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Abstract 25 

We announce the genome sequence for Xanthomonas species strain Nyagatare, isolated 26 

from beans showing unusual disease symptoms in Rwanda. This strain represents the first 27 

sequenced genome belonging to an as-yet undescribed Xanthomonas species known as 28 

Species-Level Clade 1. It has at least 100 kb of genomic sequence that shows little or no 29 

sequence similarity to other xanthomonads, including a unique lipopolysaccharide synthesis 30 

gene cluster. At least one genomic region appears to have been acquired from relatives of 31 

Agrobacterium or Rhizobium species. The genome encodes homologues of only three 32 

known type-three secretion system effectors: AvrBs2, XopF1 and AvrXv4. Availability of the 33 

genome sequence will facilitate development of molecular tools for detection and 34 

diagnostics for this newly discovered pathogen of beans and facilitate epidemiological 35 

investigations of a potential causal link between this pathogen and the disease outbreak.36 
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 37 

Main text  38 

Common bean (Phaseolus vulgaris) is an important subsistence and cash crop for 39 

smallholder farmers in Rwanda, providing a major source of protein and micronutrients 40 

such as iron and zinc (Larochelle & Alwang, 2014). In November 2013, farmers in Nyagatare 41 

district reported unusual disease on variety ISAR SCB 101 (RWR 2245). Leaf symptoms 42 

included curling of upper leaves, wilting, drying and dropping off. There were also brownish 43 

and white spots on affected leaves as well as brownish to dark necrosis on veins and 44 

margins. The stems and branches developed extensive white scabs, which later developed 45 

into grey gall-like structures. Green to dark-brown-black streaks and wounds that developed 46 

into cankers and necrotic tissues also developed on the stems. The pods developed grey 47 

scabs and spots coalescing into large swellings, similar to those on stems. Many of the pods 48 

were water soaked, aborted or poorly filled. On dissection, stem vascular tissues were 49 

untainted, suggesting the pathogen is intercellular. A survey by the Rwanda Agriculture 50 

Board in November 2013 found that 6 of the 14 sectors of the Nyagatare District were 51 

affected. Although the implications were serious for farmers concerned, overall the sitiation 52 

was not yet alarming with no more than 15 ha being affected but there is concernabout 53 

possible future spread.  54 

Bacteria were isolated from diseased plant material on YDC (Yeast extract dextrose 55 

carbonate) medium at CIAT Pathology Laboratory, Uganda. Pathogenicity was demonstrated 56 

by inoculation of the isolated strain onto CAL96 beans under glasshouse conditions; 57 

symptoms are shown in the Supplementary Material. Genomic DNA was sequenced to 58 

approximately 58-fold coverage using the Illumina MiSeq with Nextera XT library 59 

preparation, generating 663,444 pairs of 300-bp reads and assembled into 91 scaffolds with 60 
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a total length of 4,885,384 bp and an N50 length of 101,745 bp using Velvet 1.2.10 (Zerbino 61 

& Birney, 2008) followed by gap-filling using GapCloser version 1.12-r6 (Luo et al., 2012). 62 

Data are available at GenBank under accession numbers GCA_000764855.1 and 63 

JRQI00000000.1.  64 

To investigate the core and variable portions of the genome, we used dnadiff from the 65 

Mummer package (Delcher et al., 2002) to perform pairwise sequence comparisons 66 

between the Nyagatare strain genome and all previously sequenced Xanthomonas genomes 67 

(results are tabulated in the Supplementary Material Figure S1).  The highest degree of 68 

shared accessory genome was with X. arboricola 3004 (73.73% of genome shared with 69 

Nyagatare). Figure 1A also provides an overview of genomic conservation and variation. The 70 

genome with greatest sequence similarity was X. cassavae (Bolot et al., 2013) with 89.16% 71 

nucleotide sequence identity. Average nucleotide identity (ANI) values, as calculated by 72 

JSpecies (Richter & Rosselló-Móra, 2009), between members of a single species usually 73 

exceed 95%. The ANI values between Nyagatare and X. cassavae were 87.38% (ANIb) and 74 

89.12% (ANIm). Between Nyagatare and X. arboricola 3004, ANIb was 85.54% and ANIm was 75 

88.84%. Between Nagatare and X. fuscans the respective values for ANIb and ANIm were 76 

85.82% and 88.66%. Thus strain Nyagatare does not belong to any of the previously 77 

sequenced species and is phylogenetically distinct from previously studied pathogens of 78 

common bean (that fall within the species X. axonopodis and X. fuscans). The lack of 79 

sequenced genomes with very high sequence similarity to strain Nyagatare precluded high-80 

resolution phylogenomic analysis (Rodriguez-R et al., 2012); however, the availability of an 81 

extensive database of sequences for the phylogenetic marker gene gyrB (Parkinson et al., 82 

2009) allowed us to more precisely examine its phylogenetic position. As illustrated in Figure 83 

1B, the Nyagatare strain falls within Parkinson’s Sequence-Level Clade 1 (Parkinson et al., 84 
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2009), along with little-studied pathogens of Zinnia elegans, Hibiscus esculentus, Cannabis 85 

sativa, Helianthus annuus and Nicotiana tabacum (NCPPB strains 2439, 2190, 2877, 1325 86 

and 1068). 87 

Commensurate with its phylogenetic distinctness from previously sequenced Xanthomonas 88 

species, the Nyagatare strain has at least 100 kb of genomic sequence that shows little or no 89 

sequence similarity to other xanthomonads, as judged by BLASTN searches. This includes a 90 

16.5-kb region located between metB and etfA (JRQI01000003.1 positions 48,238-64,812) 91 

harbouring genes for lipopolysaccharide (LPS) synthesis that are quite distinct from any 92 

previously sequenced LPS synthesis gene cluster (Patil & Sonti, 2004). Another example is a 93 

2.3-kb region (JRQI01000032.1 positions 37,278-34,915) that shares 84% nucleotide 94 

sequence identity with the large chromosome of Agrobacterium radiobacter K84 (GenBank: 95 

CP000628.1), and similar levels of identity with several Rhizobium species, but shares no 96 

detectable sequence similarity with any available Xanthomonas sequences in the NCBI 97 

databases. 98 

Virulence factors described in previously sequenced Xanthomonas genomes include effector 99 

proteins that are substrates of the type-III secretion system (T3SS) (White et al., 2009). The 100 

Nyagatare genome encodes an apparently complete T3SS (Figure S2). Based on TBLASTN 101 

searches between the genome of the Nyagatare strain and Ralf Koebnik’s catalogue of 102 

known T3SS effectors (http://www.xanthomonas.org/t3e.html) there are homologues of 103 

only three: AvrBs2 (73 % identity between GenBank: CAJ21683.1 and JRQI01000008.1: 104 

30,926 to 33,058), XopF1 (66% identity between CAJ22045.1 and NC00_3340) and an open 105 

reading frame (JRQI01000008.1 positions 38,866  to 39,942) encoding a protein with 87% 106 

amino-acid sequence identity to AvrXv4  which has only previously been reported in 107 
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genomes of X. euvesicatoria  (Astua-Monge et al., 2000) and X. perforans (Potnis et al., 108 

2011). 109 

In conclusion, we present a draft-quality genome sequence for the Nyagatare strain. This is 110 

the first genome sequence representing Parkinson’s Species-Level Clade 1 and as such its 111 

availability will aid the study of this as-yet undescribed candidate new species. Furthermore, 112 

this strain may be responsible for the mysterious disease emerging as a potentially serious 113 

threat to beans, an important subsistence crop. Availability of the genome sequence will 114 

facilitate development of molecular tools for detection and diagnostics thus enable 115 

researchers to test for an epidemiological link between this strain and the disease. 116 
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Figure 1. The genome sequence of Xanthomonas sp. Nyagatare. Panel A shows a global 178 

comparison of the Nyagatare genome sequence against representative previously 179 

sequenced Xanthomonas genomes. The genome sequences (Pieretti et al., 2009; Song & 180 

Yang, 2010; Potnis et al., 2011; Bolot et al., 2013; Darrasse et al., 2013; Vandroemme et al., 181 

2013) were aligned against the Nyagatare genome assembly using BLASTN with an E-value 182 

threshold of 1x10-6. The Nyagatare assembly had first been re-ordered against the X. 183 

axonopodis pv. citri 306 (da Silva et al., 2002) reference sequence using the contig re-184 

ordering function in Mauve (Rissman et al., 2009). The alignments are visualised using BLAST 185 
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Ring Image Generator (BRIG) (Alikhan et al., 2011). Panel B shows the phylogenetic position 186 

of the Nyagatare strain based on comparison to previously sequenced gyrB  genes 187 

(Parkinson et al., 2009). Evolutionary history was inferred by using the Maximum Likelihood 188 

method based on the Tamura-Nei model (Tamura & Nei, 1993). The tree with the highest 189 

log likelihood (-8634.7961) is shown. The percentage of trees in which the associated taxa 190 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search were 191 

obtained by applying the Neighbor-Joining method to a matrix of pairwise distances 192 

estimated using the Maximum Composite Likelihood (MCL) approach. The tree is drawn to 193 

scale, with branch lengths measured in the number of substitutions per site. The analysis 194 

involved 438 nucleotide sequences. All positions with less than 95% site coverage were 195 

eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were 196 

allowed at any position. There were a total of 524 positions in the final dataset. Evolutionary 197 

analyses were conducted in MEGA6 (Tamura et al., 2013). Xanthomonas group 1 and group 198 

2, as defined by Young and colleagues (Young et al., 2008) are indicated by square brackets 199 

as is also species-level clade 1 as defined by Parkinson and colleagues (Parkinson et al., 200 

2009). 201 
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