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Abstract

This thesis presents an investigation into the morphological features of the Milky Way, the

exact structure of which is somewhat of an unknown. We begin with a discussion of the problem

at hand, and a review of the literature and methodology associated with determining Galactic

structure (Chapter 1). The methodology of the investigation is to use numerical simulations to

reproduce the structure of the interstellar medium (ISM) gas under the effect of gravitational forces

that represent possible morphologies of the Milky Way, such as spiral arms and inner bars. The

ISM is simulated using smoothed particle hydrodynamics (SPH), which has been tailored to ISM

scales by the inclusion of cooling, heating and a simple chemical network, discussed in Chapter 2.

The Milky Way is first assumed to be grand design in nature, with analytic potentials rep-

resenting the various arm and bar components. Simulations are then compared to longitude ve-

locity CO emission observations to assess the quality of the reproduction of Galactic morphology.

These results are shown in Chapter 3, where best fitting models have a bar pattern speed within

50 − 60km s−1 kpc−1, an arm pattern speed of approximately 20km s−1 kpc−1, a bar orientation of

approximately 45◦ and arm pitch angle between 10◦ − 15◦. While nearly all observed emission

features are reproducible, there is no model that reproduces all simultaneously. Using both bar

and arm components together we find a better match to the data, but still no perfect reproduction.

Models with two arms lack many of the observed features, but models with four arms produce

too much local emission in the inner quadrants. Chapter 4 shows more sophisticated synthetic

observations, created using a radiative transfer code. Resulting emission features are broadly in

keeping with those seen in observations, the strength of which appears a strong function of gas

surface density.

The analytic potentials are then replaced by a set of discretised mass components that rep-

resent the stellar system, which is the subject of Chapter 5. Using a live N-body disc then allows

for the dynamic creation of bar and arm features, from which further synthetic observations are

produced. Transient arm and bar features are relatively easy to produce, though not necessarily

simultaneously. Arm patterns showing two to five arms and some with an effectively flocculent

structure are created, with pitch angles around 20◦. The pattern speed of which tends to decrease

with radius, highlighting that the arms are material rather than wave-like in nature. Best fitting

synthetic observations show that a four-armed spiral pattern provides good agreement with ob-

servations, more so than that of the fixed potentials, with clear reproduction of nearly all arm

features. However, an inner bar appears necessary to remove excess emission seen towards the

Galactic centre, which was not present in these models.
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1
The Milky Way Galaxy

“I know not the true face of the mountain, for I am in its midst”

– Su Shi (1037-1101)

1.1 The Galaxy: seeing the forest for the trees

The Milky Way galaxy is the home of the Solar system and planet Earth, and yet we know dis-

turbingly little regarding what it actually looks like. Simply by looking up into the night sky we

observe the bright stream of stars and gas that is Milky Way, from which it is logical to assume the

host of the Solar System is a flattened structure (see Figure 1.1). Such thoughts were postulated

as early as the seventeenth century by Galileo Galilei, observing that the Milky Way actually con-

sisted of numerous individual stars rather than a continuous “celestial fluid” (Binney & Merrifield

1998). Later work by Thomas Wright and Immanuel Kant in the eighteenth century developed

this idea by proposing the Milky Way was effectively an upscale Solar System, with stellar bodies

orbiting the central point on near-circular orbits, counter-acting the immense gravitational forces

of the combined stellar stellar system. Kant also proposed that sources that were seen to be more

nebulous and blurred out, rather than point like, could be analogues to our own Milky Way, or

“island universes” (Kant 1755).

In the later eighteenth century Charles Messier and William Herschel undertook a system-

atic cataloguing and measuring of celestial sources. Herschel produced a diagram of the entire

night’s sky (right, Figure 1.2), including many more fuzzy nebulae (Herschel 1785), believing

these were indeed island universes postulated by Kant as he was able to resolve discrete sources

within them. Some of the first observations of spiral structure in the night sky were made by

William Parsons, the Third Earl of Rosse, in 1845 using his appropriately named Leviathan of

1
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Figure 1.1: Panoramic view of the Milky Way viewed from Earth. Credit: ESO/S. Brunier.

Parsonstown (Bailey et al. 2005), discovering nebulae both disc-like and spheroidal in nature,

and clear spiral/whirlpool like patterns in nebulae such as M51 (left, Figure 1.2), adding further

support to the notion that nebulae undergo large scale rotation.

In the early twentieth century a large global network of calibrators led by Jacobus Kapteyn

employed the use of photographic plates and proper motions to produce a three-dimensional map

of the Milky Way (Kapteyn 1922). Kapteyn proposed a disc-like Milky Way, 8kpc in radius, with

a drop in stellar density towards the edges, with the Solar distance being only around 0.6kpc from

the centre. The seemingly unlikely placement of the sun in the centre of the Milky Way was a trou-

bling one. Kapteyn’s measurements were undermined by the presence of an interstellar medium

(ISM, specifically dust) that subdued the light from the Milky Way stars, thereby exaggerating

their distances from the Earth. This caused a net preference for a strong drop off in stellar density

from the Earth which could be misinterpreted as a heliocentric view of the Milky Way. Kapteyn’s

work also indicated the existence of two distinct stellar streams, i.e. that the motion of stars was

not random, but rather moved in two streams moving in opposite directions, further endorsing the

theory of Galactic rotation. Work around the same time by Harlow Shapley presented a radically

different view of the Milky Way’s structure based on distance measurements of globular star clus-

ters and Cepheid variables (Shapley 1918a,b,c and other papers in this series). Shapley’s analysis

indicated that clusters were not uniformly distributed in the plane of the Milky Way, suggesting

instead that the Solar System was significantly displaced from the centre, by some 15kpc, and

that the Milky Way was nearly 100kpc in diameter. The Kapteyn and Shapley universes differed

in many regards, both being the victims of the effect of inter-stellar absorption, the full impor-

tance of which was not quantified until the work of Trumpler (1930), who discovered that open

stellar clusters at large distances were much fainter than they should be for their apparent size.

This absorbing effect heavily undermines the distance determinations underpinning both Galactic

models.

Shapley’s ideas surrounding the structure of the Milky Way extended to those on external

spiral nebulae, which he believed must be small constituent components of the Milky Way itself

due its apparent huge size. This view was not accepted by all, with some preferring the smaller
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Figure 1.2: Left: sketches of M5 (top) and M99 (bottom) by Lord Rosse in 1850 from Bailey et al.
(2005). Right: William Herschel’s map of the Milky Way (Fig. 4 insert) from Herschel (1785).
The Earth is located at the bright dot near the centre.

Kapteyn model of the Milky Way, with spiral nebulae existing as entirely separate entities. The

conflicting models were pitted against each other at the so-called “Great Debate” in 1920, where

Heber Curtis was given the challenge of standing for the “island universe” paradigm against Shap-

ley, though there was no clear winner (Hoskin 1976).

In the advent of galactic spectroscopy it became apparent that nebulae shared very similar

characteristics with stellar spectra, with full spectra that resembled that of the integrated Milky

Way, backing the “island universe” view. Additionally, Doppler shifts gave the relative velocity

of these systems, which seemed to be much higher than the stars in the plane of the Milky Way,

further supporting the idea that nebulae were dynamically uncoupled to our Galaxy. Support for

the Shapley model was hinged on a lack of knowledge about the absorbing properties of the ISM.

He questioned if the Milky Way was like spiral nebulae, then why is it significantly darker and

redder? Missing from the Shapley model was the absorbing ISM that has a tendency to absorb in

the blue and would diminish the total luminosity of the galactic disc when viewed from the Earth.

The Great Debate was not truly settled until Edwin Hubble’s observations in the mid 1920’s.

By resolving Cepheid variables inside these nebulae it was possible to determine their distances.

It turned out they were far too distant to be considered part of the Milky Way itself and thus these

collections of stars lying external to the Milky Way became known as galaxies. Around the same

time efforts were also being made into measuring the kinematic properties of stars in the Milky

Way. Bertil Lindblad and Jan Oort discerned that stars in the Solar vicinity are rotating in a highly

flattened disc with velocities between 200-300 km s−1 (too high to remain bound in Kapteyn’s

smaller Milky Way).

Further insights into the structure of the Milky Way came from the discovery of the H I

21cm emission line (see Section 1.4), predicted by Hulst in 1941 and not seen until 1951 by a

number of observers (see Binney & Merrifield 1998). This line was well separated from other

spectral features, allowing for precise measurements of line-shifts. The biggest benefit of this line
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Figure 1.3: Top-down H I 21-cm emission maps of the Milky Way from Oort et al. (1958) on the
left and Kerr (1962) on the right. The sun is located approximately two thirds from the bottom of
each figure in the centre.

was its position in the radio regime, far from the dust absorption that hampered so many previous

works, providing a tracer capable of mapping much deeper in the Galactic disc. This enabled

Oort et al. (1958) to build a near-full map of the Galactic plane (left, Figure 1.3). Clearly the

map is asymmetric, which could be a pointer towards spiral structure, but on average displayed

a uniform density with azimuth. Note the over-abundance of material towards our Solar System,

located approximately two-thirds up the y-axis. This is because the map assumes circular orbits,

and spiral perturbations could cause non circularity giving the tendency of gas to point towards

the observer. In later maps you can begin to see clearer spiral structure in the H I gas (Kerr 1962,

right Figure 1.3).

The evidence outlined above leads to the categorisation of the Milky Way as a disc galaxy

with net rotation and a diameter of 20-30kpc. However, inferring anything more concrete than

this has been a point of contest for researchers for the past decades. While the existence of some

spiral structure is widely undisputed, the exact morphology and kinematics are still shrouded in

confusion. The problem is inherent to our position within the Galactic disc. As we lie within it

there is no easy way to construct a full top-down map with irrefutable accuracy (and it is highly

unlikely we will ever travel far enough out of it to do otherwise!). As can be seen from Figure

1.3, it is possible to infer some structure. However, the underlying calculations rely upon difficult

distance determinations with large uncertainties and rely on some assumed rotation model. Even

then, it is nigh impossible to apply these methods to behind the Galactic centre due to the extreme

brightness in the entire electromagnetic (EM) spectrum.

The topic of this thesis is to constrain the morphology of the Milky Way through numerical

simulations, reverse engineering them to reproduce observations seen here on Earth. Exactly how

this is done will be discussed later in this Chapter, before which we will discuss some key points

regarding galactic morphology and inter-stellar physics.
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Figure 1.4: A collection of disc galaxies with clear morphological features. Top row from left to
right shows three spiral galaxies; M51 (“Whirlpool”), M101 (“Pinwheel”) and NGC 4414. The
bottom row shows three barred galaxies; UGC 12158, NGC 1672 and NGC 1300. Images credit;
NASA, ESA, and The Hubble Heritage Team (STScI/AURA).

1.2 The galaxy zoo

Galaxies come in a whole host of morphologies, ranging from flattened spheroids to grand design

spirals. They can generally be classified into one of three categories; disc, elliptical or irregular

(the latter being anything that can’t be classified as the former). While the exact morphology

is uncertain, our own Milky Way is generally accepted to be a multi-armed disc galaxy. Spiral

armed galaxies are characterised by their winding arms, and often have an extended bar structure

in the inner disc, from which arms can propagate. Figure 1.4 shows some of the more striking

spiral galaxies observed by the Hubble telescope, with varying morphologies. M51 is the poster

child for galactic spiral structure, whose arms are believed to have been produced by interaction

with the nearby companion galaxy NGC 5195. The arms of M101 are less clearly defined and

more numerous. NGC 4414 displays very flocculent spiral structure, with no distinct arm number.

Three examples of barred galaxies are shown in the lower row of Figure 1.4, with arm morphology

and inner gas/dust features. While NGC 1672 and NGC 1300 have a very dominant bar structure,

UGC 12158 has only a weak inner bar, with multi-armed spiral features dominating the outer disc.

Edwin Hubble attempted to classify these many different galaxies using a “tuning fork” diagram

(Figure 1.5), where spiral galaxies are either classified as barred, SB, or unbarred, S (Hubble

1936). This is then followed by an index defining the features of the spiral pattern. Sa spirals have

tightly wound arms, Sb intermediately wound arms and Sc very loosely wound arms. The size

of the central bulge decreases from Sa to Sc. Sa spirals have poorly resolved arms and relatively

little gas compared to the Sc’s (similarly for SB barred spirals). The actual number of spiral

arms observed in external galaxies varies from 2-6, though as the number of arms increases the

galaxies tend to be described as flocculent, showing arm-like features but either too disperse or

too numerous to clearly quantify.
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Figure 1.5: Hubble tuning fork diagram categorising the morphology of elliptical and spiral galax-
ies. Adapted from http://www.spacetelescope.org/images/heic9902o/ (credit: NASA and ESA).

While spiral galaxies form circular rotating discs, elliptical galaxies are spherically sym-

metric, oblate, prolate, or triaxial structures and have no clear surface patterns. The degree of

spherical symmetry is categorised by the number of the elliptical, e.g. an E0 elliptical is com-

pletely spherically symmetric while an E7 is strongly prolate. The link between the elliptical and

spiral classes is a lenticular class (or S0’s), which are essentially spirals with no patterned features

and a low gas content, though their exact relation between the elliptical and spiral galaxies is not

entirely clear (see Sandage 2005 for a discussion). When studying the Hubble sequence one could

be lead to the belief that the ellipticals evolved into the spirals over time, with the rotation flatten-

ing out the initially spherical stellar distribution into compact discs. This is however not the case,

and no direct evolutionary path is implied by these classification schemes. “Early” and “late” type

galaxies refers instead to evolution of morphological complexity in classification schemes (Binney

& Merrifield 1998).

As well as their general outward morphology, elliptical and spiral galaxies have very dif-

ferent populations and internal structure. Elliptical galaxies are made up of much older stars

(Population II1) with less ISM gas than spirals and as a result are redder in colour. The brightness

decays slowly with radius by; I(R) ∝ exp(−R0.25) (de Vaucouleurs 1948). The orbits of the stars

inside the ellipticals are usually randomly orientated with no net rotation. If they are do exhibit a

net rotation, it is slower than that in seen spirals.

Spiral galaxies on the other hand are mainly composed of Population I stars and have a

large proportion of their mass in ISM gas and dust. They are often visually distinctive with their

strong spirals emanating from the galactic centre with occasional bar like inner structures such

as those in Figure 1.4 (see later in this chapter for more detail on the spiral and bar patterns).

The surface brightness in the disc is characterised by an exponential drop off from the centre;

I(R) ∝ exp(−R), a steeper drop than that of Ellipticals (Freeman 1970; Binney & Tremaine 1987).

Spiral galaxies tend to have a spherical inner nucleus, known as a bulge, which is very similar to

1Stars can generally be classified as either Population I or II. The former are young, hot, metal rich stars found in
galactic discs. The latter are cooler, metal poor, often late in age and are found in globular star clusters.
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Figure 1.6: A selection of rotation curves from (Sofue & Rubin 2001) for spiral 52 spiral galaxies
including the Milky Way (thick black line). Data is either from the CO 2.6mm, H I 21cm, Hα

656nm and N II 122µm emission lines.

a small elliptical galaxy. The bulge has random rotation and is composed of mostly Population

II stars with little ISM gas and dust. The velocity distribution of the stars inside the disc tends

to be roughly flat with radius; the rotation of spiral galaxies is constant as you move away from

the galactic centre. Figure 1.6 shows the rotation curves for 52 spiral galaxies using a variety of

different data sources from Sofue & Rubin (2001), showing flat rotation in most cases. The flat

nature of the disc galaxy rotation curves presented a problem for galactic mass determinations,

and is in many ways still an unsolved problem even in the 80 years since its first detection by Oort

(1932). If the stars in galaxies were to orbit like objects in our own Solar System then they should

obey Kepler’s third law. That is, the orbital period should increase, and the speed decrease, as

you move away from the galactic centre (the blue line in the left panel of Fig. 1.7). If it were a

solid body-like rotation then velocity would have to increase as you move from the larger radii

to stop the disc form breaking apart. However, studies began to show that galaxies had neither

Keplarian nor solid body rotation. This is seemingly at odds with the luminosity profiles of disc

galaxies, which clearly decay with increasing radii, indicating some material was contributing to

the mass of the system but not to the luminosity. Evidence of so-called “dark matter” was seen

in observations of individual stars (Rubin et al. 1980), galaxy clusters (Zwicky 1933), individual

galaxies (Ostriker et al. 1974) and also in elliptical and dwarf galaxies (see the review of Trimble

1987 for a full discussion of evidence).

However, this dark matter has still yet to be observed in any direct way due to its indiffer-

ence towards all regions of the EM spectrum. Figure 1.7 shows rotation curve measurements for

the Milky Way from Sofue (2012). In the right panel a combination of an inner bulge and disc

cannot reproduce a flat curve without some extra outer mass component. By including a spheri-

cally symmetric outer massive halo the rotation curve can then be flattened. The matter needed to

do this, regardless of geometry of the halo, would imply that dark matter would outweigh regular

matter by nearly an order of magnitude (Fich & Tremaine 1991; Battaglia et al. 2005). The spatial

distribution of the dark matter is often assumed to be spherical, though the exact morphology is

yet another unkown. Even 30 years after its original postulation, we can tell little more about dark

matter other than the gravitational force it exerts.
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Figure 1.7: Left: rotation curve data for the Galaxy from Sofue (2012) with a Keplarian, solid body
and flat model curve. Right: The same data with a flat model curve reproduced from combining a
circular disc, spheroidal bulge and spherical halo of material.

1.3 Spiral and bar structure

While spiral patterns appear in no short supply in disc galaxies, upon first discovery there was

considerable confusion as to what the underlying physics was behind them. One of the biggest

conundrums was why the spirals were seen at all. If disc galaxies had flat rotation curves (as most

do, see Fig. 1.6), then any pattern seen on the disc would not stay the same as the disc rotated (see

the solid body curve in Fig. 1.7). For a flat rotation curve rotation frequency scales as Ω ∝ 1/R,

and so the inside of an observed pattern would move at a much faster angular speed than the pattern

at large radii. This effect, known as the “winding problem”, meant that any spiral pattern would

wind up into nothing after a few galactic rotations, and yet many disc galaxies at various redshifts

are seen to have strong spiral features, indicating that galaxies either maintained their spirality or

continuously reformed spiral arms.

Some of the earliest advances in understanding spiral structure were made by Lindblad in

the early twentieth century. Lindblad developed the idea that spiral structure resulted from stellar

and gaseous gravitational interactions during their orbits around the galactic centre. His idea was

that spiral structure was seeded by leading spiral arms born at the edge of the stellar disc, with

eccentric stellar orbits driving m = 2 spiral modes. Lindblad’s work was underpinned by his

theories of stellar orbits, which became a mainstay of future spiral models (see Pasha 2004a and

Pasha 2004b for a review of Lindblad and early spiral structure theory). Consider stars/gas moving

in some axisymmetric potential, such as that of a disc galaxy, in a near-circular orbit at a frequency

of Ω. The equations of motion of the material are given by those of a circular orbit with perturbing

terms; R(t) = Rg + r′(t) and θ(t) = Ωt + θ′(t) where Rg is the average radius of the nearly circular

orbit with r′(t) and θ(t)′ the deviations from a circular orbit in the radial and azimuthal directions

respectively. The resulting equations of motion for the radial offset is r̈′ = −κ2r′ (see Combes

et al. 1995 for a derivation). As the equation of motion is only solved to first order this is known

as the epicycle approximation. The frequency of radial oscillation, κ, is referred to as the epicycle
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Figure 1.8: The orbital path of a star (blue dot) around the galactic centre with epicycle frequency
of κ = 2Ω. The epicycle, circular and resulting full orbital path are shown by the red, black and
green lines.

frequency, and is given by

κ2 =
∂2Φaxs

∂R
+ 3Ω2 ≡ R

dΩ2

dR
+ 4Ω2 ≡ 2Ω

R
d

dR
R2Ω, (1.1)

where Φaxs is the axisymmetric potential of the stellar system. While orbiting the galactic centre at

Ω, the star is also rotating in a small ellipse in the rotating reference frame with radial frequency κ,

where the combined orbit has the general shape of a rosette. The magnitude of κ is dependent on

the rotation curve. For example, in the galactic centre the rotation curve is as a solid body, Vc ∝ R,

and so κ = 2Ω. In the outer disc the rotation is differential, Vc = const., so κ =
√

2. In general,

Ω < κ < 2Ω, so the material completes an epicycle before it completes a full orbit. Figure 1.8

shows a star orbiting the galactic centre with an epicycle frequency of κ = 2Ω, and the resulting

effectively elliptical closed orbit.

The shortcomings of spiral models to fully solve the winding problem led to the postulation

in the 1950’s that large scale magnetic fields were the driving force of spiral structure. Observa-

tions of the field strengths in galaxies however indicated that field strengths were simply too weak

to be responsible for large scale arm features (see Binney & Tremaine 1987).

1.3.1 Density wave theory

The work of Lindblad lead to one of the most popular theories of spiral structure. The spiral

density wave theory of Lin & Shu (1964) formulated the spiral features not as a specific collection

of stars, but rather a density wave that propagates azimuthally through the galactic disc. The spiral

arms would manifest as over-densities in the stellar population, with stars passing into and then

out of the density wave rather than spending their entire lifetimes within the arm. An often used

analogy is that of a traffic jam on a road. Cars enter and leave the traffic jam, creating an over-

density in cars at a certain point. The jam is still moving, albeit at a different speed to the cars,
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Figure 1.9: Illustration of the how the superposition of numerous stellar orbits can create bar
and spiral patterns. Top left shows that random alignments of elliptical orbits creates no pattern,
resulting in disc only structures. Top centre is a continuous superposition of ellipses aligned
horizontally, creating a bar-like inner structure. The spiral pattern in the top right is made by
simply incrementing the offset of each orbit steadily with increasing semi-major axis. Bottom left
is a combination of a bar and 2 armed spiral through a simple combination of ellipses. The 3 and
4 armed spirals require non-elliptical orbits and for the masses to complete 3 or 4 complete radial
oscillations during a full orbit (3/1 or 4/1 opposed to an ellipse’s 2/1).

which enter and leave the jam over time. In this sense the traffic jam is a density wave, and cars

do not reside in a single jam forever. With a steady spiral density wave it is possible to create any

number of arm or bar structures, to have both leading and trailing arms, and avoid the winding

problem.

The resulting stellar perturbation caused by this density wave is represented as a surface

density of the form2

Σsp(R, φ, t) = Asp(R) cos
[
mφ + f (R) + Ωpt

]
(1.2)

where Asp defines the spiral radial strength, m the order of the spiral (i.e. number of arms),

Ωp the rotation frequency of the density wave and f (R) the shape function of the arms. The

shape function defines the morphology of the arms, whether it be a logarithmic, Archimedean, or

hyperbolic spiral. The most common shape function is that of a logarithmic spiral, which has the

form

f (R) = ln (r/r◦) cot(α) (1.3)

where r◦ is some constant and α is the pitch angle; the angle the arm makes with a tangent to a

2This can also be expressed as exp(i[mφ + f (R) + Ωt]).
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circle of constant radius. An example of how these spirals relate to actual stellar orbits is shown

in Figure 1.9 (based on a similar diagram of Kalnajs 1973). In the first panel we show a set of

elliptical orbits, closed such that κ = 2Ω. The orbits are randomly rotated with radii, showing no

distinct pattern. In the second panel we leave all orbits aligned with the x-axis, forming a bar-like

feature in the inner disc. By then rotating each orbit with increasing radius we can form spiral

patterns similar to those seen in disc galaxies. Multi-arm structures can be created by increasing

the epicycle frequency, e.g. κ = 3Ω (or κ = 3Ω/2) and κ = 4Ω, creating 3 and 4 armed spiral

patterns.

A dispersion relation for the spiral structure can also be formulated, but depends on a few

key assumptions. The spiral must be sufficiently tightly wound. This simplifies the computation

of long range gravitational forces in the disc, as it ensures there is some local density perturbation

providing the majority of the gravitational force3. The spirals are also assumed to rotate as a rigid

body and do not deform in shape over time (Ωp and α are constant). The arms are said to be quasi-

stationary spiral structures; QSSS (Dobbs & Baba 2014). This results in a dispersion relation of

the form

(ω − mΩ)2 = κ2 − 2πGΣ|k| (1.4)

where k is the radial wavenumber of the spiral density wave, ω is its angular frequency and Σ

the surface density of the disc (Toomre 1964). The dispersion relation for a hot gas disc (the

above is for a cold gas disc) was provided by Lin & Shu (1964) and requires an additional term

of c2
sk2 added to the RHS of Equation 1.4, where cs is the sound speed of the gas. A stellar

dispersion relation is similar also to Equation 1.4, except with an additional multiplication factor

added to the Σ term which is a summation of Bessel functions of Ω, ω, κ, k and the radial velocity

dispersion of the stars, σ (Kalnajs 1965; Lin & Shu 1966). The pattern speed is related to the

arm angular frequency by ω = mΩp. From these dispersion relations two key stability criteria can

be found, referred to as Toomre Q parameters. If the terms on the RHS of Equation 1.4 are > 0

then a solution exists where Ωp is real, and hence Equation 1.2 holds and the disc is stable. If,

however, the LHS of Equation 1.4 is < 0 then Ωp is complex, and Equation 1.2 will then contain an

exponentially increasing factor, hence making the disc unstable (Binney & Tremaine 1987; Dobbs

& Baba 2014). By extension to warm stellar and gaseous discs the respective Q parameters can be

defined as

Qg =
κcs

πGΣ
(1.5)

and

Qs =
κσ

3.36GΣ
. (1.6)

Stability of the discs requires Q > 1, and instability is present when Q < 1. Physically, Q can

be thought of as the balance between the disc pressure forces (driven by velocity dispersion in

stars or thermal dispersion in gas) and gravitational attraction of the disc of surface density Σ.

Values in the Solar neighbourhood are approximately Qs ≈ 2.7 and Qg ≈ 1.5 implying the Solar

neighbourhood is stable, but not by a large margin in the gas (Binney & Tremaine 1987).

There exists some regions of special interest when considering Equation 1.4. When epicycle

3This is also referred to the tight-winding, or WKB, approximation (Binney & Tremaine 1987).
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Figure 1.10: Rotation speeds for a Milky Way-like rotation curve. The dashed and dot-dashed
lines show the 4:1 and 2:1 resonances calculated from the epicycle frequency, κ. The shaded
region shows the the location of the pattern speed, which is in keeping with that of the Milky Way
bar.

orbits close as some fraction of the orbital frequency we obtain the relation

Ω −Ωp = ± κ
m

(1.7)

where m is some integer, representing the number of arms. This equation is only satisfied at two

radii for each m which are known as the inner and outer Lindblad resonances (ILR and OLR),

usually defined with reference to m = 2. At the ILR and OLR the orbiting material orbits such

that it encounters the density wave at the same point in the orbit each rotation, and experiences

a resonance as a result. There also exists an intermediate radius where Ω = Ωp, the co-rotation

radius (CR). At the ILR the material moves faster than the perturbation, with the perturbation

at CR, and slower than it at the OLR. Some examples of these different resonances are shown

in Figure 1.10, where the ILR, OLR, and CR are shown for a Milky Way like rotation curve.

The shaded region shows the pattern speed of some imposed perturbing density wave (Ωp =

50km s−1 kpc−1, which is closer to the bar pattern speed than that of the arms, but the principle

is the same). Where Ωp crosses the different resonant lines Ω ± κ/m dictates the location of the

resonance features. In this example there are actually two ILR due to the shape of the rotation

curve near the galactic centre caused by the bulge.

The waves described by the dispersion relation above will in fact migrate radially, at some

group velocity given by

vg =
dω(k)

dk
= ±|k|c

2
s − πGΣ

m(Ωp −Ω)
(1.8)

first formulated by Toomre (1969). As waves propagating radially they reverse direction when they

come close to the CR, as k decreases R increases and vice-versa, and are reflected (or damped4)

when they approach the Lindblad resonances. Density waves are thus not permitted to pass the

4Damping at the ILR can be reduced, and transformed into reflection if Q increases significantly at the ILR, creating
a so-called Q-barrier. This is believed to occur in the Milky Way, and a Q barrier is seen in our calculations in Chapter 5.
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Figure 1.11: Position of ISM shock (top) resulting from passage into spiral potential (2-armed,
bottom). The position of the shock, signified by compression and increase in density, is offset
from the bottom of the spiral potential well. Based upon work by Roberts (1969).

ILR and OLR, where a build up or reflection of wave packets occurs (see Binney & Tremaine

1987, Combes et al. 1995 and Dobbs & Baba 2014 for further details). As a result of a non-zero

group velocity, the wavenumber increases. This causes a tightly wound trailing wave to unwind,

and eventually transition into a loose leading wave, which then winds up. The winding is much

slower than material arms, but still presented a problem for theorists, as the whole point of density

waves is that they are supposed to not be susceptible to the winding problem.

As density waves can be propagated through the disc, and as a result be dissipated over

time, systems of re-seeding density waves need to be present. Such a solution is the theory of

“swing amplification”, which will be discussed in Section 1.3.2.

Spiral shocks

Soon after models of spiral structure emerged, theories of the spirals effect on the interstellar gas

also surfaced. Galaxies such as NGC 5383 and M81 display striking dust lanes aligned along their

spiral arms, suggesting compression of gas/dust caused by shocks induced by the spiral density

waves. Fujimoto (1968) and Roberts (1969) postulated that a supersonic gas flow into a spiral

density wave experiences a shock as a result of the rapid deceleration. This would occur before

reaching the spiral minima, shown in Figure 1.11, and gas would accelerate once more as it leaves

the arm/shock and travels towards the next. The sudden compression of gas at these spiral shocks

is theorised to act as a trigger for star formation due to the accumulation of molecular gas in

regions of high density. Young stars will then be seen to trail the spiral potential, as will ionised

H II regions.

The offset of the peak gas and stellar densities as shown in Fig. 1.11 is not universally

accepted however. Wada et al. (2011a) and Dobbs & Bonnell (2008) find that gas shocks do not

appear to be offset from the stellar spiral potential well in calculations with dynamic stellar spiral

potentials, where the structures are not long-lived, and so gas will develop with the arm and travel

with it, rather than traverse through a well established density wave. Conversely, calculations
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with fixed potentials tend to observe offsets between spiral minima and ISM shocks (Yuan &

Grosbol 1981), though not always necessarily leading the arm (Gittins & Clarke 2004; Elmegreen

& Thomasson 1993).

The actual response of ISM gas to a spiral perturbation is much more complex than a single

shock front leading the arms. Numerical simulations including ISM heating and cooling show

instabilities and shock fronts that are no means uniform across the arms (Shetty & Ostriker 2006;

Wada 2008; Dobbs et al. 2008; Smith et al. 2014). This non-uniform response creates spurs and

feathering features trailing from the spiral arms5. Wada & Koda (2004) believe these features are

caused by a ‘Wiggle-instability’, essentially a manifestation of the Kelvin-Helmholtz instability,

while Dobbs et al. (2008) theorise that they are simply caused by the amplification of cloud-scale

substructures as they pass into the spiral shock.

1.3.2 Flocculent/dynamic spirals

While the density wave theory does solve some standing issues for galactic spirality, there is one

major caveat. Thus far no direct evidence, be it observational or numerical, has been able to con-

firm the theory. Spiral arms can be seen in numerical simulations, but they are not persistent, rather

transient and recurrent (see Sellwood 2011 for a review of spiral longevity). Material populates

these arms for the lifetime of the arm itself, rather than flowing into and out of the perturbation as

in density wave theory (see Wada et al. 2011b; Baba et al. 2013; Grand et al. 2013). Spiral arms

in N-body simulations have two key differences to those of the density wave theory. They are

material in nature, rather than propagating density waves, and they are recurrent, being victim to

the winding problem. As the disc rotates the arms become sheared apart as they wind up, only for

them to join different arm structures formed in their wake. While some authors find long lasting

modes (e.g. Sellwood & Carlberg 2014), these arms are still transient with no fixed pattern speed.

Arm features tend to only recur for a certain time, after which the disc tends to become featureless,

or strongly barred (see Section 1.3.4). As the system evolves from initialisation, Q rises making

the disc more stable to perturbations, eventually leading to the dissipation of spiral features (Sell-

wood & Carlberg 1984). The loss of spirality is even more severe with lower number of particles,

implying it may also be a resolution effect (Fujii et al. 2011).

A key mechanism for generating these spiral features is “swing amplification”. Numerical

simulations of Toomre (1981) showed that a leading wavepacket could become significantly am-

plified as it transforms into a trailing wave and back into a leading wave. The transient trailing

wave is even stronger still than the final leading wave, creating an amplification effect (Binney

& Tremaine 1987). In order to set this swing amplification mechanism the initial leading spiral

wave must be generated. Certain mechanisms for this have been theorised, such as a lack of ILR

or reflection of density waves from a hard edge of the disc, though neither of these are likely in

5The terms branches, feathers and spurs are used interchangeably in the literature, but here we adopt the convention
of Dobbs & Baba (2014). Branches are long, secondary arm features, resulting from bifurcation (e.g. the Local Arm in
the Milky Way). Spurs and feathers and morphologically similar, which are smaller scale and more numerous, inter-arm
features. Some define spurs as the star formation sites, and feathers as the dust lanes. In the work in this thesis there is
no distinction between the latter two due to a resolution lacking to model star formation, and so we use spur and feather
interchangeably.
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the Milky Way (see Binney & Tremaine 1987 for a discussion). Swing amplification could also be

responsible for the seemingly easy creation of bars in numerical simulations (Combes & Sanders

1981; Sparke & Sellwood 1987; Raha et al. 1991; Baba et al. 2009; Shen et al. 2010). See Chapter

5 for some examples of this phenomenon in our work.

The dominant mode of the swing-amplified spiral pattern is given by

m =
κ2R

2πGΣX
≈ κ2R

4πGΣ
(1.9)

where 1 < X < 2 generates spiral features, and X = 2 is a nominally adopted value (Fujii et al.

2011; Dobbs & Baba 2014). Equation 1.9 shows that the number of spiral arms is a strong function

of the disc mass, with systems with high disc-to-halo mass ratios forming only a few strong spiral

arms, whereas low mass discs form numerous but weaker arms (Carlberg & Freedman 1985). The

dominant arm mode is also directly coupled to the Q parameter (Equation 1.6), and so seeding a

disc with a very low Q will lower the expected m. Equation 1.9 only predicts the dominant mode,

and any single simulation will have other spiral modes of comparable strength, and even then the

dominant mode will increase with radius.

Further details on this mechanism of spiral formation will be presented in Chapter 5 where

we show calculations using N-body stellar systems and their effect on the molecular content of the

ISM.

1.3.3 Perturber/tidal induced spirals

The interaction between a galactic disc and some companion object can also seed arm structure.

The poster child of spiral structure, M51 (top left, Fig. 1.4), is believed to have been seeded by

such an encounter. Other notable examples include the Mice and Antennae galaxies, NGC 2207,

and even our own Milky Way to a minor extent with the nearby L/SMC (Purcell et al. 2011).

Encounters of this form drive bimodality in the disc at large distances, with severe disruption

occurring as the companion nears the edge of the host (Combes et al. 1995). The attraction of the

companion elongates orbits, effectively driving an epicyclic oscillation, which in turn will wind

up due to the disc rotation creating spiral structures. These arms do not even require self-gravity

in the stellar disc to become apparent, but it is required to ensure the tidal features are propagated

to the centre of the disc as in M51 (Toomre 1981). Galactic tides may also be responsible in

some part for disc warps, with the Milky Way’s warp at R > 9kpc caused by the nearby L/SMC

(Kalberla & Kerp 2009).

One of the first in depth simulations of interacting galaxies was performed by Toomre &

Toomre (1972)6. Using only 120 particles the authors showed the relative ease of reproducing

arm features (bridges, features connecting bodies, and tails, features approximately 180◦ offset to

bridges). An example of these is shown in Fig. 1.12 where a companion, 1/4 the mass of the host

galaxy, approaches on a parabolic orbit, distorting the disc into arm features similar to Arp 82,

6Worth mentioning is the study by Holmberg (1941), who “simulated” the interaction between two galaxies using
lightbulbs, where the amount of light at any point represented the gravitational field of the combined galaxy system.
Photocells measured the intensity of the light (which obeyed a 1/r2 law as gravity does), which was used to update the
gravitational forces.
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Figure 1.12: Interaction of a point mass companion with an N-body disc adapted from Figure 4
of Toomre & Toomre (1972). The initial perturber trajectory is parabolic with a mass 25% that of
the primary galaxy, and the system is shown evolving in time from -0.5 to 3 in units of 100Myr (0
being perigalacticon passage). Clear bridge and tail features can be seen caused by gravitational
attraction with the perturber. The right insert shows the Arp 82 system (a.k.a NGC 2535 and NGC
2536) from Arp (1966) showing similar tidal features.

shown in the insert.

The structures formed by these interactions are a mix of kinematic density waves (self-

gravity in the stars is not required, Ωp not fixed but winding slower than material arms), material

waves (arms flow with the disc, Ωp = Ω(R)), and density waves as in Section 1.3.1 (Ωp = const.).

The tails and bridges tend to be material arms and dissipate rapidly. Arms formed in simulations

tend to have a pattern speed decreasing with radius, and are subject to winding up over time (Oh

et al. 2008; Dobbs et al. 2010; Struck et al. 2011). Many examples now exist in the literature of

tidally induced spirals, predominantly of the m = 2 mode (Elmegreen et al. 1991; Barnes 1992;

Barnes & Hernquist 1996; Oh et al. 2008; Dobbs et al. 2010; Purcell et al. 2011; Struck et al.

2011). These successfully reproduce many observed galactic tidal encounters and computational

resources are sufficient to also track the gas evolution, and the effect of a companion with an

extended mass distribution.

1.3.4 Bar structure

Bars exist in many observed disc galaxies, as abundant as 30-50% (Binney & Tremaine 1987),

being composed predominately of the old and red stellar population. They either dominate the

disc structure as in NGC 1300 (SB class) or only extending to intermediate radii as in UGC 12158

(SAB class) or our own Milky Way. The bars themselves vary in dimensions, but are often very

elongated and quite dissimilar morphologically to elliptical galaxies with axis ratios ranging from
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Figure 1.13: Boxy/peanut bulges in the disc galaxies of Hickson Compact Group 87 (Credit: The
Hubble Heritage Team, AURA/STScI/NASA, top) and NGC 5746 (credit: Palomar DSS, bottom).

2:1 to 5:1 (Combes et al. 1995). While ellipticals have a strong surface brightness drop-off away

from their centre, bars have a near-constant surface brightness across their length. The vertical

structure of bars is harder to assess, due to the difficulty in identifying bars in discs orientated

edge-on. Numerical simulations suggest that a barred galaxy will display a boxy, or peanut, shaped

bulge with lobes corresponding to the ends of the bar. Two examples of galaxies with such bulges

are shown in Figure 1.13. Elliptical bulges are then either bar-free, or have a bar along the line-of-

sight (Binney & Merrifield 1998).

While the density wave theory has had no irrefutable evidence supporting a single fixed

pattern speed for the spiral arms, the pattern speed of bars does appear constant in simulations.

The pattern speed of the bar is encompassed by the parameter R, which relates the bar major axis

to co-rotation radius, RCR, by

R = RCR/a (1.10)

where “slow” bars are defined by R � 1 and “fast” bars have R ≈ 1. The co-rotation radius

is in turn directly coupled to the pattern speed of the bar, and the pattern speed can be either

measured directly using methods such as that of Tremaine & Weinberg (1984), or by comparison

with simulations. The co-rotation and major axis of the bars follow a linear slope in many barred

galaxies, with 0.9 < R < 1.3, and lie near R ≈ 1 within errors, making observed bars “fast”

rotators (Binney & Tremaine 1987).

The equivalent equipotential surface of a simple barred gravitational potential is shown in

the left panel of Figure 1.14 (i.e. in a reference frame rotating at the bar pattern speed; Φeq =

Φbar − Ω2
pR2/2). There are five Lagrangian points; one at the centre, two unstable saddle points

(red crosses) and two maxima (green crosses). Stars can oscillate around the maxima points at

κ, and all the Lagrangian points combined outline the coronation zone (Combes et al. 1995). In

the right panel of Fig. 1.14 the orbits in such a potential are shown, calculated by Contopoulos

& Papayannopoulos (1980), showing several interesting features. At the centre of the bar a set of
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Figure 1.14: Left; orbits inside a simple biaxial potential representing a bar, from Binney &
Tremaine (1987). Right; stable orbits inside such a potential, taken from Contopoulos & Pa-
payannopoulos (1980). The bar is aligned vertically in both cases.

orbits parallel to the bar exist, denoted x1 orbits. Beyond the CR the x1 orbits now display lobes at

their extremities. These orbits form the majority of the bar structure itself due to their stability and

presence inside the CR. The x2 family of orbits exist perpendicular to the bar major axis, and only

exist between ILRs if they exist, which may not be the case for some disc structures. A further set

of orbits exist around the lobe Lagrangian points (green crosses), that do not orbit the bar’s centre.

Well outside the CR orbits become circular again.

The above holds primarily for weak bars. For the strong case (SB class) orbits lie effectively

only on the x1 family (Contopoulos & Papayannopoulos 1980; Athanassoula 1992a). Modelling

the orbits in these bars is more difficult, and they are usually studied via numerical simulations of

unstable discs (Sparke & Sellwood 1987).

Numerical simulations have shown that while steady spiral structures are difficult to main-

tain, stable bars are easily created (e.g. Ostriker & Peebles 1973; Sparke & Sellwood 1987;

Combes et al. 1990; Baba et al. 2009; Shen et al. 2010; Grand et al. 2012). The problem is

not so much how to form bars, but rather how to hinder their formation to reproduce spiral galax-

ies with no bar component. The easiest way is to simply raise the stability of the disc by raising

Qs, which is easiest done by lowering the the disc to halo mass ratio, which also suppresses the

swing amplification that helps further enforce the bar. A second way of suppressing bar formation

is by ensuring the rotation curve has an ILR. As described in the previous section, an ILR stops

trailing waves passing through the centre and forming leading waves on the opposite side of the

disc (hence why arms are only formed outside of the ILR). While flat rotation curves are common

in disc galaxies, this does not ensure an ILR, but the inclusion of a large central concentration will

do (i.e. a bulge, as in Fig. 1.10). A criterion for bar formation was found by Efstathiou et al.

(1982) of the form

εb =
Vmax√

GMd/Rd
(1.11)
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where Vmax is the maximum velocity of the full rotation curve, Md and Rd are the disc mass and

scale-length respectively with bar formation requiring ε < 1.1.

Bars are seen to have strong dust/gas lanes lying along either major axis, and often only on

the leading side (see NGC 1300 in Fig. 1.4). The offset of these lanes to the bar itself, and their

degree of curvature, is a related to the R parameter (Athanassoula 1992b). These then wind up

near the galactic centre, forming nuclear rings around the central bulge. This transport of material

results in a net gain of gas to the galactic centre, and accumulates at the inner x2 orbits inside the

outer ILR (Binney & Tremaine 1987). Star formation is seen at the bar ends rather than these

parallel dust lanes, and bar ends are also the site of high density enhancements in simulations

(Athanassoula 1992b).

Bar induced spiral arms

Bar and spiral arms often come hand in hand in nature, with m = 2 spirals extending from the ends

of the inner bar. How and why the bar and spiral features are coupled is not clear, i.e. whether

they inherently result from the same mechanism with identical pattern speeds, or whether they are

dynamically separate entities. For instance, there is evidence that the bar and spiral features in our

Galaxy have very different pattern speeds with the bar rotating at least twice the speed of the arms

(see Gerhard 2011 and references therein). In the case where bars and arms share the same pattern

speed, the arms trail directly off the bar ends and extend out to the OLR of the bar. These arms

are seen in many numerical simulations of gas responding to some barred potential (Athanassoula

1992b; Englmaier & Gerhard 1999; Patsis & Athanassoula 2000; Wada & Koda 2001; Rodriguez-

Fernandez & Combes 2008; Mel’Nik & Rautiainen 2009). While stellar orbits lie either parallel

or perpendicular to a bar, the dissipative forces experienced by the gas allow for offset elliptical

orbits caused by bar rotation. This causes orbits to trail, creating spiral arms in the gas emanating

from the bar ends (Dobbs & Baba 2014). Eventually these arms in the gas will wind up to form

rings at the OLR after the order 10 bar rotations (Schwarz 1981; Mel’Nik & Rautiainen 2009).

Gas is evacuated from the CR region and is migrated to the ILR and OLR features. Having outer

rings is not uncommon in observed galaxies (M95, NGC 1291), and neither are galaxies with arms

transitioning into rings similar to those seen in simulations (NGC 3504, NGC 7479). The fact that

all observed barred galaxies do not have outer rings indicates that the time-scale for bar formation

and arm winding is of order of the age of the universe (Combes et al. 1995). There is some, though

not much, evidence for decoupled arm and bar features in simulations, namely Sellwood & Sparke

(1988) and Rautiainen & Salo (1999). Sellwood & Sparke (1988) find two distinct pattern speeds

in their simulations, and observe the bar and arm features to disconnect and reform during rotation.

Rautiainen & Salo (1999) find two different pattern speeds in some of their calculations, but not

all, finding a decoupling that is epoch dependent. Grand et al. (2012) find distinct bar and spiral

pattern speeds, but the arms are effectively material and rotate with the disc (having Ωp ∝ R−1).
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Figure 1.15: Observations of the Galactic plane traced by multiple sources: ra-
dio, H I, CO, infrared, optical, X-ray, and gamma rays. Image taken from;
http://mwmw.gsfc.nasa.gov/mmw product.html.

1.4 The Interstellar Medium

Aside from stars, galactic discs are composed primarily of the inter-stellar medium (ISM), a mix

of material, primarily consisting of gas and dust. Simply by looking through the plane of our

Galaxy (Fig. 1.1) or the disc of M51 (Fig. 1.4) shows dark absorbing material, the ISM dust

specifically, that appears to be blocking out the starlight. Figure 1.15 shows the disc of the Milky

Way at various wavelengths, each of which corresponding to a different galactic source; including

several ISM species. Of specific interest are the second, third, fourth and fifth panels showing

emission from H I, H II, H2 (i.e. CO) and dust. In general the ISM is extremely tenuous, with

densities approximately twenty orders of magnitude lower than the Earth’s atmosphere.

Various chemical and cooling processes in the ISM that are relevant to the work in this

thesis will be discussed in detail in Section 2.3, while here we only give a short overview. Many

molecular species are present in the ISM, including but certainly not limited to, H2, CO, CH, CN,

CS, OH, HCN, NH3 and H2CO, with some tracing slightly different ISM populations (De Becker

2013). For the purposes of the work in this thesis, we are interested in CO and H2.
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H I

Atomic hydrogen, H I, is the simplest and most abundant element in the known universe and is the

dominant component of the ISM. It is commonplace in disc galaxies and scarce in ellipticals, with

total mass fractions ranging from 1-30% (elliptical-disc-irregular, Balkowski 1973). The primary

electronic transition is the Lyman α line, seen in the UV, which can be used to map local galactic

emission (Jenkins & Savage 1974; Shull & van Steenberg 1985), but at larger distances increased

dust extinction makes observing this transition impossible.

A clear feature in the radio owing to the 21-cm spin-flip hyperfine transition7 makes observ-

ing atomic gas throughout a galactic disc possible and was independently first detected by Ewen

& Purcell (1951) and Muller & Oort (1951). This transition is one of the most important tools for

ISM and galactic scale observations as it allows for the tracing of the interstellar gas component

with minimal effects of dust extinction. The temperature required for the transition is much below

that of the ISM. While the Einstein-A coefficient is very low (indicating a very long lifetime) the

H I is so abundant that the transition line is easily detected. The H I traces spiral features strongly

in external galaxies in the outer disc, though it tends to be scarcer in the galactic centres (e.g. M31;

Chemin et al. 2009 and M81; Rots & Shane 1975). Atomic H I can be used to trace spiral features

in our Galaxy(Nakanishi & Sofue 2003; Levine et al. 2006), though exact distance determinations

of arms from H I are subject to some uncertainty (Burton 1973). The 21-cm line is seen in both

emission, absorption (seen as gaps in the radio continuum), and self-absorption (shows cold H I

absorbing 21-cm emission from warmer H I component).

Results from various surveys of Galactic H I will be discussed later in this chapter, the

chemical network relevant to this work is discussed in Chapter 2 and the specifics behind simula-

tion of the 21-cm emission line in Chapter 4.

H II

Singularly ionised hydrogen (H II) is also observed in galactic discs, and has been primarily ionised

by the most massive and luminous of stars of O or B classification. H II is also seen in planetary

nebulae and supernovae remnants. The H II is observed in the UV, visible and IR stemming from

collisional excitation and recombination effects. H II can be observed in the optical, mostly by the

Balmer lines (Hα, Hβ and Hγ) seen as hot ionised gas in the process of stabilising an electron to

a ground state. These are seen in spiral galaxies as bright, condensed features within spiral arms

and are believed to trace sites of star formation (see the red globules along the arms of M51 in Fig.

1.4). They are especially useful in mapping out our own Galactic structure due to their discrete

nature and association with arms (Georgelin & Georgelin 1976; Russeil 2003; Hou et al. 2009).

7Hyperfine structure splitting stems from the split in the F quantum number, where F = J + I. J is the electronic
angular momentum, J = L + S and I is the nuclear spin which is 1/2 for H I. For the lowest energy state of H I we have
one p+ (I = +1/2), and an e− in the ground state (n = 1). As such L = 0 (L ≤ n − 1) so J = ±1/2 as S = ±1/2 for e−’s.
H I can either have F = 1 for e− and p+ parallel spins (I = J = S = +1/2) or F = 0 for antiparallel spins (I = +1/2,
S = J = −1/2). The change in e− spin causes the ∆F = 1 hyperfine split, with the upper and lower states having
slightly different energies, producing the 21-cm transition with an Einstein-A co-efficient of ≈ 10−15 s−1 (Combes et al.
1995).
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H2

The most abundant molecule in the ISM is molecular hydrogen (H2). It is in the unfortunate

position of being axisymmetric and therefore having no inherent dipole moment. This means

there are no molecular ∆J = ±1 transitions. There is no fine or hyperfine structure, making it

effectively invisible in the radio or IR and difficult to observe with the effects of interstellar dust

extinction (Field et al. 1966). Molecular hydrogen transitions don’t appear until the rotational

quadrupole regime of ∆J = ±2 in the µm region, where higher energies are required to start a

transition, requiring greater surrounding temperatures (around 500K, which can possibly be seen

in shocked regions, Timmermann et al. 1996). This is high for typical molecular clouds, and so

molecular hydrogen transitions are hard to spot, even then they are easily hidden by atmospheric

water transitions. Even the ro-vibrational levels (requiring a vibrational transition in ν1) fail to

give anything more detectable. Molecular hydrogen can be observed at certain transitions such

as electronic transitions in the UV and optical (e.g. Copernicus, Savage et al. 1977, and FUSE,

Rachford et al. 2002). These observations, however, do not probe very deep into the ISM due to

the effects of dust extinction (see Shull & Beckwith 1982 for a review). Tracing the molecular

component of the ISM thus falls to the second most abundant species, CO (see next subsection).

The question of the formation of H2 is still not entirely solved, but the current consensus is

that it relies heavily on dust grains acting as a catalyst. H I is captured by the grains (if the grains

are sufficiently cold) which is then allowed to tunnel through the surface to a stable point. In this

hydrogen “sink” it sits until another H I interacts with it, bonds to the H I on the grain, and then

easily breaks the bond to the surface, escaping into the ISM (Gould & Salpeter 1963; Hollenbach

& Salpeter 1971). This process occurs inside dark clouds, with sufficient dust to catalyse the

formation, and shielding both by dust and other H2 molecules against immediate photo-destruction

(Draine & Bertoldi 1996). There are also possibilities for chemically creating molecular hydrogen

in the pure gas phase (Dalgarno & McCray 1973). Most of this requires either high ion supply (as

in the early universe) or high temperatures, and is much less efficient in cold clouds where H2 is

easier maintained.

The amount of molecular hydrogen is measured by the H2 fraction, which is quantified as

fH2 = 2N(H2)/ [N(H I) + 2N(H2)] ≈ 2N(H2)/N(Htot) (1.12)

ranging from 10−7 to near 0.8 depending on environment (Binney & Merrifield 1998). The fH2 ra-

tio is a strong function of column ISM density, where diffuse clouds with insufficient UV shielding

cannot protect their molecular content from photo-destruction (Spitzer et al. 1973).

CO

The task of tracing the molecular content of the ISM then falls to the next most abundant molecule;

carbon monoxide (CO/H2 ≈ 6×10−5, Combes et al. 1995). Due to its asymmetry, CO has a readily

detectable rotational transition (J = 1 → 0) at a low enough energy, 2.6mm, to be seen in fairly

cold clouds at 5.5K (the J = 2 → 1 transition is also visible). This makes it the best tracer

of molecular regions, due to the relative clarity of the radio regime. The higher strength of this
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transition compared to the 21-cm H I line compensates for the much lower abundance of CO in

relation to H I (Binney & Merrifield 1998).

The CO is assumed to spatially coexist with H2. A conversion factor, XCO = NH2/ICO is

used to infer the amount of molecular hydrogen rather than observing it directly. It is defined as

(Strong et al. 1988; Scoville et al. 1987)

XCO = NH2/ICO ≈ 2 × 1020 cm−2 K−1 km−1 s (1.13)

where ICO is integrated CO brightness temperature (K km/s), and N is the column density. While

the XCO value is assumed to be constant across the Milky Way, this value is subject to some

variation with metallicity and density in different galaxies (Binney & Merrifield 1998; Narayanan

et al. 2012).

CO itself is formed primarily through gas-phase transitions, with other C, H and O species.

The isotopologues are also useful tracers, in case the CO itself becomes too optically thick. C13O

is especially useful for temperature determinations (12CO/13CO ≈ 60-90). In the densest regions

the photon from the CO rotational transition can be re-absorbed, and so masking the transition to

observations, and observers can turn to the more optically thin 13CO to trace the densest cores

(Combes 1991).

The study of CO has given observers their main window on cold molecular clouds, with

temperatures in the range 5-20K (Young & Scoville 1991), Molecular material in general also

traces out the global spiral structure of galaxies (e.g. M51; Schinnerer et al. 2013, various exter-

nal galaxies; Helfer et al. 2003, and the review of Young & Scoville 1991). CO has the added

advantage of having a much higher arm-interarm contrast than H I, which is present throughout

the Galactic plane (Dame et al. 1986; Grabelsky et al. 1987), allowing for the finer tracing of arm

features than the atomic gas.

Dust

Dust accounts for most of the attenuation effects in disc galaxies and also plays a key role in the

star and planet formation processes. The term dust encompasses solid phase material that ranges

in size from a few molecules to substances up to a few microns in size that cannot be considered

in the atomic gas stage. This includes silicates, carbonaceous materials and polycyclic aromatic

hydrocarbons8 (PAHs) (Draine 2003). This dust acts to absorb and scatter away starlight, blocking

out much of our own Galaxy from optical observations (see Fig. 1.1). As can be seen from Figure

1.15, dark dust bands appear in the optical and X-ray, but diminish in effectiveness as wavelengths

move further into the infrared, and to greater wavelengths. The extinction (the collective term for

dust scattering and absorption) caused by this dust is referred to as “redenning”, due to the dust

primarily absorbing in the blue end of the optical spectrum, the strong effect of which was not truly

appreciated until the work of Trumpler (1930). The effects of dust on molecular ISM chemistry

will be discussed in Section 2.3.
8PAH’s are simply a hydrocarbons composed of carbon rings with outer hydrogen atoms. See Tielens (2008) for a

review.
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Figure 1.16: ISM phase diagram of pressure and density, based on the work of Field et al. (1969).
Stable warm and cold ISM components exit with temperatures of the order 10000K and 100K
respectively, joined by an unstable regime where runaway cooling/heating will return the gas to
a stable regime. The various other phases, such as a very cold molecular phase and hot ionised
phase, are not included in this diagram.

1.4.1 Phases of the ISM

The ISM is a very complex place, with numerous different astrophysical, radiative, and chemical

processes continuously changing its thermodynamical properties. The processes relevant to the

ISM gas on a galactic scale will be discussed in detail in Section 2.3. These include photoelectric

heating on dust grains, cosmic ray heating, fine structure cooling, collisional ionisation, recombi-

nation cooling and molecular cooling. When all these cooling and heating effects are incorporated,

a phase diagram can be produced of the ISM, similar to that shown in Figure 1.16, based on dia-

grams of Field et al. (1969); Wolfire et al. (1995); Liszt (2002); Cox (2005). The specifics of such

a phase curve are not universal, and the exact shape is defined by the location, defining the various

metallicities, abundances and fluxes that dictate the strength of individual cooling/heating rates

(Wolfire et al. 1995; Liszt 2002). The diagram shows two distinct branches, indicating the two

phases of the original Field et al. (1969) model; the cold neutral medium (CNM) and warm neu-

tral medium (WNM). Each of these regions has approximately stable temperatures (of the order

< 100K and 10000K respectively). They are separated by an unstable region9, with tempera-

tures ranging from 200K to approximately 5000K (Cox 2005). In this region the gas experiences

runaway cooling/heating until it joins one of the aforementioned stable branches.

This model helped explain the apparent discrepancy between observations of ISM gas with

9This is caused by the negative gradient in the “loss function”, defined as the net heating/cooling rates; Ė = Γ + Λ.
The derivate of this function (i.e. the second derivative of the change in energy) defines the location of an unstable/stable
equilibrium state. For example, dĖ/dn > 0 signifies a stable point, while dĖ/dn < 0 an unstable point.
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Component T [K] n [cm−3] Notes
Molecular (MM) 10-20 102-106 Dominated by H2 and CO, observed in radio
Cold atomic (CNM) 50-100 20-50 H I dominated, moderate density, H I absorption
Warm atomic (WNM) 6000-10000 0.2-0.5 H I dominated, diffuse, H I emission
Warm ionised (WIM) ≈ 8000 0.2-0.5 H II dominated, observed in Hα

Hot ionised (HIM) ≈ 106 ≈ 10−3 H II and ionised metals, observed in X-ray and UV

Table 1.1: Properties of the five main ISM phases believed to be present in the Galactic ISM,
ordered by temperature. Adapted from Ferrière (2001).

contrasting temperatures and pressures. This two-phase model was then expanded to incorporate

hot ionised media which are a result of supernovae winds heating up the surrounding ISM, creating

H II “bubbles” (Cox & Smith 1974; McKee & Ostriker 1977). The warm medium was expanded

to include both ionised and neutral components, with comparable densities and pressures. These

multi-phase models are not without their flaws however. Models by Slavin & Cox (1993) found

that the size of supernova bubbles may have been somewhat overestimated in the McKee & Os-

triker (1977) multiphase model, undermining their importance in ISM thermal structure. The key

assumption of local thermal pressure balance between the various phases may also be an incorrect

one, and various other pressure sources such as magnetic fields and cosmic rays radiation pressure

may be important (e.g. large thermal pressure variations were seen in the local ISM by Bowyer

et al. 1995). Observations and simulations have also seen that the unstable regime shown in Figure

1.16 can be surprisingly well populated, despite the expected instability (e.g. Heiles & Troland

2003).

Nethertheless, the multiphase model of the ISM is still one of the better formulations of the

ISM’s various components (Cox 2005). The properties of the generally accepted 5-phases of the

ISM are given in Table 1.1 (adapted from Ferrière 2001). The components are a cold and warm

neutral medium (C/WNM), a warm ionised medium (WIM), which between them contain most of

the galactic gas mass budget. The WIM traces gas that is subject to OB star UV fields. The hot

ionised medium (HIM) traces the hottest gas components resulting from supernovae winds, and is

found in bubbles and fountains far out of the galactic plane. Finally there is the molecular medium

(MM) where the cold, dense clouds are found and are the sites of star formation.

Stars themselves have a strong influence on the ISM though various feedback mechanisms.

The term feedback constitutes a variety of physical processes depending on the scale, but primarily

it refers to either supernovae or stellar winds form OB stars injecting large amounts of energy into

the adjacent pockets of ISM gas. The effect of feedback is to blow apart ISM gas, dissociating

molecular gas in photodissociation regions (PDRs) and ionising gas in H II/HIM regions. Feedback

also creates holes in the H I distribution (e.g. seen in IC 2574 by Walter & Brinks 1999 and M31

by Brinks & Bajaja 1986), and imparts thermal energy allowing for the expansion of shells into the

ambient ISM. These expanding shells can eventually cool at sufficient distances from the feedback

source, and can then host cold and dense gas. This could eventually host further star formation

(e.g. Cioffi et al. 1988, McCray & Kafatos 1987), though winds could also act to break apart and

destroy clouds and inhibit star formation (Dale et al. 2013).
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1.5 Determining Galactic structure

Despite the difficulty in doing so, studies of the global structure of the Milky Way have been

numerous in the past five decades. Due to the position of the Earth within the Galaxy many

techniques have been used to try and circumvent the problem of discerning the shape of the body

whilst inside it. In this section we briefly outline some of the main techniques used in the literature

for determining galactic structure. Key findings based on these methods will be discussed in the

next section.

1.5.1 Methods of structure determination

Method 1: Determine actual or kinematic distances

The most obvious method of determining Galactic structure is to simply measure the distance to

sources in the Galaxy across various Galactic longitudes. For example through stellar parallaxes

(distance and magnitude limited), trigonometric parallaxes (if close enough to the Earth), OB star

standard candles, main sequence fitting, or through Cepheid variables. The problem is that many

of these cannot be assumed to be tracing spiral structure, simply just the global disc-like structure

of the Milky Way. The objects this is actually possible for is minimal and distances are only

accurate to approximately 10%, making the larger distances more uncertain (Elmegreen 1985).

Nevertheless, some spirality can clearly be seen in these measurements (Becker & Fenkart 1971;

Vogt & Moffat 1975).

The more widely applicable method of determining distances is to use the velocity infor-

mation of the source to calculate a kinematic distance. By using the velocities from emission lines

of ISM gas complexes such as H I and CO a distance can be calculated so long as some velocity

field of the Galaxy is known, which can be calculated from the rotation curve. The line-of-sight

velocity, vlos, measured from the emission profile as a function of galactic longitude, l is

vlos(l) = R◦ sin (l) [Ω(R) −Ω◦] , (1.14)

where the gas is located at a radius R from the galactic centre (Shu 1982) and Ω◦ is the angular

velocity at the Solar position. If we simply substitute for the rotation frequency Ω(r) = V(R)/R

we can re-arrange to give the Galactocentric radius of the emitting gas,

R = R◦ sin (l)
V(R)

vlos + V◦ sin l
(1.15)

where vlos can be directly obtained from the emission profile, l, R◦ and V◦ are known (the position

and velocity of the Earth’s position) and V(R) can be either taken from the known rotation curve or

directly evaluated from emission profiles10. Fortunately the Galactic rotation curve is fairly well

10First evaluate Equation 1.14 for the smallest radius possible along the line of sight which is equivalent to rmin =

R◦ sin l. Then Equation 1.14 becomes vmin
los (l) = rminΩ(rmin) − V◦ sin (l) giving V(rmin) = vmin

los (l) + V◦ sin (l). This gives
a v − r pair for the rotation curve, providing you can obtain the maxiumum line of sight velocity (corresponding to
minimum radius) from the emission profile. This is done simply by observing where the emission sharply drops off at
velocity extrema (Binney & Merrifield 1998).
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Figure 1.17: Kinematic distance problem in our Galaxy when observing gas with a radial velocity
of Vr and circular velocity of Vc at some distance R from the Galactic centre. At any point a single
radius and radial velocity corresponds to two separate distances from the Earth (red and blue lines
intersection with the d line). Based on Figure 1 of Roman-Duval et al. (2009).

measured, and is approximately axisymmetric (Brand & Blitz 1993). While this method works

well for calculating distances outside of the Solar circle, there is a degeneracy in distance when

looking inside. Figure 1.17 illustrates this “distance ambiguity”. There are two points that have the

correct observed line-of-sight velocity calculated from the emission profile, one at a near (blue line,

Fig. 1.17) and one near distance (red line) compared to the the smallest possible Galactic radius

(dashed line) and point of maximum velocity observed from the profile. By simply calculating the

distance, d, to the emitting gas shown in Fig. 1.17 you see that there are two distinct solutions;

d = R◦ cos(l) ±
√

R2 − R2◦ sin2(l) (1.16)

where d is the distance from the observer to the point of maximum velocity.

There have been numerous different techniques developed to break this degeneracy. Ob-

servations of H II regions by Downes et al. (1980) also measured OH or H2CO absorption lines

towards the same direction as the sources. If the shift in these lines implied a velocity much larger

than the H II region they assumed the emission is from different sources and the emission from the

H II travelled from the larger kinematic distance through OH/H2CO. If the difference in velocities

is small it is still somewhat ambiguous, due to streaming velocities and random dispersions pos-

sibly causing the small offset (Elmegreen 1985). Kolpak et al. (2003) use this method by using

additional observations of H I in their H II survey to map out the Galaxy inwards of the Solar circle

and Roman-Duval et al. (2009) use H I self-absorption (HISA) to eliminate the ambiguity in their

CO survey, where additional HISA would be seen for the far-kinematic distance as opposed to

the near distance. This method is widely employed for a number of different tracers (Araya et al.

2002; Russeil 2003; Sewilo et al. 2004; Watson et al. 2003; Fish et al. 2003; Paladini et al. 2004;

Pandian et al. 2008). Another method requires the construction of theoretical density maps of the

Milky Way, that are then used to estimate the column density viewed from Earth, from which we
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Figure 1.18: Tangency method for determining spiral structure. On the left is the top-down struc-
ture with the observer at the black cross in a galaxy with a one-armed spiral over-density. On the
right is the star count/emission profile as a function of longitude, with over-densities caused by the
spiral arm tangents appearing as peaks in the distribution. This is a simplified case, and in reality
an exponential disc profile is seen superimposed in the observed profile.

can infer what distance the material lies (Nakanishi & Sofue 2003, 2006; Levine et al. 2006).

The main source of error is the uncertainty in the rotation curve, local velocity dispersion

in the gas, or steaming at velocities significantly different to those implied by the global rotation,

and is of the order 10-20% (Elmegreen 1985). The relatively large uncertainties and numerous

different approaches that exist in the literature for solving the distance ambiguity make structure

determinations from kinematic distances open to interpretation.

Somewhat troublingly; kinematic and direct distance determinations can yield different re-

sults, highlighting uncertainties in any distance determinations. For instance, Moisés et al. (2011)

found that for a selection of H II regions trigonometric distances tended to be smaller than the kine-

matic distances. Using a simulated Galactic disc Gómez (2006) showed that kinematic distances

return a distorted and spurious Galactic structure. While they also showed that a better reproduc-

tion could be made using the full Galactic velocity field, this is much more difficult to obtain than

a simple axisymmetric rotation curve. The rotation models used to determine these distances fail

to take into account large scale shocks and the effect of spiral/barred structure on the velocity field,

which can result in large departures from an axisymmetric model.

Method 2: Tangencies

A non-kinematic method for determining Galactic structure is to use star counts or emission

strength as a function of longtiude. In cases where stellar distances are not known the non-

symmetric nature of the stellar distribution or dust emission with longitude can show over dense

regions that can correspond to spiral/bar features. These spikes in the galactic emission profile

stem from spiral arm tangencies seen from Earth and result from an increased density when look-

ing down a long, continuous stretch of arm. By identifying the same arm in two separate quadrants

we can also directly compute the pitch angle (Drimmel 2000). Another advantage of these kind of



1.5. DETERMINING GALACTIC STRUCTURE 29

observations is that by matching the global shape of the emission/star counts we can reverse engi-

neer a surface density of the galactic disc, bulge and bar. These models can be then used directly

in numerical simulations to set up the galactic stellar distribution (Benjamin 2008).

This method is illustrated in Figure 1.18. To the left is a top-down view of a simple one-

armed spiral galaxy, where the observer is placed at the black cross. To the right is the emis-

sion/star count profile as a function of longitude in the inner galaxy. Peaks exist in the distribution

when looking along an arm tangency, i.e. when orientated down a sight line that spans the longest

stretch of spiral arm. A peak is also shown for the Galactic centre. This method is obviously only

suitable for observations in the inner disc, and in reality the profile of the entire stellar disc will

also be seen, as a steady decay in counts/emission as we look away from the Galactic centre. Bars

are expected to appear as asymmetries around the Galactic centre, provided that the bar is angled

far from the perpendicular to the line-of-sight to the Galactic centre.

Method 3: Longitude-velocity maps

A method of determining Galactic structure that is free from model assumptions, yet still allows

for the tracing of spiral arms is to map out the position of sources in velocity space. An example of

one of these longitude-velocity, l-v , diagrams is shown in Figure 1.19. In the left panel a simple

disc galaxy is shown, with the observer placed at the black cross within some disc of material

(grey circle). Two spiral arms have been included for illustration of the method (red and green

lines). In the right panel is the corresponding l-v map, constructed using the same rotation model

as that of the right panel of Fig. 1.7. The over-densities at the spiral arms will appear against the

continuum of the disc, from which pitch angles can be directly measured. Spiral arm tangencies

should also be seen as bright concentrations near peak velocities with longitude (if measuring

emission). The terminal velocity curve can also be used to determine the rotation curve of the

inner Galaxy independently for the first and fourth quadrants, assuming R◦ and V◦ are known

(Binney & Merrifield 1998). Rings, bars, arms, expanding features, and non-circular motions will

all impact the l-v plot, making the determination of the exact morphology of the underlying feature

somewhat ambiguous.

This method has been used with a variety of different tracers including H I (Burton & Shane

1970; Weaver 1970; Henderson 1977; Hartmann & Burton 1997; Kalberla et al. 2005), CO (Cohen

et al. 1980; Solomon et al. 1985; Dame et al. 1986; Grabelsky et al. 1987; Dame et al. 1987, 2001),

H II (Lockman 1979; Downes et al. 1980) and C13O (Stark & Lee 2006; Bally et al. 1987). One

of the main advantages of using gas emission is that the intensity as a function of l-v can provide

additional information, as opposed to say the position of discrete sources such as H II regions in

l-v space. The structure of emission as a function of latitude can also provide information on the

scale of specific structures, highlighting features that may otherwise be missed in an integrated

map (e.g. Dame & Thaddeus 2011). Full surveys of the Galactic plane require large amounts of

observing time, so it is more common to find studies concentrating on certain regions, such as the

Galactic centre. A top-down map can be constructed from these l-v observations but will again

require a Galactic rotation model .
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Figure 1.19: Projection of a Milky Way like disc and spiral arms from x − y (left) onto l − v
(right) space using the rotation curve of the right panel of Fig. 1.7. The spiral arms appear as
over-densities in l− v space on the backdrop of the axisymmetric disc (shown in grey). Two spiral
arms are shown, the arm in green has α = 13◦ and the red arm has α = 20◦, both are logarithmic
in shape. The observer is placed at the black cross in the left panel with l = 0◦ directed towards
the Galactic centre.

As some of the results from the above methods are open to interpretation, numerical sim-

ulations are often used to attempt to reproduce the observations. If a model can be made that

sufficiently reproduces the observations then the Galactic morphology underlying the model is a

good representation of the Galaxy. This is in essence the approach adopted in this thesis, and will

be discussed in detail later in this chapter.

1.6 Observational studies of Milky Way morphology

Many investigations into the structure of the Milky Way have been under-taken in the past half-

century. While a combination of observational and computational studies have made progress by

constraining arm and barred structure there is still no clear consensus on the Galactic morphology.

The current best-guess is that the Milky Way is a four-armed spiral with a pitch angle of 10◦ −
20◦. The wide range of pitch angle depends on Galactic radius, with wider pitch angles inferred

from the outer disc (e.g. Levine et al. 2006). There is however some support for a two-armed

model, in which case the pitch angle is better fit by a much lower value. There is believed to

be at least one inner bar, and some studies suggest a second with a different morphology and

orientation. Finally some suggest a ring of molecular material may exist around R = 5kpc, though

observational evidence could be due to an arm instead (e.g. Dobbs & Burkert 2012). In this

section we will recount some of the major and more convincing evidence for these morphological

features. For a more in depth take on all the studies in the literature the reader is directed to the

works of Elmegreen (1985), Vallée (1995, 2002, 2005, 2008), Efremov (2011) and the proceedings

of Benjamin (2008).
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1.6.1 Structure: top-down reconstructions

Early investigations focusing on the distribution of hydrogen seemed to disagree from the outset.

Weaver (1970) favoured a 2-armed, 12.5◦structure in their analysis of H I, though this requires the

existence of numerous spurs minor interarm features. However, the Parkes H I survey suggests

a much tighter multi-armed structure (Kerr 1969a,b), with the singular agreement between these

two studies being the positions of spiral tangents (Simonson 1970). The seminal ionised hydrogen

maps of Georgelin & Georgelin (1976) (hereafter GG76) also favour a 4-armed spiral fit (of 12◦),
though largely based on kinematic distances. This model became the standard for the Galactic

spiral map for some time, owing to the strong correlation of H II features with a spiral model (as

opposed to H I maps at the time that often have a large amount of off-arm material). A variant of

this model is shown in the left panel of Figure 1.20, showing the kink in the arms near the Solar

position. Some studies even suggested a middle ground solution, such as the analysis of existing

H I data in l-v space by Simonson (1976) who favoured a 2-armed 6-8◦ inner spiral branching into

a 4-armed 16◦ spiral outside of the Solar circle.

The study of Caswell & Haynes (1987) finds that H II regions measured within l = 0− 180◦

are a reasonable match to the 4-armed model of GG76. Dame et al. (1986) find that measured CO

cloud complexes within the first quadrant fit a multi-armed spiral structure with pitch angles be-

tween 5-12◦. In another study of molecular clouds by Grabelsky et al. (1988) in the inner Galaxy,

the authors determine that CO features are well matched by a single 10◦ logarithmic spiral, though

their range of longitudes is somewhat limited. Worthy of note are the several studies that are not

focused on various ISM gases. For instance, the works of Vallee (1988), Simard-Normandin &

Kronberg (1980) and Han & Qiao (1994) use pulsar and extragalactic rotation measures11 (RM)

to discern the shape of the Galaxy’s magnetic field. They tentatively show that the magnetic field

is directed in a logarithmic spiral pattern, rather than a series of concentric rings, with Han et al.

(1999) and Indrani & Deshpande (1999) specifically favouring a 4-armed spiral configuration. In

a similar vein, Taylor & Cordes (1993) (hereafter TC93) construct a map of free electrons using

the model of GG76, and show that using this they can obtain pulsar dispersion measures leading

to pulsar distance measurements that are a very good match to actual measured distances, which

in turn give further credibility to the 4-armed model. The spiral arm model adopted in their work

superceedes that of GG76 as the literature standard for comparisons in other works, and is shown

in the left of Figure 1.20 (see also Cordes & Lazio 2002 and Drimmel et al. 2003). An important

point to note is that many studies of morphology are heavily influenced by the existing literature,

for instance the TC93 model is a refinement of the GG76 model. In many cases studies will simply

show a distribution is good by-eye match for the “standard” 4-armed case, with little consideration

given to other possibilities. Amaral & Lepine (1997) use the positions of nearby open clusters to

try and discern between a 2 and 4 arm structure. They find that a 2-armed (inner) superimposed on

a 4-armed (outer) structure of 14◦can match the positions and bridge the 2/4-armed discrepancies.

Their modelling is only confined to the Solar neighbourhood however, and many clusters lie in the

11Rotation measures are a a radio astronomical tool for measuring the strength of magnetic fields. When light passes
through a region with a non-negligible magnetic field the light becomes polarised. The effect of the light polarisation is
proportional to the strength of the field along the line-of-sight, and the number density of free electrons: RM ∝

∫
ne~B· ~ds.
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Fig. 3. Top: Distribution of complexes. The symbol size is propor-
tional to the excitation parameter. Middle: Same as above, but with
only errors bars displayed. Bottom: Enlargement of the middel panel.

models are in agreement with the four-segment model from
Georgelin & Georgelin (1976). The main difference between
the three- and four-arm models is that the former connects the
Norma segment to the Perseus segment and the Scutum-Crux
to the Cygnus parts while the latter connects only the Norma

Fig. 4. The 2, 3 and four-arm structures fitted. The symbol size is pro-
portional to the excitation parameter. The Sun position is given by the
large star symbol.

part to the Cygnus part. This ambiguity is likely due to the
lack of complexes in the Norma part (around X = −5 kpc and
Y = 1 kpc, Fig. 4) and the possible extension in the first quad-
rant of the Cygnus arm. The fit quality is, therefore, poorer in
these areas.

To test the influence of the solar parameters (R0 and θ0)
on the complexes’ distribution we used R0 = 7.1 kpc and θ0 =

184 km s−1: this does not change drastically the overall picture.

Figure 1.20: Two studies of distance determinations in the Galaxy. Left: H II regions mapped by
Taylor & Cordes (1993) shown with a variant of the arm model of Georgelin & Georgelin (1976).
Tangencies are shown as hatched regions. Right: star forming complexes (H II, CO, OB stars)
mapped by Russeil (2003) with their best-fitting logarithmic spiral model.

interams of their best fit.

The works of Kolpak et al. (2003), Fish et al. (2003), Sewilo et al. (2004) Watson et al.

(2003) and Paladini et al. (2004) measured the distances to several H II regions. The distance

measurements of the three latter studies agree reasonably well with the 4 spiral arms of TC93.

Yang et al. (2002) measure distances to a large number of CO sources, many of which correlate

well with the nearby Sagittarius arm. Despite their large number of sources, few can be attributed

to any other arm features, and their sample selection is biased against targets less than 5 kpc from

the Galactic centre. The spatial distribution of high and low mass X-ray binaries studied by Grimm

et al. (2002) shows while low mass binaries show no real preference towards any spiral pattern,

the high mass binaries trace a 4-armed spiral pattern (be it that of TC93 or a simple symmetric

4-armed, 12◦spiral).

Nakanishi & Sofue (2006) measure the H I distribution (in column density) throughout the

galactic disc. They find that the distribution is in fact best described by a 3-armed logarithmic

spiral, with pitch angles ranging from 7-18◦. They find no evidence for the existence of the

Scutum-Crux arm, or any strong H I emission 5 kpc from the Galactic centre. Using numerous

H II complexes, Russeil (2003) perform a full fit to spiral arm parameters, and their data is shown

in the right of Figure 1.20 with their best fitting model. A spiral pattern is clearly visible by-eye,

and they find that a 2-armed model is insufficient to fit their complex distances. Their data seems

to fit a 3 and 4-armed spiral reasonably well, with pitch angles around 11◦. The main difference

between their 3 and 4-armed fits is whether the Norma arm joins to the Cygnus or Perseus arm

(see Fig.1.24). An important aside when viewing Figure 1.20 is that the spiral pattern is becom-

ing less clear the more recent the study, and the more detail that becomes available. Specifically

the distribution of sources < 3kpc from the Earth displays no clear structure, which explains the

uncertainty in the Carina arm as l→ 0◦ and the nature of the Local arm.



1.6. OBSERVATIONAL STUDIES OF MILKY WAY MORPHOLOGY 33

L. G. Hou et al.: The spiral structure of our Milky Way Galaxy 3

Fig. 3. Panel (1) is the distribution of HII regions, Panel (2) is the distribution of GMCs, and Panel (3) is the distribution of HII
regions and GMCs together for illustration of the Galactic spiral structure. The solar parameters R0=8.5 kpc and Θ0=220 km s−1
were adopted. The coordinates originate from the Galactic center, and the Sun is located at (x = 0.0 kpc, y = 8.5 kpc). The open
squares indicate the HII regions with the symbol area proportional to exciting parameters. The open circles indicate GMCs with the
symbol size proportional to log(MGMCs) (see Sect. 2.3). Panel (4) is the color distribution of both kinds of tracers, each brightened
as a Gaussian with the amplitude of the weighting parameter, B, so that the spiral arms are clearly demonstrated.

More and more pieces of evidence of R0=8.0 kpc and
Θ0=220 km s−1 have been found (Reid 1993; Ghez et al. 2008;
Eisenhauer et al. 2003; Groenewegen et al. 2008; Gillessen et al.
2009). The change of these constants may affect the kinematic
distances of tracers and then affect the derived structure of the
Milky Way. Therefore, we fit a new rotation curve with (see
Brand & Blitz 1993, R03):

ω/ω0 = a(R/R0)b−1 + c(R0/R) (2)

We set the rotation curve to pass through the new R0 and Θ0,
and set c = 1 − a. By minimizing τ in Eq. 1, we found the
best values, a = 1.59073, b = −0.000816. The result is shown
in Fig. 1. In Section 3.3, we will use this rotation curve, and
also the newly determined one with R0=8.4 kpc and Θ0=254
km s−1 by Reid et al. (2009), to estimate the kinematic distances
and related parameters, and outline the spiral structure. Note that

Gillessen et al. (2009) obtained R0 = 8.33 ± 0.35 kpc from the
combined fitting to observations of 16 years for stellar orbits
around the black hole in the Galactic center.

2.3. Tracers of Galactic spiral structure: weights

The brighter the HII region, the better it is as a tracer of
spiral structure. We use the excitation parameters of HII re-
gions as a weighting factor to demonstrate spiral structure.
Georgelin & Georgelin (1976) delineated four arm-segments us-
ing HII regions with an excitation parameter U greater than 70
pc cm−2. R03 used the excitation parameter as a weighting factor
in their fitting process. The excitation parameter U (in pc cm−2)
is defined as (Schraml & Mezger 1969):

U = 4.5526α(ν, T )−1ν0.1T 0.35S νD2 (3)

Figure 1.21: Two studies of Galactic kinematic distance determinations. Left: H I normalised
surface density in the outer Galactic disc from Levine et al. (2006). Right: H II region and GMC
distribution from Hou et al. (2009).

Levine et al. (2006) fit an asymmetric 4-armed spiral with α ≈ 23◦ in their analysis of H I

in the outer (6 < R < 40 kpc) Milky Way. A symmetric spiral model is investigated, but the H I in

the fourth quadrant requires three arms of small separation. Their map is reproduced in the left of

Fig. 1.21. The authors note the pitch angles are rather large compared to previous studies, and that

this may indicate the arms are unwinding in the outer disc. Larger pitch angles in the outer galaxy

compared to the inner galaxy have been suggested in previous studies (e.g. Simonson 1976). In

more recent work by Hou et al. (2009) the authors fit different spiral arm models to H II and GMC

literature data (right, Fig. 1.21). They find best-fitting values for α of approximately 5, 8, and 10◦

for 2, 3 and 4 armed models respectively, finding that the 2-armed model is a much poorer fit to

the data. The distribution of CS mapped by Lépine et al. (2011) also provides a strong indication

of spiral structure. They attempt to fit the actual orbital resonances that drive density waves, and

fit a 4:1 box-like resonance to the inner 7kpc, which can produce a 4-armed spiral structure.

1.6.2 Structure: tangency profiles

Some of the most conclusive evidence of spiral structure comes from longitude maps with the use

of the COBE and Spitzer satellites. Drimmel (2000) uses data from the DIRBE instrument aboard

COBE to construct K-band and 240µm (dust) emission profiles for |l| ≤ 90◦, shown in the left of

Figure 1.22 left (K: top, 240µm: bottom). The central peak is from the galactic bulge/bar and the

global emission profile drops off in accordance to the Milky Ways exponential disc. The K-band

emission shows weaker structure compared to dust emission but what structure is there is mirrored

between the two. The authors indicate 5 prominent features labelled S1, C1, T, S2 and C2, with

the S tangent points belonging to the Scutum-Crux arm, C belonging to the Sagittarius-Carina arm

and the T point to the 3-kpc arm. The minor Orion arm can be seen at l = 80◦ in the emission

but it’s strength is over-exaggerated due to it’s close proximity. The K-band and 240µm emission

have distinct differences. The most striking being the lack of any conclusive tangency features
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Figure 1.22: Two examples of Galactic arm tangency profiles. Left: COBE/DIRBE emission
from old stellar population (K-band, top) and dust (240µm, bottom) from Drimmel (2000). Right:
Spitzer/GLIMPSE source counts in the J, H, K and 4.5µm bands from Churchwell et al. (2009).
Arm tangencies are indicated by vertical lines.

at 50◦ or −35◦ in K-band compared to 240µm. They infer from this that there exists only a two

armed structure in the stars (seen in the K-band emission) joining with the bar. The gas/dust then

forms a four-armed pattern in response to the two armed stellar potential. This interpretation has

been suggested by numerous observations (e.g Drimmel & Spergel 2001; Benjamin 2008) and has

been seen in hydrodynamical simulations (e.g. Englmaier & Gerhard 1999; Fux 1999; Martos et al.

2004). This also goes some way to explain the large ensemble of different arm combinations found

in the literature; there could be two or four armed perturbations depending on the observation. A

later study using COBE/DIRBE data by the same authors find similar conclusions (Drimmel &

Spergel 2001). Their best fits to the emission in dust is a four-armed spiral, while the stars (K-J

band) best suits a two armed fit.

The Spitzer GLIMPSE Legacy program is analysed by Benjamin et al. (2005) where the

authors present similar maps to Fig. 1.18 of IR sources within 10◦ < l < 65◦ and 295◦ < l < 350◦

at 4.5µm. There are tentative signs of the Centaurus and Scutum arms but no sign of other arm

tangencies. The real find however is signs of the galactic bar in their source counts. There is a

strong asymmetry in counts around the Galactic centre, with 25% more stars in the first quadrant

compared to the fourth inside of l < 30◦ (Churchwell et al. 2009). This agrees with the general

consensus that the Milky Way’s bar is orientated between 15◦ − 30◦ which would show up in

the count maps around 0 < l < 45◦ (Gerhard 2002). They then fit to the bar’s orientation and

length, finding a value of 44◦ and a length of around 4.5kpc. Churchwell et al. (2009) also use the

GLIMPSE survey to highlight spiral arm tangents in 4.5µm, K, J and H bands (shown in the right

of Figure 1.22). The Scutum, 3kpc, and Centaurus arm tangents can be seen clearly in all bands

but there is no clear sign of the expected Sagittarius tangency.

Steiman-Cameron et al. (2010) analyse the C II (158 µm) and N II (205 µm) lines from the

FIRAS instrument onboard COBE, which are known to trace spiral structure to greater densities

and pressures. They find strong tangent signatures of the Scutum, 3kpc, Centaurus, Carina, Sagit-
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tarius and Orion arm features. By fitting logarithmic spiral models they find a four-arm pattern

fits the data well. As N II and C II should trace gaseous and young stellar/star forming regions

they conclude that the Milky Way is four armed in the gas, and agree with Drimmel (2000) and

Churchwell et al. (2009) that the older, evolved, stellar population (i.e. K and M stars) exist in a

two armed pattern. This is supported by evidence that over the many arm models over the past

decades almost all tracers of young stellar populations and gas are best fit with four armed models

(e.g. H II, CO, OB stars, molecular clouds, Cephids, C II and N II). On the contrary the majority of

two armed models from the literature stem from observations of the older stellar population, i.e.

K and M stars (Steiman-Cameron et al. 2010).

1.6.3 Structure: longitude-velocity maps

There have been numerous l-v maps constructed in the literature, predominantly using CO and

H I emission (e.g. Dame et al. 1987; Hartmann & Burton 1997; Strasser et al. 2007; McClure-

Griffiths et al. 2012). Two modern maps of ISM emission over the entire Galactic plane are shown

in Figure 1.23. These are the H I 21-cm emission from Kalberla et al. (2005) and the CO J = 0→ 1

emission from Dame et al. (2001). While higher resolution data is available for both tracers, these

are the most up-to-date maps available of the entire plane. Spiral arm features can clearly be seen

in each map, with the Perseus, Outer and Carina arms being the clearest. The Sagittarius and

Local arms are less clear, the former due to the mixing with the large amount of emission towards

the Galactic centre, and the latter due to the ambiguous nature of local structure (vlos ≈ 0 km s−1).

There are some key differences between the two. The CO is much patchier than the H I, while

the H I appears less confined to spiral arms and extends much further radially than CO. The CO

displays a strong inner feature, dubbed the central molecular zone (CMZ). Asymmetric in nature,

it is believed to be product of the ILR of the bar (Lee et al. 1999; Rodriguez-Fernandez & Combes

2008). There is a strong feature approximately diagonal in the CO emission in Fig. 1.23 in the

inner Galaxy, that is not as distinct in the atomic emission. This has been attributed to a molecular

ring of material around 4kpc in radius (Marshall et al. 2009). While rings are not uncommon

in external galaxies, no substantial evidence exists that shows the feature can be better fit by a

combination of arms rather than a ring (Dobbs & Burkert 2012). We will refer to this feature as

the Inner Ridge of emission, as to not imply its structure as a ring or arm.

One of the more difficult tasks when determining the spiral structure of our Galaxy is de-

tecting spiral arms beyond the Galactic centre, due to the large amounts intervening ISM dust and

the strong emission towards the galactic bulge. Dame & Thaddeus (2011) find a Galactic arm be-

yond the galactic bulge in CO and H I l-v maps, its existence unnoticed due to it’s location 3◦above

the galactic plane. They suggest that this new arm is an extension of the Scutum-Centaurus arm

beyond the Galactic centre, an analogue to the Perseus arm, which the authors suggest supports

the 2-armed picture proposed by Drimmel (2000) and Churchwell et al. (2009). Similar earlier

work by the same authors (Dame & Thaddeus 2008) discovered a far counterpart to the nearby

3kpc arm in CO l-v data, further supporting a symmetric Milky Way model.
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Figure 1.23: Brightness temperature emission maps of the Galactic plane in CO (J = 0 → 1
transition, top) and H I (21-cm transition, bottom). H I data taken from Kalberla et al. (2005) and
CO from Dame et al. (2001). Also labelled are a selection of morphological features. Due to the
significantly weaker emission of the CO line, we have integrated through b ± 2◦.
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1.6.4 Structure: the bar(s)

Specifically regarding the bar, evidence of its morphology is perhaps even less convergent than the

arms. The bar appears either short and spheroidal or long and thin. The former bar is the classical

bar, in that evidence for which has existed for many decades. This bar is angled at roughly 20◦ to

the Sun-Galactic centre line and is approximately 3kpc long. This bar is commonly referred to

as the COBE/DIRBE bar due to the most convincing evidence coming from COBE source counts

(Blitz & Spergel 1991; Dwek et al. 1995). It is also believed to be the cause of asymmetries

seen in the velocity distribution of ISM gas. The bar is also referred to as the triaxial bulge or

the boxy/bulgey/peanut bar due to the shape of the best fitting mass models. See Blitz & Spergel

(1991); Weiland et al. (1994); Binney et al. (1997) and the review by Gerhard (2002) for more

information.

The other, “Long”, bar was originally proposed by Hammersley et al. (2000) and additional

evidence for which was seen in GLIMPSE data (Benjamin et al. 2005; Churchwell et al. 2009).

This bar is believed to be longer (≈ 4kpc) and thinner than the DIRBE bar, and much less vertically

extended. The GLIMPSE data suggests the bar is angled at approximately 45◦, though studies are

still in their infancy in discerning whether these bars are indeed separate entities (the orientations

agree within errors reported by respective studies). Regardless of which shape the bar takes, it is

still unclear whether the arms join exactly to the ends of the bar, or whether there is some contact

region, perhaps indicated by a ring (both cases are seen in external galaxies). There is evidence,

however, that the bar does drive some spiral structures in the disc. The near 3kpc expanding arm,

so named for the velocities that significantly deviate from circular rotation, has been reproduced

by Englmaier & Gerhard (1999) by the inclusion of a bar, where the arm is seen to directly trail

from the bar end.

1.6.5 Pattern speeds

As with external Galaxies, determining the arm and bar pattern speeds (Ωsp and Ωb) of the Milky

Way is somewhat more difficult than determining the structure due to observations only probing a

very small time window with respect to Galactic rotation periods. Determining the pattern speed

also usually relies on some assumed morphology. For example, if the method uses the location

of resonances to determine the pattern speed, these are dependant on the arm number adopted.

The rotation speed of the arms is of specific interest for its creation of a co-rotation radius. Many

models place the Solar position at the CR, which could in theory be a site for steady star formation

due to material co-rotating with the high densities arms found in arms, though it could lessen its

importance due to the lack of shocks experienced by the traversal of gas into the arms initially. An

important aside is that for many of these pattern speeds the value is coupled to the local radius and

circular velocity. This in itself is subject to uncertainty, with values of the Earth’s Galacto-centric

distance ranging from 7.0-8.5kpc and velocity from 200-230 km s−1(Binney & Tremaine 1987;

Reid 1993).

A common method is that of Tremaine & Weinberg (1984), where the pattern speed is

calculated from integrating specific velocity components across the disc. This method is designed
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for external galaxies, but can be applied to the Milky Way. By applying this method to stars in

our own Galaxy, Debattista et al. (2002) find a pattern speed12 of 60km s−1 kpc−1. However, this

is simply attributed to a non-axisymmetric feature, which while seemingly reasonable for the bar,

could be from the arms themselves.

By measuring the ages of open clusters, which are assumed to have been created in spiral

arms, and rotating them backwards in time it is possible that they trace out spiral arms at their

birthplaces. Dias & Lépine (2005) use this method give a constant value of 25km s−1 kpc−1, though

this is only for clusters near the Solar position and has additional errors associated with the age

determinations of the clusters. Another method is to model the kinematics of OB and Cepheid

stars, which can be constructed to contain a spiral perturbation with numerous free parameters,

including the spiral pattern speed. Applications of this method suggest the arms are rotating with

a speed of 22-30km s−1 kpc−1(Avedisova & Palous 1989; Amaral & Lepine 1997; Mishurov &

Zenina 1999; Fernández et al. 2001; Lépine et al. 2001).

The bar pattern speed can be estimated by use of Equation 1.10 and measuring the bar

length though distance determinations. This method requires the bar length to be well measured,

and that the CR lies exactly at the bar end, which is somewhat of an approximation. This method

can give a wide range of bar pattern speeds from 35-60km s−1 kpc−1(see Gerhard 2011).

Pattern speeds can also be measured by use of a stellar steaming method (Dehnen 2000;

Quillen & Minchev 2005; Minchev et al. 2007). By measuring the tangental and perpendicular

velocity components to a circular orbit in the Solar vicinity (u− v), and creating so-called velocity

ellipsoids, models can be constructed to replicate the features. The pattern speed directly impacts

the features seen in these ellipsoids, though it is not clear how to differentiate between the effect

of the bar or the arms. Dehnen (1999) and Minchev et al. (2007) find approximate pattern speeds

of 50km s−1 kpc−1 by inferring the position of the OLR.

One interesting method is to use ice age epochs here on Earth to determine the time of

spiral arm passage. Ice ages correlate with cosmic ray strength. As the Earth passes into and

out of a spiral arm, it experiences a differing amount of Galactic cosmic rays due to the greater

net supernovae flux in the arm regions. Therefore peaks in cosmic ray fluxes are inferred as

corresponding to Earth’s passage through spiral arms, which allows for an estimate of arm pattern

speed. Shaviv (2003) and Gies & Helsel (2005) use this method to infer an arm pattern speed of

14-17km s−1 kpc−1.

It is somewhat more straightforward, if more time-consuming, to simply tailor numerical

simulations to observations and thus infer the corresponding pattern speed (e.g. Rautiainen et al.

2008). This is simple to do for external galaxies, where the radial extent of features is expected

to enclosed by the ILR/OLR which are in turn a direct result of the pattern speed. However, for

the Milky Way this is again more complicated, and simulations must be tailored to some other

observational constraint such as Oort constants, rotation curve, or l-v data. Modelling of velocity

field by Chakrabarty (2007) suggest 58km s−1 kpc−1 for the bar, and find the arm speed is less

well constrained. Modelling of the spiral and bar component and constraining to the l-v plot,

12The pattern speed is often in units of km s−1 kpc−1, despite it being an angular frequency. 1km s−1 kpc−1 is equivalent
to 0.001rad Myr−1.
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Bissantz et al. (2003) find a best fit bar speed of 60km s−1 kpc−1 and arm speed of 20km s−1 kpc−1,

though this is only done so for the inner disc (R < 7kpc). Simulations of gas flow inside a 2-

armed potential by Martos et al. (2004) using a fine grid of pattern speeds find that 20km s−1 kpc−1

provides good dynamical consistency. Englmaier & Gerhard (1999) perform hydrodynamical

simulations looking into the effect of different bar pattern speeds. They tend to favour values

from 50-60km s−1 kpc−1, corresponding to a bar co-rotation radius near 3.5kpc. They also include

an armed potential, but assume it rotates with the bar. Fux (1999), Weiner & Sellwood (1999)

and Rodriguez-Fernandez & Combes (2008) perform hydrodynamical simulations in the presence

of a bar perturbation and attempt to match features in l-v observations. Collected together their

best-fitting values span a wide range, with orientations of 20-40◦and pattern speeds ranging from

30-50km s−1 kpc−1.

In most of studies the arms and bars have been found to be rotating at very different pattern

speeds, with the bar rotating up to three times as fast as the arms. This brings into question just

how the two are related. If there are two distinctly different pattern speeds, then the arms need

not necessarily be attached to the end of the bar. Indeed, this is not always the case in external

galaxies also (e.g. NGC 1073, NGC 4548, NGC 5383). While there is some evidence for distinct

pattern speeds in simulations (Sellwood & Sparke 1988) and external galaxies (e.g. Rautiainen

et al. 2008; Gabbasov et al. 2009), if the pattern speed is measured as a function of radius it has

been seen to be decreasing towards the outer disc (i.e. behaving as material arms) in some external

galaxies (e.g. Speights & Westpfahl 2012; Meidt et al. 2008) and simulations (Grand et al. 2012;

Baba et al. 2013). Needless to say, the true nature of arm and bar structures, including their origin,

longevity and rotation rate, is still somewhat of an unknown.

1.7 Summary of Galactic structure

As can be seen by the previous sections, there is beginning to emerge some consensus on the

spiral/bar structure, though there is still plenty of room for interpretation. With recent works there

has emerged the idea that a 2-armed in stellar distribution could be driving 4-armed features in the

gas, which goes some way of explaining the 2/4-armed dichotomy in the literature. The values

of the arm pitch angles seem to lie between 10◦ and 25◦, with the standard value approximately

13◦. To put this into a galactic perspective, the pitch in external galaxies range from 4◦to 20◦,
with Sa galaxies having a mean pitch angle of 6◦whereas the Sc galaxies have a mean pitch angle

of 18◦(Russeil 2003). Studies of local material however tends to be highly dispersive, with a

large amount of material lying away from spirals arms in the models. This could be because

the Local arm is a separate entity to a grand design structure, or it could be that the Galaxy is

better represented by a flocculent disc. Spirality appears to extend from 3 < R < 15kpc, with the

pitch angle potentially increasing in the outer disc. At least one bar appears present in the inner

disc, but the already uncertain length, orientation, and rotation speed are only complicated by the

suggestion of a second bar.

The pattern speeds of the arms and bar are also uncertain, though rough consensus tends to

be that each rotates with a different speed. Past studies suggest arms in the outer disc appear to
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Figure 1.24: The current “standard” Milky Way morphology. The left panel shows an artist im-
pression presented in Churchwell et al. (2009). The right panel is a schematic representation,
showing locations of the primary spiral arm and bar features. The thick arms are stellar arms in
2:4, star:gas arm models and the thinner arms those primarily seen in gas. Two inner bars are
shown, the spheroidal “boxy/peanut” bar (θb ≈ 20◦) and the “Long” bar (θb ≈ 45◦).

rotate about a third of the rate of the inner bar, though these values have large uncertainties.

The current “standard” artist interpretation of the Milky Way is shown in the left panel

of Figure 1.24 taken from Churchwell et al. (2009). Beside which is a simple schematic of the

arm and bar structures, modelled after a similar diagram in Benjamin (2008). The approximate

locations of the four primary spiral arms are shown, with the density higher in the Scutum-Crux-

Centaurus and Perseus arms compared to the others. In the centre the two possible bars are shown

with differing orientation and lengths. Collating all of this together, the Milky Way is likely a SAB

galaxy, similar in nature to NGC 1232, NGC 2336 and M61, which are each shown in Figure 1.25

for comparison. However, the reader must keep in mind that the evidence of the previous sections

is effectively all that stands behind the illustration in Figure 1.24. It still seems like somewhat of a

leap from the data in Figures 1.20, 1.21 and 1.22 to Figure 1.24.

1.8 Thesis aims

We propose to lift the veil on some of this confusion by performing a study to reproduce the l-

v features of our Galaxy using numerical simulations of the Galactic ISM. The l-v distribution is

unique in that it enables the tracing of spiral features separately without having to perform difficult

distance determinations. A simulation is ideal as it contains all the spatial information, enabling

for the simple reconstruction of a top-down distribution. We choose to primarily concentrate our

efforts on reproducing the CO distribution, rather than H I, as it is a stronger tracer of spiral fea-

tures, appearing in much denser regions of the ISM. While a similar approach has been attempted

by some studies in the past, none has attempted to fully model all arm and bar parameters in depth,

instead usually concentrating on constraining one or two values (e.g. bar pattern speed and orien-

tation). We also utilise a radiative transfer scheme and chemical network to more closely model
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Figure 1.25: A collection of Milky Way analogues from various sources. Note the multi-armed
structure and short inner bar. UGC 12158 in Fig. 1.4 is also such a galaxy. Images are, from
left, NGC 1232 (credit: ESO/IDA/Danish 1.5 m/R.Gendler & A. Hornstrup), M61 (credit: R.
Gendler & R. Hannahoe) and NGC 2336 (credit: A. Block/Mount Lemmon SkyCenter/University
of Arizona) inclined at approximately 60◦.

the ISM emission.

There have been a number of previous numerical works aiming to reproduce l-v features.

Lee et al. (1999) and Weiner & Sellwood (1999) observe the effect of a barred potential on a gas

disc in the inner Galaxy, and projecting the gas particles into l-v space to match the observations.

Similarly Rodriguez-Fernandez & Combes (2008) compare the l-v features of a number of bar

models to observations, instead concentrating on matching the terminal velocity curves in the

inner Galaxy. Bissantz et al. (2003) use arm and bar potentials to match l-v data, specifically

investigating pattern speeds of each component. Baba et al. (2010) instead use the effect of an

N-body model on a gas disc to match l-v features, varying the location of the observer somewhat

in a single model. A key difference to our approach is to take into account the optical depth effects

of the ISM by the use of a radiative transfer code. The aforementioned attempts at reproducing

l-v structures simply re-project the positions and velocity of the gas into l-v space, taking no

account of the relative strength of these features. The addition of a chemical network also allows

for a direct tracing of CO gas, rather than simply assuming that high gas density corresponds to

emission features in l-v space as done by the above studies. Previous studies also tend to focus on

a single aspect of the Galaxy, such as pattern speed, or bar orientation. We instead aim to match

all primary morphological features of the Milky Way; arm number, patterns speeds, pitch angles,

bar orientations and allow for a variable observer position within the disc to thoroughly investigate

the possible models. This requires a large number of models compared to the studies mentioned

above, and at a reasonable resolution to allow for the sufficient formation of molecular gas.

Some key questions we intend on answering with this approach are:

• Can we create synthetic molecular emission maps of our own Galaxy sufficient for the pur-

pose of constraining morphology?

• Can a grand design spiral perturbation sufficiently reproduce the observed features in l-v

space (using a fixed potential)?

• Is a 2-armed structure sufficient to reproduce all the features, or is a 4-armed model needed?
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• Does a 2-armed stellar distribution produce a 4-armed gas morphology sufficient to match

l-v features?

• Can instead a transient spiral structure better fit the observations (using an N-body stellar

system)?

While a full reproduction of all of the features seems unlikely due to the simplifications needed in

any such treatment of a galactic-scale system, this thesis aims at narrowing the parameter space

describing the morphology of the Milky Way, and eliminate some of the confusion in the many

different, seemingly conflicting, paradigms.

The following chapters will be as follows. Chapter 2 will discuss the simulation technique

and ISM specific physics required to model the molecular component of the Milky Way. Chapter 3

presents the results of simulations using fixed potentials for the arms and bar, and a simple method

of addressing the uncertainty in the Earth’s position and velocity. Chapter 4 describes the method

of creating synthetic observations and the application to the calculations in the previous chapter,

and the resulting best fit barred-spiral model of the Galaxy. Chapter 5 presents a similar study to

that of the previous two chapters, but instead using an N-body prescription to model the stellar

component of the Milky Way, rather than using fixed analytic potentials. We finish in Chapter 6

with a discussion of future work and conclusions to the work presented in this thesis.



2
Numerical methods:

simulations with smoothed particle hydrodynamics

“...and one has to resort to the indignity of numerical simulations to settle even the

simplest questions... ”

– Philip Anderson, Nobel Lecture, 1977

2.1 Introduction

In order to construct synthetic Galactic observations we first need to generate the physical con-

ditions from which to build them. Numerical simulations presented in this thesis are performed

using the smoothed particle hydrodynamical technique, or SPH, where the fluid is decomposed

into discretised packets, or particles. This chapter presents an overview of the SPH method and

codes used throughout this thesis. We begin with a discussion of the basic principles, including

some simple tests of the codes, in Section 2.2. We then discuss the additions to allow for the study

of ISM scale physics in Section 2.3. This includes additions to the standard energy evolution to

allow for ISM heating and cooling, and the various chemical processes needed to track the Galac-

tic molecular content. Two existing SPH codes are used in this study, the structure of each and the

developments made for the work in this thesis are discussed in Section 2.2.12.

These codes and techniques will be utilised in simulations using both fixed analytic stellar

potentials and live stellar systems, presented in Chapters 3, 4 and 5.

43
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2.2 Smoothed Particle Hydrodynamics

The problem of simulating fluid motion is by no means a new one. Clearly the fluid cannot be

simulated on a point mass level, molecule-by-molecule, so some large scale discretisation must be

used. The two main techniques are to either evolve the flow of packets of the fluid in a Lagrangian

prescription, or to measure the flow of fluid though a static or adaptive grid in a Eulerian sense.

These methods include Eulerian grid based method such as adaptive mesh refinement, or AMR,

codes (e.g. flash, Fryxell et al. 2000; ramses, Teyssier 2002; enzo, Bryan et al. 2014), Lagrangian

particle based methods such as smoothed particle hydrodynamics, or SPH, codes (e.g. gadget,

Springel et al. 2001; gasoline, Wadsley et al. 2004; seren, Hubber et al. 2011) or some intermix of

the two such as moving mesh codes (e.g. arepo: Springel 2010a). While each has its own merits,

no clear consensus has been reached as to whether there is a single method that outstrips the others

in every regard, though numerous studies have focused on comparing the different techniques (e.g.

Agertz et al. 2007, Tasker et al. 2008, Price & Federrath 2010), with a large number specifically

focussing on comparisons in a cosmological context (e.g. Frenk et al. 1999, Thacker et al. 2000,

O’Shea et al. 2005).

In this thesis simulations are performed using the SPH method, specifically using the codes

phantom (Price & Federrath 2010) and sphng (Bate et al. 1995) the details of which will be

discussed in greater detail later in this chapter. The SPH method was first formulated by Lucy

(1977) and Gingold & Monaghan (1977). The crux of the method is to discretise a fluid into a finite

number of mass elements with variable density, i.e. volume. The density of a particle is calculated

by interpolation between neighbouring particles, normalised by some smoothing function known

as the smoothing kernel function, W(r), that decreases in magnitude with increasing distance from

the particle of interest.

In the 40 years since its conception the SPH method has evolved considerably. While today

it is arguably most well know for its application in the field of cosmology it has been applied to

numerous media both in and out of astrophysics (e.g. the study of accretion discs, planet and star

formation). As such there are numerous additional physics that have been added to study different

problems, including magnetic fields, radiative transfer and relativity. Further information on these

improvements, as well as the basics of SPH can be found in the reviews of Price (2012a), Rosswog

(2009), Monaghan (1992, 2005) and (Springel 2010b). As with any numerical method, there are

key benefits and detriments of SPH. Some, but certainly not all, of these are highlighted below in

particular in comparison to grid-based methods.

Advantages

• SPH is usually boundless, so no matter is lost or forced back into the simulation at domain

boundaries thereby inherently conserving the mass of the system.

• The code spends its time evolving only the regions with a non-zero density field, so no time

is wasted modelling empty space as in grid codes.

• The adaptive resolution (both spatially and temporally) are relatively easy to implement, i.e.
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no need to re-create/adapt meshes as in grid-based codes.

• The fluid evolution history is intrinsically simple to trace due to the particle-like nature. This

would require the inclusion of tracer particles in grid-based codes to follow the fluid flow.

• SPH is comparatively simple and easy to model complex physics and geometries in 3D, due

to free/moving material boundaries.

• Particle nature makes coupling to N-body or self-gravity physics relatively straight-forward.

• The distribution of mass between particles ensures exact conservation of mass, as the mass

of each particle is constant throughout time.

Disadvantages

• Need to build and constantly update neighbour lists (by link-lists or binary trees) in order to

evaluate particle summations.

• The initial conditions can be influential on the eventual outcome. Need to decide on whether

to set particles on a cubic, hexagonal or random lattice arrangement initially.

• Resolution is limited by particle number, which is fixed at the start of the simulation,

whereas in theory a grid can be sub-divided indefinitely.

• Radiative transfer and magnetohydrodynamics can be more difficult to implement than the

cell structured nature of grid-based codes.

2.2.1 Equations of fluid dynamics

Throughout this chapter we will be referring to numerous standard formulae to derive and explain

the SPH equations. We include these here briefly for reference before continuing. SPH is a

Lagrangian fluid formulation by design, where the Lagrangian itself takes the classical form

L = T − V =

∫ (
1
2
ρv2 − ρu

)
d~r, (2.1)

which is simply the difference between the kinetic and thermal potential energy, T and V respect-

fully (neglecting gravity for now), where ρ, u, v and ~r are the density, internal energy, velocity

and position of a fluid element. We can minimise the action of the Lagrangian to give the Euler-

Lagrange equations of fluid dynamics

∂L
∂~r
− d

dt
∂L
∂~v

= 0, (2.2)

which can be used with an appropriate Lagrangian to obtain the equations of motion (EoM) of the

fluid system. We will also be making use of the material, or Lagrangian, derivative which is given

by
D
Dt

=
∂

∂t
+ ~v � ~∇, (2.3)
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where the first derivative is the local rate of change (i.e. the Eulerian derivative), and the second

the convective derivative. We will also utilise the Navier-Stokes equations for fluid flow (a.k.a. the

Euler equations) given by
D~v
Dt

+
~∇P
ρ

+ ~fvisc + ~fext = 0, (2.4)

where ~fvisc contains all the physical viscosity information and may also contain extra magneto-

hydrodynamical (MHD) terms. For gravitational external forces ~fext = −~∇Φ, where Φ is the

external potential. In the work presented here Φ comes from galactic potentials we impose, which

are related to the density distribution by Poisson’s equation, ∇2Φ = ρext(~r)4πG. The material

derivative is effectively Newton’s second law for a fluid. Built into any numerical fluid simulation

should be the continuity equation, which ensures mass conservation in the system

∂ρ

∂t
+ ~∇ � (ρ~v) =

∂ρ

∂t
+ ~v � ~∇ρ + ρ~∇ � ~v =

Dρ
Dt

+ ρ~∇ � ~v = 0. (2.5)

And finally we will also use the first law of thermodynamics. For an adiabatic (dQ = 0) equation

of state (EoS) we have dU = dQ − PdV = Pdρ/ρ2, giving the rate of change of internal energy as

Du
Dt

=
P
ρ2

Dρ
Dt
. (2.6)

where specific internal energy is u = U/m. Between these formulae we have a framework to evolve

a fluid system over time, tracing changes in velocity, internal energy and position (d~r/dt = ~v) while

maintaining mass conservation by satisfying Equation 2.5. We can also calculate the total energy

simply by the addition of the internal to the kinetic energy, e = u + v2/2.

2.2.2 The SPH kernel

The kernel function is a key parameter of SPH, and defines how much we care about particle

neighbours when calculating fluid properties, akin to a window function. It effectively puts the

“smooth” in SPH, and makes sure particle properties are smoothly interpolated from neighbouring

particles. The kernel is defined by some scale length/smoothing length/kernel support radius, h,

which determines the rate of radial decay. Two basic properties of an appropriate kernel are that it

is correctly normalised ∫
W(|~r − ~r ′|, h)d3~r ′ = 1, (2.7)

and that it tends to a delta function as the kernel support radius tends to 0

lim
h→0

W(|~r − ~r ′|, h) = δ(~r − ~r ′). (2.8)

The kernel is chosen to be spherically symmetric so that the system is independent of rotation,

and to be only a function of separation, rather than actual particle position. We can first define a

property of the system, A(~r), using the delta function by

A(~r) =

∫
Aδ(~r − ~r ′)d3~r ′. (2.9)
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We can then approximate this expression with our kernel function to give the integral interpolation

approximation

A(~r) =

∫
A(~r ′)W(|~r − ~r ′|, h)d3~r ′, (2.10)

where the parameter A is integrated over all other fluid elements at positions ~r ′. This would

produce A(~r) exactly when the kernel is the delta function. For practical purposes the above

integral is formulated into a summation over a set of interpolation points throughout the medium,

the SPH particles. This then means we can estimate A for some particle at ~r by a weighted sum of

that same A evaluated at every other particle at ~r ′. We can replace the volume integral for a mass

integral, as in the usual construction of SPH we know the mass of each particle, so that Equation

2.10 becomes

A(~r) =

∫
A(~r ′)
ρ(~r ′)

W(~r − ~r ′, h)ρ(~r ′)d3r′ =

∫
A(~r ′)
ρ(~r ′)

W(~r − ~r ′, h)dm (2.11)

we can then form a discretised version, by a summation interpolation using particles as our inter-

polation points. This gives a sum over b particles at positions ~r ′

A(~r) =
∑

b

mb
Ab

ρb
W(~r − ~rb, h) (2.12)

where m, ρ are the particles’ mass and density respectively. These leads to a way of calculating

some property of the system, A, at any given point by summation over discretised fluid elements.

For instance, we can find the density simply by substituting A(~r)→ ρ(~r) to give the standard SPH

density summation equation

ρ(~r) =
∑

b

mbW(~r − ~rb, h). (2.13)

In replacing the integral with summation expressions (Equations 2.10 and 2.12) with have intro-

duced some discretisation/sampling error of the order h2 (Monaghan 1992, 2005), which depends

on particle disorder and is reduced by increasing the number of particles (Price 2005). There is

also an error associated with the initial introduction of the integral interpolation Equation 2.10

(Monaghan 2005; Liu & Liu 2010) which is also of order h2, which is reduced by decreasing the

smoothing length (evident by Equation 2.8). This would lead to the conclusion of using a high

number of particles that are well ordered and a kernel with a small smoothing length to reduce er-

rors. However this would increase computational time-scales, requiring a give-and-take approach

between reducing errors and optimising calculation times (Cossins 2010).

By using Equation 2.13 we have the capability to calculate the density of the fluid at any

arbitrary point by summing over the kernels of the neighbouring particles. This is illustrated by the

cartoon in Figure 2.1. We shall show later in this chapter that this approach can be used to calculate

other properties of the system, specifically the forces and internal energies of the particles. But

first we turn our attention to the actual form of the kernel function.

Ideally an appropriate kernel must have several properties, in addition to those of Equations

2.7 and 2.8. The kernel should be “bell-shaped” (Lucy 1977) so that the kernel smoothly decreases

with distance but also flattens near the centre to avoid steep gradients for particles in close proxim-
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Figure 2.1: Simple schematic of how to visualise SPH particles. Density is calculated by summing
over neighbours, with masses weighted by some smoothing kernel, W(r, h), that decays with dis-
tance from the particle of interest. The compact support shown here is 2h, specifically that of the
cubic spline kernel. This cartoon shows particles with individual smoothing lengths so that each
particle has approximately equal neighbours.

ity. The kernel should also be smoothly differentiable (at least singularly) and be an odd function

and ≥ 0 in all space. Given these pre-requisites the simplest choice is a Gaussian kernel function

which has the advantage of being smooth for any order of differentiation (employed by Gingold

& Monaghan 1977). However as it is non-zero at all radii we would require the summation over

all neighbours. Instead we can choose to limit our summation to a kernel of “compact support”,

i.e. one that drops to 0 outside some radius, limiting ourselves to a finite number of particles and

the kernel to a finite volume (e.g. a sphere of radius 2h in Fig. 2.1). A common choice is the

cubic spline (Monaghan & Lattanzio 1985) with compact support inside 2h, used by default in

both phantom and sphng. This kernel takes the form

W(~r, h) =
σ(νD)

hνD


1 − 1.5q2 + 0.75q3 0 ≤ q < 1

0.25(2 − q)3 1 ≤ q < 2

0 2 < q

(2.14)

where q = |r|/h, νD is the number of spatial dimensions and σ = (2/3, 10/7π, 1/π) for 1, 2 and

3D, ensuring the correct normalisation (Equation 2.8). The number of terms can be increased to

form quartic, O(q4) or quintic splines, O(q5), though at the expense of increased computation time.

Plots of a selection of kernels and their derivatives are shown in Figure 2.2. Here we can see the

commonly used cubic spline and its derivative has the same overall shape as other kernels, but the

second derivative is discontinuous. Note that the second derivative is not used in this study, and

comes into play when using velocity dependent forces (e.g. MHD). Now we have a suitable kernel

we must find some appropriate value for the smoothing length, which we will address next.
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Figure 2.2: Various SPH kernels in red, their first and second spatial derivatives (dashed and dotted
lines). The cubic spline is the simplest, but experiences discontinuities at higher derivatives, while
the Gaussian is the most robust it has the undesirable feature of being non-zero in all space.

2.2.3 Mass equation of SPH

As we have shown above the ath particle density is calculated in SPH formalism by setting Aa = ρa

in the interpolation summation to give a density equation of the form

ρa =
∑

b

mbWab (2.15)

where we will be using the shorthand notation of ~rab = ~ra − ~rb and Wab = W(|~rab|, h) throughout

the remainder of this chapter. The density summation shows that the dimensions of the kernel

are [1/distance3] in 3D, hence the hνD factor in Equation 2.14. The density of each particle is not

constant, but rather the mass is (i.e. the “size” of the particles the variable).

Any density formulation we construct should inherently satisfy the continuity equation

(Equation 2.5), ensuring that the rate of change of material in a system is equal to the rate it

flows out of the surface. First addressing the left hand side of the continuity equation, in material

derivative form, we obtain

Dρa

Dt
=

∑
b

mb
D
Dt

Wab =
∑

b

mb
∂Wab

∂rab

Drab

Dt

=
∑

b

mb
∂Wab

rab
êab � ~vab =

∑
b

mb~vab � ~∇aWab

(2.16)

where we have substituted for the particle velocity, ~vab = D~rab/Dt. This could be used to evolve

the density of the particles in the system, rather than evolving the integration of an additional

quantity (as we will with v, and u). However we would be introducing additional errors from the

adopted integration scheme and it is more practical to calculate the density via direct summation.

This can be done in the same loop over particles as all the other summation formulae (discussed

in the following subsections) at little additional cost. Now evaluating the right hand side of the



2.2. SMOOTHED PARTICLE HYDRODYNAMICS 50

continuity equation we find that

ρa~∇a � ~va = ~∇a � (ρa~va) − ~va � ~∇aρa

= ~∇a �

∑
b

mb

ρb
(ρb~vb)Wab

 − ~va � ~∇a

∑
b

mb

ρb
(ρb)Wab

 . (2.17)

Where we have used the SPH summation equation with the variables ~Aa = ρa~va and Aa = ρa. We

can move the gradients inside the summations as they act only upon the properties of a. This gives

(recalling that a � b = b � a)

ρa~∇a � ~va =
∑

b

mb~vb � ~∇aWab −
∑

b

mb~va � ~∇aWab

= −
∑

b

mb(~va − ~vb) � ~∇aWab ≡ −
∑

b

mb~vab � ~∇aWab.
(2.18)

The SPH continuity equation is then simply the sum of equations 2.16 and 2.18

Dρa

Dt
+ ρa~∇a � ~va =

∑
b

mb~vab � ~∇aWab −
∑

b

mb~vab � ~∇aWab = 0 (2.19)

thus satisfying the continuity equation. This is somewhat of a mute point however, as by con-

struction SPH should conserve mass due to each particle having a fixed mass. The process of

re-working the format of the SPH equation, i.e. “putting the density inside the operator”, is a good

way of ensuring symmetric functions (Monaghan 1992 refers to this as the second golden rule of

SPH).

So far we have limited our discussion to particles with fixed smoothing lengths. If we

were to give each particle its own individual smoothing length then we allow for an additional

adaptability. This does however negate some approximations in the derivations above as we can

no longer neglect the gradients in the smoothing lengths. An additional normalisation factor must

be added, Ωa, to the Equation 2.16 above

Dρa

Dt
=

1
Ωa

∑
b

mb~vab � ~∇aWab(ha). (2.20)

the origin of which, and its affect on the standard SPH rate equations is the subject of Appendix A.

For the purpose of this chapter we simply quote the resulting rate equation with the additional

“grad-h” term where Wab has been replaced by Wab(ha). The smoothing gradient factor can be

shown to be

Ωa = 1 − ∂ha

∂ρa

∑
b

mb
∂Wab(ha)
∂ha

(2.21)

which is also shown in Appendix A.
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2.2.4 Momentum equation of SPH

The fluid mechanics momentum equation is summarised by the Navier-Stokes equations (or Euler

equations with no viscous forces) given by Equation 2.4. Ignoring the viscosity and the external

forces for now, the EoM of the system becomes1

D~v
Dt

= −
~∇P
ρ
. (2.22)

In order to find the rate of change of momentum we need find an expression for ~∇P/ρ, the force

for a purely inviscid fluid under no external forces. We will use the second golden rule of SPH

again and put the density inside the operators. First we will re-arrange the pressure gradient to

give
~∇aPa

ρa
= ~∇a

(
Pa

ρa

)
+

Pa

ρ2
a

~∇aρa (2.23)

and substituting in the relevant SPH summation equations

~∇aPa

ρa
= ~∇a

∑
b

mb

ρb

(
Pb

ρb

)
Wab

 +
Pa

ρ2
a

~∇a

∑
b

mb

ρb
(ρb)Wab

 (2.24)

which re-arranges to give:

~∇aPa

ρa
=

∑
b

mb
Pb

ρ2
b

~∇aWab +
∑

b

mb
Pa

ρ2
a

~∇aWab. (2.25)

The basic momentum equation is then simply

D~va

Dt
= −

∑
b

mb

Pa

ρ2
a

+
Pb

ρ2
b

 ~∇aWab. (2.26)

If we had not placed the density inside the operator then we would not have this antisymmetric

form (noting that ∇aWab = −∇bWba). This momentum equation fulfils the conservation of mo-

mentum, and Newton’s third law, seen upon the swapping of indexes a and b and checking the

forces between them are antisymmetric (Fab = −Fba). For individual smoothing lengths (“grad-h”

formalism) we again just quote the solution here

D~va

Dt
= −

∑
b

mb

 Pa

Ωaρ
2
a

~∇aWab(ha) +
Pb

Ωbρ
2
b

~∇aWab(hb)

 , (2.27)

and direct the reader to Appendix A for a brief derivation of this form, and also evidence that the

momentum equation can also be derived from the Lagrangian and the Euler-Lagrange equations

rather than the Navier-Stokes equation.

1While we could simply use the discretisation equation and set Ab = Pb to give ρaD~va/Dt = −∑
b mb(Pb/ρb)~∇aWab,

this does not conserve momentum. This is seen by calculating the forces from a on b, using the anti-symmetric identity
∇aWab = −∇bWba and seeing that Fab , −Fba, i.e. conflicting with Newton’s third law (see Rosswog 2009).
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2.2.5 Energy equation of SPH

The final basic SPH equation required for the evolution of a fluid system is the energy equation.

We start from the first law of thermodynamics, dUa = PadVa. Working in per-unit-mass units we

can substitute dVa = d(1/ρa) = 1/ρ2
a × dρa. Taking these rates as a function of time and using

D/Dt for Lagrangain dynamics we have

DUa

Dt
=

Pa

ρ2
a

Dρa

Dt
. (2.28)

We then use the continuity equation to substitute the change in density, giving the energy equation

DUa

Dt
=

Pa

ρ2
a

∑
b

mb~vab � ~∇aWab. (2.29)

Monaghan (1992) uses the same method as for the above formulations to derive a similar expres-

sion instead involving Pb and ρb,

DUa

Dt
=

1
2

∑
b

mb

Pa

ρ2
a

+
Pb

ρ2
b

~vab � ~∇aWab. (2.30)

which conserves energy exactly. This form is less often used in practice however (e.g. Hubber

et al. 2011, Rosswog & Price 2007) as it has the unfortunate side effect of producing negative

energies if there are significant local pressure variations, caused by the Pb term in the energy

calculation of a (Benz 1990; Wadsley et al. 2004). We can also include the effect of individual

smoothing lengths (see Appendix A),

DUa

Dt
=

1
Ωa

Pa

ρ2
a

∑
b

mb~vab � ~∇aWab(ha) (2.31)

which is equivalent to Pa/Ωaρ
2
a × Dρa/Dt

2.2.6 The equation of state

In order to evaluate the SPH rate equations we need to set an equation of state to provide the

pressure of the ISM particles as a function of density. Our primary interest is the abundance of

molecular material which, as will become clear in the following sections, is a strong function of

temperature. As such we must evolve the thermal energy of the particles alongside the kinematic

quantities. We utilise an adiabatic equation of state, which gives the pressure as a function of

internal energy and density of the particles

P = (γ − 1)ρu (2.32)

where γ is the adiabatic index, given by the ratio of specific heats at constant pressure and volume,

which for a monatomic gas is 5/3 ≈ 1.67, which is the case for the majority of the ISM (but is 5/7

for diatomic molecules such as CO and H2). If we were not storing thermal energy we could use a
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general polytropic form without thermal energy, P = Kργ, where K is some constant, though this

would result in a phase diagram that is a poor representation of the ISM2, where complex heating

and cooling mechanisms determine the evolution of u (see Section 2.3.1 and Figure 2.12). We also

use an isothermal EoS for testing purposes, where P = Kρ.

When we are discussing artificial dissipation in a later section we will be referring to the

adiabatic sound speed of the gas. This is calculated as

cs =

√
∂P
∂ρ

=

√
γP
ρ

=

√
kBT
mpµ

(2.33)

where µ is the mean molecular weight of the material in question (see Section 2.3 for a brief

description in relation to the ISM). We can then also calculate the thermal temperature from T =

Pµ/Rρ, i.e. T = µu(γ − 1)/R, where R is the gas constant.

2.2.7 The density and smoothing length in “grad-h” SPH

As a rule of thumb we want the kernel to contract in regions of high density and keep the num-

ber of neighbours per particle approximately constant, making sure the resolution is consistent

between dense and diffuse regions of particles. The particles in the denser regions require smaller

smoothing lengths compared to those in the more diffuse medium, maintaining the same number

of neighbours (6 in the case of Fig. 2.1). If fixed smoothing lengths are used then some sacrifice

would need to be made between either over-resolving the very diffuse media, which are usually of

minimal importance, or under-resolving the high density regions which is often the location of the

more complex and interesting physics.

A natural choice would be to choose a smoothing length that is analogous to the length

scale which defines the density of a SPH particle, ρ ∝ m/hνD , where νD is the number of spatial

dimensions (Gingold & Monaghan 1982; Price 2012a). This gives a simple equation relating the

density and smoothing length of each individual particle

ha = η

(
ma

ρa

)1/νD

. (2.34)

The η factor is chosen to roughly give a number of neighbours, and specifies the smoothing length

scale, which can be calculated by

Nneigh =
4
3
π (ζη)3 (2.35)

in 3D3 where ζ is the compact support of the kernel, which is 2h for the cubic spline (i.e. the finite

radius of the smoothing sphere). We could define the number of neighbours explicitly rather than

η, but there are numerous pit-falls when constraining the Nneigh factor throughout a simulation (see

Price 2012a for a discussion). Good values of η have found to be between 1.2-1.5 (Rosswog &

Price 2007), and we adopt η = 1.2 in all simulations presented here corresponding to Nneigh = 58

2This would correspond to an isentropic flow, applicable in the absence of shocks or external energy sources
(Springel 2010b).

32D and 1D forms are similarly given by π(ζη)2 and 2ζη respectively (Price 2012a) .
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in 3D.

As we have now defined h in terms of ρ, and ρ in terms of h we can use these relations to

iteratively solve for the smoothing lengths by ensuring that Equation 2.15 and Equation 2.34 are

equivalent, i.e. ρsum = ρ(ha) to some tolerance. To do so it is common to use some solver to find

solutions (i.e. minimising the function) of the non-linear equation

f (ha) = ρ(ha) − ρsum (2.36)

which can be done by the Newton-Raphson method (Gingold & Monaghan 1982; Price 2012a),

which requires the derivative of the density difference function, f ′(ha),

∂ f (ha)
∂ha

=
∂ρ(ha)
∂ha

−
∑

b

mb
∂Wab(ha)
∂ha

=
∂ρa

∂ha

1 − ∂ha

∂ρa

∑
b

mb
∂Wab(ha)
∂ha

 =
∂ρa

∂ha
Ωa

(2.37)

where ∂ρa/∂ha can be easily computed from the analytic expression for ρa. This results in the

iteration equation

ha,n+1 = ha,n

(
1 +

ρ(ha,n) − ρsum

3Ωaρ(ha,n)

)
(2.38)

which can be iterated until some convergence is reached. We have used the definition of the

smoothing gradient parameter from Equation 2.21, the calculation of which is already done in the

force and energy rate equations, reducing the overall computational cost of the density calculation.

The cost can be reduced further by making a sensible initial estimate for the smoothing length

iterations using a predictor step for h and dhi/dt = dhi/dρi × dρi/dt = −hi/3ρi × dρi/dt (Price &

Monaghan 2007).

2.2.8 Evolving the system

Once the forces have been calculated from the SPH summation equations, giving v̇x,y,z(t), u̇(t), they

are used to evaluate new positions (x, y, z), velocities (x, y, z), and energies, as well as updating h if

required. We effectively now need to solve a set of ordinary differential equations in order to find

the change in position and velocity from v̇ and u̇.

Each of the codes we utilise uses a different integrator. In phantom a second order “leapfrog”

is used, with a specific “kick-drift-kick” formulation (Springel 2005; Monaghan 2005). The initial

force “kick” is the applied to the velocity for half the initial timestep, and the particle is allowed to

“drift” at this speed for the full timestep. The force is then re-evaluated at the post-drift position

and is used to provide an additional velocity kick to update the velocity to the full timestep. This

integrator has been shown to be stable considering its low order, displaying greater integration

stability and conservation properties over its “drift-kick-drift” and even higher order Runge-Kutta

contemporaries (Springel 2005; Rosswog 2009).

sphng uses the Runge-Kutta-Fehlberg integrator, specifically the RKF1(2) integrator, which

is in essence a second order method imbedded within a first order method (Fehlberg 1985, see
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Cossins 2010 for a discussion). The construction of a first and second order estimate for the

updated variables means we can control the error in the integration explicitly, though we would

have to use the first order estimate in the actual integration. This issue can be mitigated by simply

enforcing a very small tolerance on the first-second order difference, effectively making RKF1(2)

a second order method with controllable accuracy.

2.2.9 Timestepping

Regardless of the actual integration scheme, we need some way of sensibly deciding the timestep

on which to advance the properties of the system. In the most basic case a timestep can be imposed

that is the time between the creation of dump files, ∆t0 (e.g. every 1/100th of the total simulation

run-time). However, this can easily be much larger than the dynamical time-scale of changes in

system variables, resulting in integration steps that do not correctly encompass the physics of the

system. The size of a timestep can then be chosen by use of the Courant condition which relates

the ratio of the spatial resolution ∆x to the time resolution ∆t and the velocity of the simulated

particles by CCFL = v∆t/∆x, which ensures information speed does not exceed the physical speed

of material in the simulation (Courant et al. 1928). CCFL is the dimensionless Courant number, and

has been constrained from numerical studies to be from 0.25-1 in order to satisfy convergence of

the time integration. We take a minimum of this timing criteria over all particles in the simulation

to obtain the global Courant timestep as

∆tCFL = CCFL min
(

h
|vsig|

)
(2.39)

where vsig is the same signal velocity as that defined in Section 2.2.11. We use CCFL = 0.3 in the

simulations in this thesis. We also include a forcing timestep, which is calculated from the ratio of

the magnitude of the forces to the smoothing length

∆t f = C f min

√
h

| ~f |
(2.40)

where we use C f = 0.25. Finally there is a time scale for astrophysical cooling, which will be

discussed later,

∆tcool = Ccool min

∣∣∣∣∣∣ U
U̇IS M

∣∣∣∣∣∣ (2.41)

where Ccool = 0.3 as in Glover & Mac Low (2007). This is normally grouped with the forc-

ing timestep condition. The hydrodynamical time is dictated by the Courant timestep, whereas

the forcing and cooling times are used to advance the timestep with the same initial SPH force,

i.e. external and cooling forces are subcycled inside the main steps which is where neighbour

calculations are required.
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Individual timesteps

In astrophysical simulations time scales of importance can be very large when assessing gravita-

tional effects, or small when resolving molecular/shock effects. It then becomes prudent to allow

each particle its own individual timestep to avoid evolving all particles in the calculation on inte-

gration times of the slowest particles. In these cases particles are binned up into groups of 2n∆tmin

and each time bin is evolved separately (Rosswog 2009; Hubber et al. 2011). For example these

timesteps can be of similar form to those above, but the actual evolution of the particles is done

in bins of particles with similar magnitude timesteps, making sure the timesteps of all particles in

the simulation coincide at some point, i.e. they should all be synchronisable at any given point in

the calculation (Hernquist & Katz 1989). Care must obviously be take to ensure that a particle is

correctly aligned with the others in the simulation before it is moved to a different timestepping

bin as the individual timestep increases or decreases (Hubber et al. 2011).

2.2.10 Neighbour finding

Now we have a good grounding in the numerical recipes behind SPH, and a method of advancing

the particle properties, all that remains is some way of knowing the relevant particles in the SPH

summation equations, the “nearest neighbours” (i.e. the relevant b’s for which to calculate the

properties of a). The most obvious way to do so would be to simply loop over all particles, but this

would be aO(N2) process, a very computationally expensive scaling. By using a kernel of compact

support we have limited ourselves to a small number of neighbours (usually in the range 50-100)

but as the particles move around the identity of these neighbours will change, so some method

of re-populating these neighbour-lists is required. Two such options that are used frequently in

SPH codes are “Link lists” and “Tree codes”, both offering an improvement on the basic O(N2)

neighbour search (Liu & Liu 2003).

Link lists

A simple neighbour searching scheme is to use a link list method. All SPH particles are binned into

a grid that covers the entire computational domain, where grid cells have a size of 2h when using

the cubic spline. Particles in a cell only then search their own and adjacent cells for neighbours,

resulting in a much smaller search domain, only 27 cells in 3D (Domı́nguez et al. 2011). Particles

are also chained to each other via some link array allowing for fast looping through all particles in

each cell (Liu & Liu 2003).

This method can be of order O(N) in some cases, but can be less efficient if there are large

fluctuations in smoothing lengths, as it could result in large numbers of particles in each of the

grid cells increasing the time required to walk through the neighbouring cells (Hernquist & Katz

1989). Link lists are used in phantom where the cell width is set to 2
∑

a ha/N and we utilise a

cylindrical cell structure for our galactic disc simulations.
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Trees

The other common neighbour finding method is to use a hierarchical tree-like structure, such as

that of Barnes & Hut (1986). The basic method involves building up an octree of the simulation

domain (i.e. first splitting the simulation into a 2x2x2 octal) which is then subdivided into further

cells if they contain any particles. This is done until the child cells at the bottom of the tree contain

1 or 0 particles (the “leaves” of the tree, where the tree is actually an inverted tree). For nearest

neighbour calculations, such as finding which particles are required for the SPH summations, a

search is done by moving back up the tree from the particle of interest to find which particle

nodes (a point where branches separate) are within the region of interest. For instance, whether

a neighbouring particle is within the kernels compact support radius, r ≤ 2h when using a cubic

spline. The neighbour search then descends down the branches of that node, checking whether the

leaf particles are within the compact support region, thus building a neighbour list for a specific

particle while retaining the tree for use with the other particles.

The use of a tree has the added advantage of being able to be used for the neighbour finding

and gravitational force calculation (Hernquist & Katz 1989), and is used for calculation of N-

body gravitational forces in sphng. When the calculating the gravitational forces the tree is walked

through, instead of only using the nearest neighbours the gravitational calculation must also take

into effect the material outside the kernel support radius. As the tree is traversed a distance criterion

is calculated on each node. If ratio of the size of the node to the distance from the particle of

interest is greater than some tolerance then the branches of the node are then traversed. However,

if less than this tolerance then the material encompassed by the node is lumped together to form a

single larger body from which the gravitational attraction is calculated using the appropriate centre

of mass and node mass which is stored when the tree is created (Hernquist & Katz 1989). The

gravitational forces must also be softened to avoid extreme accelerations of particles during close-

encounters; this is soften on a scale of the smoothing kernel (Bate & Burkert 1997). The tree in

sphng is described in greater detail in Benz (1988) and Benz et al. (1990), which was implemented

using the version from Press (1986). Tree based neighbour finding is usually an order O(N log N)

process and can be pushed down to O(N) by clever symmetrising and storing of cell-cell forces

(Hernquist & Katz 1989; Dehnen 2002).

2.2.11 Artificial dissipation

Artificial viscosity

One of the major advantages of SPH is that it is completely dissipation free by construction. This

can have adverse properties when attempting to model shock-based problems. On large scales the

rapid change in system properties (be it density, velocity, pressure, internal energy etc.) appear

as discontinuities in the fluid flow. While in reality this discontinuity is in fact smooth it would

require a simulation resolution on macroscopically small scales to correctly capture. The smooth

gradients inherent in the SPH formulation do a poor job in such regions where steep gradients are

effectively discontinuities on macroscopic scales.
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Von Neumann & Richtmyer (1950) suggested that this problem could be over-come by the

addition of some artificial dissipation, or viscosity. The addition of an artificial viscosity (AV)

smoothes out gradients near these discontinuities, acting similarly to physical viscosities. Such an

artificial viscosity will dissipate kinetic energy into heat, generating the required entropy increase,

and will broaden the shock to a resolvable scale rather than a discontinuous one, allowing for

shock capturing. The AV does not in essence reproduce a physical process but rather smooth out a

shock front that would otherwise be discontinuous on the length scales relevant to the calculation.

Von Neumann & Richtmyer (1950) formulate this viscosity into a pressure of the form Pν =

−Aρcsl(~∇�~v)+Bρl2(~∇�~v)2 for some constants A and B over some resolvable length scale l (h in SPH

Rosswog 2009). The A term is analogous to a classical bulk viscosity (as is α described shortly)

and B the Neumann-Richtmyer quadratic term (as is β), and both only activate in converging flows

(∇ � v < 0). Using AV’s of this form had drawbacks however, resulting in either over-dissipation

or post-shock oscillations (Monaghan & Gingold 1983). This approach was refined by Monaghan

& Gingold (1983) who suggested additional pressure term (actually of dimensions P/ρ2) to be

included in the standard momentum equation, Equation 2.26, of the form

Πab =
−αc̄abµab + βµ2

ab

ρ̄ab
(2.42)

where

µab =
hab~vab � ~rab

r2
ab + εh

2
ab

(2.43)

where α, β, ε are constants to be set. The over-lined terms indicate averaged quantities between two

particles; ρab = [ρa + ρb]/2 and hab = [ha + hb]/2 where the velocity term is simply ~vab = ~va −~vb.

Then ~rab � ~vab will be < 0 if particles are approaching, i.e. when a shock may occur, and is

used as a criterion for activating the viscosity (i.e. Πab = 0 if ~rab � ~vab > 0). This form is

effectively a combination of Neumann-Richtmyer (β) and bulk (α) viscous terms. The β term was

not originally present in the Monaghan & Gingold (1983) formalism but was added to prevent

particle penetration and correctly model strong shocks (Monaghan 1992). The standard values

adopted are α = 1, β = 2α (Monaghan 1992), usually providing adequate dissipation at a shock

while ε = 0.01 protects against small separation singularities (as rab → 0). There is also the

capacity to set individual values of α to the particles, to avoid dissipation where it may not be

needed such as converging flows in the absence of shocks.

This results in a full momentum equation of the form

D~va

Dt
= −

∑
b

mb

Pa

ρ2
a

+
Pb

ρ2
b

+ Πab

 ~∇aWab, (2.44)

where the artificial viscous force produces a repulsive force when particles move towards each

other. The dissipated kinetic energy must be re-assigned as thermal energy to satisfy energy con-

servation. To this end the standard SPH energy equation gains the contribution

DUa,AV

Dt
=

1
2

∑
b

mbΠab~vab � ~∇aWab (2.45)
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Figure 2.3: An isothermal colliding flows test using phantom in 3D where gas flows are moving
at v = ±4 initially. The density and velocity profiles are shown after 0.8 dimensionless time units.
Differences in shock capturing can be with different AV parameters, shown in different colours.
The β term is fixed to 2α when α is fixed, and 2 when variable (pink points). The analytical
solutions are shown by dashed lines.

giving a full energy equation

DUa

Dt
=

∑
b

mb

(
Pa

ρ2
a

+
Πab

2

)
~vab � ~∇aWab. (2.46)

This is the “classical” AV formulation, and is the standard in the sphng code (with additional

“grad-h” terms). The α term can actually be related directly to the coefficients of physical vis-

cosity4. The shear viscosity parameter can be shown to be equivalent to η = αhcs/10 and bulk

parameter to ζ = 5η/3 (Monaghan 2005; Lodato & Price 2010; Price 2012b).

The addition of AV is illustrated by the colliding flows test shown in Fig. 2.3. Here we have

set up an isothermal shock tube test in 3D in a box of dimensions 8 × 1 × 1 using approximately

160000 particles initially arranged on a hexagonal lattice with velocities v = ±4 with flows directed

towards each other either side of x = 0. While better analysis of AV forces is seen in 1D, neither

of the codes we use in this thesis have the capacity for anything but 3D. This results in a strong

shock propagating from x = 0 manifesting as a plateau in ρ and vx, shown by the analytic solution

(dashed line). The different coloured points refer to different values for the AV coefficients and

β = 2α for all tests apart from the pink points where α is variable and we have fixed β = 2. It is

clear that α = 1 to 2 do a good job at capturing the shock in ρ and vx whereas lower values do

a poorer job. The α = 2 case applies slightly too much dissipation, which can be clearly seen in

the pre-shock regions of the vx panel. A test was also performed where individual values of α are

assigned to each particle which allow for dissipation only where necessary utilising the switch of

Morris & Monaghan (1997) that is a function of sound speed and smoothing length of the particles

4The shear viscosity develops when a fluid flow when it passes some boundary moving at a different velocity, know
as a shear flow. Bulk viscosity on the other hand is the manifest as the viscous friction experienced by a fluid expansion
or compression in the absence of shear flow. The η and ζ terms enter into the viscous Euler equations, quantifying shear
and bulk viscosity respectively.
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(Lodato & Price 2010). This differs little compared to the fixed case, though it does apply the least

dissipation in the region not yet experiencing a shock (vx panel). This highlights that a variable α

can be useful in that it applies less dissipation where it is not needed.

An alternative formulation of AV was proposed by Monaghan (1997), where the authors

use solutions analogous to Riemann solvers5. The original purpose of which was to enable the

capture of relativistic shocks. We present this form of AV in a similar form to the classical α − β
version using the parameter Qab with the same dimensions as Πab such that the AV contribution

to the momentum equation is given by

D~va,AV

Dt
= −

∑
b

mbQab∇aWab (2.47)

where Qab is given by

Qab =
αAVvsig|~vab � r̂ab|

ρab
(2.48)

when ~vab � r̂ab ≤ 0 and 0 otherwise to ensure converging flows. We use the shorthand notation

of Wab = [W(rab, ha) + W(rab, hb)]/2 to average kernel weights, and can include additional Ω

denominators for the kernels to correct for variable smoothing lengths. This formulation contains

a signal velocity term, vsig, which is the averaged signal speed between two particles. The exact

choice of signal velocity differs between users, but a general form is given in Price (2012a) as

vsig =
1
2

[
cs,a + cs,b − βAV~vab � r̂ab

]
(2.49)

for ~vab � r̂ab ≤ 0, and is 0 otherwise, where cs is sound speed of a given particle. While some forms

in the literature fix βAV = 1 (Rosswog & Price 2007; Hubber et al. 2011) or some other value

(Springel 2010b) the general form is that of a sound speed term in combination with a velocity

term. The formalism is similar to the previous notation, with linear and quadratic terms in velocity

projection (~vab � r̂ab) scaled by αAV and βAV terms respectively. This can then be similarly applied

to the thermal energy equation to give

DUa,AV

Dt
=

1
2

∑
b

mbQab~vab � ~∇aWab (2.50)

which can be added to the standard energy equation.

Artificial thermal conductivity

It has been shown that in some cases the AV alone is not enough to resolve certain physical phe-

nomena. There is a need to add additional dissipation terms for each variable of the system. In

adding AV we have corrected for discontinuities in the velocity distribution, but it is also neces-

sary to add additional dissipative energy terms. This problem was noted by Agertz et al. (2007)

whose calculations of Kelvin-Helmholtz instabilities showed a lack of characteristic rolling fea-

5A Riemann solver is (unsurprisingly) designed to solve Riemann problems which include shock dynamics and
other discontinuities coupled to the Euler equations (e.g. Toro 1992).
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Figure 2.4: Adiabatic “sod” shock tube problem test in 3D using phantom with differing values
of α, β and αu, indicated by different colours. The fiducial values are shown in black. Analytical
solutions to the density, velocity, energy and pressure over-plotted as dashed lines. Low values of
α and β result in a failure to capture many aspects of the shock structure and sinusoidal oscillations
around at post-shock regions.

Figure 2.5: Same as Fig. 2.4 but keeping α and β fixed to 1.0 and 2.0 respectively while only
varying αU . The main effect of αU is to reduce the energy (and consequentially P) spike at x = 0.5
in the figure. αU is fixed to 1 when used. The x-axis shows a narrower range than Fig. 2.4 as the
points are indistinguishable outside of the range shown.
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Figure 2.6: Kelvin-Helmholtz instability test without and with artificial thermal dissipation (left
and right panel pairs respectively). The lack of heat dissipation across the density boundary is
clearly seen in the run without artificial conductivity, which also manifests as a strong discontinuity
in internal energy of the particles. With the addition of artificial thermal conductivity the fluid
dissipates energy smoothly across the contact region, and displays a smooth energy transition.
The test was set up using an initial 2:1 density contrast and 3.8 million particles in 3D using
phantomwith αu fixed to 1 when used.

tures at the high-low density contact region. Price (2008) proposed an additional artificial thermal

conductivity, AC, to address this problem, where the energy equation is augmented by

DUa,AC

Dt
= −

∑
b

mb

αUvU
siguab

ρab
r̂ab � ~∇aWab (2.51)

where αU is the dimensionless artificial thermal conductivity parameter that smoothes out gradi-

ents in internal energy between particles, and uab = ua − ub (see also Valcke et al. 2010). There

is an additional signal velocity which can be different to that used in standard artificial viscosity.

Two suggestions in the literature are either a pressure difference, vU
sig =

√|Pa − Pb|/ρ̂ab from Price

(2008) or velocity projection, vU
sig = |~vab � r̂ab| from Wadsley et al. (2008). The velocity projection

form is used in phantom.

Illustrations of the importance of AC are shown in Figures 2.4, 2.5 and 2.6. In Figures 2.4

and 2.5 we show an adiabatic/Sod shock tube test, where gas is initially stationary but with large

discontinuities in the density and energy distributions on either side of x = 0. The gas is then

allowed to expand, causing a shock wave to propagate through the tube. Once again this test is in

3D, and the analytic solutions for ρ, vx, P and U are shown by the dashed lines. β=2α for all the

tests shown. Figure 2.4 shows that the change in the standard α and β viscosity parameters result

in poor capturing of the shock, magenta and blue points, as in Figure 2.3.

In Figure 2.5 the effect of AC is included, where the black points are the same as those in

the previous figure and represent αU = 0. Increasing αU to 1 or 2 has a much more subtle effect

than α, but can be seen to reduce the “blip” in U and P at the contact discontinuity. The points for

αU = 2 are beginning to over-smooth the shock, and if increased further will severely dissipate the

shock front discontinuity.

The importance of AC is much more evident from the Kelvin-Helmholtz test shown in

Figure 2.6, where the gas is set in two parallel streams of material with a 2:1 density contrast. The

left panels show the test with no AC, and the right with AC added and αU = 1. In the test with
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Figure 2.7: Top-down column densities of disc galaxies after 330Myrs of evolution with different
AV parameters. A simulation with the fiducial values of α = 1 and β = 2 is shown in the first
panel, with double and half these values in the second and third panels. The fourth panel shows a
simulation with β = 2 and individual α parameters for each particle in the range 0 < αi < 1.

active AC the thermal energy smoothly traverses the contact discontinuity. The run with no AC

keeps the different flows segregated throughout the test, with a clear discontinuity in the thermal

energy.

The impact of different artificial viscosity parameters in our simulations is shown in Figures

2.7 and 2.8. Here we show a simple galactic disc simulation with a four armed spiral pattern

(details of which will be discussed in Chapter 3) after 330Myrs of evolution. The four different

simulations show our standard parameters, α = 1, β = 2, double and half these values, and a

simulation where each particle has its own individual αi. The top-down column density plot in

Fig. 2.7 shows some differences with AV parameters. It appears that increasing the strength of

the AV causes the dilution of inter-arm structures, and decreasing the AV enhances them. The

calculation with variable viscosity appears similar to the standard values. Figure 2.8 clarifies this

difference somewhat by showing the temperature profile of the gas as a function of density. Here

we see that the calculations with higher or lower than the standard AV strength do not produce

the coldest regions present when using the fiducial values. The variable viscosity calculation has a

temperature distribution near identical to that of the standard values, though this could be a result

of both having β = 2. The main conclusion to draw from these figures is that there is not a large

difference in morphology and thermal properties when using the standard, weaker, or adaptive AV

parameters but using stronger than average values can cause artificial smoothing of morphological

features and a less populated cold phase ISM.

Similar tests to those shown for AV were performed for the αU parameter, with values 0,

0.5, 1 and 2. Both the top-down density distributions and the thermal properties of the gas were

effectively the same for the different values of αU . The only minor difference was a reduced pop-

ulation of the hottest ISM gas with the highest strength AC, αU = 2. The gas in the simulations

presented here is unlikely to have strong thermal discontinuities as present in the Kelvin-Helmoltz
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Figure 2.8: Temperature-density distribution from the same four simulations shown in Figure 2.7.
The small insert shows a histogram of T for each case. The standard AV parameters allow for the
development of cold ISM component, where CO is easily maintained. The impact of individual α
coefficients is marginal.

test, as any dramatic thermal change should be smoothed out by astrophysical cooling and strongly

coupled to density gradients which should be smoothed by standard AV. If there were some strong

thermal source that caused large temperature gradients in the gas then the choice of αU could be-

come more important. This could play a role in calculations including supernovae feedback, where

the resulting instantaneous thermal shockwave could produce strong thermal discontinuities.

The standard literature values of α = 1, β = 2 and αU = 1 appear suitable for capturing

the shock fronts in the tests shown here, to the capabilities of SPH. Lower values of α and β result

in a dramatic inability to reproduce shock features in thermodynamical quantities, as shown by

the colliding flows and sod tube tests ins Figures 2.3 and 2.4. Stronger values can be seen to be

beginning to add too much dissipation to the shocked front, evident from Figures 2.7 and 2.8. αU

had a much weaker effect, but is seen to reduce artefacts at the contact region in the sod tube test

(Fig. 2.5). We therefore adopt α = 1, β = 2 and αU = 1 throughout the remainder of this thesis.

Some improvement can be found in using individual values of α to avoid unwanted dissipation,

but the results shown in Figures 2.7 and 2.8 shows the effect of this is unnoticeable for the scales

investigated here.

2.2.12 SPH code specifics

Here we provide a brief description of the SPH codes used in this thesis. The main differ-

ences/similarities between the two codes are summarised in Table 2.1.

phantom

The phantom code is built specifically for non-gravitating problems, at high resolutions with a

low-memory footprint, and has been extensively adapted for MHD computations (Price & Feder-

rath 2010; Lodato & Price 2010; Tricco & Price 2012). The particles have individual smoothing

lengths and timesteps, the system is evolved using a leapfrog integrator, and neighbours found
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Characteristic phantom sphng

Neighbour finding Link list Binary tree
Time-step integrator 2nd order leapfrog 2nd order Runge-Kutta-Fehlberg

Gravity N/A Binary tree (or Grape board)
Dissipation Adapted Monaghan 97 + Conductivity Standard α-β

Kernel Cubic spline Cubic spline
Nneigh (3D) 58 58

Density evolution Newton-Raphson iteration Newton-Raphson iteration

Table 2.1: Summary of the main aspects of the two SPH codes used in this thesis.

using linked-lists for reducing computational effort with OpenMP and MPI parallelisation. Due to

a unique arrangement of the SPH equations, and separation of the average density terms in Equa-

tion 2.47, the density sums need only be calculated once on each timestep. This speed comes at a

cost, with no current implementation of particle self-gravity (which would require a much slower

tree-like neighbour finding algorithm).

ISM chemistry, cooling and simple galactic potentials were only recently incorporated into

phantom (Dobbs 2011a), but have not been well tested. Here we extensively tested the code,

leading to corrections in the particle timestepping. The main improvement was the inclusion

of a suite of gravitational potentials for use with galactic disc simulations, and are discussed in

Chapter 3.

sphng

The second SPH code utilised in this thesis is sphng (“SPH-Next-Generation”). An older code than

phantom, sphng is based on the original version of Benz et al. (1990) and has been substantially

modified since its creation. Notable improvements include the addition of accreting sink particles

(Bate et al. 1995), magnetic fields (Price & Monaghan 2004) and radiative transfer (Whitehouse

et al. 2005), as well as the standard variable smoothing lengths, individual timesteps and paralleli-

sation using both OpenMP and MPI. Most importantly is that sphng allows for the calculation of

gravitational forces. This allows for inclusion of point mass gravitating particles that are used to

represent the Galactic stellar component, the subject of Chapter 5.

The code has already been used extensively for galactic scale ISM modelling. These studies

include the effect of ISM cooling and chemistry (Dobbs et al. 2008), self-gravity (Dobbs 2008)

and stellar feedback (Dobbs et al. 2011).

Brief comparison between codes

Figure 2.9 shows simulations of simple, low-resolution galactic discs using the sphng (top: blue)

and phantom (bottom: red) codes. These snapshots are at 472 Myrs of evolution6 and show the top

down particle distribution, the temperature-density profile and the CO abundance (the calculation

6The evolution times frequently used in this thesis of 236, 354 and 472 Myrs correspond to 5, 7.5 and 10 code units,
determined from the gravitational constant, the distance and mass code units adopted; um = 1×105 M� and ud = 100 pc,

giving a time unit of ut =

√
u3

d/Gum = 47.2 Myrs.
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Figure 2.9: Simulations of gas in a disc galaxy constituting of 40000 particles with a total mass
of 4 × 109M�. The top row is from a simulation in phantom, and the bottom in sphng, both after
472 Myrs of evolution. The position, T and CO abundance of the SPH particles trace the same
global flow in codes, with minor differences resulting from inherent code differences listed in
Section 2.2.12. The chemical network are described in detail in Section 2.3.

of which is discussed in the next section). The simulation is of only 40000 particles, embedded in

a simple disc potential constructed to reproduce the flat Galactic rotation curve including a a four

armed spiral potential.

Comparing global quantities of the simulations from each code we see that they agree rea-

sonably well considering the different architecture. The position of the gas traces that of the spiral

arms, with small scale spurs peeling away at around R=5kpc. The temperature of the particles

behaves the same with density for both codes. There is a small population of particles that reach

higher temperatures in the range −24 < log10 ρ < −23 in the phantom run, though this only

amounts to 1% of the particles. The associated phase diagram shows that the gas has followed the

warm ISM track into the unstable region (left, Fig. 2.12), implying the phantom calculations allow

gas to maintain its warm nature longer in the thermally unstable region before rapidly cooling into

the cold ISM region compared to sphng. This could easily be the result of the different AV formal-

ism, or the different formulation of the SPH energy equation. The chemical evolution is similar

for both codes, showing only minor differences. The median values7 of the thermal energy, CO,

H2 and H I fractions agree between 0.5-10%, with CO giving the greatest discrepancy between the

codes. This CO is sub-cycled numerous times, and is an extremely sensitive function of density,

making slight differences in density evolution between the codes lead to moderate differences in

the CO abundance of individual particles.

7As the abundances vary on log scales their means are extremely sensitive to single particles having a slightly
increased density, which can differ easily between codes due to the different architecture.



2.3. ISM SPECIFIC PHYSICS 67

2.3 ISM specific physics

The physics so far discussed only covers hydrodynamical and gravitational forces. For the use of

SPH on galactic scales we must include additional physical effects, predominantly ISM heating

and cooling mechanisms. The various heating and cooling mechanisms have been adapted for

Galactic scale use in Dobbs et al. (2008), and will only briefly be discussed in Section 2.3.1. Of

paramount importance to the work presented here is the molecular content of the ISM. Rather

than assuming some constant molecular gas fraction that would linearly scale with gas density, we

evolve the gas content of each SPH particle individually. This is discussed in full in Section 2.3.2.

The various heating, cooling and chemical processes require a measurement of temperature,

determined by the equation T = µu(γ − 1)/R. This requires some value of the mean molecular

weight, defined by the ratio of mass density to number density (M/n) of all species of interest,

j. We can use the atomic weight, A j, of each species to make the calculation simply a sum of

number ratios of each species, χ, a.k.a. the abundance of each species8 with respect to H I, given

by n j/nHI. The mean molecular weight is then

µ =

∑
j M j∑
j n j

=

∑
j n jA j∑

j n j
=

∑
j χ jA j∑

j χ j
=

∑
j q j∑
j χ j

(2.52)

where we have divided through by the number density, and refer to the ratio by mass of each

species as q j = χ jA j. In the ISM there are a wealth of different species, but only a handful are

of significant abundance to contribute to the calculation above, specifically H I, He and H2 where

each has weights of AHI = 1, AH2 = 2 and AHe = 4. The abundance of H2 is evolved in our

calculations, so we know this at any point in the simulation, and as it is composed of hydrogen we

can formulate the H I abundance simply as χHI = 1 − 2χH2 . Helium is of little importance to the

simulations presented in this thesis, so we have fixed the abundance at χHe = 0.1 (Glover & Mac

Low 2007). This gives the following equation for the mean molecular weight

µIS M ≈ qHI + qH2 + qHe

χHI + χH2 + χHe
=
χHI + 2χH2 + 4χHe

χHI + χH2 + χHe
. (2.53)

In the case where the gas is entirely atomic we find µIS M = 1.27 and if the hydrogen is entirely in

a molecular state then µIS M = 2.33.

Several processes involved in the chemistry and cooling involve the heating/destructive ef-

fects of the local radiation field. Here we need to take into account the attenuation/extinction

effects from the column density of the surrounding material that effectively shield the target

atom/molecule from the incident photons. This manifests as an additional multiplicity factor that

reduces the reaction rate as a function of the optical depth of the surrounding medium, simply of

the form9 f = e−τλ . This can be through individual line absorption by certain species, such as in

H2 self shielding, or through continuous absorption by ISM dust grains. We can relate the opacity

8The number ratios and mass ratios are χ and q respectively, where for the species of interest we have qH2 = 2χH2

and qHe = 4χHe.
9This is solution of the radiative transfer equation in the absorbing only case, i.e. Beer’s Law, and will the subject

of further discussion in Chapter 5
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to a parameter called the “visual extinction”, Av, by τ = γAv, which is the difference in magnitudes

between the shielded and unshielded cases. The ratio of visual extinction has been seen to be a

constant ratio of the colour excess, E(B − V) = AB − AV , (Draine & Bertoldi 1996; Bergin et al.

2004), by amounts of either

RV =
AV

E(B − V)
≈

 3.1 In diffuse ISM

5.0 In dense clouds
(2.54)

Calculating the visual extinction is no easy task, but there exists a simple conversion between the

column density of the gas and the extinction using a visual extinction conversion factor, ACF
V , via

ACF
V = AV/Ncol = 5.348 × 10−22cm−2 (2.55)

where ACF
V is the extinction per unit column density (Ncol) for which we will use a constant value

throughout the work presented in this thesis unless stated otherwise. This relation was found

by measuring the colour excess as a function of column density in various Galactic sources and

noticing the ratio between them was roughly constant, with a slope E(B−V)/Ntot = ACF
V Rv (Bohlin

et al. 1978). The value above is the standard value from the work of Bohlin et al. (1978) but there

are several values in the literature. A statistical analysis by Güver & Özel (2009) find a value

20% greater than this standard, however, as we will show later in this section, ACF
V must change

by orders of magnitude to have a noticeable effect in our calculations. This extinction will come

into play in dust shielding factors in photon based reactions in dense regions. In several rates

the UV radiation field will be attenuated by a dust shielding factor, e.g. Gdust = fdustG0 where

fdust = e−γX ACF
v NHI . The values of γX adapt this relation slightly for specific target species (Glover

et al. 2010), and take values of 2.5 for cooling, H I and CO chemistry and 3.74 for H2 dust shielding

(which has additional self shielding attenuation).

In order to utilise Equation 2.55 we require a measurement of column density, which is

the density of material integrated spatially along the line of sight between two points. The column

density is somewhat difficult to compute while keeping the code relatively simple and streamlined.

A full treatment of column densities would require large neighbour calculations, scaling asO(N5/3)

compared to the O(N log N) for gravity or O(N) for nearest neighbour finding (Glover & Mac Low

2007). Instead we assume the column density is simply the local density times by some distance

measurement, li
N =

∫
nds ≈ nli (2.56)

where we have approximated the distance of integration by a distance relevant to that of the chem-

istry in question. The smallest is the general distance scale used for cooling and heating rates,

specifically PAH and photoelectric effects, where we adopt lcool = 10pc. The H I ionisation is

shielded on much larger scale, a value of lHI = 100pc, due to its chemistry mostly evolving in

sparser regions. Finally there is the length scale used in the evolution of H2 and CO, which evolves

in much denser regions than H I, hence has a smaller column density scale length lph = 35pc. The

latter of these comes from the typical distance to a B0 star, due to their large luminosity and higher

abundance than the more luminous O stars. This is the same method as adopted by Dobbs (2008),
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Figure 2.10: Cooling (left) and heating (right) functions discussed in the main text and utilised in
our calculations. We have included CI and SiI for comparison using abundances of 1% of their
ionised counterparts, but these are absent in our simulations. The pressure-density profile used is
similar to that shown in Fig. 2.12.

who investigate values of lph from 15-100pc, finding the amount of molecular gas is only weakly

coupled to this distance measurement.

2.3.1 Cooling and heating functions

The thermal evolution of the ISM can be separated into two distinct components,

U̇IS M = ΓIS M + ΛIS M, (2.57)

which are added into the standard SPH energy equation. We use the convention that Λ is en-

ergy loss (cooling) and Γ is energy gain (heating). The various heating and cooling processes

contributing to Λ and Γ are taken from the work of Glover & Mac Low (2007). In order for an

energy scheme to be relevant to the calculation there are numerous criteria that must be satisfied.

The species involved in the process must be abundant enough to ensure frequent collisions. The

energy required for the reaction must be of the order of the kinetic energy of the gas, and the

probability of the reaction (e.g. the Einstein coefficients) must be large enough for the process to

be sufficiently frequent. The various heating and cooling effects relevant to our calculations are

shown as a function of density in Figure 2.10, and are described individually briefly below. Due

to the complex nature of many of these rates, the cooling and heating is tabulated into numerous

arrays as a function of temperature at the beginning of the calculation. Rates that are collisional

in origin have a density dependance of n2, whereas those caused by direct photon interaction scale

as n.

The various heating and cooling processes are listed in Table 2.2, along with their corre-

sponding references. We refer the reader to these references for details and formulation of the

heating and cooling processes, and will only briefly discuss them here. ISM cooling comes from

a variety of mechanisms including H I collisional excitation, H2 vibro-rotational collisional exci-

tation, fine structure excitation of C II, Si II and O I, heat transfer between gas and dust grains, and
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Figure 2.11: Combination of the heating and cooling functions shown in Fig. 2.10. The atomic
(H I) cooling is shown for comparison but only dominates for a small number of particles in each
simulation. Si I and C I are not included in these total rates. The resulting heating and cooling
functions are of the same order of magnitude as a function of density.

the recombination of free electrons with PAH and dust grain surfaces. The dominant of these pro-

cesses are the fine-structure cooling lines in the mid to high density regime, with recombination

cooling becoming more important at lower densities (Fig. 2.10). Atomic and molecular hydrogen

cooling, while strong, only becomes significant in a small fraction of the ISM. These are shown

as the dashed lines in Fig. 2.10. We neglect the cooling effects of CO, but this is compensated for

by maintaining a constant fraction of C II for cooling purposes, and the fact that the C II and CO

cooling functions are similar (Glover & Jappsen 2007).

ISM heating is provided by two mechanisms; photo-electric heating on dust grains, large

molecules and PAH’s, and heating by cosmic-rays (right panel of Fig. 2.10). The photo-electric

heating is the stronger of the two, except in the densest regions where dust becomes significantly

shielded by the high column density ISM (Bergin et al. 2004). Cosmic-ray heating provides 20eV

per reaction and takes into account heating of all ISM species, though is predominantly the ioni-

sation of H I.

Process Description Reference
H I (atomic) cooling Electron collisional excitation/ Sutherland & Dopita (1993)

resonance line emission
H2 (molecular) cooling Vibrational/rotational excitation cooling Le Bourlot et al. (1999)

by collisions with H I, He and H2
Fine structure cooling C II, Si II and O I collisions with Glover & Jappsen (2007)

H I, H2, free e− and H II

Recombination cooling Free e− recombining with ionised gas Wolfire et al. (2003)
on PAH and dust grain surfaces

Gas-grain cooling Dust-gas collisional heat transfer Hollenbach & McKee (1989)
Cosmic-ray heating Temperature independent 20eV Goldsmith & Langer (1978)

cosmic-ray photons
Photo-electric heating UV e− excitation from dust and PAH Wolfire et al. (2003)

Table 2.2: Heating and cooling processes present in our ISM calculations.
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Figure 2.12: Thermodynamical properties in a simple disc galaxy simulation. Particle proper-
ties have been averaged in density space over the 1 million particles to clarify features. The
temperature of the gas plateaus around 10,000K, corresponding to the warm neutral/ionised ISM
component. A two-phase ISM is clearly seen in the P-ρ diagram, separated by an unstable region.
A small fraction of the gas follows the warm track higher with increasing density and drops down
further later in the unstable region.

The total heating and cooling rates are shown in Figure 2.11. We also show the effect of

the atomic cooling function, which dominates the hot medium, but this is only a small fraction of

the simulation particles (green dashed line). The heating and cooling is of comparable strength in

most places (as can be seen by eye). In the region of thermal instability near 1 atom cm−3 there is

a lot of variation in the cooling rates (this has been smoothed over in Figure 2.11 for clarity). This

is due to the splitting of the population between gas that falls into the pressure well and gas that

continues to travel up the warm branch of the phase-diagram before falling in, continuing to cool.

The resulting thermodynamic properties of the ISM gas in a “standard” simulation are

shown in Figure 2.12. The temperature and pressure profiles as a function of number density

are shown for gas in a disc subject to the multitude of heating and cooling effects outlined above.

Properties have been binned in density space for clarity, as there is a large variation in the mid-

density range. The temperature profile in the left panel shows a clear plateau around 10000K,

where the gas condenses almost isothermally up to a density of 1 atom cm−3. Here the gas begins

to cool and experiences a drop in pressure, entering the thermally unstable region (the shaded area

in the right panel of Fig. 2.12). The gas can continue to cool and contract, becoming molecular in

the process. These phase curves are a direct result of the heating and cooling functions, and show

a good match to others in the literature (e.g. Field et al. 1969, Wolfire et al. 1995, Liszt 2002)

showing a clear distinction between warm and cool phases (see Section 1.4).

2.3.2 Chemistry

One of the most important aspects of the calculations is the tracing the chemical evolution of

the gas. As hydrogen is the most abundant gas in the ISM, the first order chemical processes of

this gas are some of the most important in the ISM. Hydrogen is allowed to dissociate over time

(and to recombine), and to become molecular at higher densities. In order to create molecular
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emission maps we must also include a prescription for creating CO. This process is much more

complex than the other reactions as it is dependent on numerous intermediate species between the

atomic stage and the creation of CO. The ionisation processes alone for the species relevant to

CO formation encompass a staggering amount of different processes (Glover & Jappsen 2007; De

Becker 2013). If we were to attempt to include only molecular hydrogen and carbon monoxide,

then the data in the UMIST database (McElroy et al. 2013) suggests you would need to encompass

approximately 800 and 400 reactions respectively (assuming that database is complete!). This is

clearly not computationally feasible, especially in the case of a galactic scale simulation where

our time and spatial dimensions far exceed those important chemically. Instead it is prudent to

limit ourselves to only those reactions deemed most important in each case, sacrificing some of

the accuracy for computational simplicity.

The chemical evolution of each species (i.e. the evolution of the number density, nX) is

encompassed by a single ordinary differential equation of the form

dnX

dt
= CX − DXnX , (2.58)

so that the density of species X at the next timestep, t + ∆t, is

nX(t + ∆t) = nX(t) +
dnX

dt
∆t (2.59)

including a creation coefficient, CX , and a destruction coefficient, DX , unique to the species and

often a complex function of density, temperature, and the abundance of other species. For example,

the rate of H2 formation will depend heavily of the abundance of atomic hydrogen. The exact form

of our H I, H2 and CO rate equations are discussed in the following sub-sections. Each particle

in our calculations carries with it a chemistry array of the form ~χa = (χHI, χH2 , χCO)|a, which

is (1, 0, 0) initially. The chemistry arrays keep track of 3 distinct parameters, the H I ionisation

fraction, the H2 ratio and CO abundance which have the values of (0, 0, 0) and (1, 0.5, χCII) in the

low and high density extremes respectively. The electron and proton abundances are also tracked,

but χpr is simply χpr = 1 − χHI and χel = 1 − χHI + χc where χc is the constant free electron

abundance, a result of the ionisation of species other than H I.

The regime of negative abundances should be avoided at all times, i.e. the right hand

side of Equation 2.59 should always be > 0. To ensure this we must include some chemical

timestepping criteria (Glover & Mac Low 2007; Dobbs et al. 2008). This can be calculated from

dtdest = −nX/(CX − DXnX). The sub-stepping time frame is then taken to be 10% of the time

taken to completely destroy the species of interest (dtchem = 0.1dtdest), ensuring negative abun-

dances are avoided. If creation is occurring, then the chemistry is sub-cycled on some fixed scale

(dtchem = dthydro/200). The sub-stepping used to avoid negative abundances is not applied to the H I

chemistry, as the abundance never reaches into this range in our simulations. Some sub-stepping

is still applied however, as the chemistry is at least evolved on the cooling time-scale (Equation

2.41). The CO evolution is done inside of the H2 evolution, as the two are intrinsically linked, and

the CO evolution is also allowed to sub-step further if required.

As the chemistry is evolved as in Equation 2.58 there is expected to be some loss of accuracy
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Figure 2.13: The individual components in the creation and destruction terms for H I (left), H2
(middle) and CO chemistry (right). The density-temperature profile is that used in Figure 2.12
where the rates are calculated at fixed abundances of ~χ = (0.94, 1 × 10−6, 1 × 10−15).

over large integration time-scales (as opposed to the 2nd order integrations used to evolve the SPH

quantities). However, by evolving the chemistry on the cooling time-scale, as well as including

additional chemistry sub-stepping if required, we hope to minimise this. Any sources of error

involved in the order of integration are also considered to be minimal compared to the simplistic

nature of the chemistry itself.

Three figures will be referenced when referring to the chemical evolution. Figure 2.13

shows the various components contributing to the various creation and destruction rates of each

species and Figure 2.14 shows the resulting evolution tracks for each species. The latter was cre-

ated using a simple 1D code used to test the chemistry, that evolves abundances alone without

various thermodynamical properties, but with a fixed P-T profile representing the general be-

haviour of the ISM cooling function (as in Fig. 2.12). Figure 2.15 is similar to Figure 2.14 but

shows the effect of changing various parameters important for the chemistry of H2 and CO. All

the various chemical reactions are listed in Table 2.3 and the multitude of required parameters are

included in Table 2.4.

HI chemistry

At the most basic chemical level we must include the effect of the ionisation of neutral hydrogen

gas, creating an abundance of H II and free electrons. The various atomic hydrogen processes have

been coded by Glover & Mac Low (2007) and included in our codes (see Table 1 of their paper).

The H I chemistry coefficients included are

CHI = krecnenp + kgrnpn (2.60)

and

DHI = ζCR + kcine (2.61)

where we include the effects of gas-phase recombination, krec, formation on grain surfaces, kgr,

cosmic ray ionisation, ζCR and free electron collisional ionisation, kci. The gas-phase recombina-
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tion rate of hydrogen, H II + e− → H I + γ, is that of Ferland et al. (1992) who produce a grid

of temperature based recombination rates and approximate temperature dependent functions. The

exact form is from Glover & Jappsen (2007), given as

krec = 2.753 × 10−14(315614/T )3/2(1 + (115188/T )0.407)−2.242 (2.62)

which is purely temperature dependent, but the actual recombination rate is a function of ne and

nHII which are heavily density dependent. The gas phase reaction is often an order of magnitude

lower than the grain phase, though will exceed the grain phase in the highest density regions.

The grain phase recombination, H II + e− + grain→ H I + grain, is given in Weingartner & Draine

(2001) as;

kgr =
1.22 × 10−13

1 + 8.074 × 10−6ψ1.378(1 + 508.7T 0.01586ψ−0.4723−1.102×10−5 ln T )
(2.63)

with the effect of grain charging is characterised by ψ parameter, given by ψ = Gdust
√

T/ne. The

ionisation of H I comes from a combination of cosmic ray ionisation and ionisation by collisions

with free electrons, H I + e− → H II + 2e−, from Abel et al. (1997) at a rate

kci = exp

 8∑
i=1

ci(ln T )i

 (2.64)

where the ci parameters were fit to experimental data. This rate decays extremely fast with in-

creasing density (and decreasing temperature), as seen in Fig. 2.13, and so will only add to ad-

ditional ionisation already caused by cosmic rays. The evolution track of H I ionisation is shown

in Fig. 2.14 (left panels). The figure shows that the ionisation is of little importance in the cold

phase of the ISM (n > cm−3) and has a near linear dependance on density in the warm phase. The

maximum ionisation fractions seen in our calculations are approximately 15%. While seemingly

low, it is not surprising considering we are not effectively modelling the hot ISM component.

An important note is that we are talking about the hydrogen ionisation fraction above. The

actual abundance of atomic hydrogen is the amount of unionised hydrogen that is not locked in

molecular form, χHI(1 − χH2).

H2 chemistry

The chemistry of H2 used here is taken from Bergin et al. (2004) and Draine & Bertoldi (1996)

based on the work of Hollenbach et al. (1971), and used by Glover & Mac Low (2007) and Dobbs

et al. (2008). The creation and destruction terms are given by

CH2 = Rgr(T )ntotnHI (2.65)

and

DH2 = ζCR + ζH2(NH2 ,Ntot). (2.66)
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Figure 2.14: Chemical evolution for a simple 1D code with a fixed P-T profile (Figure 2.12).
Moelcular processes are a strong function of total gas density, with abundances displaying a sharp
increase in the region of thermal instability of the ISM phase diagram. The ionisation fraction of
H I also scales with density, reaching a maximum ionisation fraction of 15% in our calculations.
The high density limits for the H I, H2 and CO abundances of 1, 0.5 and χCII are shown as dashed
lines.

where H2 is formed on grain surfaces and is destroyed by photo-dissociation and cosmic rays. The

formation of H2 on grain surfaces occurs at a rate of

Rgr(T ) = Rgr(T◦)S
√

T cm3s−1K−0.5, (2.67)

where Rgr(T◦) = 2.2 × 10−18cm3s−1 and the grain formation efficiency is S ≈ 0.3. The efficiency

factor should be a function of gas and grain temperatures, but we use a fixed value for simplicity

(Dobbs et al. 2008). The destruction of H2 is a result of cosmic ray photo-ionisation, ζCR, and

a local photo-destruction term, ζH2 , which is a function of the column density and the visual

extinction, Av. The term takes the form as given in Draine & Bertoldi (1996)

ζH2(NH2 ,Ntot, Av) = fshield(NH2) fdust(Ntot)ζH2(0) (2.68)

where the constant raw/unshielded photo-dissociation rate is ζH2(0) (with a UV field strength of

G◦ built in). The additional terms are the dust shielding/attenuation, fdust and the self-shielding,

fshield (i.e. shielding by absorption of other H2 molecules). The dust shielding factor is similar to

that used in the cooling, specifically given by

fdust = e−τd,1000 (2.69)



2.3. ISM SPECIFIC PHYSICS 76

Figure 2.15: Similar evolution tracks as Figure 2.14 but showing the effect of different values of
ACF

V , lph, Rgr(T◦) and C II on the formation of H2 and CO.

where the optical depth for shielding is taken at 1000Å. This is given by the τd,1000 = γH2 AV where

the visual extinction can be calculated from the column density of the gas and γH2 = 3.74 (Glover

et al. 2010) for the diffuse ISM where RV ≈ 3.1, but could grow much greater in the dense, RV ≈ 5,

ISM. The self shielding factor is given by

fshield =
0.965

(1 + x/b5)2 +
0.035√

1 + x
exp

[
−8.5 × 10−4

√
1 + x

]
(2.70)

where x = NH2/5 × 1014 cm−2 and b5 is the Doppler broadening width of the line absorption in

units of 105cms−1, where we adopt 3km s−1 (Lee et al. 1996), and approximate column densities

by NX = nXl.

The cosmic ray rate is only significant in regions of high column density gas where H2 is

well shielded against the surrounding UV field (middle, Fig. 2.13). The grain formation rate is

predominantly a linear function of density, with the
√

T dependance only having a marginal effect.

The majority of parameters included in the above equations do not have a very strong effect on

the global H2 production, illustrated by Figure 2.15. The impact of varying lph and ACF
V is only

noticeable in the mid-density regime. Changes in the extinction conversion factor, ACF
V , need to

be of around two orders of magnitude to see a noticeable difference H2 production. Fortunately

the parameter with the greatest uncertainty, the distance for column density calculations, shows

to only impact the density range of 1cm−3 < n < 10cm−3. Even then the change is only minor

considering the distance is changed from 3.2-100pc.

CO chemistry

The chemistry underlying the production of CO is somewhat more complicated than that of H2

due to the wealth of intermediate species between the atomic and final molecular stage of CO.

Previous studies rarely attempt to model all the species involved in CO formation/destruction due

to the cripplingly slow speed it which it would take to evolve all these species, and their ions.
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Instead works in the literature focus on what they deem to be the most important rates for the

problem at hand. In Glover et al. (2010) the authors compare some of these different approaches

including (ordered by complexity) Glover et al. (2010), Keto & Caselli (2008), Nelson & Langer

(1999) and Nelson & Langer (1997), ranging from modelling 218 to 4 reactions. The authors find

that more reactants doesn’t necessarily imply better accuracy, and that if the primary concern is

the distribution of galactic CO then even the simplest model does a good job compared to the those

with much greater complexity. In light of this we utilise the simple model of Nelson & Langer

(1997)10. In this model C II is converted to CO through the production of some intermediate

hydrocarbon step, denoted CHX, resulting from an initial reaction of C II with H2 (at a rate k0).

An intermediate stage of the neutralisation of CH+
2 to CHX (encompassing CH2 and CH) is not

modelled, and is assumed to occur on timescales much smaller than anything else in the CO

formation process. The CO and CHX are subjected to photodestruction which is several orders of

magnitude stronger than cosmic ray ionisation in most regions. The creation and destruction rates

of CO are

CCO = k0nH2nCIIβ (2.71)

and

DCO = ζCO(Ntot), (2.72)

where β quantifies the efficiency of the reaction CHX + O I → CO + HX (at a rate k1) over the

photodestruction of CHX. This is represented by

β =
k1nOI

k1nOI + ζCHX(Ntot)
. (2.73)

The abundances of O I and C II are needed to quantify the production of CO, however as we

have already mentioned these are not species we follow in our calculations. We make the basic

assumption that O I and C II are either in their original forms or locked into CO, i.e. nCII(t) =

nCII(0) − nCO(t) and nOI(t) = nOI(0) − nCO(t). The two separate photo-destruction rates are given

by

ζCHX(Ntot) = Gdust ζCHX(0) (2.74)

and

ζCO(Ntot) = Gdust ζCO(0) (2.75)

where ζCHX(0) = 5×10−10s−1 and ζCO(0) = 1×10−10s−1 and the UV field coupled to the dust atten-

uation is similar to previous sections, Gdust = G◦ fdust = G◦e−τUV . The visual extinction is grouped

together for both processes and calculated using the total column density as τUV = γCO,CHX AV

where γCO,CHX = 2.5 (Nelson & Langer 1997). There have been a few simplifications in this

model, not including the simplification of a limited number of tracked species and reactions. No

self-shielding of CO, or shielding by H2 is included ( fH2 , fCO), which will inhibit the destruction

of CO in high density regions. Tabulated forms of these shielding factors are given by (Lee et al.

10We actually use the formulation from Glover & Clark (2012) as it appears there are a couple of minor typos in
the equations of Nelson & Langer (1997) that allow CO formation in the complete absence of H2. Though this change
made only very minor difference to the CO abundance, and only at the highest densities.
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1996), but we maintain standard form from Nelson & Langer (1997) as above. We also do not

include cosmic ray ionisation in the CO chemistry as the photodissociation rate is many orders

of magnitude greater. Even when using 1000 times our fiducial value of ζCR there was no visible

effect on the evolution track of CO in shown in Fig. 2.15. There is also the assumption that the

dust shielding factors (γX) are the same for all reactions in the CO chemistry. In the substantially

more complicated chemical network of Nelson & Langer (1999) the authors use separate factors

of γCO = 3 and γCHX = 1.5. Individual coefficients for the CHX components are given in Glover

et al. (2010) as γCH =1.2-2.8 and γCH2 =1.7-2.3 depending on whether the reaction is dissociative

(former) or ionising (later), though the incorporation of these would require a much more sophis-

ticated network. This additional shielding is of little importance in the simulations shown here,

as once present in the coldest regions it is very stable, there is no efficient heating mechanism to

break it apart once there. Thus any additional shielding to the photo-dissociation is not needed, as

the CO is already saturated. If we were to include additional feedback mechanisms then additional

shielding may be required.

The behaviour of CO with varying ACF
V or lph is similar to H2 in Figure 2.15. The broad

evolution is insensitive to small variations in either parameter. However, with either lph as low

as 3.2pc or an extinction factor two orders of magnitude lower than fiducial value then C II is no

longer fully saturated into CO in the range of densities modelled in our calculations.

Reaction Description Reference
H II + e− + grain→ H I + grain Grain surface formation Weingartner & Draine (2001)
H II + e− → H I + γ Gas-phase recombination Ferland et al. (1992)
H I + e− → H II + 2e− e− collisional ionisation Abel et al. (1997)
H I + c.r.→ +H II + e− Cosmic ray ionisation Glover & Mac Low (2007)
H I + H I + grain→ H2 + grain Grain surface formation Bergin et al. (2004)
H2 + γ → 2H I UV photodissociation Draine & Bertoldi (1996)
H2 + c.r.→ H+

2 + e− Cosmic ray ionisation Bergin et al. (2004)
C II + H2 → CH+

2 + γ Radiative association Nelson & Langer (1997)
CH+

2 + various→ CHX + various Rapid neutralisation∗ -
CHX + O I→ CO + HX Gas phase formation -
CHX + γ → C + HX UV photodissociation -
CO + γ → C I + O I UV photodissociation† -

Table 2.3: Processes present in our chemical model focussed on tracing the evolution of H I, H2
and CO with their relevant references.
∗ Process is intermediate and is assumed rather than fully represented.
† C I is not present in our chemistry, but is assumed to very rapidly photoionise to C II.
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Term Description Value
lcool Distance measurement for cooling 10 pc
lHI Distance measurement H I chemistry 100 pc
lph Distance measurement for H2 and CO chemistry (B star) 35 pc

Rgr(To) H2 grain formation rate at To = 100K 6 × 10−18cm3s−1

k0 CHX intermediate species formation rate from C II 5 × 10−16 cm3s−1

k1 CO formation rate from O I + CHX 5 × 10−10 cm3s−1

ζH2(0) Unshielded H2 photodissociation rate 4.17 × 10−11 s−1

ζCHX(0) Unshielded CHX photodissociation rate 5.00 × 10−10 s−1

ζCO(0) Unshielded CO photodissociation rate 1.00 × 10−10 s−1

ζCR Cosmic ray ionisation rate 1.00 × 10−17 s−1

γH2 Dust shielding factor of H2 photodissociation 3.74
γCO,CHX Dust shielding factor of CO & CHX photodissociation 2.50

b5 Doppler broadening factor for H2 3 km s−1

Tdust Dust temperature for heating/cooling 10 K
ACF

V Visual extinction conversion factor (AV/Ntot) 5.348 × 10−22 cm−2

Go Strength of the UV radiation field in Habing units 1.56
χHe He abundance 1.0 × 10−1

χel free e− abundance 2.0 × 10−4

χCII CII abundance 2.0 × 10−4

χSiII SiII abundance 3.0 × 10−5

χOI OI abundance 4.5 × 10−4

χCI CI abundance 0.0
χSiI SiI abundance 0.0

Table 2.4: Various parameters and their adopted values for the various chemistry and cooling
routines used in this thesis, unless otherwise specified.



2.4. CHAPTER SUMMARY 80

2.4 Chapter summary

In this chapter the we have outlined the main computational details of our calculations presented

in the remainder of this thesis. In Section 2.2 we discussed the primary workhorse of our investi-

gation, smoothed particle hydrodynamics, used to simulate the evolution of the ISM on a galactic

scale. The SPH density formulation was constructed, and momentum and energy rate equations

we derived. These including the effect of hydrodynamical and artificially dissipative forces, taking

the general forms

Dv/Dt = fhydro + fAV + fext, (2.76)

DU/Dt = U̇hydro + U̇AV + U̇AC + U̇IS M (2.77)

where fext will be discussed further Chapters 3 and 5. In the former case this is due to purely

analytical, smooth potentials, while in the later this is a combination of analytical potentials and

the evolution of an N-body stellar component. The importance of artificial dissipation was also

discussed ( fAV , U̇AV , U̇AC), required to correctly capture shocks in the converging flows and con-

tact discontinuities, illustrated with a few well known test cases. The two SPH codes utilised in

this work were briefly discussed, and a few test calculations were presented to illustrate correct

behaviour of the codes in a galactic context.

Section 2.3 presents the main adaptations to required to track the molecular content of the

ISM. The thermal profile is reproduced by the inclusion of the U̇IS M term. This includes the var-

ious heating and cooling mechanisms of importance to galactic scales, and is discussed briefly in

Section 2.3.1. A simple chemical network is also included that allows the tracing of the abun-

dances of H I, H2 and most importantly CO. The chemical processes are outlined in Section 2.3.2

including the effects of grain formation, gas phase formation, cosmic ray ionisation and photo-

destruction. While seemingly rudimentary, the chemistry includes the basic processes required to

track the global distribution of molecular gas. If smaller scale structures such as individual clouds

were the subject of investigation then the chemical network, and possibly cooling processes, would

need to be substantially more complex.

To actually construct our synthetic observations we must use another numerical technique

to calculate the emission from the ISM gas. A brief discussion of the theory of radiative transfer,

and the torus code used is included in Chapter 4.



3
Simulations with fixed analytic potentials I:

armed and barred simulations

“In the beginning the universe was created. This made a lot of people very angry and

has been widely regarded as a bad move.”

– Douglas Adams, The Hitchhikers Guide to the Galaxy, 1978

3.1 Introduction

In order to construct synthetic emission maps, numerical simulations are needed to generate the

kinetic, thermodynamical and chemical properties of the ISM gas. The simplest way to do so is to

subject the gas to a number of gravitational fields that represent the various mass components of

our Galaxy. This includes the central bulge, the disc in which the Earth resides, and the dark matter

halo, required to reproduce the observed flat rotation curve. With these three components we can

simulate a basic disc galaxy structure. The arms and bar are second order mass components that,

while being weak in comparison to the bulge-disc-halo system, define the characteristic morphol-

ogy of any disc galaxy. These are added through the addition of further gravitational fields, and are

altered to investigate the effect of the morphology on the emission features seen in observations.

The arm parameters under investigation are the rotation speed, the arm number and the pitch angle

while for the bar we focus on the pattern speed and orientation. We also test different formulations

of arm and bar structures, and the effect of the mass of each component.

Before including both arm and bar components together in the same simulation, the effects

of each individually are studied. When creating synthetic observations it became clear that there is

a significant parameter space that also needed exploring, the position and velocity of the observer.

81
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A simple fitting routine was developed to narrow down the parameter space for each component

and find the best fitting observer coordinates. This was done by the use of simple l-v maps not

built using radiative transfer, and is discussed later in this chapter.

The combined arm and bar simulations, and the process of creating full radiative transfer

synthetic observations, is the subject of Chapter 4.

3.2 Galatic potentials

The most important ingredient when simulating galactic scales is the inclusion of the gravitational

force. For ISM gas this is dominated by the gravitational attraction of the stellar and dark matter

distribution. The computation of the gravitational forces from the many billions of stars upon

each SPH gas particle would be cripplingly slow for the calculation. Instead the large scale mat-

ter distribution is approximated by a continuous density distribution, significantly reducing the

computational effort. This density distribution is related to the gravitational potential, Φ, by Pois-

son’s equation, ∇2Φ = ρext(r)4πG. The force on each particle is then simply calculated from the

derivative of the potential

~fext,a = m
D~va

Dt
= −~∇aΦ(~ra) (3.1)

which can easily be included in the SPH momentum equation (Equation 2.76). The actual form

of the full galactic potential must take into account the density distribution of the Galaxy in all

components. The potential is decomposed morphologically into a halo, a disc, a bulge, numerous

arms, and at least one bar component

Φ($, z, φ, t) = Φd($, z) + Φb($, z) + Φh(r) + Φbar($, z, φ, t) + Φsp($, z, φ, t) (3.2)

where we will primarily working in cylindrical polar co-ordinates from here onwards ($2 = x2+y2

and r2 = $2 + z2).

3.2.1 Axisymmetric potentials

While some previous studies have used potentials to produce completely flat rotation curves (e.g.

Binney & Tremaine 1987), this fails to capture peak velocities near the galactic centre. This is

shown in the rotation curve in Figure 3.1, using rotation curve data from Sofue (2012). Early tests

with simple single component rotation curves produced l-v diagrams that were too-shallow in ve-

locity towards the Galactic centre, because by construction these flat rotation curves are decaying

in velocity rather than increasing at R = 1kpc.

A true Milky Way model must reproduce a semi-flat rotation curve with a magnitude of

around 220kms−1 near the Solar position (≈ 8kpc). We use an axisymmetric disc, bulge and halo

based on that of Pichardo et al. (2003) and Allen & Santillan (1991). The disc component is the

standard Miyamoto-Nagai form (Miyamoto & Nagai 1975) with a potential of

Φd($, z) =
GMd

($2 + [ad + (z2 + b2
d)1/2]2)1/2

, (3.3)
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(a) Galactic rotation curve (b) Galactic resonance features

Figure 3.1: Left: rotation curve used in our simulations resulting from axisymmetric galactic po-
tentials with observed rotation curve data from Sofue (2012). The dashed line is the combined
bulge-disc-halo model from Allen & Santillan (1991) shown individually in green-blue-red re-
spectively. Right: rotation speeds from our adopted Milky Way rotation curve. The dashed and
dot-dashed lines show the 4:1 and 2:1 resonances calculated from the epicycle frequency, κ. Up-
per and lower shaded regions show the possible region encompassed by the arm and bar pattern
speeds, with maxima and minima from Gerhard (2011).

where ad controls the radial scaling and bd the vertical. The bulge is described by a spherical

Plummer potential (Plummer 1911),

Φb(r) = − GMb√
r2 + r2

b

, (3.4)

with rb controlling the radial scaling, and r2 = x2 + y2 + z2. The spherical dark matter halo is taken

from Allen & Santillan (1991),

Φh(r) = − GMh(r)
r

− GMh,0

γrh

[
− γ

1 + (r/rh)γ
+ ln

(
1 + (r/rh)γ

)]rh,max

r
,

where rh,max = 100 kpc is the halo truncation distance and γ = 1.02. The mass inside the radius r

of the halo is given by

Mh(r) =
Mh,0(r/rh)γ+1

1 + (r/rh)γ
. (3.5)

The various axisymmetric potential parameters are fixed throughout all simulations to best match

the rotation curve of the Milky Way and are given in Table 3.1, taken from Allen & Santillan

(1991). This same bulge-disc-halo model was found to also provide a good match with more

recent rotation curve measurements in Irrgang et al. (2013) but with slightly different values than

those in Table 3.1. We choose to retain our values in Table 3.1 however, as they provide a better

match to the inner Galaxy while keeping the rotation curve high in the outer disc. There are

numerous other potential sets in the literature we could have chosen to represent the axisymmetric

component, and we will in fact use a slightly different model in Chapter 5.

This is a very idealised and simplified perception of the gravitational field of our Galaxy.
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Term Description Value
Md Disc mass 8.56 × 1010 M�
Mb Bulge mass 1.40 × 1010 M�
Mh,0 Halo mass 10.7 × 1010 M�
ad Disc radial scale length 5.30 kpc
bd Disc vertical scale length 0.25 kpc
rb Bulge radial scale length 0.39 kpc
rh Halo radial scale length 12.0 kpc

Table 3.1: Fixed Galactic axisymmetric potential parameters used to reproduce the observed rota-
tion curve.

The gravitational attraction of the gas disc has been neglected, which is assumed to be negligible

compared to that of the stellar disc. The stellar disc is a single component system, though there has

been some evidence that the stellar disc is composed of two distinct populations (Gilmore & Reid

1983; Bovy et al. 2012). The bulge is assumed to be spherical, though there is evidence that the

bulge is flattened, and non-axisymmetric (e.g. Dwek et al. 1995, McWilliam & Zoccali 2010). For

simplicity we assume all asymmetry towards the Galactic centre is reproduced by the bar, and that

the spherical bulge is sufficient to reproduce the features of the rotation curve. As little is known

about the dark matter structure of our Galaxy, a spherically symmetric model that provides a good

fit to the rotation curve is assumed sufficient. Another feature of minor importance to the work

presented here is the warp of the Galactic disc (e.g. Kalberla et al. 2007), though as the warping

is minor within R < 20 kpc it is assumed to be of little importance.

3.2.2 Spiral arm potentials

The spiral and bar features are produced by subjecting the gas to further stellar potentials. When

using fixed analytic potentials the structure of the Milky Way is assumed to be that of a grand de-

sign galaxy, driven by some stable stellar density wave. The potentials used here have a constant

strength throughout the simulation. The radial extent of structures is determined by the location

of the inner and outer Linblad resonances, ILR and OLR, which are in turn determined by the

pattern speed of the density wave, Ωbar or Ωsp. The frequencies resulting from our rotation curve

are shown in the right panel of Fig. 3.1. For example, a 4-armed spiral perturbation with a pat-

tern speed of 20 km s−1 kpc−1 has ILR, OLR and CR located at a radius 7.0, 14.4 and 10.9 kpc

respectively, shown by where the Ω ± κ/4 and Ω lines cross 20km s−1 kpc−1 in Fig. 3.1.

Bar and spiral potential parameters we choose to vary are summarised in Table 3.2. These

include the pitch angle of spiral arms (α), the number of spiral arms (N), and the pattern speed of

the bar and arms (Ωb,Ωsp). We also investigate the effects on altering the strength of the potential

perturbations, though we only use two separate values for the arm and bar components. The orien-

tation of the bar/arm features to the observer (lobs), and the observer’s velocity and Galactocentric

distance (Vobs,Robs) are also investigated but these are varied during the construction of l-v maps.

Our choice of parameters is broad and numerous to allow for an unbiased study, with as little

recourse as possible to previous findings. There is both observational and numerical evidence for

different pattern speeds for the arm and bar components in our Galaxy (e.g. Gerhard 2011 and
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Term Description Values
Ωb Bar pattern speed 20, 40, 50, 60, 70km s−1 kpc−1

θb Bar orientation 0◦, 10◦, . . . , 50◦, 60◦

Ωsp Arm pattern speed 10, 15, 20, 25, 30km s−1 kpc−1

α Arm pitch angle 5◦, 10◦, 12.5◦, 15◦, 20◦

N Number of arms 2, 4
|Φsp| Relative arm ×1, ×2

potential strength
Robs Radial position 7, 7.5, 8, 8.5, 9 kpc

of the observer
Vobs Circular velocity 200, 205, . . . , 225, 230 km s−1

of the observer
lobs Azimuthal position 0◦, 10◦, . . . , 350◦, 360◦

of the observer

Table 3.2: Variable parameters of the simulations, including those of the arm/bar potentials and
those used in defining the observer co-ordinates. Parameters in bold define the refined parameter
space used in calculations with both bar and arm potentials in Chapter 4.

Sellwood & Sparke 1988), though some simulations are performed with equal speeds for both

components.

In Dobbs et al. (2006) a logarithmic spiral potential from Cox & Gómez (2002) was used,

hereafter referred to as CG arms. This is our primary arm model, and takes the form

Φsp(r, φ, z) = 4πGhzρ◦ exp
(
−r − ro

Rs

) 3∑
n

Cn

KnDn

[
sech

(
Knz
βn

)]βn

cos
(
N

[
φ − tΩsp − ln(r/ro)

tan(α)

])
(3.6)

where

Kn = nN/r sin(α), (3.7)

Dn =
1 + Knhz + 0.3(Knhz)2

1 + 0.3Knhz
, (3.8)

βn = Knhz(1 + 0.4Knhz), (3.9)

and the constants are the same as those used in Dobbs et al. (2006), namely hz = 0.18kpc, Rs =

7kpc, r0 = 8kpc, C = (8/3π, 1/2, 8/15π) and a fiducial spiral density of ρ0 =1 atom cm−3. These

spiral arms take the form of a three part sinusoidal perturbation that exponentially decays with

increasing radius. The three component sum nature of the potential makes the potential relatively

flat in the inter-arm region compared to a purely sinusoidal case, and more strongly peaked (Cox

& Gómez 2002).

The logarithmic spiral perturbation of Pichardo et al. (2003) is also included in our cal-

culations due to its apparent effectiveness at creating four armed spiral patterns in the ISM gas

from only a two armed stellar potential (Martos et al. 2004), which has been proposed by some

to be the reason behind the 4/2 armed model dichotomy in the literature (Churchwell et al. 2009).

This potential is substantially more complicated and represents the spiral arms as a superposi-

tion of oblate spheroids (Schmidt 1956; Ollongren 1967) whose loci are placed along a modified
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logarithmic spiral arm function of the form

f (r) =
1
N

ln
(
1 + (r/ro)N

)
cot(α) (3.10)

instead of the standard shape function of

f (r) = ln(r/ro) cot(α) (3.11)

stemming from the r = roetan(α)φ logarithmic nature. This allows for a smooth turn off from a spiral

to bar-like structure at some small radius. Each of the spheroids themselves have an linear internal

density profile of ρss(a, r) = p0(a, r) + ap1(a, r) where a is the distance to the spheroids centre.

The authors suggest the density parameters p0(r) and p1(r) themselves follow either a linear or

logarithmic decay with increasing distance, r, from the Galactic centre. They find the logarithmic

decrease and lower arm mass is most effective at creating secondary arm structures in the gas, so

we adopt the same here. This potential had to be constructed using the work of Ollongren (1967)

and Schmidt (1956) as it was not given in Pichardo et al. (2003). As this was a discrete analytic

function, a derivative could easily be computed for force calculations. The full solution for the

forces in the radial and azimuthal directions is given in Appendix B.1. This potential is referred to

as the PM model for the remainder of this thesis.

Upon integration into the SPH code it became clear that this potential was creating a bottle-

neck in the run-time of the simulation. This is a result of the sum of forces over each individual

spheroid in the arms, which proved to be very time-consuming at high resolutions. To combat

this a 3-dimensional grid of the potential was written to a file to be read in at the start of the

simulation and used throughout for all ensuing force calculations. Forces were then computed by

finite differences between the potential in neighbouring grid-cells, and linear interpolation inside

each cell. Sufficient resolution of the grid was determined by comparison to the analytic form of

the forces. The rotation of the arms was produced by simply rotating the particles to the frame

of the arms, evaluating the forces, rotating the force field back to the position of the particle and

applying it (also detailed briefly in Appendix B.2).

All of our arm models are assumed to be logarithmic, with constant pitch angles and are

evenly spaced azimuthally. However, as mentioned in Chapter 1, there is evidence of the individual

arms of the Milky Way being best fit by different pitch angles.

3.2.3 Bar potentials

The dynamics in the inner Galaxy (R < 4kpc) is believed to be dominated by a bar structure,

in essence a spheroid elongated along one axis parallel with the Galactic disc. Models for the

bar vary greatly in complexity. These range from those tuned to match a specific density profile

constrained by observations, to ones that simply give a trough of gravitational potential every π

radians. Several separate bar potentials have been tested to see which functional representation

best matches the l-v features of our Galaxy. The first is a commonly used sinusoidal perturbation
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of the Galactic disc. We employ the specific form of Wada & Koda (2001);

Φbar(r, φ) = Φ0 cos
(
2
[
φ + Ωbt

]) (r/rc)2(
(r/rc)2 + 1

)2 , (3.12)

where Φ0 = εV2
0

√
27/4, ε = 0.05 and V0 = 220 km s−1. We employ two different values of the bar

core radius, rc, either 2 kpc or
√

2 kpc (used in Wada et al. 1994 and Wada & Koda 2001 respec-

tively). We will refer to these as the WK and WKr2 bars respectively throughout this manuscript.

A measurement of the inner drop off radius of the bar potential, rc here also determines the strength

of the potential, and so these values enable us to investigate the effect of the strength of the bar.

The models of Dehnen (2000) and Minchev et al. (2007) were also investigated, but showed little

difference to the bar above so were not used beyond initial testing.

Another bar we employ is that of Long & Murali (1992), referred to hereafter as the LM

bar. The authors provide a bar model that is simply a softened line of gravitational potential. While

not physically a bar, i.e. not the result of some density profile, the effect on the gas is still that of a

non-axisymmetric perturbation. This potential is aligned with the x-axis by definition so we apply

co-ordinate transforms to the positions and accelerations to simulate the rotation of the bar. The

potential is given by

Φbar(x, y, z) =
GMbar

2a
ln

(
x − a + T−
x + a + T+

)
, (3.13)

where T± = [(a ± x)2 + y2 + (b +
√

c2 + z2)2)]1/2, with a, b and c roughly corresponding to the bar

semi-major and minor axes respectively. We adopt a bar mass of 6.25 × 1010M� as used by Lee

et al. (1999) for the same potential. This bar has the advantage of a controllable minor-axis length

while maintaining a simple analytical form.

Both of these models are simplistic in design, and there have been several studies that have

managed to fix specific density distributions to the bar. These include the “Dwek” (Dwek et al.

1995; Zhao et al. 1996), “Ferrers” (Ferrers 1887; Kim et al. 2012) and “Freeman” (Freeman 1966)

bar models, though many different prescriptions exist in the literature (e.g. Pichardo et al. 2004).

A significantly more complex bar model was included in our investigated based on a peanut/boxy

morphology from Wang et al. (2012). As this density profile is so complex the authors expand

the potential and density into a set orthogonal basis pairs (Hernquist & Ostriker 1992; Zhao et al.

1996), of the form

Φbar(r, φ, θ) = −GMbar

rbar

∑
n,m,l

Anlm(ρbar)Φnlm(r, φ, θ) (3.14)

where Φnlm is composed of spherical associated Legendre and Gegenbauer polynomials and is

independent of the actual density profile (see Wang et al. 2012 for specific formulation). The

Anlm coefficients contain the density information, and are constants independent of position. The

coefficients provided by (Wang et al. 2012) have a built-in bulge. To keep the rotation curve

consistent with the rest of our calculations the coefficients are re-computed just using the bar

component. As this potential is an extremely complex function the forces are evaluated using

finite differences in a pre-made potential grid (as in the PM arm model).

The final bar model used is that of Vogt & Letelier (2011). This model is similar to the



3.2. GALATIC POTENTIALS 88

Figure 3.2: Various potentials used in our simulations. From top left to bottom right; Cox &
Gómez (2002), Long & Murali (1992), Wada & Koda (2001), Pichardo et al. (2003), Wang et al.
(2012) and our axisymmetric model adapted from Allen & Santillan (1991). Relative potential
strength (normalised for each model) is indicated by colour scheme, with equipotential contours
shown as solid (troughs) and dashed (peaks) lines.

LM bar but is adapted to allow to subtle bending into an “S” shape. This allows a bar that could

smoothly tail off as it rotates, rather than abruptly cut-off at the end of the bar. The authors also

provide a prescription for a “C” shape, but it is not used in this study.

Early tests were performed with the combined bar-arm model of Khoperskov et al. (2013)

where a strong 2 arm, weak 4 arm, and inner bar structures are all combined into a single potential

that rotates at some global pattern speed. While a reasonable approximation for the global structure

of the Galaxy, this model was quickly abandoned due to its simplicity and built in assumptions of

the Galactic morphology.

The gravitational fields of each of our primary potentials, including the full axisymmetric

component, are shown in Figure 3.2. Here the differences between the arm potentials becomes

clear. The CG arms are persistent throughout the entire disc, while the PM arms are strongest

around R = 5kpc and decay rapidly towards the edge of the disc. The bar structures also show some

striking differences. The peanut/boxy nature of the Wang et al. (2012) is only slightly visible, but is

clearer if the vertical direction. The odd appearance of the WK bar is due to it being a sinusoidal

perturbation to the Galactic disc with peaks/troughs every π/2 radians, with no corresponding

physical density profile1.

1The potentials used can be split into two distinct categories; those that perturb the gravitational field of an existing
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Figure 3.3: Initial surface density profile used in our simulations, shown as the black dashed line.
The red line is the model of Wolfire et al. (1995) and the blue line is the data from Yin et al. (2009),
taken from Boissier & Prantzos (1999), which extends to the Galactic centre. Note that we only
set gas out to a radius of 13 kpc.

3.3 Setting the initial conditions

The ISM gas is initially distributed in the Galactic plane, with a disc height of 0.4 kpc. The initial

vertical distribution is of little importance, as all the gas falls into a disc of height 0.1 kpc after

only 50Myrs of evolution. The initial surface density profile is chosen to match observational data.

This is based on the functional form of Wolfire et al. (2003). We impose a flat distribution instead

of the slightly increasing density profile in the 8.5-13.0 kpc region so that our surface density is not

increasing near the edge of the disc. Some observations suggest the distribution is effectively flat

from 5-15 kpc (see Kalberla & Kerp 2009 and references therein). We also extrapolate the density

profile to the Galactic centre, using the data from Yin et al. (2009). Our adapted surface density

function is thus for H I

ΣHI(R) = 1M� pc−2 ×


0.2 exp (Rk/0.7) 0 ≤ Rk < 1

1.4Rk − 0.6 1 ≤ Rk < 4

5 4 ≤ Rk < 8.5

4.15 + 0.1Rk 8.5 ≤ Rk < 13

(3.15)

and for H2

ΣH2(R) = 1M� pc−2 ×
 4.5 exp

(
−

[
Rk−4.845

2.6545

]2
)

0 ≤ Rk < 6.67

2.5 exp
(

6.97−Rk
2.89

)
6.67 ≤ Rk < 24

(3.16)

where Rk = R/1kpc. Both are added together to give the distribution in Figure 3.3. Gas in our

simulations is set between 0 and 13 kpc. To actually place the gas the surface density profile is

used as a PDF (probability density function), which is then integrated to create a CDF (cumulative

distribution function), which is then tabulated and inverted to allow the drawing of semi-random

particle positions according to the surface density shown in Fig. 3.3. The azimuthal position is

Galactic disc (WK and CG models), or those that add an extra mass component to the system (LM and PM models).
While this implies the latter category will cause an overall increase in the rotation curve, the effect of this was seen to
be marginal due to the weak nature of all the potentials used here.
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Figure 3.4: Initial rotation curve from an ISM simulation of 1 million SPH particles (black points)
and after 300Myrs embedded in a barred-spiral potential (red points). Regions of higher dispersion
coincide with arm and bar resonance regions.

drawn from a uniform random distribution from 0-2π. Our choice of limiting our disc to 13 kpc

ensures the major spiral features recorded in the literature are included as far out as the Outer

and Perseus arms. Though there is some evidence for weak spiral structure extending to 20 kpc

(Levine et al. 2006), this would have required a large increase in particle number to achieve the

same resolution, whilst any features at such large radius would have little influence on our results

due to the low gas density in the far outer disc. Integration of this surface mass distribution

gives a total gas mass of approximately 8 × 109 M�, corresponding to an average ISM density of

approximately 1 g cm−3 or 15M� pc−2. This is used as our fiducial disc mass, though simulations

are also performed with lower values to test the effect of the gas mass.

Initial velocities are seeded from the axisymmetric potentials directly via

v2
c(R) = R

d
dR

[Φd + Φh + Φb] (3.17)

which is then split between vx and vy to ensure a purely circular orbit at t = 0Myrs. A random

velocity perturbation is added to each component drawn from a Gaussian distribution of width

5 km s−1, so that ~v(t = 0Myrs) = (vc sin φ + δvx,−vc cos φ + δvy,+δvz). An example of a rotation

curve from a barred-spiral model is shown in Figure 3.4 where the black points show the rotation

at t = 0Myrs and red points after 300Myrs of evolution in a barred-spiral potential. The rotation

curve at later times does not deviate strongly from that initially, but there is considerable dispersion

at the resonance radii of the bar and spiral features (R = 2kpc and R = 8kpc).

The remaining value needed to set up the SPH particles is the initial gas temperature (which

determines the internal energies). Obviously this will have a large effect on isothermal simulations,

where the internal energy will not change and will dictate the efficiency of gas mixing. In adia-

batic+cooling simulations it is less obvious how this would effect the evolution of the system.

Tests were performed with gas initially at 10000K and 200K with active ISM chemistry and cool-

ing. Gas is seen to cool very fast in the hotter simulation, and after 15Myrs has reached the same

magnitudes as the colder simulation. After 100Myrs there is only minimal differences between
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Figure 3.5: Isothermal calculations with T = 10000K (top) and T = 200K (bottom) for N = 2, 4, 6
armed models using the CG potential.

the initially hot and cold disc. As the simulations are normally ran for at least 200Myrs (to ensure

all particles and potentials have conducted at least one full rotation) the initial temperature of the

gas is assumed unimportant. To avoid spurious side-effects of the rapid cooling of an initially hot

disc the initial temperature of the gas particles is set to T = 200K.

Our fiducial simulation resolution is 5 million SPH particles. Tests were made with 1-10

million particles. Morphological differences were minor between the different resolutions, but the

amount of CO created was considerably reduced with lower resolutions. 5 million particles was

found to be a good trade off between CO production and run-time. This was further supported

by tests with l-v maps, where the additional emission from the increase to 10 million particles

was marginal compared to the increase from 1-5 million. See Section 4.4.1 for a more in-depth

analysis of the effect of simulation resolution.

3.4 Isothermal simulations: testing the potentials

In this section the general features of the potentials in isothermal calculations are shown. The

cooling and chemically active calculations take considerably longer to run, so isothermal calcu-

lations provide a good test-bed for the various potentials before full production calculations are

made. Simulations presented here are at a resolution of 1 million SPH particles. The effect of

varying temperature in simple isothermal calculations is shown in Figure 3.5, where the top row

shows calculations at T = 10000K and the bottom at T = 200K for various numbers of arms using

the CG model at Ωsp = 20km s−1 kpc−1. The hotter calculations are much “cleaner”, in that the

gas is clearly smoothly tracing out the spiral potential, producing regions of high density in the

bottom of the potential wells. The colder simulations reach much higher densities but also have a

large amount of supplementary structure. The N = 4 model in particular has a large amount of arm
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Figure 3.6: Isothermal simulations with T = 200K and varying spiral arm pattern speed (10-
30km s−1 kpc−1, increasing to right) for a four-armed potential at two different times (400Myrs
top and 1Gyr bottom).

branches that are not associated with the bottom of the potential well. The increased temperature

of the simulations with warm gas makes the gas much more diffuse, and disperses these features.

Traces of these branches can still be seen, but are much less defined than the cooler simulations

(seen by comparing the hot and cold N = 4 models). Shocks experienced upon the passage into

arms are also much weaker. Another feature exclusive to the cold models is the onset of spurs

(small scale features peeling away from the arms at a large pitch angle, see Dobbs & Bonnell

2006) in the mid-disc. These are clearest in the N = 2 case and occur near to the location of the

ILR (see Fig. 3.1b).

To investigate the effect of the ILR and OLR on the gaseous structures further calculations

were ran with differing arm numbers and pattern speeds, values of which determine the radial

positions of the resonances. Figure 3.6 shows simulations with differing arm pattern speeds after

400Myrs and 1Gyr of evolution. As pattern speed increases to the right the location of the ILR can

clearly be seen to radially contract, initially lying beyond the disc edge in the 10km s−1 kpc−1case.

The OLR is then seen the appear as the pattern speed is increased, becoming apparent only in the

model with the fastest rotation. The spurring appears predominantly at the ILR and OLR. At the

later time stamp of 1Gyr the gas at the ILR and OLR creates closed orbits that match the orbits

proposed by density wave theory, the same as those shown in Figure 1.9. The spiral structure is

then seen only to exist between the ILR and OLR. The timescales needed to see these enclosed

orbits is well beyond the timescale required for chemistry to settle to a steady state (see Section

3.5). The location of these features can be used to infer some information about Galactic spiral

structure. For instance, a N = 6, Ωsp = 25km s−1 kpc−1 model has an ILR inside of 10kpc and

therefore it is unlikely that such a model would produce spiral features beyond this radius, such as

seen in the Outer arm, and so is a poor choice for our Galaxy.

There appears a lot of branching structure between the arms in the colder models, and this
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Figure 3.7: Isothermal simulations of with T = 200K with varying potential strength (1, 2, 4×ρ◦)
after 400Myrs of evolution. The top and bottom rows show N = 2 and N = 4 models respectively.

is especially so in the case of N = 2. The superposition of arm features in the CG model could be

a cause of this, due to the triple minima nature of a superimposed three component spiral pattern.

To check this was not the case, calculations were performed with only certain components of the

spiral summation in Equation 3.6 active. The resulting spiral structures were much weaker than in

the three component case, and less pronounced at larger radii. Furthermore, the inter-arm branches

were still present, implying they are not a result of the superposition nature of the CG model.

Some of the arm features are quite weak in the plots shown above, even between the ILR

and OLR. To try and improve the tracing of the spiral potential in these models, calculations were

performed with ×2 and ×4 the standard spiral arm density (ρ◦ in Equation 3.6). The results of 2

and 4 armed calculations with different strengths are shown in Figure 3.7. The higher the strength,

the higher the densities in the arms become, and the clearer the spiral structure in the gas appears.

The highest strength calculation has little gas in the inter-arm region, not merely just low density

gas, but very few actual gas particles. There is also a significant amount of dispersion in the

rotation curve in the highest strength calculation. There appears to be a sort of buckling effect near

the ILR, where the highest density regions are not tracing the logarithmic spiral structure well.

Due to these reasons the ×4 strength model seems inappropriate for further use. However the ×2

model still has a large amount of inter-arm gas and only moderate dispersion of the rotation curve,

so this model is deemed as appropriate for further calculations with chemistry and cooling along

with the fiducial value.

The bar models show a similar behaviour with pattern speed as the arm models. However,

as they are believed to be rotating much faster than the arms, the OLR will usually lie within the

inner Galactic disc. All bars have the same general features, and we will be using the WK and

LM bars for further chemical and cooling calculations (we will discuss the morphology of these

in greater detail later in this chapter).

The LM bar has been included to specifically allow the alteration semi-major and minor
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Figure 3.8: Isothermal disc simulations at T = 200K with an LM rotating at Ωbar =

50km s−1 kpc−1with different bar lengths of 2, 3, 4, 5kpc increasing to right and an axis ratio
of 4:1.

axes. Calculations with bar lengths of 2, 3, 4 and 5kpc are shown in Figure 3.8. It can be seen

that the increase in major axis has a minimal effect on the gas morphology. The shortest bar has

reduced arm-like features compared to the other arms, presumably simply because the bar does not

span as large a radial distance of the Galactic disc. Likewise the bar driven arms appear slightly

stronger the longer the bar becomes. The longer the bar becomes the greater the shearing off these

structures becomes, similar to that seen in the arm potentials. Tests were conducted with different

semi-major to semi-minor axis ratios, ranging from values of 2:1 to 6:1. As the semi-minor axis

is decreased with respect to the major axis (i.e. the bar becomes narrower) the inner structures

such as those seen in the 3kpc case in Figure 3.8 become more defined, but in doing so causes a

larger dispersion in the rotation curve. Similar effects are seen in the study of Lee et al. (1999)

who find that the gas infall to the Galactic centre increases as the bar axis ratio increases. Inner bar

structures are weak when using a ratio of 2:1, whereas Rodriguez-Fernandez & Combes (2008)

and López-Corredoira et al. (2005) find this as the nominal value, though they use a much more

complex potential than that of LM. Changes are only minor when using sensible values such as

3:1-5:1 (Dwek et al. 1995; Freudenreich 1998) so 3:1 is adopted as our fiducial axis ratio for the

LM bar.

Tests of the complex bar of Wang et al. (2012) showed there was in fact very little difference

morphologically between this and the other bar models. The minor differences showed features

were more in common with the WK than the LM model, which is somewhat surprising given

differences in the potential fields shown in Fig. 3.2. Though in models where we included the

bulge of Wang et al. (2012) rather than fiducial Plummer bulge there was a suppression of the inner

elliptical structures. These structures are seen in other studies with complex bars also (Kim et al.

2012) and are also reproduced in our simulations with live stellar systems where bars are formed

(see Chapter 5). Overall, a lack of difference in the global morphology lead to the excluding of this

bar from further analysis in an attempt to narrow down our already considerably large parameter

space.
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Figure 3.9: Abundance of molecular gases, weighted by density, in simulations with various sur-
face densities (decreasing right to left). The temperature distribution for each surface density is
shown in the insert in each panel. The higher the surface density runs have a greater mass of
molecular gas.

3.5 General results of chemistry and cooling

Once a selection of appropriate potentials and parameters to be investigated had been narrowed

down they can be used in simulations with active ISM chemistry and cooling to track the model the

evolution of molecular gas for the construction of CO l-v emission maps. These simulations take

considerably longer to perform than say isothermal simulations at T = 200K, mostly due to the

cooling time-step criterion controlled by Equation 2.41. Computational time is also increased due

to the additional chemical sub-stepping that acts inside the cooling time-stepping, but as this does

not involve updating the positions or velocities of the SPH particles it is relatively inexpensive.

The abundance of H2 and CO as a function of particle density is shown in Figure 3.9 for

a simple barred-spiral disc galaxy simulation of 1 million particles after 200 Myrs of evolution.

The figure shows the abundances weighted by number density of the particle to disperse the re-

gion in the upper right where the carbon and hydrogen is nearly saturated into CO and H2. The

particles perform move in molecular abundance-density space as they pass into and out of high

density regions. The molecular fraction of each particle increases as it passes into the high density

potential well of the arms/bar, and drops when it leaves (for an in-depth discussion see Dobbs

et al. 2008). The higher the surface density (i.e. total gas mass) in the simulation then the more

efficient it is at producing and maintaining molecular gas. The lowest surface density shown here

has a very small amount of molecular gas, and also a very small cold ISM population, seen in the

small histogram insert. Our fiducial surface density (far left panel) has a well populated cold ISM

component where molecular gas is maintained (T ≈ 10K), while also displaying a moderate warm

component (T ≈ 100K). The effect of surface density on the actual emission will be discussed in

the next Chapter.

In Figure 3.10 the evolution of the molecular gas content over time is shown for the same

simulations as in Fig. 3.9. The figure shows the H2 ratio and CO abundance summed over all

1 million particles with different colours illustrating different surface densities. There is a rapid
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Figure 3.10: The time evolution of the molecular gas abundances averaged over all particles in a
barred-spiral simulation with 1 millions SPH particles and various surface densities. H2 and CO
are shown to the right and left respectively. Large scale changes in the amount of molecular gas
appears to cease after approximately 100Myrs.

increase in molecular content in the first 50 Myrs, which coincides with the time-scale for the spiral

and bar patterns to become clearly visible in the gas density. The CO and H2 evolution reaches

a steady state plateau after approximately 100 Myrs, where changes of the order of magnitude no

longer occur. Simulations with cooling and chemistry are chosen to run until at least 300 Myrs and

until a maximum of 472 Myrs. This is the timescale needed for arm and bar structures to become

well developed, but they will continue to slowly evolve on the order of Gyrs (Fig. 3.6). Despite

the abundance sums being independent of gas mass/density there is a clear separation between

runs with surface densities, showing that the higher surface density calculations are inherently

more efficient at producing molecular gas, as expected. The evolution of CO abundance in the

lowest mass calculation displays oscillations of an order of magnitude on a timescale of 40Myrs.

This is assumed to be the result of gas in the lowest mass simulations being very susceptible to

destruction, falling into the lower tracks in Fig. 3.9. The oscillation occurs as gas that was in the

bottom of the potential well at t = 0Myrs leaves at later times and experiences an abrupt loss of

molecular gas. The peak is then reached by gas that is rising in density as it flows into the arms,

but again drops abruptly as it leaves. This is less pronounced in higher mass calculations where

the gas mass is higher and higher density gas is well shielded against abrupt molecular destruction

due to the higher column densities.

The gas properties in our simulations as a result of the cooling and chemical effects are

similar to those seen in the phase diagrams of Figure 2.12. We find that there is a significant

amount of gas found within the thermally “unstable” regime, with temperatures of the order of

100K to 1000K. The amount of this unstable gas is a strong function of surface density (i.e. total

gas mass) used in the simulation, seen in the temperature histogram inserts in Figure 3.9. These

histograms also clearly show a two-peaked distribution at temperatures of 102K and 104K, which

correspond to the warm and cold ISM components. The lower the surface density, the larger

the warm gas fraction, and lower the cold gas fraction. For example, in the highest and lowest

surface density calculations the warm component (6000K < T < 10000K, as defined in Table 1.1)
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constitutes 1% and 10% of the gas mass respectively, while the cold component (50 < T < 100K)

takes up approximately 45% and 17% respectively. These values are similar to those of Dobbs

et al. (2008) but with slightly different definitions of warm and cold components. The rest of the

gas is composed of gas transitioning between the phases in the unstable region, or is locked in a

a very cold molecular component, especially so in the heaviest gas disc. Having a large amount

of supposedly unstable gas which has been seen in observations (Heiles & Troland 2003) and

previous numerical simulations (Kritsuk & Norman 2002; Piontek & Ostriker 2005; de Avillez &

Breitschwerdt 2004). The amount of molecular gas produced is also a strong function of surface

density, as it is well shielded in the high density regions found in cold pockets of the ISM. The

molecular mass fraction is dominated by the H2, with CO being 3 or 4 orders of magnitude lower.

The highest mass disc has a molecular mass fraction of approximately 4.0% (out of a total mass

of 8 × 109M�), while the lowest surface density disc has a value of 0.5% (out of 1 × 109M�).

While our standard surface density may seem appear too high, in that it produces a low amount of

warm atomic gas, we show in Section 4.4 that the higher surface densities are required to create

sufficient CO emission to be on on the same scale as those seen in observations.

3.6 Simple kinematic l-v maps

When building synthetic l-v maps to constrain Galactic structure there is another substantial pa-

rameter space that needs to be explored in addition to that parameterising the morphology of the

potentials. The co-ordinates of the observer, i.e. the velocity, radial and azimuthal position (Vobs,

Robs and lobs), adopted have a direct impact on the features seen in l-v space. A shift in an ob-

servers position of only 0.5 kpc could make the difference between a spiral arm lying in the inner

or outer galaxy, completely altering its position in l-v space. The azimuthal position of the Earth

in the Galactic disc has a similar effect, with changes in this value shifting structures in longitude,

an effect that is more pronounced the closer these structures are to the Solar position.

The International Astronomical Union (IAU) recommends values for Vobs and Robs of

220 km s−1 and 8.5 kpc respectively, but there are a wealth of other values used in the literature

(see Reid 1993 and Majewski 2008 and references therein). lobs is less well defined, as it en-

compasses both the distance from the Earth to arms and the orientation of the bar, while in our

calculations it is simply a co-ordinate to be defined. Rather than simply assuming some standard

value, each simulated CO l-v map was fitted to the observed CO map to find a best fit Vobs, lobs

and Robs for the calculation in question. In order to fully explore the observer parameter space we

would need to construct numerous l-v maps. If we were to construct full radiative transfer maps

(as done in Chapter 4) for each point in the observer parameter space then the computational cost

would be extremely high as this would have to be done for each model, at each time step of inter-

est. We instead use approximate l-v maps to fit to the observers position, rather than performing

radiative transfer calculations for each case. By doing so the computational time is reduced from

the order of a day to seconds to build a single CO l-v plot, allowing a fast sweep though observer

co-ordinates. Once the best-fit observer position is known for a specific galactic simulation we

then perform a full radiative transfer calculation with torus to construct a map that is used for
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comparing different spiral/bar models.

These purely chemo-kinematically derived maps are a simplification compared to those

constructed with torus, but give a good idea of the position of the emission in l-v space, and a

rough idea of its intensity. The maps are constructed as follows. First we choose the observer

co-ordinates from the grid of observer parameter space (Vobs, lobs and Robs, with ranges given in

Table 3.2). Then we calculate a synthetic CO brightness temperature, TB,synth, from each SPH

particle in the simulation using the particle’s velocity, position and CO abundance. As the CO is

heavily density dependent, this contains density information for each particle. To create a quantity

analogous to emission we use a simple radiative scaling law of the form

Ii,synth ∝ χi,CO/dm
i (3.18)

where χi,CO is the abundance of CO for the ith SPH particle and di is the distance from the observer

to the particle. This is similar to the approach of Dobbs & Burkert (2012), except we do not need to

assume the density profile of the ISM gas as it is provided by the SPH particles in the abundance

of CO. While the brightness temperature does not technically follow an inverse square law, the

column density (and therefore opacity) of material the emission passes through does increase with

distance. The Isynth factor is then scaled for each particle to match the range of emission in the

observed CO map, giving a value of TB,synth for each particle.

A longitude velocity map is then constructed using the SPH particle coordinates and as-

suming the observer is on a purely circular orbit. The particles are all first rotated by lobs and then

their line-of-sight velocity is calculated as given in Binney & Tremaine (1987);

vlos,i =

√
v2

x,i + v2
y,i sin (li − θv,i) − Vobs sin(li), (3.19)

where simple geometry gives the longitude of the particles, li = arctan(yi − yRo/xi − xRo) and the

velocity vector is at an angle of θv,i = arctan(vy,i/vx,i). An extra b factor for latitude dependence can

also be included but it made no difference to the quality of the fit, likely because our simulations

vary little in the vertical direction. There is evidence that the Sun exhibits peculiar motion relative

to the local standard of rest of the order 10 km s−1(Dehnen & Binney 1998). We investigated

adding peculiar motion (up to 20 km s−1) for a single model and the resulting best fitting map

showed little difference to the case of a circular orbit. For the remainder of this thesis we assume

circular orbits to reduce our parameter space.

The emission (in log-brightness temperature) of the particles is then binned into a grid of

l-v space of the same resolution as the Dame et al. (2001) CO map (0.125◦ by 1 km s−1). Particles

act as a point source, with emission occupying a single pixel of l-v space. To better represent

the structure of ISM observations the emission from each particle is broadened and smoothed out

into neighbouring l-v bins. The value of this smoothing, and the exponent in Equation 3.18, are

parameters that must be set to build an l-v map. To do so the maps cannot be fit against the observed

l-v map, as this would assume the model is a correct representation of Galactic structure. Instead

these kinematic l-v maps were compared to ones created using the torus radiative transfer code,

which will be used to create full synthetic observations and is the subject of the following Chapter.
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Figure 3.11: Fit statistic as a function of differing powers in distance drop-off (m in Equation 3.18)
in the left panel and as a function of smoothing in longitude in the right, across the four Galactic
quadrants.

Best fit values of the smoothing and scaling were found by minimising the difference between the

kinematic and torusmaps, using a simple mean-absolute-error statistic. The behaviour of the fit

as a function of these parameters is shown in Figure 3.11, across all four Galactic quadrants. In

the left panel the fit to m is shown, and on the right the fit to the longitudinal smoothing, with the

two best fitting values given a ∗ and † in the legends. The figure shows the best fitting values lie

in the range m = 1.5-2 and dl = 1.125◦-1.725◦, surprisingly showing the emission can indeed be

approximated by a inverse square law. This longitudinal smoothing is somewhat larger than that of

the binning of the Dame map, but is required to smooth out the point-like SPH particles into a finite

size (a further improvement to this method would be to use the SPH smoothing kernel to give each

particle a physical size). The adopted values for smoothing are a half width of 1.125◦ in longitude

and 4 km s−1 in velocity using a Gaussian profile, with a m = 2 decay. The 4 km s−1 velocity

smoothing matches the turbulent velocity width we add to the torusmaps (discussed in Chapter

4). The smaller of the smoothing scales was chosen as the maps made using dl = 1.725◦ seemed

to be over-smoothed when viewed by-eye.

Figure 3.12 shows l-v maps constructed within a barred galaxy simulation. The upper panel

shows a map made using the method described above, and the lower panel shows a map made using

the radiative transfer technique. Both are constructed using the same values for Vobs, Robs and lobs.

Both maps trace the same regions of l-v space, with roughly the same intensities. The simple map

underestimates the emission in some regions, and overestimates in others. This is expected; if the

simple map reproduced the torus map there would be no need to perform the radiative transfer

calculation.

These simple maps enable us to find a best-fitting map for each individual Galactic simu-

lation, removing the uncertainty in placing the observer at some arbitrary position. The range of

observer co-ordinates investigated in this fit are given in Table 3.2. Once a best fit is known, torus

is then used to build a full map using the best-fitting observer co-ordinates, which can then be used

to compare the different galactic potentials.
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Figure 3.12: Two emission maps of a barred Milky Way simulation, of WK type. Top: synthetic
CO l-v map constructed using Equation 3.18. Bottom: l-v map created at the same observer co-
ordinates but with the radiative transfer code torus, with the same values of Robs, Vobs and lobs.

To quantify the goodness of fit for each model we use a simple fit statistic. We calculate

a mean absolute error (MAE) to gauge the goodness of fit. Our choice of MAE over RMS is to

ensure that single pixels far from the observed value do not cause severe deterioration in the fit

statistic, as we are interested in a global match, rather than whether individual features can be

exactly reproduced. The emission is first integrated in latitude and then the logarithmic difference,

log TBdb, is compared between the synthetic map and the CO map of Dame et al. (2001). This

is then normalised by the number of pixels with non-negligible emission in the observed l-v map,

npixels, simply to obtain a fit statistic close to unity (this is the same value for all maps). The form

of our fit statistic is thus,

Fit =

∑
pixels | log TB,synthdb − log TB,Damedb|

npixels,Dame
, (3.20)

where TBdb is the brightness temperature integrated over latitude. This is therefore the sum of

the logarithmic ratio of the integrated synthetic brightness temperature to the observed brightness

temperature for a specific longitude-velocity bin. Initially a linear summation was used, but the fit

had a great tendency to be swayed by a single pocket of strongly emitting dense gas that did not

agree with observations. We effectively calculate the linear deviation from the emission features

shown in maps such as Fig. 3.12, where the intensity is shown on a log scale to highlight low lying

features. Note that due to the non-zero nature of the background emission in the observations

(which is also added to the synthetic map) there is never a case when a divide by zero occurs in the

logarithm, or where log 0 occurs. This statistic was tested using a simple model 4-armed model

against the Dame map and varying the azimuthal position of the observer. The fit statistic was

then measured in individual quadrants to check the desired behaviour; that the minimum was seen

when arm features aligned with those seen in observations. This was easiest done in the second
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and third quadrants where the Perseus and Carina arms are clearly visible. The use of this fit

statistic blindly however is somewhat dangerous, as a model that is a seemingly good fit but has

arm features that are only slightly misplaced in velocity space will have a poor fit statistic, despite

having the arms in a near perfect position. The variation of the observers position rectifies this

somewhat, allowing for the movement of l-v features for each model. However, as in fitting we

still must produce l-v maps to compare to observations, we double check by-eye that no seemingly

good model has been discarded for having a poor fit despite it showing a relatively good match.

In actuality this only occurred on a few cases, once for a barred simulation, which was not better

than those of other potentials anyway, and one for a live-disc calculation (which is discussed in

Chapter 5). Because our simple approximate l-v maps and those made using radiative transfer are

calculated using two very different methods the fit statistic should not be quantitively compared

between these two different types of map. However, the relative strength of emission features, and

the general morphology, can be.

Now a parameter space, model prescription, mapping methodology and quantitive fit statis-

tic has been established we can now move on to exploring the morphological parameters with

high resolution calculations. Sections 3.7 and 3.8 describe simulations with bar and arm potentials

respectively, where the effect of pattern speed and morphological parameters upon l-v features is

investigated. This is used to narrow down the parameter space for the next Chapter, where we will

conduct simulations with both arm and bar potentials, and produce l-v maps using full radiative

transfer rather than the simple prescription outlined above. A key caveat to this approach is the

assumption that a bar/arm model that provides an good fit in isolation will do so when combined

with another potential. While this may not be necessarily correct, it allows for an approach with

a realistic amount of free-parameters. This is not an entirely unfounded assumption, as the bar

and arms will dominate the gas morphology in the inner and outer galaxy respectively, with only

the region of 4 < R < 7kpc being influenced by both (seen from inspection of the isothermal

simulations in the previous section).

3.7 Barred simulations with cooling and chemistry

3.7.1 Simulations

An example of the evolution of a barred galaxy simulation with active chemistry and cooling is

shown in Figure 3.13, using the bar model of Wada & Koda (2001) with a core radius of 2 kpc

rotating at 50 km s−1 kpc−1. When using different bar potentials the overall evolution is similar.

The bar potential is active throughout the entire simulation, and gas within the bar establishes

elliptical orbits along the major axis of the bar from 100 Myrs onwards. After 150 Myrs the gas in

the outer disc displays a two armed spiral structure inside the OLR, the strength of which is related

to the core radius and strength of the potential. These arms are not in a steady state, and their pitch

angle is decreasing over time. After about 4 rotations of the bar (the last panel in Fig. 3.13) the

arms are wound up enough that they begin to join to create elliptical/ring-like structures at the

OLR, with the orbits set as being either perpendicular to the bar inside the OLR or parallel to

outside the OLR (Combes et al. 1995; Buta & Combes 1996; Mel’Nik & Rautiainen 2009). Any
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Figure 3.13: The evolution of the bar model of Wada & Koda (2001) with a core radius of 2 kpc
rotating at 50 km s−1 kpc−1. Both the bar and the gas are rotating clockwise. Note that the mor-
phology is effectively the same from 350-470 Myrs and the arms will eventually wind up to form
a ring-like structures with elliptical orbits parallel and perpendicular to the bar major-axis. The
orientation of the features in this and other top-down figures is determined by the initial alignment
of the non-axismmetric potential with the x-axis at t = 0Myrs, orientation does not correspond
with any of the l-v maps shown in other figures.

arm potential we combine with these bars would be substantially subdued in this region, which is

near to the Solar radius. At early times there is a distinct sweeping up of gas inside the ILR, seen

in the earliest three panels. In the low density region around R = 2kpc at later times there are very

few SPH particles, as most are now associated with the inner ring or the outer region. In the case of

Figure 3.13 there is significant infall of gas onto the central, bar dominated, region but this seems

to cease after approximately 150Myrs. This may indicate the end of the bar infall phase, or merely

be a resolution effect and there are simply no more free particles within the capture distance of the

inner bar. In Figure 3.14 the surface density for several models is shown as a function of radius.

The left panel shows the initial profile, and that of an armed, barred, and barred-spiral calculation

after 236Myrs of evolution. The surface density is effectively unchanged in the armed model, but

there is a significant infall of gas into R < 2kpc in models with a barred potential, at the expense of

gas inside R < 3kpc. In the right panel the evolution of a barred model is shown, which indicates

the infall phase ceases after approximately 170Myrs. Over this time gas from 1 < R < 3kpc falls

into the rings around R = 1kpc.

In test calculations where we use an isothermal equation of state to model the ISM the

arms driven by the bar are maintained when the temperature is high (10000K). However, in low

temperature isothermal cases and adiabatic+cooling cases the arms enclose on the aforementioned

set of orbits around the OLR. There also exists a set of orbits perpendicular to the bar in the inner

galaxy. These orbits (commonly referred to as x2 orbits) only exist when there is a region between

two separate ILR’s (Contopoulos & Papayannopoulos 1980). In calculations where we used a
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Figure 3.14: The gas surface density profile as a function of R for three different models after
236Myrs of evolution (left) and time evolution for a barred calculation (right) showing gas infall
occurs in barred models within R < 3kpc up to 170Myrs.

more simplified axisymmetric potential (a bulge-less flat logarithmic potential) there were no such

inner orbits as there was only a single ILR. However the rotation curve we use here has an inner

bulge (see Fig. 3.1b), providing a second ILR and so setting up a family of inner perpendicular

orbits. These orbits are seen in other works using analytic barred potentials (e.g. Lee et al. 1999;

Mel’Nik & Rautiainen 2009). When using the LM bar model these inner orbits contract radially

as the semi-major or semi-minor axis is decreased (Fig. 3.8).

The pattern speed of the bar is key in determining the structures that develop in the inner

Galaxy. Plots of the WK bar model are shown at various pattern speeds in Fig. 3.15. All the bar

potentials used in this study display similar behaviour as a function of pattern speed. As the pattern

speed increases, the ILR and OLR contract, reducing the radial extent of features driven by the

bar. There is also an inability of the slower bars to drive any strong arm-like features compared

to the faster pattern speeds, owing to the fact that the OLR is beyond the edge of the Galactic

disc. The slower bars also have a greater impact on the dispersion in the rotation curve compared

to the faster bars. The 20 km s−1 kpc−1 bar in Fig. 3.15 has a dispersion of around ±50 km s−1 at

R = 2kpc. Conversely the faster bars have a greater variation in the rotation curve in the outer

regions of the disc corresponding to the location of the driven arms, but of a much smaller scale

than that of the inner region of the slow bar.

Figure 3.16 shows a comparison between our three different bar models. All have a pattern

speed of 50km s−1 kpc−1 and are shown after 236 Myrs of evolution angled at 45◦with respect to

the Sun-Galactic centre line. The inner x2 orbital structure is similar for all models. Immediately

outside this there are other thin orbital structures, more so in the case of the LM bar. The arm

structures generated in the outer disc are different in each model. The LM bar has formed very

tightly wound arms compared to the others, a result of the different radial drop-off compared to the

other models. The LM bar potential is thinner along the semi-minor axis than the others, which
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Figure 3.15: The bar model of Wada & Koda (2001) with a core radius of 2 kpc rotating at pattern
speeds of 20, 40, 50 and 60 km s−1 kpc−1 , increasing from left to right, at a time of 354 Myrs. The
gas and potentials are rotating clockwise viewed from above. These top-down maps correspond
to the central row of Fig. 3.18. The contraction of the outer Linblad resonance is clearly as Ωb =

50→ 60km s−1 kpc−1. The 70km s−1 kpc−1model is not shown but is similar to the 60km s−1 kpc−1

model but with bar/arm features confined to R < 6kpc.

Figure 3.16: Different bar models angled at 45◦to the Sun-Galactic centre line with a pattern speed
of 50km s−1 kpc−1after 236 Myrs of evolution. The models (left to right); WK, WKr2 and LM are
described in the main text.

could also contribute to the tighter arm structures. The WK and WKr2 bars differ in the extent of

their central core radius, the effect of which can be seen in Fig. 3.16. The bar with the smaller core

radius has weaker arms compared to the bar with a larger core.

3.7.2 Simple kinematic maps

Results for a single bar model

Fitting to the observers co-ordinates was then performed on the chemically/cooling active simula-

tions described above, using the WK, WKr2 and LM models, with the fit statistic of Equation 3.20

used to quantify how well each model reproduced the observed emission features. An example

of the results of fitting to the observer’s co-ordinates is shown in Figure 3.17. The Galaxy model

used in this example is a WK barred potential with a bar pattern speed of 50 km s−1 kpc−1. The

parameter sweep is performed at a timestamp of 470 Myrs and the bar major-axis lies along the y-

axis by default. The left panel of Fig. 3.17 shows that a best fit orientation of θb = 40◦ is preferred,

broadly in keeping within the accepted range for the “Long bar”. The fit as a function of velocity

gives the IAU standard value of 220 km s−1, but it is clear the velocity fit is not as well constrained
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Figure 3.17: An example of fitting to the observer’s co-ordinates using simplified l-v maps as
described in Section 3.6. Here we show the fit statistic for a barred Milky Way after 470 Myrs
of evolution. The fits to the observers azimuthal position and circular velocity are shown in the
left and right panels respectively at Robs = 8.5 kpc (the fit as a function of Robs is not shown for
clarity). The different coloured lines show the fit for a certain value of Vobs (left) or θb (right).

as the bar orientation. While not shown here, Robs is similar to Vobs in that it shows a shallow

global minimum. This is the case with most potential models, with the lobs parameter showing

the clearest troughs/peaks of the fit statistic. The lobs parameter is only shown between 0-180◦,
as the potentials, and fit statistic, are symmetric. While the azimuthal position of arm models in

the literature seems poorly constrained, there if effectively no observational evidence for the bar

major axis to not be pointing towards the second quadrant. That is to say, the bar orientation is

always found to be 0◦ < θb < 90◦, seen both in numerical (Weiner & Sellwood 1999; Yang et al.

2002; Minchev et al. 2007; Rodriguez-Fernandez & Combes 2008; Mel’Nik & Rautiainen 2009)

and observational studies (Dwek et al. 1995; Binney et al. 1997; Hammersley et al. 2000; López-

Corredoira et al. 2007) regardless of whether with respect to the COBE or “Long” bar. In some

instances the best fitting bar orientation is found to be outside of this range. This occurs for about

10% of the models, across different potentials, strengths, pattern speeds, and time-stamps. In these

instances there is a second minima that does place the end of the bar in the second quadrant. Here

we allow for the slight influence of observational evidence and choose to only to accept best fits

that place the bar end in the quadrant heavily suggested by observations, choosing to orientation

minima only in the range 0◦ < θb < 90◦.
The resulting best fit l-v maps, from the fit to all bar parameters (Ωb, θb, Robs and Vobs) for

the simulations in Fig. 3.15 are shown in Figure 3.18. Fig. 3.18 shows the best fitting l-v plots for

pattern speeds of 20, 40, 50, 60 and 70km s−1 kpc−1 after 236, 354 and 472 Myrs of evolution. The

parameters for each of the best fitting maps (θb, Robs and Vobs) are over-plotted onto each individual

map, along with the corresponding fit statistic. We do not show the maps of the WKr2 and LM

bars but will include their quantitive results across all parameters later in this section. Inspection of
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Figure 3.18 shows that bars moving at 50-70km s−1 kpc−1 tend to favour an orientation of around

50◦, while the lower pattern speeds favour lower values. This is a result of the shift in the OLR

from the external Galaxy to the internal Galaxy as we increase pattern speeds, and the resulting

location of the arms driven by the bar. For lower pattern speeds the arms extend to outside the

Solar radius, up to the OLR. This means these arms fit the outer quadrants, while the central bar

structure fits the inner quadrants. For the higher pattern speeds the driven arm structures lie inside

the Solar radius, and so the bar and arm structure is contained within the inner Galactic quadrants

alone, leaving the outer quadrants empty. The resulting two different bar pattern speed domains

cause the different bar orientation ranges. Our grid of values for the θb parameter is fairly coarse,

incrementing in steps of 10◦ from the bar’s position at times of 236, 354 and 472 Myrs after being

initially aligned with the x-axis at t = 0Myrs. As such there is an uncertainty up to 10◦ in the

values given here. This means that the frequently used value suggested for the “Long bar” by

Churchwell et al. 2009 of θb = 45◦, is within the bounds of the values found here by our best

fitting bars with Ωb =50-60km s−1 kpc−1.

The l-v maps shown in Figure 3.18 rarely generate considerable structure in the outer quad-

rants. The exception is the 40km s−1 kpc−1 model at later times, where the arm structures driven

by the bar persist into the outer disc due to the OLR’s position beyond the Solar radius. At later

times the arm structures driven by the bar join to create closed orbits, that are clearly visible in the

l-v diagram (especially for the Ωb = 70km s−1 kpc−1 cases). This process can occurs on the Gyr

time-scale, and could be a plausible progenitor of Galactic ring structures (Mel’Nik & Rautiainen

2009). While not shown here, the l-v maps of the WKr2 bar are very similar morphologically.

The best fitting structures fit one of two regions well. The first category of good fitting

maps are those that simply fill out more structure in l-v space, such as the 50km s−1 kpc−1 WK bar

at 472 Myrs (bottom central panel of Fig. 3.18). In these cases the arms driven by the bar extend to

relatively large radii, spreading the emission into a larger range of |l|. The other category of good

fits are those where the strength of the emission in the inner Galaxy follows a pattern similar to the

observed CO map. This ridge of CO emission not present in HI is often attributed to a molecular

ring-like structure, but could also be explained by arm or bar features of the correct geometry

(Dame et al. 2001, Dobbs & Burkert 2012). In Fig. 3.18 at early times, the 60km s−1 kpc−1 bar

is a good fit for central emission due to arm-like structures extending to a radius of about 5 kpc,

with a fairly wide pitch angle. By 472 Myrs the arms have closed upon each other, creating an

elliptical structure where the arms once were. Both early and late times fill out the same area

of l-v space, but the advantages of an arm structure over that from a ring is that it can curve in

the correct direction in l-v space. A elliptical or ring like structure would show 2-fold rationally

symmetry about l = 0◦, vlos = 0 km s−1, not seen in the observed CO l-v map. The strong central

ridge in seen in the 20km s−1 kpc−1 l-v maps in Fig. 3.18 seems to provide a reasonable match

for the central ridge in the CO data. This structure actually results from the concentric rings

surrounding the bar, as seen in Fig. 3.15. The addition of an arm potential disrupts these relatively

weak structures easily, and are needed to drive outer arm features absent in the 20km s−1 kpc−1 bar.

The emission for this bar is also relatively confined to this ridge, in comparison to the early time

60 or 70km s−1 kpc−1 maps.
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Figure 3.18: The bar model of Wada & Koda (2001) with a core radius of 2 kpc rotating at pattern
speeds of 20, 40, 50, 60 and 70 km s−1 kpc−1 increasing from left to right with time increas-
ing from top to bottom (236, 354, 472 Myrs). The values for the bar orientation, observer dis-
tance and circular velocity, and fit statistic are over-plotted on each Ωb-t pair (in degrees, kpc and
km s−1 respectively).
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Bar model
Best fit paramater WK WKr2 LM
Ωb [km s−1 kpc−1] 50 60 70
Vobs [ km s−1] 215 220 235
Robs [kpc] 8.5 8.5 7.0
θb [◦] 56 51 41

Table 3.3: Best fitting values for the bar only simulations. A systematic uncertainty for each value
is present due to the coarseness of the parameter space; ∆Ωb = 10km s−1 kpc−1, ∆Vobs = 5 km s−1,
∆Robs = 0.5kpc and ∆θb = 10◦.

The l-v maps in Fig. 3.18 seem to be heavily time-dependent. Over a 200 Myr time frame

the emission structures can change considerably. The 60km s−1 kpc−1 model in particular changes

from having an emission ridge comparable to observations to a looped structure that is a poor

by-eye match to the CO data. Maps of the WKr2 bar (a smaller core radius) evolve slower than

the WK bar, maintaining their features due to the relatively weaker potential. For example the

60km s−1 kpc−1 map at 472 Myrs does not display the strong figure-of-eight like structure seen in

the equivalent map of the WK bar (Fig. 3.18).

Results across all bar models

Figure 3.19: The fit to pattern speed across all bar models. There is a slight preference towards
50-60 km s−1 kpc−1. Note that the LM bar has a poorer fit statistic overall, and that the simulations
of this bar were halted before it reached the final timestamp for Ωb = 40 and 70 km s−1 kpc−1.

A comparison of the fit statistic as a function of Ωb for all our bar models at the three

different time-stamps is shown in Fig. 3.19, and the best-fitting values are explicitly shown in Table

3.3. At first glance there seems to be no strong relation between the goodness of fit and Ωb. There

are however some common features between the different models. The 40km s−1 kpc−1 models

tend to have some of the worse fits, for reasons discussed above relating to the position of arms in

the outer Galaxy. The best fitting speeds tend to be in the Ωb > 40km s−1 kpc−1 range. The best

fitting pattern speed for the WK and WKr2 bars is 50km s−1 kpc−1, though the 60km s−1 kpc−1 is

better fit for 2 of the 3 timestamps for the WKr2 bar, hence its inclusion as the best fitting value in
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Table 3.3. While the 70km s−1 kpc−1 and 20km s−1 kpc−1 pattern speeds are numerically a good fit

in some instances, we choose to not include these in our models with arm and bar potentials. This

is because of the relatively short time-scale on which the l-v emission structure appears a good

match to the CO data compared to the 50 and 60km s−1 kpc−1 models. Figure 3.19 also indicates

that overall the LM bar is a poorer fit than the model of Wada & Koda (2001), so we choose not to

follow these up for further analysis in combination with arm potentials. Morphologically speaking

this bar is somewhat thinner than the bar of Wada & Koda (2001) due to our choice of axis ratios.

The quality of the fit could be a result of the chosen axis ratios but we do not consider this further.

Our best fitting bar models suggest a bar orientation of ≈ 45◦, in accordance with obser-

vations of the “Long bar”. In Fig. 3.20 we show the fit statistic as a function of Ωb for the WK

bar with θb fixed at 45◦while keeping Vobs and Robs free. The lowest fit statistics over all times

considered are for the 50 and 60km s−1 kpc−1 models, which is consistent with the fits where θb is

left free, and the general trend with Ωb is similar to the WK and WKr2 bars in Fig. 3.19.

Figure 3.20: The fit statistic for the Wada & Koda (2001) bar when fixed at θb = 45◦ with Vobs and
Robs left free. The simulations data is identical to that used in Fig. 3.19.

Summary of bar models

From the evidence shown above bar pattern speeds of 50 and 60km s−1 kpc−1 are chosen to be

used further in our arm-bar mixture models. We chose to run WK bars (which appear stronger in

the outer disc) at 50km s−1 kpc−1 and WKr2 bars at 60km s−1 kpc−1, the best fitting values as given

in Table 3.3 for respective bars. This choice is also supported by the fit statistic shown in Fig. 3.19,

which shows that 2/3 of the timestamps investigated have their minima at 50km s−1 kpc−1 for the

WK bar and 60km s−1 kpc−1 for the WKr2 bar. These values are also promising as they give best-

fitting values of Vobs and Robs close to accepted literature values (Table 3.3). We do not follow

up the 70km s−1 kpc−1 models because they lose their arm structure relatively fast compared to

other models, resulting in ellipses in l-v space. Their speed is also fast enough to sweep up a

large quantity of gas inside of 4 kpc. This would make it impossible for arm structures to exist

in the inner Galaxy, making it difficult to see emission not associated with the elliptical bar orbits

within |l| < 45◦. We exclude 20km s−1 kpc−1 due to their lack of any arm feature and strong inner

resonance features that fail to match the morphology of the inner l-v structure seen in the data.
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Figure 3.21: The evolution of the 4-armed model of Cox & Gómez (2002) moving at a pattern
speed of 20km s−1 kpc−1 with a pitch angle of 15◦. Arm spurs are clearly seen near the ILR (R ≈
7kpc) after 200 Myrs. The outer Linblad resonance is beyond the simulation radius.

They also lack any inner features that can match the peak velocities seen in the observed CO data.

The 40km s−1 kpc−1 models are excluded due to their poorer fit statistics in the case of each model

(see Fig. 3.19).

3.8 Armed simulations with cooling and chemistry

3.8.1 Simulations

An example of the evolution of an isolated CG-type arm model is shown in Figure 3.21, with the

parameters; N = 4, α = 15◦, Ωsp = 20km s−1 kpc−1. The spiral structure in the gas tends to survive

only between the ILR and OLR region, even though the potential is present throughout the disc.

For the 20km s−1 kpc−1 case shown in Fig. 3.21 the OLR is beyond our simulation radius, but the

ILR is clearly seen at later times at R ≈ 7 kpc. Around this radius there exists strong spur features

as seen in Dobbs & Bonnell (2006). After approximately a Gyr of evolution the gas becomes

aligned on 4:1 orbits at the OLR and ILR with spiral arms persisting in between. This is similar to

the ring-like structures seen in the fastest bars in the previous section.

A comparison of the ISM gas response to different arm pattern speeds is shown in Fig-

ure 3.22 for our CG 2 and 4-armed models after 354 Myrs of evolution with a pitch angle of

α = 12.5◦. The variation with Ωsp behaves in a similar fashion for different values of α. Each

model has a region where spurs exist, the radial position of this decreases with increasing pattern

speed and roughly corresponds with the location of the ILR. Even by-eye it is clear that some of

the models in Fig. 3.22 do not display the desired morphological features. The 10km s−1 kpc−1

N = 4 models all lacked spiral features that represented the underlying potential, regardless of

pitch angle. While these models do show spiral structure, the gas is rotating too fast with respect
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to the potential inside the ILR, resulting in a winding up of spiral features. Structure in the inner

galaxy would need to be produced by the inclusion of a bar potential in this case. The fastest N = 4

model has the opposite problem, with a pattern speed high enough that the ILR and OLR are well

inside the simulation radius (similar to bar simulations in the previous section) and there are no

spiral arms in the outer disc. The slowest N = 2 models display very strong spur features inside of

R = 7 kpc, with some pockets of gas maintaining a high density as it exits the arm potential. Over

long time-scales this turbulent structure will form elliptical 2:1 orbital structures, similar to those

seen in bar potentials.

The N = 2 spirals with moderate pattern speeds (15-20km s−1 kpc−1) show evidence of

supplementary spiral structure branching off the main arms. The 15km s−1 kpc−1 model in par-

ticular has a pair of branches of comparable density to those driven by the spiral potential, but

of a much shallower pitch angle (second panel, top, in Fig. 3.22). These additional arm features

are seen in other numerical studies of logarithmic spirals such as Patsis et al. (1994), where the

bifurcation of 2 to 4 armed spirals occurs at the inner 4:1 (ultraharmonic) resonance (Patsis et al.

1997; Chakrabarti et al. 2003). The additional branching arm features seem to peak in strength

around 200 Myrs, and become less defined as evolution passes 500 Myrs though are still present

at much later times.

3.8.2 Simple kinematic maps

Results for a selection of arm models

A selection of l-v maps made using the method described in section 3.6 are shown in Figure 3.23.

We show maps for α = 5◦, 12.5◦ and 20◦ and omit those for 10◦ and 15◦ due their similarity to

the 12.5◦models. The upper rows show N = 2 models and the lower N = 4 models. The maps

are the results of the fit to Robs, Vobs and lobs similar to the previous section for the isolated bar

models. Best fit parameters for the observer position and velocity are over-plotted on each map.

We include no bias towards certain values of lobs as we did for fitting to the bar to constrain θb.

l-v features are allowed to be fit by any part of the gas disc, rather than make assumptions

about which l-v features should be fit by certain structures in x-y space. For instance, the local arm

material was allowed to be fit to small arm branches or large primary arm structures. If the latter

were the case the fit statistic should penalise the additional emission that would be present in the

third quadrant but not seen in observations. As some features of the l-v maps are believed to be

due to local structures, rather than a global spiral arm, it is unlikely that any single model would

perfectly fit the local emission and outer arm features exactly. To investigate this, tests were made

where pockets of local emission were masked out when fitting the arm models. This includes the

Local arm emission (104◦ < l < 150◦, −25 < vlos < 15 km s−1), the Cyg X complex (68◦ < l <

105◦, −16 < vlos < 30 km s−1) and Vela region (−106◦ < l < −81◦, −14 < vlos < 23 km s−1). The

results of this test were somewhat inconclusive. While some models favoured a different parameter

minima, the results for most were unchanged, indicating the emission for the inner quadrants was

driving the fit statistic. Masking out material is not a very prudent approach, as the ability of some

models to produce off-arm local material would be muted by this, which could penalise a model
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Figure 3.22: Response of the gaseous disc to arm potentials of different pattern speeds. 2-armed
and 4-armed models are on the top and bottom rows respectively with increasing pattern speed
along the x-axis (10, 15, 20, 25, 30km s−1 kpc−1). All models are of that of Cox & Gómez (2002)
after 354 Myrs of evolution with a pitch angle of 12.5◦.
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Figure 3.23: The best fit l-v maps for the arm model of Cox & Gómez (2002) rotating at pattern
speeds of 10, 15, 20, 25 and 30 km s−1 kpc−1 increasing from left to right with pitch angle increas-
ing from top to bottom (5◦, 12.5◦ and 20◦). The values for the observer distance, circular velocity,
and fit statistic are overplotted on each Ωsp-α pair (in kpc and km s−1 respectively). The maps
are created after the simulation has evolved for 354 Myrs. The α = 12.5◦ models include both
N = 2 and N = 4 morphologies. The 10◦ and 15◦models are not shown but differ only marginally
compared to the 12.5◦maps.
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Arm model
Best fit paramater CG(N=2) CG(N=4)
Ωsp [km s−1 kpc−1] 20 20
Vobs [ km s−1] 210 205
Robs [kpc] 8.0 8.5
α [◦] 12.5 10.0

Table 3.4: Best fitting values for the arm only simulations.

that provided a good fit to all features of the l-v diagram. As such no features are masked out for

any of the results shown.

General trends in the fitting are seen for all arm models. The strong local emission in the

second quadrant is often fit by a major arm in the gas. The Local arm material appears significantly

stronger than that of Perseus and Outer arms in the CO l-v data, giving the fit a preference to fitting

to local material over the Outer arm, despite the physical size of the Outer arm being considerably

greater. Fitting to the Local arm feature in l-v space causes the fit to miss the Outer arm in the

second quadrant for N = 2 models as there is simply not enough arm structure to produce 3 distinct

arms in the first and second quadrants.

Results across all arm models

The full results of our fitting to the observer’s position using simple kinematic l-v maps are

shown in Figure 3.24 as a function of arm pattern speed, with the best fitting values for indi-

vidual parameters given in Table 3.4. The top panel shows the fit statistic for N = 2 models with

α = 5◦, 10◦, 12.5◦ and 15◦ and the bottom panel the fit to N = 4 models with α = 10◦, 12.5◦, 15◦

and 20◦. Only the results for the 236 and 354 Myr time-stamps are shown for clarity. We also

looked at the 472 Myr time-stamp and the trends with the fit were similar. Our overall interpre-

tation is that the 20km s−1 kpc−1 models offer the best fit to the CO l-v data for both the N = 2

and N = 4 models. This is well within the observational bounds and is an often used value in

other numerical investigations (Gerhard 2011). While Ωb =20km s−1 kpc−1 produces the lowest

fit statistic for the all models (Table 3.4) this is not as consistent over time in the N = 2 models

compared to N = 4. While the best fitting values for Robs are consistent with literature values,

Vobs is slightly lower (205 and 210 km s−1). This could be because the central bar is required in

the central disc to better match peak inner velocity structures, forcing outer emission features to

move to greater velocities and fitting to higher values of Vobs, nearer to 220 km s−1.

The N = 2 arms favour a minimum of 15km s−1 kpc−1 for the later time-stamp. Upon

inspection of the individual l-v and x-y maps for this model (Fig. 3.22 and 3.23), it is apparent

that the supplementary arm branches mentioned previously are the cause of this minimum. The

branches are approximately 90◦ out-of-phase with the spiral potential and are much more apparent

at 354 Myrs than 236 Myrs. These branches have a much shallower pitch angle than those being

directly driven by the potential and decay before reaching the outer disc. This increase in arm

features in the N = 2, Ω = 15km s−1 kpc−1 models at later times allows for the reproduction

of Perseus, Outer and Local arm features, but does not produce as strong emission in the third
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Figure 3.24: Fit statistic found by varying observer co-ordinates as a function of pattern speed of
all Cox & Gómez (2002) type arm models, with various values for the pitch angle. Two different
time-stamps are shown as solid (236 Myrs) and dashed (354 Myrs) lines. N = 2 and N = 4 models
are shown in the upper and lower panels respectively.

quadrant as that of the N = 4 models (seen by comparing the N = 2 and N = 4, α = 12.5 models).

This lowers the fit statistic compared to the N = 2, Ω , 15km s−1 kpc−1 models in the top panel of

Fig. 3.24 at the later time stamp.

The additional arm features in the N = 4 models allow the reproduction of the 3 arm

features seen in the observed CO data in the 1st and 2nd quadrants (Local, Perseus and Outer

arms). They are also able to reproduce the characteristic “hook” in l-v space from the Carina

arm in the 4th quadrant while also placing material along the Perseus and Local arms. This is

seen in the N = 4, α = 12.5, Ωsp = 20km s−1 kpc−1 model in Fig. 3.23. In order to fit to the

Carina arm, there must be an arm structure placed very close to the observer’s position. For pure

logarithmic spirals with constant pitch angles this will result in very bright horizontal structures

in l-v space, as seen in Fig. 3.23. This is clearly at odds with the observed emission in CO (and

HI), which contains no strong emission at local velocities in the inner Galaxy. There was no single

arm model that could place local emission, the Carina arm and the Perseus arm in their correct

places, as well as producing a strong ridge of emission angled correctly in the inner Galaxy. From

Fig. 3.23 it can be seen that for any model that has a central ridge that is similar to that seen in

CO observations, the Carina arm-like structure is pulled into the |vlos| < 20 km s−1 range. The

resulting arm emission from the N = 4 models in the 3rd quadrant is detrimental to the goodness

of fit, due to the lack of molecular emission in the observations. This excess emission makes the

N = 4 models systematically worse compared to those with N = 2 in Figure 3.24.

Out of all parameters the pitch angle of the arms is the poorest constrained in our arm-only
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models. Figure 3.24 shows no strong preference towards any given pitch angle, in the 2-armed

case especially. The minima of all arm models are at 12.5◦ and 10◦, both of which have pattern

speeds of 20km s−1 kpc−1. At this stage there may simply be too many variables to establish

a best fitting pitch angle, especially when the orientation of the arms is still a completely free

parameter (determined by the best-fitting lobs). The pitch angle produces fairly subtle differences

in morphology compared to the arm number and pattern speed, which could explain the relatively

loose correlations seen in Fig. 3.24. To try to find a stronger fit to α we attempted to fit to only the

outer quadrants, where the arms should dominate the l-v structure, and negate the dominance of

the central ridge in the fit statistic. The results were still inconclusive, and the fit behaved similarly

as it did to the entire Galactic plane.

Summary of arm models

To further narrow down our parameter space for simulations with both arm and bar potentials we

reject our α = 5◦ and 20◦models. By-eye inspection shows that while these models do cover a

similar area of l-v space as observations, they do not trace the features correctly. The 5◦ models

appear similar to concentric rings in l-v space, with many bright tangencies along the terminal

velocity curve. The 20◦models appear too wide to match features in l-v space, and stray from the

potential structure at R > 9kpc. As there is no clear preference towards a 2 or 4 armed model

seen for isolated arm simulations, we continue to use both 2 and 4-armed models in conjunction

with the best bar models from the previous section. We choose to primarily use the minimum

from Fig. 3.24 of Ωsp = 20km s−1 kpc−1 for further arm simulations. We also include 2-armed,

Ωsp = 15km s−1 kpc−1potentials due to the secondary minimum in Fig. 3.24.

It is clear from the results shown here that the pattern speed is an extremely important

parameter for any arm/bar model of the Milky Way, perhaps as important as arm number or bar

orientation. Especially in the case of the bar, where it dictates the radial extent of the bar, more

so that the actual bar length incorporated into the potential. Regardless of the presence of a stellar

potential, the pattern speed dictates whether the gas will trace the potential, due to the radial

placement of resonance features. Figure 3.25 shows the position of a stellar potential and the

gaseous response (top), along with the potential’s projection in l-v space and the synthetic l-v map

of the gas. While the outer arms trace the potential well (both in x-y and l-v space) the inner disc

is devoid of structure, and the pitch angle is increasingly wound up as you approach the galactic

centre. The arms have been orientated to reproduce the Carina tangency in the 4th quadrant. For

cases such as these where the arms seem well represented in the outer disc there is little structure

in the inner Galaxy. This means that in these cases emission in the inner Galaxy needs to be

driven by the inclusion of a bar potential, leading to the conclusion that both arm and bar features

are needed to fully represent Galactic emission. Having differing pattern speeds for each would

especially help the N = 2 case, as it would allow molecular structures to exist throughout the disc

(as two m = 2 potentials moving at the same pattern speed would span the same radial domain).
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Figure 3.25: Illustration of the arm locations in simulations resulting from positions of resonances.
Top: 4-armed spiral model moving at 20km s−1 kpc−1 with α = 12.5◦ after 354Myrs of evolution
(left) and the position of the spiral stellar potential (left). Dashed circles show the locations of the
ILR, CR and OLR in order form centre. Bottom: the location of the spiral potential in l-v space
(right) and the gaseous response in the simulation (right). Note the lack of spiral structure inside
the ILR and subsequent absence in l-v space.

3.8.3 Arm strength

In addition to the standard CG spiral arms we performed calculations with arm potentials with

double the strength of our fiducial value. The purpose of which was to improve the gas tracing

of the potential, as in some instances in the models shown in Figure 3.22 the gas only weakly

traces the imposed arm structure. For example, the N = 2 models have significant branches

at moderate pattern speeds, and the highest density gas is not exclusively associated with the

bottom of the spiral potential, even within the ILR and OLR. Figure 3.26 shows stronger arm

models with double the fiducial arm strength, with 2 or 4 arms (top and bottom rows) and pattern

speeds of 15, 20 and 25km s−1 kpc−1. The best fitting l-v maps are shown in Figure 3.27. These

can be directly compared with the central six panels in Figure 3.23, which have the same pitch

angle, pattern speed and arm number (though have evolved for slightly longer). Characteristic

4:1 and 2:1 resonant orbits become clear much earlier in this simulations with increased potential
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Figure 3.26: Calculations with double the normal arm potential strength with N = 2 (top) and N =

4 (bottom). The pattern speed varies from 15-25km s−1 kpc−1from left to right. The calculations
were performed up to 236Myrs. These can be compared to calculations with the standard potential
strength shown in the central panels of Figure 3.22.

strength (even more so considering these have had less time to evolve). The 2:1 and 4:1 orbits

can clearly be seen in the 15km s−1 kpc−1 calculations. Other than this difference the over-all

morphology is the same. This can be seen by comparing between l-v plots. The 20km s−1 kpc−1

maps are extremely similar for both arm strengths, and still provide the best fit out of these models

compared to the 15 and 25km s−1 kpc−1 models. These other speeds show slight differences. The

N = 2, Ωsp = 15km s−1 kpc−1 model has lost some arm structure in l-v space, a result of the arm

branches being wrapped up into 2:1 orbits much faster than the standard strength models. The

N = 2, 25km s−1 kpc−1 model provides a better l-v map in the stronger case, due the additional

potential strength sweeping up gas much more effectively in the outer disc.

These models with stronger arms do not show dramatic differences to our standard strength

models, and provide the same best fitting pattern speed (though only the central 3 values were

checked). A single arm strength was adopted for use for arm-bar mixed calculations, with some

confidence that l-v features will not change greatly if a stronger potential were used.

3.8.4 Complex spiral arm model

Calculations using the PM arm model were made using a single pattern speed of 20km s−1 kpc−1 and

pitch angle of 12◦to investigate the plausibility of a four armed gas response to a two armed po-

tential. This potential also decays away much faster with radius than the CG model. Figure 3.28

shows calculations with a spiral masses of 1.5 × 109 M� at 236 (top left), 354 (bottom left) and

472 (bottom right) Myrs. Also shown is a calculation with a larger spiral mass of 2.6 × 109 M�
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Figure 3.27: Best-fitting l-v maps of the calculations shown in Figure 3.26. These can be compared
to calculations with the standard potential strength shown in the central panels of Figure 3.23.

(top right panel). In Pichardo et al. (2003) the authors state the supplementary arm features are

stronger in the lower mass case. The figure shows that the PM arms do indeed drive additional arm

structures, appearing strongest in the mid-Galactic disc in the top left panel. These supplementary

arms seem to exist between the ILR and 4:1 resonance, located at approximately 8kpc. These

additional spiral branches have shallower pitch angles than the arms driving their formation, and

are nearly circular approaching the Solar radius. At later times the PM resonant arms become less

pronounced, and the 4:1 resonance begins to dominate the flow of gas around R = 6kpc (the same

position as the ILR of 4-armed models). Increasing the strength of the spiral potential makes little

difference to the gas response, with the main effect being the additional spurring near the ILR

(R <2kpc).

Arm branches are also present in the N = 2, CG models (upper panels in Fig. 3.22). The

branches in the PM arms are slightly stronger than those seen in the CG potential, but the primary

arms in the PM model are relatively weaker than those of the CG potential. In the CG arms these

are more pronounced in the 15km s−1 kpc−1 calculations, though can still be faintly seen when

Ωsp = 20km s−1 kpc−1. Calculations with this lower pattern speed were also performed for the PM

model, and supplementary arm features are even stronger in the outer disc, but all arm structure is

weaker at intermediate disc radii R ≈ 8kpc.

The main features of this model were also studied in Gómez et al. (2013), where the authors

also found supplementary arm features with shallow pitch angles. However, in their study the

supplementary arms maintain a form similar to that to the top left panel in Figure 3.28 for up to
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Figure 3.28: Two calculations with the PM spiral arm potential. A calculation with the fiducial
arm strength is shown at three separate times in the top left, bottom right and bottom left panels.
The top right shows a calculation with twice the fiducial arm strength at a time of 236Myrs.

4Gyrs, whereas we find these structures short lived. A possible explanation for this is that the

calculations of Gómez et al. (2013) are isothermal at T = 8000K, which is considerably hotter

than the gas in our calculations with active cooling. Figure 3.5 shows that isothermal calculations

of the order T = 10000K produce a much smoother gaseous response, and trace the underlying

potential much clearer than their 200K counterpart.

Figure 3.29 shows the best-fitting l-v maps of the models shown in Figure 3.28, where the

disc is angled so that the observer is placed at (0,Robs). It is clear that although the arms display

a 4 armed pattern in some cases, there is little arm structure in most of these maps, with the

slight exception of the stronger arm case. The arms replicate the inner ridge of emission from

the arm closest to the observer, but fail at reproducing the outer arm structures. This is due to

the arm structures being confined to relatively small radii, while the Outer and Perseus emission

comes from radii larger than the extent of the spiral structures shown in Figure 3.28. Using this

potential with a pattern speed of 15km s−1 kpc−1 it is possible to create arm features in the outer

disc. However, at this speed the CG arms also provide strong secondary arm features, negating the

benefit of using this complex potential. As this arm model provides no significant benefit to the

CG arm model it is removed from our refined parameter space for use with bar potentials. Some

preliminary calculations were made with this potential in combination with the WK bar model.

Due to radially constrained nature of the PM arms they were heavily disrupted by the inclusion of

a bar, making them even less suitable as a representation of the Milky Way’s spiral structure.
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Figure 3.29: The best-fit l-v maps for the calculations shown in Figure 3.28, with best-fit param-
eters indicated in each corresponding panel. The discs in Figure 3.28 have been orientated such
that the observer is located at (0,Robs) in the construction of these maps.

3.9 Chapter summary

In this chapter we have presented calculations of the evolution of ISM gas embedded in various

stellar potentials representing the Galactic arms and bar. These include simple sinusoidal pertur-

bations of the Galactic disc, and more complex models formulated from a density profile tailored

to specific Milky Way mass components. The ISM embedded within these potentials has very

diverse responses depending on pattern speed, which appears to be a key factor in determining the

radial extent of the gaseous response.

In order to narrow down the hefty parameter space defining the exact morphology of these

potentials we formulated a method of creating l-v maps that, while simplistic in nature, allowed

for a very fast sweep through parameter defining the observers position and velocity. Using this

technique allowed for the creation of a much narrower parameter space for use in calculations with

active bar and spiral potentials. Best-fitting bar models favoured fast rotations, and orientation

angles of approximately 45◦, within agreement with values found for the “Long Bar”. The best-

fitting arm models seem only weakly dependent on pitch angle, but showed a clear minima for

pattern speeds of 20km s−1 kpc−1, also in agreement with values suggested in the literature. There

is only a weak preference to a 2 over a 4 armed model regarding the values of the fit statistic,

with each showing clear differences in l-v structures. The 4-armed models were however the only

ones capable of reproducing all l-v features, the 2-armed models simply could not seem to produce

enough emission structures in l-v space. The downside being that they produce too much emission

where it is not needed.
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The possibility of a 2 armed stellar spiral driving a 4 armed gas structure was also in-

vestigated. A slightly slower pattern speed of 15km s−1 kpc−1 showed strong and long-lasting

supplementary arm features. A complex arm model that is very efficient at creating supplemen-

tary arm features was investigated, but did not show a clear benefit to simpler arm models we have

been using.

In the next chapter the refined arm/bar parameter space will be used in calculations with

barred-spiral simulations, with the aim of producing an l-v map that produces all features ob-

served in observations. As our parameter space is now much smaller, and we are approaching a

global best-fit model, we will be employing a radiative transfer code to fully model the molecular

emission of the ISM, as opposed to the simple maps used in this chapter.



4
Simulations with fixed analytic potentials II:

barred-spiral simulations
and synthetic observations

“Equipped with his five senses, man explores the universe around him and calls the

adventure Science.”

– Edwin Hubble (May 1929), Harper’s Magazine 158: 732.

4.1 Introduction

In the previous chapter ISM gas was subjected to various arm and bar structures by the use of

smooth analytic potentials. Alone, neither of these features provided a good match to all the

observed l-v features of our Galaxy, though individual features could be reproduced. The current

consensus is that the Milky Way has both bar and spiral components (Churchwell et al. 2009), and

so it is not surprising that the all features cannot be reproduced with just arm or bar potentials.

This leads to the next stage of our investigation; to perform calculations with both bar and spiral

perturbations. In Section 4.6 we present the results of our investigation into the barred-spiral

nature of the Milky Way, and our models that provide the best representation of Galactic structure.

The method to create l-v features in the previous section is simplistic in nature, and in no

way takes into account the optical depth of the ISM, but instead simply approximates emission

strength as decreasing with distance squared from the source gas particles. Now that a refined

parameter space has been produced it is prudent to use a more sophisticated approach to creating

l-v maps. A radiative transfer code is employed to create synthetic l-v maps of some of our best

123
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Galactic models, so that emission can be directly compared with observations. In the first half of

this chapter we briefly discuss the theory of radiative transfer relevant to our calculations. Tests

of the method are shown before applying it to our SPH calculations from the previous chapter,

and finally applying to the best-fitting barred-spiral calculations. The investigation using analytic

potentials is then discussed in full in Section 4.7.

4.2 Theory of radiative transfer

The theory of radiative transfer is a way of describing the quantifiable amount of radiation received

from some source, including effects of absorption and re-emission by any media in between the

point of emission and observation. This is employed later in this Chapter to produce Galactic

emission maps from the SPH calculations in the previous chapter, so we devote some time here to

the discussion of the relevant fundamentals.

The simplest form of radiative transfer comes in the form of Beer’s law, where an incident

ray of intensity I0 passes through some absorbing medium of thickness s resulting in an emergent

intensity of I = I0e−nσs, where n is the number density and σ the cross section of absorption [cm2].

The cross section is related to two other quantities, the absorption coefficient (α) and opacity (κ,

or mass absorption coefficient) by α = nσ = ρκ. By differentiating Beer’s law we can obtain the

standard form for the attenuation of a ray passing though some absorbing media, i.e. radiative

transfer equation for a non-emitting medium

dIν
ds

= −ανIν (4.1)

where intensity and absorption can be frequency dependant. This absorption can also incorporate

scattering processes, as well as standard photon thermalisation. The optical depth can then be

defined as1

τν =

∫ s1

s0

ανds (4.2)

where significant absorption (of order e) will occur for optical depths of order 1, where the medium

is referred to as optically thick. The medium can also be allowed to emit additional radiation as

the incident ray passes through, contributing further to the total radiation intensity quantified by

an emission co-efficient jν with units2 [erg s−1 cm−3 Hz−1ster−1] which can similarly be related to

a density independent emissivity, εν, by jν = ρε. This changes Equation 4.1 to the full radiative

transfer equation for an absorbing and emitting medium

dIν
ds

= jν − ανIν. (4.3)

It is then prudent to define the source function, the ratio of emission to absorption processes,

1This is the same optical depth as used in the shielding processes incorporated in the cooling and chemistry in
Chapter 2.

2These are the also the units of the ray intensity due to the definition of intensity as the energy emitted per unit area,
per solid angle, per second, per unit frequency, i.e. dE = IνdAdΩdνdt.
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simply given by:

S ν =
εν
κν
≡ jν
αν

(4.4)

which means we can re-cast Equation 4.3 as

dIν
dτν

= S ν − Iν. (4.5)

The solution to which can be found by multiplying through by eτν , grouping all Iν terms into

d(Iνeτν)/dτ and then integrating from τν = 0 (the initial ray position) to τν to give the full solution

as:

Iν(τν) = Iν(0)e−τν +

∫ τν

0
S ν(τ′ν)e

−(τν−τ′ν)dτ′ν (4.6)

where Iν(0) is the incident intensity, and Iν(τν) the emerging intensity after attenuation through an

optical depth τν (Rybicki & Lightman 1979). If the source function is constant along the path of

the ray (e.g. the temperature in the medium is constant) then the integral can easily be evaluated

as

Iν(τν) = Iν(0)e−τν + S ν(1 − e−τν) (4.7)

in which the first term on the right hand side encompasses emission entering the medium and

being attenuated by absorption, while the second term is the emission from within the medium,

that is also being attenuated by the medium itself. In the optically thin limit (τ << 1), this becomes

Iν(τν) = Iν(0) + ds( jν − αIν(0)) ≈ Iν(0) + jνds, and the incoming radiation only receives positive

contributions from the medium. In the optically thick regime (τ >> 1) this reduces to Iν(τν) = S ν,

with all the incident radiation being absorbed and the only contribution to the emerging ray coming

from that emitted by the medium and not instantaneously absorbed.

The form of the source function depends on the physics of the medium in question. In com-

plete thermal equilibrium there is no change in ray intensity, and so the source function is simply

the radiation intensity, S ν = Iν. If thermal equilibrium is in effect then by Kirchoff’s law the inten-

sity is simply given by the Planck function, i.e. that of a black body, Iν = S ν = Bν(T ) = jν/αν. The

relation between source and Planck functions not only holds in full thermodynamic equilibrium,

but local thermodynamical equilibrium also (LTE) where Iν , S ν = Bν(T ). If intensity increases

in passage through the medium then dIν/dτν > 0 and Bν > Iν, conversely if intensity decreases

dIν/dτν < 0 and Bν < Iν (Böhm-Vitense 1989). In LTE calculations the level populations required

for transitions are purely a function of temperature, and collisional thermodynamical rates domi-

nate the energy transport. In non-LTE the radiation field rates dominate the collisional rates, and

the source function is no longer purely a result of black body emission.

We now turn to the determination of the emissivity and opacity for each of the two tran-

sitions of interest. These are the H I 21cm hyperfine transition, and the CO roto-vibrational

J = (0 → 1) 2.6mm transition (see Sec. 1.4). The terms do not share the same formalism

due to the different physical process underlying each transition. Beginning with the hydrogen line

and the definition of emissivity as

jν =
hν0

4π
Aulnuφ(υ) (4.8)
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where the spin-flip hyperfine transition has an Einstein co-efficient of spontaneous emission of

AHI(21cm) = 2.9 × 10−15s−1 and a wavelength (λ0 = c/ν0) of 21cm, making the transition tempera-

ture between the upper and lower levels, u and l, Tul = 0.068K (Binney & Merrifield 1998). φ(ν)

is the line profile function, discussed later in this section. The occupancy of states will determine

the number density of the upper state; nu. This can be determined from the Boltzmann equation

nu∑
i ni

=
gue−Eu/kBT

Z(T )
(4.9)

where the partition function is given by Z =
∑

i gie−Ei/kBT , a property of the system and solely a

function of T , and gi is the statistical weight of the ith level. By equating partition functions and

taking rates of the upper and lower levels of the transition we get the relation

nu

nl
=

gu

gl
e−(Eu−El)/kBT . (4.10)

The value (Eu − El)/kB is equivalent to Tul. In every case the temperature of the medium will be

greater than or equal to that of the CMB (2.73K), so T >> Tul and so reducing the exponential

above to unity. As the 21cm line is a spin-flip transition the degeneracy of states is simply g =

2S + 1, where S = 0 or 1 and so gl = 1 and gu = 3. This makes the ratio of state number densities

nu = 3nl, and nu = 3nH/4, where nH is the total number density of hydrogen. This results in an

emissivity that can be expressed from Equation 4.8 as (Acreman et al. 2010a):

jν =
3ν0hAHI(21cm)

16π
nHφ(υ). (4.11)

By using the assumption of LTE and Kirchoff’s law (S ν = Bν = jν/αν) the opacity can easily

be calculated. The Rayleigh-Jeans approximation reduces the Planck function to only the tail of

the black body distribution, and is valid where thermal energy is much greater than that of the

transition (such as radio astronomy) and kBT >> hν. This reduces the Planck function to

Bν(T ) =
2hν3

c2
(
exp

[
hν

kBT

]
− 1

) ≈ 2kBTν2

c2 (4.12)

giving an opacity for the hydrogen line of

αν =
3c2hA0

32πkBν0

nH

T
φ(υ). (4.13)

For the molecular CO transition the temperature of the transition is 5.53K, which is com-

parable to ISM temperatures so that the simplifications made above for H I no longer hold. The

opacity is defined in full by the Einstein coefficients of stimulated emission (Bul) and stimulated

absorption (Blu):

αν =
hν0

4π
(nlBlu − nuBul)φ(ν) (4.14)

for a transition from u to l, and the emissivity is again given by Equation 4.8. This reduces the

source function to simply Aulnu/(nlBlu − nuBul). To solve the radiative transfer equation the line
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profile is still needed in the opacity, determined from Equation 4.14. The Einstein A co-efficient

for this transition is ACO(0→1) = 7.2 × 10−8s−1 (Schöier et al. 2005) from which the B coefficients

can also be calculated3. The population of states is given by Equation 4.10 where the degenera-

cies of the upper and lower states are 1 and 3 respectively (g = 2J + 1), providing everything

required to calculate the emissivity and opacity of the CO and H I transitions of interest. The

above expressions are only valid in LTE where the level populations can be calculated by Boltz-

mann statistics. In LTE level populations are calculated from local temperature alone where the

density is sufficiently high that thermal collisions dominate radiative effects. In non-LTE regions

the level populations are calculated by assuming statistical equilibrium between states and must

be iteratively solved for, including the effect of the global radiation field (i.e. nu is a function of

Iν). This makes the calculation exceedingly more complicated and time-consuming. The calcula-

tions performed within this thesis assume LTE, which should hold in the dense cold regions of the

ISM where CO emission originates. Non-LTE effects become important in diffuse regions where

radiative effects dominate (e.g. stellar coronae, see Rundle et al. 2010 for an application).

The final ingredient of the radiative transfer equation is the profile function, φν, which

contains the velocity information of the medium. For the ISM thermal broadening is the dominant

effect, for which the profile takes a Gaussian form

φν =
c

υbν0
√
π

exp
(
−∆υ2/υ2

b

)
[cm−1] (4.15)

where υb is the broadening width given by a combination of thermal (υT ) and turbulent (υturb)

effects as υ2
b = υ2

T +υ2
turb where υT =

√
TkB/m. The turbulent velocity is a collection of any veloc-

ity structure not included in the global velocity field resolved by the calculation, e.g. supernovae

feedback, stochastic gas motion, and MHD effects, which can be of the order of km s−1(Larson

1981). Other broadening processes include pressure and natural broadening which take the form of

a Lorentzian profile but become important in extremely different environments such as planetary

atmospheres. The velocity of the gas (υ) is incorporated in the Doppler shift of the rest frequency,

∆υ = (ν − ν0)
c
ν0

+ ~υ · n̂ (4.16)

where ν is the frequency of the ray being traced. ~υ is the velocity field of the gas causing the

absorption/emission and n̂ is the unit vector defining the direction of ray propagation (Rundle

et al. 2010).

4.3 Creating l-v maps and quantifying the best fit

The 3D AMR Monte-Carlo radiative transfer code torus (Harries 2000) is used to create synthetic

observations, using the formulae outlined above. torus is capable of creating synthetic brightness

temperature, TB, data cubes (data structures with dimensions l, b, υ and TB) enabling us to compare

our simulations directly with the map of Dame et al. (2001). torus has been employed in several

studies already to create synthetic emission from SPH simulations including star formation regions
3The Einstein coefficients are related by the relations Bulgu = Blugl and Aul = Bul2hν3/c2.
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(Rundle et al. 2010) and circumstellar discs (Acreman et al. 2010b). Synthetic H I maps of the

spiral galaxies of M31 and M33 were created by Acreman et al. (2010a), finding good agreement

with observed emission. Douglas et al. (2010) and Acreman et al. (2012) also used torus to create

synthetic emission maps of the second quadrant of our Galaxy from SPH calculations in H I.

The procedure to create l-b-υ data cubes, analogous to those created from observations, is

described in detail in Acreman et al. (2010a) and we will give only a brief description here. Cre-

ation of synthetic observations is a two stage process. An AMR grid is first generated, containing

all the data required for the radiative transfer calculation, through which the actual ray-trace can

then be performed. The SPH data must first be converted to a grid for use by torus. This is done

using the method of Rundle et al. (2010). A grid is constructed with SPH particles using an octree

method, where the grid is initially a 2x2x2 cube. The grid is then subdivided according to a mass

per unit cell criterion, thereby providing greater refinement in regions of high particle concentra-

tion. Our grid is somewhat larger than previous works of Douglas et al. (2010) and Acreman et al.

(2012) that focused on the second quadrant alone. As such, to make the grid manageable in terms

of memory and map construction time we use a higher mass per unit cell of 4 × 104 M� where

each particle has a mass of 1.6×103 M�, giving approximately 25 particles per cell. This results in

approximately half a million splits by mass (around 4 million voxels) and a full galactic grid over

6GB in size. We find that higher mass thresholds (lower resolution) have very minimal effects

on the resulting l-v maps, merely reducing the arm resolution slightly. The grid to SPH conver-

sion is illustrated by Figure 4.1 where we show an SPH input file and the equivalent AMR grid,

along with cell boundary and particle positions. The SPH particle properties including H I and CO

number densities, temperature and velocities are mapped onto the grid using a summation of SPH

kernels with a Gaussian form. The opacity and emissivity, assuming LTE, are then calculated and

stored in the AMR grid for use in the radiative transfer ray-tracing.

The ray-trace is then performed with input values for the observer co-ordinates, requiring

the distance from the Galactic centre, Robs, the azimuthal position in the disc, lobs and the circular

velocity, Vobs. For a certain velocity channel rays are propagated from the observer throughout the

disc in a range of 0◦ < l < 360◦ and |b| < 6◦. While out of plane emission is of minor importance

for studying the Galactic disc, we pass rays out of the plane in a high enough latitude so we can

produce an integrated emission map of comparable strength to that of Dame et al. (2001). As a

ray enters a cell the intensity of emission is updated from Iν to I′ν using the opacity, emissivity

and optical depth of the current cell at the frequency of interest ν (εν, κν and dτ respectively)

via Equation 4.7 allowing for the optically thick or thin treatment of the transition. The actual

quantities stored by the grid are independent of the velocity profile function, which is instead

applied during the ray trace itself.

The intensity is transformed into brightness temperature by using the Rayleigh-Jeans ap-

proximation (Equation 4.12 with Iν = Bν). This process is then repeated for each velocity channel

of interest, resulting in a cube of TB as a function l, b and vlos. The resulting data cube is then

integrated over the latitude dimension (|b| < 2◦) to produce an l-v map analogous to that in Dame

et al. (2001). The number of velocity channels is considerably higher in the central galaxy in

order to encompass emission up to a maximum of 280 km s−1 seen in the CO observations. To
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Figure 4.1: Illustration of the SPH to AMR grid conversion. Left column shows the SPH data
(density render top, SPH particles bottom), and the right the ARM grid (density render top, grid
cell boundaries bottom). The lower panels show a zoom in on the second quadrant and the upper
panels the full barred-spiral galaxy density render.

avoid passing rays through empty regions of l-v space we use a number of channels that varies as

a function of longitude, tailored to encompass the emission seen in Dame et al. (2001). As the H I

emission spans a greater region of l-v space the datacube is simply cut-through at b = 0◦ rather

than integrated. The integration version of the observed H I emission adds little to the l-v structure,

whereas the CO features show additional features upon integration. Though the CO integration

usually does not introduce any new features in l-v space as our simulations are effectively confined

to the Galactic plane.

A fit statistic is calculated for each resulting map to quantify similarity to observed emis-

sion. The statistic used is the same as Equation 3.20 for the simple kinematic l-v maps. The

torusmap tends to be of finer resolution than the relatively coarse Dame CO map, so is first re-

binned to a lower resolution, after being smoothed in longitude slightly to provide a smoothness

of the resolution of the Dame map. Our primary interest is whether emission features can be

produced in the same location in l-v space, with comparable arm to inter-arm emission strengths.

As such we are not so interested in the quantitive strength of the emission itself. As is discussed

in greater detail below, the strength of the torus CO emission is somewhat higher than that in

observations, with peak emission features approximately double the strength. To ensure the fit
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Figure 4.2: CO emission maps of the second quadrant in CO in a spiral galaxy with the galaxy
aligned so arm features are located in the l-v space in a similar position to the Local and Perseus
arms in observations (bottom panel). Each panel shows calculations with varying turbulent veloc-
ity contributions in Equation 4.15.

is not driven too much by this difference each map is scaled to have emission that matches that

of the Dame map for the calculation of a fit statistic, which effectively halves the strength of CO

emission. All plotted torus l-v maps retain their original strength.

4.4 General features of RT maps

Early tests using torus for CO l-v maps showed that the features created were far too narrow in

velocity width compared to observations. Figure 4.2 shows CO emission from the second quad-

rant in an armed galaxy simulation with various turbulent velocity contributions ranging from

0-20 km s−1. The map with no turbulent velocity has features much finer than those seen in ob-

servations (bottom panel). To resolve this we added a turbulent velocity to the width of the CO

line emission profile of 4 km s−1, a value high enough to smear out the fine emission features but

not so strong as to blend features in l-v space. This is at the lower end of ranges suggested by CO

observations of the outer regions of disc galaxies (see Dib et al. 2006 and references therein). The

turbulent velocity could be scaled as a function of some cloud size determined by the clumpiness

of SPH particles (Larson 1981; Dame et al. 1986; Brunt et al. 2003; Mac Low & Klessen 2004).

However, we choose a constant factor to avoid introducing additional variables.

In Figure 4.3 we show full galactic plane l-v maps for H I and CO emission for calculations

with varying surface density (i.e. total SPH particle gas mass), increasing from bottom to top.

The CO emission is very strongly coupled to the disc mass, with emission features appearing
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extremely weak in the lowest surface density case. With a low surface density the SPH particles

are not massive enough to enter the upper region of the n − χCO diagram (Fig. 2.14), and stay

relatively warm throughout the simulation. The two higher surface density calculations show CO

emission that appears to trace arm and bar features, though still appear too weak in the 7.5M�pc−2

case compared to observations. The highest surface density calculation was deemed as having a

high enough mass to have visible l-v emission features in CO, and so was the mass adopted in the

highest resolution models used in this and the previous chapter.

While the structure of the H I emission is not the prime goal of this work, as it is not believed

to trace high density structures as well as molecular gas, emission maps were also created of the

entire Galactic plane with varying surface density, similar to those shown in Acreman et al. (2012).

The features seen are quite different to those shown in the CO emission. The H I emission only

seems to trace the high density regions associated with arms and bars in the lower surface density

cases (lower two panels). In the calculations with higher surface densities there appears to an

equal amount of emission coming from the inter-arm regions as the arms themselves, if not more.

A possible explanation for this that the gas in simulations shown here is very confined to the x-y

plane, as there is no mechanism to drive the gas off-plane and counteract the disc potential. This

causes all the ISM material to be within a single latitude channel in the construction of the emission

data cubes. This would cause the optical depth of the atomic gas to be very high in the b ≈ 0◦

channels, especially in the highest surface density case. As such the high densities, and therefore

high optical depths, of the H I in the arms can result in a net loss of emission, explaining why the

arm features in the highest surface density H I map in Figure 4.3 seem to show dearth of emission

compared to that with the lowest surface density. The reason this was not seen in the work of

Acreman et al. (2012) is that their surface density was somewhat lower, corresponding with the

lower panels of Figure 4.3, where the H I does trace arm structure. Stellar feedback was also

included in those models, acting to drive material off-plane. The earlier calculations of Douglas

et al. (2010) are similar to those shown here. There is a considerable amount of off-plane emission

seen in observations (Grabelsky et al. 1987; Bloemen et al. 1990; Dame et al. 2001), so it may be

that our axisymmetric model is too strong in the vertical direction, though this would lessen the

amount of molecular gas due to the drop in density, and weaken the CO emission structures.

It may be the case that there is some careful balance required to having a high enough

surface density to produce CO emission, but not too high to create adverse absorption in H I. There

is also the possibility that the chemistry is too simplistic to allow the accurate modelling of H I and

CO. To test the effects of the optical depth on the H I emission we performed calculations where

the atomic and molecular gas was assumed to be optically thin. The calculation was performed

by simply adjusting Equation 4.7 to instead read Iν(τν) = Iν(0) + jνds for both the atomic and

molecular ray-trace. Figure 4.4 shows H I and CO emission for the optically thin case from the

second quadrant alone, using the same SPH input as Figure 4.3. In this case both the atomic and

molecular gas appears to trace the arm structures. The differences in CO emission are much less

apparent than in H I, but there is a minor change in emission strength. The peak H I emission

is much stronger than in the optically thick cases, reaching temperatures above 1000K, which far

exceeds that of the optically thick calculation and temperatures seen in observations. This indicates
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Figure 4.3: H I (left) and CO (right) emission maps of barred-spiral galaxies of similar morpholo-
gies to that in Fig. 4.1 with varying surface densities, increasing from bottom. The corresponding
total gas mass is 8, 4, 2, and 0.8 ×109M� from top to bottom. The potentials and observer location
are the same in all maps, with the observer placed at Robs = 8kpc.
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Figure 4.4: The same maps as Fig. 4.3 except in the optically thin regime with negligible optical
depth, and only of the second quadrant. H I emission is shown in the left panel, and CO in the right
in calculations with varying surface density.

that the H I does also trace arm structures, but that the absorption is too high in our standard

calculations. Without such a high density however, CO production will be too low, and so we

believe that correctly modelling the atomic and molecular emission simultaneously is not possible

with the chemistry and potentials used here. Additional physics or more complex chemistry would

be needed to break up the atomic gas and reduce its opacity while allowing for sufficient CO

production to produce observable emission features.

The contrast between CO emission in our torus maps is comparable to that of the observa-

tions in the inner Galaxy when a 4 km s−1turbulent velocity is added. The distribution of emission

in general is smoother than that seen in observations. This is a result of the continuous nature

of the potentials, which are idealised compared to the arm structures in observed spiral galaxies.

Inclusion of other physical processes, such feedback as in Acreman et al. (2012) or a live stellar

component as in the following chapter, will act to break up these smooth l-v features.

The strength of the CO emission in our torus maps is somewhat higher than that observed,

peaking at approximately 40K compared to 20K seen in observations in the highest surface density

case. The peak emission in the second highest density calculation is in closer agreement with

observations, but arm features appear much weaker in comparison. There are several possible

reasons for this difference. The first is that the strength of the CO emission is very sensitive to

the surface density of the ISM disc. The disc mass found through integration of the disc surface

density profile resulted in visible emission from the arm features, and so was used for the majority

of the simulations presented here. Another consideration is that the production of CO has no limit

other than the maximum amount of C allowed to be present in the ISM. All SPH particles tend to

increase their molecular abundance (and density) up to this limit, as there is no strong process to

break up and heat the gas. Additional heating mechanisms such as stellar feedback or magnetic
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Figure 4.5: Radiative transfer CO l-v maps resulting from an SPH simulation with 1, 5 and 10 mil-
lion particles (increasing from top). The gas is subject to a bar potential moving at 40km s−1 kpc−1,
shown after 280 Myrs of evolution. The observer is set to the IAU standard position and velocity.
Turbulent velocity broadening is excluded to highlight differences between different resolutions.

fields would be required to break up the dense clumps of ISM gas and remove some of the excess

CO build up. The addition of stellar feedback would also cause material to be more dispersed

vertically compared to the no feedback case (Tasker & Bryan 2006; Dobbs et al. 2011; Acreman

et al. 2012). The confinement of the gas to the x-y plane may also cause this over-emission. The

molecular material will be located in a single latitude channel in the construction of the emission

data cubes, increasing the strength of emission seen in l-v space, but the amount of the molecular

material still being low enough to not have a large absorption effect.

4.4.1 Resolution study

To test our adopted simulation resolution of 5 million particles we ran a number of simulations

with 1 and 10 million particles. Top down maps of 1 million particles displayed significantly less

structure around the resonance regions of the potentials, while 5 and 10 million particle calcu-

lations showed little difference. Figure 4.5 shows CO l-v emission maps made using torus for

simulations using 1, 5 and 10 million particles (increasing from top) inside a bar potential. No

turbulent velocity term is added to the line profiles so as to highlight the resolution effects. The

difference between 5 and 10 million particles appears to be minimal, but the 1 million run has

considerably less emission in the inner Galaxy in comparison. We conclude the 5 million particle

resolution is sufficient to capture the global Galactic CO emission.

The 1 million particle resolution calculations have a much lower CO formation efficiency,

with a very low molecular gas fraction compared to the higher resolutions. They will cause weaker

CO emission which, coupled with the weaker tracing of potentials in low resolution runs, causes
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Figure 4.6: Column density of H I (top), H2 (middle) and CO (bottom) of the second quadrant of
a simulation with a spiral perturbation, shown in the insert.

the observable decrease in CO emission features seen in Figure 4.5.

4.4.2 ISM Column densities

The column density of the gas is an important quantity for both the radiative transfer and the

ISM chemistry. Figure 4.6 shows the column density of the second quadrant of a spiral galaxy

simulation (pictured in the top left corner). The column density of the atomic hydrogen, molecular

hydrogen and CO gas is shown in the top, middle and bottom panels respectively, as a function

of longitude and latitude. Firstly, it is clear that the column density (and therefore opacity) is

decreasing with mass of the ISM species in question, due to the decreased abundance of each

species in the simulation. There are two major arm segments in this quadrant seen in the insert,

both of which can be seen in the column densities. The molecular gas (both H2 and CO) is

primarily confined to higher density regions associated with spiral arms. In the corresponding

column densities a far and near arm structure can be seen. The far arm is confined to the b ≈ 0◦

plane due to its relatively large distance from the observer, while the near arm appears as the off

plane clumps that span a wide range of latitudes due to their closer proximity. The atomic gas

however has a weaker affinity to these arm features, especially compared to CO, seen throughout

the plane.

In Figures 4.7 we show the column density of H I and CO for the entire Galactic plane of the

same barred-spiral calculation as that used in Figure 4.1. Here an even clearer distinction between

the atomic and molecular gas column density distribution can be seen. The H I column density

is not only predominantly confined to the mid-plane, but also present at all longitudes. There is

some off-plane emission in the inner disc where the bar is causing turbulent gas motions relatively

close to the observer’s location, but the column density is still relatively thinner than that in-plane.

Conversely, the CO is much less uniformly distributed through longitude. The third quadrant in
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particular has a very low column density compared to the inner quadrants. The off-plane density

associated with arm/bar structure is also closer to that of the in-plane density than the H I.

Figure 4.7 shows some numerical artefacts of the SPH to grid conversion. The local material

that has a relatively large angular size clearly shows cube-like features inherent to the grid based

nature of the ray-trace. These features can be muted by decreasing the mass per units cell criterion,

though this will further increase the already hefty memory requirements of the AMR grid. This

will only help so much however, and in order to fully remove these artefacts the resolution of both

the SPH calculation and the AMR grid must be increased. The effect of this numerical artefact is

seemingly unimportant in the CO l-v maps, where the emission is integrated through latitude. This

was tested by performing calculations with lower values of the mass per unit cell parameter, and

the resulting l-v emission maps showed no visible change.

In Figure 4.8 the column density of H2 and CO is shown for a Galactic simulations after

120Myrs and 340Myrs of evolution in the left and right panels. Column densities from several

other works in the literature are also plotted as coloured circles, including data from Sheffer et al.

(2008); Burgh et al. (2007); Ungerer et al. (1985); Baudry et al. (1981) and Federman et al. (1980).

The figure also includes a line indicating the maximum CO column density allowed by formation

from H2 (Sheffer et al. 2008). The earlier time-frame shows column densities that agree with those

of moderately diffuse molecular clouds, but not of the denser cores of Ungerer et al. (1985) and

Baudry et al. (1981). The global trend does not match that seen in observations. The column

densities in our calculations appear to drop away N(H2) < 1019cm−2, following an inverse expo-

nential profile. Observations on the other hand appear to have a near constant N(CO) ≈ 1012cm−2

when N(H2) < 1019cm−2, though there are much fewer data in this region, and the data appear to

follow a quadratic profile. The densities at the later time agree much better with the higher den-

sity molecular clouds, but produces too high values of N(CO) for the more diffuse clouds. This

later time frame is much closer to that used for construction of l-v maps, thus at that time it is

assumed that we are correctly reproducing the molecular column densities in the denser region

of the ISM. We are however over-estimating the CO column densities for the more intermediate

density clouds. This can result in excessive absorption of CO emission in some regions, but also

reduced emission, as the column density is dependant of CO mass, which dictates the actual CO

emission.

While we are not expecting to fully match the column densities of the ISM, the values

in our calculations seem to agree well with those observed for the highest density regions. As

these regions are the primary CO factories in our calculations it shows our chemical network

underlying the CO emission maps matches some observed ISM properties. The lower column

densities however likely need a better treatment of additional ISM physics. Our calculations are

designed to resolve the colder ISM component rather than the warmer region where these lower

column densities are seen. This region is also populated by very few data points compared to the

well populated region that our calculations reproduce.
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Figure 4.7: Column density of H I (top) and CO (bottom) of the entire Galactic plane for a barred-
spiral calculation of similar morphology to that in Fig. 4.1. The four seperate panels show the
column density in each of the four Galactic quadrants.
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Figure 4.8: Column density of H2 and CO for the second quadrant of a simulation with a spiral
perturbation. The points show observational data from Sheffer et al. (2008); Burgh et al. (2007);
Ungerer et al. (1985); Baudry et al. (1981) and Federman et al. (1980). The dashed line indicates
the maximum CO column density allowed by formation from H2 (Sheffer et al. 2008). Left and
right panels show the calculation at 120Myrs and 340Myrs.

4.5 Radiative transfer maps of armed or barred simulations

Before considering barred-spiral models we first discuss a selection of maps made using torus of

our models presented in Chapter 3. The SPH inputs to the torus calculations are the same as those

for Figures 3.18 and 3.23 (5 million SPH particles, with a total gas mass of 8 × 109M�), using the

same values for observer position and velocity. We show full radiative transfer maps for only a

handful of these models due to the high computational cost of construction, and choose to use the

radiative transfer to primarily differentiate between full models including bar and arm potentials.

In Figure 4.9 we show torus maps of the WK bar at pattern speeds of 40, 50 and

60km s−1 kpc−1 after 354 Myrs of evolution. These correspond to the simple maps shown in the

centre of Fig. 3.18. The arm feature near the Solar position in the 40km s−1 kpc−1 model is visible

as extremely bright emission in the top panel of Fig. 4.9. The strength of this emission far exceeds

that seen in observations, and the arm appears uniformly bright, not just in a specific location. As

the pattern speed increases, the emission covers a narrower range of longitudes, and increases the

line-of-sight velocity of the central emission ridge. As with the simple maps from the previous

chapter, there is little emission in the outer quadrants with these relatively fast rotating bars. The

emission towards the Galactic centre (|l| < 5) with the greatest |vlos| is a very clear feature in the

observed CO emission; the CMZ. We find no such strong emission in our maps in Fig. 4.9. We do

see some similar features to the peak velocity structures seen in observations in some of our maps

in Fig. 3.18, but there is not enough CO produced to be seen in our torusmaps. We discuss this

further in Section 4.7.
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Figure 4.9: Radiative transfer l-v maps constructed using torus, rather than the simple chemo-
kinematic re-mapping method used to create the maps in Fig. 3.18. The bar is that of Wada &
Koda (2001) after 354 Myrs of evolution and pattern speeds of 40, 50, 60km s−1 kpc−1(increasing
from top to bottom). The brightness temperature scale is calculated exactly so the fit statistic is on
a different scale to that for the previous maps.

Figure 4.10 shows a selection of 6 of the best fitting arm models made using torus, each

with a different combination of N, α and Ωsp. The N = 2 models cover a reduced area of l-v space

compared to their N = 4 counterparts. This allows for N = 2 models to match emission in the 2nd

quadrant while leaving the 3rd comparatively empty. This is seen in observations of CO, where

possible arm features are much weaker in the in the 3rd quadrant compared to the 4th. The N = 2

models tend to have the near arm aligned with the Perseus arm feature in the 2nd quadrant and

this arm reaches the edge of the disc just as it enters the 3rd quadrant. The local emission in the

2nd quadrant is reproduced by branches, whereas in the 4-arm models this is reproduced by arms

directly tracing the potential troughs (as seen in the top panels of Fig. 3.22).

In the maps shown in Figures 4.9 and 4.10 there is little difference morphologically to the

maps constructed in the previous chapter. Emission strength is similar to values seen in observa-

tions, though peak strengths are higher. There also appears to be a lack of weakly emitting material

on the order of tenths of kelvin that appears to be present in both arm and inter-arm regions of ob-

servations. A full reproduction of all features in l-v space still seems impossible with only an arm

or bar potential. Arms without the inclusion of a strong bar to drive additional features in the inner

disc cannot allow the arms to produce the Carina and Perseus features in the outer quadrant with-

out trying to fit the central ridge simultaneously. The placement of the OLR of the bar at roughly

the Solar position would impact upon the structures observed in the 1st and 4th quadrants formed
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Figure 4.10: The best fitting maps from isolated arm potentials for a variety of pitch angles. l-v
maps are made using the torus radiative transfer code, where the normalised fit to observed CO
is shown in the bottom right of each panel. Ωsp and α are in the units of km s−1 kpc−1 and degrees
respectively shown in the bottom left.

by the arms.

We also constructed CO l-v maps using torus of different arm models, including that of

Cox & Gómez (2002) with double the fiducial strength and the arm model of Pichardo et al.

(2004). The resulting maps did not differ significantly from the “simple” versions made in the

previous chapter (Figure 3.29), and so confirmed our decision to not include these models in the

barred-spiral models.

4.6 Simulations including both arm and bar potentials

Using the refined parameter space found from calculations with arm and bar potentials we then

performed calculations with both in various combinations. In the following section we show the

results of our simulations, simple map fitting to place the observer, and full radiative transfer

calculations to create l-v emission maps, and determine the best-fitting morphology.
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Figure 4.11: Example of the evolution of a barred-spiral Milky Way simulation. The central bar
is of WK type with and the arms of CG type. The potential parameters are; N = 4, α = 12.5◦,
Ωsp = 20km s−1 kpc−1 and Ωb = 50km s−1 kpc−1.

4.6.1 Simulations

Parameters in bold in Table 3.2 are those used in arm-bar simulations, chosen based on fits in

previous sections. Note that we use Ωb = 50km s−1 kpc−1 for the WK and Ωb = 60km s−1 kpc−1

for the WKr2 potentials. We use Ωsp = 15km s−1 kpc−1, N = 2 arms only in conjunction with

the Ωb = 60km s−1 kpc−1 bar potential as the OLR of the Ωb = 50km s−1 kpc−1 bar is close to the

region of arm branching and this may result in a disruption of these features. In some models

ressonances of arms and bars will overlap. For example, a N = 4 spiral at Ωsp = 20km s−1 kpc−1

and a bar with Ωb = 50km s−1 kpc−1 has the ILR of the arms at approximately the same radius

as the OLR of the bar, so a clear distinction between arm and bar features should be seen in this

model. This is not the case for the N = 2 models, where there will arm and bar features will

overlap.

An example of the evolution of a barred-spiral simulation is shown in Figure 4.11, with the

parameters; N = 4, α = 12.5◦, Ωsp = 20km s−1 kpc−1 and Ωb = 50km s−1 kpc−1 (with CG and WK

type potentials). The addition of a bar distorts the arm features within a radius of 5 kpc, roughly

corresponding with the bar’s OLR. The bar-arm contact region has a large amount of complex

structure where the gas in the arm potential strays from a logarithmic spiral structure to join those

arms driven by the bar; which are much tighter wound. After 500 Myrs the gas around the bar

establishes elliptical orbits similar to those seen in Fig. 3.15, though the addition of arm potentials

inhibits the formation of parallel and perpendicular elliptical orbits seen at the OLR in bar-only

simulations. We find that, as suggested by Sellwood & Sparke (1988), there is a clear inner region

dominated by the bar potential and outer region dominated by the spiral potential, with only a

small region where the two are intermixed.

The differences between the models as a function of Ωb and N are shown in Figure 4.12.
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Figure 4.12: Top-down maps of the gaseous response to the different N − Ωb potential pairs, all
of which have α = 12◦, Ωsp = 20km s−1 kpc−1 and evolved for 236 Myrs. The bar potential in
the left panels has Ωb = 50km s−1 kpc−1, and Ωb = 60km s−1 kpc−1 in the right panels, shown in
conjunction with 2 and 4 armed models.

The slower bars disrupt the arm features up to the Solar radius, while the faster bars are less radially

extended, allowing arms to approach smaller radii. The 2-armed models still have a dearth of high

density interarm material, though the arms in conjunction with the slower bar has additional inter-

arm structure caused by the large radial extent of the features driven by the bar (though this is

more evident at later times).

4.6.2 Simple kinematic maps

An additional complication to the barred-spiral models is the offset between the arm and bar

potentials, which is time-dependent due to Ωsp , Ωb. By choosing to analyse the model at

specific time-stamp, as in the arm and bar only simulations, we would have already selected the

offset between the bar and arm features. Instead we analysed each barred-spiral model in the range

of 280-370 Myrs, regardless of arm number and bar pattern speed. This range was the minimum

required time between arm passages around a reference frame aligned with the bar for all models

considered and includes the full possible range of arm-bar offsets.

To actually determine the best-fitting arm-bar offset we use the same fitting method to fit the

observer’s coordinates for the arm and bar calculations, leaving Robs and Vobs free. We fixed the

bar at θb = 45◦, effectively fixing lobs, which is consistent with the best fitting value found in our

bar-only simulations. This allows for a reference point for altering the arm-bar offset. This method

has one major caveat, we must assume the morphological features do not change considerably in

the time-frame used to perform the fit, approximately 100Myrs. Global arm and bar features tend

to stay the same over this time frame, with the main difference seen in the gas around the OLR of

the bar, effectively where the bar meets the arms. At this radius the material from the bar driven

arms has altering substructure and begins to wrap around into a ring-like structure.

This process is illustrated by Figures 4.13 and 4.14, showing the fit statistic and correspond-

ing l-v maps for a calculation with N = 2, Ωb = 50km s−1 kpc−1 and α = 15◦. Figure 4.13 shows

the behaviour of the fit statistic with varying observer position and velocity, and with varying time

(which dictates the arm-bar offset). A clear broad minimum can be seen around 320Myrs, with

corresponding values of Robs = 8.5kpc and Vobs = 220km s−1 kpc−1. Figure 4.14 shows the l-v
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Figure 4.13: Variation of fit statistic with evolution of a barred spiral galaxy (top panel) which
is used to constrain the arm-bar offset. The model here has N = 2, Ωb = 50km s−1 kpc−1 and
α = 15◦. The best fitting time-frame is indicated by the red point. Corresponding l-v maps are
shown in Figure 4.14. Middle and lower panels show the best-fitting values of Robs and Vobs at the
same epochs.

Figure 4.14: Evolution of kinematic l-v maps for a barred spiral galaxy with changing arm-bar
offset. Each panel corresponds with a point shown in Figure 4.13.
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maps for each point in Figure 4.13, constructed using the best-fit parameters. This figure shows

the motion of arm features with respect to the bar, where individual arms can be seen to move ver-

tically in velocity space with time. Conversely inner features caused by the bar (where |vlos| >> 0)

can be seen to not change. The final panel in Fig. 4.14 has the same arm-bar offset as a time

between the third and fourth panels (around 294Myrs). While differences between the maps can

be seen, the global structure is the same, showing that over the time-frame of 100Myrs the l-v

features vary only marginally.

4.6.3 Radiative transfer maps

The torus emission maps for each N-Ωb-α combination are shown in Figure 4.15 with the best

fitting values of Robs, Vobs and arm-bar offset (i.e. evolution time) found using the method de-

scribed in Section 3.6. The best-fitting values for each model are also given in Table 4.1. Simple

by-eye comparisons between these maps shows that whilst most fit some features well ultimately

none shown a perfect match to the data, suffering the same problems as the arm-only models

in Chapter 3. As was the case in the arm only models, the fit statistic is uncorrelated with the

pitch angle. If the fit statistic is averaged across all parameters except pitch angle then there is

a marginal preference towards α = 12.5◦. There is also a preference towards a pattern sped of

Ωb = 50km s−1 kpc−1 for N = 2 models and Ωb = 60km s−1 kpc−1 when N = 4.

The reasons preventing a good fit to all emission features are covered by the following

examples. In Fig. 4.16 we show four different arm-bar simulations from Fig. 4.15 in both l-v and

x-y space. These have been chosen to highlight the main differences between the simulations, and

are not necessarily the best fits from Fig. 4.15. In the first panel we show a 2-armed spiral model

with our slower bar (50km s−1 kpc−1). The l-v map in this case shows a good reproduction of the

Carina arm, and Local arm material in the second quadrant (this is common to all 2-armed model

fits in Fig. 4.15). The x-y map shows that the l-v Carina arm feature in this model actually joins with

the Local arm material. The Carina segment branches away as it nears the Solar position, passing

though R < R◦ while the Local arm feature breaks away from the spiral potential and maintains

a radial distance of R > R◦ upon passage into the first quadrant. The major drawback of this and

other 2-armed models is the failure to produce the Outer, Perseus and Local arms simultaneously.

Two armed-models produce an inner emission ridge seen in observations (a combination of the

Scutum-Centaurus-Crux, SCC, arms and possibly a molecular ring). However the ridge in this

case is too shallow in l-v space, implying it is too close to the Solar position.

In the second panel we show another 2-armed model with a moderate pitch angle (12.5◦)
and a slow bar (50km s−1 kpc−1), but with a slower arm pattern speed than the previous model

(15km s−1 kpc−1). This value of Ωsp provides strong branching features that can be seen in the

x-y map, driving a 4-armed gas structure from only a 2-armed potential. This model reproduces

the Perseus, Outer and the Local arms. Reproducing these arm features simultaneously would be

impossible for a 2-armed logarithmic structure (as in the previous model). The Local and Outer

arms are actually reproduced by the branches, not the arms directly tracing the potential. The SCC

arm/inner ridge is angled similarly to observations, and the 3kpc-expanding arm is very clearly

seen in l-v space. The main flaw in this model is the position of the Carina arm, which does not
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Figure 4.15: Synthetic emission maps made using torus for our barred-spiral models with θb =

45◦. The arm position relative to the bar is found using the method of fitting to the observer co-
ordinates in the isolated arm and bar cases. The first two columns show Ωb = 50km s−1 kpc−1

with N = 2, 4 respectively, and the second two show Ωb = 60km s−1 kpc−1 with N = 2, 4. The
fifth column has a slower arm pattern speed of Ωsp = 15km s−1 kpc−1. The spiral arm pitch angle
increases from top to bottom.
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Figure 4.16: Four CO radiative transfer l-v maps with their x-y counterparts from Fig. 4.15, chosen
to show a range of different morphologies. The top-down maps only show material that is seen
in CO l-v space; that of the highest density. The cross indicates the observer’s position (which
differs between models). SCC refers to the Scutum-Centaurus-Crux arm in the 4-armed paradigm
of the Milky Way, also referred to in the main text as the Inner Ridge. Arrows indicate locations
of prominent features in l-v space. Models 2 and 4 reproduce the outer arm structure while 1 and
3 provide a better reproduction of the Carina arm.
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reach into the vlos > 0 km s−1region as seen in observations.

The third panel shows a 4-armed model with a shallow pitch angle (10◦). In this case there

is clear reproduction of the Carina arm feature, located inside the Solar radius in x-y space. As

this feature passes in between the Solar position and the Galactic centre it causes a bright emission

feature at near-local velocities, a feature not seen in observations. The SCC arm feature is seen

behind this strong emission feature in l-v space. The second quadrant arm features are not as clear

as the previous model, with the Local and Perseus features not clearly separated in l-v space. The

feature here labelled as the Outer arm could equally be labelled the Perseus arm, but would leave

multiple arm structures unidentified in the outer Galaxy, caused by a large amount of branching

material in the 7kpc < R < 11kpc region seen in x-y space.

Mix model
Best fit parameter CGN2+WK CGN4+WK
Ωb [km s−1 kpc−1] 50 60
Vobs [ km s−1] 220 215
Robs [kpc] 8.5 8.5
α [◦] 15 10

Table 4.1: Best fitting values for the barred-spiral simulations. A systematic uncertainty for each
value is present due to the coarseness of the parameter space; ∆Ωsp = ∆Ωb = 10km s−1 kpc−1,
∆Vobs = 5 km s−1, ∆Robs = 0.5kpc and ∆θb = 10◦. The parameter space for the mix models is
smaller than the isolated cases and was refined in Chapter 3.

The final panel also shows a 4-armed model, with a wide pitch angle (15◦), but with a faster

bar than the previous panels (60km s−1 kpc−1). The faster bar is less extended radially, allowing

the gas to trace the spiral potential to smaller radii. In the x-y map the spiral arm pitch angle

is maintained to R ≈ 4kpc, whereas in the slower, 50km s−1 kpc−1, models in the upper panels

structure is dominated by the bar until R ≈ 6kpc. This model appears to produce all the observed

features; Local arm, Perseus arm, Outer arm, SCC arms/ridge and Carina arm. The problem again

is that arms must pass in front of the observer to appear in the fourth quadrant, producing emission

that dominates the SCC feature in the inner Galaxy. This model in particular has little emission

in the third quadrant, as seen in observations, owing to the Perseus arm disappearing as it leaves

the second quadrant. The Carina arm feature is located at higher values of vlos than is seen in

observations, however there are similar maps for the α = 12.5◦ case that provide a better match

for this section, but are not shown in this figure due to the poor reproduction of other features.

Do the arms and bar have the same pattern speed?

Results presented in this and the previous chapter indicated that the bar and arms have different

pattern speeds, a view that is supported by numerous other studies of our Galaxy (see the review

of Gerhard 2011). This is also seen in some numerical simulations of disc galaxies, where patterns

in the inner disc tend to rotate considerably faster than those in the outer disc (Sellwood & Sparke

1988; Grand et al. 2012). Observations of external galaxies however often favour a single, or

smoothly decreasing pattern speed with radius (Egusa et al. 2009; Speights & Westpfahl 2011,

2012), as do some other numerical studies (Roca-Fàbrega et al. 2013). To check the validity of
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a model with independent bar and spiral pattern speeds we performed calculations where both

components have the same pattern speed, primarily to check whether the smaller parameter space

of the previous section (where Ωsp = 20km s−1 kpc−1) was justified.

In Figure 4.17 we show calculations with barred, 2-armed, and 4-armed potentials, and their

combinations where Ωsp = Ωb in the range of 10-60km s−1 kpc−1, using the WK and CG poten-

tials. The effect of adding a bar can clearly be seen in the third and fifth rows, with the main dif-

ference being the addition of the inner x2 orbits. In the case of the faster bars (50, 60km s−1 kpc−1)

the bar tends to dominate the spiral features which are confined within R < 8kpc where the OLR

of the bar drives strong ring-like structures. The slower pattern speeds (10, 20km s−1 kpc−1) the

bar has a minimal effect on the arm structures, only dominating the morphology within R < 3kpc.

This is due to the OLR of the bar lying well outside the Galactic disc at these slow pattern speeds.

The mid-range speeds (30, 40km s−1 kpc−1) show morphologies effected by the bar and spiral fea-

tures now that the bar and spiral OLR is within the disc. This is clearer in the 4-armed case, where

the arm OLR lies at a smaller radii than that of the bar.

The slowest pattern speed calculations do not appear to produce desirable morphological

structures. In the 2-armed case the bar is barely noticeable, leaving effectively just the arms and

we have already shown that the Ωsp = 10km s−1 kpc−1 arm models provide a poorer fit than the

20km s−1 kpc−1 case. The 4-armed case has weak arm and bar features, which are not strong

enough to maintain a sufficient CO abundance to appear in l-v emission maps. The faster models

are far too radially constrained to reproduce the observed l-v features, with arms only persisting

well within the Solar radius, making it impossible to reproduce the Perseus and Outer arms.

The remaining pattern speeds (20-50km s−1 kpc−1) display both arm and bar features. Fig-

ure 4.18 shows l-v maps of the models in Figure 4.17 with pattern speed of 20-50km s−1 kpc−1.

These maps were made using the simple method described in Chapter 3 and are shown for the

best fitting Robs, Vobs and lobs (where the bar is constrained to point towards the second quad-

rant). As the arm and bar features rotate with the same pattern speed, we have assumed some

fixed arm-bar offset. As such the exact position of features is not expected to perfectly reproduce

those seen in observations, but rather show l-v morphologies possible with single pattern speeds.

The 20km s−1 kpc−1 models allow for a large amount of spiral structure, but the bar forms some

peculiar inner structures due to the large inner x2 orbits which creates wide loop-like structures in

l-v space. The faster, 50km s−1 kpc−1, bar has ILR inside the Solar radius, so the bar-driven arms

lie in the inner Galaxy, creating emission with less gaps, and central emission that better resem-

bles observations. The 40km s−1 kpc−1model suffers the same problems as the bar-only models

of Chapter 3, where the OLR of the bar lies just inside the Solar radius. This causes very strong

emission at local velocities in the inner Galaxy, which is absent in observations. Finally, the

50km s−1 kpc−1 model has very few arm features in the outer Galaxy, as the arms are now within,

or just outside for N = 2, the Solar radius, making it impossible to fully represent the arm features

in the outer Galaxy.

None of the barred spiral models shown above with Ωsp = Ωb seem to be able to reproduce

Galactic l-v features better than models with Ωsp , Ωb. Bar features do a good job of fitting the

central emission for fast pattern speeds, while arm models better represent the outer Galaxy with
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Figure 4.17: Top down views of calculation with bar and arm potentials rotating at the same pattern
speed, increasing from left to right. The different rows show, in order from top to bottom, bars,
2-armed models, 2-armed and a bar, 4-armed, 4-armed and a bar, all after 380Myrs of evolution.
A black and white scheme is used to highlight the minor differences in the addition of a bar to the
central region.

slow pattern speeds. This leads us to the conclusion that the CO features of the Milky way are best

represented with two very different pattern speeds for the arms and bar.

The central molecular zone

In all of our l-v maps we fail to reproduce the structure of the CMZ. In certain instances we

do produce velocities that are comparable to the highest values seen in observations, one such

example is shown in Fig. 4.19. The peak velocity structures in our models stem from the inner x2

bar orbits perpendicular to the bar major axis, and appear as a symmetric loop structure in l-v space,

while the observed CMZ is highly asymmetric. The SPH particles that are present have aligned

themselves with the x2 orbits, leaving little material available to fill in the missing emission. In

order to fully capture the asymmetric emission features in the central galaxy a dedicated simulation

is required of only the inner galaxy to better resolve the gaseous features. The addition of stellar

feedback or a live stellar disc may also be required to break up the symmetric inner bar orbits.
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Figure 4.18: Best fitting l-v maps of the calculations shown in Fig. 4.17 with arm/bar pattern
speeds of 20, 30, 40 and 50km s−1 kpc−1 (increasing from top) and N = 2 or N = 4. These are
simple kinematic maps, rather than being built by torus, where the bar is allowed to lie anywhere
within the second quadrant.

It may be the case that the bar model is correct, but the physics is too simple to correctly

model the l-v features. The x2 orbital features are aligned similarly to the CMZ. Lee et al. (1999)

constrained the x2 orbits of a barred model to the CMZ features, finding that while a wide orienta-

tion angle of θb = 50◦ provided a good reproduction of the l-v slope, the gas particles traced very

thin structures in l-v space similar to those in Fig. 3.18. They did however perform a similar calcu-

lation with collisionless N-body particles, representing the stellar component, which appear much

broader in l-v space similar to observations. In the next chapter we will be discussing calculations

with a live stellar component, which also may provide a better match to observations.

4.7 Discussion of investigation using spiral and bar potentials

The models shown in Figures 4.15 and 4.16 show it is possible to reproduce all features of the

l-v data. However, we find it difficult to produce a good match to all features simultaneously.

Four armed models are more capable of fitting multiple features simultaneously, but to do so must

place some arm structure just inside the Solar position. This must be within very close proximity

to allow the tangent point of the Carina arm to reach out to l ≈ −90◦. While a strong emission

feature is seen in the inner Galaxy in observations, it is angled much steeper in l-v space than our

synthetic maps. One can conclude that the local SCC arm material is either lacking in molecular
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Figure 4.19: The observed CO emission in the Galactic centre (top, |l| < 10◦) compared to that
produced in the centre by the addition of a barred potential rotating at 50km s−1 kpc−1 (bottom).
The underlying model appears too simplistic to capture the large amount of structure seen in
observations.

material or that the shape is far from that of a logarithmic spiral near the Solar position. If it is

indeed lacking in molecular gas, then it can be expected to at least be rich in atomic gas.

Alternatively the Carina-Sagittarius arm structure could deviate significantly from a normal

logarithmic-spiral structure. This is supported by other works in the literature (e.g. Georgelin &

Georgelin 1976, Pandian et al. 2008). These models involve some straight section of the SCC arm

as it passes in front of the observer. In Fig. 4.20 we show such a model, specifically that of Taylor

& Cordes (1993), compared to a 4-fold symmetric spiral pattern similar to that used in this study.

This additional distance between the observer would give the arm a greater line-of-sight velocity,

pulling it up and away from the Vlos = 0 km s−1 line in our maps in Fig. 4.15, as seen in projection

in the bottom left panel of Fig. 4.20. It is also seen in observations that while the Sagittarius and

Carina tangents are well traced by distance determinations, there is very little material placed on

these arms in the local Galaxy in the direction of the Galactic centre (e.g. Georgelin & Georgelin

1976, Fish et al. 2003, Russeil 2003, Hou et al. 2009). It also may be that the arm structure is

better represented by a transient and irregular spiral structure, rather than that of a fixed grand

design galaxy. These structures are reproducible in simulations through the inclusion of a live

stellar disc, rather than fixed analytical potential (e.g. Baba et al. 2009; Dobbs et al. 2010; Grand

et al. 2012).

In Gómez & Cox (2004) the authors construct synthetic l-v maps by simply mapping struc-

tures in x-y onto l-v co-ordinates. They too show that while the Carina “hook” is easy to reproduce,

it causes a strong dense ridge angled far too shallow in l-v space compared to that seen in observa-
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Figure 4.20: Different arm models in x-y plane (top figure) and their projection onto l-v space
(bottom figure). Left panels: arm model of modified logarithmic spirals from Taylor & Cordes
(1993), primarily constrained to data from Georgelin & Georgelin (1976). Right panels: simple
4-armed spiral model with each arm offset by π/2 from the previous with addition of a local arm
segment. Arms only extend radially to distance required to match l-v emission features. Observed
CO and H I emission data is plotted on greyscale behind the model arm features in the lower
figure. Bold lines indicate the strong primary arm features in the old stellar population inferred by
Churchwell et al. (2009).

tions. They also note that crowding in velocity space can cause ridges in l-v space not necessarily

corresponding to high density gas regions. As CO traces high density regions only we do not have

that problem here, and our l-v features correspond well with high density gas regions associated

with arm and bar features. Our results are at some odds with the work by Rodriguez-Fernandez

& Combes (2008), who find that a bar pattern speed of 30km s−1 kpc−1 is the best match to the l-v

diagram, without the inclusion of arm potentials. Our value is more in keeping with that suggested

by Fux (1999), 50km s−1 kpc−1, and Englmaier & Gerhard (1999), 50-60km s−1 kpc−1. Our lower

pattern speed of 40km s−1 kpc−1 resulted in extremely strong emission in front of the observer,

features that would not appear in the aforementioned works due to the mapping of x-y features to

l-v space lacking a radiative transfer treatment.

4.8 Chapter summary

In this Chapter we have built on the work in presented in Chapter 3. We have constructed the

first synthetic emission maps in CO and H I of the full Galactic plane using the radiative transfer

code torus. Spiral and bar features can clearly be seen in l-v space, with emission of comparable

strengths to that seen in observations. While CO features seemed only to scale in strength with

surface density, the H I emission experiences very strong absorption at the higher surface densities
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needed to observe considerable CO emission. We believe this to be a result of the simplistic nature

of the physics in the calculation, with gas readily falling into a very thin plane, increasing optical

depth and H I absorption. However, CO is well reproduced, which is a better tracer of spiral

structure.

We then performed calculations similar to those in Chapter 3 but with the inclusion of arm

and bar potentials simultaneously. While these provide a better reproduction of observations than

the arm or bar models could alone, even with these we could not satisfactorily reproduce all the

observed CO features. Whilst it was possible to reproduce features in emission that are seen in ob-

servations, such as the Perseus arm, Carina arm, inner ridge emission, local material and the outer

arm, these features are not all reproducible simultaneously. The 2-armed models cannot reproduce

all these features, yet the 4-armed models create too much emission locally. Assuming logarithmic

spiral arms, in order to successfully match the Carina arm feature, an extremely strong emission

feature must be placed near vlos = 0 km s−1 in the inner Galaxy. Models which do not use radiative

transfer may miss the significance of this feature. Alternatively the Carina arm would need to

exhibit an irregular shape in the vicinity of the Sun. This leads us to the conclusion that while the

4-armed symmetrical model can produce many of the features seen in the l-v observations, it may

be necessary to allow an irregular arm structure to convincingly match the Galaxy.

The possibility of the arm and bar components rotating at the same pattern speed was also

investigated. These models did a significantly poorer job however than those with Ωsp , Ωb,

implying the bar and arms are both morphologically and kinematically different entities.

An alternative approach to that in this and the previous Chapter is to model the Milky Way

as a transient, multi-armed galaxy by the inclusion of a live N-body stellar disc. A study of the

Milky Way ISM l-v emission using a live-stellar disc, and the comparison to the grand design case,

is the topic of the subsequent Chapter.



5
Simulations and synthetic observations

using live stellar systems

“The most exciting phrase to hear in science, the one that heralds new discoveries, is

not ‘eureka!’ but ‘that’s funny’ ”

– Isaac Asimov, (1920-1992)

5.1 Introduction

In the previous two chapters we have shown the capability to create synthetic observations of the

Galactic plane, specifically in CO emission. To do so we modelled the Milky Way as a grand

design barred-spiral, whereby the arms and bars are fixed and have a constant pattern speed and

morphology. While some of the features seen in observations could be reproduced, never were

they all simultaneously. In this chapter we instead model the Milky Way stellar system as a set

of discretised mass components, rather than a continuous density profile. Modelling a galaxy in

this way is a tried and tested method and has been used to simulate both isolated stellar systems

(Sellwood & Carlberg 1984; Sparke & Sellwood 1987; Sellwood & Sparke 1988; Shen et al. 2010;

Grand et al. 2013; D’Onghia et al. 2013) and the simultaneous evolution of a gas disc (Carlberg &

Freedman 1985; Elmegreen & Thomasson 1993; Clarke & Gittins 2006; Baba et al. 2009; Grand

et al. 2012; Struck et al. 2011; Renaud et al. 2013; Athanassoula et al. 2013; Roca-Fàbrega et al.

2013). Simulations such as these, and many others, have shown that both bar and spiral features are

surprisingly easy to reproduce, though not ones that necessarily agree with theory. For instance,

spiral arms do not appear to be steady spiral density waves such as those suggested by Lin & Shu

(1964), and bars are seemingly overabundant, and difficult to reproduce with accompanying spiral

154
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structures.

In this chapter we first outline the computational method, and the procedure to generate

the initial conditions of the simulations. We then show results various different simulations, and

the accompanying gas morphology resulting form the evolution of the stellar system. The gas is

then used to construct synthetic l-v plots similarly to Chapter 4, where we utilise a similar tool to

constrain the best fitting values for Vobs, Robs and lobs. We briefly dedicate some time to quantifying

the morphology of the best fitting simulations, e.g. the pitch angle and pattern speed of the arms,

and compare these to the best-fitting maps of Chapters 3 and 4.

5.2 Modelling the stellar distribution with live particles in SPH

The computational method for evolving the ISM fluid is the same as that in Chapter 2. We utilise

the SPH method with ISM chemistry and cooling to evolve the positions, velocities, energies and

chemical abundances of the gas particles when exposed to the gravitational filed of a Milky Way-

like disc galaxy. While the method is essentially the same, some of the algorithms are slightly

different (see Section 2.2.12). Instead of using a fixed potential with an analytic force field, we

use numerous “star” particles in an N-body prescription. These star particles are not stars in the

traditional sense. They emit no radiation, are all of uniform mass, and are constant in number

throughout the evolution of the system. Most importantly, they are much more massive than any

single star. Simulating the Galaxy on an individual star-by-star basis would be computationally

crippling for the calculation of the gravitational force. Instead we use star particles whose mass is

closer to that of a stellar cluster, with individual particles having masses of the order 104 to 105

solar masses depending on resolution and disc mass. These will be referred to simply as “stars”

for the remainder of this chapter. Star particles behave similarly to SPH particles, but experience

no hydrodynamical forces (i.e. are collisionless), and have no concept of internal energy. They

therefore store no chemical information either. They do store a density, but this is used only for

time-stepping, to ensure they are evolved in a similar manner to SPH particles. The main difference

to the SPH particles is that they exert a gravitational force upon each other, and the individual gas

particles. Details on the calculation of N-body forces, rather than those of a smooth potential, are

given in Section 2.2. Gas particles still exert no gravitational forces upon each other, or the stars

(i.e. no self-gravity in the gas), this is assumed to be negligible compared to the gravitation of the

stellar system. In some instances we also use a live dark matter halo rather than fixed potential. As

the general properties of the dark matter are still unknown, halo particles are simply more massive

star particles.

5.2.1 Setting the stellar system

The initial conditions of particles in an N-body simulation are paramount to the evolution of the

system, specifically the initial position and momentum vectors. In the previous chapters the initial

gas distribution was relatively unimportant, with positions and velocities dominated by the effect

of the external potentials shortly after their activation. However, in this instance the particles also

provide the gravitational forces for the calculation, and so initial conditions can cascade into the
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results seen much later in the simulation.

The method of setting initial conditions is adopted from Hernquist (1993), which is also

used in Baba et al. (2009). The method requires density profiles of the separate Milky Way com-

ponents; bulge, disc and halo. For the calculations here we always employ a live stellar disc. A

bulge is also frequently used to match the Milky Way’s rotation curve, though this has adverse

effects on the efficiency of bar formation (see Sec. 1.3.4 and later in this chapter). Regarding the

halo, we usually use a simple potential to represent the halo, due to its gravitational effect mostly

dominating the outer disc, while the disc itself appears to primarily influence the gas dynamics.

We do employ a live halo in some calculations, though the additional computational resources

required to evolve a live halo require an overall reduction in resolution in the other mass compo-

nents.

The density profiles we use are slightly different to those used in the previous chapter. Pre-

viously all that was needed of the potentials was for them to create a rotation curve that matched

that observed, in effect reducing to a single force vector for each calculation. Here however

the density distribution determines the stellar distribution, and in turn how it evolves over time.

The density profiles chosen are therefore ones that have been tailored to match the Milky Way’s

mass/luminosity profile for each component. The bulge used is a spherical Plummer profile (Plum-

mer 1911), with corresponding density, potential and velocity profile of

ρPlum(r) =
3Mbr2

b

4π
1(

r2
b + r2

)5/2 (5.1)

ΦPlum(r) = − GMb√
r2

b + r2
(5.2)

V2
Plum(r) = +r

GMb(
r2

b + r2
)3/2 (5.3)

where Mb and rb define the characteristic mass and scale length. Initial calculations were made

using a Hernquist profile bulge but due to the relatively stronger concentration at small radii,

problems were encountered when setting the initial smoothing lengths of the particles. A spherical

bulge is a slight simplification, as in the Milky Way the inner bar is often indiscernible from the

bulge. However, we make no assumption about a bar morphology, and instead allow bars to

naturally occur in the disc evolution. The stellar disc, containing the majority of stellar material,

follows an exponential density profile (Binney & Tremaine 1987) so called due to the surface

density profile of the form

ΣExp(r) =
Md

2πR2
d

exp (−r/rd) (5.4)

which can be generalised to a volume density with the inclusion of a sech2(z) vertical scaling

ρExp(r, z) =
Md

4πR2
dzd

exp (−r/rd)sech 2(z/zd) (5.5)

where characteristic masses and scale lengths are Md, rd and zd. Integrating ρExp over z reduces
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vertical dependance to 2zd and returns the disc surface density. The 2D potential and velocity

profile are

ΦExp(r) = −GMdr
2r2

d
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)
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(5.7)

where I0, I1 and K0,K1 are modified Bessel functions of the first and second kind respectively. A

NFW dark matter halo is adopted (Navarro et al. 1996) which takes the form

ρNFW(r) =
ρ0

r/rh(1 + r/rh)2 (5.8)

where

ρNFW,0 =
Mh

4πr3
200

C3
NFW

ln(1 + CNFW) + CNFW/(1 + CNFW)
. (5.9)

and Mh, rh, r200 and CNFW are constants to be set. r200 defines the halo viral radius, and rh is

related by rh = r200/CNFW . The resulting potential and velocity profiles are

ΦNFW(r) = −4πGρh,0r2
h

ln (1 + r/rh)
r/rh

, (5.10)

and

V2
NFW(r) = −GMh

(
1
rh

(1 + r/rh)−1 − 1
r

ln
[
1 +

r
rh

])
1

ln(1 + CNFW) −CNFW/(1 + CNFW)
. (5.11)

In the case of a fixed halo, this is all that is needed to calculate the forces for the gas and star

particles.

The density profiles for each component are used to set the positions of the star particles.

The density profile effectively represents the number density of the star particles of that mass

component, providing the masses are all the same. The density can thus be used as the probability

distribution function (PDF) for the stars. Once correctly normalised, this can then be integrated

to obtain the cumulative distribution function (CDF) in the range of 0-1. By drawing random

numbers and finding the equivalent positions from equating to the CDF, the particles can be placed

“randomly” in accordance with a predefined density profile. Figure 5.2 shows an example of this

for the exponential disc. In the left panel is the surface density profile (red line), PDF (magenta

line) and CDF (blue line). The histogram and black points correspond to the star particles position

and corresponding surface density drawn from these distributions, showing good agreement with

the input functions. On the right is the resulting x-y positions of the 10000 particles, once allocated

a random azimuthal position is drawn from a uniform distribution.

Minor complications arise when using the density profiles above. None of the profiles are

constrained to a finite volume, and so require either the radial extent to be artificially limited

(but this can lead to artificial truncation of the mass distribution) or to add a ad-hoc truncation

profile over some distance rt, e.g. with an additional exp [−(r/rt)2] term in the density profile.
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Figure 5.1: Example of setting the initial positions of particles. On the left is the surface density
profile (red), resulting PDF (magenta) and CDF (blue) as a function of radius for the exponential
disc. The resulting particle positions chosen from these functions is shown to match the PDF, and
the underlying surface density (black points, with errors scaling as the size of histogram bins).
The resulting x-y positions of the particles is shown in the right panel.

The truncation distance is chosen carefully as to ensure the total mass of the component is not

significantly altered (e.g. rt = 4kpc for the bulge). This makes calculation of the CDF for the halo

sufficiently complicated that a Taylor expansion to the eighth term was used for the integration.

Drawing the velocities is significantly more complicated, but primarily requires integrating

the separate moments of the collisonless Boltzmann equation, a.k.a Jean’s equations (i.e. differen-

tial equations in velocity components in the R, z and θ directions with respect to R). This procedure

can give mean velocity components, which can then be used with some sensible source function,

such as a Gaussian, to draw actual velocities for each particle (see Hernquist 1993 for details).

This process requires density, potential, velocity and mass profile functions for each component,

and requires numerical integrations of combinations of Equations 5.1 to 5.11, requiring numerical

integration schemes. Velocities of the disc are circular with some dispersion, while the velocities

of the halo and bulge are in random orientations. Tests were made where the bulge had a non-zero

streaming fraction, i.e. fraction of orbits aligned with net disc rotation, but this had minimal im-

pact on the disc evolution. The initial value of the Toomre Q parameter must be defined for the

disc to calculate the velocity dispersion. We use a value of Qs = 1 to ensure the disc is borderline

stable to arm formation. We experimented with other initial values of Qs, and found 1 to be a good

value for seeding spiral structure while keeping the disc from experiencing dramatic radial den-

sity waves and avoiding an over-clumpy stellar distribution. Occasionally velocities are generated

nearing the escape velocity of the system, if this is the case a new velocity is drawn (Hernquist

1993).

We use the SPH code sphng in for the work presented in this chapter, which is described in

Section 2.2.12. As with any N-body code, it is prudent to soften the gravitational force to avoid
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Figure 5.2: Axisymmetric rotation curves for calculations presented in this chapter. Disc, bulge
and halo components are shown as the red, green and blue dashed lines respectively. Four dif-
ferent models are shown with labels referring to the disc mass; “light”, “normal”, “heavy” and
“huge”. The halo mass is adjusted in each case to ensure a rotation curve that is in agreement with
observations (blue points, from Sofue 2012).

problems during close encounters between particles. sphng incorporates adaptive softening lengths

for the gas and star particles. The gas particles simply use the hydrodynamical smoothing length

scale. The stars use a value that is calculated from nearest neighbouring star particles, identical

to the method of calculating the smoothing lengths of SPH gas particles. The difference being the

smoothing length of N-body particles is not use for a hydrodynamical force. The implementation

of which is described in detail in Price & Monaghan (2007). Approximate softening values for gas

and star particles are 20pc and 100pc respectively, but differ greatly depending on environment.

Due to the nature of an N-body methodology imbedded in an SPH structured code, there

are occasionally difficulties when setting the initial smoothing lengths of the star particles due to

the large difference of masses between the gas and star particles. To overcome these problems

we occasionally seed a stellar system with a resolution 1/9 lower than that desired. This relatively

small number of particles, O(105), without a gas disc is easily set by the code. This is then allowed

to evolve for a very small timestep. After which the resolution is increased by simply transforming

the point particle into a body-centred cubic lattice with vertices 0.6 times the smoothing length of

the parent particle, and mass split between them accordingly. As setting up cubic lattices can

induce spurious structure, we rotate each lattice randomly in each direction after splitting. The

resulting system evolves very similarly to the original, low-resolution one. A gas disc is then

imposed on the stellar distribution.

In the calculations in the previous chapter, how the mass in stars was distributed between

the bulge-disc-halo system was irrelevant so long as the resulting rotation curve agreed with ob-
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Term Description Value
Md Disc mass 2.5, 3.2, 4.1, 5.3 × 1010 M�
Mh Halo mass 10.1, 8.3, 6.3, 4.4 × 1011 M�
Mb Bulge mass 1.05 × 1010 M�
rd Disc radial scale length 3.0 kpc
zd Disc vertical scale length 0.3 kpc
r200 Halo radial scale length 122 kpc
CNFW Halo concentration factor 5
rb Bulge radial scale length 0.35 kpc

Table 5.1: Fixed galactic axisymmetric potential parameters used to reproduce the observed rota-
tion curve in calculations with a live stellar component. The four values for Md and Mh indicate
our four configurations for the different disc to halo mass ratios. The resulting rotation curves are
shown in Figure 5.2.

servations. Here this is not the case as the mass in the disc is directly delivered to the disc and

bulge star particles. As there is some uncertainty regarding the mass of the Milky Way compo-

nents we use four separate bulge-disc-halo configurations, the rotation curves for each are shown

in Figure 5.2 with the respective parameters for the “light”, “normal”, “heavy” and “huge” config-

urations (ordered by increasing disc mass) given in Table 5.1. We keep the bulge initial conditions

the same for all calculations and use different disc and halo masses to reproduce the observed

rotation curve. The values for the “normal” setup are based on those from Baba et al. (2009).

The bulge mass is unchanged, with the disc to halo mass ratio being the effective variable. The

different disc masses also allow for greatly different swing amplified spiral modes (Equation 1.9

and Dobbs & Baba 2014) ranging from 2 ≤ m ≤ 5. Thus while we do not have direct control

over the spiral structures formed in these calculations, we attempt to drive a range of spiral modes

induced by swing amplification.

A final point to note is the setting of gas particles. We set gas on similar orbits and positions

to the star particles, only with much lower masses in accordance with a gas disc of the same mass

as the previous chapters (8 × 109 M�) for consistency. Gas was not distributed according to the

observed surface density profile however, but rather in an exponential disc. As the stellar disc

is live, there is room for the surface density to settle itself due to the complex motions of the

stellar system. We wanted to allow for the stellar distribution to drive the gas around the disc,

rather than assume some profile. The resulting resolutions adopted for each set of computations is

approximately 1 million disc star particles, and 0.1 million bulge particles. For simulations with

a live halo 0.95 million disc, 50000 bulge and 0.5 million halo particles are used. In our high

resolution calculations, 3 million gas particles are used. While 5 million was seen to be optimal

in the previous chapters, we performed tests with 1 million and find the emission features are less

sensitive to resolution. One million did however make weaker arm features in the edge of the

disc, where particle density becomes low. We use 1 million gas particles for lower resolution tests,

some of which are shown in this chapter.

We also allow for the creation of sink particles in these calculations (Bate et al. 1995). In

simulations with N-body gravitational forces it is possible that the density of the gas in certain

regions becomes extremely high as the gas accumulates around some point, such as a small cluster
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Figure 5.3: Projection of material in a simulation with a live disc and bulge into R − θ space. In
the left panel the density of the stars (top) and gas (bottom) is shown. In the right panel the stellar
material has been binned and normalised by surface density.

of star particles. To allow the computation to proceed further the gas clump is replaced by an

accreting point-mass particle; a sink. These sinks act via gravitation with the remaining particles,

and are allowed to accrete additional gas as the traverse the disc. Very few sinks are formed in

these simulations (one or two, if any) and they have minimal impact on the global gas morphology.

5.3 Measuring arm number, pitch angle and pattern speed

One of the main differences between the models with a live stellar component and those with

fixed analytic potentials in previous chapters is that we do not know the arm number, pitch angle,

and pattern speed of features formed. While we can at least estimate a dominant arm mode from

swing amplification (Equation 1.9), other values are complete unknowns until the calculation is

performed. We use numerous methods to quantify these values from our calculations, so they

can be compared to observational determined values, and those of the previous chapters. The

methods outlined here are similar to those used in pervious studies (Dobbs et al. 2010; Fujii et al.

2011; Grand et al. 2012; D’Onghia et al. 2013), e.g. using Fourier transforms to find arm number,

and will be illustrated by an example simulation. An important caveat to this and the rest of the

methods below is that the arm shape is assumed logarithmic and periodic, i.e. with each arm

separated by 2π/N.

Arm number

The simplest way to measure arm numbers numerically is to take a Fourier transform of the Galac-

tic material. The data is first projected into R − θ space, where logarithmic spiral arms will appear

as diagonal lines. The data is binned into an R − θ grid, which is then normalised by the surface
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Figure 5.4: Amplitude of Fourier modes as a function of radius in stellar (left) and gaseous (right)
material in the calculation shown in Figure 5.3. Different modes are shown as different coloured
lines. Note the stellar material has much clearer structure than that of the gas.

density of the disc to ensure that inner arm structures do not dominate the fit. This gives the surface

density contrast at a given radius: Γ|R(θ) = Σ(R, θ)/Σ(R). In Figure 5.3 we give an illustration. In

the left panel is the top-down column density of the stars (top) and gas (bottom) in a simple live

disc-bulge model. In the right panel is the corresponding normalised surface density of the stars

in R − θ space. Notice the over-densities appearing in diagonal lines, tracing out the spiral arms.

The stellar distribution tends to be much smoother than the gaseous distribution, making fitting to

arm number and pitch less susceptible to being driven by small armlets or inter-arm features.

A Fourier transform is then performed on Γ|R(θ) at different radii (this is done every kpc).

We use the fft module of the numpy python package. We then extract the dominant mode at that

given radius (i.e. Γ|R(θ) array) in the range 1 ≤ m ≤ 6, which is then dubbed the dominant spiral

mode for that calculation in that time-frame. An example of Fourier modes for the calculation in

Figure 5.3 is shown in Figure 5.4. The dominant modes for the stellar and gaseous components

are shown in the left and right panels respectively. For the stars it appears a 2-armed structure

dominates the inner disc, which then transforms into 4-armed pattern in the outer disc (beyond the

Solar position). This can also be seen by-eye in Figure 5.3, where there are two clear inner arms

in the stars and a weaker, yet noticeable, 4-armed pattern further out. Again, the dominant modes

are much clearer in the stars as opposed to the gas. While both show a m = 2 dominant mode in

the inner disc, the gas has a strong m = 3 mode in the mid disc.

The strongest Fourier mode is taken to be the arm number, though in some instances, such

as Fig. 5.4, there are two conflicting modes due to the variation as a function of radius. The

location of the dominant modes that are shown in Figure 5.4 are shown in Figure 5.5 (stars only),

with each panel corresponding to a different value of m. This figure confirms what is shown in

Figure 5.4, that the m = 4 mode dominates the outer disc, and the m = 2 mode dominates the inner

disc.
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Figure 5.5: Location in R− θ space of the dominant modes in Fig. 5.4, shown for the stars only. If
all modes are combined together they will approximately return the map in the left of Figure 5.3
(neglecting m > 6) terms).

Pitch angle

Once a dominant arm number is known (or selected) the pitch angle can be calculated. We can

choose to fit to any spiral mode, i.e. any panel of Figure 5.5. This is useful for calculations where

arm features are compared across multiple time-frames such as the calculation of the pattern speed,

where the arm number is assumed to be time-independent. We first extract the R − θ position of

the required mode. Depending on the morphology, this may only be done across a certain radial

extent, such as the range in which that mode dominates (e.g. from 2kpc ≤ R ≤ 6kpc for the m = 2

mode in Fig. 5.5). The pitch angle, α, of a logarithmic spiral arm is linked to the values of the

constant B in the equation

θ = f (R, α) = B(α) ln R + C (5.12)

where the pitch angle is α = arctan B and C defines the azimuthal position of the arms. This equa-

tion is then fit to the relevant mode, and uncertainties are added at each radius (σΓ), proportional

to the inverse of the value of Γ|R(θ) thereby adding weight to the regions of greater density. The

fitting is done using a downhill Nelder-Mead simplex algorithm from the scipy python package

and minimising a chi-squared like statistic of the form

χ =
1
n

√∑
i( f (Ri, α) − θi)2

σ2
Γ

(5.13)

over all i points in the arm (n total). To perform such a fit an initial guess is needed for the B and

C parameters. Usually the fit is unaffected by these values, but we test numerous values to check
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Figure 5.6: Fitting the pitch angle of an arm to a stellar disc. In the left panel are points used in the
fit, shown in black, and the corresponding best-fit arm model shown as the red line (α ≈ 20◦). In
the right panel is the m = 4 model over-plotted onto the stellar disc, where particles are coloured
by density.

for consistency (confirming any spurious fits by-eye).

An example of the fit to the m = 4 stellar mode in Figure 5.5 is shown in Figure 5.6. The left

panel shown the points that trace out the arm (black points) and the best fitting logarithmic spiral

arm (red line). In the right panel the top down position of the disc star particles is shown, coloured

by particle density, with the same points as in the left panel over-plotted along with the best fitting

m = 4 arm model. In this instance the best fitting model has a pitch angle of approximately

α = 20◦. This can change up to ±2◦ depending on the radial extent of the disc used in the fit.

Pattern speed

While there exists some complex methods of determining the pattern speed from an observers

perspective (e.g. Tremaine & Weinberg 1984) we choose to simply calculate the azimuthal offset

between arm features over a given time frame. This approach is often adopted in numerical works,

as we are in the privileged position of knowing the morphology at different epochs (Dobbs 2011b;

Grand et al. 2013).

For any given calculation we first calculate arm number and fit a pitch angle. We then take

subsequent time-steps and perform the same fit to arms, only this time fixing the arm mode to fit

to. Then by simply calculating the offset between arms at different epochs the pattern speed can

be calculated as a function of radius. In Figure 5.7 we show such a calculation. In the left panel

are the traces of the best-fitting m = 4 mode for the simulation shown in Figure 5.3 (again, stars

only) and at four later time-steps spanning ≈40 Myrs. The resulting pattern speeds are shown in

the right panel by the coloured points, where the speed has been calculated using adjacent time-

frames only. The dashed line shows the pattern speed calculated using all time-frames (i.e. using

the first and last frame). In all instances a clear decrease of pattern speed with radius can be

seen, indicating the arms act as material, rather than wave-like features. The average pattern speed

across all time-frames and radii in Fig. 5.7 gives a value of Ωp = 24km s−1 kpc−1.
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Figure 5.7: Illustration of fitting to the pattern speed in a calculation with a live stellar component.
In the left panel is the tracing of best-fitting arm structures for the m = 4 mode across 40 Myr
of evolution of the calculation shown in Figure 5.3. The offset of each arm to the neighbouring
time-frame is used to calculate a pattern speed for the spiral arms as a function of R, shown in the
right panel by the coloured points. The dashed line is the pattern speed across all five time-frames.

The arm structure is assumed to be constant with time using this method. This is not entirely

the case, seen by the fact that best-fitting pitch angles change between time-frames in Figure 5.7,

with values ranging from 22◦ ≤ α ≤ 19◦. However, the dominant arm modes appear constant over

this time, i.e. the general trends in Figure 5.4 remain largely unchanged (in the stars).

5.4 Results of simulations

In this section we describe the results of our simulations using a live stellar distribution for the

disc, bulge and, in some instances, halo. Discussion of the l-v maps will be done in Sections 5.5

and 5.6.

The full set of simulations is given in Table 5.2. The “heavy” configuration is more of our

default rather than the “normal” (so named as it matches the values of Baba et al. 2009). The

“normal” setup tended to create a many armed structure (4 < m < 5) in test simulations, so we

made our default a disc with a slightly higher mass to a drive a slightly lower arm mode. We

run live disc only (D), live disc and bulge (B) and live disc, bulge and halo (H) calculations in a

range of mass configurations; a,b,c and d (see Table 5.1 and Figure 5.2). The D and B calculations

use a fixed analytic halo potential but we also perform two calculations using a live halo and the

“heavy” mass disc, Hb. A few special case calculations were also performed. The first case is to

evolve the stellar system of each type of model for 1Gyr before the addition of gas (DbG, BbG

and HbG models). The aim was to see what kind of structure can be created in a settled disc.
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Calculation Description
Db Live disc only in “heavy” configuration
Dc Live disc only in “normal” configuration
DbG As Db but allowing for 1Gyr of evolution before addition of gas
Ba Live disc and bulge in “huge” configuration
Bb Live disc and bulge in “heavy” configuration
Bc Live disc and bulge in “normal” configuration
Bd Live disc and bulge in “light” configuration
BbL As Bb but with half gas disc mass
BbG As Bb but allowing for 1Gyr of evolution before addition of gas
Hb Live bulge, disc and halo in “heavy” configuration
HbG As Hb but allowing for 1Gyr of evolution before addition of gas

Table 5.2: Description of different live-disc models. Refer to Table 5.1 and Figure 5.2 for the disc
and halo mass ratio configurations. If halo is not listed as live then it is represented by an analytic
potential. All models contain the same configuration of gas disc except BbL. All apart from DbG
and HbG contain 3 million gas particles models.

Previous N-body work has shown that without some method dissipation, either by addition of

gas or accretion, spiral arms will slowly dissipate (Sellwood & Carlberg 1984). To this end, we

aimed to see if a generally featureless disc could reproduce l-v features of our Galaxy. One final

calculation is our fiducial setup (Bb in Table 5.2) with half the normal gas disc mass (4 × 109 M�)

to see whether a reduced disc mass will reproduce sufficient CO emission in a live disc; BbL. It

produced significantly weaker emission when using fixed potentials (Figure 4.3).

5.4.1 Live disc only

The simplest calculation performed was to calculate the evolution of a stellar disc, without the

presence of a bulge but with an analytic halo to maintain outer velocity structure. The evolution of

such as system (with a disc mass/halo mass of the “normal” configuration) is shown in Figure 5.8.

The stellar distribution is shown in the top panels and the gas in the bottom, where all material is

rotating clockwise. Arm structures can clearly be seen in the stars and gas. The nature of these

arms is discussed in more detail in Section 5.4.2. These arms host a majority of the molecular gas

in the simulation. As gas leaves the arm it experiences a drop in density and has a rapid decrease

in molecular content, until the eventual passage into another spiral arm. Similar to the previous

calculations, the vertical structure in the gas collapses into the plane rapidly, though the somewhat

more turbulent nature of the stellar potential makes the disc thickness greater than when using an

analytic potential. We maintain that stellar feedback may be required to substantially drive gas

away from the plane.

Figure 5.8 shows a mild shockwave of material emanating from the centre at early times

(also visible in the rotation curve). This is seen in other N-body calculations, and can be reduced

by allowing for the disc to evolve for some time and periodically re-setting azimuthal positions

to avoid arm growth (Fujii et al. 2011). We find these structures are resolution dependant, and in

lower resolution cases the effect is much clearer. Originally we ran a “Huge” disc configuration

(a would be Da model) but found these radially propagating rings having too strong an effect on
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Figure 5.8: Evolution of a live stellar disc (top) and the accompanying gas disc (bottom) in the Dc
model over 280Myrs. Clear spiral arms can be seen to grow with evolution of the disc.

Figure 5.9: Top down views of two live disc simulations with different disc masses (Db top,
Dc bottom) and their associated predicted swing-amplified modes as a function of radius (right
panels). A Fourier analysis of the heavier disc model in the top panel gives a dominant arm mode of
m = 3 which is in agreement with that predicted in the mid-disc by swing amplification. Likewise
the lighter disc has a dominant mode of m = 5, also in good agreement with the predicted value.
The predicted mode is calculated via Equation 1.9 as a function of disc mass, epicycle frequency
and radius.
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the gas. By 200Myrs these features are appear greatly diminished in Db and Dc, with a settled

rotation curve, and so we do not analyse gas before this point.

In our two primary disc calculations, Db and Dc, there appears to be a good agreement

between the number of arms formed and that predicted by swing amplification (Equation 1.9). In

Figure 5.9 we show the Db and Dc models (stellar component only) in the left panels. By-eye it

appears that the higher mass disc (top) has fewer individual arm features than the lower mass disc

(bottom). In the adjacent panels we show the swing amplified mode predicted using the initial

conditions of the gas disc. The mode increases with radius, but two useful values can be drawn,

the average m over the entire disc, and the value at 7kpc (half-way and near the solar position).

The values for these models predict a value of 3 < m < 4 form the Solar position to the edge of

the disc in the Db (i.e. heavy) model, and 4.5 < m < 6 in the Dc model. We use the method of

Section 5.3 to find the dominant arm mode, rather than assessing by-eye, and find values of m = 3

and m = 5 for the Db and Dc models respectively. These are in excellent agreement with those

predicted in the outer disc, implying the swing amplification prediction allows for good rough

estimate of resulting arm number. The pitch angle however gives extremely high values, with

values of 20◦and 28◦for the Db and Dc models, far outside values inferred for the Milky Way and

at the high end of values seen in external galaxies.

Due to the nature of the bulge-free system, the rotation curve for these models decays

rapidly approaching the Galactic centre. As opposed to models with bulges, where the curve rises

near R ≈ 2kpc, keeping a near-constant rotation throughout the disc (see Fig. 5.2). This leads to

the lack of an ILR, which has been theorised and seen in observations to encourage the growth

of a bar in the inner disc (see Sec. 1.3.4 for a discussion). The model DbG, which we allowed

to evolve for 1Gyr before the addition of gas, was found to display a clear bar structure. This

bar is relatively short compared to that believed to persist in the Milky Way, with a semi-major

axis of approximately 2kpc and fairly wide with axis ratio of approximately 2:1. In general, any

disc model without an inner bulge formed a steady bar after around a Gyr of evolution, whereas

systems with a strong inner bulge tended to be bar-free.

The evolution of such a bar is shown in Figure 5.10 for stars and gas (top and bottom panels

respectively). This bar rotates at approximately Ωp = 28km s−1 kpc−1, which is slower, but not

outside of uncertainties, than that of the Milky Way. In this figure the bar can be seen to generate

arm structure at its ends, though these eventually de-couple from the bar and dissipate, leaving

new arms to form in their wake. These arms have a wide pitch angle in the inner/mid disc, with

values of 20◦-28◦, however, the arms stray from a logarithmic spiral at the edge of the disc where

they strongly circularise making fits to α problematic. The model shown in the figure is of a lower

resolution in the gas than the models presented in the rest of this chapter. There are only 0.1

million gas particles, as opposed to the fiducial 3 million. We show this model because we had

tremendous difficultly maintaining the higher resolution models. The forcing time-step for the gas

became detrimental to the computation time due to the effects of the gas entering and leaving the

barred region.

Nevertheless, the gas in the low resolution run in Figure 5.10 can be seen to trace out the

bar. In intermediate times the gas traces out a long line along the bar, tracing it’s major axis.
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Figure 5.10: Evolution of a low-resolution disc with initial bar in the stellar disc. Shown for
200Myrs of evolution, where the bar has already been allowed to evolve for 1Gyr before inclusion
of a gas disc. Stars and gas are in the left and right panels respectively.

No inner ring is seen as in the barred models of Chapter 3 due to the lack of any ILR. To asses

the suitability of this model to the Milky Way we project the position of the gas particles into l-v

space. The resolution is too low to properly map the emission structure, but by simply re-mapping

we can gauge the similarities to our Galaxy. In Figure 5.11 we show the gas distribution with the

bar angled at θb = 20◦ and the corresponding projection of gas into l-v space (the observer is at

y = 8kpc in the top-down view). The second l-v map shows the bar at a wider orientation angle

(θb = 50◦). Some structures do seem similar to observations, such as arms features that resemble

Carina and Perseus arms. However, in order to obtain an l-v structure with features that resemble

the Milky Way we had to lower the observers velocity to 180 km s−1, well outside of our normal

range. This is to compensate for the lack of a bulge, and generally shallower rotation curve in the

inner disc compared to our other models. While the rotation curve has indeed risen in the inner

disc since the start of the simulation thanks to the inner bar, it is still low compared to the values

inferred from observations (Vc ≈150 km s−1as opposed to the observed values of Vc ≈250 km s−1).

While the creation of a bar is promising, we still require a bulge to match the velocity structure of

our Galaxy, which inhibits bar formation (see next section).

5.4.2 Live disc and bulge

The main Galactic disc configuration investigated is the Ba-d group of models, which contain a

live disc and bulge, but maintain a static dark matter halo to reduce computational effort. We show

the Ba, Bb, Bc and Bd models at three separate intervals in Figures 5.12, 5.13, 5.14 and 5.15

respectively. Stars are shown in upper panels, and gas in the lower. The third time frame of the Ba

model is slightly earlier than the other models. This is due to the computation taking significantly

longer than the others1. We did not continue this calculation further as maps made from existing

1Run time appeared to scale with stellar disc mass due to the size of the forcing time-step experienced by the gas
particles entering from regions of very low to very high density.
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Figure 5.11: Gas embedded in a stellar disc after a bar has been allowed to form, and then evolved
for 200Myrs with the gas. In the left panel the projection of the gas into l-v space is shown for
bar orientations of θb = 20◦ and θb = 50◦ (left and right respectively). The observer is placed at
y = 8kpc and given a rotation speed of 180 km s−1.

time-steps and lower resolution calculations that had evolved for longer showed the Ba model was

a poorer fit to Galactic l-v data in general.

As with the disc-only models, the gas clearly traces the arm features in the stars. The higher

density gas in the disc is the location of the majority of the molecular content. In the highest mass

disc (Ba) there is very little inter-arm gas. In the arm cavities in Figure 5.12 there are effectively no

gas particles, though stars are still present (seen by the non-zero density in the stars in the inter-arm

regions). The gas is effectively being swept-up in an arm passage and is not released until the arm

is sheared apart by rotation. The arms in the Ba model appear non-logarithmic in many places,

especially so in the final panel. Various kinks, or knees, form along the spiral arms. The disc mass

appears to be very large to be supported by rotation, and the stellar-gravity is producing strong

local collapse into these irregular arm patterns. At the time of the middle panels of Fig. 5.12,

Fourier analysis indicates that m = 2 is the dominant arm mode with a wide pitch angle of 20◦.
This only persists for R < 9kpc, above which there is no clear dominant mode. At the latter time

the m = 2 mode still dominates at a similar pitch angle, but there is considerable power in the

m = 3 and m = 5 spiral modes, visible by-eye. The pitch angle of the m = 2 mode is maintained

between the second and third panels of Figure 5.12 over which time the average pattern speed is

Ωp = 38km s−1 kpc−1(4 < R < 9kpc). Interestingly the pattern speed here is fairly flat with radius,

rather than decreasing.

The Bb model (Fig. 5.13) shows much more regular spiral structure, with some clear dom-

inant spiral modes visible in the stars. There is also a moderate amount of inter-arm structure

in the gas with features being continuously created and destroyed as arms are sheared out and

re-formed. The pitch angle and pattern speed analysis for this model is used as the example in

Section 5.3. The dominant arm mode (left, Fig. 5.4) appears to clearly favour a 2-armed pattern

in the inner disc and a 4-armed in the outer. This is seen by inspection of the stellar distribution

in Figure 5.13, where a small 2-armed feature can clearly be seen inside of R < 5kpc while the

edge of the disc displays four arm tails. The Milky Way is also thought by some to have a higher

arm number in the outer disc, and there is also confusion over whether there are 2 or 4 spiral arms

(Amaral & Lepine 1997; Levine et al. 2006). The pitch angle of 4-armed pattern is approximately

20◦and the pattern speed has a mean of 25km s−1 kpc−1, though this is seen to decay with radius;
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Figure 5.12: Evolution of the Ba model, with the heaviest disc mass investigated, in the stellar
(top) and gaseous component (bottom). Large scale arm structures can be seen, yet appear rather
irregular with many knee and kink features.

Figure 5.13: As Fig. 5.12 but for the Bb configuration. Arms appear more smooth and regular
compared to the Ba model.
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Figure 5.14: As Fig. 5.12 but for the Bc configuration. A significant amount of small arm struc-
tures are now visible compared to Ba and Bb.

Figure 5.15: As Fig. 5.12 but for the Bd configuration. Arm structure is very small scale and
flocculent with no clear dominant spiral mode visible by-eye.



5.4. RESULTS OF SIMULATIONS 173

Figure 5.16: Evolution of the Toomre Q-parameter in the Bc disc-bulge calculation as a function
of radius (left). In right panel the orbital frequency of gas particles is shown for the same model
at initialisation (top) and after 300Myrs of evolution.

20km s−1 kpc−1< Ωp <30km s−1 kpc−1 in the range 4kpc < R < 11kpc indicating the arms are

material in nature. If the arms are fit to the m = 2 component inside R < 5kpc then a similar pitch

angle is inferred than the m = 4 case.

The Bc model in Figure 5.14 is similar to the Bb model, with some clear spiral features

and inter-arm material. There also appears to be a 2-armed mode in the inner disc, though this

is less clearly defined than the heavier case. When fitting to the spiral arm number there are two

dominant modes; m = 4 and m = 5. The latter is the strongest amplitude, but is a clear spike

rather than being the prevalently strongest amplitude. Interestingly this spike occurs very near to

the Solar position (7kpc) and gives a pitch of 18◦. This is interesting as in many Galactic models

the preferred structure is a 4-armed spiral, but with the addition of some small spur or minor Local

arm which is always separate from the 4 main arms. The fact that the Bc model is preferentially

a 4-armed model throughout most of the inner disc, lightly 2-armed in the centre, and seemingly

5-armed near the Solar radius makes it an excellent candidate for replicating Galactic l-v features.

The pitch angle of the m = 4 mode is only slightly higher than the m = 5 mode and displays a mean

pattern speed of 25km s−1 kpc−1and a range of 22km s−1 kpc−1< Ωp <35km s−1 kpc−1 which is at

the high end of values calculated for the arms of the Milky Way.

The lightest model (Bd) is shown in Figure 5.15. Here there appears to be a clear departure

from the Bb and Bc models in that there is no clear spiral mode visible by-eye. The structure of this

disc appears to mimic a flocculent spiral galaxy such as NGC 4414 with multiple small scale arms

and inter-arm features. Performing a fit to the arm features tends to reveal little more information.

Across numerous time frames there is no clear mode that dominates more than a couple of kpc of

the disc. There appears two spikes in amplitude, one for the m = 2 mode in the inner disc, similar

to the other models, and one for an m = 5 mode at R = 8kpc. Beneath which is an indeterminate

mess of amplitudes with m = 4 and m = 6 showing small scale peaks. Attempts to fit a pitch

angle to the m = 5 mode result in values in the range 15◦ < α < 23◦ and the pattern is impossible

to determine with values ranging from 20km s−1 kpc−1< Ωp <40km s−1 kpc−1 depending on the

features incorporated into the fit.
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Our final model of a bulge-disc system is shown in the left panel of Figure 5.17, where

we have allowed the disc to evolve for 1Gyr before the addition of gas. The result is a disc

that is very smooth, with no clear spiral features. Some very tightly wound arms appear in the

gas, but these appear local in nature and are rapidly wound up and dispersed. At this stage the

stellar disc is highly stable to perturbations, with Q ≈ 2 in the inner disc (the 1Gyr data in Fig.

5.16). The morphology of the gas is almost ring-like, with no bar or inner m = 2 mode as in the

previous calculations. It has been postulated that some other mechanism is needed to maintain

spiral structure for 10’s of galactic rotations in numerical simulations (Fujii et al. 2011). In the

calculations of Sellwood & Carlberg (1984) additional forms of energy are added to maintain

spirality, effectively imitating star formation, keeping the disc warm enough to maintain it’s spiral

structure. D’Onghia et al. (2013) instead propose that the spiral structure can be continually re-

seeded simply by GMCs perturbing an otherwise featureless stellar disc. Our simulations are

fairly low resolution compared to pure N-body simulations in the literature. We saw in initial test

calculations that arm features become weaker and short lived as the resolution is decreased, and

so we do not expect them to last longer than the order of a Gyr.

We do not show any figures of the BbL model (lighter gas disc). The morphology is very

similar to that of the fiducial mass disc (Bb). This model is used to primarily gauge the effect of

disc mass on the CO emission features (Sec. 5.6).

Disc stability

In all of the models presented above there is a lack of inner bar-like structure throughout. This

is believed to be due to the Q-barrier caused by the inclusion of the bulge, which was absent in

the disc only models. In Figure 5.16 we show the Q-parameter for the stars in the left panel as a

function of radius. A clear incline can be seen near the galactic centre which acts as a boundary

in stability, stopping waves from propagating through the centre (see Sec. 1.3.1). Interestingly all

models show a trailing m = 2 mode in the inner disc. It is possible this is the disc attempting to

form a bar as in the disc models, but is undermined by the increased stability inherent to the bulge

dominated region. If this were the case, then it implies there is some small region of parameter

space where it is possible to form a bar but also maintain a rotation curve that is near-flat, presum-

ably by considerably reducing the bulge mass. This stability of the inner disc against arm and bar

formation also causes a small disc of molecular material at the galactic centre. In the gas density

renders there is a disc of material of very high density inside R < 2kpc where molecular gas is

easily maintained. This was very much not the case in the models with fixed potentials, where the

bar, and arms in some instances, swept up the gas into steady orbits and left the very centre of the

disc relatively devoid of gas.

The Q-parameter is a key quantity in determining stability. In the left of Figure 5.16 the

evolution of Q is shown from 0-1Gyr. Initially Q ≈ 1 in the mid-disc, as expected from the setup

conditions, making the disc barely stable. Over 300Myrs Q can be seen to slowly increase through-

out the disc, raising to approximately 1.2 in the mid-disc region. At much later times, of the order

of Gyr, Q ≈ 2, implying the disc is highly stabilised. In the right panel the rotation frequencies

for the stars initially and after 300Myrs are shown. The dashed lines show the resonance curves,
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Figure 5.17: Stellar (top) and gas (bottom) densities in our three remaining models. BbG (left) has
a much further evolved disc than those shown previously and the gas has formed many shallower
pitch angled arms closer in morphology to rings. Hb (middle) has arm features not dissimilar
to the static halo counter-part (Bb). HbG (right) has an evolved bulge-disc-halo system and has
formed a bar in the centre, though weaker compared to that formed in the disc-only models. Only
disc particles are plotted in the stellar density render. Note the HbG model is of slightly lower
resolution, with only 1 million gas particles.

indicating the presence of the ILR and OLR. Note that the rotation structure is largely unchanged

in the evolution of the system, with the main difference at later times being the existence of small

scale fluctuations in κ (and hence resonances), presumably caused by asymmetries in the disc, i.e.

arm features.

The rotation curve of each disc model showed a dispersion that increased with disc mass,

both initially after several hundred Myr of evolution. Dispersion around the mean rotation curve

ranged from ±50 km s−1in Ba to ±20 km s−1in Bd. The dispersion in the rotation curve therefore

appears directly related to the number of arms formed, which in unsurprising as the dispersion is

also incorporated into the value of m predicted by swing amplification (m ∝ Σ−1, and Σ determines

the stellar velocity dispersion).

5.4.3 Live disc, bulge and halo

For the basic live halo-disc-bulge models, the morphology is not dissimilar to the static halo mod-

els. In the central panel of Figure 5.17 we show the stellar (top) and gas (bottom) morphology in

the Hb model after 240Myrs of evolution. The arm structure is quite asymmetric, with some clear

branching features. There appears to be a dominant 2-armed pattern in the inner/mid disc, which

dissipates in the outer disc. Fitting arms to this feature gives a pitch angle of α ≈ 20◦, similar to
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Figure 5.18: Vertical density render of the stellar distribution in three different simulations. In the
top panel is a live disc calculation that had formed a bar (DbG), in the middle a live disc-bulge
calculation with no bar (Bb) and in the bottom panel a live disc-bulge-halo calculation that formed
a bar (HbG). Gas, bulge and halo particles have not be plotted for clarity.

values found in the previous models. There is a moderate strength m = 4 mode in the outer disc

with α ≈ 18◦, but this only dominates around R = 8kpc, and the fit to one of the four arms is very

tenuous (evident from the top down view in Fig. 5.17). The pattern speed for the m = 4 mode

gives a high average of Ωp = 30km s−1 kpc−1, but this is only valid for the very narrow radial

range where the mode dominates.

The turbulent nature of the disc, and the irregular spirality, in the Hb model led us to perform

the HbG model. Here the stellar system had been evolved for 1Gyr before the addition of the gas

component. In the right panel of Figure 5.17 we show such a model after 260Myrs of evolution.

An interesting development has occurred in this model. A weak bar has formed in the inner disc,

with a strong spheroidal component, presumably owing to disc orbits interacting with the bulge.

The density contrast between this bar and the surrounding disc is lower than that of the disc only

simulations (Fig. 5.10). The gas response is extremely similar to that of the previous chapters

where we utilised fixed analytic potentials for the bar (e.g. Fig. 3.13). There is a clear nuclear ring

inside the bar, which did not exist in the disc-only models due to a lack of any ILR. Around which

is a void of gas, and an oval-like set of orbits tracing the outer bar structure. Beyond which are

a set of arms, which trail off the bar ends and wind up with rotation. The pitch is highly circular

in the mid-outer disc. Tracking the motion of the bar gives a pattern speed of approximately

Ωp = 45km s−1 kpc−1, which is much higher than that of the bar in the disc only calculations.

The OLR of such a bar occurs near 8kpc (see Figure 3.1b). If compared to the gas distribution

in Figure 5.17 there appears a significant amount of substructure at this radius, which is similar

to the features seen with static potentials. As with the disc barred model, the calculations at high

resolution were severely hampered by the existence of the bar. The model shown in Figure 5.17 is

the lower resolution calculation (1 million gas particles).

To further asses the nature of this bar we show the edge on appearance of the stellar disc
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of the DbG, Bb and HbG models in Figure 5.18 (disc that formed a bar, bar-free disc+bulge and

the bar formed in the live halo). The disc-only calculation is the narrowest vertically, appearing

to not have changed much since the initial setup, despite the formation of a bar. The live-bulge

calculation has a slightly flatter inner region compared to the disc only case, but the difference

is marginal. Note the disc is greater extended radially compared to the other two as the disc is

younger by around a Gyr, over which time the other models have expanded somewhat. In the

live halo run, however, there is an inner lobed structure. This is similar to seen in observations of

peanut/boxy bars in external galaxies and our own Milky Way (see the NIR image of the Milky

Way in Fig. 1.15). The lobes appear to also be associated with the ends of the bar. In the figure

the bar is oriented at approximately 60◦ to the line of sight, and as the bar is rotated to lie parallel

to the line of sight (pointing out of the page) these lobes disappear, leaving just a bright central

concentration. The bar orientation angle has to be very wide to see such lobes, with the 60◦ for the

figure usually lying out of range of values determined for the Galaxy (but not always; de Boer &

Weber 2014). The position of these lobes is strongly coupled to the bar length and the bar in these

models is approximately 3kpc long, shorter than the Long bar (with a semi-major axis of around

4.5kpc). If we could increase the bar length in our model then the lobes in Fig. 5.18 would lead to

a shallower bar orientation more in keeping with observations.

5.5 Simple kinematic longitude velocity maps

5.5.1 Method

As with Chapter 3, we must take into account the uncertainty in the observer’s position and ve-

locity by varying the parameters lobs, Vobs and Robs. However, as the morphology is highly time-

dependant, similar to the mixed models of Chapter 4, we must also test multiple time-stamps for

each simulation. We choose to do so in the range of 200-320Myrs of evolution of the gas disc.

This is enough time to allow the majority of the molecular gas to form (seen to be t &150Myr in

Fig. 3.10) and for the disc to settle into a spiral pattern that will persist for up to a Gyr. The range

in these parameters is the same as used previously (Table 3.2). Note that we must search the full

range of lobs values, as we cannot assume the disc is symmetric.

The method is the same as that described as in Section 3.6 with one small difference. As

the gas in the simulation is less strongly associated with spiral arms, with some dense material

shearing away from arms but maintaining a high molecular content, there is a chance that Equation

3.18 will scale poorly due to a clump of high density gas that lies very close to observing position.

To rectify this we include a limiting factor, ε, in the denominator to limit emission from material

near the Solar position. This changes the equation for synthetic emission from Equation 3.18 to

Ii,synth ∝ χi,CO/
(
dm

i + ε
)

(5.14)

where m is a factor to be determined (making ε of dimensions kpcm). To find appropriate values

of m, ε and the longitudinal smoothing length of emission (see Sec. 3.6 for meaning) we again

constrain to a map created from the torus radiative transfer code. In Figure 5.19 we show the fit
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Figure 5.19: Best fitting values for the smoothing parameter (∆l, x-axis) and scaling limit factor
(ε, different coloured curves) when fitting a simple l-v map to one created by torus. Best-fitting
values are ε = 1 and ∆l = 0.40◦, with the corresponding map and torusmap shown in Figure 5.20.

statistic (MAE) from fitting to the ε (coloured lines) and ∆l (x-axis) parameters. The yellow line

in the figure provides the best fit to the torusmap, giving ε = 1.0 and ∆l = 0.4◦ (3 pixels). We

maintain m = 2 from the previous section, finding it to be an equally good fit as previously (not

shown). Interestingly the longitudinal smoothing parameter is somewhat smaller than the value

when using analytic potentials presumably because the dispersion in the star particles already acts

to smear out emission in some way, whereas much of the gas lies confined in the bottom of the

potential wells when using potentials. The resolution in the gas is also somewhat lower here (3

instead of 5 million) which can also have an effect.

The corresponding best-fitting map for these values of m, ε and ∆l is shown in Figure 5.20

(top) along with the torusCO map to which it was constrained. General features and emission

scale is similar in both maps, though again there are some subtle differences. The gas seems over

smoothed in the simple map. We tried a fit to observer’s position using this and a slightly narrower

smoothing, and the minima for lobs, Vobs and Robs were found to be the same, implying this is of

little consequence.

We reiterate that these maps are not to be used for a quantifiable comparison to observations,

merely to fix some additional parameters before continuing with analysis, and allow a fast sweep

through the many possible maps. Once best-fitting values of lobs, Vobs, Robs and time-stamp tbf ,

have been found for each model, we then use these to create torus data cubes of emission.

5.5.2 Maps of models

As an example of the fitting process to find the best fitting values of lobs, Vobs, Robs and tbf we

show l-v maps for the Bb model in Figure 5.22, across multiple time-frames spanning 200 < t <

300Myrs. The behaviour of the fit statistic is shown in Figure 5.21 as a function of t, Vobs and Robs

where each point corresponds to a map in Figure 5.22. The red point indicates the best-fitting map
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Figure 5.20: l-v maps made using the simple method outlined in the main text (top, ε = 1) and
using the torus radiative transfer code (bottom). The simulation contains a live bulge and disc
component, and the observer is placed at Robs = 7kpc with Vobs = 200 km s−1.

(values indicated at the top of the figure). In this example a clear minima is seen in the fit statistic

for the 226Myr time-stamp, with associated values of Vobs = 200 km s−1 and Robs = 8.5kpc. The

lobs parameter is not shown, as it contains little information without some clear reference point

such as in barred simulations. The best-fit map in Figure 5.22 shows features that mark it out from

the others, such as the Carina arm being correctly placed. The fit seems to worsen at later times.

Inspection of the corresponding l-v maps indicates this is likely due to the inner disc material

moving away from the position of the Inner Ridge seen in observations.

The process of fitting to lobs, Vobs, Robs and tbf was performed for each model, with the

exception of the DbG model which had not evolved sufficiently to show any features in the outer

disc. The resulting best fit l-v maps are shown in Figure 5.23 with parameters for each model

given in Table 5.3. The disc models (Db, Dc) have some of the poorest fit values, which appears to

be due their lack of emission at high velocities in the inner disc. Some arm structures are seen in

the outer disc, but these do not stray far from the local velocity (vlos ≈ 0 km s−1). The halo model

that had formed a bar (HbG) seems to produce no emission in the outer galaxy at all, implying

the spiral features seen in the top-down maps are too weak. This is similar to the analytic bar

models, where outer arms rarely extended into the outer disc, and if they did were found to be too

weak. The inner nuclear ring in this model produces a very strong feature in l-v space which is a

strong function of bar orientation. For the best-fitting arrangement shown here the bar is angled at

approximately θb = 50◦, similar to the values found in the previous chapters.

The remaining models, all with a live bulge component, provide a variety of l-v features.

The heaviest disc model appears too turbulent in the inner disc. While it has an inner structure

that is aligned similarly to observations, there is a large amount of material at high velocities and

not matching the observed features. Coupled with the irregular arm structure seen in the top-down

map, we conclude this (our heaviest disc) is a poor match to the Milky Way and do not produce any

full radiative transfer l-v maps. Moderate-to-light mass discs (Bb, Bc, Bd, BbG and Hb) provide
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Figure 5.21: Variation of fit statistic with t, Vobs and Robs for the Bb model. The best fitting time-
frame is indicated by the red point, with values given at the top of the Figure. Corresponding l-v
maps for each point are shown in Figure 5.22.

Figure 5.22: Evolution of kinematic l-v maps for the Bb model where each panel has been fit to the
map of Dame et al. (2001) to find the best fitting values for lobs, Vobs and Robs which are indicated
in each panel. Each panel corresponds with a point shown in Figure 5.21. Top centre is the CO
observational data for comparison.
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Model tbf [Myr] Robs [kpc] Vobs [ km s−1] N α [◦] < Ωp > [km s−1 kpc−1] Fit stat.
Db 235 8.5 200 3 27 N/A 0.974
Dc 216 8.0 200 5 28 N/A 0.931
Ba 197 8.5 215 2 23 38 0.994
Bb 226 8.5 200 4 18 25 0.857
Bc 207 7.0 200 4 22 25 0.833
Bd 207 7.0 205 5 25 20-40† 0.768
BbG 216 8.0 200 3 13 35 0.879
Hb 216 8.0 205 4 26 30 0.925
HbG 197 7.0 200 2 8-25∗ N/A 1.086

Table 5.3: Results of fitting to lobs, Vobs, Robs and tbf for each model and the corresponding arm
models fit. The mean pattern speed across the disc, < Ωp >, is quoted as in many cases the pattern
speed was a function of radius.
∗ Arms are strongly wound around a bar and do not trace a logarithmic structure well
† Arm pattern is too flocculent to constrain rotation speed

a better agreement (and lower fit statistics). The lightest disc produces a near-uniform emission

structure in the inner disc due to the flocculent nature of the arms. The Bb and Bc models provide

good representations of the Carina and Local arms, while producing an Inner Ridge of the correct

orientation. The remaining disc model, BbG, has good outer disc features but has an inner structure

that reaches too high velocities. This could be due to the relatively low value of Vobs = 200 km s−1,

but this is needed to correctly place the Perseus arm. The inner feature of this model also appears

straight in l-v space, as opposed to the other models where the feature curves as it moves into the

fourth quadrant. This is because arm features in this model are closer in morphology to rings than

to arms (left, Fig. 5.17) which show up as straight lines in l-v space.

The values in Table 5.3 show that models with the lowest fit statistic (< 0.9) have a high

arm number (3 < N < 5). This implies the Milky Way emission features are best-fit by a high

arm number, rather than the m = 2 value as implied by some studies. Interestingly we had some

difficulty producing N = 2 armed structures. In the case of the Ba model the arms were highly

irregular and appeared to be buckling in the outer disc, beyond the Solar position. The HbG model

displayed a N = 2 pattern, but these arms are trailing from the bar ends and do not extend far

radially. N = 2 arm models have been produced by studies in the literature, but tend to only be so

when perturbed by some external body (Dobbs et al. 2010; Struck et al. 2011).

Pitch angles tend to be around α ≈ 20◦. While high, this is not outside of the uncertainties

in Milky Way models. Values as high as these were ruled out when using fixed potentials be-

cause there appeared to be voids of gas in the disc due to the large arm separation, which provided

a poorer representation of l-v features. However, when using a live disc there is a considerable

amount of branches and inter-arm material, which allowed for the arms to fit to additional struc-

tures in l-v space. We estimate an uncertainty of around 2◦ for α, gauged by varying the extent of

the disc and material (gas or stars) used in the arm fit.

The pattern speeds in Table 5.3 have large uncertainty, and are only mean values as the

pattern speed is seen to decrease with radius in all disc models. Regardless, the arm pattern speeds

appear high compared to values inferred for the Milky Way and found when using analytic poten-
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Figure 5.23: Best fitting l-v from the simple fitting procedure to find lobs, Vobs, Robs and tbf for
models Db, Dc, Ba, Bb, Bc, Bd, BbG, Hb and HbG. Best fitting values are given in each panel,
along with the value for the fit statistic used to constrain them. Vobs and Robs are in km s−1and kpc
respectively.

tials (Ωsp ≈ 20km s−1 kpc−1). Values for bars lie between 30km s−1 kpc−1< Ωp < 45km s−1 kpc−1,

though we could not perform any barred simulation at high resolution for more than 90Myrs due

to computational difficulties. The best fitting radius, Robs varies across the models, with no clear

preferred value. For instance the Bb and Bc models, which both provide a good match to the l-v

data, have best-fitting values of 8.5kpc and 7.0kpc respectively. The best fitting observer velocities

appear systematically lower than those of the analytic potentials and the approximate value for the

Solar position (220 km s−1). We believe this to be due to the nature of the density distributions

used to set the stellar material being slightly different to those of used in Chapter 3. By comparing

the model rotation curves of Figures 5.2 and 3.1 at the Solar radius (R ≈ 8kpc) the models in

this chapter appear to pass through the data points of Sofue (2012) in the Bd, Bc and Bb models

whereas the model from Chapter 3 appears to over-estimate the local velocity by 10 − 20 km s−1.

As such, to match the velocity of local material the value of Vobs can be somewhat lower, in keep-

ing with the rotation curve of the live stellar disc. The exception is the Ba model, whose rotation

curve also over-estimates the local velocity, hence the higher best-fit value for Vobs (Table 5.3).
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Figure 5.24: Inner structure of the gas disc in the DbG model (right) due to the creation of a bar,
angled at θb = 45◦. Features are similar to those seen in observations (Dame et al. 2001, left).
Note the velocity range is slightly smaller in the right panel.

We have not shown any values or maps for the BbL model as they are extremely similar to

those of the Bb model, with only slight variations in the best fitting values of lobs, Vobs and Robs.

Regarding the barred models specifically, we do not perform any radiative transfer calcu-

lations using these models. They are either too low resolution, or did not run for long enough to

develop sufficient structure. There is one point of merit we wish to discuss however. In the bar

formed in the DbG model, that had only ran for 85Myrs with gas, there is internal structure that is

very similar in l-v space to that observed in CO data. The internal structure is shown in Figure 5.24

(right) alongside that seen in observations (left). The bar is angled at θb = 45◦ and the synthetic

l-v map is shown over slightly narrower velocity range (remember that without a bulge, disc-only

models underestimate the velocities in the inner disc). While by no means a perfect reproduction,

this is perhaps the closest to the CMZ out of all of our models. In both maps there is a bright ver-

tical inner region that has a width of several degrees, with some emission structures falling away

from the peak values as you move away from l = 0◦. The structures directly around the CMZ

in the model appear at too high velocities, indicating the structure may extend too far radially,

which could be reduced with the addition of a more compact inner bulge. Different values of θb

were investigated, but none lessened this effect. This model has the obvious drawback however of

having very weak outer arms, though higher resolution calculations, where arms should be more

prominent, were not feasible.

5.6 Radiative transfer emission maps

Using the methods discussed we have narrowed down the full range of models in Table 5.2 down

to seven that we wish to analyse further and create emission maps, now taking into full account

optical depth effects. These models are the majority of the bulge-disc calculations (Bb, Bc, Bd,
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BbG, BbL) and a single live halo model (Hb). However, in instances of fitting the simple l-v maps

there were some double-minima seen in the fit which gave a considerably better match than the

other models. Specifically we have included another Bc time-stamp, which is taken at a much

later time (292Myrs, rather than the 207Myrs of best fit model) and provided a better fit than the

Bd and Hb models. Some other instances such as this occurred, but none so clearly a good fit.

The procedure for creating l-v emission maps is identical to that outlined in Section 4.3.

We use the torus radiative transfer code to create cubes of brightness temperature as a function of

latitude, longitude and line-of-sight velocity which are the integrated over latitude and quantitively

compared to the CO map of Dame et al. (2001). A turbulent velocity of 4 km s−1 is again added to

the line width to better match the observed features. Sinks and stars are all discarded before the

creation of maps.

5.6.1 Column densities

In Figure 5.25 we show typical column densities as a function of latitude and longitude in the sec-

ond quadrant of a live-disc calculation, which can be directly compared to the fixed potential case

(Fig. 4.6). The disc has been aligned such that similar arm structures are present, with a near, mid

and far arm are all present in the quadrant. The near arm appears clearly as an emission feature

that is vertically extended up to b = ±2◦, similarly to the fixed potential case. The remainder of

the material is somewhat different. There is no clear narrow band of material centred at b = 0◦ as

for the fixed potential, with instead column densities appear well distributed with latitude. This is

because the live stellar disc has a great many more homogeneities, and the vertical velocity dis-

persion in the disc keeps material away from the mid-plane which was a drawback of the previous

models. The H I appears very uniform with no strong asymmetries or over-densities. Peak values

of H I density are much lower than the fixed potential case, presumably because of the increased

dispersion around the mid-plane. Molecular gas densities are similar however, as the densest gas

is limited in molecular abundance by limiting factors (e.g. χCII) while the general gas density

can continue to increase. Material is still confined to lower latitudes than that seen in our own

Galaxy, where molecular and atomic gas can be seen to extent out to b = ±5◦ (Heyer et al. 1998;

Taylor et al. 2003). Stellar feedback may be necessary to produce this extended vertical structure

(Duarte-Cabral et al. in preperation).

The molecular column densities for this quadrant are shown in Figure 5.26, to be compared

with similar plots for fixed potentials (Fig. 4.8). These appear to give a poorer representation of

the column density profiles in observations compare to those of Fig. 4.8. This could be due to

the CO is being under-produced with respect to H2 in comparison, though this seems unlikely as

the chemistry for both codes is identical. It is possible that this is a resolution effect, and that

the slightly higher resolution of the fixed potential calculations allowed for a greater resolution of

the denser regions, more accurately following the molecular content in these regions (5 million as

opposed to 1 million particles). The other possibility is that the dense gas regions inside these live

disc calculations are less efficient at creating and/or shielding molecular gas compared to smooth

potentials. This may be because these transient arms are not as consistently strong as the analytic

potentials and that their transient nature is disruptive to the presence of molecular gas. The column
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Figure 5.25: Column density of H I (top), H2 (middle) and CO (bottom) of the second quadrant of
the Bc model, shown in the insert.

densities do however provide one improvement to those of the fixed potentials. They have column

densities that reach into much lower H2 densities. The fixed potential data by comparison decayed

very rapidly around N(H2) ≈ 1020cm−1.

5.6.2 Emission maps

We show all seven of our best-fitting CO emission maps in Figure 5.27, and the observational data

alongside for comparison. The fit statistic has been re-calculated now that the emission correctly

takes into account emission and absorption effects, and correctly computes the “size” of the fea-

tures. Encouragingly, the fit statistic follows the same trends across the maps as when we used

the simple map creation tool. The three best fitting maps (in order) are the Bd, Bc (both) and Bb

models. The BbG and Hb models fair significantly poorer in comparison.

The lighter gas disc is now shown (BbL) where the gas had half the fiducial mass. The

emission features are significantly weaker than the Bb counterpart. While the strength of the

emission is weaker over-all, more in line with observational values, there are clear gaps in l-

v features that are not present in the Bb model. We conclude that the fiducial disc mass (or

somewhere between) is a better value for reproducing emission features.

While each model still has merits, there are clearly three that can be dropped from analysis:

the BbL model (as stated above), the Hb and BbG models. The evolved disc model (BbG) provides

a good reproduction of the Carina arm, Perseus arm and some of the Local arm. The inner disc

however, is poorly reproduced. The inner ridge feature is angled too steeply in l-v space, and

seems to be tracing the ring-like inner structure of the disc rather than spiral arms. The lack of a

full Local arm, or any Outer arm feature, also undermine this model. As expected the live-halo

model (Hb) is similar to the static halo case (Bb). There is some marginal outer arm emission

and a seemingly complex inner structure, though this appears more complex in the Hb model.

Overall the Hb model is a poorer version of the Bb model, with weaker arm features, a misshapen
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Figure 5.26: Column density of H2 and CO for the second quadrant of the Bc calculation shown
in Figure 5.25. Several sources of observational data for the second quadrant are shown for com-
parison.

inner structure, poor reproduction of the Carina arm and poorer fit statistic. This could be due to

additional dynamical instability possibly seeded by an unresolved dark halo so we don’t consider

this model further.

The remaining four models; Bb, Bc(×2) and Bd, all provide a good fit to many of the

observed features. All produce the Carina, Perseus, and Local arm material, though some better

than others. For instance, the lightest disc model appears to show extremely weak arm structure

that can be assigned to Perseus, but it is barely visible in the second quadrant. The Inner Ridge

is well produced in the Bc(292Myr) and Bd models, and in the case of the former this smoothly

transitions into the Carina arm. The Fourier analysis of these models favours a 4-arm fit (5 for the

lightest case), indicating that Galactic structure is best fit by a higher arm number, rather than say

a 2-armed one.

So far we have limited ourselves to discussing the emission structures seen in CO. We

provide a single map of the H I emission for comparison, using the Bc(207Myr) model. The

emission here is a much better representation of that observed (lower panel, Fig. 5.28) than the

fixed potential calculations. The arm structures are traced by the emission, similarly to the CO

(Fig. 5.27) though there are many more weaker arm features visible. This is very different to the

analytic potentials, whose emission structure did not show any strong correlation to the location

arms and CO emission for our standard surface density (Fig. 4.3). This is likely because the gas is

less confined to the plane when using a live disc, and so it decreases the optical depth and hence H I

absorption along lines-of-sight to the arms. The emission strength is also comparable to observed

values, with peak emission features appearing near 200K. The structures here appear very fine
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Figure 5.27: Seven CO emission maps made using torus where time-fame and observer co-
ordinates have been fitted to observational data (top left for comparison, re-scaled slightly to match
synthetic maps). The models include the Bb, Bc, Bd, BbL, BbG and Hb mass configurations, and
an additional Bc that also provided a good match to the data.
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Figure 5.28: Emission map of the H I 21-cm transition created using torus. The input model is the
207Myr Bc model, the same as the second map in Figure 5.29. Observational data from Kalberla
et al. (2005) is shown for comparison.

compared to observations as we omitted the turbulent broadening present in CO. Arm features

can be clearly seen in the second quadrant, even without the broadening to smooth features. The

Perseus, Local and Outer arms all appear in the synthetic map. The inner disc at the location of the

CMZ shows no emission feature, similar to observations, indicating that in our simulations CMZ

hosts just molecular material and a only minor traces of atomic gas.

5.7 Discussion

Through the work presented in this chapter we have shown that it is possible to produce many

of the observed features of the Galactic CO emission using a system of N-body particles to rep-

resent the stellar distribution. As in Chapter 4, we will use our four best-fitting maps as a basis

for our discussion. In Figure 5.29 we show four maps, from top to bottom: Bb, Bc(207Myrs),

Bc(292Myrs) and Bd, organised by disc mass. In the left column we show the top-down gas dis-

tribution, and in the right the torus CO l-v emission maps, created at the best fitting values of lobs,

Vobs and Robs. In each frame we also label significant arm features, with the same nomenclature

as used for the Milky Way.

In the heavy disc (Bb, top panel) model the inner l-v features are similarly inclined to those

seen in the observations, namely the Inner Ridge is present, though it is not as clearly defined. The

top-down map shows this is a combination of a far and near arm feature. The near arm (labelled

Carina) appears weaker than the far inner arm (labelled SCC) and so emission from the far arm can

pass through the near arm. This allows for the reproduction in the Carina Arm, which requires an
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Figure 5.29: Our four best-fitting CO radiative transfer l-v maps from Fig. 5.27 with their x-y
counterparts. The top-down maps only show gas material that is seen in CO l-v space; that of
the highest density. The cross indicates the observers position (which differs between models).
SCC refers to the Scutum-Centaurus-Crux arm in the 4-armed paradigm of the Milky Way, also
referred to in the main text as the Inner Ridge when viewed in l-v space. Arrows indicate locations
of prominent features in l-v space.
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arm to be very close to the observers location, while avoiding large amounts of emission at local

velocities in the range |l| < 50◦. This was a persistent problem in the maps created from synthetic

potentials. The uniform and unbroken nature of the arms made producing the Carina Arm and

Inner Ridge impossible. This model also has a looped arm features at very low velocities similar

to the 3kpc-Expanding Arm, though is angled steeper in l-v space than observations. A Local Arm

feature has been produced by a spur of the Carina Arm, lying very close to the red-cross in the

top-down map. This has been suggested by other studies; that the Local Arm is in fact some spur

or inter-arm structure, rather than a primary arm (though the picture is still not clear; Reid et al.

2009, Xu et al. 2013). The caveat of this model is the outer arm structure. Both the Perseus and

Outer arms, while clear in the top-down map, are weak or incorrectly placed in l-v space. The

Perseus arm appears at velocities too similar to the local values, making it nearly indistinguishable

from the Local Arm in CO emission. The Outer Arm can barely be seen in emission, its presence

only given away by a couple of dense pockets of gas.

The second model (Bc) has a slightly lighter disc, and appears a much better fit for many of

the l-v features. The arms in the second and third quadrant are an especially good reproduction of

observations. In Figure 5.30 we show a zoom in of this region shown alongside the observational

data. The Local, Perseus and Outer arm features are all reproduced and have comparable line-

of-sight velocities. The emission is however still somewhat higher than that observed, a problem

with all maps produced in this thesis. The top-down map shows the Local and Perseus arms are

a bifurcation of the same arm. The Carina hook structure is reproduced, but is present at too

great a longitude compared to the observations. This feature can be made to better match, by

increasing Robs, but at the expense of the other arm features. The Inner Ridge of this model is

somewhat poorer than the other models. There is even a void of emission at approximately l = 20◦

vlos = 80 km s−1where clear emission is seen in observations. The incorrect reproduction of the

Inner Ridge is due to the SCC Arm tracing a near-circular arc in the inner disc, which is seen as

the steep straight line in the l-v map. In the other models the SCC arm clearly “winds”, i.e. has a

non-circular shape, so is seen to be angled in l-v space.

The second Bc model, created at approximately 100Myrs after the first, appears to be the

best reproduction by-eye (the fit-statistic favours the lightest model however). The model shows

the Carina, Perseus, Outer and Local Arms as well as an Inner Ridge that is aligned similarly to

observations. Local material is again formed by a spur off the Perseus Arm. The Perseus Arm itself

is hard to differentiate from the Local and Outer Arm features, which is the main problem with

the model. All arm structures in the second quadrant appear at too shallow velocities, implying

Vobs is incorrect or that the model rotation curve is too shallow near the Solar Radius. This model

offers the best reproduction of the Inner Ridge and Carina arm simultaneously. The Carina Arm

appears to branch away from the SCC Arm (the source of the Inner Ridge) allowing it to be

correctly placed in l-v space without it causing spurious emission in the inner disc, a problem the

symmetric fixed potential models persistently encountered. There also appears to be a 4-armed

outer structure, with a very strong 2- armed inner structure, which adds weight to the models arms

including a strong stellar 2-armed component and weaker 4-armed one in the gas/dust and young

stars (Drimmel 2000; Churchwell et al. 2009).



5.7. DISCUSSION 191

Figure 5.30: Zoom in of the first and second quadrant arm features in CO from the 207Myr Bc
arm model (second row, Fig.5.29). Observational data is shown in the upper panel for comparison,
the emission strength of which has been increased slightly to be on the same scale as the synthetic
map.

Our final model has the lightest disc, and the lowest fit statistic. As with the previous

model, there is a good reproduction of the Inner Ridge, Carina Arm and Local material. The

Perseus and Outer Arms appear too weak, and there is a significant amount of emission in the

inner disc (|l| < 30◦). While common to all models, this excess emission is especially evident

here due to the general flocculent nature of the spiral arms. There is no clear inner disc structure

and the many smaller arm features in the inner disc are seen in molecular emission, appearing

as a great swath rather than distinct arm features. The flocculent nature is also to blame for the

weakness of the Perseus and Outer Arms beyond the Solar radius. It is somewhat alarming that

the emission features can be well reproduced by a model with seemingly no clear dominant spiral

mode (Fourier analysis indicates m ≈ 5). While the fit statistic indicates this model is a good fit,

it is likely because there is little emission seen in the incorrect place. Coupled with the correct

reproduction of the Inner Ridge, Carina and Local Arms, this explains the goodness of the fit. The

arm features however seem too weak in the outer disc for this model to be a correct reproduction of

our Galaxy. Arms are barely visible in the outer disc, be it in CO or general gas density, meaning

they would also not be visible in atomic emission which is simply not the case in observations (see

the lower panel of Fig. 5.28).

Overall, the fit statistic favours the light disc model, Bd. However, the features appear too

flocculent in the outer disc, and so we favour the second best fit model, Bc. The Bd model provides

an excellent fit to the strongest emission regions, that of the Inner Ridge, while the Bc reproduces

all other arm features. As the latter arms are weaker in emission in comparison, the fit statistic is

lower for the model that fit the Inner Ridge but not the arms, Bd.
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5.7.1 Comparison to calculations with fixed stellar potentials

It appears that using a live-stellar distribution does a better job than the fixed analytic potentials

in many regards. The irregular arm structures created by the live stellar system are able to match

emission features simultaneously, such as the Carina arm and Inner Ridge, while symmetric loga-

rithmic spiral arms could not. For example, in the previous Chapters the second quadrant could be

fit by moderate to large pitch angles, whereas a much smaller value was needed to fit the Carina

feature. The arm numbers of the best fitting models are similar to those suggested by the previous

chapters, favouring a 4-armed gas structure to best match the observations. The pitch angles are

somewhat higher than inferred previously (18◦ < α < 25◦), which are higher than the standard

Milky Way models (Vallée 2005). High pitch angles are not uncommon in N-body simulations

(Wada et al. 2011a; Grand et al. 2013) whereas low values are seemingly hard to create without

the arms dissipating. Pattern speeds appear to be a function of radius in nearly all cases, with mean

values for arms ranging from 25km s−1 kpc−1< Ωp < 35km s−1 kpc−1, also similar to values found

in other studies (Grand et al. 2012; Baba et al. 2013) but higher than those found in the previous

chapters. The arms appear material, unlike the steady density waves implied by theories, and ma-

terial tends to reside in the arms until they shear apart. It may be the case that the Galaxy has no

fixed pattern speed, and its spiral arms are also material in nature. It is not unheard of for other

galaxies to have pattern speed that decrease with increasing radius (Meidt et al. 2008; Speights &

Westpfahl 2012). Bar features that were produced displayed pattern speeds of 30km s−1 kpc−1 (for

the disc only, thin bars) and 45km s−1 kpc−1 (peanut/boxy bars).

The total strength of CO emission is more in line with that seen in observations (i.e. weaker)

than the previous models, which tended to create extremely bright arm emission structures. The

increase in inter-arm features also makes lower strength features corresponding to moderate den-

sity material more common. The fit statistic for the emission maps of models is calculated in exact

same way as in Chapter 4 and the best-fitting models here provide a systematically better fit than

those with fixed potentials (best fitting values give ≈ 1.05 for potentials and ≈ 0.95 for live discs).

There are some drawbacks to this method however. Each model has far too much emission

in the inner disc. This is due to all models here having an inner bulge, which creates high density

gas flow around the centre. The initial gas profile, that increases towards the centre, may also be a

flaw in the models. The fixed potential calculations effectively had a hole in the inner disc, which

resulted in a large dearth of emission at high velocities inside of |l| < 20◦. High gas density was

still seen in the inner disc however, but was solely aligned on the x2 orbits of the bar. As such we

believe either an inner bar structure is needed to sweep up molecular material in the inner disc,

or that gas density is greatly reduced by some other mechanism. Bars were reproduced however,

both in cases with and without an inner bulge. The bulge-free models displayed tentatively good

features in the CMZ, but unfortunately were computationally difficult and produced weak outer

arm features. The other family of bars reproduced the weak boxy/peanut nature of the Milky

Way’s bar, but had similar problems as the analytic bars of the previous section (tightly wound

arms and very strong nuclear rings at the ILR).
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5.8 Chapter summary

In this chapter we have shown simulations of the stellar and gaseous components of the Milky

Way, rather than using a set of fixed analytic potentials to represent the stars as in Chapters 3 and

4. Various arm and bar morphologies were formed in the stars, with arms appearing transient and

material in nature rather than as density waves. The arm number is seen to increase as the disc

to halo mass ratio decreases, with arm numbers found to range from 2 ≤ N ≤ 5. We perform

fits to logarithmic spiral features, finding pitch angles in of 18◦ < α < 25◦ and pattern speeds

in the range of 20km s−1 kpc−1< Ωp < 38km s−1 kpc−1 which decreases with radius rather than

maintaining a constant value. Both pattern speed and pitch angle are within the range of values

inferred from observations, though in the higher range.

Using the molecular gas in these simulations we then created synthetic l-v emission maps.

A simple method is used to find a best-fitting time-frame and observers coordinates, which are

used to reject some outlying models and provide input parameters for the full radiative transfer

maps. We find moderate mass discs with a live bulge-disc component provide a good match to the

observations, with 4-armed spiral patterns that reproduce many of the arm features. These arms

provide a better fit than those using fixed potentials (Chapter 4) and provide a lower fit statistic.

The arm features of the Milky Way are thus found to be best-fit by a dynamic and transient disc,

displaying a 4-armed pattern in the gas with a pitch angle of approximately 20◦.
Some models also formed inner bars, though not in the case of our best fitting models due

to the strong inner bulge. We believe a bar is necessary to amend the main flaw in these models;

the excess emission at the Galactic centre. It may be that a calculation with a smaller bulge is

needed to allow for a bar to form while keeping a distinct outer arm structure.



6
Conclusions and future work

“From out there on the Moon, international politics look so petty. You want to grab a

politician by the scruff of the neck and drag him a quarter of a million miles out and

say, ‘Look at that, you son of a bitch’.”

– Edgar Mitchel, Apollo 14 astronaut, People magazine, 8 April 1974

6.1 Thesis conclusions

This thesis has focussed on lifting the veil on the shape of our Galaxy, a problem that has plagued

observers and theorists alike for decades. The method to do so was to utilise numerical SPH

simulations to model the ISM evolution in a Milky Way-like disc. Many different Milky Way

models were employed, investigating a wide variety of morphologies of the bar and spiral arms.

Using these simulations, synthetic observations (primarily of CO emission) were then created

using a radiative transfer code which could be directly compared to observational data. By finding

models that provide a good representation of the emission features of our Galaxy it was inferred

whether the morphology of the input Galaxy model was a good representation of the Milky Way’s

morphology. Whilst other authors have produced individual synthetic maps from simulations, here

we extend this idea to using multiple simulations to carry out a systematic study of the available

parameter space and use a full radiative transfer treatment to replicate observations.

In Chapters 1 and 2 we set the scene of the problem at hand and present the primary nu-

merical tool used throughout this work; SPH. This includes the specialised physics and chemistry

incorporated that allows for ISM cooling and molecular gas formation, which is key for creation

of the synthetic observations.

In Chapter 3 results are presented where the Galaxy is assumed to be grand design in nature,

194
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i.e. that the morphology is fixed and unchanging in nature with distinct arm and bar features. The

gas in a Galactic disc is subjected to a variety of different analytic potentials designed to represent

the stellar gravitational field of the main morphological components. Separate simulations using

arms or bars are first performed, investigating the effect of pattern speeds, bar orientation, arm

number and arm pitch angle on structures seen in longitude-velocity space. Best-fitting values for

the bar favour pattern speeds of 50 − 60km s−1 kpc−1 and orientations of ≈ 45◦, while the best-

fitting values for the arms are a pattern speed of 20km s−1 kpc−1 and a pitch angle from 10◦ − 15◦.
Some of the parameters showed clear best fits, such as arm pattern speed, while others were harder

to constrain, such as the pitch angle. Bars and arms on their own could not provide a good match

for observations, with the position of resonances limiting the radial extent structures could be

sustained in the gas. Specifically, a fast bar was needed to produce features in the inner disc, while

arms of a much slower pattern speed were needed to observe arms beyond the Solar radius. The

observer’s position and velocity were also variables in the modelling as they could heavily impact

the position of emission features. While not the subject of our investigation, best-fitting models

showed a good agreement with literature values.

Synthetic observations in Chapter 3 were calculated in a very simple manner. In Chapter 4

this is greatly improved by use of a radiative transfer code which explicitly calculated the emis-

sivity and opacity throughout the model galaxies. Synthetic observations showed that molecular

emission features were highly sensitive to the surface density of the gas, which directly determines

its column density and optical thickness. Emission from arms and bars was visible in our fiducial

gas disc, though the peak brightness temperatures were somewhat greater than those observed. H I

emission on the other hand did not trace the morphology well. This is believed to be caused by

the gas settling into a very narrow range of latitudes, which causes very high atomic gas column

densities, a problem induced by the simplistic nature of the potentials. This was not an issue with

CO, as the molecular gas density is so much lower than that of the H I. Simulations were then

performed with the best-fitting arms and bars from Chapter 3. Many of the emission features from

the Milky Way were reproducible, such as various individual spiral arms. There was however no

model that could fit all features simultaneously. The primary difficulty was in reproducing the

Carina arm in the fourth quadrant and the inner molecular ridge of material with the correct ori-

entation in l-v space inside |l| < 50◦. In order to match Carina using fixed logarithmic spirals the

arm must pass in between the observer and the Galactic centre, creating a great swath of emission

and local velocities (vlos ≈ 0 km s−1), which is not seen in observations. Either the molecular

gas in this arm must be greatly reduced, by this arm perhaps being weaker in general to others,

or the shape must stray from logarithmic in the Solar vicinity. The arm number, perhaps the key

parameter in mapping the Galaxy, was not clearly constrained. Two armed models provided a bet-

ter fit numerically, but could not fit all observed features simultaneously. Conversely four armed

models could reproduce all features, but inadvertently produced spurious emission where it was

not required, worsening the quality of the fit. A such we conclude a four armed barred model is a

good representation of our Galaxy, but a key ingredient is needed to remove or amend some of the

spurious emission features.

In Chapter 5 a different approach is taken where the analytic potentials representing the
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stellar component are replaced with a system of N-body “star” particles, whose evolution deter-

mines the gravitational forces experienced by the gas. The resulting arm features are transient and

vary greatly in shape, displaying multiple branches, inter-arm features, and kinks. The number of

arms created is strongly correlated to the disc to halo mass ratio, with arm numbers ranging from

two to five and in some cases producing effectively a flocculent disc. Pitch angles tend to be rather

wide compared to those found using analytic potentials, with values around 20◦. These arms tend

to have a pattern speed that decreases with radius, implying they are material in nature rather than

standing density waves. While some bar features are also created, these are either a poor match for

the inner velocity structure or do not create sufficient emission in the outer disc. The CO emission

maps for our best-fitting calculations appear a much better match to the observed map than the

analytic potentials, with a select few maps reproducing many of the arm structures. These best

fitting models favour a four-armed structure, though interestingly a highly flocculent disc with no

clear dominant spiral mode can also provide a reasonable match. The main detriment of these

models is the over-abundance of emission in the Galactic centre. This may require an inner bar,

absent in most of these models but present in the models using analytic potentials, to sweep up this

excess molecular material in the |l| < 20◦ region. The H I emission also provides a closer match to

observations that than of the fixed potentials, due to the live-disc being greater dispersed around

the Galactic plane.

In the Introduction we proposed 5 key questions we sought the answers to in this work.

These questions and direct answers are as follows.

• Can we create synthetic molecular emission maps of our own Galaxy sufficient for the pur-

pose of constraining morphology? The longitude velocity emission maps indeed proved

very capable of highlighting what could be deemed a good and a poor spiral model of the

Galaxy. The addition of a radiative treatment over previous studies helped to highlight the

dangers of simply matching up arm features as material very near the observer can produce

extremely bright emission features not seen in observations.

• Can a grand design spiral perturbation sufficiently reproduce the observed features in l-

v space? The barred and armed models made using fixed potentials failed to provide a

full match to observed features. While individual arm structures could be reproduced, the

symmetric grand-design models proved incapable of matching all structures simultaneously.

• Is a 2-armed structure sufficient to reproduce all the features, or is a 4-armed model needed?

A four armed pattern is required, both seen in the fixed potentials and live disc simulations.

There is simply not enough structure in the gas to match the l-v data with two arms.

• Does a 2-armed stellar distribution produce a 4-armed gas morphology sufficient to match l-

v features? We found that a 2-armed stellar spiral can produce 4-armed gas features, but that

these are too tightly wound to match the observations. Interesting the live disc simulations

produced strong m = 2 modes in the inner disc and strong m = 4 modes in the outer

disc, which could be the best way to reconcile the 2 and 4-armed paradigms inferred by

observations.

• Can instead a transient spiral structure better fit the observations? The material and recurrent

spiral structure of the live disc simulations produced much better matches to the observa-
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tional data. The more irregular arm structure coupled with more discontinuous emission

along individual arms allowed for more realistic l-v maps, and allowed for different arm

numbers to dominate different Galactic radii.

The synthetic observations in this thesis show that a four-armed morphology is needed to

reproduce the observed gas emission features. The theory that a two-armed stellar morphology

can drive a four-armed structure in the gas is only supported by a small amount of models with

fixed potentials, and none of the calculations with a live disc. Fixed analytic potentials tend to be a

poorer representation of the disc, with a live stellar distribution creating a better range of features

that can match the observed arm emission implying the arms of the Milky Way may not be in a

steady state driven by spiral density waves. A bar feature does seem required however in the inner

disc. The inclusion of a bar in the analytic models gave a better match to inner features than the

arm only models created using a live disc, which display an over-abundance of emission towards

the Galactic centre. As such, modelling the Galaxy a live-stellar disc and transient arms with the

inclusion of a small, rapidly rotating inner bar, would provide the best reproduction of our Galaxy.

6.2 Future work

The work outlined in this thesis has some clear and obvious avenues for extension. In following

subsections we discuss directions we have already begun working in to either further understand

the morphology of the Milky Way, or constrain some other Galactic scale features.

6.2.1 Perturbing bodies driving spiral structure

A mechanism of spiral structure generation that we have not investigated thus far in detail is that

caused by passage of some massive perturbing body. The tidal forces on a galactic disc are believed

to be very effective at seeding spiral arms, bridges and tails (Toomre & Toomre 1972; Dobbs et al.

2010). There are many examples in the literature of the effect of a perturbing mass, be it point

mass or a many-body system, on a Milky Way-like disc (Toomre & Toomre 1972; Donner et al.

1991; Barnes & Hernquist 1996; Oh et al. 2008; Dobbs et al. 2010; Purcell et al. 2011; Struck

et al. 2011). However, as far as we are aware there has been no in-depth study on wether these

tidal effects could produce morphologies that are a good representation of our own Galaxy.

By using an N-body and SPH prescription, similar to Chapter 5 it is possible to simulate

such a perturbing scenario. This was done so by Dobbs et al. (2010), who used a point mass

perturber to simulate the interaction between a galactic disc and the creation of spiral structure that

showed a striking resemblance to M51. We have already performed numerous test calculations on

the effects of a point mass perturber on the discs presented in Chapter 5, an example of which

is shown in Figure 6.1. Here a point mass perturbing particle with approximately a third of the

mass of the stellar disc approaches the disc on a hyperbolic orbit and induces a two armed spiral

feature in the disc. This spiral structure persists for about three rotations of the disc, in which

time the perturber has continued on it’s orbital path. This interaction also seems to have bolstered

the inner bar, it appearing much longer and than in the initial time-stamp. An advantage of this
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Figure 6.1: Effect of point-mass perturber on a disc galaxy composed of 1 million star particles
that have formed a weak barred structure. The perturber is initially located at the top of the first
panel, and moves on a hyperbolic orbit clockwise (off-panel). Its passage induces arms in the stars,
which persist for three full rotations after periastron passage.

method is that it is an easy way of reproducing m = 2 features in the disc, which was difficult to

do in the isolated galaxy case in Chapter 5. The next step is to include gas particles with active

chemistry, and then construct synthetic CO emission maps to assess the validity of the models.

Preliminary tests show that the velocity structure is quite different from the isolated case, with the

tides caused by the perturber inducing large scale velocity structures in the disc. It may therefore

be prudent to allow the disc to settle somewhat after the passage of the perturber, though this will

also result in a weakening of spiral features. Extension of this method would involve replacing the

point-mass perturber by an N-body companion, though the increase in computational cost would

be considerable.

6.2.2 The effects of stellar feedback and self-gravity on global l-v features

In terms of the physics incorporated into the models in this thesis, we have taken a practically sim-

ple approach. The forces experienced by the gas are reduced to the stellar gravitational field and

hydrodynamical forces, with additional ISM heating and cooling mechanisms. The main omission

is the gravitational effect of the gas upon itself, which we have assumed to be negligible compared

to that of the stellar system. The addition of self-gravity results in creation of clumps in the gas,

and acts to create inhomogenities in the global gas flow (Dobbs 2008). To maintain a calculation

involving self-gravity in the gas it is prudent to include some method of breaking up these dense

clumps. To this end stellar feedback can be employed to insert energy into the ISM. This approach

has been employed by numerous galactic-scale studies in the past, both in grid-based and SPH
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Figure 6.2: The effect of supernovae feedback and self-gravity on the evolution of the ISM disc
with a 4-armed spiral potential and resulting CO emission features. The left panel shows the top-
down surface density after 250Myrs of evolution and the right panel the CO emission map created
using toruswith the observer placed at y = 7kpc in the top-down view. SPH calculation performed
by C. Dobbs using sphng with 8 million particles and is described in Dobbs et al. (2011).

codes; Wada et al. (2000); Scannapieco et al. (2006); Tasker & Bryan (2006); Dobbs et al. (2011);

Kawata et al. (2014). Stellar feedback comes in variety of forms, be it radiation pressure, stellar

winds or supernova feedback. In galactic-scale calculations this is usually solely represented by

the strongest contribution; that of supernovae. These feedback events occur when the gas becomes

sufficiently dense, i.e. forming a GMC. The activation of such a feedback event in the code is a

costly one, and requires neighbour lists to be re-called in order to ascertain where the energy of the

supernova must be deposited. Coupled with the inclusion of self-gravity, these calculations can be

extremely more computationally expensive than those presented in this thesis.

The inclusion feedback can act to greatly change the global morphology of galactic simula-

tions. As such the effect on the synthetic observations, such as those presented in this thesis, could

be great. The effect of such physics has already been investigated to a degree by Duarte-Cabral

et al. (in preperation) and Acreman et al. (2012), where the emission structures from fixed analytic

potentials are greatly disrupted and provide a much better resemblance to observations. These

studies, however, were focused solely on the second quadrant using some assumed spiral model.

As an extension to the work of this thesis we intend on taking our best fit models and including the

effects of self-gravity and feedback in hopes of producing an even match to observations. The code

sphng (utilised in Chapter 5) has already been adapted by C. Dobbs to include supernova feedback

(Dobbs et al. 2011), so utilising it with the models in Chapters 3 and 5 would be relatively straight

forward. It has also been used with a live-stellar system (Dobbs et al. 2012).

As a simple test of this approach, we have taken a calculation from Dobbs et al. (2011)

that includes self-gravity, feedback and four-armed potential and created a synthetic plane survey

of CO emission, shown in Figure 6.2. The top-down map of the gas is shown in the left, and

the torus CO l-v map in the right. Emission features are greatly dispersed compared to those

in Chapters 4 and 5 and arm features can be seen away from the local velocity plane (note the

Perseus and Carina arm analogues). The surface density of the gas is somewhat lower than our
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Figure 6.3: Different rotation curves from observational data of the Milky Way (left) and a barred-
spiral simulation (right). In the left panel we show the rotation curve data from Sofue (2012) and
rotation curves calculated from the terminal velocities of the CO l-v map of Dame et al. (2001)
in using longitudes 0◦ < l < 180◦ and 180◦ < l < 360◦. In the right panel are similar rotation
curves for the SPH calculation. The green and red lines are from 4th and 1st quadrant tangencies
respectively. Black points are the circular velocities of individual SPH particles, and the blue
points are these moving averages of the individual values.

calculations, which results in reduced emission overall (see Fig. 4.3). Note also the lack of any

clear resonance features caused by the arms in the top down plot, which appeared clearly visible

in our calculations.

An obvious question is why we did not include these effects in the first place. The answer

is that self-gravity and feedback greatly increase computational time. With a vast parameter space

to explore and a moderately high resolution required to produce CO emission, this would simply

not have been computationally feasible.

6.2.3 Further tests of Galactic structure

Longitude-velocity emission maps are complex structures with which to fit our models to. The data

product is effectively a 4-dimensional object, and as such the fitting procedure is quite complicated.

As such it is prudent to use other observations of our Galaxy with which to constrain our models.

This could involve a study specifically focussed on reproducing the l-v features of H I in the full

Galactic plane and using a live-stellar system or feedback which would drive material away form

b = 0◦ and avoiding the problems in Section 4.4. The models already created for this thesis could

also be re-used to create further synthetic observations. Arm tangency maps such as those of

Drimmel (2000) or Benjamin et al. (2005) could be easily created for both static and live stellar

systems. Doing so for the calculations in Chapter 5 could be compared to the studies that find

significant differences in the tangencies observed in the stars and the gas (Drimmel 2000; Steiman-
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Figure 6.4: Simulation of ISM gas in a 2-armed spiral galaxy with an active magnetic field. An
initial toroidal field with a strength of B◦ = 10−7G can be seen to be enhanced and flip directions
in the left panel, where arrows indicate the direction and strength of field. In the right panel
the divergence of the magnetic field is shown in the same region (~∇ � ~B). This computation was
performed using phantom and 8 million SPH particles.

Cameron et al. 2010).

A simple additional comparison to make with observations is to compare the various rota-

tion curves that can be computed from our models to those measured for our Galaxy. In Figure 6.3

we show various rotation curves for our Galaxy (left) and from a barred-spiral calculation (right).

Rotation curves can be calculated directly from the terminal velocities of l-v maps, with various

dips and bumps highlighting morphological features. By simply comparing the different rotation

curves, such as for example those created from the fourth quadrant tangencies from models and

observations, we can infer additional information regarding Galactic morphology.

6.2.4 Galactic magnetic field reversal

A feature of our Galaxy that we have so far over-looked is the topology of the galactic-scale mag-

netic field. The existence of some field has been known for some time due to the observation of

rotation measures (pulsar observations), which require some finite magnetic field. The magnetic

field in disc galaxies is believed to originate either from some dynamo action on small scale turbu-

lent field lines, or due to some primordial magnetic field. Regardless of its origin, magnetic fields

have been observed in external disc galaxies with field strengths of the order of µG (Beck et al.

1996).

The topology of the magnetic field of the Milky Way is as shrouded in doubt as the arm

morphology. Studies seem to present a divided opinion on whether the direction of the magnetic

field lines reverse at every spiral arm passage (Sofue & Fujimoto 1983; Han et al. 2006), experi-

ence just a single reversal at Sagittarius arm (Brown 2010) or reverse in a series of Galactocentric

rings (Vallée 2011). Numerical simulations on the subject have shown that an initial small scale
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field can be greatly magnified and ordered by the differential rotation in the disc (Kotarba et al.

2009; Pakmor & Springel 2013). Other work has shown that the field can be disordered from the

global symmetry by pockets of cold ISM gas (Dobbs & Price 2008).

An application of the best fitting spiral models presented in this thesis is to introduce a

Galactic-scale magnetic field and study the effect of the field on the disc evolution. A specific goal

would be to assess the plausibility of the reversal of magnetic field lines in the passage of spiral

arms. Is a reversal reproducible in the Best-fitting Galactic models? If so, how is this dependant

on arm number and pattern speed?

Many techniques already exist for including magnetic fields in SPH (see Price 2012a for a

review). We have performed numerous preliminary simulations in collaboration with D. Price and

C. Dobbs involving an active magnetic field in disc galaxies similar to those in shown in Chapter

3. In Figure 6.4 we shown one such calculation of ISM gas in a two-armed spiral galaxy. In the

left panel is the density render of a single quadrant with magnetic field vectors overplotted. In

the right panel the divergence of the magnetic field is shown for the same region. The calcula-

tion is performed using phantom with 8 million SPH particles and an isothermal equation of state

(T = 100K). An initial toroidal magnetic field is applied with a strength of B◦ = 10−7G. Somewhat

promisingly, the magnetic field can clearly be seen to change orientations in the passage through

the spiral arms. In the two-armed brach region the field seems to swap from being directed towards

then opposite to the disc rotation. The right panel illustrates a problem with these calculations.

The divergence of the field is clearly non-zero throughout the disc, with values in the inner arms

especially reaching considerable magnitudes. While methods such as additional divergence clean-

ing can improve matters, these calculations usually crash in an explosion of ~∇ � ~B. A possible

work-around is to allow the disc to settle considerably before the activation of a magnetic field,

and preliminary tests show this allows for simulation of the magnetic field for many Gyr without

incident.
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Moisés, A. P., Damineli, A., Figuerêdo, E., et al. 2011, MNRAS, 411, 705

Monaghan, J. J. 1992, A&AAn. Rev., 30, 543

Monaghan, J. J. 1997, Journal of Computational Physics, 136, 298

Monaghan, J. J. 2005, Reports on Progress in Physics, 68, 1703

Monaghan, J. J. & Gingold, R. A. 1983, Journal of Computational Physics, 52, 374

Monaghan, J. J. & Lattanzio, J. C. 1985, A&A, 149, 135

Morris, J. & Monaghan, J. 1997, Journal of Computational Physics, 136, 41

Muller, C. A. & Oort, J. H. 1951, Nature, 168, 357

Nakanishi, H. & Sofue, Y. 2003, PASJ. , 55, 191

Nakanishi, H. & Sofue, Y. 2006, PASJ. , 58, 847

Narayanan, D., Krumholz, M. R., Ostriker, E. C., & Hernquist, L. 2012, MNRAS, 421, 3127

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

Nelson, R. P. & Langer, W. D. 1997, ApJ, 482, 796

Nelson, R. P. & Langer, W. D. 1999, ApJ, 524, 923

Oh, S. H., Kim, W.-T., Lee, H. M., & Kim, J. 2008, ApJ, 683, 94

Ollongren, A. 1967, AJ, 72, 474



BIBLIOGRAPHY 213

Oort, J. H. 1932, Bull. Astron. Inst. Netherlands, 6, 249

Oort, J. H., Kerr, F. J., & Westerhout, G. 1958, MNRAS, 118, 379

O’Shea, B. W., Nagamine, K., Springel, V., Hernquist, L., & Norman, M. L. 2005, ApJS, 160, 1

Ostriker, J. P. & Peebles, P. J. E. 1973, ApJ, 186, 467

Ostriker, J. P., Peebles, P. J. E., & Yahil, A. 1974, ApJL, 193, L1

Pakmor, R. & Springel, V. 2013, MNRAS, 432, 176

Paladini, R., Davies, R. D., & De Zotti, G. 2004, MNRAS, 347, 237

Pandian, J. D., Momjian, E., & Goldsmith, P. F. 2008, A&A, 486, 191

Pasha, I. I. 2004a, ArXiv Astrophysics e-prints

Pasha, I. I. 2004b, ArXiv Astrophysics e-prints

Patsis, P. A. & Athanassoula, E. 2000, A&A, 358, 45

Patsis, P. A., Grosbol, P., & Hiotelis, N. 1997, A&A, 323, 762

Patsis, P. A., Hiotelis, N., Contopoulos, G., & Grosbol, P. 1994, A&A, 286, 46

Pichardo, B., Martos, M., & Moreno, E. 2004, ApJ, 609, 144

Pichardo, B., Martos, M., Moreno, E., & Espresate, J. 2003, ApJ, 582, 230

Piontek, R. A. & Ostriker, E. C. 2005, ApJ, 629, 849

Plummer, H. C. 1911, MNRAS, 71, 460

Press, W. H. 1986, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 267, The Use of

Supercomputers in Stellar Dynamics, ed. P. Hut & S. L. W. McMillan, 184

Price, D. 2005, ArXiv Astrophysics e-prints

Price, D. J. 2008, Journal of Computational Physics, 227, 10040

Price, D. J. 2012a, Journal of Computational Physics, 231, 759

Price, D. J. 2012b, in Astronomical Society of the Pacific Conference Series, Vol. 453, Advances

in Computational Astrophysics: Methods, Tools, and Outcome, ed. R. Capuzzo-Dolcetta,

M. Limongi, & A. Tornambè, 249
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A
SPH equations with adaptive spatial resolution

“Computer, compute to the last digit the value of pi. ”

– Spock, Star Trek: Wolf in the Fold, 1967

In this Appendix we provide some additional details on the derivation of the SPH equa-

tions for momentum, energy and density in the “grad-h” formalism where particles have variable

smoothing lengths. The deviations are somewhat different to those in Chapter 2 where h is fixed.

A.1 Density equation

This Lagrangian method makes it much easier to pull out the variable h parameterisation. If

resolution is indeed adaptive then we must re-compute the density gradients. By taking the time-

derivative of the density gradient you obtain an equation similar to Equation 2.16;

Dρa

Dt
=

D
Dt

∑
b

mbWab(ha) =
∑

b

mb

[
∂Wab

∂rab

Drab

Dt
+
∂Wab

∂ha

Dha

Dt

]
=

∑
b

mbvab � ∇aWab(ha) +
Dρa

Dt
∂ha

∂ρa

∑
b

mb
∂Wab(ha)
∂ha

(A.1)

then by extracting the density derivatives you obtain an expression similar to the fixed h case

(Equation 2.16)
Dρa

Dt
=

1
Ωa

∑
b

mb~vab � ∇aWab(ha) (A.2)

where the correction for the spatially varying smoothing length is

Ωa = 1 − ∂ha

∂ρa

∑
b

mb
∂Wab(ha)
∂ha

, (A.3)
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where ∂ha/∂ρa = −ha/3ρa in 3D. We also have the spatial derivative of the density as

∂ρb

∂ra
=

∂

∂ra

∑
k

mkWbk(hb) =
∑

k

mk

[
∂Wbk

∂rbk

∂rbk

∂ra
+
∂Wbk

∂hb

∂hb

∂ra

]
=

∑
k

mk∇aWbk(hb) +
∂ρb

∂ra

∂hb

∂ρb

∑
k

mk
∂Wbk(hb)
∂hb

=
1

Ωb

∑
k

mk∇aWbk(hb)

(A.4)

A.2 Velocity equation

We will use instead a Lagrangian formulation of the SPH equations to get the correct formulation.

Remember L = T − V , here V = U, i.e. potential energy comes from thermal energy. The EoM

then comes the from principle of least action, whereby if we define S =
∫

Ldt then solving for

δS =
∫
δLdt = 0 gives us the EoM (the Euler Lagrange equations)

Lsph =
∑

b

mb

[
1
2

v2
b − ua(ρb, sa)

]
(A.5)

by minimising the action we get;
d
dt
∂L
∂~va
− ∂L
∂~ra

= 0. (A.6)

The first term is then (as all terms in the summation vanish apart from the a term)

d
dt
∂L
∂~va

= ma
d ~va

dt
(A.7)

and the second (assuming constant entropy);

∂L
∂~ra

= −
∑

b

mb
∂ub

∂ρb

∣∣∣∣∣
s

∂ρb

∂~ra
= −

∑
b

mb
Pb

ρ2
b

∂ρb

∂~ra
(A.8)

where we have used the first law of thermodynamics (for constant entropy du = PdV = Pdρ/ρ2).

Between these two we can find a solution for the rate of change of momentum. We can insert the

density spatial gradient from above to give;

ma
D~va

Dt
= −

∑
b

∑
k

mb
Pb

ρ2
b

1
Ωb

mk∇aWbk(hb) (A.9)

and using the identity1 ∇aWbk = ∇bWkb(δba − δka) we can remove the k summation by

ma
D~va

Dt
= −

∑
b

∑
k

mb
Pb

ρ2
b

1
Ωb

mk∇bWkb(hb)(δba − δka)

= −
∑

k

mamk
Pa

ρ2
a

1
Ωa
∇aWka(ha) +

∑
b

mbma
Pb

ρ2
b

1
Ωb
∇bWab(hb)

(A.10)

1Taken form Rosswog (2009) using the identity ∂rbk/∂ra = êbk(δba − δka). This also implies the identity ∇aWba =

∇abWab(δba − δaa) = −∇bWab and ∇aWba = ∇aWab.
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If we then change the index from a sum over k to b in the left hand terms and re-arrange we obtain

the momentum equation for variable smoothing lengths

D~va

Dt
= −

∑
b

mb

 Pa

Ωaρ
2
a

~∇aWab(ha) +
Pb

Ωbρ
2
b

~∇aWab(hb)

 . (A.11)

If the variable smoothing terms are removed then we obtain the same result as Equation 2.26,

showing that the momentum equation can be derived from the Lagrangian or the Navier-Stokes

equations.

A.3 Energy equation

By using the adiabatic energy equation (Equation 2.28). Gives the very simple solution for the

energy equation with adaptive resolution of;

Dua

Dt
=

Pa

ρ2
a

Dρa

Dt
=

Pa

ρ2
a

1
Ωa

∑
b

mb~vab � ~∇aWab(ha) (A.12)

after some hefty re-arrangement we can obtain the split-operator form of the above. However,

we do not provide this as it is not included in either of the codes used in this thesis, due to the

unfortunate side effect of possible negative particle energies when using this formalism.



B
Galactic potential ancillaries

“You win again gravity!”

– Capt. Zapp Brannigan, Futurama: Amazon Women in the Mood, 2001

In this Appendix we outline the derivation of the forces experienced by the potential used

in Pichardo et al. (2003), who, despite complexity, do not present it in their work. This potential is

utilised in Chapters 3 and 4, either by direct force calculation or finite difference of the potential.

B.1 Forces due to a superposition of Schmidt spheroids with a linear
internal density profile

We want the density profile inside the spheroids of ρ = p0 + p1a where a is the semi-major

axis of the spheroid layer in question. The equations for the forces resulting from a homogeneous

spheroid are in Schmidt (1956); Ollongren (1967), and the general solution for the inhomogeneous

spheroid is given by,

F$ = 4πe−3
√

1 − e2$

∫ γ

0
ρ sin2 βdβ (B.1)

and

Fz = 4πe−3
√

1 − e2z
∫ γ

0
ρ tan2 βdβ (B.2)

where γ is the limiting size of the spheroid, where a = a0 and a0 is the maximum spheroid semi-

major axis. These terms are related by,

sin β = e0, inside (B.3)
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and

$2 sin2 β + z2 tan2 β = a2
0e2

0, outside. (B.4)

An in-plane solution to B.1 and B.2 can be easily found by setting z = 0 in B.4, substituting in ρ

and solving the integral. but we want the general off-plane solution, so our density is given by,

ρ = p0 +
p1

e0

√
$2 sin2 β + z2 tan2 β. (B.5)

Our different density profile to that of Schmidt (1956) means we must solve for F$ and Fz our-

selves. This gives two rather nasty integrals to solve,

F$ = 4πe−3
√

1 − e2$

∫ γ

0

[
p0 +

p1

e0

√
$2 sin2 β + z2 tan2 β

]
sin2 βdβ (B.6)

and

Fz = 4πe−3
√

1 − e2z
∫ γ

0

[
p0 +

p1

e0

√
$2 sin2 β + z2 tan2 β

]
tan2 βdβ. (B.7)

The p0 terms are simple enough using standard integral solutions;∫
sin2 x dx =

1
2

(x − sin x cos x) (B.8)

and ∫
tan2 x dx = tan x − x. (B.9)

This leaves us with

I$ =

∫ γ

0
sin2 β

√
$2 sin2 β + z2 tan2 βdβ (B.10)

and

Iz =

∫ γ

0
tan2 β

√
$2 sin2 β + z2 tan2 βdβ (B.11)

left to solve. Beginning with the first integral, remove a tan from the square-root.

I$ =

∫ γ

0
sin2 β

sin β
cos β

√
$2 cos2 β + z2dβ = (B.12)

Now substitute u = $2 cos2 β and using,

du
dβ

= −2$2 sin β cos β = −2u
sin β
cos β

(B.13)

so that we can substitute dβ sin β/ cos β = −du/(2u) into the integral, along with sin2 β = 1 −
cos2 β = 1 − u/$2 to give,

I$ = −1
2

∫ β=γ

β=0

(
1
u
− 1
$2

) √
u + z2du (B.14)
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The rest was computed with the help of matlab using the substitutions of in v =
√

1/u − 1/$2,

s = v − z and p = v + z for separate parts of the integral. The solution is given as,

I$ =
1

3$2

(
u + z2

)3/2 −
√

u + z2 +
z
2

ln
 √u + z2 + z√

u + z2 − z

∣∣∣∣∣∣
β=γ

β=0
(B.15)

=
1

3$2

(
$2 cos2 β + z2

)3/2 −
√
$2 cos2 β + z2 +

z
2

ln

 √
$2 cos2 β + z2 + z√
$2 cos2 β + z2 − z


∣∣∣∣∣∣∣
β=γ

β=0

. (B.16)

Then simply evaluating at the limits gives,

I$ =

 1
3$2

(
$2 cos2 γ + z2

)3/2 −
√
$2 cos2 γ + z2 +

z
2

ln

 √
$2 cos2 γ + z2 + z√
$2 cos2 γ + z2 − z


−

 1
3$2

(
$2 + z2

)3/2 −
√
$2 + z2 +

z
2

ln
 √$2 + z2 + z√

$2 + z2 − z

 (B.17)

so

I$ =
1

3$2

[(
$2 cos2 γ + z2

)3/2 −
(
$2 + z2

)3/2
]

+
√
$2 + z2 −

√
$2 cos2 γ + z2

+
z
2

ln


( √

$2 cos2 γ + z2 + z
) (√

$2 + z2 − z
)

( √
$2 cos2 γ + z2 − z

) (√
$2 + z2 + z

) . (B.18)

We can now evaluate the radial force as,

F$ = 4πe−3
0

√
1 − e2$

{
p0

2
(γ − sin γ cos γ) +

p1

e0
I$

}
(B.19)

Then we must return to our second integral, B.11. Using the same substitution for u;

Iz = −1
2

∫ γ

0

tan β
u

√
u + z2dβ = −1

2

∫ γ

0

(
$2

u2 −
1
u

) √
u + z2du (B.20)

Using matlab again, we obtain,

Iz =

(
1 +

$2

2u

) √
u + z2 +

1
4z

(
$2 − 2z2

)
ln

 √u + z2 + z√
u + z2 − z

∣∣∣∣∣∣
β=γ

β=0
, (B.21)

=

(
1 +

1
2 cos2 β

) √
$2 cos2 β + z2 +

1
4z

(
$2 − 2z2

)
ln

 √
$2 cos2 β + z2 + z√
$2 cos2 β + z2 − z


∣∣∣∣∣∣∣
β=γ

β=0

. (B.22)

Evaluating the integral limits gives,

Iz =

(1 +
1

2 cos2 γ

) √
$2 cos2 γ + z2 +

1
4z

(
$2 − 2z2

)
ln

 √
$2 cos2 γ + z2 + z√
$2 cos2 γ + z2 − z


−

3
2

√
$2 + z2 +

1
4z

(
$2 − 2z2

)
ln

 √$2 + z2 + z√
$2 + z2 − z

 (B.23)
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so

Iz =

(
1 +

1
2 cos2 γ

) √
$2 cos2 γ + z2 − 3

2

√
$2 + z2

+
1
4z

(
$2 − 2z2

)
ln


( √

$2 cos2 γ + z2 + z
) (√

$2 + z2 − z
)

( √
$2 cos2 γ + z2 − z

) (√
$2 + z2 + z

) 
(B.24)

giving the force in the z-direction as,

Fz = 4πe−3
0

√
1 − e2z

{
p0 (tan γ − γ) +

p1

e0
Iz

}
. (B.25)

The potential itself is given in the general form of ρ = q/a + p0 + p1a in Ollongren (1967), and by

simply discarding the q terms.

B.2 Rotating potentials and changing co-ordinate systems

The potentials utilised vary between being specified in Cartesian and cylindrical co-ordinate sys-

tems. The transformation matrix relating the two co-ordinate systems is defined as;
êx

êy

êz

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



êr

êθ
êz

 . (B.26)

The grad operator also takes a different form in cylindrical polars,

~∇ =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]
=

[
∂

∂r
,

1
r
∂

∂θ
,
∂

∂z

]
. (B.27)

These equations easily enables us to switch between co-ordinate systems. So if our potential is in

polars we can easily evaluate a force in Cartesian co-ordinates by applying the matrix above to the

grad operator, giving us the following transformations:

∂

∂x
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
(B.28)

∂

∂y
= sin θ

∂

∂r
+

cos θ
r

∂

∂θ
(B.29)

∂

∂z
=
∂

∂z
. (B.30)

Some of the potentials we utilise are in cylindrical co-ordinates, but must be rotated to allow for

the simulation of a non zero pattern speed. To do so we first rotate the particular SPH particle to

the reference frame of the rotating potential, using the rotation matrix above (zi is unchanged),

x′i = xi cos
(
tiΩp

)
− yi sin

(
tiΩp

)
, (B.31)

y′i = xi sin
(
tiΩp

)
+ yi cos

(
tiΩp

)
. (B.32)
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At this position the forces are calculated in the reference frame of the potential ( f ′x and f ′y ) and then

the force vector is rotated back to the reference frame of the particle and the forces are applied,

fx,i = f ′x,i cos
(
−tiΩp

)
− f ′y,i sin

(
−tiΩp

)
(B.33)

fyi = f ′x,i sin
(
−tiΩp

)
+ f ′y,i cos

(
−tiΩp

)
. (B.34)
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