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Abstract. 1 This paper describes the application of Artificial 

Neural Networks (ANNs) as Data Driven Models (DDMs) to 

predict urban flooding in real-time based on weather radar and/or 

raingauge rainfall data. A time-lagged ANN is configured for 

prediction of flooding at sewerage nodes and outfalls based on 

input parameters including rainfall. In the absence of observed 

flood data, a hydrodynamic simulator may be used to predict 

flooding surcharge levels at nodes of interest in sewer networks 

and thus provide the target data for training and testing the ANN. 

The model, once trained, acts as a rapid surrogate for the 

hydrodynamic simulator and can thus be used as part of an urban 

flooding Early Warning System (EWS). Predicted rainfall over 

the catchment is required as input, to extend prediction times to 

operationally useful levels. Both flood-level analogue and flood-

severity classification schemes are implemented. An initial case 

study using Keighley, W Yorks, UK demonstrated proof-of-

concept. Three further case studies for UK cities of different 

sizes explore issues of soil-moisture, early operation of pumps as 

flood-mitigation/prevention strategy and spatially variable 

rainfall. We investigate the use of ANNs for nowcasting of 

rainfall based on the relationship between radar data and 

recorded rainfall history; a feature extraction scheme is 

described. This would allow the two ANNs to be cascaded to 

predict flooding in real-time based on current weather radar 

Quantitative Precipitation Estimates (QPE). We also briefly 

describe the extension of this methodology to Bathing Water 

Quality (BWQ) prediction. 

 

Keywords. ANN, early warning system, flood risk, machine 

learning, neural network, nowcasting, prediction, rainfall, urban 
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1 INTRODUCTION 

Recent studies [1], [2] have documented the increased frequency 

and likelihood of extreme precipitation events. In the UK, the 

existing installed base of combined drainage systems is huge. 

This means that a large proportion of urban rainfall runoff is 

immediately mixed with effluent, increasing the potential public 

health risks from urban flooding. Even flooding from separate 

storm sewers is in any case destructive and costly. An ageing 

network and increasing urbanisation further exacerbate these 

problems. Therefore models are required, which can provide 

predictions of location, severity and/or risk of flooding. In order 

to be operationally useful, these need to provide 2+ hour lead-

time [3] and be able to operate rapidly in real-time. 

Hydrodynamic simulators are used as standard to model the 

response of Urban Drainage Networks (UDNs) to rainfall events. 

However, especially for large UDNs, these can be slow and 
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computationally expensive. A faster surrogate method is sought, 

which would permit modelling of very large networks in real-

time, without unacceptable degradation of accuracy. However, if 

actual rainfall is used as input, the predictive ability of such 

models is limited by the Time of Concentration (ToC) for the 

sewer network, with the possibility of flooding at any node 

commencing from zero time onwards, following the start of 

precipitation. In practice, ToC would normally be of the order of 

minutes, rather than hours for all but the downstream sections of 

the very largest UDNs.  

Therefore prediction of rainfall is a requirement to achieve 

the lead-times sought. Many papers have been written on rainfall 

nowcasting methods from radar rainfall images [3–11]. A novel 

machine-learning based approach to this is currently at an early 

stage of development within the Centre for Water Systems. 

2 APPROACH USED ('RAPIDS') 

As part of University of Exeter’s research under Work Package 

3.6 of the Flood Risk Management Research Consortium Phase 

2 (FRMRC2) [12] project , we developed the ‘RAdar Pluvial 

flooding Identification for Drainage System’ (RAPIDS) using 

ANN’s to predict flooding in sewer systems. This was described 

in our paper [13] and was further developed for an UKWIR-

funded joint industry / University of Exeter project [14] in which 

three case studies were carried out for UDN's in South London, 

Portsmouth and Dorchester, with promising results. 

The RAPIDS software (currently in MATLAB) includes two 

programs: RAPIDS1, which addresses the need for a faster 

surrogate for hydrodynamic simulators as well as classifier 

models for flood and other hydrological parameters, and 

RAPIDS2 (under development), which aims to provide 

nowcasting for rainfall over the catchment containing the 

modelled UDN. It is hoped to be able to demonstrate the 

cascading of these two systems to provide the required urban 

flood predictive model. 

The RAPIDS1 program is based on a lagged-input, 2-layer, 

feedforward Artificial Neural Network (ANN), used to relate 

incoming rainfall data to the extent of flooding present at each 

node in the UDN. It has the same number of output neurons as 

sewerage nodes of interest – i.e. there is no requirement to model 

nodes identified from hydrodynamic modelling as never 

flooding, making an immediate computational saving. The ANN 

architecture is varied to establish an optimum. The supervised 

training regime uses either backpropagation of error quasi-

Newton gradient-descent or NSGA-II [15] Evolutionary 

Algorithm method. A moving time-window approach is 

implemented whereby lagged time-series signals (e.g. rainfall 

intensity, cumulative rainfall, soil moisture, pump states, tidal 

levels etc) are provided in parallel over the time-window as 

inputs to the ANN. If no direct observation data is available for 

the UDN to be modelled, output target signals for training and 

evaluation of ANN model performance are provided from the 

flood-level, volume or flow hydrographs generated by 



hydrodynamic simulator outputs for each sewerage node to be 

modelled. This only needs to be done for the training dataset of 

rainfall events. The trained ANN thus aims to generate the same 

hydrographs for new rainfall events as would the UDN itself, 

based on having learned and generalised the (non-linear) 

relationship between the provided input signals and observed or 

simulator-generated targets. Figure 1 illustrates the architecture 

of the RAPIDS1 system to predict sewer network outputs. The 

target signals selected are the flood levels at each sewerage node 

at a time-step that corresponds to the desired prediction lead-

time (i.e. up to network ToC).  

 
Figure 1. Architecture of RAPIDS1  

 

Event profile data arrays of the input-signals are prepared for use 

as the time-series input to the ANN as illustrated in Figure 2. In 

line with best practice, all input data are normalised. 
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Figure 2. Selected ANN Input signals for a typical rainfall event 

 

A selection of (historic) rainfall events is needed for the training 

dataset. These need to be representative of the envelope of likely 

intensities and rainfall totals for the future events to be modelled. 

If sufficient of these are not available, existing events can be 

augmented by factorally increasing rainfall intensity and 

modelling resulting target hydrographs using a hydrodynamic 

simulator. 

Rainfall radar images are sourced from the UK Met Office 

NIMROD system [16], [17], which produces a composite 1km 

resolution Quantitative Precipitation Estimate (QPE) image 

covering the whole UK, every 5-minutes. A live RSS feed is 

available on request. Historic data images (from April 2004 to 

present) are available for download from [18].  Treatment of 

radar QPE images 1km pixel-by-pixel by an ANN is 

computationally prohibitive since, for example, for a 3-h 

prediction there would be 36-images, each with at least 3602-

pixels (allowing for a maximum storm advection velocity of 

60 km/h). This would potentially require ~5  106 neurons (at 1-

neuron per pixel). Therefore features are extracted from the rain 

echoes in each time-step and associated with features from 

previous time-steps. These can then be applied to the inputs of 

an ANN as time-series signals. The feature extraction approach 

proposed is similar to Discrete Wavelet Transforms (DWT) 

using Haar wavelets [19], but using different sized grids 

depending on the proximity to the catchment being modelled. 

The mean rainfall for the whole area is evaluated; then residuals 

of mean rainfall over each sub-grid square are computed: see 

Figure 3. Standard deviations show that information is contained 

at all spatial scales [20].  

 

 
Figure 3. RAPIDS2: Rainfall Event 2007-06-14 – QPE snapshot 

at 22:30 showing original image (top left) and feature extraction 

of residuals at finer grid resolutions (128 to 1 km) 

 

The extracted residuals from multiple images over the duration 

of each event become time-series signals, which can be applied 

as input signals to ANNs: see Figure 4. 

 

 
Figure 4. RAPIDS2: Rainfall Event 2007-06-14 – Time-series 

ANN input signals over 24-hours at spatial resolutions as shown; 

x-axis is radar image no.; y-axis is Δ rainfall intensity in mm/hr. 



It is proposed to implement a similar time-windowed ANN 

framework as for RAPIDS1. Target rainfall for training and 

evaluating the ANN is derived from the rainfall intensities in 

grid squares covering the required catchment containing the 

UDN to be modelled, advected into the future by the required 

prediction period.  

In summary, the proposed methodology is to cascade the two 

stages together (RAPIDS2 providing predicted rainfall, which 

can be applied to RAPIDS1 inputs) and thus provide flood 

predictions for each node of interest in the UDN, hopefully with 

operationally useful lead-times of 2+ hours. 

3 CASE STUDIES 

An initial "proof-of-concept" case study for RAPIDS1 was 

conducted as part of FRMRC2. An ANN with 123-outputs was 

used to model the Stockbridge sub-section of the combined 

rain/wastewater drainage system for the town of Keighley, West 

Yorkshire, containing 122 manholes and one combined sewer 

overflow (CSO). Design rainfall was used. The neural network 

gave a floating-point estimate of the level of flooding at each 

node. However, this level of accuracy is unlikely to be required 

for flood-warnings. Therefore a classification scheme to provide 

predictions of flood severity was implemented by post-

processing ANN outputs. Results were reported in [13]. 

Under the UKWIR-funded joint-industry Real-time Machine 

Learning (RTM) project [14] the following 3 case studies were 

implemented, in a two-stage project to evaluate effectiveness in 

different sized catchments under different conditions; stage 1 

used design rainfall and stage 2 used real rainfall: 

Dorchester: small urban catchment (6km2); evaluation of the 

significance of use of soil moisture as ANN input. 

Portsmouth: medium urban catchment (30km2); island 

location; tidal effects; need for pumping; evaluation of 

effectiveness of ANN models to provide early starting of pumps 

– as a flood-mitigation / prevention strategy. 

Crossness (South London): large urban catchment (230km2); 

evaluation of model effectiveness using spatially varying rainfall 

as ANN inputs. 

In order to allow all partners to present results consistently, 

the MS Excel-based 'HydroMAT' model analysis tool was 

developed to provide automated assessment of ANN output 

using a number of metrics 2  including those recommended in 

[21]. Results below (Figures 7-9) were assessed using this tool. 

4 RESULTS & DISCUSSIONS 

Figure 5 shows average ANN training times of around 115 

seconds for the 123-node network used in the FRMRC case-
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Categories; Confusion Matrix for Flood Positives & Negatives; 

Confusion Matrix Accuracy Band summary analysis 

 

study. Fifteen 6-hour events (rainfall + runoff) were used for 

training. In comparison, hydrodynamic simulation for each took 

approx 240 seconds (total 3600 seconds). Once the ANN was 

trained, however, test run times were of the order of 0.1 seconds 

for each 6-hour event (Figure 6). Figures 7-9 illustrate the 

reporting of metrics provided by the HydroMAT tool; Figure 7 

shows a typical spread of NSEC values over a 20-node sample 

for a single test rainfall event; Figure 8 compares ANN-

generated hydrograph with the target hydrograph for a single 

node for a single test event; Figure 9 shows flood severity 

classification matrix for peak flood depths for a 20-node sample 

for a single event. This compares target classifications (rows A 

to C) with ANN-generated classifications (columns A to C). It 

also shows a colour-coded assessment of 3 'Accuracy bands'.   
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Figure 5. RAPIDS1 – typical 123-node ANN training times for 

FRMRC study. 
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Figure 6. RAPIDS1 – typical 123-node ANN test times for 

FRMRC study. 

 

In summary, results for UKWIR case studies demonstrated the 

following:  

(Dorchester): Use of soil moisture levels (NAPI) as ANN input 

demonstrated a small improvement in model performance, but 

this was probably not sufficient to offset additional costs of data 

gathering, preparation and application to ANN model. 
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Figure 7. RAPIDS1 – typical spread of ANN output NSEC 

scores over 20-nodes for a single real rainfall event (Portsmouth 

case study) 
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Figure 8. RAPIDS1 – typical target hydrograph and ANN 

response for a single manhole and rainfall event (Portsmouth 

catchment) 

 

 
Figure 8. RAPIDS1 – typical classification matrix for three peak 

flood depth categories (A|B|C) at 20-sewer nodes, for a single 

rainfall event (Portsmouth catchment). Colour-coded accuracy 

bands for all nodes are also shown. 

(Portsmouth): Use of ANN models were demonstrated 

successfully to prevent flooding in the 'Morass' area of 

Portsmouth, when used as a trigger for early initiation of 

pumping at the Eastney pumping station. 

(Crossness): Results for the entire 230km2 catchment using 23 

raingauges as ANN input were poor. Spatial rainfall input 

worked best when applied to smaller areas (4-5 raingauges 

subcatchments). Further work is needed. 

Work on RAPIDS2 rainfall nowcasting is at too early a stage 

to present results beyond those shown in Figures 3-4 for the 

proposed feature extraction approach; the methodology is still 

under development. 

5 CONCLUSIONS & FUTURE WORK 

Results for RAPIDS1 show that ANNs can provide a very 

significant speed improvement over conventional hydrodynamic 

simulators without excessive degradation in performance. They 

can moreover be used for flood severity classification. The 

RAPIDS1 method presents opportunities for automated 

generation of flood alarms / warnings right down to the 

individual sewer node, including potentially for networks of 

considerable size, without being computationally expensive. 

However, flood prediction based on actual rainfall alone 

cannot provide operationally useful lead-times. Instead, 

prediction is limited in the worst case by the ToC for each node 

(typically <30 min). However, possibilities for stand-alone use 

of ANNs for rainfall nowcasting are being explored through a 

process of radar rainfall echo feature extraction and feature time-

series prediction using ANNs (RAPIDS2). More work is needed 

to determine the value of this approach.  

Extending prediction time to operationally useful values of 

2+ hours could potentially be achieved by using Met Office 

rainfall prediction products in place of RAPIDS2.   

Assuming that RAPIDS2 achieves satisfactory results, the 

possibility of cascading the two systems to provide flood-level 

prediction at manholes based on live radar rainfall images will 

be tested. 

The RAPIDS1 package has been written to allow tailoring to 

other catchments and water-related EWS requirements to be 

readily achieved. At present a version of RAPIDS1 is being 

adapted to early warning of bathing water quality exceedances to 

comply with the EU directive [22], using a variety of ANN input 

parameters; principally antecedent rainfall over the catchment. 
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