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Abstract

The Endoplasmic Reticulum (ER) in live cells is a highly mobile network whose
structure dynamically changes on a number of timescales. It is unclear in any system
the role of such drastic changes although there are correlations with ER function. A
better understanding of the fundamental biophysical constraints on the system will al-
low biologists to determine the effects of molecular factors on ER dynamics. Previous
studies have identified potential static elements which the ER may remodel around.
Here, we use these structural elements to assess biophysical principles behind the net-
work dynamics. By analyzing imaging data of Tobacco leaf epidermal cells under two
different conditions: native state (control) and latrunculin B (treated), we show that
the geometric structure and dynamics of ER networks can be understood in terms of
minimal networks. Our results show that the ER network is well-modelled as a locally
minimal-length network between the static elements that potentially anchor the ER to
the cell cortex over longer timescales; this network is perturbed by a mixture of ran-
dom and deterministic forces. The network need not have globally minimum length;
we observe cases where the local topology may change dynamically between different
“Euclidean Steiner Network” topologies. The networks in the treated cells are easier to
quantify as they are less dynamic (the treatment suppresses actin dynamics) but the
same general features are found in control cells. Using a Langevin approach we model
the dynamics of the non-persistent nodes and use this to show that the images can be
used to estimate both local viscoelastic behavior of the cytoplasm and filament tension
in the ER network. This means we can explain several aspects of the ER geometry in
terms of biophysical principles.
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1 INTRODUCTION

The endoplasmic reticulum (ER) is the largest membrane-bound organelle in most eukary-
otic cells, and spreads throughout the cytoplasm as one highly complicated interconnected
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network that surrounds a single lumen [1]. It serves important roles in protein and phos-
pholipid synthesis, quality control and export, and calcium storage [2]. Dysfunction of the
ER is linked to a range of neurological disorders including Alzheimer’s disease [3, 4]. The
functional role of the ER is related to its morphological structure which is composed of an
intricate connected network of tubules and cisternae [5]. The ER tubules have high mean
curvature in cross section, whereas cisternae are dilated tubules comprised of extended re-
gions of parallel, flat membrane bilayers that are stacked over each other with high curvature
constrained to the periphery of the cisternae [5, 6]. Tubules grow and shrink, and undergo
lateral sliding to form closed polygons as well as readily changing into cisternae. Research
suggests that a dynamic ER network allows the ER to establish and maintain functional
contacts with membrane-bound organelles as they move, and to adapt to changes in cell
morphology during cell migration, differentiation, and polarization [7, 8]. The movement of
the ER network is regulated by the cytoskeleton and molecular motors [5, 6, 9, 10, 11]. In
plant cells, depolymerisation of the actin cytoskeleton inhibits ER remodelling. ER dynamics
can also be influenced by physical properties of ER surface tension [12] and the rheological
behavior of cytoplasm which is usually intermediate between the two limit behaviors of a
viscous liquid and an elastic solid [13, 14].

Due to the highly dynamic and intricate nature of the ER network, quantifying changes
has proven difficult. Quantitative analysis so far has mainly focused on tubule length [15,
16, 17, 18], diameter [18] and branching properties [16, 17]. These types of studies tend to
be carried out on either fixed tissue or after treatment with cytoskeletal inhibitors and so
are based on networks which are no longer actively remodelling. In order to start unpicking
and quantifying elements in an actively remodelling network, Sparkes et al [9] developed an
image analysis method for pulling out the persistent or static elements of the ER network
in tobacco leaf epidermal cells. Persistent tubules and cisternae were observed as well as
static nodes or points, all of which may have important roles in anchoring the network to the
plasma membrane [9, 19, 20]. In addition, Bouchekhima et al have analyzed ER dynamics
by measuring displacement of nodes and average velocity [21, 22]. Many questions remain
concerning the biophysical mechanisms underlying dynamical changes and the biological
significance of these changes [5, 23]. One of the many unresolved questions relates to the
functional role of the ER forming such an intricate thermodynamically unfavourable network
structure in the cell. Without better tools to quantify network dynamics these basic types
of questions will remain unresolved.

In nature, minimal length or surface structures are prevalent - they provide economical
ways of joining or supporting structures (e.g. the skeletons of radiolarians or cell transport
networks), and biophysical mechanisms such as surface energies or interfacial tensions easily
drive processes that result in minimal surfaces [24]. The problem of finding a minimal
surface with a given boundary, known as the Plateau’s problem [24]. Indeed, the structure
of tightly stacked ER sheets (cisternae) has been modelled as a minimum of elastic energy
of sheet edges and surface [25]. In this paper, we focus on the ER tubules which form
networks between persistent points. Finding a minimal network between points is known
as the Euclidean Steiner tree problem - a low dimensional case of Plateau’s problem [24].
For the ER tubule networks, we show they can be well described as a perturbed Euclidean
Steiner network (ESN) by analyzing the structure of in vivo ER networks. We use a Langevin
approach to model the dynamics of non-persistent nodes in a small network and are able to
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use this modelling methodology to estimate biophysical quantities of the ER in the living
cell, including both the local viscoelastic behavior of the cytoplasm and the filament tension
of the ER network.

2 MATERIALS AND METHODS

The live cell imaging data of ER network dynamics analyzed in this paper is from tobacco leaf
epidermal cells (taken from [9]) in two cases: a native state with active remodelling (referred
to as control) and a latrunculin B treated sample where the ER network is relatively static
in comparison (referred to as treated). Both experimental ER networks are transiently
expressing green fluorescent protein (GFP) retained in the ER lumen. The GFP marker fills
the entire ER network throughout the cortex of the cell and is shown as grey levels in figures.
The ER recordings for both treated and control are composed of N = 50 frames with a time-
resolution 1.6s between frames and a spatial resolution of 0.11µm per pixel. Examples of
networks are illustrated in Fig 1 where markers and lines are for the presentation of geometric
graphs simplifying the ER networks for quantitative analysis.

2.1 Euclidean Steiner Networks

In this section, we introduce the notion of Euclidean Steiner network (ESN) that is a slight
generalization of a Steiner tree. First we recall the definition of Steiner tree. A tree between
a number of fixed points is a cycle-free connected graph having these points as its nodes and
a minimal spanning tree is a tree whose total length (sum of the lengths of all its lines) as
small as possible. However, one can often construct a shorter spanning tree between these
fixed nodes u1, u2, · · · , uP by including extra nodes x1, x2, · · · , xM [26]. By minimizing over
the trees on extra points, local minima are called Steiner trees (ST) where the fixed nodes
are called terminals and the additional points are called Steiner points while the globally
minimal is called the Steiner minimal tree (SMT). More precisely, a (Euclidean) Steiner tree
(ST) as a tree whose length cannot be shortened by a small perturbation of Steiner points,
even when splitting is allowed. By splitting a node v, one disconnects two or more of the
lines at v and connects them instead to a Steiner point. There could be several STs between
a set of terminals, and these differ in topology (i.e., a connection description specifying which
pairs of points have a connecting line); A and B in Fig 2 are two STs with the same four
terminals.

Consider a network G connecting a set of terminals and possibly additional points on the
plane. We say G is an Euclidean Steiner network (ESN) between these terminals (and the
additional points are Steiner points) if no small perturbation of Steiner points will decrease
the length, even if splitting is allowed. In contrast to a ST, an ESN can have cycles (see
C,D in Fig 2). Clearly, the shortest length ESN must be the SMT between terminals and a
cycle-free ESN is a ST. Analogous to STs [27], for ESNs all Steiner points are of degree three
(i.e., lines radiating outwards) and have angles 120◦ between edges, while the terminals must
be of degree at most three and must have angles not less than 120◦ between edges that meet
there. Steiner points in STs and ESNs in this paper are determined by GeoSteiner [28].
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Figure 1: Illustration of the treated (top panels) and control (bottom panels) ER network
and local dynamics. The rectangle Region O in (a) and (f) highlights a region with no
cisternae. In control, (f) and (g) show a transition between ER tubule and cisternae in
Region O. Details of the dynamics in Region O are shown in (b)-(e) for treated and (h)-
(i) for control, with the geometric graphs (where markers ‘+’ are persistent and ‘o’ are
non-persistent nodes while lines are edges) abstracted from an image processing method as
described in Section 2.2. Sub-regions I and II in (b) are used for modeling the dynamics of
treated ER networks. The imaging data is taken from [9] (www.plantcell.org, Copyright
American Society of Plant Biologists); dynamics in Region II is shown in Movie 1 and in
control is shown in Movie 2.

A B C D

Figure 2: Examples of Steiner trees A,B and Euclidean Steiner networks (ESNs) with cycles
C,D; terminals are shown in bold dots and Steiner points are junctions between connecting
lines. A,B are the two Steiner trees for the same terminals. In all cases, the angles at Steiner
points are 120◦ and the angles at terminals are at least 120◦.

2.2 Image processing methods

We briefly outline the image processing method we use to dynamically extract the terminals
and graphs from the sequence of 2D imaging data of [9]. The method is similar to that in
[22]; however, we distinguish between persistent and non-persistent nodes; persistent nodes
(that are static over a give time duration) relate to the static nodes isolated by persistency
mapping and are thought to be of biological significance in the ER structural organization [9].
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Thus, at a given time the graph is composed of a number of persistent nodes {p1, p2, · · · , pP}
that are present in the given time duration and a number of non-persistent nodes {si}k(t)+m(t)

i=1

which is the union of the branching junctions {bi(t)}k(t)i=1 and the degree one nodes {oi(t)}m(t)
i=1 .

Branching and/or degree one nodes and their number may change during the remodelling of
the ER.

The persistent nodes are found by (a) taking average pixel intensities over a fixed time
duration (we use a time duration 80s of the entire movie as default unless otherwise stated),
(b) smoothing this averaged image by a Gaussian filter Kr,σ of kernel size r and standard
variation σ and (c) finding the local maximum (using an 8-connected neighborhood) in the
smoothed images after applying a threshold I1. We use the parameters r = 3, σ = 0.8 and
threshold I1 = 110; the choice of these parameters is discussed in Supplementary Material
(Section A).

To obtain the non-persistent nodes, we smooth each image using the Gaussian filter Kr,σ

followed by thresholding with a threshold I2 to give a binary image. We then find the
skeleton (of one-pixel width and the same topology as the binary image) using a thinning
algorithm [29] which gives “non-persistent” degree one (ends in the skeleton) and branching
(junctions in the skeleton) nodes that are not in the set of persistent nodes; we assume that
the persistent nodes are always in the network by rounding the persistent nodes to the closest
point on the skeleton. We use I2 = 20 for the treated ER and I2 = 35 for the control; the
choice of these parameters is discussed in Supplementary Material (Section A).

Since we are testing whether ER tubules are connected and conform to an ESN, we are
focusing on a relatively simple region of the ER network which is devoid of cisternae with the
long term plan of extending the study to cover both morphological forms of the ER (tubules
and cisternae). For the treated ER, we have studied the network within the Region O of
Fig 1(a). In this region, the non-persistent nodes move and connect to other nodes within
the region; see Fig 1(b-d). For the control ER, due to its complex spatial dynamics as well
as its rapid transition between tubular and cisternal forms (e.g. seen from Fig 1(f,g)), we
choose different regions with no cisternae at different static images in the recording, such as
Region O in Fig 1(f), to study its network properties. In a chosen region, we take the largest
connected component in the skeleton and the nodes on the skeleton. Each pair of nodes
on the skeleton is connected by an edge if there is a path in the skeleton connecting the
two nodes without passing other nodes. The length of each edge is given by the Euclidean
distance between two nodes (i.e., the length of the line).

This process delivers a time-dependent sequence of geometric graphs G(t) = (V (t), E(t))
between a set of persistent nodes Vp = {pi} ⊂ V (t) that are static throughout the movie, a
set of additional non-persistent nodes Vs = {si(t)} ⊂ V (t) that vary in position and number,
and a set of edges E(t) = {ei(t)} that connect the nodes. Our image processing method
gives about 99.7% (95.3%) of pixels among the lines in the abstracted graphs for treated
(control) ER networks agree with that in the binary images before skeletonization. This
indicates that the ER filaments between nodes are well described by straight lines.
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3 RESULTS

We examine some properties of the instantaneous networks in Section 3.1 and test the hy-
pothesis that they are close to ESNs, before looking at the dynamics of the networks for the
treated ER in Section 3.2 and the control ER in Section 3.3 and biophysical properties of
the ER in Section 3.4.

3.1 Instantaneous ER networks

Fig 3(top) compares the number of nodes in the treated and control ER networks for the
chosen regions, considering the population of graphs G(t) over all instants of time. The
average number of total nodes in a given unit area are similar between treated and control
ER. Moreover, in both networks, persistent nodes are mainly non-branching (i.e., connecting
1 or 2 tubules) while non-persistent nodes are mainly branching. However, the treated ER
has more persistent nodes than non-persistent nodes in a unit area whereas the control ER
has an approximately equal number of both. Comparing treated and control, the control
ER has more non-persistent nodes per unit area than the treated ER. These observations
are in agreement with the dramatic dynamic changes seen in the control network versus the
treated sample. In addition, the mean edge length in the treated (1.34± 0.033µm (N=986))
and control (0.96± 0.013µm (N=2312)) ER networks is similar.

Figure 3: Node and edge analysis of abstracted treated and control ER networks in chosen
regions over the analyzed movies. Top: number of persistent (left two bars) and non-
persistent (right two bars) nodes per unit area (10µm2). The majority of persistent (non-
persistent) nodes are non-branching (branching). In the treated ER, 77% are persistent nodes
while in the control the number of persistent and non-persistent nodes are approximately
equal. Bottom: Distribution of the number of edges from a non-persistent node to non-
persistent nodes Vs (left) and to persistent nodes Vp (right).
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Note that non-branching nodes (mainly persistent nodes) have one or two edges while
branching nodes (mainly non-persistent) mainly have three edges both for treated and control
ER (a branching node will have less than three edges if is links with tubules extended outside
the chosen region). To further clarify the linking structure between nodes, Fig 3(bottom)
shows that for the treated ER networks, a majority (∼ 90%) of non-persistent nodes are
connected to 3 persistent nodes and no others while for the control ER, the number of edges
between different types of nodes is much more homogeneous. By contrast, Fig S3 shows
that the treated and control ER do not show significant difference in the distribution of the
number of edges from a persistent node.

Fig 4(top) shows that the angles at non-persistent nodes for both treated and control
follow a normal distribution with a mean around 120◦ and a standard variation around
25◦. Furthermore, a two-sample Kolmogorov-Smirnov test suggests that the two are from
the same normal distribution. Fig 4(bottom) shows that angles of persistent nodes are
predominantly larger than 120◦ for both treated and control ER. This agrees well with the
hypothesis that the networks are perturbed ESNs, and that the non-persistent branching
nodes are perturbed Steiner points.

Moreover, Fig 5 (and Fig S4(a-b)) show examples of abstracted self-contained ER net-
works that are clearly close to an ESN whose terminals are the persistent and degree one
nodes. In particular, for the treated ER networks where terminals are consistent in the entire
movie, we further show in Fig S4(c-d) the distribution of branching nodes and the peaks of
the distribution are close to Steiner points in the corresponding Steiner minimal tree. This
also suggests that the instantaneous ER networks are well modelled as perturbed ESNs.
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Figure 4: Angle distribution for non-persistent (top) and persistent (bottom) nodes for both
treated (black) and control (grey) ER networks in chosen regions. The smooth curves show
best Gaussian fits to the distribution from the corresponding treated (black; with a mean
121.4◦ and standard variation 25.7) and control (grey; with a mean 120.8◦ and standard
variation 28.3) networks. For persistent nodes, 77.5% (69.2%) of angles are over 120◦ in
treated (control) ER networks.
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(b) ESN(a) t=40 s

1µm

Figure 5: The comparison of a control ER network (a) together with the abstracted geometric
graph to the Euclidean Steiner network (b) with terminals (circles) being the persistent and
degree-one nodes from (a). Non-persistent nodes in (a) are not connected with nodes outside
the region. The imaging data is taken from [9].

3.2 The treated ER network dynamics

We focus on the network dynamics observed in Region O in Fig 1, where the region is chosen
to be away from any cisternae of the ER. As the persistent nodes are static, and we can
describe the network dynamics via movement of the non-persistent nodes and changes of the
network topology.

Section 3.1 suggests that non-persistent branching nodes can be thought of as Steiner
points that reduce the total length of the graph. We thus propose a simple model for the
dynamics of the graph using a Langevin equation to characterize the motion of non-persistent
nodes (ER junctions) xi(t) ∈ R2 (unit µm) for i = 1..M as

dxi

dt
= −a∇xi

f(xi, . . . , xP ) +
√
2σξ(t) (1)

where f(xi, . . . , xP ) represents the total length in the network between persistent and the
given non-persistent nodes (the network topology will be implicitly inferred from node lo-
cations). In the mode, there are a drift coefficient a (unit µm/s) and a diffusion coef-
ficient σ (unit µm2/s) modulating white noise ξ(t) with zero mean and autocorrelation
〈ξ(t)ξ(t′)〉 = δ(t − t′). A physical interpretation of these parameters is discussed in Sec-
tion 3.4. In the following subsections, we examine the dynamics in regions I and II high-
lighted in Fig 1(b).

3.2.1 Network dynamics in Region I

This region contains three persistent nodes and one non-persistent node and the topology
between the nodes remains the same in the movie, i.e., the non-persistent node x is connected
to three persistent nodes pi ∈ R2 for i = 1..3. In this case the total network length is

f(x) =
∑

i

|x− pi|

where | · | denotes the Euclidean norm in R2 and the gradient ∇xf(x) =
∑

i
x−pi
|x−pi|

. Using

the method in Section 2.2, we obtain a time series x(nδ), n = 1, . . . , N for the positions of
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the non-persistent node with a time step δ = 1.6s. We estimate the diffusion coefficient
σ ≈ 0.008± 0.001µm2/s (N = 50) via quadratic variation [30] as

σ ≈ 1

2Nd δ

N−1
∑

n=1

|x((n+ 1)δ)− x(nδ)|2 (2)

where d = 2 is the dimension of the x and an asymptotically normal distribution for |x((n+
1)δ) − x(nδ)|2 from [31] (see Supplementary Material for details). Meanwhile, we estimate
the drift coefficient a ≈ 0.2 ± 0.04µm/s (N = 50) by maximizing the approximated log-
likelihood [32]

LN(a) =
1

2σ

(

−a

N−1
∑

n=1

〈∇f(x(n)), (x(n+ 1)− x(n))〉 − a2
δ

2

N−1
∑

n=1

〈∇f(x(n)),∇f(x(n))〉
)

(3)

which gives

a = −
∑N−1

n=1 〈∇f(x(n)), (x(n+ 1)− x(n))〉
∑N−1

n=1 δ|∇f(x(n))|2
(4)

and an asymptotically normal distribution for a from [33] (see Supplementary Material for
details). Linearizing this Langevin equation (1) gives a stochastic differential equation that
models the dynamics of the non-persistent node as perturbed Steiner point, which can be
simulated and solved analytically. The above estimations of the parameters in (1) agree well
with the estimation on its linear part (see Supplementary Material for details).

The Langevin model with the estimated parameters well captures the ER dynamics in
region I, through the comparison to the abstracted ER network dynamics in three different
ways; (a) the angle distribution for the non-persistent nodes, (b) the time-dependent total
length f(x(t)) and (c) the position dynamics of the non-persistent node x(t). Indeed the
total length from a simulation of Eq (1) oscillating above the length of the corresponding
SMT is similar to that in the abstracted graphs; see top panels in Fig 6. Meanwhile, Fig S5
shows good agreement of numerical simulation for the positions and angles of non-persistent
nodes.

3.2.2 Network dynamics in Region II

Region II in Fig 1(b) contains six persistent nodes and more than one ST topology is possible
(topology changes are not present in Region I). Possible connection structures between these
nodes are shown in Fig 7(top) while Fig 7(bottom) shows four different STs corresponding to
four observed ER network topologies. All STs with these 6 terminals have two Steiner points.
The time-dependent length shown in Fig 6(bottom) illustrates that this length may oscillate
about the (local) STs, but may also change between different ST topologies. Analogous
to the dynamics in Region I, the positions of the non-persistent nodes oscillate around the
positions of Steiner points for the STs and the angles of non-persistent nodes well fit a normal
distribution with mean around 120◦ (see Fig S6 in supplementary material).

The transition between topologies may associate with creation of additional non-persistent
nodes. Indeed, Fig S7 indicates that such additional nodes can appear during transitions -
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Figure 6: Total length of abstracted graphs from experimental data, numerical simulation of
the Langevin equation (1) with an initial condition from the first frame, and the correspond-
ing Steiner minimal tree in Region I (top) and II (bottom) highlighted in Fig 1(b). The cor-
responding length distribution are given on its right panel and the two sample Kolmogorov-
Smirnov tests suggest the total length distribution calculated from experiment and simulation
is from the same distribution in each region. Parameters σ = 0.008µm2/s and a = 0.2µm/s
are used in simulations. Observe the periods of time between 20s and 45s where the topology
“flips” to be close to a Steiner tree with a different topology in Region II.

this additional node in Region II only appears during two of the 50 frames in the recording.
In modelling the dynamics in this region, we exclude these intermediate states and only
model these four ST topologies in Fig 7. More precisely, for the six persistent nodes {pi}61
we simply assume rewiring occurs when one of the non-persistent nodes crosses the lines
p1p2 or p4p5 and the topology changes to be the closest to that in Fig 7. We use the same
parameters σ, a as in Region I to perform numerical solutions of the Langevin equation (1).
Fig 6(bottom) and Fig S6 show that these simulations agree well with abstracted graphs in
terms of the angle distribution for the non-persistent nodes, the time-dependent total length
and dynamics of non-persistent nodes.

3.3 ER remodelling in the control

The previous section demonstrates that the treated ER network is well modeled as a per-
turbed ESN where the terminals correspond to the persistent nodes and perturbation is due
to Brownian motion. The control ER network can also be viewed as a perturbed ESN as
illustrated in Fig 5 where terminals include persistent and degree one nodes. However, the
perturbation in the control is of higher amplitude and more heterogeneous than Brownian
motion. The perturbations include Brownian forces, but streaming and organelle motion
also have a major effect on the network structure. Indeed, the dynamics of the control ER
network is much richer than that in the treated case and we have not yet attempted to model
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Figure 7: Top: four different graph structures from treated ER network at different time
for Region II in Fig 1(b). The pi(i = 1, · · · , 6) indicate the locations of six persistent nodes
while x1,2 indicate the locations of two non-persistent nodes. Bottom: four Steiner trees
correspond to the abstracted graphs shown above. The marker ‘+’ indicates persistent, ‘o‘
indicates non-persistent nodes and ’square’ indicates the Steiner points. The imaging data
is taken from [9].

the full dynamics of the control ER network even for restricted regions, but we do illustrate
some of the challenges and the complexity of the dynamics.

One problem in interpreting the dynamics of the control ER network is that some of the
persistent nodes may only be visible for part of the sequence - there appear to be moments
that detachment/reattachment of the ER network occurs. This may lead to incorrect clas-
sification of persistent points or terminals as non-persistent nodes. For example, Fig 8(a)
show two nodes p1,2 that only persistently appear for a proportion of the recording. This
suggests that for the control ER network persistent nodes can be dynamically appearing and
disappearing from the network.

In addition, in the control sample the ER network undergoes more structural changes
which can be much more complex than in the treated ER network. Phenomenon such as
node splitting to create new degree one nodes, opening and closing of loops, creation of new
junctions and destruction of nodes as well as edges (filaments) are all observed in the control.
Fig 8 illustrate some examples of these phenomenon in ER network remodelling.

3.4 Estimation of ER filament tension and cytoplasm viscosity

from the model

We use the Langevin model (1) and the estimated parameters discussed in Section 3.2 to
obtain estimates for the ER filament tension force and the local effective viscosity, at least
for the treated ER in Region I. The inertial forces involved are negligible and we make the
following assumptions: (A1) We suppose that the ER filaments are approximately cylindrical
with constant radius R and surface tension γ; this means that the tension force F := 2πRγ is
approximately constant in the ER filaments. (A2) We suppose that the environment outside
the ER filament is fluid with constant effective viscosity η. (A3) We suppose that the ER
junction can be approximated as a sphere of radius R that is acted on purely by Stokes drag,
filament tension and Brownian forces.

For Region I and dynamics discussed in Section 3.2.1, the non-persistent node x(t) ∈ R2

moves so that the tension and Stokes drag forces balance the Brownian forces; hence x(t)
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Figure 8: (a): the time-dependent maximal GFP intensity in a small neighborhood (with a
radius distance of 3 pixels) indicating two persistent nodes p1,2 only visible for part of the
sequence. (b): two consecutive networks at a chosen region in the native state illustrating
examples of complex remodelling. The thick rectangle shows a region where loop closing
occurs (branching also takes place); the thin rectangle shows a loop opening; the dashed
rectangle shows a complex structural change that will presumably be resolved only using a
higher time resolution movie.

satisfies the Langevin equation

F∇xf(x) + 6πηR
dx

dt
=
√

2kBT6πηRξ(t). (5)

where kB is the Boltzmann’s constant and T is the temperature [34]. This reduces to Eq (1)
with

a =
F

6πηR
and σ =

kBT

6πηR
. (6)

The ER filament diameter is measured to be D := 2R = 0.06µm [35] and the estimated
diffusion coefficient σ ≈ 0.008 ± 0.001µm2 is comparable to ∼ 10−4µm2/s measured for
organelles of size ∼ 0.1µm [36]. Using T = 298K D := 2R = 0.06µm and the estimated
parameters a, σ from Section 3.2.1, the relations (6) gives an effective viscosity η and tension
force F for the situation in Region I that are

η ≈ 909± 113.7cP and F ≈ 0.1± 0.02pN (7)

where the error is from propagation of uncertainty [37] in drift and diffusion coefficients. How-
ever, Fig 9 suggests that the time resolution means we are in the region of elastic behaviour
and the estimate of viscosity is overestimated. In particular, the mean square displacement
of the ER junction in Region I is almost independent of time lag; see Fig 9(right). This
suggests that the time resolution in the ER movie is in the region of elastic behaviour and
at this measured time scale the cytoplasm behaves predominantly elastic. Thus the effective
viscosity η = 909cP from (7) is merely an upper bound. It is well known that the cytoplasm
displays both elastic and viscous characteristics [13, 14] depending on the particle length
scale in comparison to the cytoskeleton; for a smaller length scale, the interstitial liquid is
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Figure 9: Left: a schematic graph for the mean square displacement (MSD) of particles in
the viscoelastic cytoplasm which behaves as viscous liquid at long timescales (t > t2), elastic
solid at intermediate timescales (t1 < t < t2) and viscous again at short time scale (t < t1).
Right: MSD of the non-persistent node in Region I highlighted in Fig 1(b) shows almost no
dependence on time lags in a range of [1.6s, 32s] with an average of 0.0575µm2; bar shows
the error of the mean. The MSD of the node movement for a time lag t = kδ is approximated
as
∑N−k

n=1 |x((n+ k)δ)− x(nδ)|2/(N − k).

only viscous, while for a larger length scale as illustrated in Fig 9(left) that the cytoplasm is
predominantly viscous at long time scales (t > t2) and predominantly elastic at short time
scales (t1 < t < t2), and behaves again as a viscous liquid at time scales t < t1.

4 DISCUSSION

Previous quantitative descriptions of ER network geometry have been restricted to fairly
rudimentary measures of filament length and static elements. ER network remodelling and
the dynamic nature of this process have not been adequately quantitatively described. Ques-
tions relating to whether all ER filaments are under constant tension and whether filament
formation is constrained so that the entire network maintains a minimal length are unan-
swered. By understanding these basic principles it provides a platform from which to de-
termine and measure the effects of the molecular components controlling such events. Here,
using experimental data from plants we have shown that the ER network is constrained
and is well-modelled as minimal networks that are perturbations of ESNs where the pertur-
bations apparently involve random (Brownian) and deterministic (streaming and organelle
motion) forces. The treated ER network is particularly amenable to this analysis in that the
structure seems to be approximately constant over longer periods than for the control and
the network topology only changes locally.

This modelling approach has been validated by quantitative comparison of the dynamical
networks extracted from the biological data, including the network length, displacement of
junctions, and angle distributions of the junctions in the networks. This has enabled us to
estimate the tension force of the ER network (and to a certain extent, the viscosity of the
cytoplasm) simply from observing the sequences of images. Higher time and space resolution
imaging should improve the accuracy of these estimates.

Many questions remain unanswered and we discuss some of these below. Firstly, the
mechanisms that regulate ER reorganization and remodelling are poorly understood. Better
quantitative tools providing details on parameters relating to remodelling are required. Note
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that the distributions of the total length in Region I and Region II differ. Even in the treated
condition where ER dynamics are restricted (e.g. Fig 7) the structural changes still remain
unclear, though additional branching points can transiently appear (e.g. Fig S7). It would
be particularly interesting to using higher temporal and spatial resolution imaging so that
one can study, for example, the transitions between different topologies. A statistical model
(e.g. for the total length of the network) would help quantify the network topologies and
large deviation theory could be used to quantify how often major topological changes are
undergone by the network.

Secondly, several of the physical processes that determine the structure of the ER net-
work in living cells are unclear. Our estimations of filament tension and viscosity using
assumptions A1-A3 gives a low diffusion coefficient (relatively high effective viscosity) and
low tension force compared for example to molecular motor stall forces or tether force esti-
mated in [12]. A low tension force could be expected as it allows dynamical remodelling of
ER junctions under perturbations. However, the physical environment is much more com-
plex. Both the vacuole and plasma membrane undergo dynamical surface alterations (local
shape changes and deformation for vesicle exchange). The quasi 2D like cytoplasmic region
(which can also transverse the cell in trans vacuolar strands that ‘pierce’ and run through the
vacuole) is packed with membrane bound organelles, vesicles, protein complexes, cytoskele-
tal filaments and macromolecules (such as carbohydrates). All of these substructures within
the cytoplasm are not static and appear to undergo seemingly random motion; the plant
cytoplasm is known to be a highly heterogeneous environment and the assumptions A1-A3
are likely to be challenged by further collection of data.

It may well be that tensions and filament diameter may vary around the network; nev-
ertheless, assumption A1 could be experimentally explored in vitro and in vivo; assumption
A2 could be measured by comparing the fluctuations of shorter ER filaments if spatial res-
olution is increased to the point that these fluctuations can be resolved. Assumption A3
will be modified in the presence of other forces, for example tethering forces to organelles
or the cytoskeleton, and it could be improved by more detailed modelling of the membrane
geometry at such junctions, though this is likely to be computationally challenging. Detailed
considerations of the motion of the filaments themselves (and not just the junctions) is likely
to give a better but less tractable model.

Finally, although the Langevin equation (5) seems to model the treated ER dynamics well,
it will be much harder to model the control ER dynamics without considerably more data at
a higher spatial and temporal resolution. The remodelling discussed in Section 3.3 includes
the extension/retraction of actin tubules and motion of organelles as well as interactions with
regions of cytoplasmic streaming and drastic rearrangements of the entire ER; the topology
can change substantially between frames and this is not resolved for example in Movie 2; this
is evident from Fig 8 where significant reorganization has taken place between two frames of
the movie.

SUPPLEMENTARY MATERIAL

This supplementary material gives some details of the image processing method, network
analysis, and parameter estimation for the Langevin modelling as well as some details of the
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Movies 1 and 2.
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