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Abstract 

Dietary nitrate (NO3
-
) supplementation, in the form of NO3

-
 -rich beetroot juice, can elicit a 

number of biological and physiological effects within the human body, which improve 

exercise performance and indices of cardiovascular health. The purpose of this thesis was to 

investigate further the potential ergogenic and therapeutic benefits that dietary nitrate 

supplementation may evoke. Specific questions addressed in this thesis include whether 

supplementation can influence the power-duration relationship for severe-intensity exercise, 

and if supplementation can be effective in an older population and in varying environmental 

conditions. The thesis also strives to develop our understanding of the physiological 

mechanisms that underpin effective supplementation. Healthy, adult human subjects 

volunteered for all investigations presented in this thesis. A number of physiological 

variables were assessed in each experimental chapter, following nitrate supplementation. 

Chapter 4: Short term dietary NO3
-
 supplementation reduced systolic blood pressure by 

4mmHg (BR: 118 ± 5 vs. PL: 122 ± 5mmHg) and improved exercise tolerance during 

exercise at 60%Δ (BR: 696 ± 120 vs. PL: 593 ± 68 s), 70%Δ (BR: 452 ± 106 vs. PL: 390 ± 

86 s), 80%Δ (BR: 294 ± 50 vs. PL: 263 ± 50 s) but not 100% peak power (BR: 182 ± 37 vs. 

PL: 166 ± 26 s) but did not significantly alter either critical power (BR: 221 ± 27 vs. PL: 

218 ± 26 W) or W′ (BR: 19.3 ± 4.6 vs. PL: 17.8 ± 3 kJ). The V̇O2 phase II time constant 

was significantly shorter in BR compared to PL (BR: 22.8 ± 7.4 vs. PL: 25.4 ± 7.2 s) when 

considered irrespective of exercise intensity. Chapter 5: The metabolism of [NO2
-
] during 

exercise and recovery is altered by NO3
-
 supplementation and, to a lesser extent, FIO2. End 

exercise V̇O2 was significantly lower during moderate-intensity exercise in Hypoxia-BR 

(H-BR) compared to Hypoxia-PL (H-PL) (H-BR: 1.91 ± 0.28 vs. H-PL: 2.05 ± 0.25 L∙min
-

1
) and Normoxia-PL (N-PL) (1.97 ± 0.25 L∙min

-1
). V̇O2 kinetics were faster in H-BR 

compared to H-PL (phase II τ, H-BR: 24 ± 13 vs. H-PL: 31 ± 11 s). Tolerance to severe-

intensity exercise was improved by NO3
-
 supplementation in hypoxia (H-PL: 197 ± 28 vs. 

H-BR: 214 ± 43 s), but not normoxia (N-PL: 431 ± 124 vs. N-BR: 412 ± 139 s). Chapter 

6: In a healthy older population, NO3
-
 supplementation significantly reduced resting 

systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 

mmHg) blood pressure. Supplementation also resulted in a speeding of the V̇O2 mean 

response time (BR: 25 ± 7 vs. PL: 28 ± 7 s) in the transition from standing rest to treadmill 

walking, although the O2 cost of exercise remained unchanged. Functional capacity (6-

minute walk test), the muscle metabolic response to low-intensity exercise, brain metabolite 
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concentrations and cognitive function were not altered. Chapter 7: On average, muscle 

tissue [NO3
-
] across the entire exercise protocol was significantly elevated by 72% 

following BR.  At the group level, V̇O2 and muscle metabolic responses during exercise 

were unchanged between conditions and tolerance to severe-intensity exercise was 

unaltered. However, further analyses revealed the existence of ‘responders’ and ‘non 

responders’ with the changes in steady-state V̇O2 and muscle [NO3
-
] being correlated with 

severe-intensity exercise tolerance.  The results of this thesis demonstrate that dietary NO3
-
 

supplementation has the potential to elicit ergogenic and therapeutic benefits in varying 

populations and environmental conditions.  However, the presented data also clearly outline 

that supplementation may not always be effective. While the underlying mechanisms and 

parameters which may influence its effectiveness are not yet fully understood, 

supplementation should be carefully considered, monitored and tailored specifically for 

individuals and their particular requirements. 
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History of nitric oxide physiology 

The therapeutic effects of nitrate (NO3
-
), nitrite (NO2

-
) and nitric oxide (NO) were first realised 

during medieval times in ancient Chinese medicine. At the turn of the 20
th

 century, a Daoist 

monk discovered hoards of medieval Buddhist manuscripts, paintings and documents in a 

grotto in the city of Dunhuang, West China. The documents, hidden for over 900 years, 

included medical recipes, one of which instructed patients to place potassium nitrate under the 

tongue and to swallow the saliva in order to treat symptoms of angina and digital ischemia. 

These specific instructions are particularly significant as they implicate the salivary-reducing 

bacteria in converting nitrate to nitrite (Bryan & Loscalzo, 2011). Furthermore, the longevity of 

Japanese (Sobko et al., 2009) and Mediterranean (Trichopoulou et al., 2000) populations is 

amongst the highest in the world. This is partly explained by the low occurrence of 

cardiovascular disease, which in turn can be attributed to the traditional diets typically 

consumed by these populations. One common feature of the traditional Japanese and 

Mediterranean diets is the high vegetable consumption, which would be expected to result in an 

increased ingestion of NO3
-
. 

Specific interest and scientific research into NO3
-
 , NO2

-
 and NO began to soar following the 

discovery of the physiological role of NO in both health and disease states, along with the 

characterization of its metabolism into NO2
-
 and NO3

-
 in mammalian tissues. The discovery of 

the endothelium derived relaxing factor (EDRF) and NO pathway in the 1980’s represented a 

critical advance in the understanding of cell signalling and resulted in advancements in many 

clinical areas. This finding was considered so important that the Nobel Prize in Physiology or 

Medicine was awarded to its discoverers, Drs.  Louis Ignarro, Robert Furchgott and Ferid 

Murad in 1998. More than a decade since the Nobel Prize was awarded and after over 100,000 

published scientific papers, our understanding of the production, regulation and biological 

functions of NO and its derivatives is still incomplete. The importance of evolving this 

understanding is extremely important in developing therapeutic interventions in NO biology. 

Hundreds of research papers are published in the field of nutrition and exercise every year. The 

findings of such studies can reveal physiological effects of particular foods, dietary 

supplements and substances. This knowledge can be utilised to aid athletic preparation, 

performance and/or recovery and can often be transferred into clinical populations to offset or 

prevent the negative effects of disease. A recent revelation in the nutrition and exercise 
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research sphere is that of dietary NO3
-
 supplementation, which has been shown to possess a 

number of ergogenic and therapeutic qualities, thought to occur due to increased NO 

bioavailability. These NO-mediated effects include smooth muscle relaxation causing 

subsequent vasodilation and lowered blood pressure (Webb et al., 2008), reductions in the 

oxygen cost of exercise (Larsen et al., 2007) and improved tolerance to exercise (Bailey et al., 

2009). These outcomes provide important implications for a range of populations including the 

general public, for maintaining cardiovascular health and well-being; sports performers striving 

for excellence; and ageing or diseased individuals, looking to offset the negative impact of 

senescence or pathology. Therefore, interventions which may increase the bioavailability of 

NO have become a key focus of current research. 

Skeletal muscle bioenergetics 

In order to meet the energy requirements of contracting human skeletal muscle, the liberation 

of energy stored in the molecule adenosine tri-phosphate (ATP) is essential. Human skeletal 

muscle has only a limited store of ATP which can be depleted within a few seconds of the 

initiation of muscle contraction. To avert an abrupt and debilitating depletion in intramuscular 

ATP, the immediate and continued resynthesis of this molecule is imperative. During the first 

~10s of intense exercise, the breakdown of stored muscle phosphocreatine (PCr) provides the 

necessary chemical energy in order to resynthesize adequate ATP. This process activates an 

additional anaerobic energy system known as anaerobic glycolysis, which metabolises glucose 

into lactate and 1 hydrogen ion (H
+
). This process has a net yield of 2 ATP molecules per 

glucose molecule and is fuelled by the finite muscle glycogen reserves. As a result of ATP 

synthesis via this anaerobic energy pathway, metabolites associated with the process of muscle 

fatigue (inorganic phosphate (Pi) and H
+
) accumulate (Allen et al., 2008). Although glycolysis 

releases anaerobic energy quickly, the yield of 2 ATP molecules is relatively small. In contrast, 

aerobic metabolic reactions provide for the greatest portion of energy transfer, particularly 

when exercise duration extends beyond ~2 minutes. The aerobic pathway utilises both 

carbohydrate and fat as substrates, which is important because the aerobic breakdown of a 

glucose molecule yields 38 ATP molecules (19 times as many as glycolysis), whilst fats are 

even more energy rich, although they require a longer period to be metabolised. In addition to 

this, the by-products of aerobic metabolism (H2O and CO2) are well regulated and therefore 

limited metabolic perturbation is associated with this energy pathway. The processes involved 

in the transfer of energy do not sequentially switch from PCr, glycolysis and oxidative 

phosphorylation; rather interplay between these pathways is evident. 
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Oxygen uptake kinetics 

Once exercise has been initiated, muscle O2 consumption must increase with rapid response 

kinetics in order to take advantage of the ‘efficient’ aerobic pathway. Oxygen uptake (V̇O2) 

rises exponentially and does not reach ‘steady-state’ until 120-180 s following the onset of 

exercise performed below the gas exchange threshold (GET) (Jones & Poole, 2005). The 

steady-state in V̇O2 represents the metabolic cost of a given bout of exercise, with a lower 

steady-state amplitude representing a lower energy cost of exercise. Prior to this steady-state 

being attained there is a discrepancy between the energy requirement and the amount of energy 

supplied by oxidative phosphorylation, which is termed the ‘oxygen deficit’. This exponential 

rise in V̇O2 can limit the potential aerobic energy yield within the muscle. At the onset of 

constant work rate exercise, there is an early rapid increase which is initiated within the first 

breath. This initial increase in V̇O2 (Phase I) is followed by a rapid exponential increase in V̇O2 

(Phase II) which has a time constant (time taken to achieve 63% of the change in V̇O2) of 25-

40 s in healthy individuals. This rapid exponential increase drives V̇O2 toward the actual or 

initially anticipated steady-state within 180 s (Jones & Poole, 2005). Phase I (commonly 

referred to as the cardio-dynamic component) represents the O2 exchange associated with the 

initial elevation of cardiac output and pulmonary blood flow, whereas Phase II (commonly 

termed the ‘primary component’) reflects the arrival at the lung of venous blood from the 

exercising muscles (Whipp and Wasserman, 1972; Linnarsson, 1974; Whipp et al., 1982). 

Importantly, a faster V̇O2 response will elicit a smaller oxygen deficit, whereas extremely unfit 

or unhealthy individuals will have a slow response and will incur a high oxygen deficit and 

subsequently a greater degree of intracellular perturbation. Slow V̇O2 kinetics result in a 

greater depletion of intramuscular [PCr], greater utilization of intramuscular glycogen stores 

and the accumulation of fatiguing metabolites, all of which may lead to reduced exercise 

tolerance. 
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Fig 1.1: Schematic illustration of the V̇O2 response to cycle exercise. At the onset of exercise, an 

oxygen deficit is incurred due to the V̇O2 response lagging behind the energy requirements of the task. 

The primary component of the V̇O2 response increases in an exponential fashion and attains a steady 

state within 120-180s. 

During exercise completed above the GET, a rise in the V̇O2 response in addition to the 

primary component is evident. This additional superimposed elevation in V̇O2 is termed the 

‘slow component’ and can be stabilised during heavy-intensity exercise (below the critical 

power (CP)), but continues to drive the V̇O2 to maximum during severe-intensity exercise 

(above CP). Importantly, the V̇O2 slow component is associated with the depletion of muscle 

[PCr] and increased glycogen utilisation and metabolite accumulation within the exercising 

muscle (Poole et al., 1991; Rossiter et al., 2002; Krustrup et al., 2004).  

Primary component 
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Figure 1.2: The V̇O2 response to exercise above the CP in a healthy individual. Note that V̇O2 continues 

to increase beyond the primary component, leading to an end-exercise V̇O2 that is ~500 ml·min
-1 

higher 

than expected. This additional rise in V̇O2 is termed the ‘slow component’. 

With this in mind, reducing the V̇O2 steady-state, speeding the kinetic response and/or reducing 

the magnitude of the V̇O2 slow component would be expected to reduce the extent of muscular 

[PCr] and [glycogen] degradation and curtail the accumulation of fatigue related metabolites. 

These alterations in V̇O2 kinetics may improve severe-intensity exercise performance in young 

healthy individuals and may enhance tolerance to moderate and severe-intensity exercise in 

diseased and/or senescent populations. 

Cardiovascular health 

Hypertension is an important global public health issue due to its high prevalence and 

concomitant increase in risk of disease (Slama et al., 2002; Calhoun et al., 2002). Hypertension 

effects ~ 1 billion adults worldwide (Lloyd-Jones et al., 2009)  and is a predisposing risk factor 

for stroke, myocardial infarction, congestive heart failure, arterial aneurysm and renal failure 

(Hackman et al., 2010; Pierdomenico et al., 2009). Therefore, the prevention and management 

of hypertension is a major public health challenge, with a number of antihypertensive agents 
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being developed and tested in a variety of settings and populations. Existing literature 

collectively suggests that lowering arterial pressure can reduce cardiovascular morbidity and 

mortality (Lenfant et al., 2003). However, some of the treatments and medicines currently used 

can be expensive, result in unfavourable side effects and resistance to their therapeutic efficacy 

can be developed (Calhoun et al., 2008). Therefore, the identification of a relatively cheap, 

naturally occurring method of reducing blood pressure is important for the treatment and/or 

prevention of hypertension in the future. 

The purpose of this thesis is to explore the use of dietary nitrate supplementation as a potential 

ergogenic intervention in modulating the V̇O2 kinetic and muscle metabolic response to 

exercise and to assess its therapeutic potential upon markers of cardiovascular health across 

healthy and senescent populations.
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Nitric oxide 

Nitric Oxide (NO) is a soluble, gaseous signalling molecule known to play a critical role in a 

range of physiological functions within the human body and has a half-life in circulation, in 

vivo, of around 0.1s (Kelm et al., 1990). From the regulation of blood flow, muscle 

contractility and mitochondrial respiration, to host defence, neurotransmission and the 

homeostasis of glucose and calcium (Bryan et al., 2006; Dejam et al., 2004; Stamler et al., 

2001), effective NO production is considered essential in order to maintain normal 

physiological functioning. Indeed, NO has emerged as one the most researched molecules in 

physiology and medicine in recent decades. 

 

NO production 

NO production via the NO synthase (NOS) enzymes is well established, with endothelial 

(eNOS), neuronal (nNOS) and inducible (iNOS) isoforms of the enzymes having been 

described (Stamler et al., 2001). These enzymes catalyze the complex five electron oxidation 

of L-arginine which yields NO and L-citrulline. This oxygen-dependent reaction requires a 

number of substrates and co-factors including oxygen, flavin adenine dinucleotide (FAD), 

nicotinamide adenine dinucleotide phosphate (NADPH), tetrahydrobiopterin (BH4), haem and 

calmodulin (Alderton et al., 2001). A reduced bioavailability of any of these co-factors can 

limit the production of NO via the NOS pathway (Crabtree et al., 2009), which is associated 

with cardiovascular (Försterman, 2010) and metabolic disease (Wu et al., 2009) as well as an 

attenuated tolerance to exercise (Lauer et al., 2008). Furthermore, red blood cells have recently 

been identified to reversibly bind, transport and release NO within the cardiovascular system 

using an endothelial-type NOS, localized in the plasma membrane and cytoplasm of the red 

blood cell (Kleinbongard et al., 2013). 

 

An additional NO generating pathway has been identified (Benjamin et al., 1994), in which NO 

is produced through the reduction of inorganic nitrate (NO3
-
) to nitrite (NO2

-
) and further to 

NO. This pathway offers a supplementary method to promote NO production when NO 

synthesis via the NOS pathway is impaired (Carlström et al., 2010) and is a key focus of 

current research. 
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Nitrate - nitrite - nitric oxide pathway 

NO3
-
 and NO2

-
 are both generated endogenously in humans. The formation of NO3

-
 occurs via 

the reaction of NO2
-
 or NO with oxyhaemoglobin (Cooper, 1999), while NO2

-
 is generated 

through the reaction of NO with oxygen (Ignarro et al., 1993) or the oxidation of NO by 

ceruloplasmin (Shiva et al., 2006). To the general public, inorganic NO2
-
 and NO3

- 
are 

considered as undesired residues in the food chain, whilst biologists traditionally viewed them 

as inert oxidation end products of the metabolism of endogenous NO. However, a growing 

body of evidence indicates that NO3
-
 and NO2

-
 can be recycled in vivo to form bioactive NO 

under certain physiological conditions (Lundberg et al., 2004; Bryan 2006; van Faassen et al., 

2009).  

 

NO3
-
 is naturally ingested as part of a healthy diet, with 60-80% of daily NO3

-
 intake in a 

Western diet being made up of vegetables (Ysart et al., 1999). Of these, leafy green vegetables 

(lettuce, spinach, rocket) and beetroot have a particularly high NO3
-
 content (Bryan & Hord, 

2010). Upon ingestion, the NO3
-
 is rapidly absorbed from the gut and passes into the systemic 

circulation within ~60 min (Lundberg et al., 2009), where it has a half-life of ~5 h suspended in 

the plasma (McKnight et al., 1997). Up to 25% of this inorganic NO3
-
 is absorbed from the 

stomach into the circulation, where it is taken up by the salivary glands and concentrated in the 

saliva (Lundberg et al., 2008). Facultative anaerobic bacteria (Vionella species) in crypts of the 

dorsum of the tongue then reduce the NO3
-
 to NO2

-
 (Duncan et al., 1995). When swallowed 

into the acidic environment of the stomach, some of the NO2
-
 is further converted into nitric 

oxide (NO) (Benjamin et al., 1994), whilst the remainder is absorbed to increase circulating 

plasma NO2
- 

concentration [NO2
-
]. Dietary NO3

-
 supplementation, in the form of 

pharmacological sodium nitrate (NaNO3
-
) (Larsen et al., 2007, 2010, 2011), potassium nitrate 

(KNO3
-
) (Kapil et al., 2010) or natural NO3

-
 rich beetroot juice (Webb et al., 2008; Bailey et 

al., 2009, 2010; Vanhatalo et al., 2010a) is now considered a practical method of increasing 

circulating plasma [NO2
-
]. However, the expected increase in plasma [NO2

-
] following an oral 

NO3
-
 dose of this nature is attenuated via the use of antibacterial mouthwash (Govoni et al., 

2008), highlighting the importance of the bacterial NO3
-
 reductases in the reduction of NO3

-
 to 

NO2
-
. 
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Figure 2.1: Schematic diagram of the enterosalivary circulation of nitrate in the human body. Nitrate is 

represented by the blue arrows and nitrite represented by the red arrows. (From Gilchrist et al., 2010) 

 

Finally, NO2
-
 is reduced into bioactive NO. This reduction is actuated by a number of catalysts 

including deoxyhaemoglobin (Cosby et al., 2003), deoxymyoglobin (Shiva et al., 2007), 

xanthine oxidase (Zhang et al., 1998), aldehyde oxidase (Li et al., 2008), eNOS (Vanin et al., 

2007), and the mitochondrial electron transfer complexes (Kozlov et al., 1999). This reduction 

reaction is enhanced in acidic (Modin et al., 2001) and hypoxic (Castello et al., 2006) 

environments, similar to those evident in skeletal muscle during exercise (Bailey et al., 2010; 

Vanhatalo et al., 2011). The existence of this NO3
-
 - NO2

-
 - NO pathway is important in the 

promotion of NO synthesis in conditions that may limit NO production via NOS, such as 

hypoxia and oxidative stress. Therefore, it is suggested that this pathway would be especially 

important in the generation of NO during exercise. The compensatory role of the NO3
- 
- NO2

-
 - 

NO pathway is supported by the findings that dietary NO2
- 

(Bryan et al., 2008) and NO3
-
 

(Carlström et al., 2010) supplementation restores tissue and plasma [NO2
-
] and [NO3

-
] in eNOS 

knockout mice. In summary, the complementary nature of the NOS and NO3
-
 - NO2

-
 - NO 

pathways affirm that the synthesis of NO will occur during a broad range of cellular O2 

tensions and redox states. 
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Fig 2.2: A schematic diagram outlining the pathways of NO generation  and the roles it can have within 

the human body. (From Bailey et al., 2012). 

 

Beetroot and typical NO3
-
 intake 

Red beetroot (Beta vulgaris rubra) is a member of the chenopodiceae family alongside Swiss 

chard and spinach. These plants, along with kale, lettuce, rocket and other leafy greens are 

known to contain high levels of NO3
-
. NO3

-
 is naturally ingested as part of a healthy diet, with 

60-80% of daily NO3
-
 intake in a western diet being derived from vegetables (Ysart et al., 

1999). The remaining contribution comes from processed meats, where it is added as a 

preservative, and in the water supply. The acceptable daily intake for NO3
-
 is 3.7mg/kg bw/day 

(EFSA, 2008), which equates to approximately 300 mg per day for an individual weighing 

between 80-85 kg. With the molecular mass 62 g/mol, the acceptable daily intake (ADI) of 

nitrate for an 80-85 kg individual is about ~5 mmol. However, estimates of average dietary 

NO3
-
 intake of adults in the US and Europe is 1-2 mmol/d. Vegetarians are likely to consume 

more NO3
-
 and it has recently been highlighted that individuals who comply with the Dietary 

Approaches to Stop Hypertension (DASH) diet (Appel et al., 1997) will consume ~ 20 mmol/d, 

nearly five times the ADI. 

In addition to high NO3
-
 concentrations, beetroot contains potassium, magnesium and iron as 

well as vitamins A, B6 and C, and folic acid. Furthermore beetroot contains polyphenols, 

including phenolic acids, flavonoids, betaine and a number of antioxidants including 

betacyanin, with some of these compounds being potentially metabolically active. For 

example, the amino acid betaine has been used in the treatment of cardiovascular disease 

(Borsook et al., 1951; Van Zandt et al., 1951), and betaine supplementation has been reported 
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to elicit improvements in muscular endurance, strength, and power (Hoffman et al., 2009; 

Maresh et al., 2008). In addition, some of the polyphenols found in beetroot juice, including 

quercetin and resveratrol, have been linked with mitochondrial biogenesis and an associated 

increase in aerobic capacity (Davis et al., 2009:  Lagouge et al., 2006; Cureton et al., 2009, 

Ganio et al., 2010). The high antioxidant content of beetroot may also provide protection 

against exercise-induced oxidative stress (Kanner et al., 2001). Whilst beetroot juice 

supplementation has the potential to affect exercise efficiency and performance via numerous 

pathways, research has established that the cardiovascular and physiological changes observed 

following beetroot juice supplementation can be ascribed exclusively to its high NO3
-
 content, 

by using a NO3
-
 depleted beetroot juice placebo (Lansley et al., 2011b). 

 

Plasma nitrate and nitrite concentrations 

The reported levels of NO3
-
 and NO2

-
 in human plasma will invariably differ between 

individuals based on age, health and fitness status and nutritional intake. Reported values may 

also differ between measurement techniques. However, the typical plasma NO3
-
 concentration, 

at rest, in a human subject would be expected to be around 30 µmol (Jungersten et al., 1996) 

with NO2
-
 concentration being around 300 nmol (Kleinbongard et al., 2003). Interestingly, 

baseline plasma [NO2
-
] and [NO3

-
] and/or the change in the concentrations of these metabolites 

during exercise is thought to be associated with exercise performance (Poveda et al., 1997; 

Dreissigacker et al., 2010; Totzeck et al., 2012). Previous research has consistently reported 

that both acute and chronic dietary nitrate supplementation results in elevated circulating 

plasma [NO2
-
] (Bailey et al., 2009; Vanhatalo et al., 2010a) and plasma [NO3

-
] (Larsen et al., 

2010; Kapil et al., 2010; Wylie et al., 2013a). It was recently reported that during high-

intensity, intermittent running exercise, plasma [NO2
-
] was significantly ‘depleted’ following 

exhaustive exercise and showed a tendency to ‘replenish’ following 15-min of passive recovery 

(Wylie et al., 2013b). Conversely, plasma [NO3
-
] increased during exercise and appeared to 

revert back to resting values during recovery. Previous research has reported increases (Allen 

et al., 2010; Rassaf et al., 2007) but more commonly, decreases (Bescós et al., 2011; 

Dreissigacker et al., 2010; Larsen et al., 2010; Gladwin et al., 2000) in [NO2
-
]

 
as a result of 

exercise. It is currently not known to what extent the ‘depletion’ of plasma [NO2
-
] and [NO3

-
] is 

influenced by environmental conditions (hypoxia) and/or exercise intensity. 
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Toxicity  

Concerns related to adverse effects of inorganic NO2
-
 and NO3

-
 have previously been proposed 

in the literature including the development of methaemoglobinaemia (Comly et al., 1945), 

increased nitration of proteins (Beckman et al., 2002) and potential carcinogenic effects 

(Newberne et al., 1976). The NO3
-
 anion itself is considered relatively inert, with any toxicity 

being related to its bioconversion to NO2
-
, which is thought to be considerably more reactive. 

 

Methaemoglobinaemia 

Haemoglobin contains four heme groups with iron in the reduced form (Fe
2+

). Methaemoglobin 

is produced when haemoglobin undergoes oxidation and an electron is removed from one of 

the iron atoms of the heme groups, converting the ferrous (Fe
2+

) iron to the ferric (Fe
3+

) state 

(Stryer , 1988). This renders the haemoglobin molecule unable to bind to oxygen and results in 

a left shift of the oxygen-haemoglobin dissociation curve (Goldfrank et al., 1978). This can 

result in methaemoglobinaemia which can cause cellular hypoxia. Concern about NO3
-
 and 

methaemoglobinaemia stemmed from early research by Comly et al. (1945) who reported cases 

of infant methaemoglobineamia from well-water with high concentrations of NO3
-
. This 

remains the origin of the regulation of NO3
-
 content of drinking water in the US and Europe 

although Avery et al. (1999) argues that NO3
-
, without bacterial contamination is unlikely to 

cause methaemoglobinaemia. 

 

Nitration of proteins 

A potential adverse effect of prolonged dietary NO3
-
 supplementation might be the generation 

of peroxynitrite and other reactive nitrogen species capable of nitration reactions which can 

alter protein structure and function (Beckman et al., 2002). 3-Nitrotyrosine is commonly used 

as a marker of nitration reactions and it was demonstrated that no differences in nitrotyrosine 

staining was evident between 3-days of sodium NO3
-
 supplementation and placebo groups 

(Larsen et al., 2011). The ingestion of NO3
-
 accompanied with antioxidants, polyphenols and 

vitamins found in beetroot juice may also help to offset any possibility of detrimental nitration 

reactions occurring. 

 

Carcinogenic properties 

The theoretical transformation of NO3
-
 to N-nitrosamines by dinitrogen trioxide with secondary 

amines was proposed by Tannenbaum et al. (1976). Subsequently it was shown that N-

nitrosamines could cause hepatic tumors in laboratory animals. One study directly linked 
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dietary NO2
-
 with lymphoma in rats (Newberne et al., 1976), whilst other studies also 

suggested links between NO3
-
 intake and cancer (Magee et al., 1956). It is important to 

emphasize that the Newberne study utilized sodium NO2
-
, as opposed to NO3

-
, and the relative 

dose administered was in excess of anything that humans have been exposed to in 

supplementation studies. Therefore, the Joint FAO/WHO Expert Committee on Food Additives 

concluded that the reviewed epidemiological studies showed no consistently increased risk for 

cancer with increasing consumption of NO3
-
 and that the data do not provide evidence that 

NO3
-
 is carcinogenic to humans (Speijers et al., 2003). 

 

Summary 

Effective NO production is considered essential in order to maintain normal physiological 

functioning. In addition to the endogenous NOS production of NO, another NO generating 

pathway has been identified (Benjamin et al., 1994). This pathway produces NO via the 

reduction of inorganic NO3
-
 to NO2

-
 and further to NO, offering a complementary method of 

promoting NO production when NO synthesis via the NOS pathway is impaired (Carlström et 

al., 2010). Increasing dietary NO3
-
 intake can help to promote NO production via this NO3

-
 - 

NO2
-
 - NO pathway and can be achieved by consuming vegetables rich in NO3

-
, including leafy 

green vegetables and beetroot. If consumed in extreme doses, NO3
-
 can potentially have 

detrimental side effects, although this risk is reduced if ingested from vegetable sources. 

Interventions designed to increase NO3
-
 ingestion will help to maintain normal physiological 

function and may help to offset metabolic and cardiovascular disease. 

 

Dietary NO3
-
 supplementation 

Typically, increasing dietary NO3
-
 intake will increase circulating NO2

-
 and elevate the 

bioavailability of NO. This elevation in NO can have a number of physiological effects within 

the human body. These effects and the proposed mechanisms behind them are outlined in the 

following section. 

Blood pressure 

The beneficial effects of a vegetable-rich diet upon cardiovascular health (Gilchrist et al., 

2010) and longevity (Visioli et al., 2005) have been well described. These positive effects have 

been attributed, in part, to inorganic NO3
- 

and its reduction to NO. There is now substantial 
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evidence that dietary NO3
-
 supplementation, either in the form of NaNO3

-
 or NO3

-
-rich beetroot 

juice, can significantly reduce resting blood pressure in young healthy adults (Bailey et al., 

2010; Larsen et al., 2006; Vanhatalo et al., 2010a; Webb et al., 2008). Typically a reduction in 

systolic blood pressure in the region of ~ 5 mmHg is evident following supplementation. 

Increased NO bioavailability stimulates smooth muscle relaxation via the synthesis of cyclic 

guanosine monophosphate (cGMP) (Murad, 1986). It is this NO-mediated smooth muscle 

relaxation that is considered to be responsible for reductions in BP following NO3
-
 

supplementation (Larsen et al., 2006, Webb et al., 2008). Increased dietary NO3
-
 intake may 

therefore provide a practical therapeutic and/or prophylactic intervention for reducing the risk 

of hypertension. 

Oxygen uptake 

Moderate-intensity exercise 

In 2007, Larsen and colleagues from the Karolinska Institutet, Sweden, reported that the 

oxygen demand of submaximal cycle exercise was reduced following 3 days of dietary 

supplementation with NaNO3
-
 (Larsen et al., 2007). This finding was surprising considering 

that the oxygen cost of moderate-intensity exercise is considered to be independent of factors 

such as age, health status and physical fitness (Jones & Poole, 2005). Furthermore, this 

parameter is known to be unaffected by prior exercise (Burnley et al., 2000), erythropoietin 

administration (Wilkerson et al., 2005), hyperoxia (Wilkerson et al., 2006), exercise training 

(Bailey et al., 2009a) and intravenous antioxidant infusion (Bailey et al., 2011). Therefore, the 

finding that a short-term dietary intervention improved the efficiency of exercise had 

considerable impact and novelty in exercise physiology research.  

 

In 2009, Bailey and colleagues (Bailey et al., 2009) also reported a reduction in the oxygen 

cost of moderate-intensity cycle exercise of ~ 5%. However, this study utilized a natural NO3
-
-

rich beetroot juice as the dietary supplement. It has been reported that similar reductions in 

moderate-intensity exercise are elicited following both acute and chronic supplementation. 

Ingestion of 5.2 mmol of NO3
-
, 2.5 h prior to exercise elicited a reduction in O2 cost of 

exercise, with similar reductions seen following 5 and 15 days of continued supplementation 

(Vanhatalo et al., 2010). This study showed that longer term NO3
-
 supplementation did not 

elicit any greater improvements in exercise efficiency, but also, that tolerance to the 

intervention did not develop. In addition to consistent observations in cycle exercise (Larsen et 

al., 2007, 2010, 2011; Vanhatalo et al. 2010; Bailey et al., 2009), the NO3
-
 mediated reduction 
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in sub-maximal V̇O2 has also been reported in walking, running (Lansley et al., 2011), flat 

water kayaking (Muggeridge et al., 2012) and two-legged knee-extension exercise (Bailey et 

al., 2010). 

 

The mechanistic bases underpinning these effects of NO3
-
 supplementation are yet to be fully 

understood although both reduced ATP cost of muscle power output (Bailey et al., 2010) and 

increased mitochondrial efficiency (P/O ratio) (Larsen et al., 2011) have been reported. Using 

31
P-MRS, Bailey et al., (2010) investigated the first of these mechanisms. Their study revealed 

that estimated ATP turnover rates from PCr hydrolysis and oxidative phosphorylation were 

reduced as a result of NO3
-
 supplementation and subsequently resulted in a significant 

reduction in estimated total ATP turnover rate during low- and high-intensity knee extensor 

exercise. In addition to this, the accumulation of ADP and Pi and the magnitude of PCr 

depletion were blunted following NO3
-
 supplementation, indicating that NO3

-
 supplementation 

improves the coupling of ATP hydrolysis and muscle force production. According to existing 

respiratory control models (Bose et al., 2003; Brown., 1992), the observed changes in [ADP], 

[Pi] and [PCr] would reduce the stimuli for increasing oxidative phosphorylation and could 

explain the lower V̇O2 observed following NO3
-
 supplementation. 

 

The reduction in V̇O2 evident during low-intensity exercise following NO3
-
 supplementation 

could be explained by the reduced ATP cost of muscle force production outlined by Bailey et 

al., (2010). However, an increase in mitochondrial P/O ratio could also play a crucial role in 

the reduction of V̇O2 and this was investigated by Larsen et al. (2011). In this study the 

investigators isolated mitochondria harvested from vastus lateralis muscle of humans 

supplemented with NaNO3
-
 and added them to a reaction medium containing pyruvate and 

maltate in order to monitor mitochondrial respiration. A submaximal concentration of ADP 

was infused at a rate selected to mimic the metabolic rate in vivo (Kuznetsov et al., 1996) with 

results indicating that the mitochondrial P/O ratio (amount of ADP infused divided by O2 

consumed) was increased as a result of NO3
-
 supplementation. In addition to this, the 

respiratory control ratio (ratio between state 3 and state 4 respiration) and the maximal rate of 

ATP production through oxidative phosphorylation was increased following NO3
-
 

supplementation. Furthermore state 2 respiration (indicative of proton leakage through the 

inner mitochondrial membrane) and uncoupled, state 4 respiration were reduced as a result of 

supplementation. These data suggest that NO3
-
 supplementation can reduce proton leakage and 

uncoupled respiration, subsequently improving mitochondrial P/O ratio. Interestingly, this 
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improved P/O ratio was significantly correlated to the reduction in whole body V̇O2 during 

exercise (Larsen et al., 2011). 

 

It is currently not known to what extent this improved mitochondrial efficiency might influence 

skeletal muscle energy metabolism at rest. If the resting metabolic rate (RMR) is significantly 

reduced following NO3
-
 supplementation, this could have implications for daily energy 

expenditure and weight management. The influence of NO3
-
 supplementation upon RMR is 

currently unknown. 

 

Severe-intensity exercise 

The V̇O2 slow component is associated with the depletion of muscle [PCr], increased glycogen 

utilisation and the accumulation of fatigue related metabolites. Therefore, a reduction in the 

amplitude of the slow component is likely to have beneficial effects upon exercise tolerance 

and performance. NO3
-
 supplementation has been shown to reduce the amplitude of the V̇O2 

slow component in response to constant-work-rate, severe-intensity cycle and two-legged knee-

extensor exercise (Bailey et al., 2009, 2010), while reductions in end-exercise V̇O2 during 

running have also been reported (Lansley et al., 2011).  

The purpose of these studies was to investigate the effect of NO3
-
 on V̇O2 kinetics and to assess 

whether alterations in this response could influence exercise tolerance. In order to compare the 

interaction between V̇O2 kinetics and exercise tolerance, it was imperative to assess these two 

parameters in the same test. The conventional approach to assess V̇O2 kinetics requires the 

subject to complete a ‘step’ exercise, where the work rate is abruptly increased from a low 

baseline to a higher target work rate. These protocols enhance the validity of the investigation 

of V̇O2 kinetics as a determinant of exercise tolerance. In addition to the alterations in V̇O2, 

improved exercise tolerance during severe-intensity constant-work-rate cycling (16%; Bailey et 

al., 2009), running (~15%; Lansley et al., 2011) and two-legged knee-extension (25%; Bailey 

et al., 2010) exercise has been reported following NO3
-
 supplementation. Furthermore, 

improvements to incremental exercise tolerance have been reported during single-legged knee 

extension (5%; Lansley et al., 2011) with a trend for improvement (7%) reported during 

combined incremental arm and leg exercise (Larsen et al., 2010). Improved incremental 

exercise tolerance has also been reported during cycle exercise in hypoxia (5%; Masschelein et 

al., 2012). Tolerance to incremental exercise was also improved in patients with peripheral 

arterial disease as a result of NO3
-
 supplementation (Kenjale et al., 2011). However, 
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incremental exercise tolerance is not always improved following NO3
-
 supplementation 

(Bescos et al., 2011). During incremental exercise protocols, NO3
-
 supplementation has been 

reported to both increase (Vanhatalo et al., 2010) and decrease (Larsen et al., 2010; Bescos et 

al., 2011) the V̇O2max. Explanations of the increase in V̇O2max include NO-mediated changes in 

local perfusion in skeletal muscle (Thomas et al., 2001), possible effects on cardiac output 

(Jones et al., 2004) and increased mitochondrial mass (Nisoli et al., 2004). Proposed 

mechanisms behind a decreased V̇O2max include reductions in the ATP cost of muscle force 

production (Bailey et al., 2010) and improved mitochondrial efficiency Larsen et al., 2011), 

although these alterations have only been identified during low-intensity exercise. 

 

Power-duration relationship 

Although the increases in exercise tolerance during single constant power output exercise bouts 

indicates a physiological benefit of NO3
-
 supplementation (Bailey et al., 2009; Lansley et al., 

2011), it has been proposed that the magnitude of the changes elicited after an intervention can 

be difficult to interpret because of the shape of the power-duration relationship (Whipp & 

Ward, 2009). While accepting that improved exercise tolerance to any particular constant work 

rate is reflective of a physiological benefit of an intervention, it does not act as a sufficient 

quantitative measure of the actual improvement in function as it provides data from just a 

single point of that relationship. Ideally, characterisation of the pre- and post-intervention 

power-duration relationship is necessary (Whipp & Ward, 2009).  

It is a familiar occurrence that exercising at a relatively fast yet comfortable pace can be 

maintained for an appreciable amount of time without feeling too tired. However, if the speed 

is even slightly increased, this can result in significant increases in perceived effort and can 

substantially reduce the tolerable duration of exercise. These experiences have genuine 

mathematical and physiological bases, which are defined by the critical power (CP) concept. 

The CP and Wʹ characterize the hyperbolic power-duration relationship that is evident during 

high-intensity exercise (Fukuba et al., 2003; Monod & Scherrer 1965; Poole et al., 1988). The 

CP is defined as the power-asymptote of the relationship and demarcates the boundary between 

‘heavy’ intensity (work rates at which physiological steady-state is attained) and ‘severe’ 

intensity exercise (work rates at which physiological steady-state is not attained) (Jones et al., 

2008; Poole et al., 1988). Thus, the CP theoretically represents the highest work rate that can 

be maintained via predominantly aerobic metabolism, where pulmonary oxygen uptake (V̇O2), 

blood lactate and concentrations of intramuscular metabolites such as phosphocreatine ([PCr]), 
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[H
+
] and inorganic phosphate ([Pi]) can be stabilized (Jones et al., 2008; Poole et al., 1988). 

The Wʹ represents the curvature constant of the relationship and can be considered as the finite 

work capacity available above the CP before the limit of tolerance is reached (Fukuba et al., 

2003; Vanhatalo et al., 2007). This limited energy reserve is thought to be largely “anaerobic”, 

utilising energy from anaerobic glycolysis and intramuscular high-energy phosphates, with an 

additional yet modest contribution from myoglobin and haemoglobin bound oxygen stores 

(Miura et al., 1999; Monod & Scherrer 1965; Moritani et al., 1981). The two-parameter CP 

model essentially defines a bioenergetic supply-and-demand system comprised of two 

components. In this sense, the concept lends itself to mathematical modelling and can be 

represented in a number of forms.  

Estimates of CP and Wʹ from prediction trials can be calculated using three different models, 

using the following equations: 

The hyperbolic power-duration relationship: 

Tlim = W′/ (P-CP)         (Eqn. 1) 

where P is a given severe-intensity power output (Hill, 1993; Jones et al., 2010; Vanhatalo et 

al., 2011). The linear transformations of this relationship are the power-1/time equation: 

P = W′·1/Tlim + CP         (Eqn. 2) 

and the work-time equation, where P is replaced with work done (W) per unit time: 

W = CP· Tlim + W′         (Eqn. 3) 

It is evident that when the CP and Wʹ are known, performance time within the severe domain 

(indicated by Tlim) can be accurately predicted by rearranging Eqn. 2 (Hill, 1993; Jones et al., 

2010; Vanhatalo et al., 2011). As such, estimates of CP and Wʹ can be used to predict the time 

taken to complete total work done (W) targets using the following equation:  

Tlim = (W-W′)/CP         (Eqn. 4) 

The CP and Wʹ are important determinants of sport and exercise performance (Jones et al., 

2010; Vanhatalo et al., 2011). It is important to stress that exercise performance within the 

severe domain is a function of both the CP and the W′, which act in concert to determine the 

shortest possible time required to complete a given target total work done. The early work of 

A.V. Hill in the 1920’s attempted to understand the physiological determinants of physical 
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performance, with the formulation of velocity-time curves based on athletic world records 

(Hill, 1925). Fundamental to his 1922 Nobel prize accolade was his demonstration that both 

aerobic and anaerobic energy sources were recruited and important in supporting high-intensity 

muscle contraction. Not surprisingly, our current understanding of the power-duration 

relationship revolves around the coordinated function of these two energy sources. 

     

Figure 2.3: Illustration of the hyperbolic power-duration relationship. When time-to exhaustion, during 

exercise at four different intensities above the critical power (severe-intensity), is plotted against the 

power output, time to exhaustion increases hyperbolically. The filled circles represent the time to 

exhaustion at a given power output. The solid line hyperbola characterises the power-duration 

realtionship while the dashed line represents the critical power. The W′ is represented by the shaded 

rectangles, which depicts the rate of W′ utilisation differing dependent upon the magnitude of the power 

output. The magnitude of the W′ is identical for all four power outputs and exhaustion occurs when the 

W′ has been fully utilised. 

Evidently, the synergistic relationship between these two parameters dictates exercise tolerance 

during severe-intensity exercise (Jones et al., 2008; Vanhatalo et al., 2011). In an attempt to 

modulate these two indices, various interventions have been employed. Endurance training 

(Jenkins & Quigley, 1992), high-intensity interval training (Vanhatalo et al., 2008, Gaesser et 

al., 1988, Poole et al., 1990) and hyperoxia (Vanhatalo et al., 2010) have been shown to elicit 

improvements in CP. Typically, interventions that enhance CP result in a trend toward a 

decrease in W′ (Vanhatalo et al., 2008; Jenkins & Quigley, 1992). However, the W′ can be 

improved by utilising the correct ‘priming’ exercise and pacing strategy via alterations to V̇O2 
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kinetics and V̇O2max (Bailey et al., 2009; Jones et al., 2003; Jones et al., 2008). A recent study 

investigated the effect of sodium bicarbonate supplementation upon CP and W′ derived from a 

3-min all out test, but showed no changes to either parameter (Vanhatalo et al., 2010). The use 

of creatine monohydrate supplementation has produced mixed results with regard to 

improvements in W′. Creatine supplementation is known to increase intramuscular PCr 

concentrations and has been shown to result in a significant increase in the conventionally 

estimated W′ parameter (Miura et al., 1999; Smith et al., 1998), although no change was 

reported in a subsequent study (Eckerson et al., 2005). Collectively these findings suggest that 

both CP and W′ can be altered via a number of training and environmental interventions, 

although these parameters appear to be less sensitive to nutritional supplementation. 

As exercise performance in the severe domain is a function of CP and W′, the reported 

improvements in exercise tolerance and performance following NO3
-
 supplementation may be 

as a result of a beneficial shift in the power-duration relationship. A rightward shift in the 

power-duration relationship as a result of NO3
-
 supplementation would enable an individual to 

exercise at a given power output for a longer duration or to exercise at a higher power-output 

for the same duration. The increased power output to V̇O2 ratio evidenced following NO3
-
 

supplementation (Bailey et al., 2009; Cermak et al., 2012; Lansley et al., 2011; Larsen et al., 

2007) suggests that NO3
-
 might increase CP, whilst the recently reported effects of NO3

-
 

supplementation upon blood flow and contractile function of type II fibres (Ferguson et al., 

2013; Hernandez et al., 2012), indicate potential for improvements in W′.  

As discussed earlier, it is important to characterise the power-duration relationship before and 

after an intervention in order to gain a true appreciation of it ergogenic effects. It is therefore 

important to consider 3 or more constant power output exercise bouts in BR and PL conditions 

in order to accurately calculate the power-duration relationship, which will allow us to 

determine, with more confidence, the beneficial effects of NO3
-
 supplementation upon exercise 

tolerance and performance. 

Exercise performance 

The potential ergogenic effects of NO3
-
 supplementation are of particular interest to athletes 

and coaches. While ‘step’ and incremental exercise protocols are useful for characterizing 

parameters of the V̇O2 response, they do limit the generalizability of findings to ‘true’ 

endurance sports performance where success is not determined by the ability to sustain a given 

power output for the longest duration. The magnitude of improvements reported in constant-
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work-rate exercise (15%-25%) is considerably larger than improvement in ‘time-trial’ type 

exercise performance. It is estimated that a 20% improvement in time to exhaustion would be 

expected to correspond to an improvement in performance of 1-2% during a time-trial protocol 

(Hopkins et al., 1999). Therefore, it was important to assess whether NO3
-
 supplementation 

would improve performance in a time-trial performance test, which closely replicates sports 

performance with the aim of covering a set distance in the fastest possible time. It was 

subsequently shown that NO3
-
 supplementation improves time-trial performance during cycling 

over 16, (2.9%; Lansley et al., 2011), 10 (1.2 %; Cermak et al., 2012) and 4 km (2.8%; Lansley 

et al., 2011), rowing ergometer repetitions (1%; Bond et al., 2012) and 5km running (3.2%; 

P=0.06; Murphy et al., 2012). However, some studies have reported no beneficial effect of 

NO3
-
 on time-trial exercise during both cycle (Bescos et al., 2012; Cermak et al., 2012) and 

running (Peacock et al., 2012) trials. It should be noted that recent studies indicate that nitrate 

supplementation may be less effective as an ergogenic aid in highly-trained endurance athletes, 

at least when nitrate is ingested acutely and/or longer duration, lower-intensity endurance 

performance is assessed (Bescos et al., 2012, Cermak et al., 2012, Wilkerson et al., 2012). 

Compared to less well-trained subjects, endurance athletes have higher baseline plasma [NO2
-
], 

greater training-related NOS activity, a higher proportion of type I fibres, and greater 

mitochondrial and capillary density, all of which may reduce the potential benefits of nitrate 

supplementation (Wilkerson et al., 2012). 

 

Additional proposed mechanisms for NO3
- 

-mediated alterations in the V̇O2 response and 

improved exercise performance include that of changes to intracellular Ca
2+

 handling. In 2012, 

Hernandez and colleagues reported that fast-twitch skeletal muscle harvested from mice 

supplemented with NO3
-
 in drinking water displayed increased tetanic [Ca

2+
], which was 

coupled with an increased contractile force at low stimulation frequencies. These changes were 

accompanied by altered protein expression, with both calsequestrin 1 and dihydropyridine 

receptor (key proteins involved in sarcoplasmic reticulum expression Ca
2+

 handling) being 

increased. These findings show that fast twitch muscles of NO3
-
 supplemented mice can be 

activated at a lower frequency to achieve the same force output, which would subsequently 

reduce the effort for a given task. This also suggests that for a given force output, a reduced 

number of motor units would need to be recruited and is consistent with existing mechanistic 

proposals (Bailey et al., 2010). Furthermore, it has been shown that in the healthy rat model, 

NO3
-
 supplementation with beetroot juice for 5 days can increase total hind limb muscle blood 

flow and vascular conductance (Ferguson et al., 2013). Interestingly, the increases in blood 
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flow and vascular conductance were targeted in the muscles and muscle parts comprised of 

principally type II fibers. This apparent preferential muscle O2 delivery to Type II fibers offers 

important information regarding the NO3
-
 -mediated vascular and metabolic control that has 

previously been reported in humans during exercise (Larsen et al., 2007; Bailey et al., 2009, 

Bailey et al., 2010). In order to add to the existing proposed mechanisms behind the beneficial 

effects of NO3
- 

supplementation, direct assessment of human skeletal muscle metabolism 

during exercise must be investigated. 

 

Muscle metabolism 

Following the onset of exercise, an immediate increase in ATP turnover and an exponential rise 

in oxygen (O2) consumption are evident within the contracting muscle cells. This disparity in 

the rates of muscle ATP utilization and ATP supply via oxidative phosphorylation obligates a 

compensatory energy contribution from substrate-level phosphorylation (Poole et al., 2008). As 

previously discussed, pulmonary V̇O2, which provides a close representation of muscle V̇O2 

(Grassi et al., 1996; Krustrup et al., 2009), attains a ‘steady-state’ within 120-180 s following 

the onset of moderate-intensity exercise (below the gas exchange threshold; GET) (Whipp et 

al., 1982). However, during heavy (above GET but below critical power) and severe-intensity 

(above critical power) exercise, an additional phase of the V̇O2 response, the V̇O2 ‘slow 

component’, is evident which delays and/or prevents the attainment of a steady state. The 

development of the V̇O2 slow component is closely related to accelerated muscle PCr (Rossiter 

et al., 2002) and glycogen utilization (Krustrup et al., 2004), and to the accumulation of fatigue 

associated metabolites (H
+
, Pi, ADP). Interventions that alter the V̇O2 response during exercise 

and modulate the rate at which the body’s energy stores are depleted and fatiguing metabolites 

are accumulated are therefore likely to have important implications for exercise tolerance 

(Jones et al., 2009).  

The effects of NO3
-
 supplementation upon the V̇O2 response to exercise are well documented. 

While non-invasive measures (
31

P-MRS) of muscle metabolism during exercise, following 

NO3
-
 supplementation, have been recorded (Bailey et al., 2010), the effects of NO3

-
 

supplementation upon muscle metabolic responses, measured via skeletal muscle biopsy 

technique, have yet to be established in humans. This would allow a direct measure of energy 

stores and fatigue associated metabolites before, during and after exercise in human skeletal 

muscle. This would provide insight into how NO3
-
 supplementation can affect the muscle 

metabolic response to exercise in humans.  
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It is also currently unknown whether NO3
-
 supplementation can increase skeletal muscle [NO3

-
] 

in human subjects. Stable metabolites of NO (NOx) have previously been measured at rest in 

the muscle interstitium in young human adults with values of ~ 120 µM being reported 

(Nyberg et al., 2012), while skeletal muscle [NO3
-
] of sedentary, resting rats have been 

reported as ~46 nM g
-1

 (Perez et al., 2002). Assessing the effects of NO3
-
 supplementation 

upon skeletal muscle [NO3
-
] in humans is important. This may elucidate whether skeletal 

muscle [NO3
-
] is influenced by NO3

-
 supplementation and whether changes in this parameter 

may influence muscle metabolic and pulmonary oxygen uptake responses to exercise and 

improve exercise tolerance. 

Hypoxia 

As previously discussed, the reduction of NO2
-
 to bioactive NO in the NO3

-
 - NO2

-
 - NO 

pathway is enhanced in acidic (Modin et al., 2001) and hypoxic (Castello et al., 2006) 

environments, similar to those evident in skeletal muscle during exercise (Bailey et al., 2010; 

Vanhatalo et al., 2011). The existence of the NO3
-
 - NO2

-
 - NO pathway is important in the 

promotion of NO synthesis in conditions that may limit NO production via NOS, such as 

hypoxia. Therefore, it is suggested that this pathway would be especially important in the 

generation of NO during exercise in hypoxia. Hypoxia is defined as a decrease in the oxygen 

supply to a level insufficient to maintain cellular function (Gilany et al., 2010) or an imbalance 

of O2 delivery versus O2 demand, and is one of the most frequently encountered conditions or 

stresses in disease (Brahimi-Hom et al., 2007). Hypoxia leads to a global down-regulation of 

protein synthesis (Koritzinsky et al., 2006) and specifically regulates the expression of many 

genes with various important roles in mammalian cells (Shih et al., 1998). The fundamental 

importance of O2 for all aerobic organisms including mammals has led to the evolution of a 

complex cellular response to hypoxia. At the heart of this response is the hypoxia inducible 

factor (HIF) (Wang et al., 1995), which is known to be modified by NO (Hagen et al., 2003). 

A reduced fraction of O2 in inspired air results in a reduction in arterial oxygen concentration 

and a decrease in intracellular partial pressure of O2 (PO2) (Richardson et al., 1995). In order to 

restore sufficient O2 supply, local blood flow is increased via hypoxia induced vasodilation 

(Heinonen et al., 2010). This compensatory increase in blood flow is thought to be mediated in 

part by NO (Casey et al., 2010) as well as adenosine (Berne et al., 1963), ATP-sensitive 

potassium channels (Daut et al., 1990) and prostaglandins (Crecelius et al., 2011). Compared 

to normoxia, submaximal constant-work-rate exercise in hypoxia is associated with the same 

V̇O2 but greater muscle metabolic perturbation (Wilkins et al., 2006). A reduction in 
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intracellular PO2 commands an increased concentration of mitochondrial respiration regulators, 

in order to maintain the required rate of oxidative ATP turnover. Specifically, concentrations of 

ADP, Pi and NADH are increased via elevated rates of PCr hydrolysis and glycolysis (Hogan et 

al., 1999). Subsequently, at work rates below 50% of maximum, hypoxia accelerates the 

depletion of PCr and glycogen and speeds the accumulation of fatigue-related metabolites 

(ADP, Pi, H
+
). This hypoxia induced skeletal muscle metabolic perturbation (Linnarsson et al., 

1974) contributes to impaired exercise tolerance (Allen et al., 2008) and reduced functional 

capacity in many disease conditions (Ellis et al., 2010; Kenjale et al., 2011) and at altitude 

(Amann & Calbet, 2008). 

NO plays a key role in the physiological response and adaptation to hypoxia and is implicated 

as a major mediator in a number of pathways for hypoxic vasodilatation including regulation of 

muscle perfusion and matching of energy supply and demand (Casey et al., 2010). NO2
-
 may 

also promote hypoxic vasodilatation in an NO-independent manner (Dalsgaard et al., 2007). 

NO is also known to redistribute intracellular oxygen in hypoxia by preventing the stabilization 

of HIF1α (Hagen et al., 2003) and to modulate oxygen delivery to the tissue (Thomas et al., 

2001). This outlines an additional physiological response of NO in enhancing tissue cellular 

respiration, in addition to vasodilation and may prove important when exercising in hypoxic 

environments. As mentioned before, production of NO via NOS in hypoxia can be 

compromised but the reduction of NO2- to NO in the NO3
-
 - NO2

-
 - NO pathway is enhanced in 

hypoxic conditions (Castello et al., 2006). Increasing the bioavailability of NO during exercise 

in hypoxia may facilitate the physiological response to hypoxia and contribute to improving 

tolerance to such exercise, in young healthy individuals (Vanhatalo et al., 2011). It may also be 

reasonable to hypothesize that NO3
-
 supplementation can have greater beneficial physiological 

effects in hypoxic compared to normoxia. Furthermore, it is currently unknown to what extent 

NO3
-
 supplementation, FIO2 and/or exercise intensity can affect the metabolism of NO. 

Characterizing the kinetic profile of [NO3
-
] and [NO2

-
] during exercise bouts of different 

intensities, with a different FIO2 and following NO3
-
 supplementation will allow important 

insight to the plasticity of NO metabolism by manipulation of exercise intensity, FIO2 and NO 

bioavailability.  

Hypoxia plays an integral role in the reduced functional capacity evidenced in many clinical 

conditions (Ellis et al., 2010; Allen et al., 2012). Understanding the potential beneficial effects 

of NO3
-
 supplementation upon NO metabolism in hypoxic environments may have important 

implications for diseased and/or ageing populations. Specifically, NO3
-
 supplementation may 
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help to improve exercise tolerance in hypoxia, in a young healthy population, which could 

translate into improved functional capacity and life quality in diseased and/or aged populations. 

Senescence 

Given our ever increasing life expectancy and the subsequent, continued growth in the older 

population, reduced functional and cognitive capacities are not only likely to have a 

detrimental effect upon the quality of life of ageing individuals but pose an increasing financial 

burden on healthcare systems around the world. The prevention or attenuation of these age-

related conditions needs to be addressed. 

The ageing process is associated with a number of metabolic, cardiovascular (Cheitlin, 2003) 

and cognitive (Glisky, 2007) alterations even within healthy, older populations. With age, a 

progressive decline in the oxidative and operative scope of our vital physiological systems 

ensues. The muscular and cardiovascular systems of an ageing individual encounter functional 

and structural alterations that may hinder muscle O2 delivery, the matching of that O2 delivery 

to V̇O2 requirements, and mitochondrial oxidative function (Barstow & Scheuermann, 2005). 

Existing literature illustrates an age-related diminished ability to increase cardiac output during 

exercise (Lakatta, 1999) such that muscle blood flow is impaired (Wahren et al., 1974). 

Capillary density, capillary-to-fibre ratio, mitochondrial volume density and oxidative function 

have also been shown to diminish with age (Coggan et al., 1993 and Conley et al., 2000). 

Furthermore, decrements in V̇O2max apparent in ageing individuals could be attributed to 

impaired O2 extraction at the muscle (McGuire et al., 2001). Ageing is also associated with 

microcirculatory changes including a redistribution of blood flow amongst a variety of organs 

and muscles (Musch et al, 2004) and altered capillary heamodynamics (Russell et al, 2003). 

Such changes may contribute to the impaired O2 diffusing capacity and decreased O2 extraction 

documented in older individuals. 

Senescent individuals also evidence a profound slowing of their V̇O2 kinetics in response to 

moderate-intensity exercise (Scheuermann et al., 2002). V̇O2 kinetics are known to be 

influenced by muscle O2 delivery or arterial O2 content in some circumstances as represented 

in Fig 3.2. The diagram demonstrates that there is a ‘tipping point’ in the relationship between 

the speed of V̇O2 kinetics and muscle O2 delivery. To the left of this tipping point, the kinetics 

is O2 delivery dependent, whereas to the right of the tipping point, the kinetics is determined by 

O2 utilisation. Therefore, specific human populations and/or experimental conditions may 

occupy distinct and predictable positions on the continuum (Burnley, 2008). The kinetics of 

well-trained young individuals performing upright cycle exercise is not O2 delivery dependent 
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even at work rates that elicit VO2max (Poole et al., 2008) and in support of this, administering 

hyperoxic inspirate does not speed the kinetics (Wilkerson et al., 2006). However, due to age-

related changes in muscle blood flow (chronic cardiovascular, respiratory, and/or muscular 

pathologies), older individuals may reside on the left-hand side of this schematic diagram. 

Therefore therapeutic interventions aimed at improving muscle O2 delivery may enhance 

exercise tolerance by speeding V̇O2 kinetics. In support of this notion, a bout of heavy priming 

exercise speeded V̇O2 kinetics at the onset of a subsequent moderate-intensity exercise bout in 

older but not younger individuals (Scheuermann et al., 2002). Furthermore, the speeding of 

V̇O2 kinetics and those of heart rate has been significantly correlated in older individuals 

(Babcock et al., 1994). This suggests that improved O2 delivery may, in part, be responsible for 

the speed of V̇O2 kinetics in older people. However, conflicting research suggests that the slow 

V̇O2 kinetics following the onset of moderate-intensity exercise, evident in older populations, 

are modulated by structural (mitochondrial, microvascular) and/or functional alterations within 

the exercising musculature (Bell et al., 1999, 2001). Despite the mixed findings, an 

intervention which could increase muscle O2 delivery may be expected to speed V̇O2 kinetics 

in an older population. 

 

  

                          

Fig 2.4: A schematic diagram outlining the the dependence of V̇O2 kinetics on muscle O2 delivery in 

various populations (From Poole & Jones. 2005). 

 

Another notable change associated with senescence is the progression of vascular endothelial 

dysfunction which is often evidenced by reduced endothelium-dependant dilatation (Lakatta & 

Levy, 2003). Endothelial dysfunction is characterised, in part, by excessive superoxide 

Older age, 
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production (Darley-Usmar et al., 1995) which decreases the bioavailability of NO. The 

increased superoxide reacts with NO to form peryoxynitrite and oxidises BH4, an essential co-

factor in NO production by eNOS (Seals et al, 2011). Alternative mechanisms underpinning 

this age-dependant reduction in endothelial function and NO bioavailability include a reduced 

availability of L-arginine (Morris, 2000), reduced eNOS activity and reduced circulating nitrite 

concentrations (Sindler et al., 2011). Collectively, these changes can contribute to the activities 

of everyday life requiring ageing individuals to work within the upper end of their exercise 

capacity, resulting in heightened metabolic stress, although lifelong physical activity appears to 

offset the reduction in NO bioavailability (Nyberg et al., 2012). An intervention which has the 

potential to improve muscle O2 delivery, speed V̇O2 kinetics, improve mitochondrial 

efficiency, that possesses antioxidant properties and which may help to increase the 

bioavailability of NO, such as dietary NO3
-
 supplementation, may provide therapeutic effects 

for an older population. 

 

Increased NO bioavailability may also provide a means of enhancing brain blood flow and 

improving cognitive function in older age. Aging causes alterations in brain size, vasculature 

and cognition. In addition to the brain shrinking with age (Svennerholm, 1997), the capacity of 

the brain to produce ATP via oxidative phosphorylation also decreases (Boveris et al.,  2008) 

and in combination with age-associated chronic ischemia of white matter (Presley et al., 2011), 

cognitive decline ensues. Furthermore, age-related mitochondrial dysfunction has been 

associated with the neuronal loss seen in a number of neurodegenerative diseases (Chagnon et 

al., 1995). A recent study demonstrated that NO2
-
 infusion led to increases in cerebral blood 

flow in rats measured using laser Doppler flowmetery (Rifkind et al., 2007). Subsequent 

research demonstrated that a high-NO3
-
 diet elevated plasma NO2

-
 and increased cerebral blood 

flow in older adult humans in critical brain areas known to be involved in executive 

functioning, using perfusion MRI techniques (Presley et al., 2011). Furthermore, recent 

research has identified that NO plays an important role in neurotransmission and the coupling 

of neural activity to local cerebral blood flow (Piknova et al., 2011). Therefore dietary NO3
-
 

may have the potential to modify cerebrovascular physiology, enhance cognitive function and 

may offset the influence of aging on cognitive decline and dementia (Holland et al., 2008). 

 

Summary 

Dietary NO3
-
 supplementation can have a number of physiological effects within the human 

body via increasing the bioavailability of NO. These effects include reducing resting blood 
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pressure (Bailey et al., 2010; Larsen et al., 2006; Vanhatalo et al., 2010a; Webb et al., 2008), 

modulating the V̇O2 response to moderate-intensity (Larsen et al., 2007, 2010, 2011; Bailey et 

al., 2009; Vanhatalo et al. 2010; Lansley et al., 2011; Muggeridge et al., 2012) and severe-

intensity exercise (Bailey et al., 2009, 2010; Lansley et al., 2011), as well as improving 

exercise tolerance (Bailey et al., 2009, 2010; Lansley et al., 2011; Kenjale et al., 2011) and 

perhaps athletic performance (Lansley et al ., 2011, Cermak et al., 2012; Bond et al., 2012). 

NO3
-
 supplementation can also increase cerebral blood flow in older human individuals 

(Presley et al., 2011). NO-mediated smooth muscle relaxation via the synthesis of cyclic 

guanosine monophosphate (cGMP) (Murad, 1986) is considered responsible for reductions in 

BP following NO3
-
 supplementation. A reduced ATP cost of muscle power output (Bailey et 

al., 2010), increased mitochondrial efficiency (Larsen et al., 2011), improved intracellular Ca
2+

 

handling in increased force production (Hernandez et al., 2012) and/or elevated muscle oxygen 

delivery during exercise preferentially to type II muscle fibres (Ferguson et al., 2013) are 

proposed explanations of changes to the V̇O2 response and improved exercise capacity. 

 

Despite the publication of many dietary NO3
-
 supplementation research papers in recent years, 

a number of outstanding questions remain to be answered regarding the ergogenic and 

therapeutic capabilities of dietary NO3
-
 supplementation. Among others, these include 

investigating the effects of NO3
-
 supplementation upon the power-duration relationship; NO 

metabolism in differing environmental conditions; and effectiveness of NO3
-
 supplementation 

in an older population. Furthermore, a deeper understanding of the effects that NO3
-
 can have 

upon muscle metabolic responses to exercise is required and the mechanistic bases behind the 

reported effects of supplementation. 

 

Aims 

This thesis aims to add to the existing understanding of dietary nitrate supplementation as a 

potential ergogenic and therapeutic aid. The following research questions will be addressed: 

1) Does dietary NO3
-
 supplementation modulate the power-duration relationship for severe-

intensity exercise in young, healthy, recreationally active males? 

- Does dietary NO3
-
 improve exercise tolerance at intensities spanning the severe 

domain? 

- Does dietary NO3
-
 increase critical power and/or Wʹ? 

- Does dietary NO3
-
 decrease resting metabolic rate? 
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2) How does dietary NO3
-
 supplementation affect NO metabolism and does it have beneficial 

effects on exercise tolerance in hypoxic conditions? 

- What is the kinetic response of plasma [NO3
-
] and [NO2

-
] during moderate- and 

severe-intensity exercise and is this different between normoxia and hypoxia? 

- Are the negative effects of hypoxia on exercise tolerance off-set as a result of dietary 

nitrate supplementation? 

3) Are the beneficial effects of dietary NO3
-
 supplementation elicited in young, healthy 

participants also evident in a healthy, older population? 

- Can NO3
-
 supplementation reduce resting blood pressure in older individuals? 

- Does dietary NO3
-
 modulate intramuscular metabolite responses in response to low- 

and high- intensity exercise? 

- Can dietary NO3
-
 improve functional capacity in older adults?  

- Does dietary NO3
-
 alter cerebral blood flow or the concentrations of important 

cerebral metabolites? 

- Can dietary NO3
-
 be beneficial to cerebral health and cognitive function in an older 

population? 

4) How does dietary NO3
-
 supplementation influence skeletal muscle [NO3

-
], pulmonary V̇O2 and 

muscle metabolic responses to constant-work-rate moderate- and severe-intensity exercise.  

- Are NO3
-
 levels increased within skeletal muscle tissue as a result of dietary NO3

-
 

supplementation? 

- Is the muscle metabolic response to exercise altered as a result of dietary NO3
-
 

supplementation? 

- Do changes in the muscle metabolic response to exercise elucidate the mechanistic 

bases of previously reported improvements in exercise efficiency and exercise 

tolerance? 

Hypotheses 

This thesis will address the following hypotheses: 

 

1) NO3
-
 supplementation will 1) improve exercise tolerance across a range of severe-intensity 

exercise bouts by increasing the CP and/or Wʹ and 2) NO3
-
 supplementation will reduce the 

resting metabolic rate. 
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2) A reduced fraction of inspired O2 (FIO2) will accentuate the depletion of NO2
-
 during exercise 

compared to normoxia. NO3
- 
supplementation will improve tolerance to severe-intensity, 

constant-work-rate cycle exercise in hypoxia, and this improvement will be greater than the 

effect of NO3
- 
on exercise tolerance in normoxia.  

 

3) Dietary supplementation with NO3
-
 -rich beetroot juice will reduce resting blood pressure, 

speed the V̇O2 kinetics and lower the O2 cost of treadmill walking, and improve functional 

capacity and cognitive function in healthy older adults. 

 

4) Muscle [NO3
-
] will be elevated as a result of NO3

-
 supplementation. The magnitude of muscle 

PCr degradation and fatiguing metabolite accumulation will be attenuated and exercise 

tolerance will be improved as a result of NO3-
 

supplementation.  
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Chapter 3: General Methods 

 

Ethical approval and informed consent 

The four experimental chapters (Chapters 4-7) included in this thesis required 268 exercise 

tests. All tests were conducted in an air conditioned exercise physiology laboratory or MRI 

suite at sea level with an ambient temperature of 18-22°C. Each study included in this thesis 

was approved by the Sport and Health Sciences (SHS, University of Exeter) Ethics 

Committee prior to the commencement of data collection. Prior to agreeing to take part in 

these studies, subjects were provided with a Participant Information Sheet which outlined a 

detailed description of the experimental protocol and exactly what they would be required 

to do. The potential risks and benefits of their participation were clearly explained in the 

information sheet and subjects were informed that, while their anonymity would be 

preserved and their data stored safely, the group data may be published in academic 

journals or presented at national/international conferences. Participants were told that they 

were free to withdraw from the study at any point with no disadvantage to themselves. Any 

additional questions or concerns that the subjects had were answered before subjects 

provided written, informed consent to participate. 

 

Health and safety 

All testing procedures followed the health and safety guidelines of SHS. Due care and 

attention was paid to ensure that the laboratory was clean, safe and suitable for the exercise 

testing of human subjects. Work surfaces, trolleys, ergometers and floors were thoroughly 

cleaned using dilute Virkon disinfectant. All respiratory equipment was disinfected by 

submerging in Virkon solution for a minimum of 15 min, then rinsed and dried prior to use. 

Experimenters involved in the collection of blood wore disposable latex gloves during 

sampling. All sharps and biohazard materials were disposed of immediately after use for 

later incineration in accordance with institutional risk assessments. 

 

Subjects 

Subjects for studies in Chapters 4, 5 and 7 were recruited from the University and local 

community and were 23 ± 4 years of age. These subjects were non-smokers who were free 

from disease and were not using dietary supplements at the time of data collection. The 

subjects were recreationally active, participating in regular structured and/or competitive 

sport, although were not elite-level athletes. Subjects for the experiment in Chapter 6 were 
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recruited from the local area and from the Exeter Clinical Research Facility, Peninsula 

Research Bank. These individuals were screened prior to recruitment to ensure suitability 

for participation. The subjects were 64 ± 3 years of age and were ostensibly healthy, free 

from any disease or condition that may limit walking or knee-extension exercise. In all 

studies, subjects were instructed to attend the laboratory at least 3 h postprandial in a rested, 

fully-hydrated state, having completed no strenuous exercise within the previous 24 h. 

Subjects were also instructed to avoid alcohol and caffeine 24 and 6 hours, preceding each 

exercise test, respectively. It was ensured that each subject underwent testing at the same 

time of day (± 2 hr). Subjects’ mass, stature and age were recorded prior to the initiation of 

testing in order to provide descriptive data of the subject group. 

 

Supplementation 

Nitrate supplementation was administered in the form of beetroot juice, which was supplied 

by Beet it, James White Drinks, Ipswich, UK. In each experimental chapter participants 

were instructed to ingest either nitrate-rich beetroot juice or nitrate-depleted beetroot juice, 

in a double-blind randomized, crossover study design. The placebo beverage was created by 

passage of the juice, before pasteurisation, through a column containing Purolite A520E ion 

exchange resin, which selectively removes NO3
-
 ions (Lansley et al. 2011). The placebo 

was similar to the BR in appearance, taste and smell. 

 

In Chapter 4, the supplements were either nitrate-rich BR (2 x 250 ml/day of organic 

beetroot juice providing a total of 8.2 mmol nitrate per day) or nitrate-depleted PL (2 x 250 

ml/day of organic beetroot juice providing a total of 0.006 mmol nitrate per day). In 

Chapters 5, 6 and 7, the supplements were either concentrated nitrate-rich BR (2 x 70 

ml/day of concentrated organic beetroot juice providing 9.6 mmol nitrate per day) or 

nitrate-depleted PL (2 x 70 ml/day of concentrated organic beetroot juice providing a total 

of 0.006 mmol nitrate per day). Participants were instructed to consume the beverages in 

the morning and afternoon of days 1 and 2 of supplementation, then in the morning and 2.5 

h before the exercise on testing days. 

 

A washout period of at least 72 h separated each supplementation period. Subjects were 

instructed to follow their normal dietary habits throughout the testing period and to 

replicate their diet between conditions during the supplementation periods. Subjects were 

told that supplementation may cause beeturia (red urine) and red stools temporarily but that 
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this side effect was harmless. The supplementation was well tolerated by all participants 

with no adverse effects reported. 

 

Blood pressure 

Prior to every exercise test in chapters 4-7, blood pressure of the brachial artery was 

measured using an automated sphygmomanometer (Dinamap Pro 100v2, GE Medical 

Systems, Tampa, USA). Subjects were seated in a rested state for 10 min before four 

measurements were taken. The mean of the final three measurements were recorded. The 

automated sphygmomanometer meets or exceeds American National Standards 

Institute/Association for the Advancement of Medical Instrumentation standards (Dinamap 

Pro). 

 

The reliability of systolic blood pressure measurement was determined by repeat 

assessment performed over five days. A subject was asked to remain seated in a rested 

position for 10 min before four blood pressure measurements were taken, on 5 separate 

days. The coefficients of variation for systolic blood pressure were 1.0-1.1% (intra-test 

variation, using the four measurements on one day) and 0.7% (inter-test variation, using 

values obtained on the 5 tests performed on separate days) at an overall systolic BP of 121 

mmHg. Thus the absolute error associated with the experimenter and equipment used for 

the measurement of systolic BP within this thesis was less than 1 mmHg.  

 

Heart rate 

With exception to the exercise tests conducted within the bore of the magnetic resonance 

scanner, heart rate (HR) was measured during all exercise tests. During Chapters 4, 6 and 7 

two second average values for HR were recorded using short-range radio telemetry (model 

S610, Polar Electro, Oy, Kempele, Finland).  

 

Measurement of lactate, glucose, potassium and sodium concentrations 

In Chapter 4, small fingertip blood samples were collected to determine whole blood lactate 

concentration ([lactate]) during the ‘unloaded’ baseline and immediately following 

exhaustion. Prior to obtaining the sample, the tip of the finger was cleaned thoroughly with 

alcohol and a disposable safety lancet (Safety-Lanzette, Sarstedt) was used to puncture the 

skin. The first drops of blood were wiped away and ~20-25µL of free-flowing blood was 

collected into a heparinized microvette (Microvette CB 300, Sarstedt) and analysed using 
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an automated blood lactate and glucose analyser (YSI 1500, Yellow Springs Instruments, 

Yellow Springs, OH, USA). The analyser was calibrated hourly or every ten samples and 

daily maintenance was undertaken in accordance with the manufacturer’s 

recommendations.  

 

In Chapters 5 and 7, a 20 gauge cannula (Insyte-W 
TM

 Becton-Dickinson, Madrid, Spain) 

was inserted into the subject’s antecubital vein to enable frequent blood sampling before, 

during and after the exercise protocol. The cannula was kept patent with an infusion of 

0.9% saline at 10 ml·h
-1

 using a syringe driver (Terumo NV, Leuven, Belgium). Blood 

samples were drawn into 5-ml lithium-heparin tubes (Vacutainer, Becton-Dickinson, New 

Jersey, USA). 200 μl of blood was immediately haemolysed in 200μl of cold Triton X-100 

buffer solution (Triton X-100, Amresco, Salon, OH) and analysed to determine blood 

[lactate] and [glucose] (YSI 2300, Yellow Springs Instruments, Yellow Springs, OH). The 

remaining whole blood was then centrifuged at 4000 rpm for 8 min (Hettich EBA 20, 

Germany) before plasma was extracted and analysed for [K
+
] and [Na

+
] using an ion-

selective analyser (9180 Electrolyte Analyzer, F. Hoffman-La Roche, Basel, Switzerland). 

The analyser is automatically calibrated, hourly.  

 

Measurement of nitrate and nitrite concentrations 

In Chapters 5 and 7, separate blood samples for the determination of plasma [NO2
-
] and 

[NO3
-
] were collected via the cannula into lithium-heparin tubes. In Chapters 4 and 6, 

venous blood samples were obtained from the antecubital fossa using venepuncture, with 

all samples being immediately centrifuged at 4000 rpm and 4 °C for 8 min. Plasma was 

extracted and immediately frozen at -80 °C for later analysis of [NO2
-
] and [NO3

-
] via 

chemiluminescence. 

 

Prior to, and regularly during analysis, all glassware, utensils, and surfaces were rinsed with 

deionized water to remove any residual NO2
-
. Plasma NO2

-
 and NO3

-
 were analysed by gas 

phase chemiluminescence analysis. This initially required NO2
-
 and NO3

-
 to be reduced to 

NO gas. For reduction of NO2
-
, undiluted plasma was injected into a glass purge vessel 

containing 5 ml glacial acetic acid and 1 ml NaI solution. For NO3
-
 reduction, plasma 

samples were deproteinised in an aqueous solution of zinc sulphate (10% w/v) and 1 M 

sodium hydroxide, prior to reduction to NO in a solution of vanadium (III) chloride in 1 M 

hydrochloric acid (0.8% w/v). Quantification of NO was enabled by the detection of light 
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emitted during the production of nitrogen dioxide formed upon reaction of NO with ozone. 

Luminescence was detected by a thermoelectrically cooled, red-sensitive photomultiplier 

tube housed in a Sievers gas-phase chemiluminescence nitric oxide analyser (Sievers NOA 

280i, Analytix Ltd, Durham, UK). The concentrations of NO2
-
 and NO3

-
 were determined 

by plotting signal area (mV) against a calibration plot of 25 nM to 1 µM sodium nitrite and 

100 nM to 10 µM sodium nitrate, respectively. The coefficients of variation for duplicate 

samples of nitrate and nitrite using these techniques were 1.9 % and 8.5%, respectively.  

 

Pulmonary gas exchange 

Pulmonary gas exchange and ventilation were measured breath-by-breath in all laboratory 

tests excluding those tests conducted within the bore of the magnetic resonance scanner. All 

pulmonary gas exchange analysis was performed using a metabolic cart system that was 

made up of a bidirectional TripleV digital transducer and differential paramagnetic (O2) and 

infrared absorption (CO2) (Jaeger Oxycon Pro, Hoechberg, Germany). The gas analyser 

was calibrated before each test with gases of known concentration and the volume sensor 

was calibrated using a 3-liter syringe (Hans Rudolph, Kansas City, MO). During all tests 

subjects wore a nose clip and breathed through a low-dead-space, low-resistance 

mouthpiece that was connected securely to the transducer. A capillary line continuously 

sampled V̇O2, V̇CO2 and minute ventilation (V̇E) and displayed these variables breath-by-

breath. Upon completion of each test, raw breath-by-breath gas exchange and ventilation 

data were exported for analysis.  

 

The reliability of pulmonary gas exchange measurement was determined by repeated bouts 

of moderate-intensity exercise performed over several days. A subject performed square-

wave exercise from a 3 min baseline pedaling period at 20 W to a power output of 100 W. 

The coefficients of variation for steady state V̇O2 were 1.3-1.8% (intra-test variation, using 

six 30 s bins from 3 min to 6 min of exercise) and 2% (inter-test variation, using 5 tests 

performed on separate days) at an absolute V̇O2 of 2090 ml·min
-1

. Thus, the typical error 

associated with the measurement of steady-state V̇O2 on separate days was 40-50 ml·min
-1

, 

or 1.9-2.3%. 

 

Normalisation of exercise intensity  

In Chapters 4, 5 and 7 a preliminary ramp incremental exercise test to exhaustion was 

completed. These tests consisted of a three minute unloaded baseline period, followed by a 
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continuous linear (ramp) increase in work rate of 30 W·min
-1

 until the subject was unable to 

continue. The test was terminated when the subject dropped 10 rpm below the test cadence 

(80 rpm). The height and configuration of both handlebar and saddle were recorded 

following the ramp test so that the same settings could be reproduced on all subsequent 

tests. Pulmonary gas exchange was continuously measured throughout these incremental 

tests in order to determine the gas exchange threshold (GET), V̇O2peak and to calculate 

appropriate work rates for subsequent constant work rate exercise tests. In chapter 6, the 

incremental test was not continued until exhaustion and the data were used to establish the 

GET only. 

 

The breath-by-breath pulmonary gas-exchange data were averaged over consecutive 10-s 

periods. The GET was determined by identifying the first disproportionate increase in CO2 

production (V̇CO2) from visual inspection of individual plots of V̇CO2 vs. V̇O2 and an 

increase in ventilatory equivalent of O2 (V̇E/ V̇O2) with no increase in ventilatory equivalent 

of CO2 (V̇E /V̇CO2).  The V̇O2peak was defined as the highest 30-s rolling average value.  

 

In Chapters 4-7, constant work rate exercise tests were employed in order to assess 

pulmonary V̇O2 kinetics in response to exercise. These tests involved an abrupt transition 

from a lower to a higher work rate. All constant work rate trials were performed at power 

outputs which were predetermined based on the results of the preliminary ramp incremental 

tests. When prescribing work rates based upon pulmonary gas exchange data from 

incremental exercise tests it is important to consider the V̇O2 mean response time and 

correct for this accordingly. The V̇O2 mean response time is assumed to approximate two-

thirds of the ramp rate during incremental exercise (Whipp et al., 1981). Therefore, the 

work rates associated with the GET and V̇O2peak used to normalise exercise intensity in 

chapters 4-7 reflect work rates that are 20 W less than the work rates coinciding with the 

appearance of GET and V̇O2peak during the incremental ramp tests. 

 

The moderate-intensity work rates utilised in Chapters 5, 6 and 7 were calculated as 80% of 

the GET. In Chapters 5 and 7, severe-intensity exercise was calculated as 75% Δ (a power 

output representing the power output at GET plus 75% of the difference between the power 

outputs at V̇O2peak and GET). In Chapter 4, four different severe-intensity work rates were 

imposed and these were 60%Δ, 70%Δ, 80%Δ and 100% V̇O2peak. 
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Mathematical modelling of V̇O2 data 

Typically, raw, breath-by-breath pulmonary V̇O2 data displays a considerable inherent 

‘noise’ in its signal, which can obscure the underlying response characteristics. Despite this 

‘noise’, the dynamics of pulmonary V̇O2 are considered closely matched to those of the 

contracting muscle (within ~ 10%) and can be considered valid and as long as a number of 

data editing procedures are adhered to prior to the modelling of the response (Barstow et 

al., 1990; Poole et al., 1991; Grassi et al., 1996; Krustrup et al., 2009).  

 

Each individual transition was initially inspected prior to exclude data that were thought to 

inappropriately reflect the underlying physiological response (errant breaths caused by 

coughing, swallowing etc.). During this process, great care was taken to only remove 

definitive outliers using a criterion that those data points lying more than four standard 

deviations from the five-breath rolling average were removed. Following this ‘filtering’ 

process, data were linearly interpolated using a dedicated algorithm to provide second-by-

second values. This is necessary because signal-to-noise ratio can also be enhanced by 

time-aligning and averaging repeat transitions of identical trials (Lamarra et al., 1987). It 

has also been shown that breath-to-breath ‘noise’ in the V̇O2 signal is influenced by the 

response amplitude (Lamarra et al., 1987). Therefore, in experimental chapters 5-7, repeat-

transitions to moderate-intensity exercise were conducted in order to ensemble average the 

data in an attempt reduce the negative impact of noise on the confidence in the modelled 

parameter estimates. In these chapters a moderate exercise transition often preceded a 

subsequent moderate or severe exercise transition following passive recovery. This was 

done to reduce the total number of laboratory visits. Importantly, the performance of 

moderate exercise prior to a subsequent moderate or severe exercise bout does not influence 

the V̇O2 response during the subsequent bout (Burnley et al., 2000). 

 

The on-kinetics of the V̇O2 response to exercise was defined using parameters derived from 

the fitting of an exponential curve. Once filtering, interpolation and where necessary, 

averaging of the breath-by-breath data was complete, the second-by-second files were 

transferred into a purpose-written modelling program that described the V̇O2 response using 

a nonlinear least-square regression algorithm. The program uses an iterative process that 

minimises the sum of the squared error between the fitted function and the observed data. 

Prior to fitting the exponential curve, the first 20 s of data after the onset of exercise were 
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deleted to ensure that the cardio-dynamic phase of the V̇O2 response (phase I) did not 

influence the phase II fit. For moderate-intensity exercise (Chapters 5 and 7), a single-

exponential model was used to characterise the V̇O2 response, as described in following 

equation:  

 

   V̇O2 (t) = V̇O2baseline + Ap [1 – e
-(t-TDp/τp)

]      (Eqn. 5) 

 

where V̇O2 (t) represents the absolute V̇O2 at a given time t; V̇O2baseline represents the mean 

V̇O2 in the baseline period; Ap, TDp, and τp represent the amplitude, time delay and time 

constant, respectively, describing the phase II increase in V̇O2 above baseline.  

 

In Chapters 5 and 7 the fitting strategy was subsequently used to identify the onset of any 

‘slow component’ in the V̇O2 response to severe-intensity exercise as previously described 

(Rossiter et al., 2001). The fitting window was lengthened iteratively until the exponential 

model-fit demonstrated a discernible departure from the measured response profile. 

Identification, via visual inspection, of the flat residual plot profile (signifying a good fit to 

measured data) systematically differing from zero, gave indication of the delayed slow 

component onset. The magnitude of the slow component for V̇O2 was measured from the 

phase II steady state amplitude and the amplitude of the final value, averaged over the last 

30 s of exercise. 

 

For severe-intensity exercise in Chapter 4 a bi-exponential model was used to characterise 

the V̇O2 response which is described in the following equation: 

 

V̇O2(t) = V̇O2baseline + Ap [1 – e 
–(t -TDp/τp)

] + As [1- e 
– (t –TDs/τs)

]                                 (Eqn. 6) 

 

Where V̇O2 (t) represents the absolute o2 at a given time t; V̇O2baseline represents the mean 

V̇O2 during the final 90 s of the baseline period; Ap, TDp and τp represent the amplitude, 

time delay, and time constant, respectively, describing the phase II increase in V̇O2 above 

baseline; and As, TDs, and τs represent the amplitude of, time delay before the onset of, and 

the time constant describing the development of the V̇O2 slow component, respectively. 

Furthermore, the V̇O2 mean response time (MRT) was determined in Chapter 6 by fitting a 

single exponential curve without time delay to all data from t = 0. This parameter provides 

information on the overall V̇O2 kinetics with no distinction made for various phases of the 
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response. This can be useful for estimating the O2 deficit during exercise which was of 

particular interest in Chapter 6. 

 

Statistical methods 

Statistical analyses in all experimental chapters were conducted using the Statistical 

Package for Social Sciences (SPSS v.19). Specific statistical analysis conducted is outlined 

in each individual experimental chapter. Prior to any statistical analyses the data was 

appropriately screened for normality using recognized procedures. Statistical significance 

was accepted at P < 0.05 with all data being presented as means ± SD unless otherwise 

stipulated.
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Chapter 7: Dietary nitrate supplementation: effects on muscle nitrate, muscle 

metabolism and pulmonary O2 uptake kinetics during moderate- and high-intensity 

cycle exercise 

 

Abstract 

Purpose: The purpose of this study was to assess the effects of dietary nitrate (NO3
-
) 

supplementation on muscle metabolism and pulmonary O2 uptake (V̇O2) kinetics during 

cycle exercise. Methods: In a double-blind, randomised, crossover study, eight healthy 

males supplemented their diet with either 140 ml·d
-1

 of NO3
-
-rich beetroot juice (8.4 mmol 

NO3
-
; BR) or 140 ml·d

-1 
of nitrate-depleted beetroot juice (PL) for 3-days prior to moderate 

and severe-intensity cycle exercise trials. Plasma samples were collected and pulmonary 

V̇O2 was measured at rest and during exercise and muscle biopsies were sampled before 

and immediately after the exercise bouts. Results: Muscle [NO3
-
] and plasma [NO2

-
] and 

[NO3
-
] were higher (P<0.05) in BR compared to PL. Neither baseline nor end-exercise V̇O2 

were different between BR and PL for either moderate-intensity or severe-intensity exercise 

(P>0.05). Muscle [ATP], [PCr], [lactate], [HAD] and pH before and at the end of exercise 

were not different between conditions (P>0.05). The time-to-exhaustion during severe-

intensity exercise was not different between conditions (BR: 140 ± 57 vs. PL: 133 ± 60 s, 

P>0.05). However, a significant order effect was evident (visit 2: 123 ± 57 vs. visit 3: 151 ± 

57 s: P<0.05). Importantly, the Δ in muscle [NO3
-
] following BR compared to PL was 

positively correlated with the Δ in severe-intensity exercise tolerance (r = 0.67; P<0.05). 

Conclusions: NO3
-
 supplementation elevated plasma [NO3

-
] and [NO2

-
], and muscle [NO3

-

], but this did not lead to changes in V̇O2 or muscle metabolic responses during moderate- 

and severe-intensity exercise at the group mean level. However, the higher muscle [NO3
-
] 

with BR compared to PL was correlated with an extended time to exhaustion, suggesting 

that muscle [NO3
-
] may be linked to performance during severe-intensity exercise. 
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Introduction 

Following the onset of exercise, an immediate increase in ATP turnover and an exponential 

rise in oxygen (O2) consumption are evident within the contracting muscle cells. This 

disparity in the rates of muscle ATP utilization and ATP supply via oxidative 

phosphorylation obligates a compensatory energy contribution from substrate-level 

phosphorylation (Poole et al., 2008). Pulmonary O2 uptake (V̇O2), which provides a close 

representation of muscle V̇O2 (Grassi et al., 1996, Krustrup et al., 2009), attains a ‘steady-

state’ within 120-180 s following the onset of moderate-intensity exercise (below the gas 

exchange threshold; GET) (Whipp et al., 1982). However, during heavy (above GET but 

below critical power) and severe-intensity (above critical power) exercise, an additional 

phase of the V̇O2 response, the V̇O2 ‘slow component’, is evident which delays and/or 

prevents the attainment of a steady state. The development of the V̇O2 slow component is 

closely related to accelerated muscle PCr (Rossiter et al., 2002) and glycogen utilization 

(Krustrup et al., 2004), and to the accumulation of fatigue associated metabolites (H
+
, Pi, 

ADP). Interventions that alter the V̇O2 response during exercise and modulate the rate at 

which the body’s energy stores are depleted and fatiguing metabolites are accumulated are 

therefore likely to have important implications for exercise tolerance (Jones & Burnley, 

2009). 

Dietary nitrate (NO3
-
) supplementation in the form of NO3

-
 salts or NO3

-
-rich beetroot juice 

(BR) can have beneficial cardiovascular and metabolic effects. These effects have been 

attributed to the conversion of the relatively inert NO3
-
 anion to bioactive nitrite (NO2

-
) and 

nitric oxide (NO). NO is a gaseous, lipophilic free radical involved in a variety of 

mammalian physiological processes, including mitochondrial respiration and biogenesis, 

muscle contractility and the regulation of blood flow (Cooper et al., 1999; Dejam et al., 

2004; Nisoli et al., 2006). NO is produced via the oxidation of L-arginine, a complex O2-

dependent process that is catalysed by a family of nitric oxide synthase (NOS) enzymes and 

requires several substrates (Alderton et al., 2001). NO is also produced via the NO3
-
-NO2

-
-

NO pathway by which ingested NO3
-
 rapidly absorbed from the gut enters the entero-

salivary circulation and is concentrated in the saliva (Lundberg et al., 2008). Anaerobic 

bacteria, residing in crypts on the dorsum of the tongue, reduce the NO3
-
 to NO2

-
 (Duncan 

et al., 1995). Once swallowed into the acidic environment of the stomach, some of this 
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salivary NO2
-
 is further converted to NO (Benjamin et al., 1994), with the remainder being 

absorbed to increase circulating plasma NO2
-
 concentration ([NO2

-
]). This circulating NO2

-
 

may be converted into NO via a number of enzymatic and non-enzymatic pathways (Cosby 

et al., 2003; Godber et al., 2000). 

Inorganic NO3
-
 ingestion has been reported to reduce resting blood pressure (Bailey et al., 

2010; Kapil et al., 2010; Kelly et al., 2013; Larsen et al., 2006; Webb et al., 2008) and 

modify the physiological response to exercise (Bailey et al., 2009; Larsen et al., 2007). 

These modifications include reductions in the O2 cost of moderate- (Bailey et al., 2009; 

Larsen et al., 2007; Wylie et al., 2013a) and severe-intensity constant-work-rate exercise 

(Lansley et al., 2011a). NO3
-
 supplementation can also speed the V̇O2 phase II time 

constant (τ) (Kelly et al., 2013) and reduce the amplitude of the V̇O2 slow component 

(Bailey et al., 2009). Improvements in time to exhaustion during constant-work-rate 

exercise (Bailey et al., 2009; Kelly et al., 2013, Lansley et al., 2011a) and increased 

performance in intense intermittent exercise (Wylie et al., 2013b), time trials (Bond et al., 

2012; Cermak et al., 2012; Lansley et al., 2011b; Muggeridge et al., 2014) and incremental 

exercise (Masschelein et al., 2012, Vanhatalo et al., 2010) have been reported following 

NO3
-
 supplementation. The effects of NO3

-
 supplementation may be more limited in elite 

athletes compared to recreationally active individuals (Bescos et al., 2012, Wilkerson et al., 

2012). The proposed mechanisms behind the physiological benefits and ergogenic effects of 

NO3
-
 supplementation include NO-mediated modifications in muscle contractile function 

(Bailey et al., 2010; Hernández et al., 2012), mitochondrial efficiency (Larsen et al., 2011) 

and improved muscle blood flow, with preferential distribution to type II fibres (Ferguson 

et al., 2013).  

Research has consistently reported that NO3
-
 supplementation significantly increases 

circulating plasma [NO3
-
] (Kapil et al., 2010, Larsen et al., 2010) and [NO2

-
] (Bailey et al., 

2009; Kelly et al., 2013; Vanhatalo et al., 2010; Wylie et al., 2013a). However, it is 

currently unknown whether dietary NO3
-
 supplementation can increase [NO3

-
] 

concentrations within skeletal muscle tissue, and whether this is important in eliciting the 

biological effects previously reported. Therefore the aim of this study was to assess the 

influence of dietary NO3
-
 supplementation on skeletal muscle [NO3

-
] as well as pulmonary 

V̇O2 and the muscle metabolic responses to constant-work-rate moderate- and severe-

intensity exercise. These data may enable better understanding of the mechanisms by which 
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dietary NO3
-
 supplementation can affect muscle energetics, exercise economy and exercise 

tolerance. It was hypothesised that: 1) muscle [NO3
-
] would be elevated; 2) the magnitude 

of muscle PCr degradation and metabolite accumulation would be reduced; 3) the O2 cost 

of moderate-intensity cycle exercise would be reduced; and 4) exercise tolerance during 

severe-intensity cycle exercise would be improved, as a result of NO3
-
 supplementation.  

Methods 

Subjects 

Eight physically active male subjects (mean ± SD; age = 26 ± 3 yrs, height = 1.78 ± 0.05 m, 

body mass = 84 ± 7 kg, V̇O2peak = 52.3 ± 4.2 mL∙kg
-1

∙min
-1

) volunteered to take part in this 

study. The study was approved by the Institutional Research Ethics Committee. All subjects 

gave written, informed consent prior to commencement of the study, once the experimental 

protocol, associated risks, and potential benefits of participation had been outlined. Subjects 

were instructed to arrive at the laboratory in a fully hydrated and rested state, at least 3 h 

postprandial, and to avoid strenuous exercise in the 24 h preceding each testing session. 

Subjects were asked to refrain from caffeine and alcohol intake 6 and 24 h before each test, 

respectively, and to consume the same light pre-exercise meal of their choice 3 h before 

testing. In addition to this, subjects were asked to abstain from using antibacterial 

mouthwash and chewing gum for the duration of the study since this has been shown to 

blunt the conversion of NO3
-
 to NO2

-
 in the oral cavity (Govoni et al., 2008). All exercise 

tests were performed at the same time of day (± 2 h) for each subject. 

Procedures 

Subjects were required to attend the laboratory on three occasions over a 2-wk period. All 

exercise tests were performed using an electronically-braked cycle ergometer (Lode 

Excalibur Sport, Groningen, the Netherlands). During visit 1, subjects completed a ramp 

incremental test to exhaustion for the determination of V̇O2peak and gas exchange threshold 

(GET). Subjects performed 3 min of baseline cycling at 20 W and 80 rpm, after which the 

work rate was increased at a rate of 30 W∙min
-1 

in a linear fashion until volitional 

exhaustion was achieved or until the subject was unable to maintain the 80 rpm pedal rate. 

The height and configuration of the saddle and handlebars were recorded and reproduced in 

subsequent tests. The breath-by-breath pulmonary gas-exchange data were collected 

continuously during the incremental test and averaged over 10-s periods. V̇O2peak was 
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determined as the highest mean V̇O2 during any 30-s period. The GET was determined 

from 1) the first disproportionate increase in CO2 production (V̇CO2) from visual inspection 

of individual plots of V̇CO2 and V̇O2 and 2) an increase in expired ventilation (V̇E/VO2) 

with no increase in V̇E/VCO2. All subsequent work rates were calculated with account taken 

of the mean response time for V̇O2 during ramp exercise (i.e., two-thirds of the ramp rate 

was deducted from the work rate at the GET). 

Following visit 1, subjects were randomly assigned to receive 3-days of dietary 

supplementation (See ‘Supplementation’ below), prior to the subsequent exercise trials. 

During visits 2 and 3 subjects completed step-transition, cycling exercise for the 

determination of pulmonary V̇O2, plasma [NO2
-
] and [NO3

-
] kinetics, muscle metabolite 

concentrations and exercise tolerance. Upon arrival at the laboratory, a cannula (Insyte-W 

TM
 Becton-Dickinson, Madrid, Spain) was inserted into the subject’s antecubital vein to 

enable frequent blood sampling before, during and after the exercise protocol. Skin 

incisions were made under local anaesthesia in preparation for subsequent muscle biopsies 

of the m. vastus lateralis. 

The exercise protocol involved one 10-min bout of moderate-intensity cycling at 80% GET 

and one bout of severe-intensity cycling at 75% Δ (a work rate representing GET plus 75% 

of the difference between the work rates at GET and V̇O2peak) to exhaustion. Each exercise 

bout involved an abrupt transition to the target work rate initiated from a 3-min, 20 W 

baseline, with the exercise bouts separated by 27-min of passive recovery. After 6 min of 

severe-intensity exercise, subjects stopped cycling for 1 min in order for a muscle biopsy to 

be obtained (see later). Following this, the exercise bout continued until task failure as a 

measure of exercise tolerance. The time to exhaustion was recorded when the pedal rate fell 

by > 10 rpm below 80 rpm. In these bouts, the subjects were verbally encouraged to 

continue for as long as possible. Blood was sampled during the baseline cycling preceding 

the moderate transition and after 1, 2, 3, 6 and 10 min of moderate-intensity exercise. 

Further samples were drawn during the baseline preceding the severe transition and after 1, 

2, 3 and 6 min of severe-intensity exercise, immediately before the resumption of severe-

intensity exercise, and at exhaustion. All subjects were able to maintain the severe-intensity 

exercise for the 6 min duration apart from one who completed 5 min 35 s on each occasion. 

Finally, samples were drawn during recovery from the severe exercise bout at 1, 3 and 5-

mins.  
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Supplementation 

After completion of the non-supplemented visit 1, subjects were assigned in a double-blind, 

randomized, crossover design to receive a course of dietary NO3
-
 supplementation before 

visits 2 and 3. The supplements were either NO3
-
-rich BR (2 x 70 mL∙d

-1
 of BR providing 

~8.4 mmol NO3
- 
per day; Beet it, James White Drinks, Ipswich, UK) or NO3

-
-depleted PL 

(2 x 70 ml∙d
-1

 of PL providing ~0.006 mmol NO3
-
 per day; Beet it, James White Drinks, 

Ipswich, UK). The PL beverage was created by passage of the juice, before pasteurization, 

through a column containing Purolite A520E ion exchange resin, which selectively removes 

NO3
-
 ions. The PL was similar to the BR in appearance, taste and smell. Subjects were 

instructed to consume the beverages in the morning and afternoon of days 1 and 2 of 

supplementation, then in the morning and 2.5 h before the exercise trial on day 3. A 

washout period of at least 72 h separated each supplementation period. Subjects were 

instructed to follow their normal dietary habits throughout the testing period and to 

replicate their diet between conditions during supplementation periods. Subjects were 

informed that the supplementation may cause beeturia (red urine) and red stools temporarily 

but that this side effect was harmless. 

Measurements 

Muscle samples were obtained from the medial part of the m. vastus lateralis under local 

anaesthesia (1% lidocaine) using the Bergstrom needle biopsy technique with suction 

(Bergstrom, 1962). Muscle samples were taken at 5 different time points during the 

protocol: at rest (Rest), following 10 min of moderate-intensity exercise (Mod), following 6 

min of severe-intensity exercise (Sev), following a 45 s recovery period (Rec) and at 

exhaustion (Exh). Biopsy samples were immediately frozen in liquid nitrogen and stored at 

-80°C for subsequent analysis. Wet muscle samples were weighed on scales (XP6U Ultra-

Microbalance, Mettler Toledo Ltd, Leicester UK) located in a -20°C cold cabinet, before 

undergoing a freeze-drying process. Samples were dissected to remove blood, fat, and 

connective tissue. Approximate 2 mg aliquots of isolated muscle fibres were weighed on a 

fine balance (XP6U Ultra-Microbalance, Mettler Toledo Ltd, Leicester UK) and stored in 

500 µL microcentrifuge tubes at -80°C. Prior to metabolite analysis, 200 µL of 3 M 

perchloric acid was added to ~2 mg dry weight muscle tissue. Following a short centrifuge 

and 30 min incubation on ice, 170 µL was transferred (without fibres) to a fresh 

microcentrifuge tube, and 255 µL cooled 2 M potassium bicarbonate (KHCO3) was added. 



Chapter 7: Dietary nitrate supplementation: effects on muscle nitrate, muscle metabolism and  

                  pulmonary O2 uptake kinetics during moderate- and high-intensity cycle exercise 

 

77 
 

This was centrifuged, and the supernatant was analysed for pH, concentrations of ATP, 

PCr, lactate and 3-Hydroxyacyl CoA dehydrogenase (HAD) as previously described 

(Lowry & Passonneau, 1972). The supernatant was also analysed for the concentration of 

NO3
- 
by gas phase chemiluminescence, as described below. 

Blood samples were drawn into 5-mL lithium-heparin tubes (Vacutainer, Becton-

Dickinson, New Jersey, USA). 200 μL of blood was immediately haemolysed in 200 μL of 

cold Triton X-100 buffer solution (Triton X-100, Amresco, Salon, OH) and analysed to 

determine blood [lactate] and [glucose] (YSI 2300, Yellow Springs Instruments, Yellow 

Springs, OH). The remaining whole blood was then centrifuged at 4000 rpm for 8 min 

(Hettich EBA 20, Germany) before plasma was extracted and analysed for [K
+
] and [Na

+
] 

(9180 Electrolyte Analyzer, F. Hoffman-La Roche, Basel, Switzerland). Blood samples for 

the determination of plasma [NO2
-
] and [NO3

-
] were collected into lithium heparin tubes 

and immediately centrifuged at 4000 rpm and 4 °C for 8 min. Plasma was extracted and 

immediately frozen at -80 °C for later analysis of [NO2
-
] and [NO3

-
].  

Prior to and regularly during analysis, all glassware, utensils, and surfaces were rinsed with 

deionized water to remove any residual NO2
-
. Plasma NO2

-
 and NO3

-
 were analysed by gas 

phase chemiluminescence analysis. This initially required NO2
-
 and NO3

-
 to be reduced to 

NO gas. For reduction of NO2
-
, undiluted plasma was injected into a glass purge vessel 

containing 5 ml of glacial acetic acid and 1 ml of NaI solution. For NO3
-
 reduction, plasma 

samples were deproteinised in an aqueous solution of zinc sulphate (10% w/v) and 1 M 

sodium hydroxide, prior to reduction to NO in a solution of vanadium (III) chloride in 1 M 

hydrochloric acid (0.8% w/v). Quantification of NO was enabled by the detection of light 

emitted during the production of nitrogen dioxide formed upon reaction of NO with ozone. 

Luminescence was detected by a thermoelectrically cooled, red-sensitive photomultiplier 

tube housed in a Sievers gas-phase chemiluminescence NO analyser (Sievers NOA 280i, 

Analytix Ltd, Durham, UK). The concentrations of NO2
-
 and NO3

-
 were determined by 

plotting signal area (mV) against a calibration plot of 25 nM to 1 µM sodium nitrite and 

100 nM to 10 µM sodium nitrate, respectively. 

During all laboratory exercise tests, pulmonary gas exchange and ventilation were 

measured continuously with subjects wearing a nose clip and breathing through a 

mouthpiece and impeller turbine assembly (Jaeger Triple V, Hoechburg, Germany). The 

inspired and expired gas volume and gas concentration signals were continuously sampled 
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at 100 Hz, the latter using paramagnetic (O2) and infrared (CO2) analysers (Oxycon Pro, 

Jaeger, Hoechburg, Germany) via a capillary line connected to the mouthpiece. The gas 

analysers were calibrated using a three-liter syringe (Hans Rudolph, Kansas City, MO, US). 

Pulmonary gas exchange variables were calculated and displayed breath-by-breath. HR was 

measured using short-range radio telemetry (model 610; Polar Electro Oy, Kempele, 

Finland). 

Data analysis 

The breath-by-breath V̇O2 data from each exercise test were initially examined to exclude 

errant breaths caused by coughing and swallowing with those values lying more than four 

SD from the local mean being removed. The breath-by-breath data were subsequently 

linearly interpolated to provide second-by-second values. The first 20 s of data after the 

onset of exercise (the phase I response) were deleted, and a non-linear least squares 

algorithm was used to fit the data thereafter. A single-exponential model was used to 

characterize the phase II V̇O2 responses to both moderate- and severe-intensity exercise, as 

described in the following equation: 

V̇O2 (t) = V̇O2baseline + Ap [1 – e
-(t-TDp/τp)

] 

where V̇O2 (t) represents the absolute V̇O2 at a given time t; V̇O2baseline represents the mean 

V̇O2 in the baseline period; Ap, TDp, and τp represent the amplitude, time delay and time 

constant, respectively, describing the phase II increase in V̇O2 above baseline. An iterative 

process was used to minimize the sum of the squared errors between the fitted function and 

the observed values. V̇O2baseline was defined as the mean V̇O2 measured over the final 60 s 

of baseline cycling. The end-exercise V̇O2 was defined as the mean V̇O2 measured over the 

final 30 s of exercise. 

The fitting strategy was subsequently used to identify the onset of any ‘slow component’ in 

the V̇O2 response to severe-intensity exercise as previously described (Rossiter et al., 

2001). The fitting window was lengthened iteratively until the exponential model-fit 

demonstrated a discernible departure from the measured response profile. Identification, via 

visual inspection, of the flat residual plot profile (signifying a good fit to measured data) 

systematically differing from zero, gave indication of the delayed slow component onset. 

The magnitude of the slow component for V̇O2 was measured as the difference between the 

end-exercise V̇O2 and the primary amplitude. 



Chapter 7: Dietary nitrate supplementation: effects on muscle nitrate, muscle metabolism and  

                  pulmonary O2 uptake kinetics during moderate- and high-intensity cycle exercise 

 

79 
 

Statistical Analyses 

Differences in plasma [NO2
-
] and [NO3

-
], muscle [NO3

-
], exercise tolerance and cardio-

respiratory responses between the conditions were analysed with two-tailed, paired-samples 

t-tests. Differences in blood and muscle metabolites between conditions were assessed 

using two-way (supplement x time) repeated measures ANOVA. Significant effects were 

further explored using simple contrasts with Fisher’s LSD. Correlations between 

physiological and performance variables were assessed via Pearson’s product-moment 

correlation coefficient. All data are presented as mean ± SD unless stated otherwise. 

Statistical significance was accepted when P < 0.05. 

Results 

Self-reported compliance to the supplementation regimen was 100%, and no deleterious 

effects were reported. 

Blood Variables 

Blood [glucose] and [lactate] and plasma [sodium] and [potassium] were not significantly 

different between BR and PL supplementation (Table 1). 

The response profiles of plasma [NO3
-
] and [NO2

-
] are presented in Figure 1 and Figure 2, 

respectively. There were significant main effects by supplement on plasma [NO3
-
] (P<0.05) 

and by supplement and time on plasma [NO2
-
] (all P<0.05). At resting baseline, BR 

significantly elevated plasma [NO3
-
] (BR: 238 ± 79 µM) compared to PL (11 ± 4 µM, 

P<0.05). [NO3
-
] was greater in BR than PL at each measurement time point (Figure 1). At 

rest, BR supplementation elevated plasma [NO2
-
] when compared to PL (BR: 493 ± 287 

nM, vs. PL: 43 ± 34 nM, P<0.05). [NO2
-
] was greater in BR than PL at each measurement 

time point (Figure 2).  Following 10 min of moderate-intensity exercise, [NO2
-
] was 

significantly reduced in PL to 26 ± 21 nM (P<0.05) and showed a trend for a reduction in 

BR to 411 ± 293 nM (P=0.07) from baseline. During severe-intensity exercise to 

exhaustion, [NO2
-
] declined from baseline to 15 ± 11 nM in PL and to 174 ± 95 nM in BR 

(P<0.05). 
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Muscle [NO3
-
] 

The effect of dietary NO3
-
 supplementation on muscle [NO3

-
] is illustrated in Figure 3. 

ANOVA revealed a main effect for supplementation on muscle [NO3
-
] (P<0.05), which 

tended to be higher at rest (BR: 23.6 ± 9.2 vs. PL: 17.3 ± 8.9 nmol/mg DW; P=0.14) and 

following 10 min of moderate-intensity exercise (BR: 31.5 ± 12.0 vs. PL: 17.2 ± 11.4 

nmol/mg DW; P=0.08). Muscle [NO3
-
] was higher in BR compared to PL following 6 min 

of severe-intensity exercise (BR: 28.4 ± 12.7 vs. PL: 16.8 ± 8.0 nmol/mg DW; P<0.05) and 

45 s after the exercise (BR: 32.0 ± 11.4 vs. PL: 13.4 ± 4.0 nmol/mg DW; P<0.05). Muscle 

[NO3
-
] remained unchanged in both BR and PL across all time-points (P>0.05). On 

average, muscle [NO3
-
] was 72% greater in BR compared to PL across the entire protocol 

(Figure 3).  

Muscle Metabolites and pH 

Muscle [ATP], [PCr], [lactate] and pH were not significantly different between BR and PL 

trials during either moderate- or severe-intensity exercise. ANOVA revealed there was a 

main effect for time on muscle [ATP], [PCr], [lactate] and pH (Table 2).  

V̇O2 Kinetics and HR 

Group mean pulmonary V̇O2 responses to moderate- and severe-intensity exercise in BR 

and PL were not different (Table 3).  During moderate-intensity exercise, baseline V̇O2 

(BR: 1180 ± 155 vs. PL: 1183 ± 201 ml/min; P>0.05) and end-exercise V̇O2 (BR: 1824 ± 

272 vs. PL: 1830 ± 252 ml/min; P>0.05) were unchanged in BR compared to PL, as were 

the primary amplitude (BR: 645 ± 153 vs. PL: 648 ± 167 ml/min; P>0.05) and the phase II 

τ (BR: 18 ± 6 vs. PL: 20 ± 9 s; P>0.05). In the response to severe-intensity exercise, 

baseline V̇O2 (BR: 1234 ± 270 vs. PL: 1226 ± 114 ml/min; P>0.05), end-exercise V̇O2 (BR: 

4248 ± 326 vs. PL: 4309 ± 385 ml/min; P>0.05), the primary amplitude (BR: 2353 ± 264 

vs. PL: 2331 ± 241 ml/min; P>0.05), the phase II τ (BR: 31 ± 9 vs. PL: 30 ± 6 s; P>0.05), 

and the V̇O2 slow component amplitude (BR: 661 ± 101 vs. PL: 752 ± 171 ml/min; P>0.05) 

were not different in BR compared to PL. Heart rate was not different between BR and PL 

during either moderate- or severe-intensity exercise. 
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Exercise Tolerance 

Exercise tolerance was measured as time to exhaustion during severe-intensity exercise 

preceded by 6 min of severe-intensity exercise and 1-min rest, and no difference was 

observed between BR and PL (140 ± 57 s vs. 133 ± 60 s, P>0.05). There was a significant 

order effect, such that exercise tolerance was better in visit 3 (151 ± 57 s) compared to visit 

2 (123 ± 57 s: P<0.05), irrespective of the supplement taken.  

Additional analyses revealed that participants who consumed PL before BR generally 

evidenced better physiological and exercise performance on visit 3 compared to visit 2 

(considered hereafter as the PL→BR group), whereas participants who consumed BR 

before PL generally experienced worse physiological and exercise performance on visit 3 

compared to visit 2 (considered hereafter as the BR→PL group).  These grouped data are 

presented in Table 4. The PL→BR group had a significantly greater increase in plasma 

[NO2
-
] following BR compared to the BR→PL (PL→BR: 665 ± 189 nM vs. BR→PL: 236 

± 43 nM; P<0.05). Steady-state V̇O2 during moderate-intensity exercise was reduced in the 

PL→BR group whereas the BR→PL group had an increase in V̇O2 (PL→BR: -94 ± 65 vs. 

BR→PL: 108 ± 65 ml/min; P<0.05) following BR supplementation (Figure 4). Exercise 

tolerance was improved in the PL→BR group (+35 ± 29 s), whilst a decrease was evident 

in the BR→PL group (-21 ± 11 s; P<0.05) following BR supplementation. Although not 

statistically significant, the PL→BR group tended to have a greater increase in muscle 

[NO3
-
] compared to the BR→PL group (Table 4).  

The change in muscle [NO3
-
] following BR supplementation compared to PL was positively 

correlated with the change in severe-intensity exercise tolerance (r = 0.67; P<0.05; n = 8) 

(Figure 5). The change in steady-state V̇O2 during moderate-intensity exercise following 

BR supplementation compared to PL was negatively correlated with the change in severe-

intensity exercise tolerance (r = -0.66; P<0.05; n = 8) (Figure 5).  
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Table 7.1. Blood [lactate] and [glucose] and plasma [sodium] and [potassium] responses during moderate- and severe-intensity cycling, following BR and PL.  

 

 

 

 

 

 

 

 

 Lactate (mM) Glucose (mM) Sodium (mM) Potassium (mM) 

Moderate-intensity exercise  

Rest 

1 min 

2 min 

3 min 

6 min 

10 min 

 

Severe-intensity exercise   

Rest 

1 min 

2 min 

3 min 

6 min 

7 min 

Exh 

Rec 1 

Rec 3 

Rec 5 

BR 

1.0 ± 0.3 

1.0 ± 0.2  

1.2 ± 0.2 

1.2 ± 0.2 

1.3 ± 0.3 

1.3 ± 0.4 

 

 

0.9 ± 0.2 

1.3 ± 0.3 

2.3 ± 1.0 

3.7 ± 1.2 

9.1 ± 2.2 

9.1 ± 2.2 

   12.1 ± 2.8 

   11.7 ± 3.0 

   12.2 ± 2.2 

   12.4 ± 2.3 

PL 

0.8 ± 0.4 

0.9 ± 0.4  

1.0 ± 0.3 

1.1 ± 0.4 

1.2 ± 0.3 

1.3 ± 0.3 

 

 

0.7 ± 0.2 

1.1 ± 0.3 

2.0 ± 0.6 

3.9 ± 1.4 

8.8 ± 3.3 

8.6 ± 2.5 

   10.8 ± 3.1 

   11.0 ± 2.6 

   11.9 ± 2.4 

   11.8 ± 1.9 

BR 

4.4 ± 0.7 

4.2 ± 0.4  

4.2 ± 0.6 

4.2 ± 0.4 

4.1 ± 0.5 

4.1 ± 0.5 

 

 

4.5 ± 0.4 

4.3 ± 0.3 

4.3 ± 0.3 

4.1 ± 0.5 

4.1 ± 0.6 

4.2 ± 0.7 

4.7 ± 0.8 

5.0 ± 1.0 

6.0 ± 0.9 

5.8 ± 1.0 

PL 

3.9 ± 0.8 

4.0 ± 0.6  

3.9 ± 0.8 

4.0 ± 0.4 

4.0 ± 0.4 

4.0 ± 0.5 

 

 

4.1 ± 0.6 

4.3 ± 0.4 

4.2 ± 0.5 

4.2 ± 0.5 

4.2 ± 0.6 

4.2 ± 0.7 

4.8 ± 0.7 

5.4 ± 0.9 

6.3 ± 1.1 

6.0 ± 1.1 

BR 

136 ± 3.6 

136 ± 3.6  

137 ± 2.2 

138 ± 2.4 

138 ± 2.6 

138 ± 2.6 

 

 

136 ± 2.6 

136 ± 5.5 

137 ± 4.5 

138 ± 3.9 

143 ± 4.8 

141 ± 4.2 

146 ± 2.6 

145 ± 3.6 

141 ± 3.5 

140 ± 3.2 

PL 

135 ± 6.3 

138 ± 5.4  

137 ± 2.8 

137 ± 4.1 

137 ± 5.3 

138 ± 2.6 

 

 

135 ± 4.9 

137 ± 3.7 

137 ± 4.8 

138 ± 5.0 

144 ± 4.9 

143 ± 3.9 

145 ± 4.4 

144 ± 3.5 

139 ± 5.2 

139 ± 6.2 

BR 

4.3 ± 0.9 

4.6 ± 0.8  

4.5 ± 0.5 

4.6 ± 0.8 

4.3 ± 0.2 

4.4 ± 0.3 

 

 

4.8 ± 1.3 

5.0 ± 1.4 

5.4 ± 1.6 

5.5 ± 0.9 

5.8 ± 1.0 

5.3 ± 1.3 

5.6 ± 0.7 

5.1 ± 1.0 

4.4 ± 1.1 

3.6 ± 0.2 

PL 

4.1 ± 0.2 

4.4 ± 0.3  

4.4 ± 0.2 

4.6 ± 0.5 

4.3 ± 0.6 

4.6 ± 0.2 

 

 

4.6 ± 0.5 

4.7 ± 0.3 

4.8 ± 0.3 

5.2 ± 0.8 

5.6 ± 0.8 

5.0 ± 0.5 

5.7 ± 0.7 

4.9 ± 0.5 

4.0 ± 0.4 

3.6 ± 0.3 
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Table 7.2. Muscle [ATP], [PCr], [lactate], [HAD] and pH responses during moderate and severe-intensity cycling, following BR and PL. * = significantly 

different from ‘Rest’ (P < 0.05). 

 

                     ATP (mmol/kg DW)   PCr (mmol/kg DW) lactate (mmol/kg DW)            pH HAD (µmol/g DW) 

 

Rest 

Mod 

Sev 

Exh 

BR 

 32.0 ± 7.1 

 29.6 ± 7.1* 

22.6 ± 4.2* 

21.4 ± 7.2* 

PL 

  35.6 ± 9.4 

31.9 ± 7.5* 

23.8 ±7.1* 

24.2 ± 19* 

BR 

 65.2 ± 11.3 

53.9 ± 16.2* 

18.8 ± 17.9* 

 12.7 ± 9.7* 

PL 

 67.4 ± 10.8 

57.1 ± 15.7* 

17.4 ± 17.6* 

17.2 ±17.8* 

BR 

   8.7 ± 6.1 

   8.2 ± 3.3 

93.8 ± 32.2* 

95.0 ± 17.7* 

PL 

   6.4 ± 1.6 

   7.9 ± 2.0 

89.0 ± 17.2* 

97.1 ± 29.5* 

BR             

7.19 ± 0.04 

7.26 ± 0.05* 

6.65 ± 0.13* 

6.67 ± 0.09* 

PL 

7.20 ± 0.03 

7.25± 0.08* 

6.72 ± 0.12* 

6.73 ± 0.11* 

BR 

15.6 ± 2.8 

- 

- 

- 

PL 

16.0 ± 2.1 

- 

- 

- 



Chapter 7: Dietary nitrate supplementation: effects on muscle nitrate, muscle metabolism and  

                  pulmonary O2 uptake kinetics during moderate- and high-intensity cycle exercise 

 

84 
 

Table 7.3. Oxygen uptake kinetics in response to moderate- and severe-intensity exercise, 

following PL and BR supplementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PL BR 

Moderate-intensity exercise  

V̇O2 

Baseline, ml/min 

End Exercise, ml/min 

Phase II Time Constant, s 

Primary amplitude, ml/min 

 

Severe-intensity exercise   

V̇O2 

Baseline, ml/min 

End Exercise, ml/min 

Phase II time constant, s 

Primary amplitude, ml/min 

Slow Component Amplitude, ml/min 

 

 

1183 ± 201 

1830 ± 252 

20 ± 9 

648 ± 167 

 

 

 

1226 ± 114 

4309 ± 385 

30 ± 6 

2331 ± 241 

752 ± 171 

 

 

1180 ± 155 

1824 ± 272 

18 ± 6 

645 ± 153 

 

 

 

1234 ± 270 

4248 ± 326 

31 ± 9 

2353 ± 264 

661 ± 101 
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Table 7.4. Physiological and performance changes when participants considered as ‘responders’ and 

‘non-responders’. * = significantly different between the two groups (P < 0.05). PL→BR, participants 

who consumed PL on visit 2 and BR on visit 3; BR→PL, participants who consumed BR on visit 2 

and PL on visit 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Δ Plasma NO2
-         

   
(nM) 

Δ Muscle [NO3
-
] 

 
( nmol/mg DW) 

Δ Moderate-

intensity V̇O2 

(ml/min) 

Δ Exercise 

Tolerance            

(s) 

‘Responders’ (n = 4) 

(PL→BR)  

1 

2 

3 

4 

Mean 

821 

868 

406 

565 

665 ± 189 * 

0 

5.6 

2.2 

27.1 

8.72 ± 10.78 

-83 

1 

-181 

-114 

-94 ± 65 * 

16 

11 

28 

83 

35 ± 29 * 

 

‘Non Responders’  (n = 4) 

(BR→PL) 

 

1 

2 

3 

4 

Mean 

 

184 

208 

294 

256 

236 ± 43 

 

1.9 

0 

17 

-3.91 

3.84 ± 8.05 

 

8 

108 

188 

127 

108 ± 65 

 

-40 

-18 

-9 

-18 

-21 ± 11 
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Figure 7.1. Plasma [NO3
-
] response during moderate- and severe-intensity exercise and 

recovery following BR (A & C) and PL (B & D). Error bars indicate the SE. BR was greater 

than PL at each time point. * P < 0.05 BR compared to PL; † P < 0.05 compared to baseline. 
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Figure 7.2. Plasma [NO2
-
] response during moderate- and severe-intensity exercise and 

recovery following (A & C) and PL (B & D). Error bars indicate the SE. BR was greater than 

PL at each time point. *P < 0.05 BR compared to PL; † P < 0.05 compared to baseline. 
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Figure 7.3. Muscle [NO3
-
] response during moderate- and severe-intensity exercise following 

BR (A & C) and PL (B & D). Error bars indicate the SE. BR was greater than PL at each time 

point. * P < 0.05 BR compared to PL.  
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Figure 7.4. Pulmonary oxygen uptake (V̇O2) responses of A) the BR→PL group and B) the 

BR→PL group during a step increment to a moderate-intensity work rate, following PL and 

BR supplementation. Responses following BR are represented as solid circles, with the PL 

responses being shown as open circles. The dotted vertical line denotes the abrupt ‘step’ 

transition from baseline to moderate-intensity cycle exercise. 
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Figure 7.5. Pearson product-moment correlation coefficient between A) the change in 

muscle [NO3-] following BR (BR-PL; nmol/mg DW) and the change in exercise tolerance 

following BR (BR-PL; s); and B) the change in steady-state V̇O2 following BR (BR-PL; 

ml/min) and the change in exercise tolerance following BR (BR-PL; s).  
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Discussion 

The principal original finding of this study, consistent with our hypothesis, was that muscle 

[NO3
-
] was elevated following NO3

- 
supplementation. In contrast to our hypothesis, NO3

-
 

supplementation had no significant effect on the group mean V̇O2 or muscle metabolic 

responses to moderate- or severe-intensity exercise. Severe-intensity exercise tolerance was 

not significantly different between BR and PL conditions. However, an order effect was 

evident such that severe-intensity exercise tolerance was significantly greater in visit 3 

compared to visit 2. Further analysis indicated that this could be explained, in part, by 

variability in participant responsiveness to NO3
-
 supplementation, with the change in 

muscle [NO3
-
] being significantly correlated to the change in severe-intensity exercise 

tolerance. 

Effects of NO3
-
 Supplementation on Blood Variables 

At rest, plasma [NO2
-
] and [NO3

-
] were elevated significantly following NO3

- 

supplementation, compared with PL. These findings are consistent with previous research 

which has consistently reported elevations in plasma [NO2
-
] (Bailey et al., 2009; Kelly et 

al., 2013; Vanhatalo et al., 2010) and [NO3
-
] (Kapil et al., 2010; Larsen et al., 2010; Wylie 

et al., 2013a) following BR supplementation. The response profile of plasma [NO2
-
] during 

severe-intensity exercise was similar to data recently reported (Wylie et al., 2013b), with 

[NO2
-
] declining from baseline to exhaustion during severe-intensity exercise. Interestingly, 

no changes in [NO3
-
] were observed during the severe-intensity exhaustive bout in the 

current study, while [NO3
-
] increased significantly in the previous report (Wylie et al., 

2013b). The ability of an individual to ‘utilize’ [NO2
-
] during exercise may be important in 

improving severe-intensity exercise performance (Dreissigacker et al., 2010; Wylie et al., 

2013b). The percentage reduction of [NO2
-
] in the current study was similar in BR and PL 

conditions (~60%), although the absolute change in [NO2
-
] was greater in BR. Similarly, 

there were no differences in blood [lactate], [glucose], [Na+] or [K+] between BR and PL 

in the present study.  

Effects of NO3
-
 Supplementation on Muscle Variables 

This is the first investigation to report the effects of NO3
-
 supplementation on the [NO3

-
] of 

skeletal muscle. Muscle [NO3
-
] was elevated by 72% following BR compared to PL, 

indicating that in addition to increasing circulating plasma [NO3
-
], supplementation also 
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increases muscle tissue [NO3
-
]. This finding contributes to our understanding of the 

potential mechanistic bases behind the effects of NO3
-
 supplementation on the physiological 

responses to exercise. Unfortunately, due to the much lower tissue concentrations of NO2
-
 

compared to NO3
-
, it was not possible to ascertain the influence of NO3

-
 supplementation on 

skeletal muscle [NO2
-
] in the present study. 

Using 
31

P-MRS, Bailey et al. (2010) reported that during low-intensity single-leg knee-

extensor exercise, NO3
-
 supplementation resulted in reduced ATP turnover for the same 

work rate, with a smaller reduction in muscle PCr and less accumulation of ADP and Pi. 

Similar effects were observed during high-intensity exercise and the positive changes in 

muscle metabolic and pulmonary V̇O2 responses were associated with an improved 

tolerance to high-intensity exercise (Bailey et al., 2010). It is important to note that in the 

study of Bailey et al. (2010), the pulmonary V̇O2 and muscle metabolic (assessed non-

invasively by 
31

P-MRS) responses were measured on separate occasions. An important 

strength of the present study is that the V̇O2 and muscle metabolic (measured via biopsy) 

responses were measured simultaneously during cycle ergometer exercise. In contrast to our 

hypothesis, NO3
-
 supplementation did not significantly alter the muscle metabolic response 

to exercise relative to placebo. As would be expected, the overall lack of significant change 

in muscle [ATP], [PCr], [lactate], [creatine] and pH during exercise between the BR and PL 

conditions was associated with no significant changes in the group mean V̇O2 response or 

exercise tolerance. The sampling, handling and analytical processes involved in the muscle 

biopsy procedure may provide a heightened risk of measurement error compared to 

previous research utilising 
31

P-MRS techniques (Bailey et al., 2010; Vanhatalo et al., 

2011). 

Effects of NO3
-
 Supplementation on Pulmonary O2 Uptake 

In the present study, there were no changes in the group mean V̇O2 response to moderate- 

or severe-intensity constant-work-rate cycling exercise. Previous research has reported 

significant reductions in baseline (Lansley et al., 2011a) and steady-state V̇O2 (Bailey et al., 

2009; Larsen et al., 2007, Vanhatalo et al., 2010) during moderate-intensity exercise 

following NO3
-
 supplementation. Furthermore, reductions in the V̇O2 slow component 

(Bailey et al., 2009) and speeding of the phase II τ (Kelly et al., 2013) have been observed 

in response to severe-intensity exercise as a result of NO3
-
 supplementation. These findings 

are thought to be consequent to modulations to the ATP cost of muscle force production 
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(Bailey et al., 2009), altered intracellular calcium handling (Hernández et al., 2012) and/or 

preferential distribution of blood flow to type II muscle fibres (Ferguson et al., 2013). 

However, other studies have reported no significant difference in the V̇O2 response to 

exercise following NO3
-
 supplementation (Bescos et al., 2012; Wilkerson et al., 2012).  

Effects of NO3
-
 Supplementation on Exercise Tolerance 

Tolerance to severe-intensity constant-work-rate exercise was not significantly altered 

following NO3
-
 supplementation in the current study, which is contrary to several previous 

studies (Bailey et al., 2009; Kelly et al., 2013; Lansley et al., 2011a; Vanhatalo et al,. 

2011). However, other studies have reported no improvement in incremental (Bescos et al., 

2011) and time-trial (Bescos et al., 2012; Cermak et al., 2012; Peacock et al., 2012) 

protocols following NO3
-
 supplementation. Those studies that report limited effects of NO3

-
 

supplementation have usually tested highly trained subjects and/or employed an acute NO3
- 

supplementation regimen (Bescos et al., 2012; Cermak et al., 2012; Wilkerson et al., 2012). 

There have been several studies suggesting the notion of ‘responders’ and ‘non-responders’ 

to NO3
-
 supplementation which may be related to the training status of the participants; that 

is, aerobically-trained subjects appear to benefit less from NO3
-
 supplementation than 

subjects who are less well trained (Wilkerson et al., 2012). Compared to less well-trained 

subjects, endurance athletes are known to have higher baseline plasma [NO2
-
] (Bescos et 

al., 2011; Jungersten et al., 1997; Schena et al., 2002), greater training-related NOS activity 

(McAllister et al., 2006; McConnell et al., 2007), a higher proportion of type I fibres, and 

greater mitochondrial and capillary density (Jensen et al., 2004), all of which may limit the 

potential for  NO3
-
 supplementation to benefit performance (Wilkerson et al., 2012). 

However, the participants in the present study were recreationally active, with a mean 

VO2peak of ~52 ml∙kg
-1

∙min
-1

. Furthermore, the baseline plasma [NO2
-
] was similar to values 

that have been reported previously in recreationally-active individuals and the dose and 

timing of NO3
-
 supplementation utilized in the current study has previously been shown to 

be effective in this population (Bailey et al., 2009; Kelly et al., 2013). 

 

Experimental Considerations 

Although there was no significant difference in exercise tolerance between BR and PL, 

there was a significant improvement from visit 2 to visit 3 suggesting either a learning 

effect or a training effect. Whilst all subjects were comfortable within the laboratory setting 
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and had completed cycle ergometry protocols previously, some subjects had not 

experienced the muscle biopsy procedure before and it is possible that this contributed to 

the improved performance in visit 3 compared to visit 2. 

 

While this issue complicates data interpretation, it is interesting that, upon further 

inspection, subjects who consumed PL before BR evidenced an improved exercise 

performance in visit 3, whereas those subjects who consumed BR before PL had an 

impaired exercise performance in visit 3. Compared to the BR→PL group, the PL→BR 

group had: a significantly greater increase in plasma [NO2
-
]; a significantly reduced steady-

state V̇O2 during moderate-intensity exercise; and a significantly improved severe-intensity 

exercise tolerance (Table 4). Moreover, although not statistically significant, the PL→BR 

group had more than twice the muscle [NO3
-
] (8.72 vs. 3.84 nmol/mg DW) compared to the 

BR→PL group.  There were no significant differences in V̇O2peak (as assessed in the initial 

ramp incremental test) or baseline plasma [NO2
-
] between the two groups. Irrespective of 

the order effect in our study, these results suggest that when BR supplementation 

successfully elevates plasma [NO2
-
], beneficial physiological effects such as a reduced 

steady-state V̇O2 and improved severe-intensity exercise performance can arise. 

 

Consistent with this interpretation, an important novel finding in the present study was that 

the change in muscle [NO3
-
] following BR supplementation was positively and significantly 

correlated with the change in severe-intensity exercise tolerance. Also, the change in 

steady-state V̇O2 during moderate-intensity exercise following BR supplementation was 

negatively correlated with the change in severe-intensity exercise tolerance. This is 

consistent with a recent study in which we reported that BR supplementation reduced 

steady-state V̇O2 during moderate-intensity exercise and increased severe intensity exercise 

tolerance in hypoxia, with these two variables being significantly correlated (Kelly et al., 

2014). Collectively, these results suggest that improved skeletal muscle efficiency 

consequent to greater NO bioavailability (as inferred from greater muscle [NO3
-
]) following 

BR supplementation may promote improved exercise performance. Therefore, while, 

overall, NO3
-
 supplementation did not influence muscle metabolism, V̇O2 or exercise 

tolerance in the present study, perhaps due to the existence of an ‘order effect’, the data do 

indicate that an elevation in muscle [NO3
-
] has the potential to lower V̇O2 during moderate-

intensity exercise and to enhance severe-intensity exercise tolerance. 
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In conclusion, short-term dietary supplementation with NO3
-
-rich beetroot juice increases 

plasma [NO2
-
] and [NO3

-
] as well as muscle [NO3

-
]. Overall, BR supplementation had no 

significant effect on the muscle metabolic or V̇O2 responses during moderate- or severe-

intensity exercise, or severe-intensity exercise tolerance. However, a clear conclusion was 

obscured by the existence of an order effect, and further analysis indicated a significant 

relationship between the change in muscle [NO3
-
] and the change in severe-intensity 

exercise tolerance following BR supplementation. Additional work is required to clarify the 

inter-relationships between skeletal muscle NO bioavailability (and its malleability via 

dietary supplementation), metabolic and mechanical efficiency, and fatigue resistance and 

performance.   



Chapter 8: General Discussion 

 

96 
 

Chapter 8: General Discussion 

From the identification of NO as a gas by Joseph Priestly in 1772, to the Nobel Prize 

winning discovery of the endothelial-derived relaxation factor by Furchgott, Ignarro and 

Murad in the 1980s, and on to modern day scientific research, NO has attracted a wide 

variety of interest. For much of the time following its discovery, NO was thought of simply 

as an atmospheric pollutant, but findings over the last 30 years have identified NO as a 

major signaling molecule with a plethora of functions within the human body. As 

previously discussed, NO is produced endogenously by NOS enzymes which catalyze the 

oxidation of L-arginine and also via the NO3
-
 - NO2

-
 - NO pathway. Increasing dietary 

consumption of NO3
-
 has been shown to elevate the bioavailability of NO and subsequently 

have a number of beneficial physiological effects. Among others, these include lowering 

blood pressure, reducing the O2 cost of exercise and improving exercise tolerance. 

Scientific interest in the effects of NO3
-
 supplementation has soared in recent years with 

many research articles being published.  

Research questions addressed 

The aim of this thesis was to address the ergogenic and therapeutic qualities of NO3
-
 

supplementation.  

1) Does dietary NO3
-
 supplementation modulate the power-duration relationship for severe-

intensity exercise in young, healthy, recreationally active males? 

2) How does dietary NO3
-
 supplementation affect NO metabolism during exercise and can it 

have beneficial effects on exercise tolerance in hypoxic conditions? 

3) Are the beneficial effects of dietary NO3
-
 supplementation elicited in young, healthy 

participants also evident in a healthy, older population? 

4) How does dietary NO3
-
 supplementation influence skeletal muscle [NO3

-
], pulmonary V̇O2 

and muscle metabolic responses to constant-work-rate moderate- and severe-intensity 

exercise. Does this help us to understand the mechanistic bases of previously reported 

improvements in exercise efficiency and exercise tolerance? 

Summary of main findings 

Influence of NO3
-
 supplementation on the power-duration relationship 

Novel findings from Chapter 4 included significant improvements in exercise tolerance 

following BR compared to PL at 60% Δ, 70% Δ and 80% Δ with a trend for improvement 
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at 100% peak power. Critical power and W′ remained statistically unchanged as a result of 

BR although the small, non-significant increments in both caused the hyperbolic power-

duration relationship to shift up and rightward. The V̇O2 phase II time constant was slightly 

but significantly shorter (~10%) in BR compared to PL when all data were considered 

together, irrespective of exercise intensity. It was also found that BR had no effects upon 

resting metabolic rate. Data from this study suggests that NO3
-
 supplementation increased 

exercise tolerance across the severe-intensity exercise domain. Although statistically non-

significant, in concert, the small improvements in CP and W′ would be expected to conflate 

into a meaningful improvement in cycling TT performance in sub elite cyclists. 

Having established that NO3
-
 supplementation could improve severe-intensity exercise 

tolerance in young, healthy individuals, we wanted to establish whether manipulation of 

FIO2 would alter the efficacy of the supplementation and whether the metabolism of NO 

and its derivatives would be affected by exercise-intensity and/or FIO2. 

Influence of NO3
-
 supplementation in hypoxia 

Chapter 5, for the first time, characterized the kinetic profile of plasma [NO2
-
] during 

moderate- and severe-intensity exercise in hypoxia and normoxia. Results demonstrated 

that the rate of decline of plasma [NO2
-
] was greater during exercise following BR 

compared to PL, while FIO2 had a lesser effect upon the decline of [NO2
-
]. In hypoxia, but 

not normoxia, BR supplementation reduced the O2 cost of moderate-intensity exercise, 

speeded V̇O2 kinetics, and improved severe-intensity exercise performance. These findings 

may have important implications for individuals exercising at altitude as well as elderly and 

clinical populations when O2 delivery can be impaired. 

This data led us to investigate whether the beneficial effects of NO3
-
 supplementation 

observed in young healthy individuals in hypoxic conditions might also be observed in a 

healthy older population, where age-related declines in tissue oxygenation may be present.  

Influence of NO3
-
 supplementation in an older population 

Novel data from Chapter 6 indicated that BR supplementation reduced resting systolic, 

diastolic and mean arterial pressure compared to PL, in an older population (60-70 yrs). BR 

supplementation also reduced the V̇O2 mean response time and the O2 deficit compared to 

PL, in response to moderate-intensity walking exercise. During low-intensity knee extensor 

exercise, the magnitude of PCr depletion was reduced by 15% following BR compared PL, 
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although this finding was non-significant. All other parameters including measures of 

exercising muscle metabolism, functional and cognitive capacity were unaltered following 

NO3
-
 supplementation. These findings suggest that NO3

-
 supplementation may provide a 

therapeutic intervention for reducing the risk of hypertension and improving V̇O2 kinetics 

in older adults.  

In order to provide further insight in to the mechanistic bases underpinning the beneficial 

effects of NO3
-
 observed in Chapters 4, 5 and 6, Chapter 7 aimed to assess the effects of 

[NO3
-
] supplementation upon muscle [NO3]. Chapter 7 also aimed to assess any changes in 

the V̇O2, blood and muscle metabolic responses to moderate- and severe-intensity exercise, 

following NO3
-
 supplementation 

Influence of NO3
-
 supplementation on muscle metabolism 

Chapter 7 provided new insight into the effects of BR and showed that muscle [NO3
-
] was 

72% greater in BR compared to PL, on average, across the entire protocol. Group 

pulmonary V̇O2 and heart rate responses to moderate- and severe-intensity cycle exercise 

remained unchanged following BR, as did exercise tolerance to severe-intensity exercise. 

However, a clear conclusion was obscured by the presence of an order effect. Further 

analyses revealed a significant positive correlation between the change in muscle [NO3
-
] 

and the change in exercise tolerance, as well as a significant negative correlation between 

the change in moderate-intensity V̇O2 and exercise tolerance. This study highlighted 

relationships between skeletal muscle NO bioavailability (and its malleability via dietary 

supplementation), metabolic efficiency, and fatigue resistance and performance.  

The main focus of this series of experimental chapters was to investigate the ergogenic and 

therapeutic effects of dietary NO3
-
 supplementation. A wide range of physiological and 

performance parameters were assessed following dietary supplementation with NO3
-
 -rich 

beetroot juice in varying environmental conditions and subject populations. In order to 

assess the ergogenic and therapeutic effects of NO3
-
 supplementation, it was imperative to 

elucidate whether NO3
-
 supplementation had stimulated NO production via the NO3

-
 -NO2

-
 

-NO pathway. 
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Evidence of increased NO bioavailability 

A consistent finding across all four experimental chapters, and in line with previous 

research (Bailey et al., 2009; Vanhatalo et al., 2010; Larsen et al., 2010; Kapil et al., 2010; 

Wylie et al., 2013a; Kelly et al., 2013a) was that NO3
-
 supplementation elevated circulating 

plasma [NO3
-
] and [NO2

-
]. Chapter 5 and 7 assessed changes in plasma [NO3

-
] and found a 

significant elevation following NO3
-
 supplementation. This elevated concentration of 

circulating NO3
-
 promotes an increase in circulating [NO2

-
], which is demonstrated in all 

chapters. The 197% and 400% increase in plasma [NO2
-
] in Chapter 4 and Chapter 5, 

respectively, were comparable to the elevations reported in previous studies (Bailey et al., 

2009; Bailey et al., 2010; Lansley et al., 2010). The percentage elevations seen in Chapter 7 

(~1000%) were somewhat higher than previously reported. Absolute [NO2
-
] following NO3

-
 

supplementation were comparable to previous research but [NO2
-
] following placebo were 

particularly low. Interestingly, resting control plasma [NO2
-
] in older adults in Chapter 6 

was similar to that reported in young adults. This was surprising as lower [NO2
-
] values 

may have been expected in an older population (Sindler et al., 2011). Moreover, it may 

have been expected that the increase in plasma [NO2
-
] following NO3

-
 supplementation 

might be smaller in older compared with younger adults due to age-related changes in the 

oral microbiome (Presley et al., 2011). However, the increase in plasma [NO2
-
] in Chapter 6 

was greater (418%) than that found in previous research with younger adults (Bailey et al., 

2009; Govoni et al., 2008; Larsen et al., 2007; Vanhatalo et al., 2010; Webb et al., 2008), 

but similar to that reported previously in older healthy subjects (Miller et al., 2012) and 

peripheral arterial disease patients (Kenjale et al., 2011). Despite the disparity in magnitude 

of change evidenced across the four studies, plasma [NO3
-
] and [NO2

-
] are clearly and 

consistently elevated following NO3
-
 supplementation.  

In Chapters 4 and 6 increases in plasma [NO2
-
] were coupled with reductions in systolic 

blood pressure. It is thought that increased plasma [NO2
-
] augments the bioavailability of 

NO which mediates smooth muscle relaxation and results in reductions in blood pressure 

reported (Archer et al., 1994). The effect of NO3
-
 supplementation on blood pressure will 

be discussed in more detail in a later section. 

Chapter 7 was the first investigation to report the effects of NO3
-
 supplementation, in the 

form of beetroot juice on [NO3
-
] of human skeletal muscle tissue. The study reported that 

muscle [NO3
-
] was elevated by 72% following NO3

-
 supplementation compared to placebo. 
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This indicates that in addition to increasing circulating plasma [NO3
-
], supplementation also 

stimulates muscle tissue NO3
-
 uptake. 

In combination, this information may suggest that the bioavailability of NO was increased 

following NO3
-
 supplementation. [NO2

-
] and [NO3

-
] were assessed in order to provide an 

indication of how NO3
-
 supplementation can influence NO bioavailability. It is appreciated 

that increased [NO2
-
] and [NO3

-
] alone are not directly indicative of increases in systemic 

NO production and that measurement of cGMP would have provided further insight into 

[NO]. However, these measures have previously been used to provide estimations of NO 

bioavailability and are considered to be a practical and sensitive biomarker of NO status.  

‘Utilization’ of NO3
-
 and NO2

-
 during exercise 

The metabolism or ‘utilization’ of NO3
-
 and NO2

- 
during exercise was also assessed during 

Chapters 5 and 7. Chapter 7 characterized the kinetic profile of NO3
-
 and NO2

-
 during 

severe-intensity exercise in normoxic conditions. Results demonstrated that a ~60% 

depletion of [NO2
-
] was evident at exhaustion following severe-intensity exercise in both 

BR and PL, although the absolute change in [NO2
-
] was greater in BR. Previous research 

had reported a significantly larger percentage decrease of [NO2
-
] in BR (54%) compared to 

PL (20%) (Wylie et al., 2013b).  No changes in [NO3
-
] were evident in Chapter 7 as a result 

of the severe-intensity exercise bout, which was in contrast to the previous study (Wylie et 

al., 2013b). Research suggests that the change in plasma [NO2
-
] during exercise may be 

related to exercise performance (Dreissigacker et al., 2010), and suggests that the ability of 

an individual to ‘utilize’ NO2
-
 during exercise may be important to improving exercise 

performance. The absence of an increase in NO3
-
 during exercise and a percentage 

reduction of [NO2
-
] similar to that seen in PL, may provide an explanation for the lack of 

ergogenic effect of NO3
-
 supplementation seen in Chapter 7.  

Chapter 5 investigated the metabolism of NO2
-
 during moderate- and severe-intensity 

exercise in hypoxia and normoxia. The results of this study suggest that the metabolism of 

NO and its derivatives are altered by NO3
-
 supplementation and, to a lesser extent, FIO2. 

However, interpretation of these data was not straight forward. NO3
-
 can be reduced in vivo 

to bioactive NO2
-
 and further to NO (Lundberg et al., 2011) and the reduction of NO2

-
 to 

NO is facilitated in hypoxic environments (Castello et al., 2006). However, NO2
-
 is also an 

oxidation product of NO generation via the ‘conventional’ NOS pathway (Ignarro et al., 

1993). 
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In Chapter 5, plasma [NO2
-
] declined during both moderate- and severe-intensity exercise. 

The magnitude and rate of decline of [NO2
-
] was significantly greater during exercise 

following BR compared to PL in both normoxia and hypoxia, perhaps suggesting increased 

utilization of the elevated NO2
-
 stores present following NO3

-
 supplementation. Following 

5-min of moderate-intensity exercise, [NO2
-
] had fallen significantly below pre-exercise 

baseline in N-BR. In H-BR, only a trend in the fall of [NO2
-
] was evident from baseline. 

During severe-intensity exercise, the rate of plasma [NO2
-
] decline was not significantly 

different between conditions, but the absolute fall in plasma [NO2
-
] tended to be less in H-

BR compared to N-BR. In concert, these data may suggest that in hypoxia, the contribution 

of NOS to NO production and subsequently to the regulation of muscle perfusion and 

matching of O2 supply and demand may be slightly greater (Casey et al., 2010). It is 

important to note that differences in plasma [NO2
-
] dynamics between hypoxia and 

normoxia were not substantial, either during exercise or in recovery.  

The current thesis has contributed to the understanding of how NO3
-
 supplementation can 

increase NO bioavailability. Specifically, Chapter 7 highlighted, for the first time, that NO3
-
 

supplementation can significantly increase skeletal muscle [NO3
-
], while Chapter 5 was the 

first published research to characterize the effect of exercise intensity and FIO2 on the 

kinetic response of plasma [NO2
-
] and [NO3

-
] during and in recovery from exercise.    

Ergogenic effects of NO3
-
 supplementation 

Exercise tolerance 

In line with one of the overarching aims of this thesis, to assess the ergogenic effects of 

NO3
-
 supplementation; three of the four experimental chapters assessed tolerance to severe-

intensity exercise whilst the fourth measured functional capacity using a validated walking 

test. Chapter 4 identified that NO3
-
 supplementation significantly improved tolerance to 

constant work rate cycle exercise during 3 different severe-intensities (60%Δ; ↑ 17%, 

70%Δ; ↑ 16% and 80%Δ; ↑ 12%) and resulted in a non-significant, 10% improvement at 

100%peak. This was the first study to assess the effects of NO3
-
 supplementation upon 

exercise tolerance at intensities above and below 70-75%Δ. The magnitudes of these 

improvements were consistent with previous research (Bailey et al., 2009) and would 

suggest a beneficial, effect of NO3
-
 supplementation. In Chapter 5, tolerance to severe-

intensity (75%Δ) cycle exercise in hypoxia was significantly improved (9%). This finding 

is in line with previous studies which have reported that NO3
-
 supplementation increases 
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exercise tolerance during constant work rate (Vanhatalo et al., 2011) and incremental 

exercise protocols (Masschelein et al., 2012) as well as enhancing cycling time trial 

performance (Muggeridge et al., 2014) in hypoxia.  

In contrast to previous findings (Bailey et al., 2009; Lansley et al., 2011a; Breese et al., 

2013), Chapter 5 found no effect of BR supplementation on tolerance to severe-intensity 

(75%Δ) exercise in normoxia. Chapter 6 demonstrated that NO3
-
 supplementation had no 

significant effects upon functional capacity in an older population. There was, however, a 

2.2% mean increase in total distance covered in a 6MWT following NO3
-
 supplementation, 

which is similar to the improvements in performance reported for 4km and 16.1km (~2.7%; 

Lansley et al., 2011a) and 10km (~1.0%; Cermak et al., 2012) cycling time trials in 

younger adults.  

Finally, Chapter 7 identified that tolerance to severe-intensity (75%Δ) constant work rate 

cycle exercise in normoxia was not significantly altered, at the group level, following NO3
-
 

supplementation. These data are contrary to most existing literature (Bailey et al., 2009; 

Lansley et al., 2011a; Vanhatalo et al., 2011) although some studies have reported no 

improvement in incremental (Bescos et al., 2011) and time-trial protocols (Bescos et al., 

2012; Cermak et al., 2012; Peacock et al., 2012). However, Chapter 7 did reveal that the 

change in muscle [NO3
-
] following NO3

-
 supplementation was positively and significantly 

correlated with the change in severe-intensity exercise tolerance. Chapter 7 was the first 

study to report muscle [NO3
-
], in humans, following NO3

-
 supplementation. Further work is 

required to clarify the inter-relationships between changes in muscle [NO3
-
] and changes in 

severe-intensity exercise tolerance following NO3
-
 supplementation.  

Combining the findings of this thesis with existing literature, it would be fair to suggest that 

dietary NO3
-
 supplementation could be utilized as an ergogenic aid in extending severe-

intensity exercise tolerance in normoxic (Bailey et al., 2009; Lansley et al., 2011a; Breese 

et al., 2013) and, in particular, hypoxic conditions (Vanhatalo et al., 2011; Muggeridge et 

al., 2014; Masschelein et al., 2012). 

Underlying mechanisms behind improvements in exercise tolerance may include better 

exercise efficiency, up- and rightward shifting of the power-duration relationship, speeded 

V̇O2 kinetics and altered muscle metabolism. The following sections will outline how these 

parameters are altered following NO3
-
 supplementation and their potential with changes in 

exercise tolerance. 
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Exercise efficiency  

In 3 of the 4 experimental Chapters in this thesis the O2 cost of moderate-intensity exercise 

was assessed during constant work rate exercise trials.  Chapter 6 assessed treadmill 

walking exercise in an ageing population (60-70 years). Analysis revealed that no effects on 

the O2 cost of walking were evident, which is in contrast to results previously reported in 

younger adults (Lansley et al., 2011b) and to the body of literature, which indicates that 

NO3
-
 supplementation improves exercise efficiency (Bailey et al., 2009 Vanhatalo et al., 

2010 Larsen et al., 2011). Whilst surprising, the lack of significant change in walking 

economy in Chapter 6 was consistent with the lack of change in muscle metabolic 

responses and functional capacity observed. 

Chapters 5 and 7 assessed exercise efficiency during cycle ergometer exercise in a young 

healthy population in both normoxia (Chapters 5 & 7) and hypoxia (Chapter 5). These two 

studies demonstrated that during moderate-intensity cycle ergometry in normoxia, amongst 

young healthy subjects, NO3
-
 had no effect upon the O2 cost of exercise. Again, these 

findings are in contrast to some (Bailey et al., 2009 Vanhatalo et al., 2010 Larsen et al., 

2011) but not all (Bescos et al., 2012; Breese et al., 2013; Wilkerson et al., 2012) previous 

research.  

However, in Chapter 5, NO3
-
 supplementation was seen to reduce baseline (unloaded) 

cycling V̇O2 by 10% and moderate-intensity exercise V̇O2 by 7% in hypoxia, compared to 

PL. These findings are consistent with previous studies which have reported 4-8% 

reductions in steady state V̇O2 during moderate-intensity cycle exercise in hypoxia, as a 

result of NO3
-
 supplementation (Masschelein et al., 2012; Muggeridge et al., 2014). As 

outlined in the literature review, the mechanistic bases behind reductions in the O2 cost of 

exercise may include improved mitochondrial efficiency (Larsen et al., 2011) and/or 

reductions in the ATP cost of muscle force production (Bailey et al., 2009), mediated by 

enhanced calcium-related muscle contractility (Hernandez et al., 2012). NO is involved in 

the regulation of mitochondrial O2 consumption and it is known to have a strong affinity for 

cytochrome-c oxidase (COX) (Brown, 2001). The competition for the COX binding site 

between NO and O2 may be responsible, in part, for the reduced O2 cost of exercise 

following NO3
-
 supplementation (Larsen et al., 2007; Bailey et al., 2009). This may also 

initiate a signaling cascade resulting in mitochondrial protein changes which collectively 

enhance respiratory chain efficiency (Larsen et al., 2011). Hypoxia, itself, may also result 
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in an acute, reversible inhibition of COX (Brown et al., 1999). The combined effects of 

hypoxia and NO3
-
 supplementation may therefore make it more likely for these effects to 

occur in hypoxic conditions. While a significant improvement in exercise efficiency was 

only evident in one study of the current thesis, an intriguing relationship between 

submaximal exercise efficiency and severe-intensity exercise was revealed. 

Relationship between submaximal exercise efficiency and exercise tolerance 

An important and novel common theme that emerged from this thesis was a clear 

relationship between changes in the O2 cost of submaximal exercise and changes in severe-

intensity exercise tolerance following NO3
-
 supplementation. Chapter 5 found a significant 

correlation between the reduction in steady-state V̇O2 and the improvement in exercise 

tolerance following NO3
-
 supplementation in hypoxia. Similarly, Chapter 7 demonstrated 

that the change in steady-state V̇O2 during moderate-intensity exercise following NO3
-
 

supplementation was negatively correlated with the change in severe-intensity exercise 

tolerance. These data may suggest that NO3
-
 supplementation is more effective in some 

individuals than others (discussed in a later section). Furthermore, why reductions in the O2 

cost of exercise or alterations in the V̇O2 slow component were not evident during 

subsequent severe-intensity exercise bouts is not clear. It could be speculated that certain 

underlying mechanisms of NO3
-
 supplementation become more prominent at different 

exercise intensities. For example, during moderate-intensity exercise the most prominent 

effect of NO3
-
 supplementation is the reduction in the O2 cost of exercise (evidenced by 

increased exercise efficiency), perhaps due to a combination of improved mitochondrial 

efficiency and a reduced ATP cost of force production. However, during severe-intensity 

exercise, mechanisms involved in vasodilatory-mediated increases in muscle blood flow 

and preferential distribution of blood to type II muscle fibers (evidenced by speeded V̇O2 

kinetics and improved exercise tolerance) may be relatively more important. Regardless of 

the underpinning explanation, these results do suggest that improved skeletal muscle 

efficiency during moderate-intensity exercise, consequent to greater NO bioavailability 

following NO3
-
 supplementation, may promote improved severe-intensity exercise 

tolerance and performance. 

Power-duration relationship 

While accepting that improved exercise tolerance to any particular constant work rate is 

reflective of a physiological benefit of an intervention, it does not act as a sufficient 
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quantitative measure of the actual improvement in function as it provides data from just a 

single point of that relationship. Ideally, characterisation of the pre- and post-intervention 

power-duration relationship is necessary (Whipp & Ward, 2009). Chapter 4 examined the 

effects of NO3
-
 supplementation upon four exercise intensities spanning the severe-intensity 

exercise domain. The rationale for this was two-fold: 1) to establish whether NO3
-
 

supplementation was as effective at higher severe-intensities (not previously investigated) 

as it was in the previously reported lower severe-intensities; and 2) to characterise the 

power-duration relationship, with and without NO3
-
 supplementation. We therefore used the 

four constant power output exercise bouts in the BR and PL conditions to calculate the CP 

and W′, characterizing the power-duration relationship. NO3
-
 supplementation resulted in a 

1.4% (3 W) increase in CP and an 8.4% (1.5 kJ) increase in Wʹ. While the modest 

improvements in CP and Wʹ did not appear to be substantial and were not statistically 

significant, when the two parameters were combined to predict performance, the time to 

complete a fixed amount of work was significantly less in BR compared to PL across the 

power-duration relationship. The potential benefits highlighted for performance 

(approximately 2-3%) were much greater than the 0.6% value suggested to be the smallest 

‘worthwhile’ improvement for road TT cyclists (Paton & Hopkins, 2006). Interestingly, the 

differences between PL and BR in predicted performance were very similar to the 

beneficial effects of NO3
-
 supplementation reported for cycling TT performance previously 

(4 km TT improved by 2.8% (Lansley et al., 2011); 10 km TT improved by 1.2% (Cermak 

et al., 2012); and 16.1 km TT improved by 2.7% (Lansley et al., 2011)). These data provide 

evidence to support that the beneficial effects of NO3
-
 supplementation upon severe-

intensity exercise tolerance can be explained by, and are coupled with, an up- and rightward 

shifting of the power-duration relationship. 

The rate of adaptation of V̇O2 at the onset of exercise (phase II time constant) and the 

trajectory of the V̇O2 response towards its maximum (V̇O2 slow component), are vitally 

important during constant work rate exercise. These responses, termed V̇O2 kinetics, are 

associated with the CP and W′ and have been strongly linked with determining exercise 

tolerance during severe-intensity exercise. Slow V̇O2 kinetics and the V̇O2 slow component 

are associated with a greater depletion of intramuscular [PCr], greater utilization of 

intramuscular glycogen stores and the accumulation of fatiguing metabolites within the 

exercising muscle (Poole et al., 1991; Rossiter et al., 2002; Krustrup et al., 2004), all of 

which may lead to reduced exercise tolerance. 
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Alterations in these responses following NO3
-
 supplementation may provide underlying 

mechanistic explanations behind the positive shifting of the power-duration relationship and 

improved exercise tolerance reported. 

V̇O2 kinetics 

Faster V̇O2 kinetics would be expected to reduce the reliance on non-oxidative metabolic 

processes across the transition from a lower to a higher metabolic rate and, therefore, to 

reduce muscle metabolic perturbation (Jones & Poole, 2005). In fact V̇O2 kinetics is 

considered as a key determinant of high-intensity exercise tolerance in humans 

(Murgatroyd et al., 2011). Specifically the phase II time constant is known to be closely 

related to CP; while the V̇O2 slow component amplitude is associated with the W′ 

(Murgatroyd et al., 2011). Therefore, any improvements in exercise tolerance may be 

explained, in part, by faster V̇O2 kinetics following NO3
-
 supplementation. This beneficial 

effect has emerged as a novel finding from this thesis and contributes significantly to our 

understanding of NO3
-
 supplementation as an ergogenic aid.  

Chapter 6 revealed a small but significant speeding of V̇O2 kinetics following the onset of 

exercise as a result of NO3
-
 supplementation in older adults. As a function of this V̇O2 

speeding, the O2 deficit was reduced by 15%. Research prior to this thesis, in young adults 

had not demonstrated speeded V̇O2 kinetics during moderate-intensity exercise, following 

NO3
-
 supplementation. However, older adults typically have slower V̇O2 kinetics (Babcock 

et al., 1994; Chilibeck et al., 1996; Delorey et al., 2005) and are more likely to exhibit a 

speeding of V̇O2 kinetics following interventions designed to enhance muscle O2 delivery 

(Scheuermann et al., 2002) than younger individuals. The faster V̇O2 kinetics observed in 

Chapter 6 could have been linked to NO-mediated enhanced muscle vasodilatation and 

blood flow (Ferguson et al., 2013), which may have offset a possible O2 delivery limitation 

to V̇O2 kinetics in the older subjects. It would be prudent to note here that the V̇O2 mean 

response times evident in this cohort of older subjects were remarkably fast. This may 

suggest that this group of older individuals were not particularly representative of the aging 

population when compared to previous literature. Even so, the speeding of the V̇O2 MRT is 

feasibly explained by increased O2 delivery to an environment that was relatively hypoxic. 

Interestingly, the V̇O2 phase II time constant during moderate-intensity exercise was also 

reduced by NO3
-
 supplementation in hypoxia, in young healthy individuals, in Chapter 5. 

The hypoxic inspirate showed a trend toward slowing V̇O2 kinetics (increasing phase II 
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time constant) in the young healthy participants, as expected (Hughson & Kowalchuk., 

1995, Springer et al., 1991). Remarkably, NO3
-
 supplementation speeded the phase II time 

constant in hypoxia toward values recorded in normoxia. NO3
-
 supplementation also tended 

to ameliorate the negative effects of hypoxia upon total oxygenation index (TOI) of the 

vastus lateralis muscle, as measured by NIRS, in a similar fashion to previous research 

(Masschelein et al., 2012).The improved TOI with NO3
-
 supplementation indicates better 

muscle oxygenation (Ferrari et al., 2004) which, as previously discussed, may be 

responsible for the speeding of the V̇O2 phase II time constant. These findings suggest that 

NO3
-
 supplementation can help to reverse the detrimental effect of a reduced FIO2 on V̇O2 

kinetics, during moderate-intensity exercise.  In support of this, emerging data utilizing 
31

P-

MRS techniques indicate that muscle PCr recovery kinetics (which reflect maximal rate of 

mitochondrial ATP resynthesis) appear to be unaffected by NO availability in normoxia 

(Fulford et al., 2012), but are speeded following NO3
-
 supplementation in hypoxia 

(Vanhatalo et al., 2011; Vanhatalo et al, 2014). The fact that PCr recovery kinetics are 

affected by NO availability in hypoxia but not normoxia may be a result of the vasodilatory 

effect of NO, which accelerates such recovery in an O2-limited condition, but has no 

influence under normoxic exercise and recovery. Collectively, these data support the 

findings in Chapter 6 where NO3
-
 supplementation reversed the potential O2 delivery 

limitation on V̇O2 kinetics in an older population.  

Considering improvements in exercise efficiency following NO3
-
 supplementation were not 

evident during severe-intensity in the current thesis, it was interesting to note that the phase 

II time constant was also influenced during severe-intensity exercise. When considered in 

isolation, analyses in Chapter 4 revealed no significant changes in the V̇O2 phase II time 

constant at power outputs representing 60% Δ, 70% Δ, 80% Δ or 100%peak, following NO3
-
 

supplementation.  However, the V̇O2 phase II time constant was slightly and significantly 

faster in BR compared to PL when all data were considered together, irrespective of 

exercise intensity. One potential explanation of the speeding kinetics as a result of NO3
-
 

supplementation during severe-intensity exercise is a preferential distribution of O2 delivery 

to Type II fibres (Ferguson et al., 2012) and/or to muscle loci that may be relatively more 

hypoxic (Thomas et al., 2001; Hagen et al., 2003; Victor et al., 2009). As previously 

discussed, faster V̇O2 kinetics may reduce the contribution of substrate-level 

phosphorylation to energy turnover in the first 1-2 min following the transition to high-
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intensity exercise and may help to improve exercise tolerance (Burnley & Jones 2007; 

Murgatroyd et al., 2011).  

Novel data from this thesis consistently demonstrate that NO3
-
 supplementation can 

positively modulate the V̇O2 kinetic response, specifically speeding the phase II time 

constant. This occurred during both moderate- and severe-intensity exercise in situations 

where the intramuscular environment may have been more hypoxic. Research subsequent to 

the completion of the experimental chapters in question have corroborated these findings 

(Fulford et al., 2012; Vanhatalo et al., 2014).These data add a new mechanistic insight into 

the beneficial effects of NO3
-
 supplementation and may have important implications in 

utilising NO3
-
 supplementation to improve exercise tolerance in both athletic and 

ageing/clinical populations.  

Muscle metabolism 

Chapter 6 utilised 
31

P-MRS to assess the muscle metabolic response to low- and high- 

intensity knee-extensor exercise in a healthy older population with and without NO3
-
 

supplementation. The findings indicated a 15% attenuation of muscle [PCr] degradation 

during low-intensity exercise following NO3
-
 supplementation, although this was not 

statistically significant. Previous research in younger adults has reported a reduction in the 

amplitude of [PCr] depletion during low-intensity (Bailey et al., 2010) and heavy-intensity 

exercise (Vanhatalo et al., 2014), following NO3
-
 supplementation. It is currently unclear 

why the fall in muscle [PCr] was not significantly spared in this older population, although 

inter-individual variability may have precluded the attainment of statistical significance. In 

addition to this, a lower ATP cost of muscle contraction in older adults (Tevald et al., 2010) 

may have served to reduce the impact of NO3
-
 supplementation on muscle contraction 

efficiency. Chapter 6 also assessed the kinetic recovery of [PCr] following high-intensity 

exercise. This rate of recovery is thought to reflect the maximal rate of oxidative synthesis 

of ATP (Kemp et al., 1993) via increased mitochondrial volume and/or oxidative enzyme 

activity or, in the event of hypoxia, increased O2 supply. Consistent with previous research 

in younger adults in normoxia (Lansley et al., 2011; Fulford et al., 2013; Vanhatalo et al., 

2014), NO3
-
 supplementation did not significantly alter muscle [PCr] recovery kinetics. 

This was surprising, given that we may expect the older individuals to be experiencing age-

related tissue hypoxia and may have been sensitive to an increase in O2 delivery as a result 

of NO3
-
 supplementation.  
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Chapter 7 assessed the muscle metabolic response alongside the V̇O2 response to moderate- 

and severe-intensity exercise following NO3
-
 supplementation. Data obtained from muscle 

biopsy samples indicated that NO3
-
 supplementation significantly elevated muscle [NO3

-
]. 

However, analyses revealed that NO3
-
 supplementation had no effect upon [citrate 

synthase], [HAD] [ATP], [PCr], [lactate], [creatine] and pH. As would be expected, the 

overall lack of significant change in muscle [ATP], [PCr], [lactate], [creatine] and pH 

during exercise between the BR and PL conditions was associated with no significant 

changes in the group mean V̇O2 response or exercise tolerance. 

Data from this thesis demonstrated for the first time that human muscle [NO3
-
] is 

significantly elevated following NO3
-
 supplementation. Assessment of key fatigue-related 

muscle metabolites was made during exercise in the current thesis using both 
31

P-MRS and 

muscle biopsy techniques. The presented data suggest that NO3
-
 supplementation had no 

effect upon muscle metabolism. These findings were accompanied by no changes in 

pulmonary V̇O2 responses or exercise tolerance and were therefore not surprising. 

However, these findings contradict previous research (Bailey et al., 2010; Vanhatalo et al., 

2014). When NO3
-
 supplementation-mediated alterations in exercise efficiency (assessed by 

pulmonary V̇O2) are evident, it is expected that changes in muscle metabolism would also 

be present.  

Therapeutic effects of NO3
-
 supplementation 

Blood pressure 

The reduction of blood pressure is arguably one the most important physiological benefits 

of NO3
-
 supplementation as it has potential implications for the prevention and/or treatment 

of hypertension. It is thought that increased plasma [NO2
-
] augments the bioavailability of 

NO. Increased intracellular NO promotes smooth muscle relaxation via the synthesis of 

cyclic guanosine monophosphate and it is this NO-mediated smooth muscle relaxation that 

is considered to be responsible for the reduction in blood pressure reported (Archer et al., 

1994). Findings from the current thesis present positive results with regard to the reduction 

of blood pressure following NO3
-
 supplementation. Chapter 4 assessed resting blood 

pressure in young, healthy individuals and consistent with previous research (Larsen et al., 

2006; Webb et al., 2008; Kapil et al., 2010; Bailey et al., 2010; Kelly et al., 2013 ), 

demonstrated a significant 4 mmHg reduction in systolic blood pressure. Likewise, Chapter 

6, which, for the first time, assessed the effects of NO3
-
 supplementation on blood pressure 
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in a healthy, older population, demonstrated significant reductions in systolic (5 mm Hg), 

diastolic (3 mm Hg) and mean arterial pressure (3mm Hg).  

Importantly, data from Chapters 4 and 6 provide positive and encouraging indications that 

NO3
-
 supplementation could be used as a practical, relatively cheap, prophylactic and/or 

therapeutic aid in the prevention or treatment of hypertension across the lifespan. 

Cerebral measures (H
1
MRS, ADC) and cognitive function 

Chapter 6 considered whether NO3
-
 supplementation may provide beneficial effects upon 

metabolic efficiency and blood flow within the brain, in a similar fashion to what had been 

reported within skeletal muscle (Larsen et al., 2007; Vanhatalo et al., 2011). However, no 

significant differences in [NAA] (an amino acid suggested to be a marker of neuronal 

viability, as well as an intellectual and neuropsychological measure of cognition) was 

evident following NO3
-
 supplementation. Similarly, [myo-inositol] (a carbohydrate found in 

the brain that is elevated in patients with Alzheimer’s disease) was unaffected by NO3
-
 

supplementation. Moreover, there were no changes in the concentrations of creatine or 

choline in the brain, both of which are considered important in neurological health and 

cognitive ability. There were also no changes to apparent diffusion coefficients in key 

regions of the brain following NO3
-
 supplementation, a finding which was contrary to a 

previous study (Pressley et al., 2010). As discussed in the experimental chapter, the lack of 

findings may be due to the relatively young age and good health of the recruited 

participants. 

Chapter 6 also explored whether NO3
-
 supplementation could positively impact upon 

cognitive function in an older population. Measures of attention, concentration, information 

processing and working memory were completed using validated cognitive function tests. 

No significant differences in cognitive function were evident following NO3
-
 

supplementation, which may not be considered surprising given that there were no 

significant changes in the NMR parameters of cerebral functionality or metabolism. The 

absence of any effects here may be explained, in part, by the good general health of the 

participants. 

Whilst the findings from Chapter 6 indicate that there were no effects of NO3
-
 

supplementation upon cerebral measures and cognitive function, the rationale and potential 
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effects of this supplementation upon cerebral physiology and function needs to be further 

explored and provides an exciting avenue of further research. 

Arterial oxygen saturation and muscle oxygenation 

During Chapter 5, arterial oxygen saturation (SaO2) was continuously assessed during the 

testing protocol, in order to examine the effects of FIO2, NO3
-
 supplementation and as a 

safety requirement. The study identified that hypoxia significantly reduced SaO2 during 

rest, moderate and severe-intensity exercise. Further analyses revealed that at rest, NO3
-
 

supplementation tended to blunt the reductions in SaO2 caused by hypoxia, which may 

indicate improved oxygenation. Previous research has reported that dietary NO3
-
 

supplementation results in small increases in arterial oxygen saturation during exercise in 

hypoxia (Masschelein et al., 2012; Schiffer et al., 2013; Muggeridge et al., 2014) although 

this was not reflected in Chapter 5 of this thesis. Indices of muscle oxygenation were 

measured using NIRS during exercise and recovery in hypoxia and normoxia and following 

NO3
-
 supplementation in Chapter 5. During moderate-and severe-intensity exercise, the 

manipulated FIO2 altered muscle oxygenation while BR supplementation had no significant 

influence upon the response. Specifically, [HHb] was greater in hypoxia, indicating that 

muscle fractional O2 extraction was increased, while [HbO2] and TOI were significantly 

reduced in hypoxia compared to normoxia, findings which were all consistent with previous 

research (Masschelein et al., 2012). Interestingly, during moderate-intensity exercise NO3
-
 

supplementation tended to ameliorate the negative effects of hypoxia upon TOI, indicating 

improved muscle oxygenation (Ferrari et al., 2004). Furthermore and consistent with a 

possible improvement in oxygenation status, the typical compensatory rise in heart rate in 

hypoxia was attenuated during moderate-intensity exercise, following NO3
-
 

supplementation. 

Collectively, the blunting of reductions in SaO2 at rest, improved TOI and attenuation of 

heart rate during moderate-intensity exercise in hypoxia could have important implications 

for individuals suffering from tissue hypoxia inducing pathologies (anaemia, COPD, 

diabetes) and suggests an additional therapeutic mechanism of NO3
-
 supplementation. 

To summarise and in line with the aims outlined at the end of the literature review, this 

thesis has examined the potential ergogenic and therapeutic capabilities of dietary NO3
-
 

supplementation, in the form of NO3
-
 rich beetroot juice. The findings of this thesis 

demonstrate that indeed NO3
-
 supplementation may be considered as an ergogenic aid for 
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severe-intensity cycle exercise and may elicit therapeutic effects in hypoxic environments 

as well as upon cardiovascular health across both young and old populations. However, 

data from this thesis also clearly outlines that NO3
-
 supplementation may not always be 

effective.  

Effectiveness of NO3
-
 supplementation 

Chapters 5 and 7 indicate that NO3
-
 supplementation elicits beneficial effects in some 

individuals but not others. Chapter 5 found a significant correlation between the reduction 

in steady-state V̇O2 and the improvement in exercise tolerance following NO3
-
 

supplementation in hypoxia. Similarly, Chapter 7 demonstrated that the change in steady-

state V̇O2 during moderate-intensity exercise following BR supplementation was negatively 

correlated with the change in severe-intensity exercise tolerance. In Chapter 7, the change 

in muscle [NO3
-
] following BR supplementation was positively and significantly correlated 

with the change in severe-intensity exercise tolerance. It was evident in Chapter 7 that 4 

subjects responded to the supplementation and 4 subjects did not. The ‘responders’ had a 

significantly greater increase in plasma [NO2-]; a significantly reduced steady-state V̇O2 

during moderate-intensity exercise; and a significantly improved severe-intensity exercise 

tolerance, compared to the ‘non responders’. In addition, although not statistically 

significant, the ‘responders’ had more than twice the muscle [NO3
-
] compared to the ‘non-

responders’. The mechanistic bases behind differences in the effectiveness of NO3
-
 

supplementation, or responsiveness of the participant are not fully understood and obligate 

further research. Previous research (Wilkerson et al., 2012) has also outlined the potential 

for ‘responders’ and ‘non-responders’ to NO3
-
 supplementation and suggest a number of 

explanations for this. Some studies indicate that NO3
-
 supplementation may be less 

effective as an ergogenic aid in highly-trained endurance athletes, at least when NO3
-
 is 

ingested acutely and/or longer duration, lower-intensity endurance performance is assessed 

(Bescos et al., 2012, Cermak et al., 2012, Wilkerson et al., 2012; Christensen et al., 2013). 

Compared to less well-trained subjects, endurance athletes have higher baseline plasma 

[NO2
-
], greater training-related NOS activity, a higher proportion of type I fibres, and 

greater mitochondrial and capillary density, all of which may reduce the potential benefits 

of NO3
-
 supplementation (Wilkerson et al., 2012).  

Each of the experimental chapters in this thesis have utilised chronic supplementation 

periods (2-3 days), moderate- and severe-intensity exercise and have purposefully recruited 
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recreationally active individuals. Therefore, the evidence of ‘responders’ and ‘non-

responders’ in the current thesis, is particularly interesting. An additional potential 

explanation behind non response to supplementation could be that of oral bacteria. The oral 

microbiome is vital in the reduction of NO3
-
 to NO2

-
, a process that occurs on the surface of 

the tongue. If particular nitrate-reducing bacteria are not present in certain individuals, this 

may result in a lack of any beneficial effects. The oral microbiome is known to alter over 

the lifespan and should be further explored with regard to the effects of increased NO3
-
. 

This would provide valuable information about the effectiveness of NO3
-
 supplementation 

over the lifespan, but may also provide vital information for public health policy makers in 

charge of formulating nutritional intake recommendations. The current thesis did put 

particular controls in place to reduce the likelihood of variability in oral bacteria (restricted 

age range for individual studies, subjects were asked to refrain from using anti-bacterial 

mouthwash throughout the testing period and recruitment of non-smokers). Furthermore, 

there may also be some suggestion (Porcelli et al., 2014) that certain individuals require 

larger doses in order to benefit from NO3
-
 supplementation, which may be based upon body 

mass and/or training status. 

It is clear from this thesis and from existing literature that NO3
-
 supplementation can elicit 

beneficial effects in some individuals but not others. It is likely that a combination of the 

oral microbiome, training status and dosing have an influence upon an individual’s 

responsiveness to the supplementation. Athletes, coaches, clinicians and the general public 

should be aware of these potential issues and should tailor the use of NO3
-
 supplementation 

accordingly.   

Ergogenic applications 

Importantly, this thesis provides data to suggest that NO3
-
 supplementation can have some 

direct practical applications. The improvements in exercise tolerance in shorter-duration, 

higher-intensity cycle exercise evidenced in Chapter 4 may be of interest to athletes and 

coaches involved in sports performance of > 3 but < 20 minutes. These data suggest that 

developing and utilizing specific pre-race nutritional plans targeted at increasing NO3
-
 

intake may improve sports performance.  

Data from this thesis also demonstrate that NO3
-
 supplementation caused a speeding of the 

V̇O2 phase II time constant during severe-intensity exercise in normoxia (Chapter 4) and 

moderate-intensity exercise in hypoxia (Chapter 5) in a young healthy population. A 
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speeding of the V̇O2 mean response time was also evident during moderate –intensity 

walking in a healthy older population (Chapter 6). These modulations to the V̇O2 response 

may have important implications to improving exercise tolerance and performance in a 

young population as well enhanced functional capacity in an older population.  

Furthermore, data from Chapter 5 indicate that the oxygen cost of exercise is reduced 

during moderate-intensity exercise in hypoxia, with subsequent improved tolerance to 

severe-intensity exercise. Chapter 5 also revealed that during rest and moderate-intensity 

exercise NO3
-
 supplementation offset the typical hypoxia-induced increase in heart rate. 

These findings may provide valuable information for athletes and/or explorers exercising at 

altitude, where the oxygen content of atmospheric air is reduced. 

Therapeutic applications 

The findings of this thesis may also have a number of important therapeutic implications 

and ‘real life’ applications to a range of populations. The reductions in resting blood 

pressure as a result of increased NO bioavailability following NO3
-
 supplementation, 

reported in Chapters 4 and 6, may have important public health implications. Reducing 

resting systolic blood pressure in young and old normotensive individuals by 4 mmHg 

(Chapter 4) and 5 mmHg (Chapter 6) respectively, suggests that NO3
-
 supplementation may 

prove to be beneficial in the prevention and/or treatment of hypertension. In fact, a 

reduction in systolic blood pressure of just 2mmHg in individuals aged 40-69 could reduce 

CVD related mortality by 10% (Prospective Studies Collaboration, 2002). Moreover, it has 

been estimated that a reduction of 2 mmHg in the average adult’s systolic blood pressure 

could save more than 14,000 UK lives per year (Critchley & Capewell, 2003). This 

relatively low-cost, naturally-occurring, therapeutic aid may provide a cost effective 

method for off-setting the leading cause of cardiovascular disease (Hajjar et al., 2006) and 

improving cardiovascular health worldwide. 

In addition, the reduction in the oxygen cost of exercise during moderate-intensity exercise 

in hypoxia, and subsequent improvement in tolerance to severe-intensity exercise suggest 

that NO3
-
 supplementation may have therapeutic benefits for individuals suffering from 

pathological conditions, such as such as chronic obstructive pulmonary disease, diabetes, 

anaemia and peripheral arterial diseases, which induce tissue hypoxia, reduce functional 

capacity and ultimately compromise quality of life.  
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These data could be informative to clinicians and policy makers in formulating public 

health nutritional recommendations. It provides additional evidence that increasing NO3
-
 

intake can provide therapeutic health effects which may contribute to improving 

individual’s quality of life, decreasing disease incidence/prevalence and lowering the cost 

of care.  

Limitations 

Nitrate dose 

In each experimental chapter of this thesis, all subjects were administered a fixed dose of 

NO3
-
. The administration of NO3

-
 dose relative to body mass may be a future avenue of 

investigation, to elucidate whether larger (or highly trained) individuals would require 

larger quantities of NO3
-
 in order to elicit beneficial effects. However, the doses (8-9 mmol 

of NO3
-
 per day) and supplementation periods (2-3 days) utilized were employed with 

knowledge of previous research which had demonstrated beneficial effects (significant 

increase in plasma NO2
-
, reductions in blood pressure and oxygen cost of exercise and 

improvements in exercise tolerance) following acute ingestion of nitrate supplementation (~ 

5.2 mmol NO3
-
, 2.5 hours prior to testing) (Vanhatalo et al., 2010).  

Dietary control 

Throughout all experimental chapters, subjects were instructed to maintain their normal 

daily food intake. This is in contrast to some early studies (Bailey et al., 2009, Bailey et al., 

2010, Larsen et al., 2007, Larsen et al., 2010), in which subjects were instructed to exclude 

NO3
-
-rich foods (such as certain vegetables and cured meats) from their diet. Whilst the 

unrestricted dietary approach employed may have increased variability in NO3
-
 intake, this 

thesis aimed to investigate whether the positive effects of NO3
-
 supplementation were 

present when habitual NO3
-
 intake was not restricted. This provides ecological validity to 

using the supplementation and allows conclusions and implications to be made applicable 

to the wider public, who would not typically restrict their diet. Subjects were, however, 

asked to maintain a food diary throughout the supplementation periods. These were 

monitored for any individuals who had particularly high or low habitual NO3
-
 intake and 

whether this affected the efficacy of the supplementation. 
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Measurement of NO markers restricted to NO2
-
 and NO3

- 

The main aim of administering NO3
-
 supplementation was to promote the production and 

bioavailability of NO. The direct measurement of NO is extremely difficult due its very 

short half-life in vivo, of less than 0.1s (Kelm et al., 1990).  In contrast, NO2
-
 and NO3

-
 are 

both stable metabolites of NO. They are present in blood and urine and are easily accessible 

to quantitative analysis. Therefore, measurement of NO2
-
 and NO3

-
 in various biological 

fluids (predominantly plasma in this thesis) has been shown to provide the most suitable 

and practical method to assess NO synthesis in vivo. In fact, research suggests that in 

particular, short-term changes in NO synthesis are best assessed by measuring plasma NO2
-
 

concentration (Lauer et al., 2001), and so this measurement was employed throughout. It is 

appreciated that additional measures could have been made to provide a more 

comprehensive assessment of NO bioavailability, including concentrations of the cyclic 

nucleotide cGMP. Furthermore, we could have measured the concentrations of NO2
-
 and 

NO3
-
 in saliva and urine as well as exhaled NO in addition to our plasma and muscle 

analyses. This would have allowed the tracking of these metabolites from consumption to 

excretion/exhalation. These measures and approaches may be utilized in future research but 

fell outside of the scope of this thesis. The assessment of plasma NO2
-
 and NO3

-
 and muscle 

NO3
-
 provided the most suitable, appropriate and practical characterization of NO 

bioavailability following NO3
-
 supplementation.  

Constant work rate tests to exhaustion 

The aim of this thesis was to assess the ergogenic and therapeutic qualities of dietary NO3
-
 

supplementation. A key aspect of each study was to assess the effects of NO3
-

supplementation on the V̇O2 kinetic response to exercise and whether these changes may 

influence exercise tolerance. In order to achieve this, it was necessary to assess these 

parameters in the same exercise test. Accurate assessment of pulmonary V̇O2 kinetics 

requires the completion of a ‘step’ exercise test, in which the work rate is abruptly 

increased from an ‘unloaded’ baseline to a target work rate. This approach enhances the 

validity of the investigation into the influence of V̇O2 kinetics on exercise tolerance, but 

limits the generalizability of our data to ‘real life’ sporting performance where success is 

determined by completing a given distance in the fastest time, not by sustaining a given 

power output for the longest possible time. It is known that constant work rate tests to 

exhaustion have lower ecological validity and are less reliable compared to time-trial 



Chapter 8: General Discussion 

 

117 
 

performance tests (Laursen et al., 2007). However, time-to-exhaustion and time-trial tests 

have been shown to have a similar level of sensitivity in detecting changes in exercise 

performance in response to an experimental intervention (Amann et al., 2008). The authors 

(Amann et al., 2008) discussed that while the error of measurement is higher with time-to-

exhaustion trials, the magnitude of change is also far greater such that the sensitivity of 

these performance tests is similar in detecting changes in exercise performance with an 

intervention. Along with the additional benefits of accurately assessing V̇O2 kinetics, time-

to-exhaustion tests were considered most appropriate to use in 3 of the 4 experimental 

chapters in the current thesis.  

Is the 6-minute walk test a reliable and valid measure of functional capacity? 

Research using older individuals (65-89 years) demonstrated a one-week test-retest 

reliability coefficient of r = 0.95 (Harada et al., 1999), while a correlation was evident 

between the distance covered in the 6-minute walk test and V̇O2peak (r = 0.70; Nixon et al., 

1996). The physiological demand of the walk test appears to be distinct from that of cycle 

ergometer tests and, therefore, may be a better indicator of function in normal daily life. 

The 6-minute walk test provides a simple, safe and cost effective measurement of 

functional movement considered essential in all daily activities in older and clinical 

populations. 

Does pulmonary V̇O2 accurately represent muscle V̇O2? 

Whilst assessing the effectiveness of NO3
-
 supplementation as a therapeutic and ergogenic 

aid, it is important that the pulmonary V̇O2 signal measured is reflective of muscle V̇O2. A 

number of techniques have been employed in the present thesis to minimize the breath-by-

breath variability which is inherent with measuring V̇O2 during exercise and to enhance the 

signal-to-noise ratio, which enhances confidence in the parameters assessed. These 

techniques have been discussed in the general methodology chapter and include appropriate 

cleaning of data and the completion of repeat transitions where appropriate. When these 

procedures have been employed it has been shown that pulmonary V̇O2 kinetics does 

indeed accurately represent muscle V̇O2 kinetics (Barstow et al., 1990; Poole et al., 1991; 

Grassi et al., 1996; Krustrup et al., 2009). 
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Future research questions 

Oral microbiome 

The requisite role of the oral microbiome for the NO3
- 

-NO2
-
 -NO pathway highlights an 

area that may prove important in the effectiveness of NO3
-
 supplementation. The oral 

microbiome plays a key role in systemic NO homeostasis and the modulation of 

cardiovascular and metabolic functions. However, its interactive role with NO3
-
 

supplementation is not yet well understood. Uptake mechanisms and excretion of NO3
-
 in 

the salivary glands, along with inter-individual differences in oral microbiome, needs to be 

explored, specifically the potential effects of age.  

NO3
-
 supplementation effectiveness 

Whilst oral microbiome may be a major factor in determining the effectiveness of NO3
-
 

supplementation, the notion of ‘responders’ and ‘non-responders’ needs to be more fully 

understood. Most explanations of non-responders currently refer to the training status of the 

individual or the amount and timing of juice consumption and exercise testing. Research 

which strives to understand the underlying mechanisms or explanations behind responding 

or not-responding to the supplementation, would add substantial knowledge to the 

developing topic of dietary NO3
-
 supplementation. 

Clinical populations 

Chapter 5 aimed to identify the effects of NO3
-
 supplementation in a hypoxic environment 

(which acted to mimic some disease states), while Chapter 6 assessed the effect of NO3
-
 

supplementation in a healthy older population (60-70 years). In addition to this, existing 

literature has assessed the effects of NO3
-
 in diabetic (Gilchrist et al., 2013), PAD (Kenjale 

et al., 2011) and COPD (Berry et al., 2014) populations, with mixed findings. Future 

research should focus on additional specific diseased populations where the effects of NO3
-
 

supplementation may have particular benefits (i.e. anaemia).  Furthermore, an even older 

population than that seen in Chapter 6 should also be targeted as the decline in physical and 

cognitive capacity has been shown to accelerate from 70 years onwards. The translation of 

findings from young, healthy- to elderly and pathological populations may have much 

larger public health implications and may contribute to further improvements in quality of 

life. 
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Cerebral physiology & cognitive function 

Recent research provided promising potential with regard to the role of NO3
-
 

supplementation in improving cerebral physiology and function, via increasing cerebral 

blood flow to areas important in executive functioning (Presley et al., 2011). While the 

findings from Chapter 6 indicated that there were no effects of NO3
-
 supplementation upon 

cerebral measures and cognitive function in healthy older individuals, the potential 

implication of NO3
-
 supplementation in improving cerebral physiology and function needs 

to be explored further. It provides an exciting avenue of further research and may provide 

important insight into preventing or offsetting age-related declines in cognitive function. 

Conclusions 

Investigating the physiological effects of dietary NO3
-
 supplementation is a current and 

relevant topic in exercise and health physiology. From elucidating the mechanisms behind 

alterations to the V̇O2 kinetic response to exercise and subsequent improved athletic 

performance, to quantifying the extent to which NO3
-
 supplementation may be used as a 

therapeutic aid in the prevention and treatment of pathological conditions, ongoing 

scientific research aims to understand the potential of this dietary supplement. The current 

thesis has contributed to this understanding and has also presented findings which highlight 

unanswered questions obligating further research. This thesis has provided data with regard 

to the potential ergogenic and therapeutic qualities of NO3
-
 supplementation. These data 

demonstrate that dietary NO3
-
 supplementation may be considered as an ergogenic aid for 

severe-intensity cycle exercise and may elicit therapeutic effects in hypoxic environments 

as well as upon cardiovascular health across both young and old populations. However, the 

presented data also outline that supplementation may not always be effective. The 

underlying mechanisms and parameters which may influence its effectiveness are not yet 

fully understood and so supplementation should be carefully considered, monitored and 

tailored specifically for individuals and their particular requirements. 

Based on the findings presented in this thesis, it can be concluded that while NO3
-
 

supplementation may not always be effective, it can modulate the V̇O2 response to exercise, 

improve athletic performance and reduce blood pressure. As such it should be considered to 

have, and be utilized for, its ergogenic and therapeutic qualities.
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