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Abstract. Let L/K be a finite Galois extension of complete local fields with

finite residue fields and let G = Gal(L/K). Let G1 and G2 be the first and
second ramification groups. Thus L/K is tamely ramified when G1 is trivial

and we say that L/K is weakly ramified when G2 is trivial. Let OL be the

valuation ring of L and let PL be its maximal ideal. We show that if L/K
is weakly ramified and n ≡ 1 mod |G1| then Pn

L is free over the group ring

OK [G], and we construct an explicit generating element. Under the additional

assumption that L/K is wildly ramified, we then show that every free generator
of PL over OK [G] is also a free generator of OL over its associated order in

the group algebra K[G]. Along the way, we prove a ‘splitting lemma’ for local

fields, which may be of independent interest.

1. Introduction

Let L/K be a finite Galois extension of complete local fields with finite residue
fields and let G = Gal(L/K). Let OL be the valuation ring of L and let PL be its
maximal ideal. We recall that for i ≥ −1 the ramification groups of L/K are

Gi := {σ ∈ G | (σ − 1)(OL) ⊆ Pi+1
L }.

Thus L/K is unramified if and only if G0 is trivial and is tamely ramified if and
only if G1 is trivial. We say that L/K is weakly ramified if and only if G2 is trivial.
In the case that L/K is weakly ramified we shall consider the structure of both
fractional ideals Pn

L with n ≡ 1 mod |G1| over the group ring OK [G] and of OL
over its associated order AL/K := {x ∈ K[G] | xOL ⊆ OL}.

A result often attributed to E. Noether is that if L/K is tamely ramified then
OL is free (of rank 1) as a module over the group ring OK [G]; in fact as noted
in [Cha96, §1] she only stated and proved the result in the case that the residue
characteristic of K does not divide |G| (see [Noe32]). Ullom [Ull70] proved the
following: L/K is tamely ramified if and only if every non-zero fractional ideal in
L is free over OK [G]; if any non-zero fractional ideal of L is free over OK [G] then
L/K must be weakly ramified; and if L/K is totally and weakly ramified then PL

is free over OK [G]. Köck [Köc04, Th. 1.1] used cohomological methods to show the
more general result that Pn

L is a free OK [G]-module (of rank 1) if and only if L/K
is weakly ramified and n ≡ 1 mod |G1|; this also follows from a minor variant of
work of Erez [Ere91, Th. 1] on the square root of the inverse different or can be
proved by the methods developed in Ullom’s papers [Ull69a, Ull69b, Ull70].
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The results discussed above do not give explicit generators. However, Kawamoto
[Kaw86] gave an elementary proof of the fact that if L/K is tamely ramified thenOL
is free over OK [G], and constructed an explicit generator along the way; from this
one easily obtains the analogous result for fractional ideals. (Chapman [Cha96] also
gave a proof of the result for fractional ideals similar to that of Kawamoto.) The
following theorem is a generalisation of these results to weakly ramified extensions.

Theorem 1.1. Let L/K be a weakly ramified finite Galois extension of complete
local fields with finite residue fields. Let G = Gal(L/K) and let n ∈ Z such that
n ≡ 1 mod |G1|. Then one can explicitly construct a free generator ε of Pn

L over
OK [G]. (The explicit description of ε is given in §4.)

In §2 we cover some preliminary material, including the (well-known) construc-
tions of generators for unramified extensions and for totally and tamely ramified
extensions. In §3 we prove a ‘splitting lemma’ that says that any for finite Galois
extension of complete local fields L/K with finite residue fields there exists a finite
unramified extension L′/L such that L′/K is ‘doubly split’ (see Definition 3.1).
Suppose that L/K is weakly ramified. Then L′/K is also weakly ramified and we
give an explicit description of a free generator ε′ of Pn

L′ over OK [Gal(L′/K)] in §4;
moreover, we show that the trace ε := TrL′/L(ε′) is a free generator of Pn

L over
OK [G]. Thus we are reduced to verifying that ε′ is indeed a generator as claimed,
which we do as follows. Let p > 0 be the residue characteristic of K. In §5 we
give a short and elementary proof of the fact that if L/K is a totally and weakly
ramified p-extension then any uniformizer πL is a free generator of PL over OK [G];
as explained in Remark 5.3, this particular result has already been proven by a
number of others. In §6 we treat the case of totally and weakly ramified extensions
of arbitrary degree by carefully ‘glueing together’ generators from two subexten-
sions: one that is totally and weakly ramified of p-power degree and another that
is totally and tamely ramified. Finally, in §7 we perform a second glueing step that
crucially depends on the fact that L′/K is doubly split.

We now consider the structure of OL over its associated order AL/K . It is well-
known that AL/K coincides with the group ring OK [G] precisely when L/K is
tamely ramified. Using the theory of Lubin-Tate extensions, Byott [Byo99, Th. 5]
showed that if L/K is an abelian extension of p-adic fields that is weakly and wildly
ramified, then OL is free over AL/K and, moreover, AL/K = OK [G][π−1K TrG0

] where
πK is any uniformizer of K and TrG0 =

∑
τ∈G0

τ . Furthermore, by following the

proof one can construct an explicit generator. Byott also remarked [Byo99, §1] that
if L/K is totally, weakly and wildly ramified (but not necessarily abelian) then it
is straightforward to deduce the analogous statement from the fact that PL is free
over OK [G] in this case, though one does not obtain an explicit generator in this
way. The following theorem generalises these results by having weaker hypotheses
and gives an explicit generator via Theorem 1.1; its elementary proof is given in §8.

Theorem 1.2. Let L/K be a wildly and weakly ramified finite Galois extension of
complete local fields with finite residue fields. Let G = Gal(L/K) and let πK be any
uniformizer of K. Then AL/K = OK [G][π−1K TrG0

] and any free generator of PL

over OK [G] (e.g. as in Theorem 1.1) is also a free generator of OL over AL/K .

1.1. Acknowledgements. It is a pleasure to thank Alex Bartel, Nigel Byott, Griff
Elder, Cornelius Greither, Derek Holt, Bernhard Köck and Russ Woodroofe for
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helpful discussions and correspondence. The author is also grateful to the referee
for several useful comments and suggestions.

1.2. Conventions and Notation. All modules are assumed to be left modules.
However, if L/K is a Galois extension fields and H ≤ Gal(L/K) then we let LH

denote the subfield of L fixed by H. For n ∈ N, we let ζn denote a primitive nth root
of unity. By a ‘complete local field’ we mean a field that is complete with respect
to a non-trivial discrete valuation; for such a field we fix the following notation:

OK the ring of integers of K
PK the maximal ideal of OK
K the residue field OK/PK

πK a uniformizer of K
vK the normalised valuation vK : K× −→ Z

We make no assumptions on the residue field K except where stated otherwise.

2. Preliminaries

2.1. A lemma on normal integral bases of ideals. We shall make frequent use
of the following easy lemma.

Lemma 2.1. Let L/K be a finite Galois extension of complete local fields with
Galois group G. Let I be a non-zero fractional ideal of OL and let I = I/PKI.
Let δ ∈ I and let δ be any lift to I. Then the following are equivalent:

(i) I = K[G] · δ,
(ii) I = OK [G] · δ,
(iii) δ is a free generator of I over K[G],
(iv) δ is a free generator of I over OK [G].

Proof. That (i) implies (ii) is a straightforward application of Nakayama’s Lemma
once one notes that PK · OK [G] is a two-sided ideal contained in the Jacobson
radical of OK [G] (see e.g. [CR81, Prop. (5.22)(i)]); the converse is clear. Suppose
(ii) holds; then the map OK [G] −→ I given by x 7→ x · δ is surjective and a rank
argument gives injectivity, so (iv) holds; the converse is clear. The proof of the
equivalence of (i) and (iii) is similar. �

2.2. Unramified extensions. The following result is well-known (see e.g. [Kaw86,
(II)]); we repeat the short proof for the convenience of the reader.

Proposition 2.2. Let L/K be an unramified finite Galois extension of complete
local fields with Galois group G. Then the residue field extension L/K is Galois and
so by the Normal Basis Theorem there exists a free generator β of L over K[G].
Moreover, any lift β of such a β to OL is a free generator of OL over OK [G].

Proof. By definition of unramified, L/K is separable (see [Ser79, Ch. I, §4]). Thus
the hypotheses imply that L/K is in fact Galois and thatG identifies with Gal(L/K)
(see [Ser79, Ch. III, §5]). For the last claim, apply Lemma 2.1 with I = OL noting
that PKOL = PL. �

Remark 2.3. Let L/K be an unramified finite extension of complete local fields
with finite residue fields; then L/K is necessarily Galois (in fact cyclic). In this
case, the construction of a normal basis element β for L/K is a significant problem
in its own right and there is a large amount of literature on the subject; see e.g.
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[Sem88]. We note that if [L : K] is a power of p := charK then Proposition 5.1
below can be applied to show that the normal basis elements of L/K are precisely
those elements β such that TrL/K(β) 6= 0.

2.3. Totally and tamely ramified extensions. The following lemma is well-
known (see e.g. [Has02, Ch. 16]).

Lemma 2.4. Let L/K be a totally and tamely ramified finite extension of complete
local fields with finite residue fields. Let e = [L : K].

(i) There exist uniformizers πL and πK in L and K respectively such that
πeL = πK .

(ii) Assume further that L/K is Galois. Then K contains the eth roots of unity
and L/K is a cyclic Kummer extension with Kummer generator πL.

The following proposition is a slight generalisation of [Kaw86, (I)]; we give es-
sentially the same proof for the convenience of the reader. Also see [Ere91, §7.1]
and [Cha96, §3].

Proposition 2.5. Let L/K be a totally and tamely ramified finite Galois extension
of complete local fields with finite residue fields. Let e = [L : K] and let G =
Gal(L/K). Let πL be as in Lemma 2.4 (i) and let α ∈ OL. Then there exist unique
u0, . . . , ue−1 ∈ OK such that

α = u0 + u1πL + · · ·+ ue−1π
e−1
L .

Let n ∈ Z. Then πnLα is a free generator of Pn
L over OK [G] if and only if ui ∈ O×K

for i = 0, . . . , e− 1; in particular this is the case if we take α = 1 +πL + · · ·+πe−1L .

Proof. Since L/K is totally ramified, we have OL = OK [πL] (see [Ser79, I, §6,
Prop. 18]); this gives the first claim. By Lemma 2.4 (ii), L/K is a cyclic Kummer
extension of degree e with Kummer generator πL. Let σ be any generator of G.
Then there exists a primitive eth root of unity ζ = ζe such that σ(πL) = ζπL. Note
that since σj(πnL) = ζjnπnL and ζjn ∈ O×K for all j, we are reduced to considering
the case n = 0.

A straightforward computation shows that with A := (ujζ
ij)0≤i,j≤e−1 we have

(2.1) (α, σ(α), . . . , σe−1(α)) = (1, πL, . . . , π
e−1
L )A.

Since A has coefficients in OK and the vectors in (2.1) give OK-bases for OK [G] ·α
and OL, respectively, we have that α is a free generator of OL over OK [G] if and
only if det(A) ∈ O×K . Now setting B := (ζij)0≤i,j≤e−1 we have

(2.2) det(A) = (
∏e−1
k=0 uk) det(B).

However, B is a Vandermonde matrix, so for some m ∈ N we have

(2.3) det(B) =
∏

0≤i<j≤e−1(ζj − ζi) = ζm
∏

0≤i<j≤e−1(ζj−i − 1).

Now consider

f(X) := Xe−1 +Xe−2 + · · ·+X + 1 =
∏e−1
k=1(X − ζk).

For 1 ≤ k ≤ e − 1, we see that (1 − ζk) divides f(1) = e. However, since L/K is
tamely ramified, e is relatively prime to the residue characteristic of K. Hence for
1 ≤ k ≤ e− 1, we have (1− ζk) ∈ O×K ; thus by (2.3) det(B) ∈ O×K , and so by (2.2)

det(A) ∈ O×K if and only if ui ∈ O×K for i = 0, . . . , e− 1. �
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3. A splitting lemma for local fields

Definition 3.1. Let L/K be a finite Galois extension of complete local fields with
finite residue fields. Let G = Gal(L/K), let I = G0 be its inertia subgroup and let
W = G1 be its wild inertia subgroup. We say that L/K is

(i) split with respect to inertia if G decomposes as a semi-direct product G =
IoU for some (necessarily cyclic) subgroup U of G (so L/LU is unramified);

(ii) split with respect to wild inertia if G decomposes as a semi-direct product
G = W o T for some subgroup T of G (so L/LT is tamely ramified);

(iii) doubly split if there exists a (necessarily cyclic) subgroup C of I and both
(i) and (ii) hold with choices of U and T such that there are semi-direct
product decompositions I = W o C and T = C o U , and so we have

G = W o T = W o (C o U) = (W o C) o U = I o U.

Remark 3.2. If L/K is totally ramified then the Schur-Zassenhaus Theorem [KS04,
6.2.1] shows that L/K is split with respect to wild inertia and thus trivially is also
doubly split.

Lemma 3.3. Let L/K be a finite Galois extension of complete local fields with finite
residue fields. Let d be any positive integer divisible by the exponent of Gal(L/K)
(e.g. take d = [L : K]). Let K ′/K be the unique unramified extension of degree
d and let L′ = LK ′. Then L′/K is Galois, Gal(L′/K ′) is the inertia subgroup of
Gal(L′/K), and L′/K is doubly split.

Proof. Since L/K and K ′/K are both Galois, so is L′/K. By considering ramifi-
cation degrees, it is straightforward to check that I := Gal(L′/K ′) is the inertia
subgroup of G := Gal(L′/K).

We show that L′/K is split with respect to inertia. Consider the exact sequence

(3.1) 1 −→ I = Gal(L′/K ′) −→ G = Gal(L′/K)
ρ−→ Gal(K ′/K) −→ 1.

Let σ ∈ Gal(K ′/K) be the Frobenius element (or indeed any generator of this cyclic
group) and take any τ ∈ Gal(L′/K) with ρ(τ) = σ. Then τd is the identity on both
L and K ′, so we have τd = idL′ . Therefore ϕ : Gal(K ′/K) −→ Gal(L′/K), defined
by ϕ(σ) = τ , is a splitting homomorphism for (3.1). Thus we may take U = 〈τ〉.

We now prove that L′/K is in fact doubly split. Let p > 0 be the residue
characteristic of K and let W (wild inertia) be the unique Sylow p-subgroup of I.
Since |I/W | is coprime to p, by the first claim of Schur-Zassenhaus Theorem [KS04,
6.2.1] there exists a (cyclic) complement C of W in I (i.e. I = WC and W ∩C = 1).
Let N = NG(C) be the normaliser of C in G. Since C is soluble, the second claim
of the Schur-Zassenhaus Theorem [KS04, 6.2.1] says that all complements of W
in I are conjugate (to C), and so the Frattini argument [KS04, 3.1.4] shows that
G = IN . Hence we can and do assume that τ defined in the above paragraph in
fact belongs to N . Recall that U = 〈τ〉 is a complement of I in G. Moreover,
U ≤ N = NG(C) and so T := CU is a subgroup of G. Note that I ∩ U = 1 and
C ≤ I, so C∩U = 1. Thus U is a complement of C in T and we have |T | = |C| · |U |.
Now we have G = IU = (WC)U = W (CU) = WT . Moreover, |G| = |W | · |T | and
so W ∩ T = 1. Therefore T is the desired complement of W in G. �

Remark 3.4. The second paragraph of the proof of Lemma 3.3 is an adaptation
of the proof of [Let98, Lem. 1], which shows that L′/K is split with respect to
inertia when L/K is abelian. The author is grateful to both Derek Holt for a
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helpful discussion that led to the argument used in final paragraph of the proof
of Lemma 3.3, and to Russ Woodroofe for pointing out that Gaschütz’s Theorem
[KS04, 3.3.2] can be used to give an alternative proof of this result in a special case
(see the MathOverflow discussion [Joh14]).

4. The explicit description of a generator

Theorem 4.1. Let L/K be a weakly ramified finite Galois extension of complete
local fields with finite residue fields. Let G = Gal(L/K) and let n ∈ Z such that
n ≡ 1 mod |G1|. Suppose that L/K is doubly split in the sense of Definition 3.1
and let I,W, T, U,C have the meanings given therein.

• Let p > 0 be the residue characteristic of K.
• Define r by pr = |G1| = |W | and let c = |C|.
• Let a, b ∈ Z such that apr + bc = 1 (note that p - c).
• Let πT be any uniformizer of LT .
• Let S = WU (this is a subgroup of G since W is normal in G).
• Let πS be a uniformizer of LS such that πcS is a uniformizer of K

(since LS/K is totally and tamely ramified, this is possible by Lemma 2.4).
• For i = 0, . . . , c− 1 let ui ∈ O×K (e.g. take u0 = · · · = uc−1 = 1).

• Let α = u0 + u1πS + u2π
2
S + · · ·+ uc−1π

c−1
S .

• Let β be a normal integral basis generator for the unramified extension
LI/K (such an element exists by Proposition 2.2.)

Then πnbT π
na
S αβ is a free generator of Pn

L over OK [G].

Proof. This is proven in §7 and builds on the proof for totally ramified extensions
given in §6, which in turn uses the result for totally ramified p-extensions proven
in §5. �

Theorem 4.2. Let L/K be a weakly ramified finite Galois extension of complete
local fields with finite residue fields. Let G = Gal(L/K) and let n ∈ Z such that
n ≡ 1 mod |G1|. Let d be any positive integer divisible by the exponent of G (e.g.
take d = [L : K]). Let K ′/K be the unique unramified extension of degree d and let
L′ = LK ′. Then L′/K is Galois, weakly ramified, and doubly split in the sense of
Definition 3.1. Let ε′ ∈ L′ be any free generator of Pn

L′ over OK [Gal(L′/K)] (e.g.
as in Theorem 4.1). Then ε := TrL′/L(ε′) is a free generator of Pn

L over OK [G].

Proof. Lemma 3.3 shows that L′/K is Galois and doubly split. Since L′/L is
unramified, [Byo99, Prop. 4.4] implies that L′/K is weakly ramified and [Ser79, III,
§3, Prop. 7] shows that TrL′/L(Pn

L′) = Pn
L. Thus we obtain

Pn
L = TrL′/L(OK [Gal(L′/K)] · ε′)

= OK [Gal(L′/K)] · TrL′/L(ε′)

= OK [G] · TrL′/L(ε′).

Applying Lemma 2.1 with I = Pn
L now gives the desired result. �

Remark 4.3. Theorem 1.1 follows from Theorems 4.1 and 4.2. When specialised to
the tamely ramified case, the proof essentially reduces to the proof of Kawamoto
[Kaw86], and we recover the main result given therein.
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5. Totally and weakly ramified p-extensions

We start by giving a slight generalisation of part of [CO81, Th. 1] (also see
[CR81, §18, Ex. 3] or [Tho08, Prop. 7]).

Proposition 5.1. Let p be prime, let k be any field of characteristic p and let G
be any finite p-group. Let M be a left k[G]-module such that dimkM = |G| and let
TrG =

∑
g∈G g. Let x ∈M . Then x is a free generator of M over k[G] if and only

if TrG · x 6= 0.

Proof. Let mx : k[G] −→ M be the k[G]-homomorphism given by y 7→ y · x.
In particular, mx is a k-linear map with domain and codomain of equal finite
dimension. Hence mx is a bijection if and only if Annk[G](x) is trivial. However, by
[CO81, Cor. (a)] (or [CR81, §18, Ex. 2] or [Tho08, Prop. 6]) the group algebra k[G]
has a unique minimal (left) ideal k[G] ·TrG = k ·TrG. Thus Annk[G](x) is trivial if
and only if TrG /∈ Annk[G](x). �

Theorem 5.2. Let K be a complete local field with perfect residue field of charac-
teristic p > 0. Let L/K be a totally and weakly ramified finite Galois p-extension
and let n ∈ Z.

(i) The Galois group G := Gal(L/K) is an elementary abelian p-group.
(ii) The ideal Pn

L is a free (rank 1) OK [G]-module if and only if n ≡ 1 mod |G|.
(iii) Suppose n ≡ 1 mod |G|. Then δ ∈ L is a free generator of Pn

L over OK [G]
if and only if vL(δ) = n.

Remark 5.3. Using the theory of Galois scaffolds, Theorem 5.2 (iii) is also proven
in recent work of Byott and Elder [BE14, Prop. 4.4] when n = 1 (in fact, op. cit.
also gives the analogous result for OL over its associated order AL/K); the result
for general n ≡ 1 mod |G| is trivial to deduce from this. Moreover, there are two
other proofs of Theorem 5.2 (iii) in the literature in the case that n = 1 and K is a
p-adic field: Vostokov [Vos81, Prop. 2] proved the result by a direct computation;
using the theory of Lubin-Tate extensions, Byott [Byo99, Cor. 4.3] showed that any
uniformizer πL of L is a free generator of OL over OK [G][π−1K TrG], and from this
Vinatier [Vin05, Prop. 2.4] deduced the result. One advantage of the proof below
is that it is short, elementary and largely self-contained.

Example 5.4. Let K be a finite unramified extension of Qp and let L be the
unique intermediate field of the extension K(ζp2)/K such that [L : K] = p. Then
it is straightforward to check that L/K is a totally and weakly ramified extension.
Thus any uniformizer πL of L is a free generator of PL over OK [Gal(L/K)].

Example 5.5. Let K = F((t)) be a local function field with perfect residue field F
of characteristic p > 0. Let L = K(x) where x satisfies xp − x = π−1K where πK is
any uniformizer of K (e.g. πK = t). Then by Artin-Schreier theory, L/K is a cyclic
Galois extension of degree p. It is straightforward to check that L/K is totally and
weakly ramified, and so any uniformizer πL of L (e.g. πL = x−1) is a free generator
of PL over OK [Gal(L/K)].

Proof of Theorem 5.2. Part (i) is standard and follows from the hypotheses and the
fact that G1/G2 is always an elementary abelian p-group (see [Ser79, IV, §2, Cor.
3]).

Let DL/K denote the different of L/K. Then as L/K is weakly ramified, Hilbert’s
formula ([Ser79, IV, §1, Prop. 4]) shows that vL(DL/K) = 2|G|−2. Now from [Ser79,
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III, §3, Prop. 7] it follows that for any i ∈ Z we have

(5.1) TrG(Pi
L) = TrL/K(Pi

L) = P
2+b i−2

|G| c
K

where bxc denotes the largest k ∈ Z such that k ≤ x. For i ∈ Z define

Pi
L := Pi

L/PKPi
L = Pi

L/P
|G|+i
L .

Then by (5.1) we have

TrG(Pi
L) =

TrG(Pi
L) + P

|G|+i
L

P
|G|+i
L

=

{
P
|G|+i−1
L /P

|G|+i
L if i ≡ 1 mod |G|,

0 otherwise.

Hence if n 6≡ 1 mod |G|, by Proposition 5.1 we have that Pn
L 6= K[G] · δ for all

δ ∈ Pn
L, and so Pn

L is not free over OK [G] by Lemma 2.1 with I = Pn
L.

Now suppose n ≡ 1 mod |G|. Let θ : Pn
L −→ Pn

L be defined by x 7→ TrG ·x. Then

θ is a K-linear map with dimK im θ = 1 and so dimK ker θ = |G| − 1. Furthermore,

K := Pn+1
L /P

n+|G|
L is a K[G]-submodule of Pn

L with dimK K = |G|−1 and by (5.1)
we have

TrG(K) =
TrG(Pn+1

L ) + P
n+|G|
L

P
n+|G|
L

=
P

2+bn−1
|G| c

K + P
n+|G|
L

P
n+|G|
L

= 0.

Hence K ≤ ker θ and this containment is in fact an equality as both spaces are of
equal finite dimension over K. Thus by Proposition 5.1 we have that

K[G] · δ = Pn
L ⇐⇒ δ ∈ Pn

L − K = Pn
L/P

|G|+n
L −Pn+1

L /P
|G|+n
L .

Therefore by Lemma 2.1 with I = Pn
L we see that δ ∈ L is a free generator of Pn

L

over OK [G] if and only if vL(δ) = n. �

6. Totally and weakly ramified extensions of arbitrary degree

Let M be a complete local field with finite residue field of characteristic p. Let
L/M be a totally and weakly ramified finite Galois extension and let I = G0 =
Gal(L/M). Since G2 is trivial, W := G1 is an elementary abelian p-group. By
Remark 3.2, L/M is split with respect to wild inertia, i.e., I decomposes as a semi-
direct product I = W o C for some cyclic subgroup C of I. (Note that as L/M is
totally ramified, we can and do write C instead of T here; this is consistent with the
notation used in §7.) Let E = LW and F = LC be the subfields of L fixed by W and
C, respectively. Note that the choice of C (and hence of F ) is not necessarily unique
and that the order of C is prime to p. We identify Gal(E/M) with C = Gal(L/F )
via the restriction map C → Gal(E/M), γ 7→ γ|E . The situation is represented by
the following field diagram.

L

E

W

F

C

M

I

C

Both L/E and F/M are are totally and wildly ramified p-extensions and both L/F
and E/M are totally and tamely ramified. Note that F/M need not be Galois.
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Define r by pr = [L : E] = [F : M ] = |W | and let c = [L : F ] = [E : M ] = |C|.
Since E/M is totally and tamely ramified, by Lemma 2.4 (i) there exist uniformizers
πE and πM of E and M respectively such that πcE = πM . By Bézout’s Lemma,
there exist integers a, b such that apr + bc = 1.

Proposition 6.1. Let n ∈ Z such that n ≡ 1 mod |W |. For i = 0, . . . , c−1 let ui ∈
O×M . Let πE be a uniformizer chosen as above, let α = u0 +u1πE + · · ·+uc−1π

c−1
E ,

and let πF be any uniformizer of F . Then πnbF π
na
E α is a free generator of Pn

L over
OM [I].

Proof. Write W = {τi} and C = {σj}. Since L/M is weakly ramified, it follows
directly from the definition of the ramification groups that L/E is also weakly
ramified. Hence by Theorem 5.2 (iii) any δ ∈ L with vL(δ) = n is a free generator
of Pn

L over OE [W ]. However, we have vL(πbFπ
a
E) = bc+apr = 1, and so in particular

we may take δ = πnbF π
na
E . Furthermore, by Proposition 2.5 we have that πnaE α is a

free generator of the fractional ideal πnaE OE over OM [C]. Therefore we have

Pn
L = OE [W ] · (πnbF πnaE )

=
⊕
i

τi(π
nb
F π

na
E )OE

=
⊕
i

τi(π
nb
F )(πnaE OE) since πE ∈ E = LW

=
⊕
i

τi(π
nb
F )(OM [C] · πnaE α)

=
⊕
i

τi(π
nb
F )
⊕
j

σj(π
na
E α)OM

=
⊕
i

⊕
j

τi(π
nb
F )σj(π

na
E α)OM

=
⊕
i

⊕
j

τiσj(π
nb
F )σj(π

na
E α)OM since πF ∈ F = LC

=
⊕
i

⊕
j

τiσj(π
nb
F )τiσj(π

na
E α)OM since σj(π

na
E α) ∈ E = LW

=
⊕
i

⊕
j

τiσj(π
nb
F π

na
E α)OM

= OM [I] · (πnbF πnaE α).

The result now follows from Lemma 2.1 with I = Pn
L. �

Remark 6.2. The author is grateful to Nigel Byott for the following observation
and to the referee for suggestions regarding explicit examples. If L/K is abelian,
not of p-power degree, and totally and wildly ramified, then L/K cannot be weakly
ramified (see e.g. [Ser79, IV, §2, Cor. 2]). In particular, if p is odd then Qp(ζp2)/Qp
is not weakly ramified, even though the subextension Qp(ζp2)/Qp(ζp) is weakly
ramified. However, there do exist non-abelian Galois extensions of local fields, not
of p-power degree, that are totally, wildly and weakly ramified. For example, let
K = Q3 and let L = Q3(ζ3,

3
√

2). Then L/K is Galois with Gal(L/K) ' S3, the
symmetric group on three letters. Furthermore, L/K is totally, wildly and weakly
ramified.
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7. Weakly ramified extensions that are doubly split

Let K be a complete local field with finite residue field of characteristic p. Let
L/K be a weakly ramified finite Galois extension and let G = Gal(L/K). Suppose
that L/K is doubly split and adopt the notation of Definition 3.1. Let M = LI

be the inertia subfield and let N = LU . Note that the choice of U (and hence
of N) is not necessarily unique. We identify Gal(M/K) with U = Gal(L/N) via
the restriction map U → Gal(M/K), γ 7→ γ|M . The extension L/M ‘decomposes’
exactly as in §6 and we henceforth assume all the notation used therein. The
situation is represented by the following pair of field diagrams.

L L

M

I

N

U

E

W

F

C

K

G

U

M

I

C

We note that S := WU is a subgroup of G since W is normal in G and that
T = CU is a subgroup of G by hypothesis. Thus

E ∩N = LW ∩ LU = LWU = LS and F ∩N = LC ∩ LU = LCU = LT .

Furthermore, W , I and C are normal in S, G and T , respectively. Therefore we
have the following field diagram in which we have identified U with the Galois group
of the relevant extensions via restriction maps as above, and unmarked extensions
are not necessarily Galois.

L
T

E

W

U

F
U

C

E ∩N

S

M

I

U

C

F ∩N

K

We now choose elements in the various intermediate fields, from which we will
construct a free generator of Pn

L over OK [G] when n ≡ 1 mod |W |. We adopt the
notation of §6, so that pr = [L : E] = [F : M ] = |W |, c = [L : F ] = [E : M ] = |C|,
and a, b ∈ Z satisfy apr + bc = 1. Let πT be any uniformizer of LT = F ∩N . Let
πS be a uniformizer of LS = E ∩ N such that πcS is a uniformizer of K; this is
possible by Lemma 2.4 (i) since LS/K is totally and tamely ramified. Note that
both πS and πT belong to N . Since M/K is unramified, by Proposition 2.2 there
exists β ∈ OM such that OM = OK [U ] · β.

Proposition 7.1. Let n ∈ Z such that n ≡ 1 mod |W |. For i = 0, . . . , c − 1 let
ui ∈ O×K . Let πS and πT be uniformizers chosen as above and let α = u0 + u1πS +

· · ·+ uc−1π
c−1
S . Then πnbT π

na
S αβ is a free generator of Pn

L over OK [G].
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Proof. Let γ = πnbT π
na
S α. Note that as E/E ∩N is unramified, πS is a uniformizer

of E. Similarly, πcS is a uniformizer of M and πT is a uniformizer of F . Thus by
Proposition 6.1 we have Pn

L = OM [I] · γ. A key point is that γ belongs to N since
both πS and πT were chosen to be in N . Write I = {τi} and U = {σj}. Then

Pn
L = OM [I] · γ

=
⊕
i

τi(γ)OM

=
⊕
i

τi(γ)(OK [U ] · β)

=
⊕
i

τi(γ)
⊕
j

σj(β)OK

=
⊕
i

⊕
j

τi(γ)σj(β)OK

=
⊕
i

⊕
j

τiσj(γ)σj(β)OK since γ ∈ N = LU

=
⊕
i

⊕
j

τiσj(γ)τiσj(β)OK since σj(β) ∈M = LI

=
⊕
i

⊕
j

τiσj(γβ)OK

= OK [G] · (γβ).

The result now follows from Lemma 2.1 with I = Pn
L. �

8. Proof of Theorem 1.2

Proof of Theorem 1.2. Let F = LG0 be the inertia subfield of L. Since L/F is
wildly ramified, we have TrG0

(OL) = TrL/F (OL) ⊆ PF (see e.g. [FT93, Th. 26(b)]).

Since F/K is unramified, we hence have π−1K TrG0
(OL) ⊆ π−1K PF = OF ⊆ OL.

Therefore

OK [G][π−1K TrG0
] ⊆ AL/K .

Let ε be a free generator of PL over OK [G] (e.g. as in Theorem 1.1). Then

(8.1) OK [G][π−1K TrG0
] · ε ⊆ AL/K · ε ⊆ OL.

Let p > 0 be the residue characteristic of K. Let S ⊆ G be a set of rep-
resentatives of the quotient group G/G0 and let T = {π−1K sTrG0

}s∈S . Since p

divides |G0| and G0 is normal in G, the element π−1K TrG0 is an OK-multiple of
either a central idempotent (if charK = 0) or a central nilpotent element (if
charK = p). Thus T ∪ G ∪ {0} is multiplicatively closed and so T ∪ G is an
OK-spanning set for OK [G][π−1K TrG0

]. Furthermore, T is an OK-linearly indepen-
dent set. Therefore considering generalised module indices (see e.g. [FT93, II.4]),

we have P
|S|
K = [OK [G][π−1K TrG0

] : OK [G]]OK
.

Let θ : K[G] −→ L be the K[G]-module homomorphism given by x 7→ x · ε. By
definition of ε, the restriction of θ to OK [G] is injective; by extension of scalars the
same is true of θ itself and of thus any restriction of θ. In particular, for any two
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OK-lattices M,N in K[G], we see that [M : N ]OK
= [M · ε : N · ε]OK

. Therefore

[OL : PL]OK
= [OF : PF ]OK

= P
[F :K]
K

= P
|S|
K

= [OK [G][π−1K TrG0
] : OK [G]]OK

= [OK [G][π−1K TrG0 ] · ε : OK [G] · ε]OK

= [OK [G][π−1K TrG0 ] · ε : PL]OK
.

This shows that the containments of (8.1) are in fact equalities. Hence the restric-
tion of θ to AL/K is a bijection onto OL and so ε is a free generator of OL over

AL/K . Furthermore, θ restricted to OK [G][π−1K TrG0 ] also has image OL, and so

injectivity of θ shows that in fact AL/K = OK [G][π−1K TrG0
]. �
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