is more transient as it decays by half at each time step:  

 

!"#$!!" = !!"#$!" !×!! + !"#$! !×!!!" !×!!!"#$ 
(Equation 3.16) 

 

3.2.1.4. Learning parameters 

Learning rates (α) usually take a value between 0 and 1 and thus reduce the amount of 

weight change that can occur on each trial: producing gradual learning of contingencies 

and avoiding radical step-changes on each trial that produce oscillations in performance. 

These learning rates vary from model to model and across simulations, for instance 

Jones and McLaren (2009) use a slightly higher learning rate than Cleeremans and 

McClelland (1991). These issues of parametisation are discussed later in this Chapter 

(see section 3.3.1), but in general terms the AugSRN has two sets of connection weights 

between each unit in the model, defined by their learning rates (as well as the presence 

[fast weights] and absence [slow weights] of decay).  

 

The slow weights enable associative learning through a lower learning rate that 

encourages strong associations that accrue gradually over time. Fast weights have been 

suggested by various authors as a secondary component of learning that influences 

subsequent trials but have little permanent effect (Hinton & Plaut, 1987; McClelland & 

Rumelhart, 1985). To account for the transient effects observed in SRT tasks, 

Cleeremans and McClelland (1991) introduced fast weights that had a higher learning 
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rate than the slow weights, thus producing greater learning. However, these fast weights 

also decay by half over each trial, meaning that this learning is short lived.  

 

The learning rates employed in simulations are often altered, and are generally accepted 

to be free parameters that can be altered, depending on the task, stimuli or even to 

represent individual differences in human performance (McLeod, Plunkett, & Rolls, 

1998). Cleeremans and McClelland (1991) used learning rates of 0.15 and 0.2 for slow 

and fast learning rates, respectively. Jones and McLaren (2009) argued that as their task 

involved fewer stimuli (two rather than six) and longer response-stimulus interval (RSI: 

500 ms rather than 120 ms), this justified an increased learning rate: of 0.4 and 0.533 

for slow and fast learning rates, respectively. The proportional difference between the 

slow and fast learning rates was matched across the two studies. As Experiment 1 is 

based on Jones and McLaren’s (2009) study, the learning rate parameters of 0.4 and 

0.533 were the ones used in the simulation of Experiment 1. 

 

3.2.1.5. Simulation procedure 

As mentioned previously, the simulation of human performance attempted to match 

Experiment 1 as closely as possible. 96 simulations of 4800 trials were run, each 

representing one human participant: 48 Control and 48 Experimental. Half of the 

simulations were trained on pseudorandom trial orders throughout, as outlined for 

Control groups in Experiment 1. The other 48 participants were either trained on 4200 

trials that followed Same or Different rules described in Chapter 2. The trial 

construction and ordering was exactly the same as for human participants and data was 

analysed in the same way, with MSE at output for input at t – 1 taken as an index of RT 

performance on the task, with an inconsistent minus consistent difference score 

calculated for each block and the four trained subsequences. As for the human 

participants in Experiment 1, this difference score was calculated for all groups over 

118 trials on each test block, even though there was no simulated break or separation 

between blocks. Weighted averages were calculated for 117 trials across each training 

block to control for t – 3 sequential effects. 

 

At the beginning of each simulation of 4800 trials, to represent a new participant the 

connection weights between all units were randomly given weights between -0.5 and 

0.5 and the hidden units were reset and given activations of 0.5. This provides some 
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variation and error into the simulations, approximating individual differences between 

subjects (Juola & Plunkett, 1998).  

 

3.2.2. Simulation 1: Jones & McLaren (2009) 

3.2.2.1. Simulation procedure 

As a check on the model, the Jones and McLaren (2009) incidental learning experiment 

was simulated. This involved 80 simulations, 40 each Experimental and Control, with 

Control groups receiving pseudorandom blocks throughout. There were 10 pre-training 

blocks (1200 pseudorandom trials) for the Experimental networks, which were then 

trained for 80 blocks (9600 trials) on sequences constructed using the same procedure as 

described in Chapter 2, but with an exclusive-or rule rather than a Same of Different 

rule. Therefore the model was twice as likely to experience: XXX, XYY, YYX, YXY 

than the complementary, inconsistent subsequences (XXY, XYX, YYY, YXX). Note 

that Xs and Ys used as R and L was counterbalanced across networks. This was 

followed by a further 10 post-training test blocks (1200 further pseudorandom trials) 

and 10 further training blocks (1200 further exclusive-or trials). 

 

3.2.2.2. Results 

The results were analysed by an ANOVA on the MSE difference scores taken between 

inconsistent and consistent subsequences with the factors Epoch (Sets of 5 blocks as for 

Experiment 1 and 2: 16 across training and 2 across test), Group (Experimental versus 

Control) and Subsequence (XXX, XYY, YYX, YXY). There was a large main effect of 

Group across training, F(1,78) = 592, p < .001, MSE = .002, ηp
2 = .884, and test (post-

training), F(1,78) = 67.1, p < .001, MSE = .001, ηp
2 = .463, with the post-training test 

results shown in Figure 3.2, alongside a reproduction of these same test results from the 

AugSRN simulations presented in Jones and McLaren (2009). These results match 

those found by Jones and McLaren (2009): with an interaction between Subsequence 

and Group at test, F(3,234) = 31.4, p < .001, MSE = .002, ηp
2 = .287 that followed the 

same ordinal pattern as produced in both their human participants and the model. 

Therefore the AugSRN constructed for this thesis could provide evidence of differential 

subsequence learning and accurately simulate human performance under incidental 

conditions as found by Jones and McLaren (2009). Note that the precise sequences 

experienced by each network, as well as randomization of weights at the start of 

simulations meant that the two sets of simulations will not match precisely.  
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Figure 3.2. MSE difference scores for the post-training phase of AugSRN simulations taken 

from the current work (left panel) and the work of Jones and McLaren (2009, right panel). Error 

bars are shown for the current simulation (although obscured by the plot markers as these are 

very small) and show standard error. 

 

3.3. Simulation 2: Simulating Experiment 1 with the AugSRN 

3.3.1. Simulation details 

The procedure for simulating Experiment 1 is described in section 3.2.1.5, and matches 

the experimental design outlined in Chapter 2. Using the AugSRN and the parameters 

outlined by Jones and McLaren (2009) the model was used to simulate human between-

subject performance differences on the incidental sequence learning task. The analysis 

of each set of simulations was treated in the same way as human RT and error 

difference scores. ANOVAs investigated learning in each of the two Rule groups 

(comparing Experimental to Control for Same and Different rules, separately) followed 

by a Bonferroni corrected analysis of the full model, involving Block, Group, Rule and 

Subsequence across training and test. The decision was made to average MSE across 

Blocks rather than Epochs due to the interest in the evolution of learning across time. 

Whilst analysis at this level of detail was not possible for the human participants as a 

weighted average across training led to missing values, the AugSRN did not make 

errors and therefore all trials could be included in the analysis and the course of training 

could be analysed in greater detail. The model was trained with learning rates of 0.4 and 

0.533 for slow and fast weights, respectively and 20 hidden units.  
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3.3.2. Results 

3.3.2.1. Same rule learning 

Those networks trained on the Same rule showed a large amount of learning as 

evidenced by the strong effect of Group: across training, F(1,47) = 801, p < .001, MSE 

= .041, ηp
2 = .945; and at test, F(1,47) = 1133, p < .001, MSE = .003, ηp

2 = .960, shown 

in black in Figure 3.3. Block had a main effect across training, F(34,1598) = 19.9, p 

< .001, MSE = .007, ηp
2 = .297, that interacted with Group, F(34,1598) = 77.4, p < .001, 

MSE = .007, ηp
2 = .662 suggesting that learning developed across training. There was 

also a Block effect at test, F(4,188) = 142, p < .001, MSE = .001, ηp
2 = .751 that 

interacted with Group, F(4,188) = 119, p < .001, MSE = .001, ηp
2 = .718, demonstrating 

a rapid extinction of learning in the Experimental networks across pseudorandom test 

trials.  

 

 
Figure 3.3. AugSRN simulation of Experiment 1 using parameters outlined by Jones and 

McLaren (2009) for both Same (black) and Different (blue) rules across training blocks and test 

blocks. Filled diamonds show Experimental networks, open diamonds Control networks. Error 

bars show standard error.  

 

Subsequence had a large effect across training, F(3,141) = 13151, p < .001, MSE = .009, 

ηp
2 = .996; and test, F(3,141) = 6068, p < .001, MSE = .001, ηp

2 = .992, which is shown 

in Figure 3.4 in black. This suggests that the model is sensitive to sequential effects, as 

regardless of training, there was a large preference for responding to subsequences RRR 

and LLL compared to RRL and LLR over performance to RLR and LRL compared to 
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RLL and LRR. These sequential effects did not interact with Group at training, F(3,141) 

= .510, p = .576, MSE = .009, ηp
2 = .011, nor at test, F(3,141) = .773, p = .501, MSE 

= .001, ηp
2 = .016, suggesting that these subsequence effects were not affected by 

learning, and therefore that the models did not produce evidence of differential 

subsequence learning within the Same group.  

 

 
Figure 3.4. AugSRN simulation of MSE difference scores on the different subsequences trained 

in Experiment 1, using parameters outlined by Jones and McLaren (2009) for both Same (black) 

and Different (blue) rules across training (left panel) and test (right panel). Experimental 

networks are shown by filled bars and Control networks by open bars. Error bars show standard 

error.  

 

Subsequence did interact with Block across training, F(102,4794) = 118, p < .001, MSE 

= .008, ηp
2 = .715, and this interaction did itself interact with Group, F(102,4794) = 2.76, 

p < .001, MSE = .005, ηp
2 = .055, as shown in Figure 3.5. These effects, while not 

observed in humans in Experiment 1, demonstrate the gradual learning of the 

subsequences RLR and LRL (collapsed into XYX) as well RRR and LLL (collapsed 

into XXX) that develops differently for both sets of networks.  
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Figure 3.5. AugSRN simulation of MSE difference scores on the different subsequences trained 

in the Same group as in Experiment 1 (top panel), using parameters outlined by Jones and 

McLaren (2009) collapsed into XXX (RRR and LLL) and XYX (RLR and LRL). Experimental 

networks are shown by filled diamonds and Control networks by open diamonds. Bottom panel 

shows human performance from Experiment 1 across training for Experimental (filled bars) and 

Control (open bars) groups on all four Same rule subsequences in RT (bottom left panel) and 

error (bottom right panel) for comparison. Subsequences RRR and LLL (XXX) are shown in 

yellow bars and RLR and LRL (XYX) are shown in green bars corresponding to the model data. 

Error bars show standard error. 

 

For the Same rule trained networks, as shown in Figure 3.5 the Control networks 

approach zero from either side of the x axis across training, demonstrating some 

learning of the absence of contingencies within the sequential structure that being to 

counteract the sequential effects. These reach asymptote, however, and still demonstrate 

the initial advantage for XXX (over XXY) and disadvantage for XYX (over XYY). 

These sequential effects do not follow the pattern observed in Experiment 1. Whilst 

training errors demonstrated an advantage for XXX over XYX, RTs showed the 
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opposite Sequence effect (although neither of these effects were significant); suggesting 

that there is no difference between the subsequences. However, the performance on 

both subsequences were well above a difference score of zero in Experiment 1 in both 

RT and errors (see Figure 3.5, bottom panel): therefore the AugSRN did not simulate 

the sequential effects observed in humans.  

 

3.3.2.2. Different rule learning 

The networks trained on the Different rule showed an effect of Group across training, 

F(1,47) = 134, p < .001, MSE = .077, ηp
2 = .741; and at test, F(1,47) = 148, p < .001, 

MSE = .016, ηp
2 = .759, providing evidence that the AugSRN could learn this sequential 

contingency, as shown in blue in Figure 3.3. There was a significant effect of Block 

across training, F(34,1598) = 409, p < .001, MSE = .017, ηp
2 = .897; and test, F(4,188) = 

8.08, p < .001, MSE = .001, ηp
2 = .147, that interacted with Group across training, 

F(34,1598) = 44.0, p < .001, MSE = .017, ηp
2 = .484, which demonstrated a gradually 

increasing difference between Experimental and Control groups with training. There 

was also an interaction between Block and Group at test, F(4,188) = 9.75, p < .001, 

MSE = .001, ηp
2 = .172, which provides evidence of extinction when networks 

performed on pseudorandom blocks after training.  

 

Subsequence had an effect across training, F(3,141) = 12641, p < .001, MSE = .012, ηp
2 

= .996, and test, F(3,141) = 3586, p < .001, MSE = .003, ηp
2 = .987 (shown as blue bars 

in Figure 3.4). This was the inverse set of sequential effects observed for the Same 

networks, with better performance on subsequences RLL and LLR (compared to RLR 

and LRL) than on subsequence RRL and LLR (compared to RRR and LLL). This did 

not interact with Group across training, F(3,141) = 3.25, p = .065, MSE = .012, ηp
2 

= .065, nor test, F(3,141) = 3.02, p = .060, MSE = .003, ηp
2 = .060, suggesting that the 

Subsequence effect was not itself affected by learning, nor was there evidence for the 

differential learning of subsequences within the Different rule. Subsequence did interact 

with Block across training, F(102,4794) = 127, p < .001, MSE = .004, ηp
2 = .738, but 

not test, F(12,564) = .456, p = .787, MSE = .008, ηp
2 = .010. This is shown in Figure 3.6, 

which demonstrates the opposite pattern in the Control networks as for the Same rule 

network (shown in Figure 3.5): the relative advantage and disadvantage for the 

subsequences XYY and YYX, respectively which converged towards a difference score 

of zero across training. Human participants in Experiment 1 showed Control 
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performance on the subsequences in the Different group to be uniformly below zero 

(see Figure 3.6, bottom panel), and therefore the XYY performance does not accurately 

simulate the sequential effects observed in humans. 

 

 

 
Figure 3.6. AugSRN simulation of MSE difference scores on the different subsequences trained 

in the Different group as in Experiment 1, using parameters outlined by Jones and McLaren 

(2009) collapsed into XXY (RRL and LLR) and XYY (RLL and LRR). Experimental networks 

are shown by filled diamonds and Control networks by open diamonds. Bottom panel shows 

human performance from Experiment 1 across training for Experimental (filled bars) and 

Control (open bars) groups on all four Different rule subsequences in RT (bottom left panel) 

and error (bottom right panel) for comparison. Subsequences RRL and LLR (XYY) are shown 

in pink bars and RLL and LRR (XYY) are shown in blue bars corresponding to the model data. 

Error bars show standard error. 

 

3.3.2.3. Same versus Different learning  

To assess the between-‘subject’ comparison of interest, the networks were again 

compared as the human participants were across training and test with a Bonferroni 

corrected ANOVA on MSE difference scores with Block, Group, Subsequence and 
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Rule as the factors of interest. Rule had a large effect across training, F(1,94) = 1807, p 

< .001, MSE = .059, ηp
2 = .951, and test, F(1,94) = 416, p < .001, MSE = .009, ηp

2 

= .816; which captures the sequential effects observed in the task, with performance on 

Same subsequences overall better than for Different subsequences throughout the 

simulation (see Figure 3.3). This overall difference simulates human participants, 

regardless of the subsequence effects that did not follow human performance as 

discussed previously. There was an interaction between Rule and Group across training, 

F(1,94) = 54.1, p < .001, MSE = .059, ηp
2 = .365, although not at test, F(1,94) = 3.70, p 

= .115, MSE = .009, ηp
2 = .038. This reflects greater learning of the Same rule compared 

to the Different rule, the opposite sequence learning effect to the one observed in 

Experiment 1. The non-significant interaction at test also supports numerically greater 

learning of the Same rule, providing evidence that the simulation does not produce the 

learning effects observed in humans. 

 

3.3.3. Discussion 

The simulation of Experiment 1 produced evidence of learning of both Same and 

Different rules and of sequential effects, however, the essential learning difference in 

humans of better Different rule learning compared to the Same rule was not simulated 

by the AugSRN here. The AugSRN produces the same pattern of sequential effects in 

Control networks as observed in Jones & McLaren (2009); which as discussed in 

Chapter 2 was not the pattern of sequential effects observed in Experiment 1. Whereas 

the AugSRN and Jones and McLaren’s (2009) participants demonstrated better 

performance on subsequences ending in a repeat, Experiment 1 found better 

performance to Same rule subsequences, regardless of whether they ended in a repeat or 

alternation; suggesting that a higher-order sequential effect was evident that is not 

captured by the AugSRN. 

 

Running the parameters used by Jones and McLaren (2009), the model learned more 

about the Same rule than the Different rule, the opposite effect to the one obtained 

experimentally, providing evidence that the simulation was unable to account for human 

performance. This may be due to the learning parameters, which deviate from those 

suggested by Cleeremans and McClelland (1991) and whilst these may have been 

appropriate when simulating Jones and McLaren’s (2009) six-session experiment, they 

may not appropriately simulate human performance in just two sessions. As the 
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networks were trained for the same amount of trials as the human participants, this 

difference between the tasks seems unlikely to merit a change in the rate of learning.  

 

It could be that differences across motivation or participant samples produced a 

different amount of learning, however, as Jones and McLaren (2009) employed 

University of Cambridge students and paid them more money for taking part in the 

experiment, as they were given the opportunity to earn bonuses on top of being paid a 

minimum of £4 per hour. These differences, some may argue, should not have an effect 

on incidental learning, which is characterised as operating outside of intention, effortful 

control or attention (McLaren et al., 2014). However, some authors have suggested that 

decreased attention has an effect on incidental performance on a incidental learning task 

(Tanaka, Kiyokawa, Yamada, Dienes, Shigemasu, 2008), or that indeed measures of 

intelligence, correlate with learning rates (Tomas & Karmiloff-Smith, 2003) or even 

strength of associative learning (Kaufman, DeYoung, Gray, Brown, & Mackintosh, 

2009). These issues, while highly debated, could of course still account for why the 

AugSRN simulates one set of human performance correctly, but is unable to do so for 

another set of human participants. To investigate this further, the learning parameters of 

the model were manipulated in further simulations. 

 

3.4. Different versus Same rule learning 

As suggested previously, the learning rates applied to the model are not fixed and can 

be easily changed. In order to attempt to simulate the human performance observed in 

Experiment 1, there were first changed to those suggested by Cleeremans and 

McClelland (1991) when developing the AugSRN. 

 

3.4.1. Simulation 3: Cleeremans & McClelland (1991) parameters 

3.4.1.1. Simulation details 

Cleeremans and McClelland (1991) suggest smaller learning rate parameters of 0.15 

and 0.2 for slow and fast weights, respectively, along with 15 hidden units. These 

changes were made to the model but all other parameters, model details and procedure 

remained the same as for Simulation 2.  
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3.4.1.2. Results 

Analysed in the same way as for Experiment 1 and Simulation 2, learning is observed 

for both rules in the Group effect: Same rule training, F(1,47) = 155, p < .001, MSE 

= .032, ηp
2 = .768; and test, F(1,47) = 135, p < .001, MSE = .010, ηp

2 = .742; Different 

rule training, F(1,47) = 82.2, p < .001, MSE = .016, ηp
2 = .636, and test, F(1,47) = 60.1, 

p < .001, MSE = .006, ηp
2 = .361. It is clear that there is little difference made by these 

parameter changes, therefore there is no need to further analyse the detailed pattern of 

subsequence learning. A significant Bonferroni corrected interaction between Group 

and Rule across training, F(1,94) = 24.8, p < .001, MSE = .024, ηp
2 = .209, and test, 

F(1,94) = 19.2, p < .001, MSE = .008, ηp
2 = .169, demonstrated that learning was greater 

for the Same rule. Again providing evidence of the opposite learning effect to that 

observed in humans. 

 

3.4.1.3. Discussion 

The simple parameter change to lower learning rates and less hidden units slightly 

reduced the overall learning, but had no qualitative impact on the learning effect 

observed in Simulation 2: that the Same rule was learned better than the Different rule. 

This suggests that some reduction of attention or learning in Experiment 1 compared to 

Jones and McLaren’s (2009) study does not explain the effects found in my research, 

and the AugSRN is still unable to simulate Experiment 1.  

 

It could be that the response units in the AugSRN, which prime the previous response 

and have a substantial effect on the way that the model produces sequential effects, do 

not reflect human processes. As seen in both Same and Different groups, the model 

produces a strong preference for subsequences XXX and XYY compared to XXY and 

XYX, suggesting that the priming of the last response has a strong influence on 

performance right from the first Block of training. However, MSE difference scores for 

both Control and Experimental groups on XXX and XYY reduce over the first few 

Blocks, suggesting that the models are learning to ignore this bias. Indeed, this is 

observed in the first few blocks in simulations of Jones and McLaren (2009)’s study, 

seen in Figure 3.7. This overproduced advantage for XXX could be the cause of the 

Same group learning advantage seen in Simulations 2 and 3. Further to this, as Control 

networks in the Different group experience a benefit on the subsequence XYY due to 

this response priming, contrary to the subsequence effect (poor performance) observed 
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in humans, this may have reduced the amount of learning observed for this subsequence 

and therefore of the rule as a whole. 

 

 
Figure 3.7. AugSRN simulation of MSE difference scores on the different subsequences trained 

in the Jones and McLaren (2009) exclusive-or task, using parameters outlined by Jones and 

McLaren (2009). Experimental networks are shown by filled diamonds and Control networks 

by open diamonds. 

 

3.4.2. Simulation 4: AugSRN without response units 

3.4.2.1. Simulation details and results 

The response units were removed from the AugSRN, which essentially reduces the 

model architecture to that of the SRN (Elman, 1990); with input, hidden and output 

layers only. The models still differ, however, in the existence of two sets of connection 

weights, fast and slow, for the AugSRN. The SRN only contains one, stable set of 

weights equivalent to the AugSRN’s slow weights that do not experience decay. The 

learning rate parameters and hidden units were returned to those outlined in Jones and 

McLaren (2009, slow learning rate: 0.4; fast learning rate: 0.533; hidden units: 20) and 

the simulations were run according to the procedure outlined for Simulation 2. The 

MSE was calculated not from the difference between response unit activations and 

expected responses (as there were no longer response units within the model), but the 

difference between output unit activations and responses, as outlined in section 3.2.1.2. 
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The model did not differ from the AugSRN in its preference for Same rule learning over 

Different rule learning across training and test.  

 

3.4.3. Simulation 5: AugSRN without fast weights 

As the removal of the response units made little difference to the pattern of results 

observed, it is perhaps logical to assume that the response units, which prime 

responding for a short term are not causing the disparity between human and model 

performance. The learning of transient trial orders, as facilitated by the fast weights in 

the AugSRN may therefore be the problem. As the response units have one-to-one 

connections with the output units, and are not involved in error correction or back 

propagation, they are simply a priming mechanism that gives precedence to the previous 

response made. The fast weights, with higher learning rates than slow weights, and a 

half-decay each time step were suggested to account for the short-term learning of 

contingencies between trials, therefore these do not apply necessarily to response 

repetitions alone and can produce a short-term influence of experiencing X followed by 

Y on the subsequent X trial (on which a Y is predicted more likely, Hinton & Plaut, 

1987; McClelland & Rumelhart, 1985).  

 

3.4.3.1. Simulation details and results 

The AugSRN architecture was reinstated, as outlined in section 3.2.1.1, see Figure 3.1. 

The new model involved a set of response units, from which the MSE was taken and 

difference scores calculated. The parameters for learning rates and hidden units were as 

Simulations 2 and 4 (following Jones & McLaren, 2009) and the simulation procedure 

the same. The only difference between this model and Simulation 2 was that the fast 

weights were no longer included in the model. Learning therefore occurred only through 

one component (learning rate: 0.4) that experienced no decay. The results of Simulation 

5 show again that the model, this time without fast weights, was unable to simulate the 

increased learning of the Different rule observed in Experiment 1. The model was 

consequently adapted further to investigate whether both the response units and fast 

weights may be responsible for producing sequential effects that influence Control and 

Experimental subsequence performance and reduce learning in the Different group.  
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3.4.4. Simulation 6: SRN 

3.4.4.1. Simulation details 

Simulation 6 used the SRN to simulate performance on the task, with the architecture 

depicted in Figure 3.9. The model had no response units and no fast weighted 

connections. The slow learning rate parameter was matched to Jones and McLaren 

(2009) and set as 0.4, with 20 hidden units. The MSE was again calculated from the 

output activation as in Simulation 4. The SRN also produced the same pattern of results 

as the AugSRN, regardless of whether the response units or fast weights were included 

in the model. Therefore, simulation of the between-subject difference between human 

participants on Different rules compared to Same rules was not easily modeled by any 

standard version of the SRN using the parameters outlined by Jones and McLaren 

(2009). At least within these learning rate parameters, the model was unable to produce 

these learning effects and this suggests that either these parameters were incorrect, or 

that the model has a more fundamental issue. To investigate the learning parameters of 

the model fully, before discounting the AugSRN as the best model of sequence learning, 

the parameter space was fully investigated. 

 

There could, of course, be an issue with human participants, and there could be some 

difference between the human groups in Experiment 1 that the model does not simulate. 

For instance, one group may simply learn more due to increased attention or motivation 

as a result of some aspect of the sequences experienced themselves. This is entirely 

possible, as the Same group contained subsequences XXX and YXY, the experience of 

which was often anecdotally reported as containing a noticeably high number of strings 

of repeats and alternations. As participants find these subsequences easier to respond to, 

they may notice these subsequences explicitly (to some extent) and either: switch to 

such an explicit system; pay less attention; or be motivated to learn less. While, as 

mentioned previously, there is substantial debate about whether an incidental, automatic 

system may or may not be affected by explicit knowledge (Sun, Slusarz, & Terry, 2005) 

this is a possibility.  

 

Revisiting the human data, we might suspect that if Experimental participants in Same 

and Different rule conditions were responding differently that there would be evidence 

of some quantitative difference in speed or accuracy with which participants completed 

the task, regardless of whether they were responding to consistent or inconsistent 
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stimuli. Bonferroni corrected comparisons comparing the Same and Different rule 

Experimental groups in their raw average RTs and proportion of errors to each 

subsequence (consistent and inconsistent) demonstrate no difference in either RTs 

across training, F(1,46) = .005, p > .9. Average RT [ms]: Same, M = 286.0, SE = 4.37; 

Different M = 285.5, SE = 4.37) nor proportion of errors, F(1,46) = .002, p > .9 

(proportion of errors: Same, M = .076, SE = .011; Different, M = .075, SE = .011). 

Therefore, it seems unlikely that either group differs in their strategy, motivation or 

attention, which would influence responding in some way. It could also be the case that 

participants were simply not using an associative system to learn the task. The benefit 

for the Different rule group would be hard to reconcile with this view, as participants 

find it harder (if anything) to notice or verbalise this rule and therefore a Same rule 

group advantage might be expected.  

 

3.5. Optimisation of the AugSRN 

3.5.1. Optimisation Procedure 

To investigate whether the AugSRN was indeed a suitable model of human learning, a 

search of the parameter space was necessary. Following such a search by hand, it was 

clear that a non-exhaustive trial-and-error procedure was not going to be successful in 

producing an AugSRN capable of simulating human learning on this task. The model 

contains a number of parameters that could be altered, with the absolute values of each 

as well as the interaction and proportional differences between them providing a 

multitude of possible conditions in which one could simulate Experiment 1. Therefore, 

an optimisation procedure was run, which attempted to find the parameters that 

produced MSE with the best fit to human data.  

 

The MatLab FMINSEARCHBND function was employed in order to attempt to 

minimise the difference between human and model performance by altering free 

parameters in the model. These were the: number of hidden units; fast learning rate; 

slow learning rate; and constant k (fast weight decay). Fast and slow learning rates and 

constant k were bound between 0 and 1. The number of hidden units was bound 

between 1 and 9999. The optimisation procedure was given the target of human test 

performance; the values for errors were chosen as these demonstrated the larger 

difference. Same and Different Experimental and Control networks were trained in 

order to minimise the difference between model performance and human performance. 
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As MSE did not necessarily approximate human error rates, a constant was used for 

each set of 96 networks which was calculated for each set of parameters as the optimal 

constant that would transform model MSE values to those equating to human error rates. 

This constant was calculated by means of an optimisation procedure that attempted to 

reduce the difference between the MSE and human data. Multiplying the constant by 

the MSE values produced transformed model MSE for each of the four groups (Same 

Experimental; Same Control; Different Experimental; Different Control) which were 

able to be compared to human performance using a further mean squared error 

calculation (which I will call the Optimisation MSE). This target (the difference 

between transformed model MSE and human performance) was used to minimise the 

error in the optimisation procedure.  

 

In order to avoid the fminsearchbnd procedure getting stuck at local minima, the model 

was run from a variety of starting points. These were selected randomly between the 

bounds of each parameter. Further to this all four possible model architectures simulated 

previously (AugSRN; AugSRN without response units; AugSRN without fast weights; 

SRN) were run. The fminsearchbnd procedure was run several times therefore for each 

model.  

 

3.5.2. Results 

Simulations were classified depending on whether they fulfilled the following criteria, 

which were identified as the key features of human performance: (1) the correct ordinal 

pattern of group performance (from highest to lowest: Same Experimental; Same 

Control; Different Experimental; Different Control); (2) larger learning of Different rule 

over Same rule; and (3) performance in both Same rule groups and Different 

Experimental networks with difference score greater than zero, i.e. these three groups 

all performed above a difference score of 0. A table of the number of models that 

fulfilled these criteria can be seen in Table 3.1, with 5837 simulations out of 75303 

simulating all three correctly.  

 

!  
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Table 3.1. Table showing number of simulations (of 96 networks each) that simulated 

the task as part of the optimisation procedure. Simulations were classified according to 

whether the pattern of results for each group followed: the correct serial order or not; 

performance of three of groups above a difference score of zero or not; and whether the 

Different or Same rule were learned better.  

 Correct Serial Order Incorrect Serial Order 

 Three groups > 0 Three groups not 
< 0 

Three groups > 0 Three groups not 
< 0 

Same > Different 16171 26028 3414 0 

Same < Different 5837 13169 10414 0 

 
The results from the human experiment at test were converted into differences for the 

purposes of visualising the data. Both the sequential effects and sequence learning were 

measured by such a difference. Firstly, the sequential effects were calculated as the 

difference between Different and Same rule in performance of Control groups only. 

Sequence learning was calculated first from the Experimental minus Control learning 

difference score for each rule, and then a further difference between Same and Different 

rule learning was taken as an index learning of the sequences. Both differences reflect 

Different over Same performance or learning, with these scores for human performance 

shown in Table 3.2, and show that while Different Control group performance is the 

inverse of Same rule Control effects, that the learning in the Different group is larger 

than the Same group.  

 
Table 3.2. Results for Experiment 1, showing both RT and error difference score 

performance for Control groups only for Sequential effects and learning scores (the 

difference between Experimental and Control difference scores) for the final Epoch of 

training performance. Sequential effect scores are calculated by taking the difference 

between the Control group Different rule scores and Same rule scores. Sequence 

learning scores are taken from the difference between Same rule learning (Experimental 

minus Control difference scores) and Different rule learning scores (Experimental 

minus control difference scores). 

 Sequential effects Sequence learning 

 Difference scores  Learning scores  

 Same Different Different - Same Same Different Different - Same 

RTs 20.8 -18.7 -39.5 23.0 25.7 2.70 

Errors .056 -.059 -.115 .036 .073 .037 
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These 5937 models are plotted in Figure 3.8, with the Optimisation MSE (the difference 

between the transformed model MSE difference scores and human error difference 

scores) plotted on the y axis. This is a measure of how close the model is to predicting 

the human data. The z and x axes plot two key aspects of the human experimental 

results, the scores for both the sequence learning effect (greater learning of Different 

rule than Same rule sequences, z axis) and the sequential effects (greater performance 

on Same rule subsequences than Different rule subsequences, y axis).  

 

 
Figure 3.8. Plot of the 5937 models that fulfilled ordinal pattern of results observed in human 

participants. Mean squared difference between transformed MSE difference scores and human 

error difference scores is plotted on y axis; the sequential effects score (preference in responding 

to Different over Same rule subsequences) on the z axis; the sequence learning score (learning 

of Different over Same rule subsequences) is plotted on the x axis. Note, only the simulations 

that show greater Different over Same rule learning, as well as greater Same over Different 

sequential effects. Human performance is shown by the red circle.  
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As we can observe from Figure 3.8, no models approach the degree of sequence 

learning found in humans, with no ANOVA of these models producing a significant 

interaction between Sequence and Group. Therefore, whilst the AugSRN is able to 

simulate the order of results, the learning difference between Same and Different rules 

never reaches significance. 

 

3.5.3. Discussion 

The result of both a trial-and-error search of the parameter space and extensive 

optimisation of the free parameters of the model have led to no simulation that 

adequately captures human performance. Whilst the AugSRN is able to produce 

simulations that prefer Different rule learning over Same rule learning, these differences 

are small and not significant. Given the small amount of variance associated with these 

simulations this provides a convincing demonstration that the SRN or AugSRN is 

unable to produce the learning effects observed in humans. This suggests that the 

AugSRN in its current form is not a suitable model of human learning under incidental 

conditions. 

 

3.6. Stimulus-response associations 

3.6.1. Cue competition and subsequence learning 

With the AugSRN unable to produce the pattern of responding observed in human 

participants, the next step was to ask what this model lacks that produced the advantage 

for Different over Same subsequences. Performance across training and test on errors 

(which produced a reliable Group by Rule interaction) in Experiment 1 demonstrated 

learning of subsequences in the following order, from greatest to least: XYY; YYX; 

YXY; XXX, although this difference was not significant. The explanation offered by 

Jones and McLaren (2009) for the poor learning of XXX – that trial-by-trial 

associations compete with sequential contingencies – goes some way to explain the 

poorer performance of the Same rule group; but this does not explain why YXY is 

learned less well than XYY and YYX. Similarly, if the transient learning of X -> X 

reduces the error term (and therefore the amount of learning that occurs) for the second 

X -> X in the triplet; then we should see the most learning for YYX, as the first 

mapping (Y -> Y) does not occur in the second instance within a triplet (Y -> X) and 

therefore the error term will be higher and more learning will occur about this instance. 
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This is not the case with human participants, as there are no differences between 

subsequence learning. Whilst the first set of trial-by-trial mappings within a triplet are 

not important in predicting the Same and Different rule subsequences as they were in 

the exclusive-or case, an eradication of the transient cue-competition effects proposed 

by Jones and McLaren (2009) would result in an absence of subsequence learning 

effects altogether.  

 

It is possible that a vital component of the SRT task and how humans represent the task 

is missing from the SRN and simulations using such models. The SRN receives input 

regarding the current trial and produces a prediction, which is taken as an index of 

responding for the next trial in the sequence. Therefore, in a standard SRN only the 

current response stimuli or the response made (given that they should be the same thing) 

are used to make a prediction about the next trial, as shown in the top panel of Figure 

3.9.  

 

 
Figure 3.9. Elements in trial sequence of any SRT task at trial t and t + 1. In the AugSRN and 

SRN (top panel) either the response stimuli or response made at trial t are used as input to 

predict output (trained to the response made at t + 1). In the RASRN (bottom panel) all elements 

of the trial sequence are used, with the response made at t and the response stimuli at t + 1 used 

to predict the response at t + 1.  

 

Consequently, the SRN ignores the current stimuli that are presented to humans in an 

SRT task between t and t +1 (Destrebecqz & Cleeremans, 2003). Traditionally, as the 

SRN attempts to model trial-by-trial contingencies and relationships across time, these 

simple stimulus-response (S-R) mappings on each time step of the model are not 
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represented, as they are surplus to the requirements of a sequence learning 

demonstration. Thus, in a standard SRT task, the stimulus that indicates the next 

response in the sequence is actually not represented in a typical SRN simulation that 

endeavours to predict the next response based on previous trials. 

 

If both the previous response and current stimulus were used to predict the current 

response required, then these two inputs and their relationship with the previous trials 

could produce a cue competition effect that would account for human performance on 

the task. As simple associations form between each trial and their output, this might 

increase learning about XYY and YYX above the Same rule. That nature of the 

Different rule sequential contingency is that t – 2 is more likely to be in the opposite 

location to t. Therefore, the stimulus-response associations on t – 2 and t are not the 

same, and therefore learning about the relationship between t – 2 and t is not blocked. 

Learning about t – 2 in the Same rule, however, may be blocked by the representation of 

the stimulus-response association of t – 2 which occurs on t. 

 

The model was, as a result, altered to include a better representation of the task given to 

humans, including input to represent the previous trial in the sequence (the Previous 

Response) as well as the current on-screen stimuli that participants were required to 

respond to, see Figure 3.9. To represent the ITI in between these two events, these 

inputs were given different activation values, with the previous response receiving a 

higher activation value to represent the increased time that participants had to process 

this information whilst making a prediction. The current stimuli are only on screen for a 

short time, with the occurrence of these stimuli prompting an immediate response. 

Therefore, whilst the current stimulus (t + 1) has a perfect relationship with the required 

response (t + 1); it has less time to accrue learning. The context units were given a 

higher activation value than both previous responses and current stimuli, as this internal 

representation of the task was in place before the previous response and current stimuli.  

 

3.6.2. Simulation 7: RASRN 

3.6.2.1. Simulation details 

To better represent the task, the model architecture of the AugSRN was altered to that 

shown in Figure 3.10. The response units were removed, as these were found to make 

little difference to the subsequence effects above. As these units accounted for data that 
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involved both shorter RSIs (Cleeremans & McClelland, 1991) as well as when 

participants were motivated to respond extremely quickly (Jones & McLaren, 2009) and 

I observed no bias towards a first-order repeat preference in humans (Experiment 1, this 

thesis), these units were serving no useful purpose. Another modification was to add 

two new units, representing the current stimuli, as input with small activation values (of 

0 for off and 0.1 for on) to represent the shorter time this input was available when 

making the prediction regarding the output (or response) to be predicted. The input in 

the AugSRN (now explicitly representing the previous correct response) was given an 

activation value of 0.75, with the context units given a higher value still (1.3 times the 

activation of the hidden units on the previous trial) to represent the time course of each 

trial. In all other instances the model remained unchanged and a simulation of the task 

was run with: 20 hidden units; a slow learning rate of 0.2; and fast learning rate of 0.5. 

 

 
Figure 3.10. Structure of the Revised AugSRN (RASRN). Input units include representations of 

both left (L) and right (R) previous responses and L and R current on-screen stimuli as well as a 

copy of the hidden units on the previous trial and a bias (a unit that is always on). Activation 

flows in the direction of the arrows, with a set of hidden units passing activation forward once 

more to output and then response units, again representing L and R responses. 

 

3.6.2.2. Results 

The revised AugSRN (RASRN) results were analysed in the same way as the previous 

simulations, and showed a main effect of Group for both Same rule and Different rule 

networks, see Figure 3.11. Same rule learning: training, F(1,46) = 755, p < .001, MSE = 

.058, ηp
2 = .943; and test, F(1,46) = 562, p < .001, MSE = .011, ηp

2 = .916; Different rule 

learning: training, F(1,46) = 220, p < .001, MSE = .119, ηp
2 = .827; and test, F(1,46) = 

80.4, p < .001, MSE = .040, ηp
2 = .639. When compared to one another, Group and 
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Sequence interacted across training, F(1,92) = 12.9, p = .001, MSE = .088, ηp
2 = .123; 

and test, F(1,92) = .4.48, p = .037, MSE = .025, ηp
2 = .046. The crucial test of the 

difference between the two groups showed that the Different rule was learned 

significantly better than the Same rule.  

 

 
Figure 3.11. RASRN simulation (Simulation 7) of Experiment 1 using a slow learning rate of 

0.2; a fast learning rate of 0.5 and 20 hidden units for both Same (black) and Different (blue) 

rules across training blocks and test blocks. Filled diamonds show Experimental networks, open 

diamonds Control networks. Error bars show standard error. 

 

The sequential effects and subsequence learning observed in the RASRN was also far 

closer to that observed in Experiment 1, see Figure 3.12, with performance on XXX and 

YXY subsequences above zero and for YYX and XYY subsequences below zero (i.e. 

Same advantage over Different in Controls). The model also followed the ordinal 

pattern of sequential learning and effects seen in human errors across training and test, 

with better performance to RRR and LLL over RRL and LLR compared to RLR and 

LRL over RLL and LRR. Learning was numerically greatest for XYY; followed by 

YXX; YXY and the least learning was observed for XXX. The Subsequence effects 

were significant in both Same and Different groups across training: Same, F(3,138) = 

568, p < .001, MSE = .035, ηp
2 = .925; Different, F(3,138) = 815, p < .001, MSE = .035, 

ηp
2 = .947; and test: Same, F(3,138) = 12.6, p < .001, MSE = .005, ηp

2 = .215; and 

Different; F(3,138) = 32.1, p < .001, MSE = .002, ηp
2 = .411. The Same group 

demonstrated an interaction between Subsequence and Group across training, F(3,138) 

= 6.74, p = .005, MSE = .035, MSE = ., ηp
2 = .128; but not at test, F(3,138) = 1.07, p 
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= .354, MSE = .002, ηp
2 = .023; providing some evidence for the differential learning of 

these subsequences. The Different group showed a significant interaction at test, 

F(3,138) = 5.13, p = .010, MSE = .005, ηp
2 = .100; but not training, F(3,138) = 2.86, p 

= .078, MSE = .024, ηp
2 = .059.  

 

 
Figure 3.12. RASRN simulation (Simulation 7) of Experiment 1 showing performance of 

Experiment (filled bars) and Control (open bars) networks on all four subsequences in Same 

(black) and Different (blue) rules across training (left panel) and test blocks (right panel). Error 

bars show standard error. 

 

3.6.2.3. Discussion 

The RASRN, with the simple addition of units representing the SRT task, was able to 

simulate the differences that the AugSRN could not. By introducing the current stimuli 

in the RASRN, the model was able to experience the SR contingencies that participants 

were exposed to. Therefore, the conditions required to simulate human learning on this 

task combine competition between sequential contingencies; transient trial-by-trial 

contingencies, and stimulus-contingencies. Whilst SR contingencies were not 

previously instantiated in SRN and AugSRN simulations; as they are not required to 
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produce sequence learning, it seems they are required to accurately simulate human 

subsequence learning and effects.  

 

There are issues associated with this model still however, specifically including the 

variability between and within each model. Whilst networks have hidden unit 

activations and weights reset to represent new participants, the error associated with 

each network is incredibly small, as well as the variance across blocks. Also the model 

does not capture the dip in performance seen in human participants between the two 

sessions. Whilst these issues remain (and are discussed in more detail in Chapter 7) the 

RASRN demonstrates cue competition between the SR contingencies and sequence 

learning. This produces less learning of the Same rule, and more learning of the 

Different rule in line with the sequence learning effects produced by humans. The 

sequential effects of the RASRN also follow those of humans, with the Same rule 

sequences showing higher MSE difference scores in control networks, compared to 

below zero MSE difference scores for Different rule control networks. Therefore, the 

model provides strong evidence that extending the associative account to encompass 

these realistic stimulus conditions provides the best explanation of the subsequence 

learning effects demonstrated in Experiment 1. 

 

3.6.3. Simulation 8: RASRN simulation of Jones and McLaren (2009) 

Further issues arose, however, when the RASRN was used to simulate the Jones and 

McLaren (2009) task as outlined in section 3.2.2. The results are shown alongside Jones 

and McLaren’s in Figure 3.13, where it is clear that the model now demonstrates the 

sequential effects observed in Experiment 1. Hence, whilst learning of XXX does not 

occur, and learning of XYY and YXX is still apparent, the learning of YXY has 

disappeared and the model has reversed the sequential effects observed for XYY and 

YXY. It is a concern then that the model does not perfectly model both sets of data 

within these parameters. This may be due to the variability in human performance and 

as such, using only these parameters, it is not possible to say that the RASRN cannot 

reproduce the results of Jones and McLaren (2009).  
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Figure 3.13. MSE difference scores for the post-training test phase of RASRN 

simulation 8 taken from the current work (left panel) and the human error data taken 

from Jones and McLaren (2009).  

 

The success of the AugSRN in modeling Jones and McLaren’s (2009) results on a 

similar task, and the RASRN’s success in modeling the human data from Experiment 1 

do not provide opposing theories about the development of learning under incidental 

condtions. Both tasks were run independently on different human samples, and whilst I 

do not dispute that the sequence learning effects were reliable, both remain a single 

study and only one demonstration of these effects. It would be ill advised to suggest the 

experimental or computational investigations thus far can reach a definitive conclusion 

about the exact mechanisms and parameters within which to simulate learning, and I 

suggest that further work using the sequences in both tasks is needed to establish better 

how a model could account for both sets of data. 

 

The subsequence effects presented in Experiments 1 and 2 suggest that a far bigger 

preference may be given to responding to YXY than is indicated by Jones and McLaren 

(2009) and that participants are faster (but less accurate) on YYX over XYY. As 

discussed in Chapter 2, the discrepancy between the Control groups in these two studies 

is the issue here, as both were conducted under the same conditions with control groups 

trained in similar ways, therefore further studies are required to ascertain the nature of 

these sequential effects and determine whether the length of training or monetary 

reward-feedback involved in the Jones and McLaren (2009) study was the cause of 

these differences, and to ascertain the reliability of these sequential effects.  
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3.7. General Discussion 

Chapter 3 has discussed the construction of the AugSRN and its successful simulation 

of the Jones and McLaren (2009) human sequence learning results. However, both the 

same parameters and a variety of alternate versions of the model were unable to 

simulate the results of Experiment 1, as the model could never produce a simulation that 

demonstrated significantly greater learning of the Different rule over the Same rule. The 

model was optimised using a bounded search of the parameter space, with random 

starting points and a number of possible model architectures used. Still no model could 

produce a simulation of the human between-subject result that the Same rule was not 

learned as well as the Different rule.  

 

Considering the subsequence effects observed in Experiment 1 in more detail, the cue 

competition account offered by Jones and McLaren (2009) did not fit the pattern of 

results as there was some learning of the subsequence XXX, as well as an advantage for 

the YXY subsequence in Control groups. This account can, however, explain these 

results if the task is represented in its entirety. The SRN and AugSRN involve one trial 

predicting the next, and do not account for the stimulus-response (SR) relationships that 

occur in the SRT task between the stimulus on-screen and the response required and 

made. However, humans experience these contingencies and their presence in the task 

may come to block learning about t – 2 when t – 2 is the same (Same rule) as t, as these 

stimuli share the same stimulus-response association. 

 

The RASRN, a version of the AugSRN adapted to include these current stimulus units, 

replicated the results of Experiment 1 and suggests that this account of the relationship 

between trial order and current on-screen SR contingencies can account for the 

incidental learning of humans on this SRT task. This suggests that humans are both 

sensitive to SR contingencies, and that these contingencies can compete and interact 

with sequential contingencies and trial-by-trial effects. That humans are sensitive to SR 

contingencies is, of course, not a novel proposal but the interaction between current on-

screen stimuli and trial-by-trial effects and sequential contingencies has not, to the best 

of my knowledge, been considered nor simulated. Traditional models of associative 

learning consider SR or stimulus-outcome links on a trial by trial basis, irrespective of 

any sequential effects or influence of serial trial order. Models of sequence learning do 

not require SR associations to learn sequences, and therefore do not include them in 
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general, which does not accurately represent the task conditions (Destrebecqz & 

Cleeremans, 2003) nor does this account for the possible associations that may occur.  

 

Whilst other models have included representations of the current trial stimuli 

(Cleeremans, 1993; Destrebecqz & Cleeremans, 2003), these have not included simply 

providing the model with these inputs (both t and t – 1 when predicting t). In these cases, 

t was introduced to the model as part of a separate, non-recurrent learning system. This 

poses a fundamental question about how we believe human learning occurs: is it always 

recurrent, or only sometimes recurrent? It might seem obvious that stimulus-response 

associations do not require recurrence in order to be learned, but to take this position 

would be to suggest that certain stimuli are treated differently by our learning system. If 

we simply presuppose that humans immediately deploy recurrence to stimuli that follow 

a sequence, but do not do these for other stimuli (e.g. Cleeremans, 1997) this suggests 

that participants can intrinsically recognise sequential stimuli and have volitional 

control over whether recurrence occurs. This seems highly unlikely, and therefore there 

must be some reason to propose that sequential information is learned by a separate, 

recurrent system over and above the fact that it involves sequential contingencies. 

Beyond giving a human or model simply one trial, all stimuli, whether they have 

sequential contingencies or not are presented in some order one after the other. 

 

Separating sequential and non-sequential stimuli in terms of recurrence could be 

explained if recurrence is taken to represent some characteristic of the sequence that is 

fed back to a participant that is not true of other stimuli. This may be explained then by 

some motor response element of sequence learning, as whilst stimuli are responded to, 

the recurrent loop may represent feedback about the sequence of motor responses made. 

This may reflect the motor cortex loop with the basal ganglia (Middleton & Strick, 

2000), that has been implicated in impaired sequence learning when damaged (Siegert 

et al., 2006). However, responses alone are not necessary for sequence learning to occur, 

and participants are able to learn sequences of stimuli that involve no responding 

(Dennis, Howard, & Howard, 2006). It is generally accepted that the motor component 

of SRT task learning is dominant (e.g. Bischoff-Grethe, Goedert, Willingham, & 

Grafton, 2004; Abrahamse et al., 2012). The simulation results of this chapter and the 

evidence provided by Experiment 1 support Willingham’s (1997) suggestion: that both 

motor and perceptual elements are important.  
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If recursion were only applicable to motor actions then the application of recurrent 

models in the study of language (e.g. Elman, 1990; Dienes, 1992) would be 

compromised. This seems unlikely as language itself is highly recursive in structure 

(Rohmeir, Dienes, Gao, Fu, 2014). There may be some other a priori reason for 

assuming that only certain, sequential stimuli are learned by a recurrent network; but I 

suggest that requiring multiple learning systems that separate stimulus-response and 

trial-by-trial learning is not parsimonious. Further to this, the results of Experiment 1 

suggest that learning about these stimulus-response contingencies interacts with 

sequence learning in a way that provides strong evidence for these stimuli being 

processed by the same system. 
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Chapter 4. Concurrent stimuli and sequence 

learning: Testing a prediction of the RASRN  
 
In this chapter I examine the influence of the two sets of input now included in the 

RASRN, and how the RASRN predicts that human sequence learning will be affected 

by variations in these inputs. Chapter 3 demonstrated that both previous responses and 

current on-screen stimuli were found to be required to produce a simulation of human 

learning in Chapter 2, and therefore the RASRN was used to predict how human 

learning would progress when the influence of current stimuli or previous responses 

were increased. Two new units with activation values that matched the current stimulus 

units were activated in the same sequential pattern as the current element in the 

sequence being predicted (Current), the previous element in the sequence (Previous), or 

were simply random (Random). The sequential contingencies used were those of the 

Same group in Experiment 1. The RASRN showed that sequence learning was, if 

anything reduced in the Current condition relative to the Previous condition, suggesting 

that the increased influence of stimulus-response associations interfered with learning of 

the Same rule sequential structure. A behavioural experiment was conducted to test this 

prediction using a modified version of Experiment 1, with all participants performing 

on Same rule sequences to the same two-choice SRT task. The manipulation of interest 

was that two new stimuli were introduced: either a high or low tone played concurrently 

with the appearance of the on-screen response stimuli (Experiment 3); or yellow or 

purple circle fills within the response stimuli instead of the white stimuli used in 

Experiment 1 (Experiment 4). In both experiments I found that participants learned 

more about the Same rule in the Previous condition over the Current condition, 

following the prediction of the RASRN. Human learning in the Random new stimuli 

condition, however, did not match up with model predictions, nor did the raw 

performance scores on consistent and inconsistent subsequences, suggesting that whilst 

additional stimuli do indeed influence sequence learning, this may not be fully captured 

by the RASRN. The results of Experiment 3 and 4 suggest that an additional cue may 

potentiate sequence learning of the Same rule if it provides information about the 

previous element of the sequence.  
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4.1. Introduction 

The RASRN in Chapter 3 showed evidence of being able to simulate human learning 

under incidental conditions. The SRN, AugSRN and the parameter space searched 

between these models were unable to account for the advantage for learning of Different 

rule sequential contingencies over Same rule contingencies. The AugSRN was able to 

simulate Jones and McLaren’s (2009) data, but this sequential rule relied on 

contingencies where both the t – 2 and t – 1 were involved in predicting t. The RASRN 

represents both the between trial contingencies that participants learn, as well as the 

stimulus-response contingencies present on every trial. Instead of using the SRN to train 

the current stimulus predicting the next response, the RASRN was altered so that a 

representation of the previous (correct) response made as well as the stimuli on screen 

are both involved in predicting the outcome of a given trial.  

 

The AugSRN does not include a representation of the current stimuli when predicting 

that trial, which suggests that regardless of the current stimuli that are on-screen or 

presented to participants; a prediction based on the previous trial will have been made. 

The RASRN, however, includes such a representation of stimuli and therefore stimulus-

response contingencies can develop. Even though these are not required to learn 

sequences, their influence on sequence learning may be important. In representing both 

on-screen stimuli and the previous response within the model this changed sequence 

learning in favour of Different rule sequences. As a result, we have some evidence that 

by introducing the influence of these two inputs – the current and previous trial – this 

leads to differences in how well sequences were learned. The RASRN can be used to 

generate a prediction about the influence of these units on human learning and in doing 

so guide the design of experiments with which to test its suitability as a model of 

sequence learning and provide support for the associative account of these processes in 

humans.  

 

To investigate this further, I wanted to examine how increasing the influence of either 

the current stimuli (t) or the previous response (t – 1) might influence the learning of 

sequences and subsequences, as well as sequential effects in humans. Following dual-

stimulus versions of the SRT sequence learning task (Abrahamse et al., 2012; Robertson 

& Pascual-Leone, 2001) the model was altered to contain two further input units to 

represent two hypothetical new stimuli, which were given the same activation value as 

the current stimulus units with the idea that these would occur at the same time. These 
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inputs (or stimuli) could then be given corresponding activations to either the current 

stimulus (Current) or the previous response (Previous) in a sequence, as a between-

network (or between-subject) comparison. A random new stimulus condition was also 

simulated. Therefore, these new stimuli could be congruent (Current) or random 

(Previous, Random) with respect to the current response, as well as following the 

trained sequence (Current, Previous) or not (Random). 

 

Concurrent stimuli in the Current group that have a perfect relationship with another 

stimulus are defined by Abrahamse et al. (2012) as redundant, as there is already a cue 

(location) that can be used to learn about sequences. Robertson and Pascual-Leone 

(2001) were perhaps the first authors to present such a redundant dual-stimulus 

sequence learning task and provided evidence that participants learned more when two 

correlated and concurrently presented stimuli (locations each with a specific colour) 

followed a sequence than when just locations or colours were presented.  Abrahamse et 

al. (2012) suggested that Robertson and Pascual-Leone’s (2001) result was a 

consequence of using different sequences across dual and single stimulus conditions. In 

a replication they found that no improvement in performance occurs in the dual-

stimulus group and therefore suggest that these concurrent stimuli are not learned about 

and have no influence on the task (Abrahamse et al., 2012). 

 

The previous two chapters in this thesis predict instead that stimulus-response 

associations will (differentially) affect sequence learning, even if they are ‘redundant’. 

As human learning was better simulated by the RASRN when the current stimuli 

experienced on the trial were introduced, in Chapter 3 I discussed the possibility that 

stimulus-response associations interfered with learning of the Same rule to a greater 

extent because of the shared stimulus-response mappings between t – 2 and t (the trials 

that determine the probabilistic sequential structure). In the dual-stimulus task presented 

by Abrahamse et al. (2012), which used a 12 element second order conditional (SOC) 

sequence, which involved no first order repeats and only one mapping (2-1-2) that 

involved two of the same stimuli. It is possible, therefore that stimulus-response 

associations may not have been able to interfere with such a structure.  

 

Consequently, in this chapter the effect of additional stimuli on sequence learning will 

be put under greater scrutiny, with the detailed pattern of stimulus-response and 

sequence learning investigated through the use of subsequences and a simple 
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probabilistic two-choice structure as used in the previous two chapters in this thesis. 

Based on the changes to the AugSRN discussed in Chapter 3 as a result of the human 

pattern of responding found in Chapter 2, the role of current and previous trial 

information in sequence learning is compared. I intend to use the predictions of the 

RASRN regarding stimulus-response associations to design and then run a sequence 

learning SRT task with human participants that involve some additional stimuli with the 

aim of testing the suitability of the RASRN as an associative explanation of human 

learning. 

 

4.2. Simulation 9: A prediction of the RASRN 

Before conducting any human experimental work, the RASRN was used to simulate 

possible human performance in order to produce an a priori prediction regarding the 

effect of additional stimuli that followed the current stimulus (t) or previous response (t 

– 1). As mentioned previously, with the aim of matching a possible human experiment, 

the activation of the two new stimulus units would match the current stimulus activation 

values (0 and 0.1) and these stimuli would therefore be presented concurrently. Three 

network simulations were run: one where current stimulus units and new stimulus units 

were entirely matched (the Current New Stimulus condition), and so each time the left 

current stimulus unit was activated, so was the corresponding one of the new stimulus 

units. The second condition (Previous condition) involved the matched activation of 

each new stimulus unit and the previous response units (although the new stimulus units 

were activated at 0 and 0.1 rather than 0 and 0.75). Therefore, if the left previous 

response was activated, so was the corresponding new stimulus unit. A further set of 

networks were trained on randomly activated new stimuli, with each unit activated an 

equal amount of times but with no relationship to either current stimuli or previous 

response activations. Whilst I ran both Different and Same rules on Experimental and 

Control networks, I will concentrate on the Same rule Experimental condition as this is 

where we expected (and found) stimulus-response associations to have the biggest 

effect. 

 

4.2.1. Simulation details 

4.2.1.1. Model construction 

The model (see Figure 4.1) comprised 2 input units that represented the required 

response (left or right) on the previous trial (t - 1) in a two-choice SRT task which are 
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shown on the bottom right of Figure 4.1. Two further input units represented the two 

on-screen response stimuli (left or right) that participants were expected to respond to 

on the current trial (t). The model differed from that described in Chapter 3 with the 

inclusion of 2 further input units, which represented the new stimuli that I added to the 

task, representing the new stimuli in this task. These are pictured in Figure 4.1 as a high 

or low tone (Experiment 3) or two different colours (Experiment 4). A further 20 input 

units acted as context units and a single bias unit that was always activated to 1 also 

made up the input layer. 20 hidden units and 2 output units (to represent the response 

required to trial t, left or right) made up the next two layers of the model.  

 

 
Figure 4.1. RASRN architecture for the simulation of Experiments 3 and 4. The model has 

input that comprises of the previous response made, as well as the current on-screen stimuli in 

the task. This involves a left or right on-screen response stimulus as well as either a high (Hi) or 

low (Lo) tone (Experiment 3) or the colour of the response stimulus itself was either purple or 

yellow (Experiment 4). Context units and a bias unit make up the remainder of the input, from 

which activation is fed forwards to a hidden layer of units and again to output units. 

 

All of the simulation details were as described for the RASRN in Simulations 7 and 8 in 

Chapter 3. Learning rates were 0.2 and 0.5 for slow and fast weights, respectively. The 

bias unit was always activated to 1, whilst the other input units had different activation 

values. These were set according to the length of time the inputs have been available, to 

add some crude approximation to the time course of each trial. Therefore, having just 

occurred before a response is required, the current stimuli (including both the on-screen 

response stimuli and the new stimuli) were given an activation of 0 (off) or 0.1 (on). 

The previous response units were given a higher activation value (0.75 for on, 0 for off) 

as the input from this response has been around for longer. The context units, which are 

a copy of the last trial’s hidden units, represent the internal representation of the task, 
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and were updated before the occurrence of a response on t – 1, and therefore have the 

highest activation value, 1.3 times the hidden unit values on the previous trial and 0 for 

off. The weighted connections between these units and the hidden layer involve 

activation and error correction as described in Chapter 3 (see section 3.2.1). 

 

4.2.1.2. Design 

Following the experiments described in Chapter 2, the training was to last 35 blocks of 

120 trials, with 5 blocks of test: totaling 4200 training trials and 600 test trials. Training 

blocks comprised of Same rule subsequences, constructed in the same way as described 

in Chapter 2 (see section 2.2.1.3) with the same contingency (two out of three trials 

followed Same rule across training). Test blocks were made up of pseudorandom trial 

order.  

 

New stimuli. The key manipulation in this study was in the introduction of two new 

stimuli, which in the model were represented simply as two new ‘current stimulus’ 

input units. The relationship that the stimuli had to the current trial (t) differed, 

according to the group networks were assigned to: Current, Previous or Random (see 

Table 4.1 for the design). One of the two new stimuli would occur on each trial and 

each stimulus overall occurred equally within and across all blocks, regardless of group. 

In the Random group either stimulus was likely on either L or R trials, and therefore 

there was no relationship between the new stimuli and the response stimuli locations 

throughout training and at test.  

 
Table 4.1. Design of Simulation 9, with 24 networks run in each of the three conditions. 

 New Stimulus Contingency with response stimulus at: 
  t t - 1 

Current = !"#$%!∨!(!) 100% 50% 

Previous = !"#$%!∨!(! − 1) 50% 100% 

Random random 50% 50% 

 

The Current group experienced a new stimulus that had a 100% contingency with the 

current trial: for example, on every R trial new stimulus A occurred, and on every L 

trial the new stimulus B occurred. This relationship occurred throughout training and 

test. The Previous group new stimulus had a 100% contingency with the previous 

response stimulus, so if t – 1 had been an R trial, trial t might be an R or L trial but new 
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stimulus A would always occur. Similarly new stimulus B would always occur at trial t 

when t – 1 was an L trial. In the Previous group case the new stimulus had no 

relationship whatsoever with the current trial, as A and B occur with equal likelihood on 

an R or L trial. Therefore, this matches the Random group somewhat in terms of what 

participants experience on each trial, as this Previous group offers no immediate 

information to participants about the required response.  

 

The previous response (t – 1) is itself not required in the Same rule (predicted from t – 

2), and it might be predicted to have no positive influence over learning as it simply 

adds no additional direct information about the current trial. Whilst the Current group 

might seem intuitively like the new stimuli and offer additional salience or activation to 

the sequence of trials experienced, the 100% contingency between new stimuli and 

current response-stimuli could encourage simply stimulus-response learning and may go 

some way to block learning about sequences, as shown in Chapter 3. 

 
4.2.1.3. Simulation procedure 

The RASRN was run over 72 networks, each one with hidden unit activations reset and 

weights between units randomized between -.5 and .5, to represent the participants that I 

intended to run on Experiment 3. All of these networks received training on Same rule 

sequences and pseudorandom blocks at test. I also ran a further 72 Control networks 

that received pseudorandom training and test blocks which are presented in Figure 4.2 

but not analysed here. In all regards, but for the new stimulus units, the simulation 

followed the RASRN details as in Chapter 3 for the Experimental Group.  

 
4.2.2. Results 

4.2.2.1. Same rule learning 

MSEs were taken as an index of RT performance on t + 1 (see Chapter 3, section 3.2.1) 

and a difference score calculated, taking MSE on subsequences consistent with the 

Same rule away from inconsistent MSE. An ANOVA was conducted on the 

Experimental data only with Block, New Stimulus and Subsequence as factors across 

training and test separately. Control network results were not analysed here as 

participants in the following experiments were all trained under Experimental 

conditions and this analysis attempts to provide the basis for the human experimental 

design. They are shown in Figure 4.2 for a visual comparison only to demonstrate that 

the following New Stimulus effects discussed do have an effect on sequence learning 
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and not just performance. Whilst the Experimental networks show similar performance 

across the first twenty blocks of the experiment (see Figure 4.2), after this a difference 

emerges between the groups (main effect of New Stimulus) that is significant across 

both training, F(2,69) = 13.6, p < .001, MSE = .0061 ηp
2 = .282, and at test, F(2,69) = 

353, p < .001, MSE = .017, ηp
2 = .911.  

 

 
Figure 4.2. MSE difference scores for RASRN simulation of new stimulus task for 

Experimental (filled diamonds) and Control (open diamonds) networks with Current (black), 

Previous (blue) and Random (grey) new stimuli conditions across training and test blocks. All 

networks were trained on Same rule sequences. Note that Control networks are not analysed in 

this section and are provided as visual data here for comparison. Error bars show standard error.  

 

Analysed further through a series of Bonferroni corrected pairwise comparisons, the 

Current group perform significantly worse than the Random group across training, 

F(1,69) = 19.5, p < .001, MSE = .001, ηp
2 = .221; and test, F(1,69) = 524, p < .001, MSE 

= .001, ηp
2 = .884. The Current group also perform worse than the Previous group 

across training, F(1,69) = 21.1, p < .001, MSE = .001, ηp
2 = .234; and significantly 

worse at test, F(1,69) = 534, p < .001, MSE = .001, ηp
2 = .886.  

 

The RASRN provides evidence that the Current group learns these sequences the worst, 

with Previous and Random sequence learning at roughly the same level. Before 

exploring this result further, we can see that the networks showed a large effect of block 

across training, F(34,2346) = 673, p < .001, MSE = .022, ηp
2 = .907, which reflects the 
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learning about the stimulus-response contingencies. In all three conditions the RASRN 

is able to learn the perfectly predictive relationship between stimulus and response, and 

this begins to overshadow sequence learning as MSE difference scores trend towards 

zero. The block effect further interacts with New Stimulus, F(68,2346) = 58.1, p < .001, 

MSE = .022, ηp
2 = .628. This demonstrates the emergence of the New Stimulus 

difference across training, which was stable at test, as while there is an overall Block 

effect, F(4,276) = 512, p < .001, MSE = .001, ηp
2 = .881, this does not interact with New 

Stimulus, F(8,276) = 1.38, p = .231, MSE = .001, ηp
2 = .038.  

 

To further investigate these relationships the raw MSE for consistent and inconsistent 

subsequences are presented in Figure 4.3. These show evidence of a trend towards 

better responding regardless of whether they are consistent or inconsistent, providing 

evidence for the role of stimulus-response learning occurring throughout the simulation. 

As we can see, as the Current New Stimulus trained networks experience a higher 

stimulus-response contingency: this results in greater stimulus-response learning 

compared to the other two groups and consequently less sequence learning overall.  

 

 
Figure 4.3. MSE for RASRN simulation of new stimulus task for Current (black), Previous 

(blue) and Random (grey) new stimuli conditions across training and test blocks for consistent 

(filled diamonds) and inconsistent (open diamonds). All networks were trained on Same rule 

sequences (Experimental). Error bars (mostly obscured by the markers) show standard error. 

 

As a result, the RASRN predicts that when humans perform the task that the Current 

group will learn less about sequences due to this cue-competition. Of further interest is 
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the absence of a difference between the Previous and Random groups, as this suggests 

that random noise and additional activations that represent the previous stimulus 

element have the same (or lack of) effect on sequence learning. This suggests that by 

disrupting the stimulus-response associations formed on each trial the model is able to 

learn more, as the overshadowing effect of stimulus-response learning on sequence 

learning is reduced. 

 

4.2.2.2. Subsequence learning and effects 

Subsequence also has a large effect on the networks across training, F(3,207) = 798, p 

< .001, MSE = .031, ηp
2 = .920, and approached significance at test, F(3,207) = 2.55, p 

= .082, MSE = .002, ηp
2 = .036, shown in Figure 4.4. Across training this did not interact 

with New Stimulus, F(6,207) = .317, p = .817, MSE = .031, ηp
2 = .009, with networks 

responding to RRR and LLL better than RLR and LRL. At test, the subsequence effect 

interacted with New Stimulus, F(6,207) = 3.83, p = .005, MSE = .002, ηp
2 = .100, as the 

Current group produced greater learning of subsequences RLR and LRL relative to 

RRR and LLL, with the other groups showing no difference between subsequences.  

 

 
Figure 4.4. MSE difference scores for subsequences XXX (RRR and LLL collapsed, yellow 

bars) and YXY (RLR and LRL collapsed, green bars) from RASRN simulation of new stimulus 

task for Current, Prevous and Random new stimuli conditions across training blocks (left panel) 

and test blocks (right panel). All networks were trained on Same rule sequences. Error bars 

show standard error. 

 

Whilst all three groups of networks show a strong initial preference for the XXX (RRR 

and LLL) subsequences, it seems that this disappears by test as networks are able to 
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learn both the subsequence and the stimulus-response relationships are able to begin to 

block the influence of trial-by-trial effects on the YXY (RLR and LRL) subsequences. 

As the Current networks receive more activation of these stimulus-response 

relationships than Previous and Random networks, this effect is consequently increased.  

 

Block also interacted with Subsequence across both training, F(102,7038) = 321, p 

< .001, MSE = .011, ηp
2 = .823, and test, F(12,828) = 2.01, p = .041, MSE = .001, ηp

2 

= .028, see Figure 4.5. This follows from the Subsequence by New Stimulus interaction, 

as for all groups across training it is easy to see that the subsequences RLR and LRL 

increase in performance to above that of RRR and LLL, reflecting the increasing 

influence of stimulus-response associations for all new stimuli, that was shown to be 

larger then at test for the Current group. However, the interaction between all three 

variables was not significant across training, F(204,7038) = .939, p = .605, MSE = .011, 

ηp
2 = .027, nor test, F(24,828) = .769, p = .729, MSE = .001, ηp

2 = .022, suggesting that 

whilst there was an interaction with Subsequence and New Stimulus at test this did not 

change across the blocks.  

 

 
Figure 4.5. MSE difference scores for all four trained subsequences: RRR, LLL (yellow lines), 

RLR and LRL (green lines) from RASRN simulation of new stimulus task for all Experimental 

networks, regardless of new stimuli condition across training and test blocks. All networks were 

trained on Same rule sequences. Error bars show standard error. 

 

4.2.3. Discussion 

The RASRN  predicts that participants on this task will learn least about sequences in 

the Current group, with the Previous group and Random group producing the most 

Same rule sequence learning. This suggests that, if participants are learning using the 



166 Chapter 4: Concurrent stimuli and sequence learning 

!

mechanisms involved in the RASRN, that increasing the salience of the current on 

screen stimuli (the Current group) does not improve learning of these sequences relative 

to the within-subject inconsistent subsequence control (as in Robertson & Pascual-

Leone, 2001), it will in fact damage it. An intuitive, performance based account of this 

task may propose that discriminable stimuli, congruent with the stimuli that you are 

already learning would be preferred over incongruent, potentially distracting or noise 

providing stimuli that have no relation to the current response required. However, as the 

networks in the Current group are given double the amount of activation applicable to 

training a simple, 100% contingency between units and output, the model starts to learn 

that these units reliably predict the outcome in such a way that begins to overpower the 

trained sequential contingency (the Same rule). Therefore, additional concurrent stimuli 

may be neither redundant nor helpful as the associative account predicts that stimulus-

response learning can interfere with sequence learning (as demonstrated in Chapters 2 

and 3 of this thesis) and that the Current group will be worse at learning the Same rule 

sequences. 

 

Interestingly, this effect of additional stimuli is restricted to the Same rule subsequences, 

as running this task on the Different rule produces no difference between the New 

Stimuli networks (see Figure 4.6). As the learning of the Different rule is stronger than 

for the Same rule in the RASRN, this could be protecting the model from the learning 

of current stimulus-response contingencies. This could also suggest that the learning 

effect of the New Stimulus is restricted to the subsequences found in the Same group, or 

that it interacts with this rule in some specific way. This suggestion falls in line with the 

results from modelling work in Chapter 3, as the introduction of the current stimulus 

units led to a reduction in Same rule learning, allowing the Different rule learning 

advantage observed in Experiment 1 to appear. In line with suggestions in the previous 

chapter, the Current networks trained on the Same rule have a perfect relationship 

between current stimuli and the required response; as well as the t – 2 stimulus location 

that is used in the learning of the subsequence rule. This provides further evidence that 

these ‘same’ relationships between t – 2 and t are harder to learn with increased 

interference from stimulus-response associations.  
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Figure 4.6. MSE difference scores for RASRN simulation of Different rule sequences for 

Current (black), Previous (blue) and Random (grey) new stimuli conditions across training and 

test blocks. Error bars show standard error. 

 

4.3. Experiment 3: Tones and Sequences 

To investigate the predictions of the RASRN the task outlined for the simulations was 

run on human participants, with the expectation that those participants experiencing two 

new stimuli that are entirely congruent with the existing response stimuli in the two-

choice SRT task will show worse performance than when these new stimuli correspond 

with the previous trial or when they are simply random. The new stimuli chosen for the 

task were two tones, played through headphones for 50 ms with the onset of the on-

screen stimuli. The tones were distinguishable by their frequency: a low and high tone.  

 

4.3.1. Method 

4.3.1.1. Participants 

72 participants (aged between 18 and 48 [M = 21.7]; 51 female and 21 male) were 

recruited from undergraduate students at the University of Exeter and were awarded £10 

for participation. Participants provided informed consent prior to taking part in two 

sessions lasting roughly one hour each. Participants were randomly allocated into one of 

the three New Stimulus conditions, Current, Previous or Random. 

 

4.3.1.2. Materials and stimuli 

The experiment was run on an Apple iMac with PsychToolbox for MatLab software. 

Participants were seated roughly 50 cm from the screen, which contained two white 

circle outlines on a black background throughout the task. These white circle outlines 
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were 19 mm in diameter and positioned vertically in line with the screen centre, and 22 

mm either to the left or the right of the screen centre horizontally. The response 

stimulus was a white filled circle (18.5 mm diameter) that was placed within one of the 

two circle outlines, giving the white circle outline the appearance of lighting up or 

filling in. Participants were required to press the spatially compatible ‘x’ and ‘>’ key 

presses on a QWERTY keyboard to the left or right response stimulus, respectively. The 

new tone stimuli were played through headphones and were either high (750 Hz) or low 

(300 Hz). 

 

4.3.1.3. Design 

The experiment was a two-choice SRT task comprising two sessions of twenty blocks 

each. Each of these blocks contained 120 trials, with all twenty blocks of the first 

session and first fifteen blocks of the second session acting as training; and the final five 

blocks acting as test. All participants received training blocks where response stimuli 

followed Same rule sequential contingencies. This was trained according to a two thirds 

contingency, as described in Chapter 2 (section 2.2.1.3) with participants able to predict 

the location of a response stimulus on trial t as the same location as t – 2 on two out of 

three trials. This means that the triplets RRR, RLR, LLL and LRL were twice as likely 

to occur as RRL, RLL, LLR and LRR. Across the five test blocks all participants 

experienced a pseudorandom response stimuli trial order, as described in Chapter 2 (see 

section 2.2.1.3).  

 

Tone stimuli. Regardless of the group participants were assigned to, on every trial a high 

or low tone played when the response stimuli appeared on screen. Which tone (high or 

low) occurred depended on the group participants were assigned to. As described above 

in Simulation 9, the stimuli either occurred with a 100% contingency determined by the 

current trial (Current); a 100% contingency determined by the previous trial (Previous); 

or randomly (Random). High and low tones occurred in all groups with equal frequency 

and in the Random group occurred with equal frequency on both R and L trials, as these 

were arranged by randomising 30 high and 30 low tones over the 60 R trials in a block, 

and 30 high and 30 low tones over the 60 L trials in a block. The Random group 

therefore experienced no contingency between the tones and any response stimulus in 

the task. 
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The Current and Previous group tones were constructed according to the response 

stimulus sequence in place. Across training and test the tones had the same relationship 

with the response stimuli in these two groups. In the Current group on every trial there 

was a perfect correlation between the response stimulus and the tone frequency: for 

example, a high tone occurred on every R trial and a low tone occurred on every L trial. 

Tone assignment was counterbalanced across participants (half experienced R = High, L 

= Low; the other half R = Low, L = High).  

 

The Previous group was arranged in much the same way, with a 100% contingency 

between a response stimulus and tone frequency, but the response stimulus in question 

was the previous trial. For example, if the previous trial was an R, the tone would 

always have a high frequency, regardless of whether the current response stimulus was 

L or R. This was also counterbalanced, with participants experiencing either R(t – 1) = 

High and L(t – 1) = Low, or R(t – 1) = Low and L(t – 1) = High. The Previous group 

then experienced no contingency between the response stimulus location and the tone 

frequency at t; but a 100% contingency between the response stimuli at t – 1 with the 

tone frequency at t.  

 

4.3.1.4. Procedure 

After obtaining informed consent, participants were instructed to simply respond as 

quickly and accurately as possible to the stimuli, and that the task was investigating 

how practice had an effect on peoples’ speed and accuracy of responding to simple 

stimuli. Participants were told that at the same time as the stimuli came up on screen, a 

tone would sound through the headphones. They were instructed to listen to these tones 

but that they should respond to the on screen stimuli. No mention was made of any 

contingencies, relationships, sequences or learning. Participants were reminded of these 

instructions at the beginning of the second session. 

 

At the beginning of each block participants were instructed to press any key to start. 

Each trial began with an inter-trial interval of 500 ms where a black background with 

two white circle outlines was presented. The response stimulus (the left or right white 

circle) would then appear on screen and simultaneously either the high or low frequency 

tone would sound for 50 ms. The response stimulus would remain on screen until either 

the participant made a keypress response or the trial timed out after 4000 ms from the 
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presentation of the response stimulus. RTs were measured from the onset of the 

response stimulus. If participants pressed an incorrect key, or the trial timed out, the 

computer issued a low beep sound, which was qualitatively different to the 50msec tone 

stimulus. The procedure in all other ways directly followed that for Experiment 1, 

described in section 2.2.1.4.  

 

4.3.2. Results 

As for Experiments 1 and 2, average RTs and proportion of errors were calculated for 

each participant across training blocks and test for each subsequence. RTs were only 

taken for correct trials that did not follow an error. Errors were calculated as the 

proportion of trials on which participants made the incorrect key-press response (i.e. 

they pressed x instead of > for a right response stimulus trial) and not those trials that 

timed out or involved an incorrect key-press of any other key on the keyboard. The first 

two trials of each test block and first three trials of each training block were not 

included in the analysis, as these could not be assigned a subsequence. Training average 

RTs were weighted across response stimulus location at t – 3, and, as this leads to 

missing values averages for each subsequence, were calculated over two blocks (which 

constitute an Epoch). This number was used instead of the 5 blocks in Experiment 1 and 

2 in order to produce a more sensitive measure of the changing influence of the tones 

across the experiment, but this meant that block 35 (the final training block) was 

dropped from the analysis. Difference scores were calculated, taking performance on 

consistent subsequences (RRR, RLR, LLL, LRL) from inconsistent subsequences (RRL, 

RLL, LLR, LRR, respectively) and higher scores therefore indicate better performance 

on trained consistent subsequences over inconsistent subsequences. See section 2.2.2 

for more details.  

 

An ANOVA was performed on RT and error difference scores across training and test. 

Training data compared the seventeen training Epochs; New Stimulus (Current; 

Previous or Random); and Subsequence (RRR, RLR, LLL and LRL). Test data was 

analysed for differences between the five Blocks; New Stimulus; and Subsequence. All 

within-subject main effects and interactions are reported with p values that correct for a 

departure from sphericity (Huynh-Feldt) with the unadjusted degrees of freedom. 
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4.3.2.1. Same rule learning 

There was a main effect of New Stimulus across training RT difference scores, F(2,69) 

= 3.88, p = .025, MSE = 21248, ηp
2 = .101, and errors, F(2,69) = 5.58, p = .006, MSE 

= .611, ηp
2 = .139; as well as in errors at test, F(2,69) = 4.86, p = .011, MSE = .191, ηp

2 

= .124; but not RTs, F(2,69) = 1.44, p = .245, MSE = 7391, ηp
2 = .040, see Figure 4.7. In 

all cases (training and test, RTs and errors) the Previous group learn numerically more 

than the other groups, which is supported by Bonferroni corrected pairwise comparisons 

comparing Previous and Random groups across training RTs, F(1,69) = 7.08, p = .029, 

MSE = 312, ηp
2 = .093; errors, F(1,69) = 11.2, p = .004, MSE = .009, ηp

2 = .139; and test 

errors, F(1,69) = 9.59, p = .008, MSE = .010, ηp
2 = .122; but not RTs, F(1,69) = 2.84, p 

= .289, MSE = 370, ηp
2 = .040.  

 

 
Figure 4.7. RT (top panel) and error (bottom panel) difference scores for participants in 

Experiment 3 for Current (black), Previous (blue) and Random (grey) new stimuli conditions 

(tones) across training and test blocks. All participants were trained on Same rule sequences. 

Error bars show standard error. 

 

Whilst the Previous group was consistently above the Current group, this difference was 

not significant across training RTs, F(1,69) = .381, p > .9, MSE = 312, ηp
2 = .005; errors, 

F(1,69) = 3.09, p = .250, MSE = .009, ηp
2 = .043; test RTs, F(1,69) = .489, p > .9, MSE 
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= 370, ηp
2 = .007; nor errors, F(1,69) = 3.50, p = .197, MSE = .010, ηp

2 = .048. Similarly, 

the Current and Random group were not significantly different across training RTs, 

F(1,69) = 4.18, p = .134, MSE = 312, ηp
2 = .057; errors, F(1,69) = 2.51, p = .354, MSE 

= .009, ηp
2 = .035; test RTs, F(1,69) = .973, p = .982, MSE = 370, ηp

2 = .014; or errors, 

F(1,69) = 1.50, p = .674, MSE = .010, ηp
2 = .225, although the Current group were 

consistently above the Random group. 

 

Epoch across training had a significant effect in both RTs, F(16,1104) = 11.4, p < .001, 

MSE = 1604, ηp
2 = .142, and errors, F(16,1104) = 14.8, p < .001, MSE = .035, ηp

2 = .177. 

This provides some evidence of learning across the experiment, although without a 

control group this development in both RT and error performance cannot be attributed 

to a speed-accuracy trade off but could be a familiarisation with the task rather than 

sequence learning. This learning or familiarisation did not show evidence of a 

significant interaction with New Stimulus in RTs, F(16,1104) = 1,11, p = .327, MSE = 

1604, ηp
2 = .031; but did in the errors, F(16,1104) = 2.04, p = .004, MSE = .035, ηp

2 

= .056, suggesting that learning is occurring more rapidly for the Previous group, as 

each group are performing with the same accuracy in Epoch one, with the difference 

between groups emerging across the two sessions of training. The Current group appear 

to perform higher than the Random group in both RTs and errors for the most part, 

although a post-hoc Scheffé correction between Current and Random groups just falls 

outside of significance, F(2,69) = 2.84, p = .065, MSE =  .013, ηp
2 = .076, hence there is 

no conclusive evidence of greater learning in the Current group.  

 

There is support for a learning difference in the last block of test in the errors, with a 

significant main effect of New Stimulus, F(2,69) = 4.84, p = .011, MSE = .088, ηp
2 

= .123, which suggests that a learning effect has emerged over training that shows 

greater learning in the Previous group than the Random group in a Bonferroni corrected 

comparison, p = .009. At test there was a main effect of Block only in the error 

difference scores, F(4,276) = 2.57, p = .043, MSE = .023, ηp
2 = .036, not RT difference 

scores, F(4,276) = 1.28, p = .282, MSE = 1710, ηp
2 = .018. This reflected an overall 

trend towards the extinction of learning (which was not contradicted by the non-

significant direction in the errors), but this again showed little evidence of an interaction 

with New Stimulus in either RTs, F(8,276) = .755, p = .618, MSE = 1710, ηp
2 = .021, or 

errors, F(8,276) = .596, p = .767, MSE = .023, ηp
2 = .017. 

 



Incidental human sequence learning 

!

173 

It is clear when the data is split into inconsistent and consistent subsequence RTs and 

proportion of errors, see Figure 4.8, that the pattern of results does not follow those 

produced by the RASRN. In errors, responding to consistent subsequences was the 

same across the three New Stimulus groups. Whilst the RASRN performed better on 

inconsistent subsequences in the Current group towards the end of training, the human 

participants show a worsening in performance in errors across training on inconsistent 

subsequences. This produces larger difference scores throughout and RT scores show 

better performance for Current and Previous groups across training on consistent 

sequences, again not a prediction of the model.  

 

 
Figure 4.8. Average RTs and proportion of errors for human performance on new stimulus task 

for Current (black), Previous (blue) and Random (grey) new stimuli conditions across training 

and test blocks for consistent (filled circles and bars) and inconsistent (open circles and bars). 

Error bars show standard error. 

 

4.3.2.2. Subsequence effects and learning 

Subsequence had an effect across training RTs, F(3,207) = 9.69, p < .001, MSE = 15903, 

ηp
2 = .123; training errors, F(3,207) = 4.35, p = .017, MSE = .120, ηp

2 = .059; test RTs, 

F(3,207) = 3.96, p = .018, MSE = 4998, ηp
2 = .054; and test errors, F(3,207) = 3.93, p 
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= .009, MSE = .031, ηp
2 = .054, see Figure 4.9. These Subsequence effects demonstrate, 

as in Chapter 2, a speed-accuracy trade off, with better performance on YXY 

subsequences (RLR and LRL compared to RLL and LRR, respectively) than XXX 

subsequences in terms of speed of responding. The opposite is true for accuracy, with 

better performance on XXX subsequences compared to YXY subsequences. These 

Subsequence effects showed no evidence of an interaction with the New Stimulus 

group: relevant interaction for training RTs, F(6,207) = .407, p = .786, MSE = 15903, 

ηp
2 = .012; errors, F(6,207) = .627, p = .632, MSE = .120, ηp

2 = .018; test RTs, F(6,207) 

= .713, p = .596, MSE = 4998, ηp
2 = .020; and errors, F(6,207) = .656, p = .685, MSE 

= .031, ηp
2 = .019.  

 

 
Figure 4.9. RT (top panel) and error (bottom panel) difference scores for subsequences for all 

participants, regardless of New Stimulus condition, across training blocks (left panel) and test 

blocks (right panel). Error bars show standard error. 

 

The Subsequence effect did interact with Epoch across training (see Figure 4.10) in the 

RTs, F(48,3312) = 2.30, p < .001, MSE = 2290, ηp
2 = .032; but not errors, F(48,3312) = 

1.10, p = .322, MSE = .026, ηp
2 = .016, nor with Block at test in RTs, F(12,828) = .797, 

p = .623, MSE = 1528, ηp
2 = .011, or errors, F(12,828) = .980, p = .465, MSE = .013, ηp

2 
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= .014. This training RT effect also interacted with New Stimulus, F(96,3312) = 1.40, p 

= .033, MSE = 2290, ηp
2 = .039, suggesting that whilst performance on YXY remained 

stable, participants in the Previous group experienced a more rapid learning of 

subsequence XXX than the other groups in the RTs. This interaction between Block, 

New Stimulus and Subsequence was also apparent in RTs at test (see Figure 4.10), 

F(24,828) = 1.44, p = .024, MSE = 1528, ηp
2 = .049, suggesting that the subsequence 

XXX suffers from less extinction in the Previous group, as the RT difference score for 

this subsequence only gradually reduces after Block 2, whereas a more dramatic 

reduction in this subsequence is seen in Current and Random groups after Bock 1.  

 

 
Figure 4.10. RT (top panel) and error (bottom panel) difference scores for Current (black lines); 

Previous (blue lines); and Random (grey lines) New Stimulus groups on subsequences XXX 

(RRR and LLL collapsed, filled triangles) and YXY (RLR and LRL collapsed, open circles) 

across training Epochs.  

 



176 Chapter 4: Concurrent stimuli and sequence learning 

!

4.3.3. Discussion 

Experiment 3 provides evidence that when learning Same rule subsequences under 

incidental conditions, participants who heard two tones that corresponded with the on-

screen response stimuli learned less than when the tones corresponded with the previous 

stimuli. This follows an associative account as the Current group learned less than the 

Previous group, going some way to confirm the predictions of the RASRN. However, 

both raw RT and error performance on consistent and inconsistent subsequences do not 

follow the pattern of results observed in the RASRN. Furthermore, the Random group, 

whose tones had no relationship to current nor previous response stimuli locations, 

performed (numerically) the worst in learning the Same rule sequential contingencies. It 

therefore seems unlikely that participants are performing according to the exact 

predictions of the RASRN. 

 

We can begin our analysis of these results by asking if we see evidence of the RASRN 

prediction that stimulus-response learning is restricting learning in the Current group in 

humans? There is no conclusive answer provided by Experiment 3, as the humans do 

not demonstrate RT and error difference score decreases for any New Stimulus 

conditions across training as they do for all groups in the RASRN; and more rapidly in 

the Current networks. Conversely, participants in Experiment 3 demonstrate increasing 

RT and error difference scores throughout the task, suggesting that the model perhaps 

involves a stronger stimulus-response association than are formed in humans as this is 

not enough to overshadow sequence learning in Experiment 3. This does not suggest 

that stimulus-response associations are not formed, nor that they have no effect; as the 

Current group respond faster and more accurately than Previous and Random groups, 

but yet show numerically reduced learning compared to the Previous group.  

 

The Random group provides the strongest evidence of a departure from the predictions 

of the RASRN, as this group demonstrates the poorest human sequence learning 

compared to model predictions placing it as equal to the Previous group. This suggests 

that the influence of these stimulus-response units is perhaps more complex than the 

RASRN currently predicts; but it is difficult to interpret these differences. The Random 

group may be worse than the Previous and Current groups as it disrupts the sequence, or 

it may have no effect on sequence learning and this may provide evidence that the 

Current and Previous groups both perform better than what we would expect if no dual-

stimuli were present. It is also possible that the presence of an adaptive learning rate 
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may have been adversely effected by the random noise in the Random group. In this 

case the learning rate may have been reduced, subsequently learning about the sequence 

reduced. Further modelling using the RASRN with a set of simulations that have no 

additional stimulus units show precisely the same pattern as the Previous and Random 

groups, therefore the model predicts that performance in both Previous and Random 

cases is not affected by these additional stimuli. The only manipulation that affected 

sequence learning is the enhancement of S-R learning in the Current group; which 

results in less sequence learning. This is investigated further in Experiment 4 where a 

group that has no contingencies was tested to enable a comparison between the three 

existing New Stimulus groups and a no-new stimulus case to attempt to discover in 

which groups we see more or less Same rule learning than we would expect from the 

simple single-stimulus SRT task; hence enabling further understanding of the 

underlying processes and their effect on learning.  

 

A further possibility that may explain the results in Experiment 3 is that the tones 

produce some qualitative difference between Current and the other two groups, which 

produces some unwanted effect. Participants in the Current group often said that they 

used the tone as cues to respond and clearly heard two distinct tones for each side, 

without fail. Participants in the Previous and Random groups tended to say that they 

either attempted to ignore the tones, or did not even recognise that there were two 

different tones, as they thought that these were not part of the task. It seems unlikely 

that this qualitative difference in and of itself caused the differences on the task, as if 

this were the case the Random and Previous group performance would match. It could 

be instead that the influence of the stimulus-response association between each tone and 

response is reduced in some way in the Current group. This could be because 

participants pay less attention to the response stimuli as they are simply responding to 

the tones, or it could be because this condition is simply easier and participants are 

motivated to learn less. On the other hand, participants may have been provided with a 

memory of the previous trials, making the sequence learning task simply easier to do 

and therefore learning may have increased in the Previous group.  

 

An advantage for the Previous and Current groups could also be mediated by the 

counterbalanced tone mappings in the Current group. On each trial regardless of the 

tone counterbalancing in the Previous group there was no contingency between a high 

or low tone and either response stimulus location. As the Current group experienced a 



178 Chapter 4: Concurrent stimuli and sequence learning 

!

relationship on each trial between the tone and response stimulus location, this group 

could have been affected by the spatial-musical association of response codes (SMARC, 

Rusconi, Kwan, Giodano, Umiltà and Butterworth, 2006). It has been shown that people 

are predisposed to perceive sound in certain locations, with high tones appearing higher 

in the space or towards the right, and low tones appearing lower and to left. Participants 

in the Current group were analysed based on the tone counterbalancing, and therefore 

whether the high and low tones were consistent with the SMARC effect or not were 

compared in an ANOVA with Epoch (across training) or Block (across test), 

Subsequence and Counterbalancing (SMARC Compatible or Incompatible). No main 

effect of Counterbalancing was found across RT training, F(1,22) = .015, p = .904, MSE 

= 18908, ηp
2 = .001; training errors, F(1,22) = .065, p = .801, MSE = .606, ηp

2 = .003 or 

RT test, F(1,22) = .001, p = .970, MSE = 8291, ηp
2 = .001, nor errors, F(1,22) = .885, p 

= .357, MSE = .190, ηp
2 = .039, therefore it seems that there was no influence of a 

SMARC effect in the Current group that may have interfered with or influenced the 

results of Experiment 3. 

 

Whilst the SMARC effect was found not to influence the Current group, the tones may 

had some additional effect or have been more salient in this group, thus changing 

perhaps their relative activation level and influence as input. It could also be the case 

the model was unable to accurately model the data due to its matched temporal 

representation of the tones (which occurred for less time [50 ms]) than the visual 

response stimulus (response terminated). As the current stimulus units were all activated 

at the same level, this difference between on-screen response-stimuli and tones is not 

represented accurately in these model activations.  

 

Altogether it is difficult to ascertain the effect of the tones on sequence learning with no 

control group, as the Random group also experienced tones and I am consequently 

unable to conclude exactly what effect that the tones have. Taken with the possibility 

that the tones may have been producing unwanted explicit or perceptual confounds to 

the main learning effect of interest, I decided to investigate these effects without the 

strong experiential influence of the tones and with a control no-concurrent-stimulus 

condition for comparison. A replication of the study was therefore designed with New 

Stimuli that were visual rather than auditory, to investigate whether learning in the 

Previous group was significantly better than the other groups, or whether some property 
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of the tones led participants to produce these effects and learning with simply visual 

stimuli would better follow the predictions of the RASRN. 

 

4.4. Experiment 4: Colours and Sequences 

As discussed above, the stimuli chosen to represent the New Stimuli units in 

Experiment 3 could have introduced several confounds that altered learning as predicted 

by the RASRN. The salience and length of time that the stimuli were presented for 

(tones and on-screen white circle response stimuli) were not matched, as well as there 

being the opportunity to pay attention to one modality or another in the Current group. 

Participants in this study were trained on the same task, this time for only one session, 

as the effect in human participants emerged across the first few Epochs of training. The 

New Stimuli used were colours, rather than tones, with two different colours that took 

the place of the white circle response stimuli. These colours followed the relationship 

(or not) with the sequence of response-stimuli locations as described above for Current, 

Previous and Random groups, as well as a further No-Colour group who were trained 

with white response stimuli only, which acted as a control for the presence of colours. 

 

4.4.1. Method 

4.4.1.1. Participants 

96 participants (aged between 18 and 33 [M = 20.5]; 71 female and 25 male) were 

recruited from undergraduate students at the University of Exeter and were awarded £5 

or one course credit in exchange for participation. Participants provided informed 

consent prior to taking part in one session lasting roughly one hour. Participants were 

randomly allocated into one of the four New Stimulus conditions, Current, Previous, 

Random or No-Colour. 

 

4.4.1.2. Materials and stimuli 

The materials and stimuli used followed Experiment 3 (see section 4.3.1.2), except for 

the tones and colour of the response stimuli. The tones were no longer involved, and 

therefore participants did not wear headphones. The response stimulus in this 

experiement, instead of always being a white filled circle, was in most groups a 

coloured filled circle (18.5 mm diameter) that was placed within one of the two circle 

outlines, giving the white circle outline the appearance of lighting up or filling in with a 
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particular colour. The colours used were purple (RGB: 128,0,255) and yellow (RGB: 

255,255,0) for the participants in Current, Previous and Random groups. The No-

Colour group experienced white (RGB: 255,255,255) response stimuli on all trials. The 

relationship between these colours and which location they appeared in is described 

below. Participants were required to press the spatially compatible ‘x’ and ‘>’ key 

presses on a QWERTY keyboard to the left or right response stimulus, respectively.  

 

4.4.1.3. Design 

The experiment was a two-choice SRT task comprising of one session of twenty blocks. 

The first sixteen blocks acted as training; and the final four blocks acted as test. All 

participants received training blocks of Same rule sequential contingencies, as described 

earlier. Across the five test blocks all participants experienced a pseudorandom 

response stimulus trial order. 

 

Response stimuli colour. Participants in the No-Colour group simply experienced white 

response stimuli on all trials, following exactly the materials and stimuli experienced in 

Experiment 1. The data was not simply reused from Experiment 1 as those participants 

were trained across two sessions and tested after 35 blocks of trained; however in the 

current experiment participants were trained on only one session and tested after sixteen 

blocks. The Random group experienced response stimuli that were equally likely to be 

either purple or yellow, with 30 each yellow and purple randomly allocated to the R 

trials across a block and 30 each yellow and purple response stimuli colour randomly 

allocated to L trials. There was no contingency between the colour of the response 

stimuli and the location.  

 

The Current and Previous groups were also organised as described for Experiment 3, 

with the Current group experiencing a 100% contingency between the response stimulus 

colour and location, and the Previous group experiencing a 100% contingency between 

the previous response stimulus location and current colour. Therefore, in the Current 

group one response stimulus location would fill in purple and the other would fill in 

yellow in every instance. The Previous group experienced an equal amount of left and 

right trials that were yellow or purple, but every trial following one response stimulus 

location would always be a purple trial, and the other a yellow trial. The colours were 
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counterbalanced across participants so that half experienced R = yellow and L = purple, 

and the other half R = purple and L = yellow. This continued through training and at test. 

 

4.4.1.4. Procedure 

The procedure was as described for Experiment 3 (see section 4.3.1.4), with participants 

in Current, Previous and Random groups instructed that they were to respond to the side 

of the screen that the circle appeared and not the colour of the stimulus itself. The No-

Colour group were not given this instruction. 

 

4.4.2. Results 

Results were collected and RT and error difference scores were analysed using an 

ANOVA on the eight training Epochs; New Stimulus (Current; Previous; Random; or 

No-Colour); and Subsequence. At test, an ANOVA compared two Epochs; New 

Stimulus; and Subsequence. All details regarding the treatment and analysis of data are 

as for Experiment 3, see section 4.3.2.  

 
4.4.2.1. Same rule learning  

There was a main effect of New Stimulus across training in RT difference scores, 

F(3,92) = 3.40, p = .021, MSE = 9665, ηp
2 = .100, but not errors, F(3,92) = .706, p 

= .551, MSE = .268, ηp
2 = .022, see Figure 4.11. Across test this was the same, there is a 

main effect across RTs, F(3,92) = 2.98, p = .036, MSE = 2887, ηp
2 = .089, but not errors, 

F(3,92) = .701, p = .554, MSE = .062, ηp
2 = .022. It was clear that the Previous group 

learned more than the other groups, which was supported by a series of planned 

contrasts based on the results of Experiment 3, which are all shown in Table 4.2. 

Previous is compared first to the Current group, and is significantly better in training 

RTs and test RTs, but not errors across training, nor test. The Previous group learned 

significantly better than the Random group across training in RTs (again see Table 4.2) 

and at test. However, again the numerical advantage was not significant in errors across 

training or test. The difference between Previous and No-Colour groups (see Table 4.2) 

was significant in RTs across training and test; but not training errors nor test. A series 

of Bonferroni corrected pairwise comparisons found no other significant differences 

between New Stimulus conditions. 
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Figure 4.11. RT (top panel) and error (bottom panel) difference scores for participants in 

Experiment 4 for Current (black), Previous (blue), Random (grey) and No-Colour (red) new 

stimuli conditions (tones) across training and test blocks. All participants were trained on Same 

rule sequences. Error bars show standard error. 

 

Table 4.2. Results from ANOVA for planned comparisons regarding the Previous group 

based on the results of Experiment 3 conducted on both RT and error difference scores 

for training and test phases of Experiment 4. 

 RT difference score: Training Error difference score: Training 

Previous vs: F (df = 1,92) p ηp
2 (MSE = 302) F (df = 1,92) p ηp

2 (MSE = .008) 

Current 4.91 .029 .051 1.46 .231 .016 

Random 6.29 .014 .064 .292 .590 .003 

No-Colour 8.48 .004 .084 1.55 .217 .017 

 RT difference score: Test Error difference score: Test 

Previous vs: F (df = 1,92) p ηp
2 (MSE = 361) F (df = 1,92) p ηp

2 (MSE = .008) 

Current 5.10 .026 .053 .960 .330 .010 

Random 6.23 .014 .063 1.01 .319 .011 

No-Colour 6.41 .013 .065 1.93 .168 .021 

 

The effect of New Stimulus did not interact with Epoch across training RTs, F(21,644) 

= 1.09, p = .358, MSE = 823, ηp
2 = .034; nor errors, F(21,644) = .514, p = .948, MSE 
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= .026, ηp
2 = .016. There was also no interaction across test in RTs, F(3,92) = 1.69, p 

= .175, MSE = 548, ηp
2 = .052; nor errors, F(3,92) = 1.79, p = .155, MSE = .012, ηp

2 

= .055, suggesting that the development of the Previous advantage was not gradual 

across training, indeed it was relatively stable after the first Epoch. Epoch itself had a 

main effect across training RTs, F(7,644) = 29.1, p < .001, MSE = 823, ηp
2 = .240, and 

errors, F(7,644) = 25.5, p < .001, MSE = .026, ηp
2 = .217; as well as across test RTs, 

F(1,92) = 10.4, p = .002, MSE = 548, ηp
2 = .101, and errors, F(1,92) = 7.29, p = .008, 

MSE = .012, ηp
2 = .073. This shows the improved performance on consistent 

subsequences compared to inconsistent across training and the reduction of these 

difference scores at test, reflecting learning and extinction, respectively.  

 

When we examine the learning effect by dividing the data up into inconsistent and 

consistent subsequence performance we can see that, like Experiment 3 and unlike the 

RASRN prediction, that it is the poor accuracy and speed to inconsistent subsequences 

in the Previous group that produces the learning advantage for this group (see Figure 

4.12). Random and No-Colour groups are matched on their consistent and inconsistent 

performance almost exactly, but both Previous and Current groups experience 

numerically slower yet more accurate responses to consistent subsequences than the 

Random and No-Colour groups at test. The model predicts improving performance on 

Current inconsistent trials, whilst this is not the case the group do demonstrate across 

training and test the least errors to inconsistent subsequences. This, however, appears to 

be a speed-accuracy trade-off, with the slowest responding to consistent subsequences. 

Therefore the pattern of responding replicates that found in Experiment 3, and not the 

RASRN. 
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Figure 4.12. Average RTs and proportion of errors for human performance on new stimulus 

task for Current (black), Previous (blue), Random (grey) and No-Colour (red) new stimuli 

conditions across training and test blocks for consistent (filled circles and bars) and inconsistent 

(open circles and bars). Error bars show standard error. 

 

4.4.2.2. Subsequence effects and learning 

Participants showed a main effect of Subsequence across training RTs, F(3,276) = 18.6, 

p < .001, MSE = 7389, ηp
2 = .168, test RTs, F(3,276) = 13.1, p < .001, MSE = 548, ηp

2 

= .125, and test errors, F(3,276) = 4.71, p = .007, MSE = .015, ηp
2 = .049; but not 

training errors, F(3,276) = 2.35, p = .092, MSE = .062, ηp
2 = .025, see Figure 4.13. We 

can see that in this case the sequential effects demonstrate faster and more accurate 

responding to RLR and LRL subsequences compared to inconsistent RLL and LRR 

subsequences over RRR and LLL responding compared with RRL and LLR 

subsequences. This is entirely in the opposite direction to the subsequence effects found 

in the RASRN (see Figure 4.4). 
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Figure 4.13. RT (top panel) and error (bottom panel) difference scores for subsequences for all 

participants, regardless of New Stimulus condition, across training blocks (left panel) and test 

blocks (right panel). Error bars show standard error. 

 

These Subsequence effects did not interact with New Stimulus in any case: training RTs, 

F(9,276) = .462, p = .830, MSE = 7389, ηp
2 = .015; training errors, F(9,276) = .475, p 

= .846, MSE = .062, ηp
2 = .015; test RTs, F(9,276) = .437, p = .897, MSE = 2114, ηp

2 

= .014; test errors, F(9,276) = .890, p = .516, MSE = .015, ηp
2 = .028. New Stimulus and 

Subsequence also had no three-way interaction with Epoch across training: RTs, 

F(63,1932) = 1.26, p = .098, MSE = 807, ηp
2 = .039; errors, F(63,1932) = 1.01, p = .464, 

MSE = 824, ηp
2 = .032; nor test: RTs, F(9,276) = 1.11, p = .353, MSE = 824, ηp

2 = .035; 

errors, F(9,276) = 1.37, p = 200, MSE = .008, ηp
2 = .043. This suggests that the 

relationship between the New Stimulus and the trial order did not differentially affect 

the learning or performance on certain subsequences.  

 

4.4.3. Discussion 

The results of Experiment 4 replicate the findings of Experiment 3, that human 

participants learn more about Same rule sequential contingencies when additional 

stimuli correspond with the previous response stimulus location. The RASRN predicted 
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the differential effect of an additional stimulus on the Same rule learning, and correctly 

predicted that the Current group would be worse than the Previous group. However, in 

both the case of tones and colours, the Current group also learned the Same rule 

sequences numerically (though not significantly) better than the Random (and No-

Colour) group, which does not follow the prediction of the RASRN. The model 

predicted that the Current group would actually perform worse than all of the other 

conditions, with the increased activation of current stimuli producing stronger stimulus-

response associations that interfered with sequence learning. The results of Experiments 

3 and 4 do not exclude this possibility, but they suggest that the Previous group has a 

clear advantage over the other New Stimulus conditions.  

 

This suggests that, firstly, tones did not produce some qualitative difference for 

participants depending on whether they were contingent with on-screen response stimuli 

or not, or that they were processed at a faster speed than the response stimuli, giving 

some speed bias to the Current group. That this effect is replicated across two different 

stimulus types despite their differing characteristics, provides strong support for the 

improved learning of the Same rule under incidental conditions when additional stimuli 

reflect the previous response required as being due to the contingent relationship 

between stimulus and sequence.  

 

This study also provides evidence that No-Colour, Random and Current groups learn 

sequences at the same rate. This suggests firstly that participants do not seem to be 

affected by increasing the level of discriminability between stimuli, as in the Current 

group. Having the purple and yellow stimuli to further separate the representations of 

left and right response-stimuli did not improve performance on the task compared to a 

control group, nor did it reduce the learning as predicted by the RASRN. Similarly, 

adding extra stimuli to the task had no negative effect on learning, as in both Current 

and Random cases participants were no worse than the No-Colour group. This suggests 

that these additional stimuli did not distract from sequence learning and therefore this 

suggests that we have evidence not of any sequence learning disadvantage in any group, 

but evidence that the Previous groups can learn more about Same rule sequences.  

!  
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4.5. General Discussion 

Whilst adding additional stimuli into the SRT task was shown to have an effect on 

sequence learning, Experiment 4 suggests that random noise or additional attentional 

demands have no effect on learning as there was no difference between Random and 

No-Colour groups in learning difference scores. This provides evidence that the 

occurrence of these new stimuli did not alter learning just because new stimuli were 

introduced, reflecting the claims of Abrahamse et al. (2012) regarding redundant stimuli. 

The Previous group showed significantly more learning of the Same rule sequence than 

the Random group in Experiments 3 and 4, whereas the Current group was not 

significantly better than the Random group in Experiment 3 (although it was 

numerically so) nor either Random or No-Colour groups in Experiment 4. Thus, while I 

have demonstrated the effect expected as a result of RASRN predictions, that the 

Current group would be worse than the Previous group, it is not because the Current 

group was impaired. Instead my results suggest that additional stimuli that have a 

relationship to the previous elements in a sequence seem to have an effect on learning, 

even though these stimuli did not provide predictive information about the current trial 

in themselves. 

 

There are a number of possibilities for this effect, the first being that the Previous 

condition produces a different level of concentration or attention to the task, as the 

stimuli (tones or colours) have no contingent relationship with the current response 

stimuli. This cannot be the case, as the Random condition acts as a control for this 

manipulation and demonstrates no improvement to learning in either Experiment 3 or 4. 

Therefore, the Previous group does not simply provide an environment that encourages 

greater concentration. A further possibility is that non-contingent stimuli produce some 

increase in error, as there are no contingencies between the two current stimuli 

(tones/colours and response locations) in Random or Previous groups, however, as the 

advantage was only observed in the Previous group (and not in Random) this again 

cannot explain the Previous learning advantage. 

 

A further suggestion is that the pattern of new stimuli (tones or colours) follows the 

pattern of on-screen stimuli with a lag of one trial, which means that the sequence is 

experienced twice. This could suggest that participants hear or see a sequence of the 

same precise order on more than one occasion and this gives them twice the amount of 

opportunity to encode or remember the subsequence. This suggests that the Previous 
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group concurrent stimuli are in a sense, non-redundant, as they do offer additional 

information about the task on each trial, even though this is not directly useful it may be 

made use of by an associative system. Instead of all stimuli and contingencies going 

into the same model with some recurrence or memory; this suggests that learning could 

be in some senses isolated, with one set of stimuli encoded separately to another (e.g. 

Cleeremans, 1997; Destrebecqz & Cleeremans, 2003). However, this explanation would 

also require a model that could learn sequences of stimuli separately as the stochastic 

structure of the Same rule could be extracted from both response stimulus locations and 

tones or colours, increasing learning of this sequence. This suggests that a model would 

require separate sets of recurrent networks that sum together (rather than competing) to 

predict the next trial leading to an  increase in the overall representation of the Same 

rule. 

 

It is suggested that the visual system contains functionally separate areas that encode for 

spatial features such as location or orientation, while another part of the visual cortex 

encodes for stimulus properties (e.g. colour), which are dissociated and encode 

informational separately (Ungerleider & Mishkin, 1982) therefore, it could be entirely 

possible that the contingencies across stimulus presentations may be restricted to 

particular dimensions. However, if this was the case then the Current group, which also 

involves two sets of stimuli or dimensions that both follow the sequential rule should 

also see an advantage, which they do not. We could instead assume that the Current 

group’s did not represent response stimulus locations and additional concurrent stimuli 

as two distinct stimuli, as these are contingent and therefore may be bound together and 

represented configurally at input. If the response stimuli and new stimuli (tones or 

colours) were not represented locally, but represented as compound stimuli (for 

example: right-purple, right-yellow; left-purple and left-yellow) then the Current group 

will receive input from only two units (essentially matching the No-Colour case), while 

the other groups will receive input from four units. When these four compound 

representations are used as input to the RASRN, rather than local representations for 

stimuli locations and colour, this does not produce the differences observed in humans, 

with the Random group still performing numerically the best on Same rule learning, 

with no improvement in Previous group responding (see Figure 4.14).  
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Figure 4.14. MSE difference scores for the RASRN simulations of Current (black), Previous 

(blue) and Random (grey) conditions for networks trained on Same rule sequences when four 

units represent compound stimuli (e.g. right-purple) rather than local representations for 

location and colour, across training and test blocks. Error bars show standard error.  

 
Taken together, it could be possible that Previous groups are given an advantage in 

sequence learning as two lots of sequence learning sum together; but that representing 

the Current stimulus conditions as compound stimuli or perhaps the influence of 

stimulus-stimulus or stimulus-response associations could reduce some advantage that 

dual-sequence learning occurring may provide. This task does not, however, allow the 

examination of learning about tones or colours independently of the influence of 

learning about response-stimuli locations. Whilst the RASRN predicted that the stimuli 

would simply reduce sequence learning, it is possible that participants then were able to 

learn about the additional concurrent stimuli and this could in fact increase sequence 

learning. Without being able to disentangle these two stimulus types it is not possible to 

understand how much participants may have learned about either stimuli and how these 

may then interact with one another. A task design is required where dual-stimuli can be 

separated so that we can investigate how learning about different task elements 

progresses, and how a relationship between sequences and other stimuli might alter 

sequence learning.   

 

What can be concluded from these data is that in humans it seems that additional stimuli 

have an effect on responding, but this was restricted to stimuli that related to the 

previous element in a sequence of trials experienced. Therefore I have provided 

evidence that in a sequence learning task the discriminability of stimuli, properties of 

the stimuli and random variation in some stimuli are not important in sequence learning 
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itself. However, when these stimuli provide additional information about the sequence 

(i.e. provide a representation of the previous trial) then participants can use this to 

significantly improve sequence learning, at least in this case. That this is not observed in 

the Current group suggests that participants may be able to learn some additional aspect 

of the sequence in the Previous group, or that stimulus-stimulus or stimulus-response 

contingencies in the Current group block this effect. However, conclusions regarding 

the reason for this are tentative, as we are unable to assess whether participants learned 

anything about the relationship between tones and responding, either with the previous 

trial or how this impacted on the current trial. Rather than a cue competition effect, then, 

here we have observed that additional stimuli can produce potentiation of learning. To 

investigate how additional stimuli interact further with sequence learning, Chapters 5 

and 6 adapt the SRT task to include additional colour cue stimuli that are predictive in 

their own right. In this way I attempt to further investigate how and whether these 

stimuli are learned about and how they might come to interact with one another.  
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Chapter 5. Implicit cue-response learning  
 

Chapter 4 introduced additional stimuli to the SRT task potentiated sequence learning 

when these new stimuli provided information about the previous element in the 

sequence. To investigate this further, the two-choice SRT task used in Experiments 1 

and 2 was adapted to include a separate cue that occurred before the presence of the 

response stimuli. The aim of this was to create a task that could produce learning about 

cue-response relationships that could then be placed alongside sequential contingencies 

to investigate the interaction between the two. In this Chapter this task is piloted 

without sequential contingencies in order to find evidence of cue-response learning. 

Participants in Experiment 5 demonstrated learning under incidental conditions about a 

central colour cue that predicted a response-stimulus location. This learning was 

simulated across training by the RASRN. A group of participants who completed the 

task under intentional conditions provided a prior probability for explicit knowledge on 

the task, and also themselves demonstrated greater learning in Experiment 6. The 

Intentional performance, when used as a prior in a Bayes factor analysis, provided 

evidence for the null in Experiment 5: that cue-response learning occurred without 

awareness of these contingencies. Altogether I provide evidence that participants are 

able to learn simple cue-response contingencies and this task is therefore suitable for 

use in a dual-cue version alongside sequential contingencies to investigate the 

interaction between cue-response and sequence learning in Chapter 6. 

 

5.1. Introduction 

Chapter 4 provided evidence that participants were able to learn more about sequences 

when an additional stimulus on each trial provided information about the previous 

element in the sequence. As this potentiation of sequence learning was not found when 

these stimuli were random, this suggests that additional sequential information 

increased learning. However, as this potentiation was also not seen when the stimuli 

followed the pattern of the response locations on the current trial, this suggests that a 

more complex relationship may have been occurring between stimuli and responses. 

What this relationship was, however, is hard to say as the tones or colours and response-

stimuli locations correlated with one another throughout training and test. It was 
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therefore not possible to assess learning about the relationship the additional stimuli had 

with responses and isolate this learning from learning about sequences themselves.  

 

In order to understand how the Previous group stimuli were able to interact with and 

increase sequence learning, we need to be able to separate them in some way, and 

therefore the additional stimuli would have to be learned about in their own right as well 

as being related to the sequence itself. If one were able to investigate how simple cue-

response associations were formed under incidental conditions then it would be possible 

to investigate learning about the stimuli and separate this from and understand the 

interaction with sequence learning. Rather than the stimuli simply correlating with the 

sequence of pre-existing response locations, stimuli that have their own contingencies 

with responses could be introduced alongside sequence learning. Therefore, it would be 

possible to separate learning about these contingencies in a test phase and establish how 

they interact with one another. These experiments are described in Chapter 6, but first a 

task design was required that could accommodate sequential contingencies but would 

demonstrate the effect of simple instrumental cue-response contingencies.  

 

There have been a number of studies that have investigated dual-cue SRT tasks in 

sequence learning, where not only are there multiple stimuli, but these stimuli are 

predictive in their own right. Cleeremans (1997) designed a four-choice SRT task where 

participants showed evidence of incidental sequence learning. The sequence was based 

on the location of response-stimuli, which could themselves also be one of four colours. 

These colours also provided predictive information about the location of the next trial 

and participants learned these cue-response contingencies; but they were also instructed 

to look for them and explicitly made aware of their presence. This is an obvious issue if 

I want to examine the influence of automatic, associative learning processes on one 

another, hence a task is required on which participants demonstrate incidental cue-

contingency learning. 

 

In an implicit version of Cleeremans’ (1997) task, Jiménez and Méndez (1999) found 

no learning about cue-response contingencies under incidental conditions, and as such 

were unable to make any inferences about the effect that cue-response learning may 

have had on sequence learning (or indeed, vice versa). This chapter attempts to 

investigate whether people can learn cue-response contingencies incidentally, before 
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examining this learning within the context of a sequence learning task in the following 

chapter. However, few tasks are available in the associative literature to base this on, as 

participants in simple instrumental conditioning experiments often become or are made 

aware of the contingencies (Perruchet, Cleeremans,, & Destrebecqz, 2006).  

 

5.1.1. Designing a hybrid SRT task with instrumental and sequence learning 

As mentioned in Chapter 1, the problem with many studies of simple associative 

learning in humans is they make it so easy for the propositional system to do all the 

work. Mr X has avocado and is sick. Mr X has bannana and is not sick. There is no need 

for an incremental build-up of relationships between contingencies when humans are 

perfectly capable of deducing these relationships rationally using some conscious 

reasoning system (Beckers et al., 2006; Mitchell et al., 2009). Whilst authors increase 

the complexity of the task by increasing the number of stimuli and outcomes (Le Pelley 

et al., 2005), to some extent any evidence of learning might be driven by explicit 

knowledge of one or some subset of contingencies within the entire sample. 

Furthermore, whilst authors claim that elaborate cover stories can in fact mask 

contingencies that participants make predictions about (Vadillo & Matute, 2010), there 

remains the problem of using real-world scenarios that attempt to mask the aims of the 

study but may in fact produce an influence of explicit expectations on learning 

(Perruchet & Pacton, 2006; Waldmann & Holyoak, 1990; 1992).  

 

The SRT task provides an suitable paradigm to study complex sequential contingencies 

that participants are unaware of: as they are required to attend to the stimuli as they use 

these to respond, but the contingencies between previous and current trials are not made 

explicit. The task instructions therefore do not require that attention is drawn towards 

trial order or sequential rules that then must be covered up, as task instructions can 

simply refer to simple key-press responses and performing optimally. The cover story 

of the experiment is not intended nor required to mask any contingencies that 

participants can learn to predict. The instructions; conditions under which learning 

occurs; and the measure of learning all therefore do not require contingencies to be 

made explicit, which are the principles on which the design of this task was based. 

 

The two colours used in Experiment 4 had an effect on learning that avoided the issues 

associated with the perceptual differences between tones and visual stimuli. Therefore, 
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the task was designed to include different colours that would be presented to 

participants with the aim of training incidental differential instrumental conditioning. 

The adapted SRT task in Experiment 4 may have demonstrated modified sequence 

learning as a result of these two colours, but as these were presented concurrently with 

the response-locations the RASRN would predict small learning of these cue-response 

contingencies due to the reduced activation at input. Traditionally, when conditioning 

responses, the onset of the cue or CS presentation occurs before the onset of the US (the 

response stimuli), as in Perruchet et al. (2006). Therefore the cues introduced to this 

task were made to occur before the presentation of the response stimuli.  

 

Practically, if the colours were presented before the response stimulus locations filled 

then they could not be placed within the stimulus location as in Experiment 3, as this 

would evoke a response. Consequently, the experimental design of Aitken (1996) was 

used as the basis for the experiment, where participants were required to respond on a 

two-choice SRT task with response locations at either side of the screen. Participants 

were instructed to simply respond to stimuli but that before one of these appeared; a 

shape would appear in the centre of the screen that, unbeknownst to them, provided 

information about which response location would fill. Aitken (1996) used three shapes: 

a star; cross, or wedge, with the star or cross as controls that had no relationship with 

whether that trial would require a right or left response. The wedge stimuli were drawn 

from a set of categorization stimuli so that, depending on the length of the radius and 

angle of the wedge, they formed two categories that were each perfectly predictive of a 

response location (e.g. Category 1 stimuli always occurred before a right response 

location).  

 

Whilst not intending to study implicit cue-response learning per se, Aitken (1996) 

provides evidence that participants were able to learn that (a certain category of) cues 

predicted a response in the absence of awareness (as indexed by a questionnaire). 

Therefore, the SRT task used in Experiments 1 to 4 was adapted to include a central 

square stimulus that would fill with a colour before the occurrence of a white circle 

response stimulus on either side of the screen. The parameters of Aitken’s (1996) 

experiment were followed, as detailed below, with the aim of producing simple 

contingency learning between colour cues and responding. I was also concerned that 

these contingencies would be far easier to notice than sequences, and so included direct 
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tests of explicit knowledge more sensitive than asking participants to verbally describe 

anything they had noticed. 

 

5.2. Experiment 5: Incidental colour cue-response learning  

In this experiment the SRT task was adapted to introduce a cue that occurred before the 

response-stimuli, similar to the experiment designed by Aitken (1996). These cues were 

different colours that filled inside of a white square outline in the screen centre. Some of 

the colours partially (80%) predicted the response location. I chose to include a number 

of control colours to avoid explicit recognition of contingencies. This initial experiment 

also attempted to maintain the design continuity between Experiments 1 to 4 as the aim 

of introducing the cue-response contingencies was to eventually investigate how these 

would interact with sequence learning. In order to test participants’ awareness of the 

colour contingencies with response-stimuli locations both a post-experimental interview 

and prediction task were given to participants after the task had finished.  The results of 

which are provided here, but discussed in more detail in section 5.5. 

 

5.2.1. Method 

5.2.1.1. Participants 

16 participants (aged between 18 and 24 [M = 19.3]; 12 female and 4 male) were 

recruited from undergraduate students and were awarded £5 in return for participation. 

Participants provided informed consent prior to taking part in one session lasting 

roughly one hour.  

 

5.2.1.2. Materials and stimuli 

The experiment was run on an Apple iMac with MatLab and Psychtoolbox software. 

Participants were seated roughly 50 cm from the screen, which contained three white 

shape outlines on a black background throughout the task. A white outline of a square, 

19 mm in height and width, was present in the center of the screen, with two white 

circle outlines (also 19 mm in diameter) either side of the square. The circles were 

positioned in line with the square outline vertically either and 22 mm either to the left or 

the right of the square outline horizontally in line with experiments 1 to 4. 
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The cue stimulus was a coloured filled square (18.5 mm height and width) that was 

placed within the white square outline in the centre of the screen, giving it the 

appearance of lighting up or filling in. This cue could be one of four colours in 

experimental blocks: red (RGB: 255,0,0); green (RGB: 0,255,0); blue (RGB: 0,0,255); 

or yellow (RGB: 255,255,0). The response stimulus was a coloured filled circle (18.5 

mm diameter) that was placed within one of the two circle outlines, giving the white 

circle outline the appearance of lighting up or filling in. The colours were the same as 

for the cue and matched this colour on each trial. Participants were required to press the 

spatially compatible ‘x’ and ‘>’ key presses on a QWERTY keyboard to the left or right 

response stimulus, respectively.  

 

5.2.1.3. Design 

The experiment was a two-choice SRT task comprising one session of twenty blocks. 

These blocks each contained 120 trials, and so the length of training and number of 

trials differed from Aitken (1996) and these trial numbers were chosen to match 

Experiments 1 to 4. The first fifteen blocks were training, and the final five acted as test. 

 

Colour contingencies. Colour contingencies with certain responses are shown in Table 

5.1. All of the four colours were equally likely within each block and occurred with the 

same frequency across the experiment. Within the training blocks, two of the four 

colours positively predicted a certain response (Predictive); and two colours had no 

positive contingency with a certain response (Non-Predictive), occurring with equal 

likelihood within and across blocks on right and left response trials. Returning to the 

Predictive colours, these had an 80% probability of occurring before a certain trial 

location across training. This followed Posner & Snyder (1975) and meant that the 

conscious detection of contingencies was made that much more difficult.  

 

The colours themselves (red, yellow, green, blue) were randomly allocated to each 

experimental Colour for each participant. Colour 1 predicted a left response on 80% of 

trials, which equates to 24 of the 30 Colour 1 trials per training block (360 across the 

training). Colour 2 predicted a right response on 80% of trials, and therefore occurred 

24 times per block before a right response was required (360 across training blocks). 

Colours 3 and 4 each occurred 225 total times before a right response and on 225 trials 

before a left response was required across training. Overall, the number of non-
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predictive colours meant that the percentage of trials on which a participant was able to 

correctly predict the response-stimulus location given the colour on each trial of training 

was 65%. At test all of these contingencies became 50:50, and each colour was equally 

likely to predict either response. All blocks included an equal number of right and left 

response-stimuli and the number of repeats and alternations was controlled with a 

random sequence of response-stimulus locations that had no relationship to the colours. 

 

Table 5.1. Number and percentage of trials that each of the four Colours across the task 

in Experiment 5 co-occurred with right or left response stimulus locations.  

  Co-occurrence with left response-
stimulus 

Co-occurrence with right response-
stimulus 

 
Trials per block % of total trials 

for that Colour 
Trials per block % of total trials for 

that Colour 

 Predictive     

 Colour 1 24 80% 6 20% 

 Colour 2 6 20% 24 80% 

 Non-Predictive     

 Colour 3 15 50% 15 50% 

 Colour 4 15 50% 15 50% 

 

5.2.1.4. Procedure 

As in previous experiments, participants were instructed to simply respond as quickly 

and accurately as possible. The only difference in instruction was that they were 

instructed to fixate on the coloured square, suggesting that it would help them to 

respond more quickly and more accurately by attracting their attention to the centre of 

the screen. They were informed that the experiment was intended to measure their 

reaction times and errors and its aim was to investigate people’s ability to respond 

quickly and accurately to very simple stimuli over the course of an experiment. They 

were not informed of any relationship between the colours of the stimuli and the 

responses required and no mention was made of anything to learn about or from. They 

were told that the colours changed to make the task less dull and to try and retain their 

attention.  

 

At the beginning of each block participants were instructed to press any key to start. 

Each trial began with an inter-trial interval of 250 ms where a black background with a 

white square outline and two white circle outlines was presented. The cue stimulus (a 
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coloured square in the centre of the screen) would then appear for a variable interval of 

between 250-500 ms (following Aitken, 1996). The response stimulus (the left or right 

white circle) would then appear on screen until either the participant made a keypress 

response or the trial timed out after 4000 ms from the presentation of the response 

stimulus. RTs were measured from the onset of the response stimulus. If participants 

pressed an incorrect key, or the trial timed out, the computer issued a beep sound.  

 

Feedback with average RTs and percentage of errors was given at the end of each block 

and there was a thirty second enforced break, as described for Experiment 1. A short 

verbal structured interview was given at the end of the session, in which participants 

were asked about what they had noticed in the experiment regarding the colours. 

Participants were asked to describe any contingences they may have noticed, and then 

were asked to explicitly guess which response each colour predicted after being told that 

two colours were predictive and that one of each of these predicted a left or right 

stimulus.  

 

After I asked participants whether they had noticed anything about the experiment I 

asked them to complete a simple prediction task whereby the square in the centre would 

fill in with a colour and they would have to respond with the keys used in the 

experiment, although the circle would not fill. They were not put under time pressure to 

do this and were instructed to simply use their intuition, a guess, or any knowledge they 

might have about the task to select their response. Participants responded for two blocks 

of 32 trials with a 250msec RSI, within which each of the four colours were presented 

eight times. The order of presentation was randomised and there was no feedback given 

during or at the end of these two short blocks, and participants were informed that when 

they made a response nothing would happen and neither response stimulus would fill. 

Participants were finally debriefed and thanked for their participation.  

 

5.2.2. Results 

5.2.2.1. Cue-response learning 

Inclusion and exclusion criteria for RTs and errors are detailed in Experiment 1, and 

averages for these were calculated for each of the three Colour Types. These were 

Predictive Consistent (the 80% of Predictive trials that were consistent with the trained 

contingency); Predictive Inconsistent (the 20% of Predictive trials that were inconsistent 
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with the trained contingency); and Non-Predictive (all trials for Colours 3 and 4). An 

ANOVA was conducted for both average RT and proportion of errors (note: not a 

difference score) with Colour Type and Block as factors. As before, all within-subject 

main effects and interactions are reported with a Huynh-Feldt correction to adjust for 

departures from sphericity, however, the uncorrected degrees of freedom are reported.  

 

Training phase. The main effect of Colour Type was significant across training in RTs, 

F(2,30) = 11.2, p < .001, MSE = 205.1, ηp
2 = .428; and errors, F(2,30) = 9.68, p = .001, 

MSE = 002, ηp
2 = .392, see Figure 5.8. Participants demonstrated an ordinal pattern of 

responding in RTs and errors as one would expect to observe if learning had occurred, 

which is supported by a set of planned contrasts comparing the Colour Types, shown in 

Table 5.2.  

 

 
Figure 5.1. Average RTs (top panel) and proportion of errors (bottom panel) for Colour Types 

across the training and test blocks of Experiment 5. Lines show performance on Predictive 

Consistent (black filled circles); Predictive Inconsistent (red filled circles); and Non-Predictive 

(black open circles) colours. Error bars show standard error. 
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These provide evidence that Predictive Consistent trials are responded to more quickly 

and accurately than Predictive Inconsistent trials, which are significantly slower than 

Non-Predictive trials. Predictive Consistent trials are also responded to significantly 

faster than Non-Predictive trials (again, see Table 5.2) although this trend was not 

significant in the errors. This provides strong evidence of learning about the 

contingencies in place between colours and response-stimulus locations. 

 

Table 5.2. Results from ANOVA for planned comparisons on average RT and 

proportion of errors, comparing the three Colour Types to one another across training. 

 Average RT: Training 

 F (df = 1,15) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  19.0 .001 485.0 .559 

Predictive Consistent vs Non-Predictive 5.65 .031 362.8 .274 

Predictive Inconsistent vs Non-Predictive 6.70 .021 382.9 .309 

 Proportion of errors: Training 

 F (df = 1,15) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  14.4 .002 .006 .491 

Predictive Consistent vs Non-Predictive 1.24 .283 .005 .076 

Predictive Inconsistent vs Non-Predictive 12.1 .003 .004 .446 

 

There was also a main effect of Block in RTs, F(14,210) = 2.66, p = .005, MSE = 930.9, 

ηp
2 = .151, and errors, F(14,210) = 5.37, p < .001, MSE = .002, ηp

2 = .392, which is 

shown in Figure 5.1 as a general trend towards faster and less accurate responding 

across the task. Block did interact with Colour Type in the errors, F(28,420) = 1.86, p 

= .020, MSE = .004, ηp
2 = .110; but not RTs, F(28,420) = 1.34, p = .176, MSE = 607, 

ηp
2 = .082, which highlights the increasing errors made to Predictive Inconsistent 

colours across training; supported by a significant linear interaction contrast comparing 

Previous Inconsistent and Non-Predictive errors, F(1,15) = 5.97, p = .027, MSE = .004, 

ηp
2 = .284; and non-significant trend between Predictive Inconsistent and Consistent 

errors, F(1,15) = 4.32, p = .055, MSE = .005, ηp
2 = .223. 

 

Test phase. There was no evidence of a main effect of Colour Type at test in RTs, 

F(2,30) = .862, p = .433, MSE = 201.7, ηp
2 = .054, nor errors, F(2,30) = .077, p = .926, 

MSE = .001, ηp
2 = .005, although the numerical order of RT results follows the pattern 

across training and the error pattern only deviates in increased errors to Non-Predictive 

stimuli (see Figure 59). However, there was a trend towards significance in the first two 
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blocks of test in RTs, F(2,30) = 3.16, p = .070, MSE = 209.6, ηp
2 = .174, which resulted 

from significantly faster responding to Predictive Consistent compared to Predictive 

Inconsistent colours (Bonferroni corrected), F(1,15) = 13.2, p = .004, MSE = 151.3, ηp
2 

= .469, supported by a non-significant effect in the same direction in the errors, F(1,15) 

= 1.09, p = .312, MSE = .004, ηp
2 = .068, see Figure 5.1. The effect size of the RT 

difference apparent across the first two blocks of test suggested that participants still 

showed a strong preference to respond quickly (and not less accurately) to Predictive 

Consistent stimuli, therefore suggesting that some learning remained during extinction. 

However, this learning did not survive across test and rapidly extinguishes.  

 

5.2.2.2. Direct tests of explicit knowledge 

A full consideration of the direct test results is reported in section 5.4.2 alongside results 

from participants who completed the task under intentional conditions, however, they 

are reported here for descriptive purposes. On the post-training interview where 

participants were asked to identify the two predictive colours and report which location 

they predicted, three participants were able to identify both colours correctly, with two 

of these participants identifying the correct location. Ten further participants were able 

to identify one correct colour (five correctly identifying the left colour and five the 

right); although only half of these participants were able to correctly identify the 

location (two left; two right). Three participants were unable to report any correct 

contingencies. This may seem like an alarming number of incidental participants were 

able to correctly identify the predictive colours, however participants have a one-in-six 

chance of getting both colours correct by chance and two-thirds chance of getting one 

colour correct by chance. They are, therefore, just as likely to get both colours correct as 

to be unable to correctly identify either colour if they are guessing.   

 

On the prediction task there were 32 trials in total, with half of these concerning the 

Predictive colours and therefore discussed here. Participants scored on average 8.25 

correct responses on the task (M = 8.25, SE = .727), which is shown in Figure 5.2. 

These correct responses are shown here split for right and left colours, as participants 

may have performed with eight correct responses out of sixteen, but all of these may 

have been about one colour and learning driven by knowledge about this single cue-

response contingency. These results are analysed further in section 5.4.2.  
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Figure 5.2. Graph showing the number of participants who made each number of correct 

responses out of the eight total possible for both Predictive Colours 1 (Left) and 2 (Right) on the 

Experiment 5 Prediction task. 

 

5.2.2.3. Subjective tests of explicit knowledge 

Participants were asked whether they had noticed anything about the task and whether, 

specifically there was any relationship between the colours and responses. Their 

responses to these questions were sorted into five categories: that they were completely 

sure that there were contingencies and sure about their identities; that they were 

confident there were contingencies between colours and responses but could not be 

confident in saying which colours; that they thought perhaps something may have been 

going on in the task, but not sure what it was; that they noticed some things but thought 

it was random; that they did not notice any contingencies and would be surprised to hear 

there were. Of the 16 participants, four responded that they thought perhaps something 

was going on in the task, but that they couldn’t be sure about it nor identify what the 

colours or contingencies may have been. The rest of the participants were surprised that 

there may have been any relationships and all reported that they thought that it was 

random. Whilst this is a crude measure of subjective explicit knowledge, I found no 

difference between the two groups on their prediction task score, t(14) = .783, p = .446, 

SED = 1.70; which goes some way to support the claim that they were subjectively 

unaware of these contingencies. Whilst the questions did not refer precisely to what 

degree participants said they were guessing on the task (Cheesman & Merinkle, 1984), 

they did not correlate with explicit prediction task performance (Chan, 1992), r(16) 

= .205, p = .446, although this measure may lack the required sensitivity to accurately 

conduct this analysis. 
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5.2.3. Discussion 

Altogether Experiment 5 shows evidence of cue-response learning about how colours 

predicted a response in the SRT task. Participants showed learning across training but 

only some evidence for learning in the first two blocks of test. This suggests that the 

colour cue-response stimulus location contingencies were susceptible to rapid extinction. 

Participants were trained for only 360 Predictive Consistent trials across the experiment 

for each colour (compared to 90 Inconsistent trials), and alongside 900 Non-Predictive 

colour trials. This suggests that whilst this was enough training to produce a learning 

effect across the task itself, that under test conditions where these cue-response 

associations are removed that participants do not continue to respond with reliably 

faster and more accurate responses to the Predictive Consistent response location. That 

this effect reduced rapidly at test was taken into account in Chapter 6, where the length 

of test was reduced and length of training increased. 

 
Whilst this cue-response learning occurred in the absence of any intention to learn, I 

wanted to ensure that this cue-response learning developed in the absence of any 

awareness. Following the suggestions of Z. Dienes (personal communication, August 3, 

2012; Dienes, 2014; in press) an Intentional cue-response experiment was run, whereby 

participants completed the same task but under explicit task instructions. In doing so, 

the participants in this group would perform the explicit tests of knowledge based on 

their consciously acquired knowledge.  

 

5.3. Simulation 10: RASRN simulation of cue-response learning 

The RASRN using the parameters described in Chapter 3 was again used to predict 

human performance under incidental conditions, however, this time on a non-sequential 

learning task. Cleeremans (1997) investigated learning about sequences and cue-

response learning and modelled the cue-response component separately to the recurrent 

network used for sequence learning. In doing so Cleeremans (1997) was able to show 

evidence that this adapted SRN could learn both sequences and cue-response 

contingencies, but without any interaction between the two. As I intend to investigate 

whether cue-response contingencies do, in fact, interact given evidence from Chapter 4, 

I do not start from the position that this learning occurs as a result of a functionally 

separable system. Given that the addition of a separate learning system is not 
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parsimonious I suggest that the RASRN should be able to learn simple cue-response 

contingencies as well as more complex abstract rules.  

 
5.3.1. Simulation details 

The simulation details were mostly as for Chapter 3: Simulation 9 with the slow and 

fast learning rates set at 0.2 and 0.5, respectively. There were 20 hidden units in the 

model and therefore 20 context units, as well as 2 output units representing the 

prediction of the location of t. Additionally, there were two input units representing the 

previous required response (t – 1) and two units representing the current on-screen 

response stimuli (t) there were four additional units to represent the four colours 

described in Experiment 5. Because these stimuli occurred before the presence of the 

current on-screen response stimuli but after the previous response, I gave them 

activation values of 0.4 for on and 0 for off. The previous response (0.75), current 

stimulus (0.1) and context units (1.3 times the hidden unit activations) remained the 

same as for Simulation 9. The model was used to simulate the task experienced by 

human participants in Experiment 5, with 2400 trials run for each network, and 16 total 

networks run to simulate the 16 participants in Experiment 5. As in the human 

experiments there were no sequential contingencies in the trial order that networks were 

trained on, the colour units were activated according to the contingencies outlined in 

Experiment 5. 

 
5.3.2. Results 

The MSEs for each trial were averaged across each Block and Colour Type, as for 

human average RT and proportion of errors. As with human performance, MSEs were 

not further manipulated to produce an index of learning, therefore learning can be 

assessed by the difference between the Colour Types, with lower MSE scores showing 

less difference between the model’s predictions and the next trial location. The results 

of the simulation are shown in Figure 5.3, and show a significant effect of Colour Type 

across training, F(2,30) = 64.4, p < .001, MSE = .001, ηp
2 = .811; and test, F(2,30) = 

199, p < .001, MSE = .001, ηp
2 = .930. It is clear that the networks performed gradually 

better on Predictive Consistent trials across the experiment and that performance on 

Predictive Inconsistent trials became steadily worse, supported by a significant Block 

by Colour Type interaction across training, F(28,420) = 5.33, p < .001, MSE = .001, ηp
2 
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= .262. This interaction was not present at test, F(2,30) = .756, p = .642, MSE = .001, 

ηp
2 = .048, and the networks showed no evidence of extinction. 

 

 
Figure 5.3. MSEs for Colour Types across the training and test blocks of the RASRN 

simulation. Lines show performance on Predictive Consistent (black filled circles); Predictive 

Inconsistent (red filled circles); and Non-Predictive (black open circles) trials. Error bars show 

standard error. 

 

5.3.3. Discussion 

The RASRN can learn these cue-response contingencies as the humans do across 

training. However, the networks show strong performance in the absence of extinction 

across test which was not observed in human participants. Whilst the RASRN can again 

account for human learning, this time of cue-response contingencies, it does not fully 

model the pattern of human behaviour. As discussed in the previous chapter, the 

RASRN seems to be missing some elements or parameters that would help it account 

for human behaviour, but these will be discussed further in Chapter 6. For the purposes 

of simulating Experiment 5, the RASRN produces an adequate simulation of human 

performance.  

 

5.4. Experiment 6: Intentional cue-response learning 

Primarily, the aim of the Intentional version of the task was to provide direct knowledge 

of test performance priors in order to compare Incidental performance to the plausible 

performance that we would expect from participants with explicit knowledge of cue-

response contingencies in order to assess evidence for the null (Dienes, 2011; 2014). In 

doing so, the participants were run on a matched experiment, as even though explicit 

knowledge was expected to develop quickly in the task. It was my intention that 
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participants should experience the same task demands in terms of length and number of 

trials, as well as the pseudorandom test phase, in order to provide a complementary 

condition with which to assess the absence of explicit knowledge in the Incidental 

learning condition. Therefore, the tasks differed only in their instruction and all other 

details were matched entirely.  

 

5.4.1. Method 

5.4.1.1. Participants 

16 participants (aged between 18 and 26 [M = 19.4]; 15 female and 1 male) were 

recruited from undergraduate students and were awarded £5 in return for participation. 

Participants provided informed consent prior to taking part in one session lasting 

roughly one hour.  

 

5.4.1.2. Materials and Stimuli 

Materials were the same as for Experiment 5 and 6, except that participants were 

provided with a piece of paper at the start of the task with instructions about the task on, 

shown in Figure 5.4. 

 

5.4.1.3. Design 

The design of the experiment followed Experiment 5. 

 

5.4.1.4. Procedure 

The procedure followed Experiment 5 and participants were again instructed that the 

experiment intended to measure speed and accuracy of responding and that the colour 

acted as a fixation point. They were also told that they would be provided with a clue as 

to how to use the colours themselves to improve their performance (as shown in Figure 

5.4). Participants were additionally required to write down which colours they thought 

were Predictive and which colours they thought were Non-Predictive at the end of each 

block on the instruction sheet in Figure 5.4.  
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Figure 5.4. Instructions available to participants in the Intentional condition describing the 

nature of the relationships in the task and additional task requirement to note down what they 

thought the contingencies were after each block. Spaces to write which colour was which for 

Blocks 4-20 not shown. 

 

5.4.2. Results 

Results were analysed as for Experiment 5 with an ANOVA on RT and proportion of 

errors across Block, Subsequence and Colour Type. 

 
5.4.2.1. Cue-response learning 

Training phase. There was a main effect of Colour Type across training RTs, F(2,30) = 

45.9, p < .001, MSE = 1668, ηp
2 = .754; and errors, F(2,30) = 18.8, p < .001, MSE 

= .022, ηp
2 = .557, which are shown in Figure 5.5. This clearly demonstrates the same 

ordinal pattern as we would expect from participants if they had learned about colour 

cue-response contingencies, supported by a set of Bonferonni corrected comparisons, 

shown in Table 5.3.  

 



208  Chapter 5: Implicit cue-response learning 

!

 
Figure 5.5. Average RTs (top panel) and proportion of errors (bottom panel) for Colour Types 

across the training and test blocks of Experiment 5. Lines show performance on Predictive 

Consistent (black filled circles); Predictive Inconsistent (red filled circles); Non-Predictive 

(black open circles) trials. Error bars show standard error. 

 

These demonstrate significant differences across all pairwise comparisons, with faster 

and more accurate responding to Predictive Consistent colours, with slower and less 

accurate responding to Predictive Inconsistent colours, both of which were different to 

the Non-Predictive colours. Therefore, we have convincing evidence of learning across 

training. There was a main effect of Block across training (see Figure 5.5) which 

showed decreasing RTs, F(14,210) = 2.04, p = .044, MSE = 2757, ηp
2 = .119; and 

increasing errors, F(14,210) = 2.66, p = .045, MSE = .023, ηp
2 = .150, across the task. 

This interacted with Colour Type in errors, F(28,420) = 2.26, p = .028, MSE = .011, ηp
2 

= .131, which demonstrates the development of learning across training. 

 

Test phase. There was a main effect of Colour Type at test in the proportion of errors, 

F(2,30) = 4.49, p = .023, MSE = .003, ηp
2 = .231; but not in RTs, F(2,30) = 1.68, p 

= .207, MSE = 698, ηp
2 = .101, see Figure 5.5. The Predictive Consistent accuracy 

advantage was still significantly better than for Predictive Inconsistent colours, F(1,15) 
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= 7.36, p = .048, MSE = .006, ηp
2 = .329, suggesting that some learning in the 

Intentional group was able to survive extinction. The first two blocks of test did not 

provide a significant difference in Colour Type in RTs, F(2,30) = 1.59, p = .220, MSE = 

543, ηp
2 = .096; nor errors, F(2,30) = 1.63, p = .217, MSE = .003, ηp

2 = .098, suggesting 

that rapid extinction also affected participants under Intentional conditions. 

 

Table 5.3. Results from ANOVA for planned comparisons on average RT and 

proportion of errors, comparing the three Colour Types to one another across training. 

 Average RT: Training 

 F (df = 1,15) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  52.4 < .001 3933 .777 

Predictive Consistent vs Non-Predictive 31.4 < .001 1454 .677 

Predictive Inconsistent vs Non-Predictive 42.5 < .001 1359 .739 

 Proportion of errors: Training 

 F (df = 1,15) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  19.2 .002 .042 .561 

Predictive Consistent vs Non-Predictive 17.0 .003 .004 .532 

Predictive Inconsistent vs Non-Predictive 18.5 .002 .021 .552 

 

5.4.2.2. Direct tests of explicit knowledge 

All of the participants correctly identified both colours and their locations in the post-

training interview. Performance was therefore perfect without fail on colour 

identification, suggesting that under Intentional conditions it was possible for all 

participants to have full explicit knowledge of the contingencies in the task. Participants 

also performed well on the prediction task, with the results shown in Figure 5.6. 

Participants scored 14.4 on average on the prediction task (M = 14.4, SE = .288) which 

suggests that participants are able to perform well on this task when they have explicit 

contingency knowledge. It is interesting to note, however, that they were unable to 

respond correctly on all of the trials even though they reportedly knew which of these 

responses the colour predicted. Whilst all of the participants were able to make the 

correct response on more than half of the trials for each predictive colour, left and right, 

the task seems to suggest that participants may not be entirely sure, or that the influence 

of the experience of Predictive Inconsistent colours may influence performance on this 

task (Merikle & Reingold, 1992), or that participants did not give the task their full and 

effortful attention.  
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Figure 5.6. Graph showing the number of participants who made each number of correct 

responses out of the eight total possible for both Predictive Colours 1 (Left) and 2 (Right) on the 

Experiment 6 Prediction task. 

 

5.4.2.3. Subjective tests of explicit knowledge 

The direct tests of explicit knowledge are supported by the subjective questions 

regarding how confident participants were about the presence of contingencies in the 

task. Participants all reported that they were sure that contingencies existed and that 

they were confident in their identification of the predictive colours and locations.  

 

5.4.3. Discussion 

Participants who performed the task under Intentional conditions clearly, correctly and 

confidently showed evidence of explicit knowledge about these contingencies. This was 

the intended outcome of the instructional manipulation and these results can therefore 

be used in a Bayes factor analysis to attempt to find evidence for the absence of explicit 

awareness in the Incidental group in the following section. Interestingly, unlike in 

Experiment 2, the Intentional instructions seem to have had a strong effect on how 

much learning was demonstrated by participants, however without a direct comparison 

we are unable to tell whether this is the case. Participants under Intentional conditions 

seemed, like the Incidental group, to suffer from extinction during the test phase in their 

RT and error performance, although a difference between Predictive Consistent and 

Inconsistent errors remained. Therefore, as well as investigating the Incidental group’s 

explicit knowledge I also compared the indirect measures of learning across the task 

between the two groups.    
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5.5. Evidence for implicit learning 

Establishing whether participants were learning colour cue-response contingencies in an 

implicit manner on this task is important. If participants were showing evidence of 

learning under incidental conditions that was driven by explicit knowledge then 

attempting to examine any interaction between cue-response and sequence learning may 

involve two separate processes. Therefore both the indirect RT and error performance 

across the task and the post-training explicit knowledge tests were compared between 

incidental and intentional participants. Rather than relying on this difference to produce 

any conclusive result regarding learning (as in Chapter 2) I decided to use a Bayes 

factor analysis to find evidence for the absence of explicit knowledge. Using the 

procedure outlined by Dienes (2014) I used the explicit performance of the Intentional 

group as a prior probability of aware responding to both post-training direct tests.  

 

5.5.1. Incidental versus Intentional SRT task performance 

Intentional learners were compared to incidental learners using an ANOVA on Block, 

Colour Type and Condition (Incidental versus Intentional). Bonferroni corrections were 

applied to significance values in order to correct for multiple comparisons. There was 

no main effect of Condition across training or test, but Figure 5.7 clearly shows the 

interaction between Colour Type and Condition across training (left panel) in both RTs, 

F(2,60) = 24.1, p < .001, MSE = 1329, ηp
2 = .446; and errors, F(2,60) = 6.80, p = .018, 

MSE = .011, ηp
2 = .185, with the pattern of learning exaggerated for the Intentional 

group. This suggests that participants are able to learn more when they actively search 

for colour-response contingencies. At test all groups show a flattening of the Colour 

Type effect, which does not show evidence of an interaction with Condition in RTs, 

F(2,60) = .710, p = .978, MSE = 428, ηp
2 = .023; nor errors, F(2,60) = 2.59, p = .171, 

MSE = .002, ηp
2 = .079, suggesting that both groups suffer from extinction at test. 
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Figure 5.7. Average performance in average RTs (top panel) and proportion of errors made 

(bottom panel) across for Incidental (solid bars); and Intentional (lighter shaded bars) on 

Predictive Consistent (black bars); Predictive Inconsistent (red bars); and Non-Predictive (black 

open/grey bars) Colour Types. Error bars show standard error. 

 

A series of Bonferroni corrected comparisons were conducted on the interaction 

between Condition and the different levels of Colour Type, which are shown in Table 

5.4. These show that across training there was a reliable difference between how well 

the colour-response contingencies were learned, as the Predictive Consistent – 

Predictive Inconsistent difference was significantly larger for the Intentional group in 

both RTs and errors. This was also true of the difference between Predictive 

Inconsistent disadvantage compared to the Non-Predictive colours, as RTs were far 

slower and errors more frequent in the Intentional group. Whilst the interaction was 

significant only in RTs for the difference between Predictive Consistent and Non-

Predictive colours; both this and the numerical direction of the error difference provide 

support to the other training interaction contrasts – that cue-response learning was 

greater in the Intentional group across training. These effects were, however, eradicated 

at test, with no difference observed between either of the two Conditions across the 

Colour Types.  
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Table 5.4. Results from ANOVA for Bonferroni corrected comparisons on average RT 

and proportion of errors, comparing the interaction between Condition and the three 

Colour Types to one another across training 

 Average RT: Training 

 F (df = 1,30) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  29.0 < .001 2209 .492 

Predictive Consistent vs Non-Predictive 15.6 < .001 909 .342 

Predictive Inconsistent vs Non-Predictive 20.7 < .001 871 .408 

 Proportion of errors: Training 

 F (df = 1,30) p MSE ηp
2  

Predictive Consistent vs Predictive Inconsistent  7.35 .022 .024 .197 

Predictive Consistent vs Non-Predictive 3.49 .141 .004 .104 

Predictive Inconsistent vs Non-Predictive 6.88 .027 .013 .187 

 

5.5.2. Evidence for the absence of awareness  

5.5.2.1. Post-experiment interview 

The results of the post-experiment interview are shown in Table 5.5 and show that all 

participants in the Intentional condition were able to accurately identify not only the two 

colours but also their locations. Of the Incidental condition, only three participants were 

able identify both colours, two of these getting both locations correct. The sample mean 

for the Incidental group was exactly at chance level of performance on the prediction 

task (M = 1.00, SE = .153) whilst the Intentional condition performed perfectly on these 

colour identification questions (M = 2.00, SE = .000). Using the procedure outlined by 

Dienes (2014) a Bayes factor was calculated, by establishing the prior probability that 

participants had explicit knowledge about the task taken from the difference between 

Intentional participants’ performance and chance (1.00). As we expect participants in 

the Incidental experiment to produce less explicit knowledge, it is plausible that any 

value between chance and the performance of Intentional could occur, and hence a 

uniform distribution was chosen. Using 0 then as the sample mean (the difference 

between Incidental performance and chance), a uniform distribution was used to 

calculate a Bayes factor from chance to the prior probability provided by Intentional 

performance (Intentional average score of 2 minus expected score by chance of 1 = 1). 

This produces a Bayes factor of 0.20; which provides evidence for the null and suggests 

that participants in the Incidental group do not respond to these questions with explicit 

knowledge about colour cue-response contingencies.  
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Table 5.5. Table showing the number of participants in Incidental and Intentional 

conditions who correctly guessed zero, one or both colours as Predictive. Number of 

participants who guess the correct colour regardless of location are shown, with the 

number of participants who also guessed the correct location in brackets.  

 
 

Neither Correct Left Correct Right Correct Both Correct 

Incidental 3 5 (2) 5 (3) 3 (2) 

Intentional 0 0 (0) 0 (0) 16 (16) 

 

5.5.2.2. Prediction task 

The prediction task data are shown for both groups again in Figure 5.8 for comparison, 

which clearly show that participants performed with higher accuracy in Intentional 

groups compared to Incidental groups. Intentional mean performance (M = 14.4, SE 

= .288) was used as a prior, participants in this group scored 6.44 higher than chance (8 

correct), and this was used to plot the normal distribution of plausible explicit 

performance with a standard deviation of half the mean, 3.22.  

 

 
Figure 5.8. Graph showing the number of participants who made each number of correct 

responses out of the eight total possible for both Predictive Colours 1 (Left, filled bars) and 2 

(Right, open bars) on the Prediction task for Incidental (black bars) and Intentional (red bars) 

groups.  

 

Participants in the Incidental condition scored just 0.25 over chance on the prediction 

task (M = 8.25, SE = .727), giving a Bayes factor for a normal distribution of .04, 

providing evidence for the null. Rather than assuming that the likelihood follows a 

normal distribution with explicit performance more likely, it is possible only a number 

of participants have explicit knowledge and therefore the full range from 0 (chance) to 
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6.44 (Intentional prediction task performance above chance) were used in a uniform 

distribution, giving a Bayes factor of .19, still providing good evidence that participants 

did not show explicit knowledge of the colour-response contingencies.  

 

It is also possible, however, that the Incidental group learned far less than the 

Intentional group (see Figure 5.7). To correct for this possibility the estimate for 

incidental performance can be scaled down to approximate what we might expect if 

learning had been less. Using the training data (both RT and proportion of errors) I 

calculated the difference between all three pairs of the Colour Types for Incidental and 

Intentional groups. I then calculated the proportional difference between these 

differences. For example, the advantage for the Incidental group of Predictive 

Consistent versus Predictive Inconsistent colours was 6.19 ms, whereas it was over four 

times bigger in the Intentional group, 29.3 ms: proportional difference of 4.73 times 

more learning. I calculated the average of these across RT and errors and found that 

learning was just under four times greater in the Intentional group, M = 3.85, SD = .967. 

Using this proportional difference I scaled the Intentional performance (6.44) to expect 

1.67 over chance for the Incidental group, with a uniform distribution. This gives a 

Bayes factor or 0.70, which is an inconclusive result. Therefore more participants are 

required to establish confidently that the poor prediction task performance in the 

Incidental group reflects a lack of explicit knowledge, or simply reduced knowledge or 

learning about the task altogether.  

 

5.5.3. Discussion 

Crucially, these analyses provide evidence that participants were able to learn colour-

response contingencies under incidental conditions in the absence of explicit knowledge. 

Participants under Incidental conditions showed evidence for the null in both post-

experiment interview questions and a prediction task, with the results of the Intentional 

participants acting as the prior probabilities for explicit knowledge.  

 

Participants in the Intentional condition learnt significantly more than those in the 

Incidental condition, although they also suffered from extinction. The increased colour-

response learning in the Intentional group compared to the Incidental provides an 

interesting insight into the importance of conscious expectancy when learning such 

contingencies. Explicit knowledge in sequence learning tasks (e.g. Experiment 2; Jones 
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& McLaren, 2009) does not necessarily improve learning, but in the case of Experiment 

6 this seems to be the case. Participants were more cautious in the Intentional condition 

as they were slower and more accurate when performing the task. This goes some way, 

perhaps, to support Reber’s (1989) claim that explicit knowledge is suited to 

contingencies whose relationships are simple, deterministic and easy to verbalise.  

 

5.6. General Discussion 

Participants were able to learn cue-response contingencies under both Incidental and 

Intentional conditions and showed evidence of faster and more accurate responding to 

stimuli consistent with the trained colour-response location than the opposite location. 

The first thing to note about these results is that the Intentional group clearly 

demonstrated explicit knowledge about the colour-response contingencies that was 

consciously accessible. Participants were able to produce confident judgments about the 

presence of these contingencies as all participants were sure of the contingencies and 

correctly reported the colour and locations that they predicted. The incidental 

participants were not sure of these contingencies and performed at chance on guessing 

the colours and a prediction task, which both provided evidence for the null (no explicit 

knowledge) using the Intentional group as the prior probability (Dienes, 2011; 2014). 

 

This suggests that participants are able to learn cue-response contingencies under 

Incidental conditions, but this seems to be somewhat weaker than the sequence learning 

observed in previous chapters. Whilst no direct comparison was made, as the cue-

response learning occurred in the absence of any sequences to learn, the effect was 

quickly extinguished at test suggesting that this incidental learning may not have been 

very robust. This may explain the results of Jiménez and Méndez (1999) who found no 

colour-response learning in their SRT task alongside sequence learning. Cleeremans 

(1997) suggested that colours should be easy to learn about, as these response 

contingencies are simple and do not require complex abstract structures to be learned 

like sequential contingencies do. This is the reason that both sets of authors provide for 

expecting cue-response contingencies to block or overshadow sequence learning.  

 

The cue-response results from Experiment 5 suggest that, when isolated from sequence 

learning, human cue-response learning under incidental conditions is not simply 

stronger because it has a simpler structure. Jiménez and Méndez (1999) did not provide 
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evidence that participants could learn these cue-response contingencies; without the 

influence of sequences. This chapter provides some evidence that cue-response learning 

may be less robust than sequence learning and that a demonstration that participants can 

do this without sequences is needed within such a dual-cue task. Cleeremans (1997), 

Jiménez and Méndez (1999) did not consider the possibility that sequential learning 

may be ideally learned under incidental conditions because of the abstract and complex 

nature of the relationships that are learned (Reber, 1989). When matched for 

contingency, number of trials and number of instances: will humans be able to learn 

sequential contingencies far better under incidental conditions than they can cue-

response contingencies? These issues will be dealt with further in the following chapter. 

 

Whether this Chapter provides suitable evidence of a lack of explicit knowledge is an 

important question, and I conclude that whilst a number of definitions of implicitness 

are addressed, it would still not convince the most determined of single process 

champions. Firstly, the explicit knowledge tests occur after the task and therefore after 

extinction. Any small amount of explicit knowledge that the Incidental group may have 

had could have been eradicated by this period where cue-response contingencies were 

absent. Explicit knowledge does survive this extinction in the Intentional group – who 

show far reduced learning at test than at training that is no different from the Incidental 

group. Therefore, the Intentional learners showed evidence of extinction but their 

explicit knowledge remained.  However, as they also demonstrated some knowledge on 

the indirect measures of learning at test while the Incidental group did not, it could be 

suggested that there is less learning in the Incidental group and therefore easier to 

extinguish, hence it did not survive to test, either indirect or direct tests.  

 

Whilst the subjective measures of knowledge were not entirely sensitive, these go some 

way to address these issues. Further to being apparently unable to perform higher than 

chance on direct test of explicit knowledge, participants were also subjectively unaware 

of these contingencies. All of the participants in the Intentional group were completely 

sure that there were contingencies in the task, correlating perfectly with their perfect 

performance in colour identification. Of the four participants under Incidental 

conditions who reported that they thought something may have been going on in the 

task, there was no difference in their prediction task score to the rest of the group. This 
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suggests that if this measure captured subjective awareness that this did not correlate 

with performance, thus providing further evidence for the absence of awareness.  

 

However, it could be the case that participants in the Incidental condition were reluctant 

to express their knowledge with confidence as they were nervous about being incorrect; 

whereas Intentional participants knew that there were contingencies present and 

therefore that they were correct and thus had no trouble in confidently displaying their 

knowledge. Altogether the sensitivity of the measure of subjective awareness could 

have been improved in order to provide a more detailed account of whether participants 

satisfied the zero-correlation (Chan, 1992) or guessing (Cheesman & Merinkle, 1984) 

criterion. 

 

In summary, Experiment 5 provides good evidence that cue-response contingencies can 

be learned and that they can be learned incidentally. From the perspective of a volitional 

(Jacoby, 1991), subjective (Dienes & Berry, 1997) or knowledge based (Shanks, 2005) 

account of conscious knowledge, this task converges on evidence that participants were 

not aware of cue-response contingencies in the Incidental group. Whilst this learning 

suffered from quite rapid extinction and was not as large as if the task was performed 

with explicit contingency knowledge, it is possible for participants to learn these 

contingencies. The task is therefore usable in attempts to investigate the effect of 

additional stimuli that are themselves predictive of a response on sequence learning, as 

discussed in Chapter 6. The RASRN was able to provide a simulation of these 

incidental learning results, which will be tested alongside the presence of sequential 

contingencies in Chapter 6.  
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This chapter continues to examine the effect of additional stimuli on sequence learning. 

The experiments outlined in Chapter 4 used colour and tone stimuli, whose relationship 

with the sequence had a potentiating effect on sequence learning. These relationships 

meant that it was not possible to isolate learning about sequences from learning about 

additional stimuli, and therefore how additional stimuli improved sequence learning. 

Chapter 5 introduced a task that involved a cue in the centre of the screen that was 

sometimes predictive of a response location, which was used in this chapter to 

investigate the interaction between cue-response and sequence learning. In this chapter I 

used a between-subjects design, comparing learning of participants experiencing either 

one or both of these contingencies. McLaren et al. (2013) observed that when both 

contingencies were in play participants learned sequences but not about colours, 

evidence of cue-competition and an overshadowing effect. Experiment 7, however, 

provides evidence that when the colour contingencies are positively correlated with the 

trial order, this overshadowing effect can be counteracted and the Dual group provides 

good evidence of colour-response learning at test. Experiments 8 and 9 further 

investigated the role of cue-sequence relationships and cue competition by comparing 

two groups who experienced both colour-response and sequential contingencies: in one 

case these cues were correlated, in the other they were not, however conclusive 

evidence of either cue-competition or facilitation effects was not obtained as evidence 

of any colour learning in any group was weak. The RASRN predicted that when 

sequences and cues were correlated, the Dual group would show cue-response 

potentiation; but when uncorrelated the Dual group would show overshadowing of 

sequence learning. Whilst these results are not established by the human data reported 

in this chapter, they are consistent with it, and this provides an indication that the 

RASRN can, to some extent, simulate the relationship between simple contingency 

learning and sequence learning and predict whether overshadowing or the opposite 

effect might be expected. The results provide evidence that the absence of cue-

competition does not simply provide support for a propositional account of learning, 

and that automatic associative approaches can both produce evidence of cue-

competition (McLaren et al., 2013) as well as a suitable account of why it does not 

always occur.    
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6.1 Introduction 

Chapter 4 demonstrated that sequence learning was potentiated by concurrently 

presenting stimuli that had a relationship to the previous trials experienced (Previous 

condition), even though they provided no predictive information about the current trial 

itself. This effect was predicted by the RASRN, as concurrent stimuli that correlated 

with the response stimuli locations showed increased S-R learning that blocked 

sequence learning (the Current group). It appeared that the Previous condition increased 

learning of the Same rule sequence, perhaps through activating the previous sequence 

element and therefore the t – 2 response-location required to predict the current trial (t). 

However, the mechanism that produced this learning effect could not be isolated, as the 

concurrent stimuli (tones or colours) and response-stimuli (locations) followed the same 

sequence. There was no way to separately assess the learning occurring about the tones 

or colour stimuli and the location stimuli, and therefore I was unable to assess how 

these may have interacted to cause the sequence learning effect observed in Chapter 4. 

There was no condition tested in Experiment 3 and 4 in which the concurrent stimuli 

(tones or colours) had a predictive relationship with the required response that was not 

related to the sequence. The aim of this chapter was to attempt to isolate stimulus-

response learning, and investigate further how a trained relationship between stimuli 

and responses would interact with sequence learning.  

 

Finding evidence that incidentally learned contingencies follow associative learning 

effects would provide a strong case for human associative learning (Beesley & Shanks, 

2012). It seems that there is a limited capacity for learning relationships between events, 

as when two contingencies are trained simultaneously (AB+), learning is less than if 

they were trained separately (A+ and B+). This overshadowing effect (Kamin, 1969) is 

an example of cue-competition, when multiple cues come to predict the same outcome. 

Blocking is another example, where one cue is trained to predict the outcome (A+) and 

after training on this contingency another cue is trained in compound (AB+), which 

results in far less learning about the additional cue (B) compared to the pre-trained cue 

(A). There have been a number of studies that have demonstrated cue-competition 

effects in human contingency learning studies (Dickinson, Shanks, & Evenden, 1984; 

Le Pelley, Beesley & Suret, 2007); however, as discussed in previous chapters, these 

tasks are often confounded by the presence of explicit contingency knowledge (Beckers 

et al., 2006; Mitchell et al., 2009). There are a number of studies that aim to avoid these 

issues by attempting to mask learning with cover stories, for example Vadillo, Orgaz 
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and Matute (2009) who had participants perform an overshadowing experiment based 

around a complex refugee saving task where road mines were partially predicted by 

cues contained within a spy radio on screen. Whilst the object of this task was not to 

learn, participants were still required to pay attention to cues and use them, as well as 

the task involving a pre-established causal framework (Waldmann & Holyoak, 1992).  

 

Beesley and Shanks (2012) argue that the solution to these issues lies in implicit 

learning tasks and choose contextual cuing within a visual search task for their 

methodology. Using a task where participants are required to identify the orientation of 

a single target letter (e.g. a ‘T’) amongst a display of distractors (e.g. rotated ‘L’s). 

Unknown to participants, some of these display patterns were predictive of the location 

(not the response cue of orientation) of the target letter. Participants were pre-trained on 

certain distractor patterns (A+) and further patterns were added to the stimulus array 

(AB+), see Figure 6.1 for a schematic representation of the design.  

 

 
Figure 6.1. Representation of the blocking designed used by Beesley and Shanks (2012) in a 

contextual cuing visual search task. The target stimulus (T) is predicted in training phase 1 (left 

panel) by the pattern of the distractor letters (‘L’s) here shown as pattern A. The second training 

phase (central panel) involved training with both pattern A and a further pattern of distractor 

stimuli, shown by Bs. Note, these were the same letters in the task (e.g. ‘L’s). At test, 

participants were exposed to both A and B patterns separately, alongside random locations of 

the B or A distractor letters.  

 

Participants showed learning about each pattern, but no evidence of blocking to the B 

patterns that were trained in compound with the pre-trained A patterns. Indeed, the 
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opposite effect (an increase in learning was observed to the B cue compared to a control 

set of predictors), was observed which suggests that potentiation of learning may have 

occurred. Beesley and Shanks (2012) suggest this provides evidence that humans do not 

exhibit blocking under incidental conditions, which supports a propositional account of 

cue-competition effects in humans (e.g. Mitchell et al., 2009). 

 

As mentioned in Chapter 1, there is an issue with this visual search task as participants 

may not have learned an association between the entire A pattern and the outcome. 

Instead they may have learned about a certain set of visual features within the distractor 

array that are entirely different when presented with the compound training in phase 21. 

This is similar to Shanks and St John’s (1994) criticism of artificial grammar tasks, on 

which participants may have been learning that words containing high frequencies of 

certain letters or groups of letters (e.g. a string of ‘T’s) was actually driving improved 

performance in classifying the words as consistent with the grammar rules or not. 

Therefore these tasks fail the information criterion, as the learning may not be an 

association between pattern A and the outcome; but it may be that the entire visual array, 

or sections of it (for example, a clump of Ls in one corner) are associated with the 

outcome. This further suggests that pattern AB may not show cue-competition effects as 

these may be encoded visually as a whole rather than a separate set of elements.  

 

As reported in the previous chapter, a number of studies with sequence learning and 

additional cues were unable to show evidence of cue-competition (Cleeremans, 2007; 

Jiménez & Méndez, 1999) however these studies failed to provide evidence of 

incidental learning about the cue in its own right. As Chapter 5 demonstrated that 

participants are able to learn about contingencies between a colour cue and the location 

of the required response on that trial, this chapter aims to investigate whether colour or 

sequence learning compete with one another. Previous studies assumed that simple 

contingency learning would overshadow sequences, whereas this thesis suggests that 

either is possible. As Chapter 5 demonstrated rapid extinction of incidental cue-

response contingency learning, whereas Chapters 2 and 4 demonstrated strong sequence 

learning that did not suffer from extinction, when these tasks are put together it seems, 

on this basis, more likely that sequence learning would overshadow learning about 

colour cue-response contingencies.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Criticism offered by Mike Burton at the London meeting of the Experimental Psychology Society, 
January 10, 2014 



Incidental human sequence learning 223 

 

Indeed, in a recent study using the paradigms reported thus far in this thesis, McLaren et 

al. (2013) used a dual-cue task using both the incidental sequence learning methodology 

(Jones & McLaren, 2009) concurrently with the addition of colour-response 

contingencies similar to Experiment 5. Therefore on each trial there was a contingency 

between the central colour cue and the required response as well as a contingency 

between the previous trials and the current response stimulus location. McLaren et al. 

(2013) trained a group that learned both sequential and colour-response contingencies 

(Dual group) in comparison to sequence-only and colour-only groups: who received 

random colours or pseudo-random sequences, respectively. These participants showed 

that sequence learning in Dual and Sequence groups were no different to one another, 

therefore sequence learning was not affected by the presence of colour-response 

contingencies. It was the colour cue-response learning that was affected, with little or no 

evidence of colour learning in the dual group, suggesting that the presence of sequences 

had overshadowed learning about colour-response contingencies. Therefore it is 

possible to observe cue-competition effects under incidental conditions. These results 

could, furthermore, explain the difficultly that Jiménez and Méndez (1999) had in 

showing evidence of cue-response learning alongside a sequence learning task.  

 

This McLaren et al (2013) study firstly provides evidence of incidental cue-competition, 

as colour cue-response learning was overshadowed by sequence learning. As the 

presence of additional stimuli that related to the previous element in the sequence 

potentiated sequence learning in Chapter 4, I was interested to investigate how the 

relationship between cue-response and sequence learning may act to increase learning. 

Beesley and Shanks (2012) suggest that this is a possibility that may explain their 

results, as there may be some within-compound or configural representation that might 

have increased learning about the ‘blocked’ B pattern (e.g. Urcelay & Miller, 2009). To 

some extent there may be a possible interaction then between competition for learning 

about an outcome and learning about associations between cues. Therefore, the aim of 

the studies reported in this chapter is to systematically investigate cue competition 

under incidental learning in humans. Two separate stimulus types were used to examine 

these effects (colour-response contingencies and exclusive-or sequential contingencies 

of response stimuli locations), which were spatially separated.  
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6.2 Experiment 7: Related cue-response and sequence learning  

A new version of the SRT task was designed that involved the two-choice SRT 

sequential rules employed by Jones and McLaren (2009), and compared learning of 

these contingencies to learning about simple cue-response associations between a 

central colour cue that appeared before the response-stimuli, as outlined in Chapter 5. 

Unlike in the work by McLaren et al. (2013) this task aimed to investigate whether cue-

competition effects would occur if sequences and colours were themselves related. So 

whilst both sequential information (the previous two trials, t – 2 and t – 1) and the 

colour of the cue were predictive of the response location, they were also predictive of 

one another with the same contingency – would cue-competition still be observed?    

 

This meant using colours that each had a lower contingency (66%) with a response, 

rather than 80% in Experiment 5, to match the contingency of sequences and colours. 

By increasing the number of training blocks to eighteen as well as reducing the number 

of test blocks to two, the intention was to increase colour learning and attempt to reduce 

the impact of extinction at test seen in Chapter 5. Therefore, after providing evidence 

that participants can learn both sequence and colour information separately in 

conceptually similar tasks under incidental conditions (Chapters 2 and 5); the first 

experiment in this cue competition series aimed to investigate whether experiencing 

both colour and sequential contingencies that are related to one another in the same task 

would alter learning of either of these relationships.  

 

6.2.1 Method  

6.2.1.1 Participants 

48 participants (aged between 18 and 30 [M = 20.6]; 38 female and 10 male) were 

recruited from first year psychology undergraduate students at the University of Exeter 

were awarded either one course credit (N = 8) or £5 (N = 40) in return for participation. 

Participants provided informed consent prior to taking part in one session lasting 

roughly one hour. Participants were allocated into one of three between subject groups: 

Dual (positive colour and sequence contingencies); Sequence (no colour and positive 

sequence contingencies) or Colour (positive colour and no sequence contingencies). 
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6.2.1.2 Materials and Stimuli 

The experiment was run with all stimuli and materials as in the Incidental condition of 

Experiment 8, see section 5.5.1.2) with a stimulus display of two white circle outlines 

with a square outline in the screen centre. Both the central square (cue-stimulus) and the 

circles to the left and right (response-stimuli) filled with one of four colours: red; 

yellow; green; or blue.  

 

6.2.1.2 Design 

The experiment was a two-choice SRT task comprising of one session of twenty blocks. 

These blocks each contained 120 trials, with the first 18 blocks acting as training and 

the final two blocks acting as test. Participants received either training on blocks 

containing sequential contingencies (Dual, Sequence) or no sequential contingences 

(Colour); and either colour contingencies (Dual, Colour) or no colour contingencies 

(Sequence). There were neither colour nor sequential contingencies present in any 

group during the two blocks of test, so a colour was equally likely to occur with either 

response location, and trial order was pseudorandom.  

 

Sequence construction: Experimental blocks. Those blocks involving sequential 

contingencies were constructed from 40 subsequence triplets of right and left stimuli in 

a similar way for Experiments 1 to 4, as outlined in section 2.2.1.3. This experiment, 

however, followed an exclusive-or rule used in Jones and McLaren’s (2009) study of 

sequence learning. This rule states that if the previous two trials are the same (the 

exclusive case [e.g. right & right, or left & left]) that the current trial will be one 

response (e.g. right), whereas if the previous two trials are different (the or case [e.g. 

right & left, or left & right]) then the current trial will be the other response (e.g. left). 

Right and left response stimuli were counterbalanced across participants and are 

forthwith referred to in terms of Xs and Ys. As in my earlier experiments, of the four 

possible subsequence triplets that follow this rule (XXX, XYY, YYX, YXY), ten of 

each subsequence were arbitrarily randomised and concatenated to form the 120 trials 

for a training block with sequential contingencies. The contingency of the exclusive-or 

rule was therefore 100% on every third trial, as each third trial in the subsequence triplet 

used to construct the trials followed the rule and the overall contingency was 2/3. This 

construction method resulted in a balanced number of X and Ys in each block, as well 

as controlling for sequential effects up to two trials before the current trial (t - 2).  
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Sequence construction: Control blocks. Those blocks involving no sequential 

contingencies (Colour group and all groups at test) were pseudorandom and constructed 

in the same way as for pseudorandom blocks in my earlier experiments (see section 

2.2.2.3). The contingency experienced between the previous two trials (or indeed any 

trial) predicting the current trial using an exclusive-or rule (or any other combination of 

preceding trials) was therefore 50% and participants should have no sequential 

information to learn about. These blocks acted as a control for the sequence learning 

possible in the Dual and Sequence groups. The amount of right and left response stimuli, 

as well as the number of repeats and alternations were balanced and controlled for.  

 

Colour contingency construction. Once the sequence of X and Ys was constructed, the 

colour of the cue stimulus was arranged across the trials within each block, with the 

procedure for this depending on the group that participants were assigned to. All groups 

experienced all four colours equally across and within training and test blocks, with the 

colours (red, blue, green, yellow) themselves randomly allocated to Colours 1 to 4. For 

those groups that received a colour contingency (Dual and Colour), during training 

Colours 1 and 2 (Colour) or all colours (Dual) were Predictive and occurred with a 67% 

contingency with an X or Y trial respectively. Colours 3 and 4 were Non-Predictive for 

the Colour group (and all colours for the Sequence group) and therefore occurred with 

equal likelihood on either X or Y trials.  

 

Colour contingency construction: Dual group training blocks. Across training blocks, 

the Dual group was allocated colours according to the subsequence triplets that made up 

the right and left responses. All colours were assigned to a subsequence ‘pair’: the first 

two trials of a triplet (e.g. XY in XYY). Regardless of the position within the block, any 

trials that are preceded by the first two trials of each of the four trained subsequences 

were assigned a unique colour. For example, Colour 1 would always occur after two 

XX trials. As the third trial followed the exclusive-or rule on 67% of trials, this results 

in a 67% contingency between Colour 1 and X as a result of the contingency of the 

exclusive-or rule already in place. The contingency between the first pair of trials within 

the subsequence themselves and a colour was 100% with the previous trial pair. Colour 

2 occurred after the subsequence pair XY; Colour 3 after subsequence pair YX and 

Colour 4 after subsequence pair YY. There were no control colours in this group and all 

colours therefore had a 67% contingency between cue stimulus colour and response 

stimulus location across training. 
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Colour contingency construction: Colour group training blocks. The colours that 

occurred during training blocks in the Colour group followed the same structure as 

Experiment 5, with Colour 1 predicting an X trial on 67% of those trials and 67% of 

Colour 2 trials predicting a Y response. As in Experiment 5, and contrary to the Dual 

group, these colours were simply assigned according to these contingencies randomly 

across a block with no further constraint or relationship to the subsequences or response 

location.  

 

Colour contingency construction: Control blocks. Across training in the Sequence 

group and at test for all groups, there were no colour contingencies. All four colours 

occurred with equal likelihood on either X or Y trials. These were allocated randomly 

across these trials with no further constraint or relationship to the subsequence or 

responses, meaning the colours had a 50% chance of preceding either response location.  

 

6.2.1.4 Procedure 

The procedure followed previous experiments: all participants were instructed to simply 

respond as quickly and accurately as possible. They were instructed to fixate on the 

coloured square, suggesting that it would help them to respond quicker and more 

accurately by attracting their attention to the centre of the screen. They were informed 

that the experiment intended to measure their reaction times and errors and its aim was 

to investigate people’s ability to respond quickly and accurately to very simple stimuli 

over the course of an experiment. They were not informed of any relationship between 

the colours or sequence of the stimuli and the responses required and no mention was 

made of anything to learn about or from. They were told that the colours changed to 

make the task less dull and to try and retain their attention.  

 

At the beginning of each block participants were instructed to press any key to start. 

Each trial began with an inter-trial interval of 250 ms where a black background with a 

white square outline and two white circle outlines was presented. The cue stimulus (a 

coloured square in the centre of the screen) would then appear for a variable interval of 

between 250-500 ms. The response stimulus (the left or right coloured circle) would 

then appear on screen until either the participant made a keypress response or the trial 

timed out after 4000 ms from the presentation of the response stimulus. The colour of 

the cue and response stimuli were the same on each trial, so if the cue-stimulus was a 

red square then either response stimulus would be a red circle. RTs were measured from 
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the onset of the response stimulus. If participants pressed an incorrect key, or the trial 

timed out, the computer issued a beep sound.  

 

Feedback was given as in all previous experiments at the end of each block and at the 

end of the twenty blocks a short verbal structured interview was given, in which 

participants were asked about what they had noticed in the experiment regarding both 

sequences and colours. Participants were asked to describe any contingences they may 

have noticed, and were required to identify which response each colour predicted. 

Participants were finally debriefed and thanked for their participation.  

  

6.2.2 Results 

RTs and responses were recorded for each participant, with exclusion and inclusion 

criteria as described previously. Average RT and proportion of errors were calculated 

for each of the eight subsequences and separately for each Colour Type. All four 

colours were analysed for Dual and Sequence groups with Predictive Consistent and 

Predictive Inconsistent trials, however only the two Predictive colours were analysed in 

the Colour group. Non-Predictive colours were not included in the analysis as there was 

no equivalent in the Dual group, which exclusively involved Predictive trials. All 

colours in the Sequence group were Non-Predictive, but two (Colours 1 and 3) were 

assigned X as ‘Consistent’ and Y as ‘Inconsistent’, with the opposite dummy label 

assigned to responses for Colours 2 and 4. Sequence learning and colour-response 

learning are analysed separately in the following sections. 

 

Sequence learning: Difference scores. As in Experiments 1 to 4, difference scores were 

calculated from RTs and errors as an index of performance on consistent subsequences 

(XXX, XYY, YXY, YYX) taken from the corresponding inconsistent subsequence 

(XXY, XYX, YXX, YYY), with higher scores reflecting better performance on 

subsequences consistent with the exclusive-or rule.  

 

Colour-response learning: Difference scores. Difference scores were also calculated 

using the same principles as for sequence learning, with Predictive Consistent average 

RTs and proportion of errors taken from Predictive Inconsistent trials to provide a 

difference measure that with greater values reflects better performance on trials where 
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the Predictive colour resulted in the trained contingent response over the response 

Inconsistent with the trained relationship.  

  

6.2.2.1 Sequence learning 

An analysis of variance was conducted on both RT and error difference scores across 

training and test with the factors Block (Training: 18; Test: 2) x Subsequence (4) x 

Group (3).  

 

Training phase. There was a large significant main effect of Group, RT difference score, 

F(2,45) = 23.5, p < .001, MSE = 2679, ηp
2 = .511; proportion of error difference score, 

F(2,45) = 13.2, p < .001, MSE = .014, ηp
2 = .358, see Figure 6.2.  

 

 
Figure 6.2. RT (top panel) and error (bottom panel) sequence learning difference scores across 

training (left panel) and test (right panel) for the three different groups. Error bars show 

standard errors.  

 

A series of planned contrasts compared the groups, as shown in Table 6.1. Using a 

series of planned comparisons, the Dual group performed significantly better than the 

Colour group, demonstrating strong evidence of sequence learning in the Dual group 
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(see Table 6.1). The Sequence group showed no difference to the Dual group also 

demonstrating strong evidence of sequence learning compared to the Colour group (see 

Table 6.1). Evidence of sequence learning was therefore provided in both Dual and 

Sequence groups. There was no evidence of a main effect of Block, nor for the 

interaction of Block with Group in the RT difference score, which suggests that there 

was no evidence for a change in sequence learning across the experiment. 

 

Table 6.1. Results from ANOVA for planned comparisons on average RT and 

proportion of errors sequence difference scores, comparing the three Groups to one 

another across training in Experiment 7. 

 RT difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual vs Colour (control) 40.8 < .001 37.2 .476 

Sequence vs Colour (control) 28.6 < .001 37.2 .389 

Dual vs Sequence 1.08 .304 37.2 .023 

 Error difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual vs Colour (control) 12.2 .001 .001 .213 

Sequence vs Colour (control) 25.1 < .001 .001 .358 

Dual vs Sequence 2.30 .130 .001 .049 

 

 

Test phase. The variable Group demonstrates a main effect at test, RT difference score, 

F(2,45) = 7.67, p = .001, MSE = 1724, ηp
2 = .254; proportion of error difference score, 

F(2,45) = 3.74, p = .031, MSE = .013, ηp
2 = .142, see Figure 6.2. This provides strong 

evidence of sequence learning that was not eradicated by extinction. A series of planned 

contrasts (see Table 6.2) show that the Dual group was quicker and more accurate in 

responding to trained subsequences at test compared to the Colour group. Again, there 

was no difference between the Dual and Sequence groups; as the Sequence group also 

showed evidence of reliably faster responding and numerically an accuracy advantage 

for trained subsequences compared to the colour group, see Table 6.2. 

 

!  
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Table 6.2. Results from ANOVA for planned comparisons on average RT and 

proportion of errors sequence difference scores, comparing the three Groups to one 

another across the two blocks of test in Experiment 7. 

 RT difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual vs Colour (control) 15.3 < .001 216 .254 

Sequence vs Colour (control) 4.68 .036 216 .094 

Dual vs Sequence 3.05 .088 216 .063 

 Error difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual vs Colour (control) 6.94 .012 .002 .134 

Sequence vs Colour (control) 3.81 .057 .002 .078 

Dual vs Sequence .466 .498 .002 .010 

 

The two blocks of test did not have a significant effect on responding, nor with Group; 

Subsequence; or the three way interaction, suggesting that extinction did not occur 

across the two blocks.  

 

6.2.2.2 Colour learning 

To investigate how participants learned about colours an ANOVA was conducted on 

both RT and error difference scores across training and test with the factors Block 

(Training: 18; Test: 2) x Group (3).  

 

Training phase. Across training there was a large effect of Group, RT difference score, 

F(2,45) = 21.5, p < .001, MSE = 2063, ηp
2 = .489; proportion of error difference score, 

F(2,45) = 4.60, p = .015, MSE = .015, ηp
2 = .170, see Figure 6.5. This can be unpacked 

by planned contrasts (see Table 6.3) with faster and more accurate responding to 

consistent colours compared to inconsistent colours in the Dual group compared to the 

Sequence group. Evidence of learning is also apparent in the Colour group, with 

significantly faster and numerically more accurate responses to trained colours in the 

Colour group compared to the Sequence group; see Table 6.3.  
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Figure 6.3. RT (top panel) and error (bottom panel) colour learning difference scores for the 

three Groups (Dual: black filled bars, Sequence: blue open bars; Colour: red filled bars) across 

training (left panel) and at test (right panel) for Experiment 9. Error bars show standard errors. 

 

There was also a significant difference between Colour and Dual groups in RT 

difference score but not in proportion of error difference score (see Table 6.3). It is 

impossible, however, to ascertain whether this difference is caused by some potentiating 

effect of sequence learning in the Dual group, as Consistent colours and sequences are 

perfectly confounded and across training as the two are correlated measuring colour 

differences scores captures sequence learning in the Dual group. There was no effect of 

Block, nor was there evidence that this interacted with Group.   

!  
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Table 6.3. Results from ANOVA for planned comparisons on average RT and 

proportion of errors colour difference scores, comparing the three Groups to one another 

across the two blocks of training in Experiment 7. 

 RT difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual vs Sequence (control) 43.0 < .001 57.3 .489 

Colour vs Sequence (control) 11.9 .001 57.3 .209 

Dual vs Colour 9.70 .003 57.3 .177 

 Error difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual vs Sequence (control) 8.91 .005 .001 .165 

Colour vs Sequence (control) 3.83 .056 .001 .078 

Dual vs Colour 1.06 .309 .001 .023 

 

Test phase. At test the participants showed a main effect of Group, RT difference score, 

F(2,45) = 8.07, p = .001, MSE = 1253, ηp
2 = .264; proportion of error difference score, 

F(2,45) = 1.98, p = .149, MSE = .011, ηp
2 = .081, see Figure 6.4. The Dual group 

showed evidence at test of significantly faster responding to consistent colours over 

inconsistent colours than the Sequence group (see Table 6.4). This gives us strong 

evidence of learning about colour contingencies in the Dual group, now in the absence 

of confounding sequential learning or effects, as at test there was no correlation between 

the two stimuli. The Colour group showed no difference from the Sequence group in 

speed, but responded with a near-significant trend towards greater error difference 

scores compared to Sequence groups, and numerically more than Dual groups (see 

Table 6.4). However the Dual group was also significantly better than the Colour group, 

RT difference score (see Table 6.4). Therefore we have some evidence of colour 

learning in the Colour group at test, and strong evidence for colour learning in the Dual 

group at test. 

 

There was an effect of Block in errors, RT difference score, F(1,45) = .000, p = .993, 

MSE = .089, ηp
2 = .000; proportion of error difference score, F(1,45) = 6.26, p = .016, 

MSE = .051, ηp
2 = .122, with a higher error difference in Block 1 (M = .040, SE = .011) 

than 2 (M = .008, SE = .008). This demonstrates the rapid decline in learning because of 

extinction at test. This did not interact with Group, RT difference score, F(2,45) = .872, 

p = .425, MSE = 900, ηp
2 = .037; proportion of error difference score, F(2,45) = 2.29, p 
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= .113, MSE = .019, ηp
2 = .092 and as with Experiment 5 this suggests that colour 

learning was quick to suffer from extinction. 

 

Table 6.4. Results from ANOVA for planned comparisons on average RT and 

proportion of errors colour difference scores, comparing the three Groups to one another 

across the two blocks of test in Experiment 7. 

 RT difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual vs Sequence (control) 10.8 .002 313 .194 

Colour vs Sequence (control) .123 .728 313 .003 

Dual vs Colour 13.3 .001 313 .228 

 Error difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual vs Sequence (control) 1.60 .212 .003 .034 

Colour vs Sequence (control) 3.86 .056 .003 .079 

Dual vs Colour .488 .489 .003 .011 

 

6.2.3 Discussion 

The results clearly show that both Dual and Sequence groups learned sequential 

contingencies well across training, and that this learning was well established and robust 

across extinction at test. The overall amount of sequence learning was largely 

unaffected, it seems, by the presence of colours. Whilst some numerical differences 

existed between Dual and Sequence groups in learning of subsequences, there was no 

interaction and therefore no concrete evidence of differential subsequence learning. The 

only caveat to these conclusions stems from the strong trend towards better performance 

on consistent sequences during test in the RT difference measure for the Dual group 

relative to the Sequence group. But this in no way suggests that learning of sequences 

was poorer in that group. 

 

There was convincing evidence of colour learning, with the Colour group showing 

evidence of learning across training and, to a weaker extent, in proportion of errors at 

test. It is clear that this colour learning is far weaker than the sequence learning, as 

across the two blocks of test we see the effect of extinction for colours only. With the 

evidence of learning from the Colour group enabling a comparison: the Dual group 

performed significantly better at test on the RT difference score than the Colour group. 

It seems that the presence of the sequential contingencies might have affected how well 
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the Dual group learned about colours and performed on them during test. Across 

training it is not possible to compare the groups, as the measurements for consistent 

colours are confounded with consistent sequences and therefore the two are impossible 

to disentangle. At test when the colour and sequence information are separated, we can 

see that the Dual group are above zero on both of their difference score measures, and 

reliably higher than the Colour group in RT difference scores which might suggest that 

the Dual group learn more about colours than the Colour group itself. However, as the 

score for the colour group was numerically higher in the error differences we must be 

cautious in claiming that this was necessarily the case. 

 

Whilst McLaren et al. (2013) reported that two sets of contingencies in such a task 

produced an overshadowing effect on colour learning, Experiment 7 provides evidence 

of either no or the opposite effect. The Dual group performed numerically better when 

examining colour learning than the Colour group. Indeed the studies reported here may 

support the opposite conclusion, that colour learning may be potentiated in the Dual 

group. The source of these contentious results could arise from numerous factors, as the 

differences between McLaren et al. (2013) and the experiments reported here include: 

different colour contingencies; longer training; white response stimuli; and a longer test 

phase. However, the previous work reported in Chapter 4 suggests that the relationship 

between colours and sequences could produce this effect. As we observed that a 

contingency between the stimuli (sequences and additional concurrent stimuli) in 

Chapter 4 produced increased sequence learning, it is possible that a relationship 

between sequences and cues could also produce an increase in learning, or protection 

from overshadowing. As participants in McLaren et al.’s (2013) study had no 

relationship between the two sets of contingencies, colour learning was simply 

overshadowed by the strong sequence learning. 

 

The current study did not, however, provide by any means a conclusive result that 

suggests the Dual group learn more than the Colour group. The Colour group performed 

better in terms of their accuracy to consistent versus inconsistent colours than the Dual 

group at test, and thus the difference could be explained by an attentional or 

motivational difference between the groups, as they may have focused more on speed of 

responding rather than accuracy to trained colours. Further to this, the groups had a 

different number of colour contingencies to learn: whilst the proportion of consistent to 

inconsistent trials was matched across groups, the Dual group had twice as many 
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colours to learn about than the Colour group. This could have encouraged participants 

to notice the contingencies in the Dual condition and employ different strategies or 

systems whilst responding to the task, causing perhaps an increase in colour learning as 

observed in the Intentional condition of Experiment 5. Therefore the groups were 

matched and efforts made to examine the participant’s reportable knowledge about the 

contingencies in play in a further experiment. 

 

6.3 Experiment 8: Cue-response and sequence learning when correlated and 

uncorrelated 

A further experiment was run with the aim of better matching the Dual and Colour 

groups. As Experiment 7 involved four colours in the Dual group and two in the Colour 

group, I wanted to ensure that a comparison could be made between these conditions to 

assess whether the Dual group exhibited learning comparable to or greater than the 

Colour group. Experiment 8 therefore aimed to match the number of Predictive colours 

in the Colour and Dual groups, which was reduced to two, alongside two Non-

Predictive control colours. Thus the groups were matched exactly in both the amount 

and proportion of Predictive consistent, inconsistent and Control trials. Further to this, a 

prediction task was added to the end of the experiment to better assay explicit 

knowledge. I was interested to know whether participants in the Dual group on direct 

tests were different to the Colour group regarding colour cue-response learning.  

 

Experiment 7 also provided evidence that the Dual group exhibited at least the same 

amount of learning as the Colour group, the opposite result to the McLaren et al. (2013) 

study. To investigate this further an additional Dual group was run, one to match the 

Dual group in Experiment 7 (Dual Correlated) and one to match McLaren et al. (2013; 

Dual Uncorrelated). The first of these was a two-Predictive-colour version of the Dual 

group described in Experiment 7 – Dual Correlated, alongside a Dual Uncorrelated 

group that matched the colour contingency construction method involved in the 

McLaren et al. (2013) experiment. The other differences that existed between the two 

Dual groups in Experiment 7 and McLaren et al. (2013): training length; test length; 

colour-response contingency; and colour of response stimuli, were all equated. By 

matching these parameters it was possible to investigate whether manipulation of  Dual 

group correlation (the relationship between colours and sequences) itself produced cue-

competition in one case, and an absence of cue-competition in the other.  
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6.3.1 Method  

6.3.1.1 Participants 

48 participants (aged between 18 and 25 [M = 19.1]; 46 female and 2 male) were 

recruited from first year psychology undergraduate students and were awarded one 

credit in return for participation. Participants provided informed consent prior to taking 

part in one session lasting roughly one hour. Participants were allocated into one of 

three between subject groups: Dual Correlated; Dual Uncorrelated; or Colour. 

 

6.3.1.2 Materials and Stimuli 

The materials and stimuli used were the same as for Experiment 7 (see 6.2.1.2). 

 

6.3.1.3 Design 

The experiment was a two-choice SRT task comprising of one session of twenty blocks. 

These blocks each contained 120 trials, with the first eighteen blocks acting as training 

and the final two blocks acting as test. Depending on the group that participants were 

assigned to, across training participants received either blocks containing sequential 

contingencies (Dual Correlated, Dual Uncorrelated) or no sequential contingencies 

(Colour). All participants received blocks during training that contained colour 

contingencies, and neither colour nor sequential contingencies for the two blocks of test.  

 

Sequence construction. Sequences of rights and lefts were constructed as for 

Experiment 7 (see 6.2.1.3). 

 

Colour construction. All groups experienced all four colours equally across and within 

training and test blocks, as previously described. For all groups, Colour 1 and 2 were 

both Predictive, meaning that across training blocks they had a 67% contingency with a 

response stimulus location. 67% of the time that Colour 1 was present in the cue and 

response stimuli it was on an X trial. Colour 2 had the complementary contingency, and 

when it was present in the cue and response stimuli, 67% of the time this would be a Y 

trial. Colour 3 and 4 were Non-Predictive stimuli and occurred with equal likelihood on 

an X or Y trial. On test trials all colours occurred with equal likelihood on either X or Y 

trials and were allocated randomly across these trials. There was a programming error in 

this experiment that resulted in a non-random appearance of colours at test. Whilst the 

colours occurred equally across right and left trials, the programming error made it 
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more likely for the same colour to repeat on consequent trials. This meant that the test 

phase was not entirely random and participants may have noticed a difference in the 

order that colours occurred. This does not violate the use of the controlled test phase, 

where the colours are all equally likely to occur before a right or left required response, 

this may have introduced some confound to the task. 

 

Colour construction: Dual Correlated group and Colour group. Across training blocks, 

the Dual Correlated group’s trials were allocated colours according to the subsequence 

pairs that made up the right and left responses, similar to what was described in 

Experiment 7 for the Dual group (see 6.2.1.3). To some extent, the Dual Correlated 

group was the same as the Dual group reported in Experiment 7, as after a certain 

subsequence pair (e.g. XX) one Colour would always occur (e.g. Colour 1). However, 

only two total subsequences were predictive in this way, either: XXX & XYY; XXX & 

YXY; YYX & XYY; or YYX & YXY. This was counterbalanced across participants in 

the Dual Correlated group. These pairs were chosen as each possible combination of 

two subsequences that follow the exclusive-or rule that result in opposite (both X and 

Y) responses. Non-Predictive Colours 3 and 4 were distributed across the other half of 

trials with a 50% contingency with X or Y response locations. The Colour group was 

allocated colours across training in the same way as described for Experiment 7 (see 

6.2.1.3). One consequence of this change in training schedule is, of course, that the 

number of predictive colours contributing to an assessment of colour learning has been 

halved, quite possibly reducing power, but this was a necessary compromise to allow 

proper experimental control. 

 

Colour construction: Dual Uncorrelated group. Training blocks for participants in the 

Dual Uncorrelated group were assigned colours according to a different system, which 

involved first placing Colour 1 on every third trial that was an X and Colour 2 on every 

third trial that was a Y. The remaining 80 first and second trials in each block were then 

randomly assigned ten instances of Colour 1 if a Y trial and ten instances of Colour 2 if 

an X trial. The remaining 60 trials (of which an equal amount were X and Y trials) were 

randomly assigned Colour 3 or Colour 4, each balanced across the X and Ys equally. 

Colour 1 and 2 therefore had no relationship with a specific subsequence (although 

Colour 1 Consistent trials were 100% contingent with ‘exclusive’ cases and Colour 2 

Consistent trials were 100% contingent with ‘or’ cases) and overall had a 67% 
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contingency with the required response. Colours 3 and 4 again had no contingency with 

either a subsequence nor a particular response.  

 

6.3.1.4 Procedure 

The procedure followed was the same as described for Experiment 7 (see 6.2.1.4) with 

the addition of a prediction task following the structured interview, as outlined in 

Chapter 5. In this prediction task participants began each block with a “press any key to 

begin” command and on each trial experienced an RSI of 250 ms. The cue stimulus 

would appear and participants were instructed to respond to this cue stimulus with the 

key press response compatible with the response stimulus that they thought would have 

filled during the experiment. A response to a response stimulus was not possible, as the 

white circle outlines did not fill at all during the prediction task. These trials had no time 

out, and participants were told to take as long or short as they liked to make a response 

and they could base this response on either: a random guess; some intuition; or any 

knowledge they had about the task. Participants were finally debriefed and thanked for 

their participation.  

 

6.3.2 Results 

RTs and proportion of errors were recorded and sequence learning difference scores 

calculated as described in Experiment 7 (see 6.2.2). Each participant had an average RT 

and proportion of errors calculated for the three types of colour trials (Predictive 

Consistent; Predictive Inconsistent; and Non-Predictive) and no difference score was 

calculated across training or test for colours.  

 

6.3.2.1 Sequence learning 

An analysis of variance was conducted on both RT and error difference scores across 

training and test with the factors Block (training: 18; test: 2)) by Subsequence (4) by 

Group (3).  

 

Training phase. The variable of interest, Group, demonstrated a main effect across both 

measures, see Figure 6.5: RT difference score, F(2,45) = 10.2, p < .001, MSE = 8484, 

ηp
2 = .311; proportion of error difference score, F(2,45) = 4.93, p = .012, MSE = .033, 

ηp
2 = .180.  
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Figure 6.4. RT (top panel) and error (bottom panel) sequence learning difference scores for 

Dual Correlated (black filled bars); Colour (red open bars) and Dual Uncorrelated (green filled 

bars) Groups across training (left panel) and at test (right panel). Error bars show standard errors. 

 

A series of planned comparisons unpacks this effect, shown in Table 6.5, demonstrating 

first a significant advantage for Dual Correlated over Colour groups in both RT 

difference score and proportion of error difference score. This demonstrates the learning 

of sequential contingencies by the Dual Correlated group compared to the control 

Colour group who received no contingencies. The Dual Uncorrelated group also 

showed significant sequence learning compared to the Colour group in both RT 

difference score and proportion of error difference score. There was no difference 

between the Dual Correlated and Dual Uncorrelated groups across training. Thus, both 

Dual groups trained on sequential exclusive-or contingencies showed strong evidence of 

learning these across training and did not themselves differ from one another. 

 

!  
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Table 6.5. Results from ANOVA for planned comparisons on average RT and 

proportion of errors sequence difference scores, comparing the three Groups to one 

another across the eighteen blocks of training in Experiment 8. 

 RT difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 12.5 .001 118 .218 

Dual Uncorrelated vs Colour (control) 17.5 < .001 118 .281 

Dual Correlated vs Dual Uncorrelated .419 .521 118 .009 

 Error difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 6.01 .018 .001 .670 

Dual Uncorrelated vs Colour (control) 8.55 .005 .001 .816 

Dual Correlated vs Dual Uncorrelated .223 .639 .001 .075 

 

Across training participants showed no main effect of Block: RT difference score, 

F(17,765) = 1.55, p = .156, MSE = 9383, ηp
2 = .033; error difference score, F(17,765) = 

1.17, p = .291, MSE = .016, ηp
2 = .025, the errors participants made differed across 

Blocks depending on the Group (see Figure 6.6), proportion of error difference score, 

F(34,765) = 1.57, p = .031, MSE = .016, ηp
2 = .065. Whilst the Colour group remain 

relatively flat around zero, both Dual Correlated and Dual Uncorrelated show a trend 

towards higher proportion of error difference scores and therefore better performance 

across training, providing further evidence of learning.  



242 Chapter 6: Cue-competition and sequence learning  

 
Figure 6.5. RT (top panel) and proportion of error (bottom panel) sequence learning difference 

scores across training for the three different groups. Filled circles indicate groups that were 

trained with sequential contingencies (both Dual Correlated [black] and Dual Uncorrelated 

[green]), with unfilled circles indicating those groups who had no sequential contingencies 

(Colour [red]) and therefore were not expected to demonstrate learning about sequences. Error 

bars show standard error. 

 

Test phase. Group also produced a main effect at test in the RT difference score (see 

Figure 6.5): RT difference score, F(2,45) = 5.39, p = .008, MSE = 2101, ηp
2 = .193; but 

not in the proportion of error difference score, F(2,45) = .612, p = .547, MSE = .009, ηp
2 

= .026. A series of planned comparisons were conducted (see Table 6.6) demonstrating 

a significant advantage for Dual Correlated over the Colour group in RTs at test, which 

demonstrates the learning of sequential contingencies by the Dual Correlated group 

compared to the control Colour group. The Dual Uncorrelated group also showed 

significant sequence learning compared to the Colour group in the RTs but not in 

proportion of errors (see Table 6.6). There was no difference between the Dual 

Correlated and Dual Uncorrelated groups at test, thus both Dual groups who had 

sequential contingencies showed some evidence of learning at test, and were not 

different from one another in their sequence learning. 
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Table 6.6. Results from ANOVA for planned comparisons on average RT and 

proportion of errors sequence difference scores, comparing the three Groups to one 

another across the two blocks of test in Experiment 8. 

 RT difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 5.69 .021 263 .112 

Dual Uncorrelated vs Colour (control) 9.90 .003 263 .180 

Dual Correlated vs Dual Uncorrelated .578 .451 263 .013 

 Error difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 1.22 .275 .001 .026 

Dual Uncorrelated vs Colour (control) .341 .562 .001 .008 

Dual Correlated vs Dual Uncorrelated .272 .604 .001 .006 

 

6.3.2.2 Colour Learning 

An analysis of variance was conducted on both RT and error difference scores across 

training and test with the factors Block (Training: 18; Test: 2) x Colour Type (3) x 

Group (3). Note: there was no problem with weighted averages and therefore the data 

was not collapsed across Epochs as it could be analysed across the full range of blocks. 

The difference score used in Experiment 7 was not used here as each group had all three 

Colour Types and so, in order to better understand the learning processes that may have 

occurred, these raw average RT and proportion of error scores were analysed as in 

Chapter 5.  

 

Training phase: Group comparison. When comparing the groups to one another, across 

training there was no main effect of Group, average RT, F(2,45) = 2.18, p = .125, MSE 

= 218732, ηp
2 = .088; proportion of error, F(2,45) = .115, p = .892, MSE = .227, ηp

2 

= .005. There was also no interaction between Group and Colour Type in average RT, 

F(4,90) = 2.37, p = .091, MSE = 3802, ηp
2 = .095; nor proportion of error, F(4,90) = 

1.66, p = .189, MSE = .014, ηp
2 = .069. This suggests that the groups are not different 

from one another across training, and do not differ in the extent to which they are 

learning the trained colour contingencies. This was further supported by a main effect of 

Colour Type in both measures: average RT, F(2,90) = 9.09, p = .002, MSE = 3802, ηp
2 

= .168; and proportion of error, F(2,90) = 5.46, p = .014, MSE = .014, ηp
2 = .108, 

suggesting the overall pattern of learning is apparent across the three groups (see Figure 

6.8).  
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There was a main effect of Block in the proportion of errors across training, suggesting 

that participants were making more errors as the task went on, F(17,765) = .15,0, p 

< .001, MSE = 12461, ηp
2 = .250; average RT, F(17,765) = .911, p = .465, MSE = .017, 

ηp
2 = .561. However, Block did not interact with Group; Colour Type; or both Group 

and Colour Type. Therefore, whilst participants may have begun to make more errors, 

participants did not differ in terms of their learning or across Groups across the course 

of training. 

 

Separate analyses of variance were then conducted for each group, with the factors 

Block (Training: 18; Test: 2) x Colour Type (3) to assess learning within the group, as 

no control group was available to compare against as baseline because all groups were 

trained with colour cue-response contingencies. Therefore the difference between 

Predictive Consistent, Predictive Inconsistent and Control colours is the assay of colour 

learning for each group.  

 

Training phase: Dual Correlated group. The Dual Correlated group demonstrated a 

trend towards evidence of colour learning across training in RTs with a strong trend but 

no main effect of Colour Type (see Figure 6.8): average RT, F(2,30) = 4.01, p = .058, 

MSE = 10658, ηp
2 = .211; proportion of errors, F(2,30) = 3.27, p = .080, MSE = .033, 

ηp
2 = .179. The pattern of results, however, was consistent with those that one would 

expect if learning of colours had occurred. Planned comparisons showed that 

participants in this group had significantly slower RTs, F(1,15) = 9.52, p = .008, MSE = 

4832, ηp
2 = .388 and more errors, F(1,15) = 4.89, p = .043, MSE = .031, ηp

2 = .246, to 

Predictive Inconsistent colours compared to Non-Predictive. The differences between 

Predictive Consistent colours and both Inconsistent and Non-Predictive colours were in 

the expected direction, with faster and more accurate responding to Predictive 

Consistent colours, but were not significant. 
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Figure 6.6. Average RT (top panel) and proportion of errors (bottom panel) for the different 

Colour Type trials: Predictive Consistent, Predictive Inconsistent and Non-Predictive across 

training (left panel) and test (right panel) for the three groups: Dual Correlated (black bars); 

Dual Uncorrelated (green bars); and Colour (red bars). Error bars show standard error. 

 

Training phase: Dual Uncorrelated group. The Dual Uncorrelated group also 

demonstrated learning of colour contingencies across training in RTs and errors (see 

Figure 6.8) as seen in the main effect of Colour Type, average RT, F(2,30) = 8.81, p 

= .005, MSE = 1124, ηp
2 = .370; proportion of error, F(2,30) = 4.40, p = .026, MSE 

= .004, ηp
2 = .227. Planned contrasts showed that Predictive Consistent colours were 

responded to reliably faster, F(1,15) = 9,75, p = .007, MSE = 2399, ηp
2 = .370; and more 

accurately than Predictive Inconsistent colours, F(1,15) = 5.25, p = .037, MSE = .004, 

ηp
2 = .259. RTs also showed a large effect when comparing Predictive Consistent and 

Control colours, F(1,15) = 28.7, p < .001, MSE = 419, ηp
2 = .657; but not proportion of 

errors, F(1,15) = .266, p = .613, MSE = .006, ηp
2 = .017. There was also evidence of 

learning from the Predictive Inconsistent versus Control colour comparison in 

participants’ errors, average RT, F(1,15) = 1.33, p = .267, MSE = 1414, ηp
2 = .082; 

proportion of error, F(1,15) = 8.07, p = .012, MSE = .005, ηp
2 = .350. 
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Training phase: Colour group. The Colour group demonstrated learning of colour 

contingencies (see Figure 6.8), although the main effect of Colour Type was confined to 

the RTs: F(2,30) = 6.00, p = .006, MSE = 435, ηp
2 = .286; proportion of error, F(2,30) 

= .025, p = .932, MSE = .006, ηp
2 = .002. This effect, similar to the Dual Correlated 

group, was driven by the large effect of slower responses to Predictive Inconsistent 

versus Control colours, F(1,15) = 16.2, p = .001, MSE = 629, ηp
2 = .520. Whilst the 

Predictive Consistent colours were numerically faster and more accurate than the 

Predictive Inconsistent colours these were not significant differences. Similarly, the 

difference between Predictive Consistent and Control colours was not reliable. 

 

Test phase: Dual Correlated group. The Dual Correlated group showed no main effect 

of Colour Type at test (see Figure 6.8), average RT, F(2,30) = 1.398, p = .263, MSE = 

453, ηp
2 = .085; proportion of error, F(2,30) = .578, p = .567, MSE = .003, ηp

2 = .037. 

However, the numerical pattern in the errors and the difference between Predictive 

Consistent and Control colours in the RTs followed the pattern shown during training, 

although the Predictive Inconsistent trials were surprisingly fast. This suggests that if 

learning has occurred it may have either: extinguished very rapidly at test; been simply 

a confound of sequence learning; or that the two blocks do not contain enough trials to 

capture the sensitive colour learning effect.  

 

Test phase: Dual Uncorrelated group. The only Group to demonstrate a main effect of 

Colour Type when analysed separately to assess learning at test was Dual Uncorrelated 

in RTs (see Figure 6.8), average RT, F(2,30) = 5.036, p = .026, MSE = 649, ηp
2 = .251; 

proportion of error, F(2,30) = .832, p = .435, MSE = .004, ηp
2 = .053. This, however, 

showed the opposite pattern to that obtained during training, providing evidence against 

the Dual Uncorrelated group learning about the colour contingencies. Both RTs and 

errors for this group followed the same pattern, with significantly slower RTs, F(1,15) 

= .568, p = .031, MSE = 1416, ηp
2 = .275 (and numerically more errors) to Predictive 

Consistent colours compared to Inconsistent, and to Control colours: average RT, 

F(1,15) = 5.33, p = .036, MSE = 984, ηp
2 = .262. Predictive Inconsistent trials were not 

significantly different from Control colours. This provides evidence that the Dual 

Uncorrelated group showed no evidence of the expected colour learning at test, and the 

reason for this reverse pattern is not clear.  
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Test phase: Colour group. The Colour group also showed no main effect of Colour 

Type at test (see Figure 6.8), average RT, F(2,30) = 2.33, p = .114, MSE = 3748, ηp
2 

= .135; proportion of error, F(2,30) = .717, p = .497, MSE = .003, ηp
2 = .160. However, 

similar to the Dual Correlated group, the pattern of results in the errors showed the same 

numerical pattern as during training. The RT data at test also demonstrated a significant 

difference between Predictive Inconsistent and Control colours, F(1,15) = 6.97, p = .019, 

MSE = 1483, ηp
2 = .317, with participants making reliably more errors on Predictive 

Inconsistent trials compared to Control colour trials.  

 

Test phase: Group comparison. The groups did not differ at test in RTs or errors, 

average RT, F(2,45) = 2.17, p = .126, MSE = 41474, ηp
2 = .088; proportion of error, 

F(2,45) = .228, p = .797, MSE = .163, ηp
2 = .010. When collapsed the groups showed a 

main effect of Colour Type in RTs at test, average RT, F(2,90) = 3.85, p = .037, MSE = 

1296, ηp
2 = .079; proportion of error, F(2,90) = .092, p = .912, MSE = .003, ηp

2 = .002. 

This effect could be unpacked as significantly slower responses to Predictive Consistent 

trials at test compared to Predictive Inconsistent, average RT, F(1,45) = 4.54, p = .039, 

MSE = 1899, ηp
2 = .092; and slower responding to Predictive Consistent trials than to 

Control colour trials, average RT, F(1,45) = 4.38, p = .042, MSE = 3093, ηp
2 = .089. 

There was no difference between Predictive Inconsistent and Control colour trials, 

average RT, F(1,45) = .603, p = .442, MSE = 919, ηp
2 = .013. As the numerical pattern 

is not the same at test, I can conclude little from these results but a possible speed 

accuracy trade-off, where participants were slower and more accurate to Predictive 

Consistent colours, and faster but more likely to make a mistake to Predictive 

Inconsistent colours. Consequently, there is no evidence for colour learning at test in 

this experiment. 

 

6.3.2.3 Prediction task 

Participants performed just below chance on the prediction task, with an average 

amount of correct choices on the prediction task to Predictive colours of 49.4% (M = 

7.89, SE = .527). Using a prior based on a sample of participants who were instructed to 

attend to colours and were made aware of relationships between colours and responses 

from Experiment 6, albeit at a slightly higher contingency (80% rather than 66%), a 

Bayes factor was calculated. As the prior was taken from a sample who were not only 

likely to learn more by nature of having information made explicit to them, but also had 

higher contingencies in play between colours and responses a uniform distribution was 
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chosen, from 0 (chance performance on the task) to 6.44 (the average number of trials 

correct above chance on the prediction task in the intentional group used as a prior). The 

Bayes factor produced from the average number of correct responses greater than 0 is 

0.09, providing evidence for the null and suggesting that there was no evidence of 

explicit knowledge of colour-response contingencies across this sample, demonstrating 

that the Colour groups are showing evidence of learning about colours without 

awareness across training. The Dual groups may not be aware of colour contingencies 

but without evidence of a colour learning effect at test any learning about colours across 

training may have been purely sequence based. 

  

6.3.3 Discussion 

The pattern of results demonstrated in Experiment 8 provides evidence of sequence 

learning in Dual Correlated and Dual Uncorrelated groups, both of which were trained 

with sequential contingencies. This learning was apparent across training and during 

test, with no differences apparent between these two groups. The differences arise when 

considering the colour learning results, which across training provided evidence of 

learning by all three groups, having all been trained with colour contingencies. At test 

however, no groups showed good evidence of colour learning. The Dual Correlated and 

Colour groups demonstrated a similar pattern of results, following the pattern observed 

in training across errors and in part in RTs. The Dual Uncorrelated group however, 

showed an absence of any colour learning at test, with both RT and error data showing 

the opposite numerical pattern to what one would expect if showing evidence of 

learning, supported by significant differences between Colour Types in the opposite 

direction. This could suggest that in the Dual Uncorrelated group any weak learning 

about colour that could have occurred was overshadowed by the presence of the 

sequential contingencies, but I have to acknowledge that the evidence for this 

conclusion is rather weak.  

 

This suggests that the Dual Correlated group had somehow been protected from 

overshadowing by the contingencies in force between the colours and subsequences 

themselves. This could be explained by a variety of learning theories in which either the 

representation of colour and stimuli were bound together whereby the association 

between colour and sequence was built up, and the presentation of one activates a 

representation of the other.  
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Does this effect only apply to the colours and not the sequences? This might suggest 

that the weaker or less salient stimulus (in this case colour) has little to add to the robust 

sequence learning that we observe in both Dual groups, which may already be at ceiling. 

If this were the case, Experiments 3 and 4 would not have produced evidence of the 

potentiation of sequence learning. It could be that the effect of colour on sequence 

learning is minimal, especially and not detected by the group comparison here, as there 

are more colours than in Experiment 4. The lack of sequence learning potentiation may 

have been affected by the presence of Non-Predictive colours, which may reduce the 

potentiating effect of the 100% sequence pair correlated Predictive colours in the Dual 

Correlated group. Further to this, the potentiation of sequence learning seen in 

Experiments 3 and 4 in the Previous group involved a contingency with the previous 

element in the sequence, not the previous two elements in the sequence. Perhaps 

participants are able to learn these simple sequence-stimuli relationships only about the 

previous trial, or within a certain temporal window. Additionally, it could be possible 

that the presence of the Previous stimuli in Experiments 3 and 4 improved learning in 

some other, non-associative way.  

 

This experiment did not provide definitive evidence of colour learning in any group, 

however, as there were no significant effects at test save one difference in the Colour 

RTs to suggest that any group can learn about colours during extinction. However, as 

the Colour group demonstrated evidence of learning across training, which is not 

confounded or produced by sequential contingencies, the test phase may not be sensitive 

enough to capture the effect. Extinction of colour contingency learning may be 

occurring very rapidly. To assay colour learning fully against a control, a Sequence 

group with no colour contingencies was run in the next experiment. In addition to this, 

the problems with the allocations of colours during test in this experiment due to a 

programming error may have influenced the results. Experiment 9 addresses this issue, 

provides a control group for colour learning, and seeks to confirm the tentative 

conclusions drawn from Experiment 8. 

 

6.4 Experiment 9 

The final experiment in this thesis examined once more the difference in sequence and 

colour learning across two Dual groups, replicating Experiment 8. Experiment 9 also 

incorporated two groups that received only one contingency with the other stimuli 
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simply random – a Colour and Sequence group. The issues with the test sequencing in 

Experiment 8 were corrected and a comparison to a control group for colour learning 

(the Sequence group) as a comparison at test was essential. When measuring sequence 

learning the Colour group forms a control across training as well as at test, as no 

sequences were trained in this group. When measuring colour learning the Sequence 

group forms the appropriate control across training and test, as no positive colour-cue 

response contingencies were trained. Therefore, the sequence group offers a control for 

the unavoidable confound of measuring the colour learning across training on trials that 

also measure sequence learning in the Dual groups, as I can compare the Sequence 

group to the Dual and Colour groups to assess colour learning; and compare the Colour 

group to the Dual and Sequence groups to assess sequence learning. 

 

6.4.1 Method 

6.4.1.1 Participants 

64 participants (aged between 18 and 49 [M = 21.5]; 53 female and 11 male) were 

recruited from first year psychology undergraduate students and were awarded one 

credit (N = 11) or £5 (N = 53) in return for participation. Participants provided informed 

consent prior to taking part in one session lasting roughly one hour. Participants were 

allocated into one of three between subject groups: Dual Correlated; Dual Uncorrelated; 

Sequence or Colour. 

 

6.4.1.2 Materials and Stimuli 

The materials and stimuli were the same as for Experiment 7 (see 6.2.1.2). 

 
6.4.1.3 Design 

The experiment followed the design of Experiment 8 (see 6.3.1.3), with the addition of 

a Sequence group whose sequence construction and colour construction was the same as 

Experiment 7 (see 6.2.1.3).  

 
6.4.1.4 Procedure 

The procedure was a direct replication of Experiment 8 (see 6.3.1.4). 
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6.4.2 Results 

RTs and errors were measured and sequence learning difference scores were calculated 

as described in Experiment 7 (see 6.2.2). Colour learning was assayed using raw RTs 

and proportion of errors as described in Experiment 8 (see 6.3.2). 

 
6.4.2.1 Sequence learning 

An analysis of variance was conducted on both RT and error difference scores across 

training and test with the factors Block (Training: 18; Test: 2) x Subsequence (4) x 

Group (4).  

 
Training phase. There was a main effect of the variable of interest, Group, in both RT 

and proportion of error difference scores across training (see Figure 6.9), RT difference 

score, F(3,60) = 13.8, p < .001, MSE = 2432, ηp
2 = .409; error difference score, F(3,60) 

= 20.7, p < .001, MSE = .027, ηp
2 = .256.  

 
Figure 6.7. RT (top panel) and proportion of error (bottom panel) sequence learning difference 

scores across training (left panel) and test (right panel) for the four groups in the study: Dual 

Correlated (black filled bars); Sequence (blue filled bars); Colour (red open bars); and Dual 

Uncorrelated (green filled bars). Filled bars indicate those groups who were trained with 

exclusive-or sequences, open bars the Colour group who were not trained with exclusive-or 

sequences. Error bars show standard error. 
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Using a series of planned comparisons shown in Table 6.7 we can break this down and 

show that the Dual Correlated group showed significant learning of sequential 

contingencies, with higher RT and proportion of error difference scores compared to the 

Colour group who were not trained with any sequential contingencies. The Dual 

Uncorrelated group also showed significant learning across both difference score 

measures compared to the control Colour group (see Table 6.7). The Sequence group 

showed numerically higher scores in errors and a significantly higher RT difference 

score compared to controls (see Table 6.7). Therefore each group that was trained with 

sequential contingences showed evidence of learning about these contingencies. There 

was no difference across training between either of the Dual groups; nor was the Dual 

Correlated group different to the Sequence group, see Table 6.7. The Dual Uncorrelated 

group was no different to the Sequence group in RT difference score, but was however, 

in the proportion of errors, see Table 6.7. Similar to the account of the Random group 

given in Chapter 3, it is possible that the random noise generated by the non-predictive 

colours in the Sequence group may have an adverse effect on some adaptive learning 

rate, thus reducing sequence learning. !

!

Table 6.7. Results from ANOVA for planned comparisons on average RT and proportion of 

errors sequence difference scores, comparing the four Groups to one another across the eighteen 

blocks of training in Experiment 9. 

 RT difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 19.6 < .001 33.7 .246 

Dual Uncorrelated vs Colour (control) 36.9 < .001 33.7 .381 

Sequence vs Colour (control) 21.8 < .001 33.7 .266 

Dual Correlated vs Sequence .057 .812 33.7 .001 

Dual Uncorrelated vs Sequence 1.99 .164 33.7 .032 

Dual Correlated vs Dual Uncorrelated 2.72 .105 33.7 .105 

 Error difference score: Training 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 6.74 .012 .001 .101 

Dual Uncorrelated vs Colour (control) 12.8 .001 .001 .175 

Sequence vs Colour (control) 2.17 .146 .001 .035 

Dual Correlated vs Sequence 1.26 .266 .001 .021 

Dual Uncorrelated vs Sequence 4.40 .040 .001 .068 

Dual Correlated vs Dual Uncorrelated .952 .333 .001 .016 
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There was a significant main effect of Block across training in the RTs, RT difference 

score, F(17,1020) = 2.30, p = .019, MSE = 3731, ηp
2 = .037; proportion of error 

difference score, F(17,1020) = 1.020, p = .432, MSE = .014, ηp
2 = .017. This did not 

show evidence of an interaction with Group, which suggests that participants overall 

improved their speed responding to consistent subsequence versus inconsistent 

subsequences across the experiment.  

 

Test phase. There was a main effect of Group across test in the RT difference scores 

(see Figure 6.9), RT difference score, F(3,60) = 5.65, p = .002, MSE = 1294, ηp
2 = .220; 

proportion of error difference score, F(3,60) = 1.21, p = .314, MSE = .014, ηp
2 = .057. 

The difference between both the Dual and Sequence groups (who have sequential 

contingences present throughout training) compared to Control colours provides 

numerical support for the claim that all groups have learned at test, see Table 6.8. When 

comparing the Dual Correlated, Dual Uncorrelated and Sequence groups at test there 

were no significant differences in either difference score measure, see Table 6.8.  

 

Table 6.8. Results from ANOVA for planned comparisons on average RT and 

proportion of errors sequence difference scores, comparing the four Groups to one 

another across the two blocks of test in Experiment 9. 

 RT difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 5.68 .020 162 .086 

Dual Uncorrelated vs Colour (control) 12.1 .001 162 .168 

Sequence vs Colour (control) 13.3 .001 162 .182 

Dual Correlated vs Sequence 1.61 .210 162 026 

Dual Uncorrelated vs Sequence .030 .864 162 .001 

Dual Correlated vs Dual Uncorrelated 1.20 .278 162 .020 

 Error difference score: Test 

 F (df = 1,45) p MSE ηp
2  

Dual Correlated vs Colour (control) 1.98 .165 .002 .032 

Dual Uncorrelated vs Colour (control) 3.25 .076 .002 .051 

Sequence vs Colour (control) 1.51 .224 .002 .025 

Dual Correlated vs Sequence .031 .860 .002 .001 

Dual Uncorrelated vs Sequence .330 .568 .002 .005 

Dual Correlated vs Dual Uncorrelated .158 .692 .002 .003 
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6.4.2.2 Colour learning 

An analysis of variance was conducted on RT and error difference scores across training 

and test with the factors Block (Training: 18; Test: 2) x Group (4). These scores were 

calculated from the difference between average RT and proportion of errors to 

Predictive Inconsistent trials minus performance on Predictive Consistent trials. 

 

Training phase: Difference scores. There was a main effect of Group across training RT 

difference scores, F(3,60) = 8.23, p < .001, MSE = 3743, ηp
2 = .291; and error 

difference scores, F(3,60) = 4.66, p = .005, MSE = .032, ηp
2 = .189, see Figure 6.8.  

 

 
Figure 6.8. RT (top panel) and error (bottom panel) colour learning difference scores across 

training and Blocks for the four Groups: Dual Correlated (black filled circles); Dual 

Uncorrelated (green filled circles); Colour (red filled circles) and Sequence (blue open circles). 

Error bars show standard error.  

 

There was a significant effect of Group when comparing Dual Correlated to the 

Sequence group, RT difference score, F(1,30) = 12.6, p = .001, MSE = 6815, ηp
2 = .296; 

proportion of error difference score, F(1,30) = 4.76, p = .037, MSE = .059, ηp
2 = .137, 
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providing evidence for Dual Correlated colour learning. The Dual Uncorrelated group 

show a large effect compared to the Sequence group only in speed of response, RT 

difference score, F(1,30) = 21.1, p < .001, MSE = 773, ηp
2 = .413; proportion of error 

difference score, F(1,30) = .775, p = .386, MSE = .005, ηp
2 = .025. Of course, in both 

Dual groups colour learning is to some extent confounded with sequence learning. 

Importantly, the Colour group show an effect in RTs compared to the Sequence group, 

F(1,30) = 6.54, p = .016, MSE = 892, ηp
2 = .179; proportion of error difference score, 

F(1,30) = .889, p = .353, MSE = .006, ηp
2 = .029. Therefore the Colour group score 

significantly higher RT difference scores than the Sequence (control for colour learning) 

group. As sequences are not confounded with colours in this group this provides 

evidence of colour cue-response learning. 

 

Separate analyses of variance were conducted for raw average RT and proportion of 

errors for each group, with the factors Block (Training: 18; Test: 2) x Colour Type (3) 

to assess learning within the group. This enables us to further examine the pattern of 

responding compared to the Non-Predictive colours also. 

 

Training phase: Dual Correlated group. The Dual Correlated group demonstrated a 

main effect of Colour Type (see Figure 6.9), average RT, F(2,30) = 9.78, p = .005, MSE 

= 5921, ηp
2 = .395; proportion of error, F(2,30) = 6.58, p = .019, MSE = .054, ηp

2 = .305. 

This was supported by differences between all of the Colour Types across both RTs and 

errors, firstly with significantly faster and more accurate responding to Predictive 

Consistent trials compared to Predictive Inconsistent trials, average RT, F(1,15) = 10.1, 

p = .006, MSE = 12635, ηp
2 = .402; proportion of error, F(1,15) = 6.72, p = .020, MSE 

= .112, ηp
2 = .316. Participants were also significantly faster and more accurate in 

training on Predictive Consistent trials compared to Control colour trials, average RT, 

F(1,15) = 4.89, p = .043, MSE = 3941, ηp
2 = .246; proportion of error, F(1,15) = 5.20, p 

= .038, MSE = .026, ηp
2 = .257. Finally, Predictive Inconsistent trials resulted in slower 

and less accurate responses compared to Control colour trials, average RT, F(1,15) = 

14.3, p = .002, MSE = 49943, ηp
2 = .489; proportion of error, F(1,15) = 7.19, p = .017, 

MSE = .034, ηp
2 = .324. This provides strong evidence for learning of colour 

contingencies across training in the Dual Correlated group. 
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Figure 6.9. Average RT (top panel) and proportion of errors (bottom panel) across training (left 

panel) and test (right panel) for the four Groups: Dual Correlated (black filled bars); Dual 

Uncorrelated (green filled bars); Colour (red filled bars) and Sequence (blue open bars) on the 

three different Colour Types: Predictive Consistent; Predictive Inconsistent; and Control. Error 

bars show standard error. 

 

Training phase: Dual Uncorrelated group. The Dual Uncorrelated group also 

demonstrated a large main effect of Colour Type (see Figure 6.9), average RT, F(2,30) 

= 17.9, p < .001, MSE = 218, ηp
2 = .545; proportion of error, F(2,30) = 8.08, p = .002, 

MSE = .002, ηp
2 = .350. Predictive Consistent trials were responded to more quickly and 

accurately than both: Predictive Inconsistent trials, average RT, F(1,15) = 27.8, p < .001, 

MSE = 550, ηp
2 = .650; proportion of error, F(1,15) = 10.9, p = .002, MSE = .004, ηp

2 

= .420; and Control trials, average RT, F(1,15) = 5.58, p = .032, MSE = 371, ηp
2 = .270; 

proportion of error, F(1,15) = 15.1, p = .001, MSE = .002, ηp
2 = .510. Predictive 

Inconsistent trials were responded to significantly slower and numerically with more 

errors than Control colour trials, average RT, F(1,15) = 15.8, p = .001, MSE = 5815, ηp
2 

= .512; proportion of error, F(1,15) = .864, p = .367, MSE = .003, ηp
2 = .054.  
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Training phase: Colour group. The Colour group did not demonstrate a main effect of 

Colour Type, average RT, F(2,30) = 1.64, p = .217, MSE = 510, ηp
2 = .098; proportion 

of error, F(2,30) = .088, p = .884, MSE = .002, ηp
2 = .006, however the RTs showed the 

pattern one would expect if colour learning had occurred (see Figure 6.8). Colour Type 

did interact with Block in RTs (see Figure 6.10), average RT, F(34,510) = 1.82, p 

= .029, MSE = 556, ηp
2 = .108; proportion of error, F(34,510) = 1.33, p = .193, MSE 

= .004, ηp
2 = .082, with Control trials showing little change over the experiment, 

whereas slowing occurs across the experiment to both Predictive Colours, regardless of 

whether Consistent or Inconsistent with the trained contingency.   

 

 
Figure 6.10. Average RTs of participants in the Colour group only across training blocks for the 

three Colour Types. Predictive Consistent trials (black filled circles); Predictive Inconsistent 

(red filled circles); and Non-Predictive (black open circles) are plotted. Error bars show 

standard error. 

 

Training phase: Sequence group. Finally, the Sequence group showed no evidence of 

learning, with no main effect of Colour Type, average RT, F(2,30) = 2.97, p = .070, 

MSE = 373, ηp
2 = .166; proportion of error, F(2,30) = 2.20, p = .129, MSE = .003, ηp

2 

= .128. There was a difference between Predictive Inconsistent and Control colour trials, 

but in the opposite direction in RTs to the differences observed in the other groups, 

average RT, F(1,15) = 5.02, p = .041, MSE = 8843, ηp
2 = .251; proportion of error, 

F(1,15) = 5.02, p = .041, MSE = .004, ηp
2 = .251, therefore Predictive Inconsistent trials 

were responded to significantly faster yet less accurately than Control trials. This 

provides evidence that the sequence group learned nothing about colour-response 

contingencies; indeed they had no colour contingencies from which to learn.  
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Test phase. At test, there was no main effect of group across the difference score 

measures in either RT, F(3,60) = .508, p = .678, MSE = 576, ηp
2 = .025; or errors, 

F(3,60) = .180, p = .909, MSE = .008, ηp
2 = .009. No groups show any significant 

effects across any variable or comparison in raw average RTs or proportion of errors, 

with the main effect of interest, Colour Type, showing no evidence of learning in the 

Dual Correlated group: average RT, F(2,30) = .871, p = .429, ηp
2 = .055; proportion of 

error, F(2,30) = .025, p = .968, ηp
2 = .002; Dual Uncorrelated group: average RT, 

F(2,30) = .966, p = .388, ηp
2 = .060; proportion of error, F(2,30) = .332, p = .630, ηp

2 

= .022; Colour group: average RT, F(2,30) = .231, p = .795, ηp
2 = .015; proportion of 

error, F(2,30) = 2.170, p = .132, ηp
2 = .126; nor Sequence group: average RT, F(2,30) 

= .056, p = .940, ηp
2 = .004; proportion of error, F(2,30) = .163, p = .778, ηp

2 = .011. 

Whilst not significant, both Dual Correlated and Colour groups show numerically faster 

and more accurate responding to Predictive Consistent trials over Predictive 

Inconsistent trials. The opposite pattern is demonstrated in both Dual Uncorrelated and 

Sequence groups, providing no support for the suggestion that either Dual Uncorrelated 

or Sequence groups may have learned colours at test. 

 

When compared to one another there is no main effect of Group at test, average RT, 

F(3,60) = .122, p = .947, ηp
2 = .006; proportion of error, F(3,60) = .841, p = .014, ηp

2 

= .100, suggesting no difference in the response times or errors made by the groups. 

There is also no evidence of a Colour Type effect, average RT, F(2,120) = .631, p 

= .534, ηp
2 = .010; proportion of error, F(2,120) = .230, p = .756, ηp

2 = .004, nor an 

interaction between Colour Type and Group, average RT, F(6,120) = .363, p = .901, ηp
2 

= .018; proportion of error, F(6,120) = .369, p = .870, ηp
2 = .011. 

 

6.4.2.3 Prediction task and post-experimental interview 

Participants performed at chance on the prediction task, with an average amount of 

correct choices on the prediction task to Predictive colours at 51.8% (M = 8.27, SE 

= .438). Using a prior based on a sample of participants from Experiment 6, as for 

Experiment 8 a Bayes factor was calculated. As the prior was taken from a sample who 

were not only likely to learn more by nature of having information made explicit to 

them, but also had higher contingencies in play between colours and responses, a 

uniform distribution was chosen: from 0 (chance performance on the task) to 6.44 (the 

average number of trials correct above chance on the prediction task in the intentional 

group used as a prior). The Bayes factor produced is 0.15, giving evidence for the null 
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and suggesting that there is no evidence of learning across this sample. Examining only 

the groups who were trained with colour (M = 8.33, SE = .492) participants scored 0.33 

correct on average above chance. Using only these groups in the same analysis as 

previously described, the Bayes factor was 0.18, still providing evidence for the null 

and demonstrating that the Dual Correlated, Dual Uncorrelated and Colour groups 

showed evidence of learning without awareness. 

 

When guessing which colours had a relationship with a response in the structured 

interview participants also responded with chance accuracy, with 34 out of 64 

participants choosing the correct colour that predicted a left response and 31 out of 64 

choosing the correct colour that predicted a right response. These participants, however, 

did not all identify both the colour and the correct response location – with 25 of the 34 

participants correct on the left colour suggesting that it predicted a right response and 

only 9 reporting the correct contingency. The right colour was predicted with the same 

degree of accuracy, with 19 participants suggesting that it predicted a left and 12 

accurately reporting that it predicted a right response.  None of the participants could 

accurately describe the sequential rule, but some reported being aware of strings of 

responses on one side, or runs of trials where responses would alternate from one side to 

the other.  

 

6.4.3 Discussion 

This study provided evidence of learning about sequences, with Dual Correlated, 

Uncorrelated and Sequence groups showing strong evidence for sequence learning 

across training and at test compared to the control Colour group. This is not surprising, 

given the body of evidence provided so far that suggests that participants demonstrated 

strong learning of sequences. Sequence learning was unaffected by manipulations of the 

colour stimuli and their presence or relationships with the sequence. 

 

The colour learning observed in this study was again weaker than the learning of 

sequences, and whilst Dual Correlated, Dual Uncorrelated and Colour groups all 

showed evidence of learning across training, none of these effects remained at test in 

either RT or error measures. As the Dual groups experience colour and sequence 

learning that is confounded across training, we therefore have no way to compare these 

groups as colour learning is obviously too weak to show up reliably at test. This may 
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also suggest as previous studies have, that participants did not or could not demonstrate 

learning of colour contingencies. However, learning was evident across training of 

colour contingences in the Colour group, who had no sequential information across 

training to confound, potentiate or give any advantage to any particular response. 

Therefore, it seems likely that colour learning itself suffers rapidly from extinction.   

 

6.5. Simulation 11: RASRN simulation 

To further investigate the processes at play, Experiment 9 was simulated using the 

RASRN. Whilst previous chapters suggest that the model cannot capture the detailed 

pattern of learning, it remains one of few models able to both include a representation of 

the stimulus conditions as well as accounting for human incidental sequence learning. 

As Chapter 4 was inconclusive regarding the interaction of the processes involved in 

human sequence learning with concurrent stimuli; this chapter seeks to integrate the 

results of the human experiments within the simulation context. This simulation 

therefore was not assumed to be an excellent model of the human data, given the 

performance of the RASRN in Chapter 4. However, due to the correlation between 

sequences and concurrent stimuli in Simulation 9 (Chapter 4), it was impossible to 

analyse learning about the stimuli separately. Whilst Experiments 8 and 9 may be 

inconclusive, the mechanisms underlying sequence and cue-response learning do seem 

to interact.  

 

6.5.1. Simulation details 

The RASRN was run for 64 networks following the procedure outlined for Experiment 

9 and the parameters for Simulation 10 (Chapter 5). Again the input units represented 

the two previous required responses (on activation = 0.75); two current response stimuli 

locations (on activation = 0.1); four possible cue colours (on activation = 0.4); and the 

context units (1.3 times the activation of the hidden units on the previous trial). Each 

network was run for the same number of trials as each participant, with 16 networks in 

each of the four conditions.  

 



Incidental human sequence learning 261 

6.5.2. Results 

6.5.2.1. Sequence learning 

Sequence learning was assessed in the same way as for participants using the 

inconsistent minus consistent sequence learning difference score for the trained 

exclusive-or sequences in the Dual Correlated, Sequence and Dual Uncorrelated 

networks. Colour networks acted as a control for sequence learning. The MSE 

difference scores from training and test were analysed by an ANOVA on Block (18 

training; 2 test), Subsequence (4) and Group. There was a main effect of Group across 

training, F(3,60) = 28.0, p < .001, MSE = .002, ηp
2 = . 583; but not test, F(3,60) = 2.20, 

p = .097, MSE = .001, ηp
2 = .099, which is shown in Figure 6.11.  

 

 
Figure 6.11. MSE sequence learning difference scores across training (left panel) and test (right 

panel) for the four groups of networks in Simulation 11: Dual Correlated (black filled bars); 

Sequence (blue filled bars); Colour (red open bars); and Dual Uncorrelated (green filled bars). 

Filled bars indicate those groups who were trained with exclusive-or sequences, open bars the 

Colour group who were not trained with exclusive-or sequences. Error bars show standard error. 

 

As we can see from the Figure, networks learned significantly more in all three groups 

that were trained with sequences than in the Colour group as shown across training by 

Bonferroni corrected comparisons: Dual Correlated versus Colour, p < .001; Sequence 

versus Colour, p < .001; Dual Uncorrelated versus Colour, p < .001. No other 

comparison was significant, nor were any groups significantly different at test. This 

suggests that sequence learning progressed regardless of the presence of colour-

response contingencies, although the Dual Correlated networks approach a significantly 

higher difference score compared to the control Colour networks, p = .123. This, to 

some extent, follows the performance of human participants as sequence learning was 

not significantly different depending on the colours. On the other hand, the model does 
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not provide evidence of sequence learning at test, which is in clear contrast to the 

performance of human participants. 

 

6.5.2.2. Colour cue-response learning 

The MSE scores for networks were analysed in the same was as for participants in 

Experiment 9, with difference scores taken between Predictive Inconsistent and 

Predictive Consistent trials. These were analysed in an ANOVA across Block (training: 

18, test: 2). A main effect of Group occurs across both training, F(3,60) = 89.5, p < .001, 

MSE = .002, ηp
2 = .817, and test, F(3,60) = 377.3, p < .001, MSE = .001, ηp

2 = .950, 

shown in Figure 6.12. Networks in Colour, p < .001, and Dual Uncorrelated groups, p 

< .001 performed better than the control Sequence group across training, however there 

was no colour cue-response learning evident in the Dual Correlated group, p > .9. This 

might suggest that there was no colour learning occurring, but what it actually reflects is, 

like in the human participants, training data is confounded by sequence learning. Whilst 

in the case of humans the sequence learning is far greater than the colour cue-response 

learning, in the case of the RASRN sequence learning is far smaller than for humans 

(see the scales on Figures 6.11 and 6.12). Therefore the expression of colour learning 

across training is being restricted by the correlation with sequences, which are 

significantly learned in the Dual Correlated group at test, but these MSE difference 

scores are not large. 

 

 
Figure 6.12. MSE colour learning difference scores across training (left panel) and test (right 

panel) for the four groups of networks in Simulation 11: Dual Correlated (black filled bars); 

Sequence (blue open bars); Colour (red filled bars); and Dual Uncorrelated (green filled bars). 

Filled bars indicate those groups who were trained with exclusive-or sequences, open bars the 

Colour group who were not trained with exclusive-or sequences. Error bars show standard error. 
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At test, however, when colours and sequences no longer correlate we can see that the 

Dual Correlated group have learned significantly more than not only the control 

Sequence networks, p < .001; but also both the Colour, p < .001 and Dual Uncorrelated 

networks, p < .001. Both Colour, p < .001 and Dual Uncorrelated, p < .001 groups show 

evidence of learning about colour cue-response contingencies at test; therefore this 

provides evidence not of overshadowing but potentiation of colour learning in the Dual 

Correlated group.  

 

6.5.3. Discussion 

The results of the RASRN simulations clearly show the incorrect pattern of learning 

effects, as firstly Colour learning difference scores are far higher than those for 

sequence learning. This suggests that the model is learning the colour cue-response 

contingencies far better (or sequences far worse) than human participants. This seems to 

result in the opposite pattern of results observed in humans, namely the overshadowing 

of sequence learning in the Dual Uncorrelated networks; whereas colour learning was 

overshadowed in the experiment run by McLaren et al. (2013) which are supported 

somewhat by the numerical scores in Experiments 8 and 9. Furthermore, the Dual 

Correlated networks produce evidence of colour potentiation, evidence of which was 

not supported by the experimental human results from this chapter, as the lack of 

overshadowing was the extent of the facilitatory effect of sequences on colour learning.  

 

This could suggest that the stimulus units receive an activation value that is far too high, 

which may go some way to explain the terrible performance of the Current group when 

simulated in Chapter 4. The stimulus-response learning was such that it interfered with 

sequence learning, causing decreasing difference scores for all groups – but more 

rapidly for the Current group. By reducing the activation of these stimulus units the 

performance of the Current group may be improved, but this would not produce an 

increase in the sequence learning produced by the Previous networks. That the model 

does produce an overshadowing effect in the Dual Uncorrelated group and a 

potentiation effect in the Dual Correlated group does, however, go some way to support 

the idea that stimuli that are related may not suffer from cue-competition and may 

indeed come to facilitate learning about the other. In summary, however, it is clear that 

the RASRN in its current form is not a good model of human performance on these 

SRT tasks. 
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6.6 General Discussion 

All of the studies presented in Chapter 6 have in common a robust demonstration of 

sequence learning of the exclusive-or rule. Each of the groups in each experiment, 

regardless of whether sequences were trained in the presence of colour contingencies or 

random colours, demonstrate learning of sequences. This indicates that human learning 

systems are well equipped to learn these sequential contingencies. Experiment 7 

provided evidence of Colour cue-response learning in both the Colour and Dual groups 

at test, allowing us to observe that this colour learning was at least no worse in the Dual 

group, providing no evidence for cue-competition. Taken with the work of McLaren et 

al. (2013) this suggests that an absence of cue-competition may occur if the competing 

stimuli are themselves related.  

 

Crucially, the between-subject Experiments 8 and 9 did not find evidence of colour cue-

response learning at test, which meant that a comparison was not possible between the 

groups. Whilst we find evidence of colour learning in Chapter 5, it may be possible that 

the learning was not strong enough to survive extinction, especially as the contingencies 

in this task were reduced from 80% in Chapter 5 to 67% in Experiments 7 to 9. This 

was in order to match the Dual and Colour groups, as well as to match the contingency 

between sequences and colour cues with response stimuli. Experiment 7 provided 

evidence that Colour learning did occur, although this was only in the errors at test, and 

therefore the experiment was not altered to account for this. Using the Sequence group 

as a control for performance effects across training we saw evidence for Colour learning 

in Experiment 9 across training, however it is at test where this is of crucial importance. 

It is a requirement of the task design to compare the Dual groups to the Colour group in 

the absence of sequential contingencies (at test), but the colour cue-response learning 

obviously suffers from rapid extinction. This may suggest that cue-response learning is 

an unsuitable form of learning to attempt to investigate cue-competition. 

 

The lack of colour learning evident in Experiment 7, as well as the overshadowing 

observed in McLaren et al. (2013) and Dual Uncorrelated groups in Experiments 10 and 

11 suggest that colour cue-response contingencies are more difficult for people to learn. 

When matched for frequency and relationship with an outcome, humans may find 

sequential contingencies easier to learn than simple cue-outcome contingencies, a result 

not demonstrated outside of these studies. This suggests that the system learning these 

contingencies must, in some way, give preference to the learning of sequential 
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dependencies. This is discussed further in the context of the other results provided by 

this thesis in Chapter 7, as it may suggest any number of possibilities. The role of time, 

spatial locations, trial order, responding and complexity are all features of sequences. 

Any one of these features may be preferred or given priority to by automatic learning, 

or the many facets of sequences may sum together to increase learning.  

 

Experiment 7 provided evidence contrary to McLaren et al. (2013), who found that 

colour-response contingency learning would be overshadowed by sequence learning. 

Evidence for the opposite effect on colour-response contingency learning was found, 

with the potentiation of colour learning in the Dual group at test compared to the Colour 

group. Experiments 8 and 9 were unable to confirm that the key difference between 

McLaren et al. (2013) was the between cue relationships, but the numerical differences 

do not disagree with the suggestion that Experiment 7 protected colour learning due to 

the relationship between sequence and colours. This can be explained associatively, as 

in the Dual group of Experiment 7 sequence learning itself provides a between-cue 

association with colour learning that means that as the sequence and colours became 

associated, so increasingly do the colours and responses.  

 

Beesley and Shanks (2012) initially dismissed the absence of cue-competition in their 

visual search tasks as evidence for a single process, propositional account of human 

learning. Indeed they saw learning and perhaps some evidence for an increase in 

learning about the blocked cue. The cue competition studies in this chapter suggest that 

this is not clear cut evidence for a propositional account of learning, as it suggests that 

cue-competition is less likely to occur when stimuli are related. Beesley and Shanks 

(2012) use a number of distractor patterns and cue locations, which are different for 

each subject, so it seems unlikely that these patterns are all somehow related to one 

another. However, it is possible that because these are the same modality, or share the 

common feature of the target stimulus location, they are represented configurally as a 

whole or as a shared set of elements whose between-cue associations are strong. Both 

elemental and configural accounts could explain these results and the results found in 

Experiment 7. 

 

These studies therefore suggest that, similar to the proposals of Urcelay and Miller 

(2009), there is no need to propose that potentiation is a result of a different learning 

process when the procedures and stimuli themselves may interact to facilitate learning 



266 Chapter 6: Cue-competition and sequence learning  

or result in cue-competition. Urcelay and Miller (2009) suggest that this is a result of 

the configural processing of stimuli that overlap in time. They found that trace 

conditioning (where there is a temporal gap between CS and US) results in potentiation 

whereas delay conditioning (where CS and and US overlap) results in overshadowing. 

These studies do not find evidence for this mechanism per se, as the differences 

between Dual groups are not in the temporal overlap of sequential and colour 

contingencies. This suggests that a between-cue association serves to facilitate learning, 

which may be based on either time or frequency or between stimulus contingency.  

 

Whilst not by any means an exhaustive investigation into cue-competition effects, this 

chapter demonstrated that an absence of cue-competition may not indicate the absence 

of associative processes. A lack of overshadowing and some evidence for the 

potentiation of cue-response learning was found in at least one experiment. However, 

the other tasks suffered from a lack of colour learning in general and solid conclusions 

can not be made. Taken with the results of previous work (McLaren et al., 2013), this 

chapter provides an indication that cue competition may arise from some difference in 

the ability to learn sequences and simple cue-response contingencies, as one is clearly 

learned more easily than the other. While I do not find reliable evidence for cue 

competition in this chapter, this is due to the difficulty that participants have in learning 

these simple cue-response contingencies under incidental conditions. This reflects the 

importance of understanding sequence learning in order to understand automatic 

learning processes as it further reveals a preference in human incidental learning that is 

contrary to the intuitive assumptions of a variety of authors (Cleeremans, 1997; Jiménez 

& Méndez, 1999). This is hard to reconcile propositionally as it suggests that learning 

has an advantage for more complex, sequential stochastic contingencies. We may be 

able to further understand human associative learning by investigating the absence of 

cue-competition when the two contingencies themselves relate.  
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Chapter 7. General discussion and conclusions 
 

The experiments in this thesis have provided evidence of both sequence and cue-

response learning under incidental conditions that go some way to provide evidence for 

automatic, implicit learning processes in humans. An associative model supplied 

predictions regarding how learning about these contingencies would interact, although 

the model proposed in the thesis falls short of accounting for all of the observed 

phenomena. In this chapter I will collect and summarise the key findings across my 

experimental and computational work and discuss them in terms of what this can tell us 

about sequence learning under incidental conditions. I will finally discuss: implications 

for studies of incidental sequence learning; models of sequence learning; an associative 

account of incidental learning; the role of automatic processes within human learning; 

and future research directions.    

 

7.1. Summary of findings 

In Chapter 2 I found that humans can learn sequences under incidental conditions that 

involve a probabilistic sequential rule based on the element in the sequence two trials 

before (t – 2) the current stimulus (t). The central finding of this chapter was that whilst 

learning was observed both for the Different rule sequential contingency (the location of 

t was more likely to be in the opposite location to t – 2) and the Same rule contingency 

(the location of t was more likely to be in the same location as t – 2), there was a 

difference in the amount of learning of these two rules, with participants learning the 

Different rule more than the Same rule. Why this happened was not clear, and the 

following chapter aimed to investigate this. 

 

Chapter 3 provided evidence that a model (RASRN) adapted to include a better 

representation of the task, including the on-screen response stimuli that would occur on 

each trial, was able to simulate the Same vs. Different group difference as well as the 

sequential effects observed in Experiment 1. Therefore, I noted that the inclusion of a 

stimulus representation in the model resulted in better simulation of human performance 

on the task, which suggests that stimulus-response learning can affect sequence learning. 
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Taking on board the conceptual addition of current stimulus representation and using 

this to derive a prediction of the RASRN formed the basis for Chapter 4, in which the 

role of stimulus-response associations in a sequence learning task was investigated. 

Both the RASRN and human participants demonstrated that sequence learning differed 

when cues were introduced to the task that related to the sequence of response-stimuli.  

Humans clearly demonstrated greater learning of sequences in the Previous group: 

where response locations were accompanied by concurrent cues that corresponded with 

the previous stimulus element. The Previous group showed more learning than the 

Current group, which showed some evidence of better learning than the Random group 

but was similar to it. The model predicted an overshadowing effect of cue-response 

learning over sequence learning (that the Current group would learn less than both 

Random and Previous, which were predicted to be the same), which was not found in 

participants, and therefore the model was falsified. An associative account would still 

predict that concurrent cues had some effect on sequence learning, however the precise 

interaction between cue-response and sequence learning mechanisms in humans remain 

unclear; and it was not possible to investigate human cue-response learning and assess 

its impact on sequence learning. 

 

In order to assess whether simple cue-response learning could occur, Chapter 5 

investigated whether participants were able to learn cue-response contingencies under 

incidental conditions. Participants demonstrated faster and more accurate responding to 

colour cues that were trained to partially predict one response-stimulus location than to 

both control colour cues and trials that were inconsistent with the trained colour cue 

contingencies. Participants who completed the task intentionally provided a prior 

probability for responding on two direct measures of explicit knowledge: identifying the 

predictive colour cues and a forced-choice prediction task that replicated the context 

and sensitivity of the task. Participants in the incidental condition were at chance on 

these tasks and evidence for the null provided support for the absence of any explicit 

cue-response contingency knowledge.  

 

Given that I found evidence for colour cue-response learning in Chapter 5, I introduced 

these contingencies with concurrent sequential contingencies in Chapter 6, which 

provided evidence that participants learned exclusive-or sequential contingencies (that t 

could sometimes be predicted depending on whether t – 1 and t – 2 were the same or 
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different) under incidental conditions regardless of the presence of the colour cues. This 

provided evidence that sequence learning was not affected by the presence of cue-

response learning. In the Dual groups trained with both sequence and colour cue-

response contingencies I found evidence that the two cues do not compete when they 

were related to one another. When attempting to compare this Dual Correlated group to 

an Uncorrelated group there was, unfortunately,  little evidence that colour cue-response 

contingencies were learned at all in these experiments. As training performance for 

sequence and colour cue-response learning was confounded in the groups who were 

trained on both contingencies, a comparison was required at test. However, as the 

colour cue-response learning experienced rapid extinction at test, evidence for 

differential colour cue-response learning was minimal and it is therefore difficult to 

draw any firm conclusions regarding the interaction of these learning processes. 

However, taken alongside previous work these results suggest that we can find evidence 

of cue competition in incidental human learning (McLaren et al., 2013) and that this 

overshadowing effect can be avoided (and perhaps even reversed) if the cues 

themselves are related.  

 

7.2. Evidence for implicit learning in humans 

7.2.1. Qualitative differences between explicit and implicit learning 

Chapter 2 compared human sequence learning under incidental and intentional 

conditions with the aim of finding evidence for implicit sequence learning. A variety of 

authors find a qualitative difference between sequence learning under the two 

instructions (Dominey, Lelekov, Ventre-Dominey, & Jeannerod, 1998; Guo et al., 2011; 

Jimenez, Vaquero, & Lupianez, 2006; Jones & McLaren, 2009; Kuhn & Dienes, 2006) 

and this can be taken as evidence for functionally different processes: one under our 

control and one not. Chapter 2 found no evidence of such a difference as there was no 

difference found on indirect RT and error measures of sequence learning between the 

incidental and intentional groups. Whilst one could take the view that the similarity 

between the groups reflects the intentionality of the incidental group, I argued that 

whilst the intentional group seemed to try to look for patterns, they struggled to find 

them. They also reported that intentional effort was unhelpful in completing the task 

quickly and accurately and were therefore not motivated to search and use sequential 

knowledge and subsequently reverted to automatic responding. Some participants 
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reporting that they attempted to count certain patterns, and indeed the comparison of the 

instructed conditions by means of a state-trace analysis are consistent with the 

possibility of multiple learning processes. However, I suggest there were no qualitative 

differences between conditions because participants were unable to work out and apply 

the rule.  

 

However, is rule learning the only way that participants could have learned, and do we 

expect participants to learn more when they have explicit knowledge? Jones & McLaren 

(2009) suggested that participants were able to learn that the subsequence XXX was 

more likely; but no other subsequence trained – suggesting that not the rule itself but a 

specific instance was learned (Dienes & Fahey, 1995; Logan, 1988). Under intentional 

conditions in Experiment 2 in this thesis there was evidence for learning of each 

subsequence – which suggests that they were not learning one specific exemplar. 

Participants may instead have been able to abstract some rule, or some general property 

about the rule from their experience of it, for example that there were ‘quite a lot of 

repeating chunks and runs of alternations’ rather than hypothesis testing specific trial 

orders or particular contingencies and responded with more chunks or runs. Indeed, a 

specific rule-based representation is not a requirement for behaviour that appears to 

follow such a rule (Redington & Chater, 2002). It seems unlikely though that this 

knowledge would result in less learning, which was the case for the intentional 

participants in Experiment 2. 

 

It is suggested that certain stimuli under intentional conditions are learned because of 

their salience (Jones & McLaren, 2009; Lee & Livesey, 2013) which suggests that 

participants may not have experienced any salient subsequence elements in this design, 

as the subsequences (e.g. in the Same group RRR, LLL, RLR and LRL) were all of 

similar salience and therefore no one particular element stood out. This is consistent 

with the work of a variety of authors (Frensch et al., 2003; Rünger & Frensch, 2008) 

who suggest that explicit learning occurs when participants are able to identify stimuli 

that are unexpected and produce anticipatory responses. Therefore, participants may be 

unable to isolate specific instances because of the similarity of the subsequences in this 

task compared to in other tasks (Jones & McLaren 2009; Lee & Livesey, 2013) where 

specific instances may have stood out to participants.  
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An increase in learning might be expected to occur when participants experience 

explicit contingency knowledge (Curran & Keele, 1993). Participants in Experiment 6 

(the Intentional cue-response learning study) were clearly aware of colour cue-response 

contingencies and could report these confidently and with 100% accuracy. These 

participants in the Intentional condition demonstrated far greater learning across the 

training phase of the task compared to the Incidental condition, as participants 

responded far quicker and more accurately to trained locations of predictive colours 

compared to the inconsistent and control colours. Therefore, on this task we have 

evidence of explicit knowledge, which resulted in evidence of stronger learning. This 

supports the proposal that there was a lack of explicit knowledge across the sequence 

learning task in Experiment 1, regardless of the instructed conditions. If we take either 

significantly greater or qualitatively different learning as evidence of explicit learning 

itself, we clearly have very little in Experiment 2. Indeed, this may suggest that the 

sequence learning task is unlikely to be learned explicitly, either through instance or 

some rule based approach. This provides indirect support for Experiment 1 as a 

demonstration of implicit learning. 

  

A further implication of this result is that defining explicit and implicit learning 

processes simply in terms of their volitional properties is not as simple as when dealing 

with explicit and implicit knowledge (e.g. Jacoby, 1991). Participants are not 

responding under incidental conditions with no control over learning, and with complete 

control of learning under intentional conditions. Indeed, in either case participants are 

able to freely think, ignore or invent tasks for themselves, as well as choose to look for 

or ignore patterns that they may notice throughout the experiment. Therefore, whilst the 

manipulation has had some success in producing qualitatively different results 

(Dominey et al., 1998; Jimenez et al., 2006; Jones & McLaren, 2009; Lee & Livesey, 

2013) it seems that even when providing participants with the explicit rule that the 

sequence follows that they do not use this information on all trials (Lee & Livesey 

2013), and therefore do not apply a controlled, explicit response to each stimulus in an 

SRT task. This seems to be a consequence of the SRT task design, which by its nature is 

used to discourage reasoned and controlled responding as the task demands require 

quick responses. 
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As studies of incidental sequence learning hope to capture implicit processes, direct 

tests of knowledge are taken after training on these sequences so as to avoid participants 

noticing or using these sequences (Cleeremans et al., 1998; Shanks & St John, 1994). 

However, higher order probabilistic sequences, as well as complex conditional 

sequences are hard to verbalise or notice as participants tend to learn and rely on the 

simple surface features of a sequence (Dominey et al., 1998). Therefore it may be 

possible to investigate the interaction between the development of sequence learning 

and explicit knowledge using the guessing criterion (Dienes & Berry, 1997), where 

participants are required to report the degree to which they believe they had any 

knowledge about the task. This would not require that participants were informed of 

contingencies, as participants could be instructed at the start of the task that there may 

or may not be contingencies in the experiment. Measures of both participant’s 

knowledge of contingencies as well as their confidence in this knowledge could be 

taken on each block to track participant’s performance across a task. Participants may or 

may not notice; attempt to notice; or use these contingencies, but rather than assuming 

that they have full volitional control of their learning as a result of a between-subject 

manipulation based on a single task instruction, it would be possible to investigate more 

sensitively when and how these strategies are used and affect sequence learning 

throughout a task. 

 

7.2.2. Evidence for implicit cue-response learning 

Participants in Experiment 5 and to some extent 6 provide good evidence for implicit 

learning, as participants demonstrate clear learning of colour cue-response 

contingencies across training in the absence of being able to correctly identify those 

colours (let alone the response location that they predict) more than chance would allow. 

When completing the task intentionally, with the nature of the contingencies provided 

as a hint to ensure explicit knowledge would develop, all participants were able to 

correctly identify both colours with 100% response-location accuracy.  

 

Taking the zero-correlation criterion (Chan, 1992; Dienes & Berry, 1997) regarding 

confidence in knowledge and directly measured task performance, participants in the 

intentional group demonstrated this knowledge with full confidence, whereas only four 

incidental participants mentioned that they may have noticed something during the 

experiment. Classifying these participants as confident and participants who were 
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surprised that there were contingencies as not confident produced no correlation 

between confidence judgements and colour identification accuracy, suggesting further 

evidence for an absence of awareness. This measure of implicitness does not entirely 

follow the suggestions of Dienes and Berry (1997), however, as confidence ratings 

regarding participants’ colour guesses were not taken, with the questions instead 

referring to the extent that participants felt they had noticed relationships within the 

experiment. Whilst this is a conceptually similar question, it does not refer to 

confidence in identifying the correct colour cue-responses.  

 

Performance on a prediction task provided further evidence for the absence of explicit 

awareness, using the intentional group performance as a prior to produce evidence for 

the null – that incidental subjects seemed to have no explicit contingency knowledge. 

However, as the prediction task was calculated after test blocks had been given, 

extinction may have destroyed contingency knowledge that was previously explicitly 

available to incidental subjects (Cleermans et al., 1998; Shanks & St John, 1994). 

Evidence that this is not the case comes from intentional subjects, who also suffered 

from extinction, but were able to produce perfect performance on the identification task. 

However, participants may have simply learned more (and enough) in the explicit 

condition for this to survive the two block test phase. Intentional condition participants 

also had experience of the sheet with the colours they thought were predictive (which 

was removed for the interview and prediction task); as well as any memory for this 

sheet and their answers, which might have increased the explicit knowledge that 

occurred in both groups. As mentioned previously, memory is a consideration in 

assessing implicit and explicit knowledge post-training; and this issue may have 

perhaps been modified by post-test training blocks (e.g. Jones & McLaren, 2009), or 

confidence judgments within the prediction task (e.g. Destrebecqz & Cleeremans, 2003). 

Whilst I considered using confidence judgments for each response in the prediction task, 

I wanted the prediction task to replicate the SRT training context as closely as possible 

to avoid producing a new task in which participants experienced differing demands and 

were unable to express their contingency knowledge from the training setting.  

 

7.2.3 Evidence for incidental cue-competition in humans 

Following the suggestions of Beesley and Shanks (2012) Chapter 6 of this thesis aimed 

to demonstrate cue-competition effects as observed across the animal associative 
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learning literature in humans under, crucially, incidental conditions. There was no 

evidence that any of the groups in Chapter 6 were aware of colour or sequential 

contingencies with responses, which provides a strong foundation for investigating the 

interaction of the cues, and providing evidence for associative processes in humans. In 

the first experiment of Chapter 6, we find similar results to Beesley and Shanks (2012), 

that on an apparently implicit task participants show a trend towards the potentiation of 

learning of the cue that should have been competing for associative strength. In 

Experiment 7 we see that participants demonstrate learning about both sequences and 

colour cure-response contingencies. Beesley and Shanks (2012) suggest that this result 

suggests an absence of cue-competition and therefore that learning under incidental 

conditions is not associatively driven.   

 

I suggest that this should not be the conclusion drawn. The reason, I suggest, for this is 

that the sequences and colours were themselves perfectly related, as each colour was 

100% likely to follow the four possible second order transitions in the task (RR, RL, LL 

and LR). Therefore, while the sequence and colours were both themselves predicting a 

certain response that could be separately analysed at test, they were also themselves 

associated. It is possible that these between cue associations were learned and protected 

the model from cue competition. Taken with the evidence provided by McLaren et al. 

(2013) that this task can produce an overshadowing effect on colours by sequences, this 

provides support for the presence of associative processes on such tasks and may 

provide an explanation for Beesely and Shanks’ (2012) results. Whilst a number of 

patterns were used as cues in these visual search tasks, if the between-element 

associations between items were strongly learned then participants may not have 

experienced cue-competition. This is a possibility, firstly if the stimuli are encoded 

configurally (Urcelay & Miller, 2009) or because the patterns were not trained to 

predict a particular response, but the location of the target stimulus. Therefore the 

contingency between A and B distractor patterns was higher than the contingency 

between either stimuli and a required response and the between cue associations would 

therefore be stronger. 

 

Conclusions that the relationship between stimuli is the mechanism through which cue-

competition effects are reduced or even reversed can, however, only be made tentatively. 

This thesis was unable to provide reliable evidence of any colour cue-response learning 
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across both tasks (Experiments 8 and 9) that attempted to investigate the role of 

between cue associations in predictive cue competition effects. Whilst the numerical 

pattern of colour learning at test followed these predictions, there was both no evidence 

of colour learning in the colour group at test and no evidence for a significant difference 

between the Dual groups at test. This thesis therefore offers the possibility that an 

associative account of human learning processes cannot be dismissed based on the 

absence of a cue-competition effect, as the frequency with which these cues co-occur as 

well as their temporal overlap (Urcelay & Miller, 2009) may encourage between 

stimulus learning that protects from overshadowing. These mechanisms suggest that 

sequence and cue-response learning may indeed share the same, incidental, associative 

learning system. Further work, however, is required to demonstrate and further 

characterise the nature of how between stimulus associations form and themselves 

(differentially) contribute to sequence and cue-response learning.  

 

7.3. Review of the RASRN 

Whilst Chapter 4 ultimately falsifies the RASRN as it stands, the model was 

instrumental in understanding the influence of stimulus-response associations on 

sequence learning that formed the predictions and results outlined in this thesis. Clearly 

I cannot suggest that it is a satisfactory account of learning under incidental conditions, 

nor of human sequence learning under incidental conditions and further work is needed 

to investigate the precise involvement of stimulus representation within recurrent 

models. Whilst other authors have attempted to model additional stimuli and non-

sequential learning using some version of the SRN (e.g. Cleeremans, 1993; 1997; 

Destrebecqz & Cleeremans, 2003), no models have considered that the learning that 

occurs about stimulus-response contingences on each trial may interact with sequential 

learning across trials; therefore the RASRN is unique in this aspect. This provides 

predictions regarding cue competition effects that are supported by the results of 

Chapter 2, and to some extent Chapters 4 and 6; although the precise mechanisms and 

relationships between sequences and cues within the model is not clear. Whilst the 

model as it is reported is therefore incapable of replicating the human learning observed 

in Chapters 4 and 6, the model principles predicted at least some of the results of a cue-

sequence learning interaction. 
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Models of sequence learning do not require stimulus-response associations, as 

contingencies are formed across time. Therefore, humans do not need to make these 

associations, as they are instructed to respond to the stimuli explicitly (no associative 

link required) and therefore performance on SRT tasks of sequence learning have 

progressed happily without these adaptations. I suggest that not only does including 

these stimulus-response links better represent task conditions (Destrebecqz & 

Cleeremans, 2003), but that this has an important influence on how sequences are 

learned (this thesis, Chapters 2 and 3). This approach could still be criticised, as from an 

associative perspective, that humans or animals encode and form associations between 

every element of the environment is not considered to be adaptive for the purposes of 

learning, nor realistic (Pearce & Bouton, 2001). 

 

The RASRN attempts to represent the within-trial time course by a very rough 

approximation using a simple activation difference at input level approximating the 

differential influence of stimuli depending on their temporal relationship to the trial to 

be predicted. More sophisticated ways of doing this are available and discussed in 

section 7.5.3, but in attempting to do so the RASRN has captured some element of the 

increased learning of sequences compared to stimulus-response learning on each trial. 

However, this is clearly not fully represented in the model as the results of the final 

simulation suggest that the RASRN learns cue-response relationships better than 

sequences, as sequence learning is overshadowed in the Dual Uncorrelated simulations. 

This suggests that the activation of current stimulus units should be further reduced in 

comparison to the previous required response activation to increase sequence learning 

relative to colour cue-response learning. This may also suggest that there is more to 

sequence learning compared to simple cue-response learning that is currently not 

captured by the model (for example, spatial location). Indeed, it could be that sequential 

effects or stimulus-response learning are restricting sequence learning in the model in a 

way that does not occur in humans.  

 

The model is able to represent individual differences on the task to some extent, as the 

learning rates and number of hidden units, as well as their starting connection weights 

can all be altered to provide some degree of variability, however it is clear that 

individual error between networks in these stimulations does not reflect human 

performance differences, and regarding motivational and attentional influences that 
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differ across participants and the task itself, the RASRN falls short. The model is 

capable of producing these effects however, with random noise to the hidden layer used 

in the AugSRN to produce distraction on a similar sequence learning task (Cleeremans 

& McClelland, 1991) for example; however this level of detail was not the aim of the 

thesis. So whilst the model was unable to precisely mimic human responses to the task, 

the specificity of these predictions were not taken to be as important as the predictive 

value of simple, relational changes between stimulus relationships within the task.  

 

Further to this, however, the role of responding and feedback is an important component 

of the SRT task that was not modeled by the RASRN. The model simply produces an 

MSE approximating a human RT to the next trial, it assumes that no incorrect responses 

are made, and no error feedback given. In all tasks an incorrect response was followed 

by a beep, which participants often reported as being highly salient and frustrating. 

Whilst this may have had an effect on explicit processes of attention or motivation, error 

feedback is an instrumental reinforcer that may produce significant effects on learning. 

Whilst trials following an error are excluded from the analysis, their impact on learning 

is likely to be significant and to my knowledge error feedback is not represented in any 

version of an SRN. That the RASRN promotes the accurate representation of stimulus 

conditions but does not represent error feedback is a strong criticism of the model.  

 

Therefore, in conclusion the RASRN accounted for the different sequential learning 

observed in human data in a simple, constant RSI two-choice spatial SRT task by 

introducing stimulus-response associations that, uniquely, could compete with sequence 

learning and led to the simulation of the Different rule sequence learning effect. The 

SRN and AugSRN were unable to account for these results and therefore the RASRN 

was instrumental in understanding how humans may have learned these sequences. The 

model predicted that additional stimuli within the SRT task would interact with 

sequence learning, which was found to be the case in humans across Chapters 4 and 6, 

although functionally representing the precise mechanisms by which this occurs 

remains a challenge for any model of sequence learning. 
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7.4. Implications for human sequence learning 

7.4.1. Trial order and sequence learning 

Evidence has been provided that participants can learn probabilistic relationships based 

on a trial experienced before the previous sequence element (t – 2, Chapters 2 and 4) as 

well as the previous two elements together (t – 1 and t – 2, Chapter 6) under incidental 

conditions. That participants are sensitive to, and can learn a variety of probabilistic 

sequential structures under incidental conditions is by no means a novel contribution to 

the literature as experiments training participants on first (D’Angelo, Jiménez, Milliken, 

& Lupiáñez, 2013; Jiménez, Lupiáñez, & Vaquero, 2009; Shanks, Wilkinson, & 

Channon, 2003) and higher order (Cleeremans & McClelland, 1991; Jiménez, Méndez, 

& Cleeremans, 1996; Jones & McLaren, 2009; Lee & Livesey, 2013) probabilistic 

sequences are numerous. However, the number of studies that compare trained 

performance with control groups matched for sequential effects (Anastapolou & Harvey, 

1999) are limited (Jones & McLaren, 2009). Therefore, to some extent, these studies 

contribute to a small body of sequential learning research that adequately controls and 

considers the effect of the previous stimuli in the sequence.  

 

The results of this thesis further support the claim that sequences are learned differently 

depending on their structure (Jones & McLaren, 2009). Chapter 2 provides evidence 

that under incidental conditions participants learned two sequential rules differently 

despite that they essentially involved the same probabilistic rule: that t – 2 predicts t on 

two thirds of trials. A rule-based account would find it hard to reconcile this result, 

unless one assumed that learning that t – 2 equals t is a harder rule to learn than t – 2 

does not equal t, which at first reading is not intuitively plausible. One might suggest 

that some explicit heuristic is more amenable to the Different rule, for example a 

gambler’s fallacy (Jarvik, 1951; Kahneman & Tversky, 1982). Whilst this effect is 

usually considered to be confined to the preceding trial, participants may expect trial 

alternations and therefore be more sensitive to rules embedded in a sequence that 

involve alternations. It is possible therefore that some explicit expectancy enabled better 

learning that t – 2 does not equal t and made it easier to acquire than the Same rule, but 

this is based on a heuristic that is restricted to first-order effects; the influence of 

stimulus order prior to t – 1 has been suggested to have a benefit only for repeats 

(Soetens, Boer, & Hueting, 1985).  
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The results of the RASRN simulation in Chapter 3 suggest that this difference is caused 

by the influence of stimulus-response learning, which at t – 2 is the same stimulus-

response mapping as at t in the Same group, therefore an association between the two 

trials is blocked to some extent by their stimulus-response associations. This suggests 

that the stimulus-response associations can differentially interact with sequence learning 

and sequential effects to produce different patterns of both learning and performance. 

Similarly, Jones & McLaren (2009) observed the absence of learning about the 

subsequence XXX under incidental conditions and suggested that blocking of the 

trained contingency (that XX predicts an X) occurred as a result of transient learning 

that X predicts X reducing the error term for the final X, where learning about the 

trained sequential contingency occurs. An instance or exemplar-based account might 

suggest that this subsequence was simply harder to learn (e.g. Shanks & St John, 1994), 

but Experiment 1 demonstrated that XXX was learned by participants in the Same rule 

group under incidental conditions. This suggests that the effect of trial order on 

sequence learning is itself dependent on the statistical regularities of the sequence to be 

learned. This provides support for of a complex, highly interconnected learning process; 

rather than a simple exemplar based system that can store and retrieve information 

based on the number of occurrences.  

 

7.4.2. Representing stimulus conditions in sequence learning 

A central aim of this thesis was to investigate the relationship between stimuli presented 

to participants on each trial and sequence learning. Experiment 1 and the simulations of 

Chapter 3 suggested that stimulus-response associations played an important role in 

incidental sequence learning as the overall Different versus Same learning effect as well 

as the sequential effects observed in humans under incidental conditions were 

reproduced when the AugSRN included representations of the current trial stimulus 

(RASRN). Models do not require a representation of both t -1 and t when predicting t, 

which is not entirely surprising, as sequence learning is based on contingencies between 

t and previous trials, and not based on the influence of concurrently presented stimuli. 

However, even the low activations (0.1) of current stimuli have a qualitative impact on 

the way a model learns and responds to sequences, and therefore suggests that an 

associative model of sequence learning is highly sensitive to the stimulus conditions 

that occur in between using the previous trial to predict the location of the current trial.  
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Destrebecqz and Cleeremans (2003) criticise the SRN for two reasons, firstly that it 

does not represent time by any other means than a trial-by-trial time-step; and secondly 

because it only examines a prediction of one trial based on the previous, which is 

inconsistent with task demands. I will discuss timing and sequence learning in section 

7.5, but first I will discuss briefly the models presented in the literature that do encode 

some representation of trial t when predicting trial t, starting with the model produced 

by Destrebecqz and Cleeremans (2003). This involved three components, a simple SRN, 

a set of response units and an auto-associator; which represented learning about the 

previous trial; the influence of responding; and simple stimulus-response learning, 

respectively. Competition between sequence learning and stimulus-response learning 

could occur going into the response units, which were activated based on the 

accumulated (and competing) strength of the SRN or auto-associative prediction. 

Learning about the stimulus-response and previous-current trial contingencies was, 

however, conducted separately, and Destrebecqz and Cleeremans (2003) suggest that 

they are inevitably separate.  

 

Similarly, Cleeremans (1993) included a representation of the trial to be predicted in the 

Dual SRN (DSRN) when he attempted to account for the sequence learning results of 

Curran and Keele (1993), who themselves trained participants on a simple six-item 

repeating sequence and found that explicit knowledge and intentional learning 

interacted with implicit sequence learning. The SRN was able to simulate these explicit 

results when a buffer network that contained a memory of the sequence trained to 

predict t, produced an output activation of t which was used alongside t – 1 as input into 

a hidden layer that predicted t. Whilst this model includes a t representation at input to 

predict t, this did not represent the actual stimuli, but was itself a prediction of a model 

that had a memory for the sequence, representing learned explicit knowledge and not 

simply the stimulus presented to participants that enabled them to make a response. 

 

Both of these models include a t representation, in that one is supplied in order to 

predict t (Destrebecqz & Cleeremans, 2003); as well as one that produces a prediction 

of t that is used to better predict t (Cleeremans, 1993). Whilst the RASRN is not the first 

model to attend to and represent these stimulus conditions within a model of sequence 

learning, it is the first model that allows contingencies between these stimulus 

conditions and representations of the sequence to interact and compete at a learning 
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level. The RASRN also deals with the representation of time and stimulus conditions in 

a simple way; using lower activation values for the current stimuli that does not require 

a further learning system. By restricting a recurrent loop to sequential information only 

as is done in Cleeremans work, this presupposes that memory only occurs for certain 

stimuli and not others, which seems a large assumption to make given that the simplest 

account of associative learning would suggest that implicit learning is an entirely 

automatic process whereby associations are formed indiscriminately between 

regularities in the environment (Shanks, 2010).  

 

7.4.3. Temporal effects on sequence learning 

As mentioned previously, the SRN provides a model of learning that can occur in series, 

but beyond trial-by-trial order it is unable to represent time (Destrebecqz & Cleeremans, 

2003). Activations are calculated once per trial, and cannot represent between- or 

within-trial temporal effects. The RASRN goes some way to address these 

shortcomings by altering the activations of locally represented units to represent their 

temporal influence on learning. These activations were based on an assumption that a 

prediction will receive greater influence from representations that can accrue strength 

over time, with stimuli presented just before an event consequently producing less 

activation. This reflects the observations of Destrebecqz and Cleeremans (2001; 2003) 

that sequence learning increases with a function of RSI length and is supported by the 

work of McClelland (1979), who proposed a functional implementation of this with 

incremental propagation of activation in his cascade algorithm. This was successfully 

applied within the adapted SRN of Destrebeceqz and Cleeremans (2003) to represent 

RSI influences on sequence learning. However, this is in contrast to a variety of studies 

that suggest that RSI increases have a negative impact on sequence learning (Frensch & 

Miner, 1994; Stadler, 1995; Willingham, Greenberg, & Thomas, 1997). Frensch and 

Miner (1994) propose that learning of sequences is based on decaying memory 

activations of previous trial representations, and therefore participants are less likely to 

learn with greater time between stimuli.  

 

Whilst previous studies have attempted to examine how the length of RSI influences 

learning (e.g. Shin, 2009; Willingham, Green, & Thomas, 1997), converging on a 

general dual-process account of increasing explicit preparation and decreasing implicit 

learning (e.g. Frensch & Miner, 1994), inconsistencies appear, perhaps as a result of 
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sequence complexity and intervening stimuli (Destrebecqz & Cleermeans, 2001; 2003). 

Further to this, there are a number of studies that suggest that temporal and spatial 

information is encoded separately when learning about sequences (Miyawaki, 2006; 

Rünger, 2012). The RASRN represents time as a constant influence at the input level; 

and Destrebecqz & Cleeremans (2003) can alter the influence of activation according to 

time by incrementally increasing overall activation. Both models improve on the 

representation of time as a trial-by-trial series of discrete events in the SRN, however 

both of these models also represent time as some influence on the amount of input.  

 

These models therefore do not represent the possibility that time itself may be encoded 

within the model and associations between stimuli and time might occur. Indeed, the 

work of Shin (2008) suggests that participants can learn sequences with a constant, 

patterned or random RSI; however learning is stronger for the constant group, consistent 

with an account where time is associated with sequential elements and stronger learning 

produced when RSI is constant and does not vary and therefore interfere with learning. 

Rather than simply using time as an index of how much activation, learning or 

performance effects may occur on a subsequent trial, it can therefore be integrated 

within a model. Whilst time is thus considered important in the sequence learning 

literature, models of sequence learning are yet to appropriately reproduce these real-

time effects and this requires further work. Rather than concentrating solely on the RSI, 

however, future sequence learning research should consider also the interaction between 

the time course of particular stimuli within a trial. 

  

A further explanation for the lack of colour potentiation of sequence learning in the 

Dual Correlated groups in Chapter 6 is the encoding of time. Whilst participants 

experienced somewhat variable intervals between previous response-stimuli and the 

following colour (response latencies plus RSI); their responses themselves were always 

followed after 500msec by these tones or colours in Experiments 3 and 4, which were 

the concurrent stimuli experiments in Chapter 4. Chapter 6 involved 250msec RSIs 

between responses and colours, therefore less learning could have occurred in this 

shorter time (e.g. Dominey, 1998; McClelland, 1979), which is perhaps why no 

sequential learning differences were observed.   
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7.4.4. The role of responding in the SRT task 

The separate encoding of time and stimuli within a model brings me to a discussion of 

the separate encoding of responses. Whilst Chapter 5 provides evidence that participants 

can learn simple stimulus-response contingencies, the sequence learning literature 

converges on the idea that responses are key in learning contingencies (Goschke, 1998). 

Perceptual and motor sequences have been found by a number of studies to produce 

different amounts of sequence learning (Bischoff-Grethe, Goedert, Willingham, & 

Grafton, 2004; Willingham, 1999; Willingham, Wells, Farrell, & Stemwedel, 2000), 

which suggests that making responses in sequence is what drives the robust and 

automatic sequence learning demonstrated across Chapters 2, 4 and 6 in this thesis. This 

is, perhaps, why sequence learning has become the “best behavioral paradigm through 

which to study implicit learning” (Destrebecqz & Cleeremans, 2003, p. 181); as it is 

extremely reliable, replicable and whilst it may differ depending on certain stimulus 

conditions (Chapter 4 in this thesis; Nissen & Bullemer, 1987; Stadler, 1995) or task 

parameters such as RSI, salience, instructions, there are few studies that report a lack of 

sequence learning. Indeed, this thesis provides little evidence that sequence learning 

was damaged by increased or random RSI (Chapter 6); additional random stimuli 

(Chapters 4 and 6); or additional contingencies to learn about (Chapter 6). It is clearly a 

very robust form of learning. 

 

7.5. Implications for how additional cue stimuli interact with sequence 

learning 

Research has considered the influence of additional tasks on sequence learning (e.g. 

Nissen & Bullemer, 1997; Stadler, 1995), but only a small number of researchers have 

examined how additional perceptual stimuli interact with sequence learning (e.g. 

Cleeremans, 1997; Clegg, 2005; Deroost & Soetens, 2006). Few authors have found 

evidence of learning about other contingencies present in the data when sequences are 

in play (Cleeremans, 1997) and those that have provide no evidence of an interaction 

between learning of these two contingencies (Robertson & Pascaul-Leone, 2001). 

However, these studies also provided no evidence that the additional learning also 

occurs incidentally or implicitly, hence separate systems may underlie these data and we 

might expect them not to interact. Chapter 5 provides good evidence that participants 

can learn stimulus-response contingencies without awareness or intention, and Chapter 
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6 some evidence that these are differentially affected by the presence of and relationship 

to sequences themselves.  

 

Chapter 4 suggests that incidental cue-response learning can interact with the same 

processes involved in sequence learning. These stimuli were all task irrelevant, 

insomuch as participants were not required to process these stimuli in order to complete 

the task, nor were they required to classify, recall, count or otherwise interact with the 

stimuli, over and above being instructed to attend to them perceptually, which suggests 

that implicit learning is not restricted to active features of the task set (Abrahamse et al., 

2012). However, some stimuli in my experiments did provide additional information on 

each trial about either: the previous stimulus element (Previous condition: Chapter 4) or 

the current trial itself (Dual groups: Chapter 6), although participants were not informed 

of this, nor were required to attend to this to compete the task. Only the Previous 

condition in both experiments in Chapter 4 showed evidence that additional concurrent 

stimuli had an effect on sequence learning. This suggests that sequence learning was 

largely unaffected by additional stimuli, but that it could be significantly enhanced. 

 

As mentioned in the previous sections, this suggests that a model of associative 

sequence learning should encode for the stimuli presented to participants and that these 

stimuli should not be processed by a separate system (e.g. Cleermeans, 1993; 1997; 

Destrebecqz & Cleeremans, 2003). The RASRN was ultimately unsuccessful within the 

confines of the parameters that produced the predictions regarding the role of these cues 

(Chapters 3 and 4), which would have provided excellent a priori support for the model 

(Boucher & Dienes, 2003). However, I will continue to argue that stimuli and cues must 

be represented within a model of sequence learning; and that whilst separating cue-

response learning from recurrence in a model may possess prima facie simplicity, this is 

neither more parsimonious nor based on legitimate assumptions regarding recurrence.   

 

7.5.1. How do additional cue stimuli affect sequence learning? 

Given that the RASRN predicted that stimulus-response learning would have a 

qualitative effect on sequence learning, the results of Chapter 4 go some way to support 

and expand on this prediction. When considering the influence of response-stimuli and 

their associations with the required response, Chapter 4 demonstrated that in a sequence 

learning task, the response-cue associations between the previous stimulus element and 
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colour or tone presented concurrently with the stimulus on the current trial produced 

increased sequence learning of Same rule sequences. This suggests that participants 

were able to learn a relationship between the concurrent cue stimulus (t) and the 

response-stimulus location at time (t – 1), which resulted in higher activation of the t – 1 

element, and therefore the t – 2 element in the sequence.  

 

This associative explanation of the result is not the only account, however, and it is 

possible that instead participants were able to use the colours to somehow rehearse or 

reinforce the sequence experienced, giving participants in this condition double the 

memory strength, or giving an associative model that is able to extract statistical 

regularities from sequences two shots at extracting the statistical structure of the rule 

itself. Further to this, it possible that these additional concurrent cues made the 

sequential structure more salient, which the cues matching the current trials and random 

cues could not; as participants were able to both find and exploit patterns in the 

response stimuli locations and colours or tones. It seems unlikely that this is case as 

participants were unable to report a contingency between response stimuli or additional 

cues, and were surprised when these were explained.  

 

That concurrent cues can interact with sequence learning by no means suggests that they 

can eradicate sequence learning, which seems to progress robustly in the presence and 

absence of additional stimuli that are or are not related to the sequence. All of the 

experimental work in this thesis containing sequential contingencies (Chapters 2, 4, and 

6) show that humans are able to learn these well, regardless of an absence of explicit 

knowledge or a volitional intention to learn. This is supported by the results of Chapter 

6, which suggest that sequence learning is stronger than cue-response learning, which 

naturally leads to questions about the origin of this discrepancy.    

 

7.5.2. How does sequence learning interact with cue-response learning?  

Previous research on cue-response learning and sequence learning by Jiménez, Méndez 

and Lorda (1993) and Jiménez and Méndez (1999) has been unsuccessful in producing a 

cue-response effect on sequence learning. The authors emphasised that an incidental 

blocking effect was expected (Jiménez, Méndez, & Lorda, 1993) as unlike 

Cleeremans’s (1997) work, they did not make the contingencies between cues and 

responses explicit to participants. Expecting that implicit learning of these simple 
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contingencies would occur, Jiménez and colleagues were surprised that participants did 

not show learning about these more simple relations whilst still showing strong 

sequence learning of a complex probabilistic sequence. These studies are, from the 

perspective adopted in this thesis, flawed as neither provides evidence that participants 

could learn cue-response contingencies without awareness. Without a demonstration 

that cue-response contingencies can be learned, it is not possible to make any 

conclusions about the interaction it my or may not have alongside a sequential rule.  

 

This problem of demonstrating cue-response learning independently aside, Jiménez and 

Méndez (1999) discussed cue-competition and expected it to occur; however they fail to 

consider the possibility that the lack of an effect on sequence learning occurred because 

of cue-competition. Chapter 6 and the work of McLaren et al. (2013) provides evidence 

that this may not be the case, and when contingencies were matched between a simple 

delay conditioned cue-response relationship on the same trial and sequential 

contingencies with the same probabilities across trials this sequence learning 

overshadowed cue-response learning. It seems that the cues in the work of Jiménez and 

Méndez (1999) were not related to the sequence itself, and therefore this thesis offers 

the explanation that (if we assume that these relations could show a learning effect in 

the absence of sequential contingencies) cue-response learning in these studies was 

overshadowed by the presence of sequential contingencies.  

 

The work of McLaren et al. (2013) suggesting that overshadowing of colour cue-

response learning can occur by sequence learning provides an indication that sequential 

contingencies are somehow prepotent under incidental conditions. Whilst colour cue-

response learning was not found in Chapter 6, this was a result of a general absence of 

colour learning in all groups. Whilst we cannot conclude therefore that colours were 

overshadowed, it is clear that humans over the same length of training and within the 

same task are able to learn sequential contingencies that occur with the same frequency, 

and that in some sense carry the same information. It seems that humans demonstrate 

some advantage for sequence learning over simpler cue-response contingencies. This 

could be due to the increased activation of the stimuli within an associative system 

across time, or indeed the role of the response in reinforcing an additional motor 

component to the perceptual stimulus-based sequence learning. This could also provide 

evidence that incidental learning is more sensitive to complex, statistical regularities 
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than simple ones; which follows from the suggestion by Reber (1989) that an implicit 

system is designed to learn the information that an explicit system would find more 

difficult to acquire. This account is supported to some extent by the RASRN, which 

simulated the overshadowing of the weaker learning (sequences) by the stronger 

learning (colour cue-response) in the Uncorrelated group. Although this effect is the 

wrong way round (sequences overshadowed by colours), the model also learned far 

more about colours in all of the networks trained on colours. This suggests that the 

relative weighting of these input activations is wrong, or that an additional component 

of sequences as mentioned here (e.g. time, motor-responses, spatial locations) is absent 

from the model.  

 

The preferential learning of sequences could be explained propositionally even though 

these are more complex, if one suggests perhaps that sequences comprise of multiple 

elements that give participants more time between them to entertain an explicit 

hypotheses about these contingencies. The discrepancy between an explicit trial order 

expectation based on a gambler’s fallacy heuristic, for example, could cause participants 

to notice some difference from what they expect; which may lead to more learning than 

about cue-response contingencies for which they may have no pre-existing expectation. 

Either account would suggest that the results in this thesis provide good evidence that, 

at the very least, the two learning processes are not independent, as I have provided 

demonstrations where each affects the other.   

  

7.5.3. Further questions about the interaction between sequences and cue-response 

learning 

A question about the role of additional cue-response learning in the SRT task worth 

investigating is: what if the cue perfectly predicted the location of the next stimulus? If 

two colours, for example, gave a perfect prediction of the next trial location would 

participants use this information instead of sequence learning? A Mackintosh (1975) 

approach to associability suggests that increased predictiveness will increase attention 

to these cues and therefore the associative strength of this learning. Cleeremans (1997) 

found evidence that both sequence and cue learning occurred in such an experiment 

involving additional concurrent stimuli (that predicted the next trial). There was no 

evidence for any interaction between the two types of learning and Cleeremans (1997) 

represented the additional cues used in his experiment in an adapted version of the SRN 
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on trial t alongside the current response-stimuli information at t to predict t + 1. He 

avoided the issue of interference between cue-response and sequence learning by giving 

them each their own separate set of hidden units and indeed this produced no 

interference in the simulations produced by this adapted SRN as was also the case in 

humans. However, this account is flawed as whilst it produced the isolated cue-response 

and stimulus learning observed in the experiment, participants in the experiment were 

instructed in the cue-response contingencies and had explicit knowledge of these. A 

dual-process explanation of this data would suggest that these learning processes could 

therefore occur independently, and this could be why separating their internal 

representations (hidden units) produced results consistent with the data.  

 

7.6. Implications for an associative account of sequence learning under 

incidental conditions 

 

Central to this thesis is the question as to whether incidental sequence learning can be 

explained by an associative account (Cleeremans, 1993; Jones & McLaren, 2009). The 

evidence provided by my experimental and computational work may not provide a 

definitive answer, but it adds to the body of existing evidence that supports the presence 

of automatic learning processes in humans that follow the predictions of an associative 

account. I suggest that in the larger context of human learning, this supports the 

presence of dual processes as suggested by McLaren and colleagues (McLaren et al., 

2014; McLaren, Green and Mackintosh, 1994). That humans are, of course, able to use 

explicit knowledge and propositions about events to learn relationships between them; 

but that a functionally separate system based on the automatic formation of associations 

exists that can learn complex contingencies between events across time. Further 

questions remain, however, in situating sequence learning within the context of a dual 

process account of human learning. 

  

7.6.1. The interaction of explicit and implicit processes 

The interaction between explicit and implicit processes is a further level of complexity 

not considered in this thesis, which simply assumes that associative processes may 

underlie automatic human learning; but that these can be overruled by our explicit 

intentions. In reality, the case may not be so simple as this (Sun, Slusarz, & Terry, 
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2005) as evidenced in this thesis by the differential influence of intentional instructions 

on sequential (Experiment 2) and cue-response contingency (Experiment 6) learning. 

Participants demonstrated an increase in learning consistent with the idea that explicit 

learning can produce superior knowledge and performance opposed to incidental 

learning; however Experiment 2 provides very little evidence for a learning increase.  

 

This may suggest that volitional learning has a qualitatively different effect on sequence 

learning to simple cue-response learning; supported by the effect of intentional learning 

in Jones & McLaren (2009), which while not matched for training length, did not show 

greater learning but qualitatively different learning (see also, Dominey et al., 1998; 

Jimenez et al., 2006). How this impacts upon a dual-process account is a critical 

question for sequence learning research in humans, which might attempt to isolate the 

two, possible processes, but as previously outlined may do better to consider them both 

together and then attempt to disentangle them in some way. Whilst a qualitative 

difference in sequence learning might suggest different learning processes were 

activated, it also suggests that in Jones and McLaren’s (2009) experiment that learning 

of subsequences that had been acquired across training incidentally was reduced. Indeed 

this aligns with the reduction in overall learning observed in Experiment 2, which as 

discussed earlier suggests that participants were using up resources by searching for 

sequences similar to effects observed in dual task sequence learning situations (Nissen 

& Bullemer, 1987). This perhaps provides an indication that the essential difference 

between sequence and cue-response contingency learning in the explicit sense is the 

difficulty that participants find in both identifying (Jones & McLaren, 2009; this thesis, 

Experiment 1) and applying (Lee & Livesey, 2013) complex probabilistic rules.  

 

Therefore whilst explicit learning may increase as a function of the simplicity of what is 

to be learned; assuming that this is the case for incidental learning may not be wise. The 

incidental learning in this thesis seems, if anything, to follow the opposite pattern and 

increase with (or at least be relatively unaffected by) increased contingency complexity. 

The effect of explicit learning on implicit learning does not suggest that the automatic 

system can actually be turned on and off under our control, but that processing 

resources attributed to encoding stimulus relationships, order and time may be 

interrupted by explicit attention to other external or internal representations (Stadler, 

1995). The influence of implicit, automatic processes on explicit processes requires a 
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further level of analysis that this thesis does not address, as whether participants can 

acquire explicit knowledge as a result of strengthening associative representations 

(Cleeremans, 2006) or some other theory regarding the construction of explicit 

knowledge (e.g. Mitchell et al., 2009; Rünger & Frensch, 2008) was not investigated; 

only in Experiment 6 did any participants provide evidence of explicit knowledge. 

Models such as CLARION (Sun, Slusarz, & Terry, 2005) and ACT-R (Anderson, 1993; 

applied to sequence learning, Lebiere, Wallach, & Taatgen, 1998) are not discussed 

here, but have provided convincing accounts of both implicit and explicit sequence 

learning through hybrid connectionist and symbolic or procedural systems.   

 

7.7. Further research 

7.7.1. Behavioural predictions 

One outcome of the experimental and modeling work in this thesis is the claim that 

stimulus-response associations produced the greater Different rule learning above Same 

rule learning in Experiment 1. A simple experiment to test whether this was the case 

would involve training participants with these two sequential rules, but with a variety of 

different stimuli across both response locations. Participants could be presented with 

any number of different stimuli (different shapes, colours etc.) on the left or right hand 

side of the screen, in any number of locations. Therefore there would be no specific 

place on the screen, colour or shape that could build up an association with either 

response key. Whilst participants would be able to follow response instructions 

regarding a left or right response to any stimuli in that area of the screen, specific 

stimulus-response associations would not be able to interfere with the sequence or right 

and left responses, which would, if my theories are correct, alter sequence learning by 

increasing Same rule learning in the absence of strong stimulus-response associations. 

 

Further behavioral predictions of this thesis involve the role of time, which may 

decrease the amount of sequence learning observed compared to the influence of 

stimulus-response mappings if indeed sequence learning is reduced. Therefore, in the 

experiments in Chapter 2, I expect that a bigger difference between Different and Same 

group learning would be observed with shorter RSIs despite less sequence learning in 

this condition. However, this is highly controversial as some authors (e.g. Fresnch & 

Miner, 1994) suggest that shorter RSIs lead to greater learning. Therefore a short (or no) 
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RSI condition could be compared to a longer RSI condition. I predict that less learning 

will occur in the longer RSI condition, according to the predictions of the RASRN. 

Further to this, shorter RSIs are implicated in increasing the influence of short term 

priming of the previous response, therefore there may be a bigger impact of sequential 

effects in the short RSI condition. Whilst there was no interaction between 

subsequences and learning in the experiments in this thesis, greater or less time between 

trials may alter this and produce less Same rule learning in the short RSI condition and 

less Different rule learning in the long RSI condition as a result of the influence of 

sequential effects. 

 

The thesis also predicts that under the same task instructions experienced in Experiment 

1, that Jones and McLaren’s (2009) result may disappear, as the sequential effects and 

learning under incidental conditions does not match those found in any of the sequence 

learning experiments in this thesis. The best explanation of these differences, especially 

between the control group who should not show any difference whatsoever, is in the 

feedback given at the end of each block. Jones & McLaren (2009) provided participants 

with monetary bonuses, which may have encouraged them to perform faster and more 

accurately, reducing the influence (in terms of learning) of the current on-screen 

stimulus.  

  

7.7.2. Model development  

The challenge remains to develop a model of sequence learning that can account for the 

role of stimulus-response relationships within a task, and considerations for this have 

been mentioned throughout the discussion. The representation of associability, time, 

error feedback and responding are all important when attempting to represent the task 

conditions with even greater specificity. Indeed, if a model was able to learn simple and 

sequential associations as observed in humans under incidental conditions it would 

provide huge power in motivating and enabling further research. The challenge for 

researchers will be centred on the trade-off between increasing explanatory power and 

increasing the number of processes (e.g. associability) and free-parameters in a model, 

which is not to say that this is a criticism in itself (Boucher & Dienes, 2003). With a 

simple, parsimonious model (e.g. the SRN, Elman, 1990) that has extraordinary 

emergent properties (Beesley, Jones and Shanks, 2012) and can roughly simulate a huge 

number of tasks we are able to generate a large body of evidence that roughly supports 
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some association formation in perceptual-motor sequence learning as well as a number 

of other human learning tasks such, for example artificial grammar learning (Dienes, 

1993); speech perception (Gaskell & Marslen-Wilson, 1997); and learning musical 

sequences (e.g. Altmann, Dienes, & Goode, 1995). However increasing specificity 

based on accurately simulating human performance encourages specific predictions that 

can be falsified, leading to a better understanding of detailed learning processes that 

may occur.  

 

7.7.3. Other suggestions 

The first question this thesis asked that remains unanswered and merits further 

experimental attention concerns the overshadowing of cue-response learning by 

sequence learning in Chapter 6. Without definitive evidence for colour cue-response 

learning at test in the group trained only with colours, the conclusions about the 

interaction between learning about the two sets of relations are by no means definitive. 

As the current results suggest that learning about these contingencies can interact – with 

some evidence of overshadowing in work not done as part of this thesis (McLaren et al., 

2013) and possibly potentiation of colour cue-response learning in the first experiment 

of Chapter 6 (as well as in Beesley & Shanks, 2012, although not with sequences); this 

suggests that a system that learns stimulus-response contingencies is not separate from 

one that learns sequential contingencies (e.g. Cleeremans, 1997; Destrebecqz and 

Cleeremans, 2003) if the two cues become associated when correlated.  

 

This has obvious implications for our understanding of automatic learning, and as 

discussed previously further work must demonstrate the presence of learning of 

contingencies without the presence of the other to show that they are in fact learned 

under incidental conditions. Rather than simply training one dual stimulus condition and 

suggesting that participants can or cannot learn about the contingencies (e.g. 

Cleeremans, 1997), we can examine whether this was a result of cue competition effects 

or whether participants are simply unable to learn contingencies. Whilst the 

contingencies in Experiments 7, 8 and 9 were matched across colour cues and 

sequences (all 67%), increasing these colour-cue response contingencies to the 80% that 

produced evidence for implicit learning in Chapter 5 would not devalue any conclusions 

about the nature of the interaction between the two contingencies and simply make it 
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more likely to observe colour learning without the presence of sequential contingencies 

and therefore provide a suitable point of comparison at test.  

 

The role of additional stimuli is further predicted to increase sequence learning when it 

follows the previous stimulus element in the series. This may be a specific effect on the 

Same rule sequential contingencies, which is worthy of further investigation. Whilst the 

RASRN predicted that this learning would reduce the Same rule sequences, further 

experiments are required to ascertain what sequences this may have an effect on. 

Nevertheless, this may more generally be a result of some potentiating influence of the 

representation of t – 1 as part of the sequence on the next trial. It also may provide 

participants with two opportunities to create a stronger memory for the sequence, which 

may in turn lead to strong representation of sequential elements, thus making these 

easier to explicitly recall (Perruchet & Vinter, 2002). This would perhaps, in turn, lead 

to better recall or recognition of these sequence elements which may be captured in 

some direct test of sequence learning (Rünger, 2012; Shanks, 2005), and therefore this 

task might be repeated with a battery of such tests (e.g. Destrebecqz & Cleermans, 

2003; Dienes & Berry, 1997; Wilkinson & Shanks, 2004). If we see increased explicit 

knowledge in the Previous group compared to the other groups, or a correlation between 

subjective and objective measures of explicit knowledge, this may account for the 

increased learning observed across training. 

 

Furthermore, Chapter 6 provided no evidence that colours which followed the previous 

two response-stimulus locations increased sequence learning of the exclusive-or rule, 

but there was a strong trend in that direction in Experiment 7. Therefore, this suggests 

that perfectly correlated colours with the previous two sequential elements did not 

potentiate sequence learning, but perhaps this effect was reduced by the increased 

complexity of this relationship, or the increased number of colours to learn about. This 

provides a number of predictions: either that potentiation of sequence learning is 

restricted to a greater t – 1 representation at t; that participants are unable to strongly 

associate both two previous trials with a current cue; or that the exclusive-or sequence 

learning is unaffected by additional cues.  

 

It is of interest then to assess the extent to which participants learn about these trial-by-

trial response-stimulus-colour-cue relationships; which could be done in a test phase 
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where additional cues were random. This would lead to trials that were both consistent 

and inconsistent with the trained Previous-contingency, on which a significant 

difference in responding could be expected. Further to this, consistent and inconsistent 

trials may also provide a further level with which to analyse the learned relationship 

between cues and response-locations, as it may be possible that a high tone-left 

response contingency is generalised across to current trials, further providing evidence 

for the learning of these contingencies as the positive influence on sequence learning; 

rather than some memory or explicit knowledge of the sequence. 

 

Similarly, it would be of interest to investigate to what extent participants learned or 

indeed were aware of the t – 1 cue contingency between tones or colours on the current 

trial and the previous response-stimulus location. Whilst participants were asked 

whether they were aware of any contingency and none reported one we assume that it 

was an incidental training of this relationship that came to facilitate greater learning. It 

could just as easily been some explicit knowledge. It is therefore an important design 

feature of further investigations to try and isolate the influence of one stimulus from the 

other.  

 

In the task as it stands, this is difficult as the response location sequence is responded to 

whereas the concurrent tones or colours are not. However, it may be possible in the case 

of the tone experiment to investigate response location only responding, and tone only 

responding. In this tone only condition participants would be instructed to make either 

response when they heard a tone, similar to a prediction task instruction. If participants 

have learned about the relationship between Previous tones and the sequences of 

required responses and were using this to improve performance, I predict that they will 

perform better than the Random group on such a task. However, it might be that the 

Previous group were learning about the contingency between their response and the 

next tone, which suggests that in the Previous group they may become worse than the 

Random group in a tone only condition when their responses and next trial tone do not 

match.  
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7.8. Concluding comments  

It was the intention of this thesis to improve our understanding of how humans learn 

sequences under incidental conditions by testing predictions of an associative account. I 

have presented both experimental and computational contributions that provide support 

for the role of associations in sequence learning tasks, with the influence of stimulus-

response associations implicated in the learning of different sequences. Whilst it 

remains a challenge to accurately model these results, they are consistent with 

associative predictions based on competition between predictive contingencies within 

the environment. The work reported in this thesis provides strong evidence that humans 

can learn complex probabilistic rules as well as simple stimulus-response contingencies 

automatically and outside of the influence of any explicit knowledge or controlled, 

intentional learning processes. Therefore, in the wider context of cognition, this thesis 

offers a better understanding of sequential associative learning processes within the 

context of a dual process account of human learning.  

 

!  
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