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Abstract
We present a mechanism for ultra-broadband transmission of acoustic waves
through subwavelength hole arrays. Different fluids surrounding (or filling) the
holes are considered, which allows tuning of the band of maximum transmission
to different angles of incidence. For certain configurations, this band of total
transmission may appear at very small incident angles, making the system
‘invisible’ to sound at almost normal incidence. Analytical expressions for the
specific incident angle, and for maximum transmission at that angle, are pro-
vided for any fluid-system configuration.

Keywords: surface waves, subwavelength apertures, extraordinary acoustic
transmission

1. Introduction

Since the discovery of the resonant phenomenon of extraordinary optical transmission [1, 2],
the study of electromagnetic (EM) waves propagating through subwavelength hole arrays has
attracted much attention. This discovery was subsequently transferred to acoustic waves [3–6],
despite the differences between the vector EM and scalar acoustic cases. Recently, a non-
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resonant mechanism providing total transmission over ultrabroad bandwidths at specific
incident angles (referred as ‘plasmonic Brewster angles’) has been reported for EM waves [7],
and equivalently, for acoustic ones [8–11]. Both cases are impedance matching phenomena, and
this condition is only provided for symmetric configurations where the same medium at the
incident and transmission regions are considered.

In this paper we study theoretically the transmission of acoustic waves through
subwavelength apertures in the general case when different fluids fill the reflection and
transmission semi-infinite spaces, and also the apertures themselves. We provide analytical
expressions for the angle and for the transmittance on this condition, which we show depend on
the hole size, array period, L, and fluids properties (their density, ρ, and speed of sound, c), but
not on the film thickness, h, as this is an impedance matching phenomenon. We obtain
broadband transmission not only in frequency but also in incident angles close to normal
incidence.

2. Resonant Brewster-like angle

2.1. Homogeneous system (c1 ¼ c2 ¼ c3 and ρ1 ¼ ρ2 ¼ ρ3)

Consider the schematic in figure 1: a perfectly rigid (PR) screen of thickness h, perforated with
two-dimensional (2D) holes periodically arranged in a square lattice (with period L). The shape
of the holes does not strongly influence the impedance matching condition, being mainly
dependent on hole area, A. In this paper we consider either squares of side a, or circles of radius
r, and we investigate the effect in transmission when different fluids are considered. The PR
approximation, in which the externally applied energy vanishes inside the rigid body and
transmission through the plates themselves is neglected, is an excellent approach to treat stiff
materials, like steel or brass [12], when they are in proximity to flexible materials or air. The
theoretical formalism used throughout this paper is based on this PR approximation and it
consists of a modal expansion of the pressure and velocity fields in the different regions. Waves
are expanded into Bloch modes in the reflection (I) and transmission (III) regions (characterized
by ρ c( , )1 1 and ρ c( ,3 3), respectively), and the field inside the holes (characterized by ρ c( , )2 2 ) is
written as a linear combination of the eigenmodes. Imposing the appropriate matching
conditions at the interfaces (I–II and II–III), only the amplitudes of the z-component of the

Figure 1. Diagram of a 2D hole array of period L in a screen of thickness h, perforated
with square holes of side a. Different fluids in regions I, II and III, characterized by a
density and speed of sound ρ c( , )1 1 , ρ c( , )2 2 , and ρ c( , )3 3 , respectively, are considered.
The angle of incidence with respect to the normal is θ.
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velocity field at the entrance (v) and exit ( ′v ) sides of the cavities must be computed to obtain an
entire field mapping comprising far field and near field distributions. Transmission is then
defined as

Σ Σ
=

− − −
ν

ν( )( )
T

G

Z

I G

G G G
, (1)

k

i
III

I

0

I III 2

2

0

where I0 measures the overlap between the incident plane wave and the fundamental mode
inside the hole, Σ represents the bouncing back and forth of the acoustic waves inside the
cavities, and the term νG is linked to the coupling between the two sides of the screen through
the holes. Finally, GI, III account for the acoustic coupling between the fundamental eigenmode
and all the diffractive waves (in regions I and III, respectively). Analytical expressions for all
these quantities are defined in the appendix.

Figure 2 shows the angular transmission spectra for the simplest case of an homogeneous
system (i.e., = =c c c1 2 3 and ρ ρ ρ= =1 2 3). In this calculation, we consider an array with
square holes of side =a L 0.53, and thickness =h L 1.0. This set of geometrical parameters
clearly shows three types of transmission mechanisms associated with these systems: that
associated with surface modes at λ θ⩾ +L · (1 sin ( )), which depends on both the incident
wavelength in region I (λ) and angle (θ); Fabry–Pérot (FP) resonances at wavelengths close to
λ = h l2 (with l = 1, 2, ...), which do not depend on the incident angle; and finally, an
ultrabroadband resonance of total transmission, =T 1, at a given Brewster-like angle
θ = °76.7B , which does not depend on either the incident wavelength (for λ ⩽ h2 ) or film
thickness. As it has been previously demonstrated, these phenomena are achieved under some
form of resonant condition [4], or when the system is anomalously impedance matched [8–10]
at θ = Fcos ( )B , with =F A L2 the ‘filling factor’ of a unit cell. Clearly, for homogeneous
systems, the tunability of the ultrabroadband resonance to small incident angles is limited by the
geometry of the system. However, in the following, we will show that the incorporation of

Figure 2. Angular transmission spectra for an array with square holes with =a L 0.53,
=h L 1.0, ρ ρ ρ= =1 2 3 and = =c c c1 2 3. In this case, θ = °76.7B , depicted with a

dashed vertical line.
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different fluids filling the system allows for tuning the broadband transmission to any incident
angle, even at normal incidence.

It is important to understand the role of GI, III in the mechanism of broadband transmission,
which accounts for the acoustic coupling between the fundamental eigenmode inside the hole
and all the diffractive waves in each semi-infinite (reflection or transmission) space. On the one
hand, for subwavelength apertures, λ > ≫L a r, , diffraction effects can be neglected as a first
approximation, so the effective impedances in the reflection GI, and transmission regions GIII

(equations (A.8) and (A.9) in appendix), reduce to

ζ

θ
ζ

θ

≈
−

≈
−

G
F
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where we have defined ζ ρ= cj j j with =j 1, 2 or 3 labeling regions I, II, and III, respectively.
On the other hand, the impedance of the hole (relative to that of medium I) is defined as

ζ ζ=Z 2 1. Since the broadband transmission results from an impedance matching phenomenon,
the presence of three dissimilar fluids in the system (in regions I, II, and III) will provide two
conditions for impedance matching (i.e., =G ZI and =G ZIII ), and therefore, two Brewster-
like angles
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2.2. Symmetric system (c1 ¼ c3 ¼ c and ρ1 ¼ ρ3 ¼ ρ)

Let us first analyze the behavior of the transmittance in a symmetric system, i.e., a ‘sandwich’
configuration such that fluids in regions I and III are the same (with = =c c c1 3 , and
ρ ρ ρ= =1 3 ) but ρ ρ≠c c, ,2 2. Figure 3 shows angular transmission spectra for a hole array
with squares of different sizes (as indicated in the figure). Water is considered in regions I and
III (with ρ = 1000 kgm−3 and =c 1470 ms−1), and the apertures are filled with silicon oil
(ρ = 8182 kgm−3 and =c 9602 ms−1). In each panel, the prediction of θB by equation (3) is
shown with dashed lines. The set of geometrical parameters and fluids are considered in order to
provide =T 1 at small incident angle values, reaching even maximum transmission at θ = °0
(panel (a)). Note also that the system in panel (a) is ‘invisible’ for sound, for both a wide range
of incident angles and wavelengths. Similar results (not shown here) are also obtained when the
holes are filled with methanol, ethylether, or isopentane, and also when the porosity (total hole
area) is less than 0.25%. All previous results can be understood as an impedance matching
phenomenon where ζ ζ< 2 will provide a matching condition occurring at large incident angles,
while for ζ ζ> 2, impedance matching brings small θ values. For experimental development, we
expect that the inclusion of thin membranes to prevent fluid mixing, and the effects of fluid
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viscosity will not strongly affect these results. Any resonances associated with the thin
membranes could be tuned out of the region of interest by appropriate tensioning.

2.3. Asymmetric system (ρ1 ≠ ρ2 ≠ ρ3 and c1 ≠ c2 ≠ c3)

For asymmetric configurations, with different fluids in regions I, II and III (i.e., ρ ρ ρ≠ ≠1 2 3
and ≠ ≠c c c1 2 3), the two Brewster-like angles given by equation (3) must be taken into
account. In figure 4 we now consider arrays of holes of different shape, circular apertures of
radius =r L 0.3 (panels (a) and (b)), revealing the same bands of maximum transmission as
before. For comparison, in panel (c) we also show transmission through square holes of the
same area ( =a L 0.53) as the circles. The film thickness is =h L 1.0, and we take different

Figure 3. Angular transmission spectra for an array of square holes with (a) =a L 0.53
and (b) =a L 0.3, with =h L 1.0, in a water–silicon–oil–water configuration (i.e.,
ρ = 1000 kgm−3, =c 1470 m s−1, ρ = 8182 kgm−3 and =c 9602 m s−1). Vertical
dashed lines correspond to (a) θ = °58.3B and (b) θ = °80.3B . The incident wavelength
is defined in medium I.

Figure 4. Angular transmission spectra for an array of circular holes with =r L 0.3
and =h L 1.0, considering a (a) water–silicon–oil–methanol (WOM) configuration
(i.e., ρ = 10001 kg m−3, =c 14701 m s−1, ρ = 8182 kg m−3, =c 9602 m s−1 and ρ =3
791kg m−3, =c 11033 m s−1), (b) the inverse configuration, methanol–silicon–oil–
water (MOW), and (c) for square holes in a WOM configuration with =a L 0.53
(same hole area as in panel (a)) and =h L 1.0. Vertical dashed lines correspond to
(a) θ = °58.0B , (b) θ = °39.5B

III , and (c) θ = °58.3B . The incident wavelength is
defined in medium I.
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fluid combinations: (a) and (c) water–silicon–oil–methanol (WOM), and (b) the inverse
configuration, i.e., methanol–silicon–oil–water (MOW) (the density of methanol is 872 kgm−3,
and the speed of sound 1103m s−1). In order to have two bands of maximum transmission it
must be satisfied that θ⩽ ⩽0 sin ( ) 1B (and the same for θB

III), and for some set of parameters
these conditions may be not satisfied. Additionally, in order to have propagative waves in
region III, the impedance (which only depends on the incident angle)

ζ θ= − −Z c c(1 ( / ) sin ( ))
k
III

3 3 1
2 2 1/2

0 must be real, i.e., θ < c csin ( ) 1 3 must be fulfilled. For the
WOM configuration in panels (a) and (c), only θ⩽ ⩽0 sin ( ) 1B is satisfied, providing a single
band of maximum transmission at θ = °58.0B . On the other hand, for the MOW configuration
considered in panel (b), the incident wave cannot couple to propagating modes in region III for
θ > = °c c 48.61 3 . As for those parameters, the impedance matching conditions occur for
θ = °71.7B and θ = °39.5B

III , only the latter provides a broadband of maximum transmission.
Note that square holes in panel (c) present maximum transmission at the corresponding
Brewster angle, supporting our conclusions that this non-resonant phenomenon is valid
irrespective of the hole shape.

3. Maximum transmission

One fundamental difference between symmetric and asymmetric configurations relies on the
maximum transmission, TR. As it was previously demonstrated [4], maximum transmission in
subwavelength apertures in homogeneous configurations is given by =T I G4R 0

2
i, where Gi

is the imaginary part of G (see definitions in the appendix). Finally we extend this previous
work to the general case of asymmetric systems, and we provide analytical expressions for TR
as a function of the filling factor and fluid properties. The maximum transmittance is obtained
following a previous work for EM waves in subwavelength holes for any dielectric environment
[13]. In both the EM and acoustic cases we are solving the wave equation, and boundary
conditions imposed to the electric (E) and magnetic (H) fields are analogous to those imposed to
the pressure (p) and normal component of the velocity (vz), respectively. Therefore, by solving
the sound wave equation and applying some approximations (see appendix for further details),
we find for acoustic waves that maximum transmittance is given by

≈
+

T
I

Z

G

G4
(4)

k

R
0

2
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i
III

i
2

0

with θ= − −Z (1 sin ( ))
k
I 2 1/2
0 and = ++ ( )G G G 2I III .

In order to obtain the maximum transmission at the Brewster-like angle (either θB or θB
III),

it is convenient to define ζ ζ ζ=< min [ , ]1 3 and ζ ζ ζ=> max [ , ]1 3 . Applying, first, equation (2) to
equation (4), and then including the corresponding expressions for the angle (either θB or θB

III)
in equation (3) we obtain

ζ ζ

ζ ζ
≈

+
θ

> <

( )
( )

T
QR

Q R

4
(5)R

1 3
2

2
B

with ζ ζ= <Q F2
2 and ζ ζ= + −< >R Q(1 ( / ) ( 1))2 2 1/2. This equation provides maximum

transmission at the Brewster-like angle and it only depends on the filling factor and fluid
properties in each medium.
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Figure 5 shows transmission spectra for circular holes of =r L 0.3 and =h L 1.0 in an
asymmetric (WOM) configuration, or a symmetric (WOW) system, evaluated at θB using
transmission expressions given by equation (1) (symbol lines) or equation (5) (dashed lines).
The agreement between the values of maximum transmission confirms the validity of the
approximate analytical results. The estimation of maximum transmission is excellent for the
symmetric (WOW) case (TR = 1), and it provides a good estimation in the asymmetric (WOM)
case. Note that the analytical expression only depends on the filling factor and fluid properties,
and it provides an estimation with an error less than 10%.

4. Conclusions

In conclusion, we have shown that arrays of 2D subwavelength apertures in the general case
when any fluid filling the system is considered, present an ultrabroadband of total transmission
of acoustic waves at specific incident angles. By considering different fluids in the system, we
have shown that total transmission can be tuned to any incident angle, finding even maximum
transmission in a wide range of incident angles and wavelengths at the same time. We have
provided analytical expressions based on the perfect rigid (PR) approximation of general
application for the specific incident angle, and also for the maximum intensity at this angle.
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Figure 5. Transmission spectra evaluated at θB for a hole array with circular apertures of
=r L 0.3 and =h L 1.0, considering either an asymmetric water–silicon–oil–methanol

(WOM) system or a symmetric (WOW) one. Symbols correspond to calculations using
equation (1), and discontinuous lines to equation (5).
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Appendix

The linearized Eulerʼs equations describe acoustic waves of small disturbances in fluids, and in
the absence of viscosity they read





ω
ρ

ωρ

− =

− =
c

p

p

v

v

i
0,

i 0 (A.1)

2

with p, v, c and ρ the variation in pressure, particle velocity, speed of sound, and density,
respectively, due to the presence of a low-amplitude acoustic field in the medium. In the above
equations ρ=p c2 has been considered.

The system under study consists of a perfectly rigid (PR) film with holes on it and
periodically arranged in a rectangular lattice. The geometrical parameters defining the film are
the thickness h (located at z = 0 and z = h), and the array period L (along the x- and y-axes). The
whole space is divided into three regions: the reflection region I, ( <z 0), the transmission
region III, ( >z h), and the holey-screen region II. The fluid in each region is defined by its
density (ρ) and speed of sound (c), and in the following we will use subscripts 1, 2, and 3
accordingly to regions I, II, and III, respectively.

The theoretical formalism used throughout this paper is based on a modal expansion of the
pressure and velocity fields in the different regions. We assume that the incident acoustic field is
a plane wave coming from region I. The acoustic fields in this region can be expressed as an
incident plane wave 〉∥k| 0 , plus a sum of the reflected Bloch waves 〉∥k| weighed with their
corresponding reflection coefficients, rk

∑

∑
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In the above expressions, =Z k kzk
I

0 1 is the impedance relating pressure and velocity. In
this region the fields are expressed in terms of real space Bloch waves

=∥ ∥
∥ ∥

r k
k r

L

e
(A.3)

i

with =∥r x y( , ) and the parallel momentum associated with Bloch modes = +∥ k kk x y
2 2 2 with

discrete diffraction orders nx and ny ( = −∞ ∞n n, ,.. 0 ..,x y ) comprising in-plane scattering,
where = +k k πn L2x x x

0 , and = +k k πn L2y y y
0 . Hence the z-component of the wave vector

is = − ∥k k k( )z1 0
2 2 1/2, where λ=k π20 . Finally, we define the angle of incidence with respect to

the normal of the surface, θ, like θ=k k sin ( )y
0

0 . Typically, taking diffraction orders
∈ −n ( 10, 10)x and ∈ −n ( 10, 10)y , provides results with an error <0.1%.
In the same way, the fields in region III are expanded into plane waves and weighed with

their corresponding transmission coefficients, tk
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Now, the pressure and velocity fields are related through ρ ρ=Z k k( )zk
III

3 0 1 3 ,
with = − ∥k c c k k(( ) )z3 1 3 0

2 2 1/2.
Within the PR approximation, the modes inside the apertures coincide with the waveguide

modes of those apertures (which are known analytically for some geometries [4, 6, 14]). In the
case of subwavelength holes, considering only the first eigenmode (0 ) inside the apertures
provides a good approximation for the total transmittance. We express the pressure and velocity
field in region II as

= +
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e e 0 ,

e e 0 . (A.5)

q z q z
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The z-component of the wave vector of the fundamental mode is =q c c kz 1 2 0, and
ρ ρ=Z k q( )z2 0 1 . A and B are unknown expansion coefficients that can be calculated imposing

appropriate boundary conditions to the acoustic fields at the interfaces of the system (z = 0 and
z = h). The normal component of the velocity vz is continuous everywhere along the I-II and II-
III interfaces, but the pressure p is continuous only at the openings.
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We now define = −v A B( ) and ′ = − − −v A B( e e )q z q zi iz z , and substitute in the above
equations to obtain
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In the above expressions, Sk is the overlap between plane waves and the fundamental
mode inside the apertures (∣〈 〉∣0 ), which for hole arrays takes the form

∫= = ∥ ∥ ∥r r rS k k|0 | |0 dk . For square apertures (of side a) and circular holes (of radius
r), the general expressions of the overlap with the first eigenmode inside the apertures are the

9

New J. Phys. 16 (2014) 083044 S Carretero-Palacios et al



following
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where, =x x xsinc( ) sin ( ) , and J x( )1 is the Bessel function of 1st order.
By solving the system of equations in equation (A.7), and thus knowing the modal

velocities v and ′v , an entire field mapping can be obtained comprising far-field and near-field
distributions.

Finally, in order to know the transmittance of sound at the other side of the screen, we
calculate the ratio between the transmitted acoustic power and the incident one by integrating
the time-averaged x-component of the acoustic intensity in each region within one unit cell,

∫= 〉I x p x v xRe | dz . Transmission can be defined in a plane inside the apertures (TII), or
in a plane in region III (TIII), and it can be written in terms of the previous objects as

= ′

= ′ ′
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G v v

T
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G v v

1 *,

1 *. (A.10)

k
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II I

III I
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0

with * accounting for complex conjugate. These expressions are especially useful since in the
rigid approach there are no absorption losses and therefore, the law of conservation of energy
entails =T TII III.

In order to obtain equation (5), we can solve equation (A.7) again and apply that ≫− +G G
to obtain
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Taking the limit →q h 0z in the expressions of νG and Σ in equation (A.8), which is a valid
approximation when λ ≫ h, it is possible to get equation (5) after some algebra.
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