Exploratory ensemble designs for environmental models using k-extended Latin Hypercubes

D. Williamson

Summary: In this paper we present a novel, flexible, and multi-purpose class of designs for initial exploration of the parameter spaces of computer models, such as those used to study many features of the environment. The idea applies existing technology aimed at expanding a Latin Hypercube (LHC) in order to generate initial LHC designs that are composed of many smaller LHC’s. The resulting design and its component parts are designed so that each is approximately orthogonal and maximises a measure of coverage of the parameter space. Designs of the type advocated for in this paper are particularly useful when we want to simultaneously quantify parametric uncertainty and any uncertainty due to the initial conditions, boundary conditions, or forcing functions required to run the model. This makes the class of designs particularly suited to environmental models such as climate models which contain all of these features. The proposed designs are particularly suited to initial exploratory ensembles whose goal is to guide the design of further ensembles aimed at, for example, calibrating the model. We introduce a new emulator diagnostic that exploits the structure of the advocated ensemble designs and allows for the assessment of structural weaknesses in the statistical modelling. We provide illustrations of the method through a simple example and describe a 400 member ensemble of the NEMO ocean model designed using the method. We build an emulator for NEMO using the created design to illustrate the use of our emulator diagnostic test.

Keywords: Climate models; Diagnostics; Emulation; Initial condition uncertainty; Uncertainty quantification.
1. INTRODUCTION

The use of complex mathematical models, typically in the form of coupled ordinary, partial or stochastic differential equations, to describe complex physical systems is important in many diverse scientific disciplines. Where these equations cannot be solved analytically and must, instead, be solved numerically using computer simulations, the developed models are referred to in the statistics literature as ‘computer models.’ Such models are ubiquitous in environmental applications, with examples including models used to study the risk and impacts of natural hazards such as volcano eruptions and tsunamis; and models used to study the past present and future behaviour of the Earth’s climate. The study of complex systems, such as the climate, using computer models introduces a number of sources of uncertainty that must be quantified so that appropriate inferences about the system can be made and to facilitate decision making. Quantifying this uncertainty through the design and analysis of computer experiments has become an active and important avenue of statistical research, and a rich methodology for addressing typical problems now exists (Santner et al., 2003).

That methodology is based on *emulators*, sometimes referred to as ‘surrogate models’. An emulator is a stochastic representation of the computer code that, for any setting of the inputs to the model (what we will also refer to as the model parameters), returns a prediction for the model response and an uncertainty on that prediction. This is powerful because an emulator can produce a prediction in a fraction of the time required to run the computer model. Computer models can take anywhere from a few seconds to a few months to evaluate for any particular choice of the inputs, so an emulator, once built, becomes an invaluable tool for exploring the parameter space, calibrating the model, and providing decision support. There are now published statistical methodologies using emulators to assist in each of these problems (see, for example, Oakley and O’Hagan, 2004; Lee et al., 2011; Kennedy and O’Hagan, 2001; Vernon et al., 2010; Williamson and Goldstein, 2012).

An emulator is built by first systematically sampling the input parameter space to design a
set of “training runs”, typically referred to as an “ensemble” in the environmental literature, and using the ensemble to fit the emulator. The central role played by the emulator has lead to a large literature on designs aimed at building accurate emulators. Before any runs of the model have been observed, this design is most likely to take the form of a “space filling” design: a design aimed at exploring as much of the parameter space as possible. Many classes of space filling designs have been proposed, including Sobol sequences (Fang et al., 2005), Orthogonal arrays (Tang, 1993) and Latin Hypercubes (LHC’s) (McKay et al., 1979), with the latter being the most popular in practice.

A Latin Hypercube of size n divides each dimension of the input space into n bins and ensures exactly one point is sampled from each bin. The sampling can be done with respect to any prior distribution on the parameters, but in a purely exploratory design, such as those we are discussing in this paper, it is most common to use a uniform LHC, whereby the range of each input is divided into n equally spaced intervals and the resulting LHC represents each interval exactly once. There is now a considerable literature on space filling LHC designs focused on constructing designs so that they satisfy one or a number of desirable properties. For example, they can be designed to have a specified correlation structure (Iman and Conover, 1982), to be orthogonal or nearly orthogonal (Sun et al., 2009; Gu and Yang, 2013) or to maximise some measure of coverage such as the minimum distance between points as in the case of maximin LHC’s (Morris and Mitchell, 1995).

The popularity of LHC’s has led to research into extending initial LHC designs in a way that retains the properties of the original. Indeed the interest in Sobol sequence designs was due to the ability to add to the design once created (Challenor, 2011). The rationale is that, having spent an initial budget of model runs on an n-point LHC, we may get access to further runs and would like to know where to put them. Sallaberry et al. (2008) introduced a method for doubling the size of a LHC whilst retaining approximately the same rank correlation structure. They provide an algorithm for extending a LHC of size m into one of
size $2m$ and state that the algorithm could be generalised to extend to any size km, with k a positive integer. In this paper we will provide this generalisation.

It is the view of this author that, having run an initial exploratory ensemble using a space filling design, an optimal “second wave” ensemble design is unlikely to take the form of a LHC or even be space filling, and that information from the initial ensemble should be used to guide the analyst towards regions of interest that may be more heavily sampled, and away from uninformative or unphysical regions of space, (see, for example, Loeppky et al., 2009). For example, suppose an initial ensemble of climate model runs allowed us to confirm that a half of our parameter space contained only ice planets. We would be very reluctant to spend about half of our remaining run budget exploring this region of parameter space in a second ensemble as we would if our design was a LHC in the full space, because we are interested in the behaviour of the model when the global temperature is not completely unphysical. However, the ability to expand space filling designs may be extremely useful in the construction of the initial design itself.

There are a number of reasons we might wish to do this. One such reason may be found in the desire to construct robust emulators of the model. Typically, an emulator is built using part, or all, of an ensemble and then validated using a number of diagnostic checks (Bastos and O’Hagan, 2009). Some of the more powerful tests involve assessing the predictive performance of the emulator on as yet unseen runs. If subsets of the design have similar properties to the whole, for example if they are also LHC’s, these can be left out and used in validation and diagnostic checking that aims to assess performance throughout parameter space.

Perhaps the best case for designs of the type advocated here, is for computer models whose output depends on uncertain initial conditions, forcings, or boundary conditions. Environmental models are typically of this variety and, indeed, climate models have all three properties. For a climate model, the initial conditions represent the temperature, salinity
and momentum of air/water for every grid box in the model at the time any parameters are changed, or any forcings (e.g. increasing CO2 or aerosols) are applied, and boundary conditions, for example, might tell the model what to do with water at the poles. Initial condition uncertainty (and the other sources) must be addressed as part of the emulation and analysis of the model output. To quantify initial condition (IC) uncertainty, for example, part of the ensemble requires no change to the parameters whilst the initial conditions are varied. If the IC uncertainty does not depend on the parameters, the “initial condition ensemble” can be run in isolation, merely factoring into budget constraints. However, in our experience this is not the case, and the sensitivity to the IC’s depends on where you are in parameter space. If our master space filling design is constructed using smaller space filling designs with the same property, we can select one of these sub-designs and vary the initial conditions for each member of it. This enables us to model the IC uncertainty as a function of the parameters by emulating the variance as a first step to emulating the full model, (see Vernon and Goldstein, 2010, 2014, for examples emulating the variance then the mean in systems biology).

Sliced Latin Hypercubes (Qian, 2012; Huang et al., 2014; Yin et al., 2014; Ai et al., 2013) are Latin Hypercubes that are constructed using a set of smaller Latin Hypercubes. These designs are most similar to the ones we introduce in this paper. Indeed k-extended LHC’s may be seen as a special case of a sliced LHC where instead of the design generation algorithm focussing on setting all smaller sub-LHC’s and the main together (in order to optimise some criterion), ours are “grown” from a master LHC. Though sliced LHC’s would allow us to achieve better emulator diagnostics (as described later) than a standard LHC (just as the method we will advocate here would), the existence of an important sub LHC from which the design is “grown” will be more useful for exploring IC uncertainty.

Nested Latin Hypercubes (Qian, 2009) are Latin Hypercube designs that contain a sub-design that is also a Latin Hypercube. They are motivated by computer experiments for
hierarchies of computer models of different fidelity or resolution. Many expensive models can take so long to run, that only a handful of runs can be performed. However, low resolution versions often exist that can be used to assist in emulation of the high resolution version. The idea is that a large design is used to emulate the low resolution model, and then this information plus a small design on the high resolution model is used to emulate the model of interest (see, for example, Williamson et al., 2012). Nested Latin Hypercubes are one type of design aimed at simultaneously designing for both of these experiments at the same time. We might view the designs advocated in this paper as containing useful features of both nested and sliced LHC’s.

In this paper we generalise the algorithm of Sallaberry et al. (2008) to the case where $k \geq 2$, in order to construct initial LHC designs that are made up of many LHC’s. We term our designs “k-extended Latin Hypercubes”. We also present an algorithm for ensuring that sub-designs and the whole design are “orthogonal-maximin” designs using a definition similar to that used by Joseph and Hung (2008). We discuss exploring IC uncertainty and emulator diagnostics with k-extended LHC’s, and introduce a new form of diagnostic available for ensembles generated from k-extended LH designs. We apply the technology to the design of an exploratory ensemble of the NEMO ocean model (Madec, 2008) at 2^{o} resolution, and we use the ensemble to emulate the model, and validate our emulator. We also provide R-code in the supplementary material that can be used to generate designs of the type described in the paper.

In Section 2 we formally define Latin Hypercubes and present the k-extension algorithm. In Section 3 we introduce an algorithm for generating orthogonal-maximin k-extended LHC’s and compare these designs to sliced LHC’s in a simple numerical example. In Section 4 we argue for the application of our approach to quantifying initial condition uncertainty in certain applications and present a novel emulator diagnostic available for ensembles with these designs. Section 5 describes the design of our ocean model ensemble and illustrates the
use of our new emulator diagnostic. Section 6 contains discussion. A technical appendix
contains two results and proofs required by the algorithm of Section 3. The R code
implementing the design algorithm is part of the supplementary material.

2. LATIN HYPERCUBES AND K-EXTENSIONS

2.1. Latin Hypercubes

Let $f(x)$ denote a computer model with input vector $\mathbf{x} = (x_1, \ldots, x_m)^T$, with \(\mathbf{x} \) in a
continuous, predefined real space \mathcal{X} which can be scaled to the unit hypercube $[0, 1]^m$.
Throughout this paper we assume that nothing is known about f, other than the parameter
ranges that define \mathcal{X}, so that, as part of an initial exploratory design, we do not favour
points in any particular regions of \mathcal{X} by imposing probability distributions on each of the m
inputs.

Let r_j denote the range of x_j and suppose that each r_j is divided into n equal intervals
r_{ij}, $i = 1, \ldots, n$, then an n-point Latin Hypercube, $X = (\mathbf{x}_1, \ldots, \mathbf{x}_n)^T$, is such that there
is a unique row of X, \mathbf{x}_k, with $x_{kj} \in r_{ij}$ for $j = 1, \ldots, m$ and $i = 1, \ldots, n$. In words, each
sub-interval r_{ij} is represented exactly once in the LHC, X.

A LHC is easily generated by first selecting an r_{ij} for $j = 1, \ldots, m$, and then uniformly
choosing a point from the identified rectangular solid $r_{i_11} \times r_{i_22} \times \cdots \times r_{i_mm}$ (r_{i_jj} is a
particular sub-interval chosen for variable j, so at this first step, each $i_j \in \{1, \ldots, n\}$). This
obtains \mathbf{x}_1. Remove the selected r_{i_jj} from the set of available sub-intervals $\{r_{1j}, \ldots, r_{nj}\}$ for
$j = 1, \ldots, m$, then repeat the procedure for identifying a solid, obtaining a new point \mathbf{x}_2,
reducing the set of subintervals and so on until $\mathbf{x}_1, \ldots, \mathbf{x}_n$ have been generated. There are
statistical software packages such as lhs in R, that have been developed to do this.

This procedure can be used to generate a LHC, but it is no guarantee of generating a good
one with desirable space filling properties. For example, there is no reason that the resulting
design shouldn’t have points close together or be highly correlated. ‘Optimal’ LHC algorithms attempt to generate a LHC with desirable properties. For example, a maximin LHC seeks to maximise the minimum distance between points. This can be done by generating a random LHC using the above procedure then permuting the entries in each column in order to optimise some pre-chosen criterion. The function \texttt{maximin} in the \texttt{lhs} package in \texttt{R} performs this function in order to maximise the minimum distance between points.

A useful way to think about generating LHC’s for us will be to consider integer LHC’s, whereby the $n \times m$ LHC has each column filled by some permutation of the integers \{1, \ldots, n\}. The ith row of this matrix, (i_1, \ldots, i_m) with $i_k \in \{1, \ldots, n\}$, identifies the ranges of subintervals \{\(r_{i_11}, \ldots, r_{imm}\)}, pointing to a solid, \(r_{i_11} \times \cdots \times r_{imm}\), from which x_i can be chosen as described above. We can easily permute the entries of any individual column or of multiple columns in order to generate new LHC’s. The integer representation of the LHC, X, can be viewed as a rank representation of the design, with the rank of each input k in the jth design point being the jkth entry of the integer LHC used to generate X. This idea is central to extension of LHC’s proposed by Sallaberry et al. (2008), which we will describe in more generality here. It will also be useful to us in optimising our LHC and its component parts.

2.2. k-Extended Latin Hypercubes

We now present our generalisation of the extension algorithm of Sallaberry et al. (2008). Though Sallaberry et al. (2008) describe the algorithm for extending an n-point LHC into a $2n$ point LHC and state that it can be generalised to extension to kn point LHC’s with positive integer k, we present the algorithm for kn points directly. We do this because firstly, the extension to the general case is not trivial, and secondly, because our goal is to produce initial designs that are themselves LHC’s made up of many component LHC’s with the whole and component parts satisfying desirable properties. In particular, we will want to maximise
some measure of coverage, as will be described in Section 3, and produce a design where each variable is as orthogonal as possible. The reasoning behind the latter design goal is to ensure identifiability of main parameter effects during emulation. Our ultimate aim is to use the design to build a robust emulator that can then be used in any given UQ method or in order to guide future designs to regions of the parameter space that are important.

What follows is a description and justification of the procedure followed by a technical statement of the algorithm. We start by generating an \(n \)-point LHC, starting with an integer version and selecting the actual values in \(X \) as described in the previous section. We ensure that our initial design has desirable properties (e.g. coverage) at this stage by ensuring our design optimises some pre-chosen criterion, as described in Section 3. An example 8-point LHC in 2-dimensions is shown in Figure 1 with the points representing the rows of \(X \) and the shaded boxes representing the rows of the integer LHC chosen to generate the points. For example, the left most shaded region represents the row of the integer LHC with entries \{1,3\}.

Our goal is to end up with a \(kn \)-point LHC comprising \(k \) \(n \)-point LHC’s, so we require a further \(k - 1 \) extensions to this LHC. For the first extension we choose another integer LHC so that both it and the \(2n \times m \) matrix of integers formed by stacking the two integer LHC’s row-wise meet our criteria described in Section 3. This second integer LHC identifies the \(m \)-dimensional rectangular solids in which the new points will reside, as depicted for our ongoing example in part (a) of Figure 4. We now divide each of the identified solids into \(k^m \) equally sized solids by dividing the range of each input within that solid into \(k \) identically sized bins, as shown in part (b) of Figure 4.

For each sub-solid within each solid specified by our new integer LHC, we can search each dimension of the current LHC, \(X \), for a point anywhere in the design within the range of the dimension in question determined by the chosen sub-solid. One can view this exercise
as looking through our chosen sub-solid along each of its dimensions to see if any existing
design points are visible. Note that \((k - 1)^m\) of these sub-solids will have no visible points
along any of the dimensions. Select one of these sub-solids at random and uniformly select
a point within it. Repeat this for each solid identified by the integer LHC and extend the
design \(X\) by adding the \(n\) new rows identified by this procedure. Note \(X\) is no longer a LHC,
but it is a design comprising 2 \(n\)-point LHC’s.

We now repeat this process a further \((k-2)\) times. First choosing an \(n\)-point integer LHC
with desirable properties when combined with all other integer LHC’s used in the design,
then dividing each identified solid into \(k^m\) identically sized solids before looking along each
dimension of the design through each sub-solid in order to identify all sub-solids with no
visible points along any dimensions. When adding the \(j\)th additional \(n\)-member LHC to the
original \(X\), there will be \((k - j)^m\) such solids from which a sub-solid may be selected at
random and a design point selected uniformly from within. This is shown for a 5-extended
LHC of dimension 2 and size 40 in Figure 5. Part (a) of Figure 5 shows the process after
2-extensions with the 3 chosen integer LHC’s highlighting the selected solids coloured in red,
cyan and green, and the chosen points in black. Note that along any of the sub rows/columns
there is a maximum of 1 point. When the final extension occurs, exactly 1 sub-solid in each
identified solid will be eligible for a new point, and, following its placement and addition of
all points into \(X\), every one of the \(kn\) equally sized sub-intervals of each dimension of \(\mathcal{X}\) will
be represented exactly once in \(X\). So \(X\) is a \(kn\) LHC comprised of \(k\) \(n\)-point LHC’s where
the whole and the sequentially generated sub designs have been engineered to have desirable
properties. This is depicted for our on-going example in part (b) of Figure 5.

2.3. k-Extended Latin Hypercube generation algorithm

Step 1 Choose an \(n\)-point integer LHC with optimal properties (see Section 3) and use the
procedure defined in Section 2.1 to generate an \(n\)-point LHC, \(X\), of points in \(\mathcal{X}\). Set
counter \(c = 2 \).

Step 2 Choose a new \(n \)-point integer LHC with optimal properties (see Section 3) and with similar properties when stacked by row with the previous \(c - 1 \) integer LHC’s used in the procedure.

Let \(s_i \) represent rectangular solid \(i, i = 1, \ldots, n \), represented by the \(i \)th row of the new integer LHC, \(I_{ij}, j = 1, \ldots, m \), where \(s_i = r_{I_{i1}} \times \cdots \times r_{I_{im}} \).

Step 3 For each \(i = 1, \ldots, n \), divide \(s_i \) into \(k^m \) identically sized sub-solids by dividing each edge \(r_{I_{ij}} \) of \(s_i \) into \(k \) equally spaced intervals \(\rho_{ij}^{[l]} \) for \(l = 1, \ldots, k; j = 1, \ldots, m \); and with each sub-solid of the form

\[
\psi_{il} = \rho_{i1}^{[l_1]} \times \cdots \times \rho_{im}^{[l_m]}, \quad l = (l_1, \ldots, l_m)^T.
\]

Step 4 For each \(i = 1, \ldots, n \), identify the \((k - c + 1)^m\) solids \(\psi_{il} \) such that \(X_{ij} \notin \rho_{ij}^{[l]} \) for \(t = 1, \ldots, (c - 1)n \) and \(j = 1, \ldots, m \), and choose one at random. Label this choice \(\psi_{il}^* = \rho_{i1}^{*[l_1]} \times \cdots \times \rho_{im}^{*[l_m]} \).

Step 5 Define the matrix \(\tilde{X}_{ij} \) by uniformly sampling from \(\psi_{il}^* \). Specifically, by sampling uniformly from each of the intervals \(\rho_{ij}^{*[l]} \) for \(j = 1, \ldots, m \).

Step 6 Let

\[
X_{ij} = \begin{cases}
X_{ij} & i = 1, \ldots, (c - 1)n \\
\tilde{X}_{ij} & i = (c - 1)n + 1, \ldots, cn.
\end{cases}
\]

Let \(c = c + 1 \), if \(c > k \) STOP, else go back to **Step 2**.
3. GENERATING ORTHOGONAL MAXIMIN K-EXTENDED LATIN HYPERCUBES

It is the goal of this paper to advocate for k-extended LHC’s as a good initial exploratory design capable of allowing us to build and validate an emulator that can then be used by the analyst, perhaps in further interrogation of the model. Hence our two main criteria will be that the design is “space filling” so that we explore as much of the parameter space as possible, and also that it is uncorrelated, so that the main effects, at least, are identifiable during the statistical modelling phase.

To achieve this we use the idea of finding what Joseph and Hung (2008) termed “orthogonal-maximin Latin Hypercubes”, defined to minimise a weighted sum of measures of total correlation in the design and coverage on an appropriate scale. We work with M_c^e, the integer representation of the design at step 2 of the k-extension algorithm, where each column of M_c^e has c permutations of the integers $\{1, \ldots, n\}$. The correlation component of the Joseph and Hung (2008) criterion is the average square correlation on the lower triangle of the design’s correlation matrix:

$$\rho^2 = \frac{2 \sum_{i=1}^{m} \sum_{j=1}^{i-1} \rho_{ij}^2}{m(m-1)} \quad \rho_{ij} = \text{corr} \left[M_{n_i}^c, M_{n_j}^c \right].$$

Coverage is measured using the ϕ_p statistic

$$\phi_p = \left(\frac{1}{\sum_{i=1}^{\binom{n}{2}} d_i^p} \right)^{1/p}$$

with $d_1, \ldots, d_{\binom{n}{2}}$ the inter site distances in M_c^e, $d(s, t) = \sum_{j=1}^{m} |s_j - t_j|$. This is the same criterion commonly minimised in the design literature when looking for maximin designs as it can be shown that as p gets large, minimising ϕ_p is equivalent to finding the minimum d_i and maximising it (Morris and Mitchell, 1995).
Joseph and Hung (2008) ensure that the two criterion are on the same scale by deriving upper and lower bounds $\phi_{p, U}$ and $\phi_{p, L}$ for ϕ_p, and then their criterion is

$$
\psi_p = \omega p^2 + (1 - \omega) \frac{\phi_p - \phi_{p, L}}{\phi_{p, U} - \phi_{p, L}}
$$

for weight ω that can be chosen by the analyst to represent their preferences for orthogonality or coverage. We will use a similar criterion to theirs to optimise each phase of our k-extension. However, we need a slightly different version of ϕ_p to assess the coverage of the designs formed at step 6 of the algorithm and this leads to different bounds $\phi_{p, L}$ and $\phi_{p, U}$.

We define

$$d_i = \sum_{j=1}^{m} d_{j, i} \quad i = 1, \ldots, \left(\frac{cn}{2}\right),$$

where the $d_{j, i}$ are inter site distances for column j of M^c. Because we are extending an original LHC, each column of M^c will have c repeats of the integers $\{1, \ldots, n\}$. This means that some of the $d_{j, i}$s as defined above, are zero, which leads to a theoretical upper bound $\phi_{p, U}$ of ∞. To overcome this, we set any zero $d_{j, i}$ to $1/k$, the smallest distance between the centres of the sub-solids that the k-extended points will eventually occupy. With this modification to ϕ_p, we can show that

$$\phi_{p, L} \leq \phi_p \leq \phi_{p, U}$$

with

$$\phi_{p, L} = \left(\frac{cn}{2}\right)^{1/p} / \bar{d}, \quad \phi_{p, U} = \left(\frac{k^p nc(c - 1)}{2m} + \sum_{i=1}^{n-1} \frac{c^2 (n - i)}{mi^p}\right)^{1/p}$$
and
\[
\bar{d} = \frac{mn(c(n^2 - 1) + 3(c - 1))}{6k\binom{cn}{2}}
\]

A derivation of these bounds is given in the appendix. With the criterion \(\psi_p\) as in (1) in place, we can use a simulated annealing algorithm to ensure each extension to the design at step 2 minimises \(\psi_p\). This is a common approach to optimising a criterion in computer experiment design since it was proposed by Morris and Mitchell (1995). The idea for general LHC’s is to choose a random column and to permute two of the entries (the result is still a LHC). If the criterion improves the new LHC is accepted, else it is accepted with probability
\[
\exp\left\{\frac{-\psi_{p,\text{new}} - \psi_{p,\text{old}}}{t}\right\},
\]
where \(t\) is a pre-chosen “temperature”. A simulated annealing algorithm will repeat this many times, whilst slowly reducing \(t\), until it has converged on the design with the optimum \(\psi_p\).

We take this same approach, but, as we are extending the LHC sequentially, we preserve the first \((c - 1)n\) rows of \(M^c\) and only allow elements of the last \(n\) rows of the candidate design to be permuted within randomly selected columns. Aside from this modification to which rows may be permuted, the algorithm we use is that established in Morris and Mitchell (1995) as applied to \(\psi_p\) (also described in Joseph and Hung, 2008), hence we do not reproduce it here.

A particular advantage of our approach to sequentially extending a LHC over a sliced LHC is that each of the designs corresponding to the first \(n, 2n, \ldots, kn\) points is optimal with respect to \(\psi_p\) (given the previous sub-designs) so can be considered an orthogonal-maximin design (though only the first and the last of these are LHC’s). This can be useful, for example, for experiments that have to be queued on supercomputers where, for whatever reason, it is possible that not every run will be completed. This is not uncommon in these situations. For example, if there is a deadline, run time of the model plus the supercomputers workload and the priorities of your job on the system may mean that only the first \(N\), say
Exploratory Ensemble Design

(with $N < kn$) are completed in time. Our design construction would ensure that there was a sub-design of $ln(l < k)$ runs that were optimally orthogonal and space filling (via ψ_p and given the previous $(l - 1)$ sub-designs) consisting of $l n$-member LHC’s. The criterion we present here is implemented in the R-code that accompanies the paper.

Before proceeding to compare the performance of orthogonal-maximin k-extended LHC’s with other designs, we note here that our k-extension algorithm, when finding an orthogonal-maximin k-extended LHC, only optimises our criterion for the integer LHC’s that make up the design. Step 4 and 5 of our procedure put the extended points in random available sub-regions of the solids identified by our integer design. A future extension of this methodology might look at selecting optimal sub-region location for the extra points.

3.1. Numerical comparison of a k-extended LHC and a sliced LHC

We illustrate the differences between sliced LHC’s and k-extended LHC’s through a short numerical example. The R package `SLHD` generates maximin sliced Latin Hypercubes. Our comparison makes use of sliced LHC’s generated by this package, and maximin LHC’s generated by the `maximinLHS` function in the package `lhs`. Both packages are freely available online from CRAN. We compare these with performance of k-extended orthogonal-maximin LHC’s generated using the algorithm above and optimising ψ_p with $p = 50$ and $\omega = 0.2$ reflecting a leaning towards obtaining space filling designs over orthogonality.

For both tests we compare a full LHC of size 40 with 2 columns on $[0, 1]$, made with 5, 8 member LHC’s (as in our earlier example). The maximin LHC will be 40×2 and will not be composed of 5 smaller LHC’s as with our other designs. Figure 2 compares the values of ρ^2 (solid lines) and ϕ_{50} (dashed lines) calculated on the scaled representation of the designs. Blue lines represent the k-extended LHC, red the sliced LHC and green the maximin LHC. Darker lines in each colour represent the values of the statistics for the individual sub-LHC’s and lighter lines represent the cumulative values calculated using the first slice, the first 2
combined and so on. As the maximin LHC is not made up of individual sub-LHC’s, only the values for the full design are plotted.

[Figure 2 about here.]

Focussing first on coverage measured by ϕ_{50}, we note that the maximin sliced LHC with a value of around 6.8 outperforms the k-extended LHC (19.1) and the maximin LHC (21.2) on the full LHC. Though it is expected that the sliced LHC should outperform the k-extended LHC here as it has been set up to optimise this statistic in particular, it is strange that the maximin LHC should be beaten at all. Further investigation of ϕ_{50} for 40×2 LHC’s generated by maximinLHS gave a sampling distribution containing values as small as 9.1 and as large as 45, though values for the other two algorithms remained consistent around those generated here. As both the k-extended LHC and the sliced LHC are valid designs for maximinLHS, we can conclude that this is probably an issue with the internal optimiser used for this function.

Though the sliced LHC provides better coverage for the larger LHC, the k-extended LHC has better coverage for the first LHC and the composite of the first and second, and has similar coverage properties for the 4th and 5th sub-LHC’s. Though not guaranteed, because the k-extended LHC is optimising a weighted sum of the correlation and the coverage, as we have a larger weight on coverage we should expect the k-extended LHC to outperform the sliced LHC for the first LHC at least (and perhaps number of composites). Whilst the sliced LHC is maximin for the whole design, the k-extended LHC is “optimal” (w.r.t. ψ_{50}) for the first sub-design, then for the first 2, given the first, then for the first 3 given the first 2, etc. The importance placed on the first sub-LHC is particularly appropriate in situations where the first design will be used to quantify any parametric dependence on initial condition uncertainty (see Section 4 for detailed discussion).

The k-extended LHC outperforms the maximin-sliced LHC across the board for ρ^2, though, as correlation is not accounted for by the sliced LHC generation method, this shouldn’t be
surprising. We note, in particular, the low correlation for the first LHC in the k-extended LHC. As with the results on coverage, a key advantage of using k-extended LHC’s is that the first design is optimised and so can be used as a lynch pin for the design (as would be the case for a nested LHC). We discuss this further below.

4. EXPLORATORY DESIGNS WITH K-EXTENDED LHC’S

In this section we discuss two important ways in which the features of this type of exploratory design can be exploited in applications: the quantification of initial condition uncertainty and the generation of novel emulator diagnostics.

4.1. Initial condition uncertainty and stochastic models

In many applications, the initial conditions at which the model ought to be run are uncertain, and that uncertainty propagates to the output. This is particularly true for models that are what Williamson and Blaker (2014) referred to as “structurally chaotic”. A structurally chaotic model is deterministic, meaning that running the model twice for the same set of inputs and initial conditions will lead to exactly the same output. However, slight changes to either can have a substantial effect on the evolution of any time series output, though this effect would be ‘averaged out’ if taking a long term mean. This has also been referred to as “sensitive dependence on initial conditions” (Rougier, 2013).

This is the case with climate and other environmental models, where though long term trends and averages would generally be preserved by a slight change to the initial conditions, the evolution of the time series and the ‘weather’ at any time point may be quite different. If the goal of an analysis with a climate model is to infer something about the climate response to short term forcing, such as that which may be expected in the first half of the 21st century, then the model’s initial conditions may have a non-negligible effect on the model output.
Hence the uncertainty in the computer model response due to the initial conditions should be quantified. In the climate literature this source of uncertainty is generally referred to as internal variability.

The contribution of this source of uncertainty need not be constant throughout parameter space. Whilst it may be natural to start with an emulator of the form

$$f(x) = g(x) + \delta$$

(2)

where $g(x)$ represents the signal that might be emulated normally via a Gaussian process (see, for example Sacks et al., 1989; Haylock and O’Hagan, 1996), and noise process $\delta \sim N(0,\sigma^2)$ (normality is used for illustration here rather than being crucial to the argument), it is more reasonable to expect

$$f(x) = g(x) + \delta(x), \quad \delta(x) \sim N(0,\sigma^2(x))$$

(3)

where the variance of the noise process depends on the model parameters in some way.

In order to quantify initial condition uncertainty under (2), we require repeated runs in input space where initial conditions are changed, (see Deser et al., 2012, for an example of this approach applied to a climate model). The ‘initial condition ensemble’ as it is referred to in the climate literature, could then be used to estimate σ. However, under (3), our goal should be to model σ as a function of x, thus describing how initial condition uncertainty varies with the parameters. We then require a design in \mathcal{X} at which to vary the initial conditions. As this design will be used to emulate $\sigma(x)$ in the same way we would emulate any computer model, any properties we consider important to preserve in our design for the computer model (in this paper we have focussed on orthogonality and good coverage), will also be desirable to preserve in this design.

As part of an initial exploratory design then, it seems natural to want to spend some of
the runs on quantifying $\sigma(x)$ and some modelling $g(x)$. A k-extended LHC is a natural way of simultaneously achieving both goals. We have a LHC design that can be used to get $g(x)$ and a small part of that design is also a separate LHC which we can use to run an initial condition ensemble. This argument also applies to stochastic simulators, where running the model at the same choice of the parameters would lead to different answers. In applications with these simulators, it is already practice to emulate the variance as a function of the parameters (Vernon and Goldstein, 2010, 2014), though designs for these simulators have tended to use a number of repeats for every explored parameter choice. K-extended LHC’s would provide an alternative that allows the budget of runs to be more flexibly divided between the goals of modelling $\sigma(x)$ and $g(x)$.

We note that, as described above, a nested LHC is as useful, if not equivalent to the k-extended LHC in terms of simultaneously exploring parameter and initial condition uncertainty. However, the k-extended form has more flexibility, allowing us, for example, to devote two of our sub-LHC’s to initial condition ensembles so that we have an initial condition ensemble for training and one for validation. Before moving on it is worth noting that we have not commented on how the run budget should be divided between changes to the initial conditions and to the parameters. This would provide an interesting avenue of further research. However, we suspect that the answer to this may be problem specific and that an initial exploratory design aimed at gaining enough information to answer this question may be required anyway.

4.2. Emulator diagnostics

The exploratory designs we advocate for here are intended to be used to build emulators, which may then be used for whatever analysis is deemed important, including the designing of subsequent runs in regions of the parameter space of interest that are identified by the emulator. For example, history matching, a statistical method that uses emulators to rule
out regions of input space that lead to unphysical models (Craig et al., 1996; Vernon et al., 2010), points to a region of input space that may be explored by further experiment. Other subsequent designs for the computer model may be used to reduce emulator uncertainty (Loeppky et al., 2009), search for an optimal parameter setting (Gramacy and Lee, 2011) or reduce uncertainty in a specific model-based forecast (Craig et al., 2001).

Of importance to any of the above mentioned methods, or, indeed, any analysis using an emulator in place of a computer model, is the accuracy of the emulator. Namely, that the predictions made by the emulator and the uncertainty on those predictions is consistent with untested model output. Validation and diagnostic checking aim to assess the quality of an emulator.

Suppose we are building an emulator to address the response to the model inputs only, the function \(g(x) \) in Equations (2) and (3). A typical emulator for output \(i \) of \(g(x) \) is then

\[
g_i(x) = \sum_j \beta_{ij} h_j(x) \oplus \epsilon_i(x)
\]

where \(h(x) \) is a vector of basis functions in \(x \), \(\epsilon_i(x) \) is a weakly stationary Gaussian process and the symbol \(\oplus \) indicates the addition of independent terms. Emulation involves selecting \(h(x) \), then fitting matrix \(\beta \) and the elements of a covariance function for \(\epsilon(x) \), perhaps using kriging or Bayesian methods (see, for example, Santner et al., 2003; Haylock and O’Hagan, 1996; Lee et al., 2011).

There are a number of methods available for performing diagnostic checking of the emulator fit. For an overview see Bastos and O’Hagan (2009). One powerful method involves reserving an input from the design, fitting the emulator using the chosen \(h(x) \) and covariance parameters, then predicting the reserved point. Doing this for each point and plotting the results is known as a “leave one out diagnostic plot”. By observing how often the true points lie within the relevant confidence or credible intervals specified by the emulator, the quality of the fit can be judged.
Leaving out subsets of the design is another version of this diagnostic and is one that allows the analyst to explore the sensitivity of any prior choices (such as those in \(h(\mathbf{x}) \)) to the chosen subset. Ideally, however, these subsets would not all be clustered in one region of the input space as this might mislead the fitting of \(h(\mathbf{x}) \) and convince the analyst that a design that really was robust was flawed based on a test of a non-balanced subset of it.

K-extended LHC designs lend themselves naturally to this type of diagnostic checking, as the \(kn \) member design actually has \(k \) “space filling” sub-designs contained within it. Each sub-design may be reserved from the whole and the emulator fit with the remaining points. Note that the remaining points do not form a LHC, but are still well spread in the input space because they comprise \((k - 1)\) space filling LHC’s of size \(n \). The reserved points can be predicted using the emulator built without them and the predictions compared with the true values. We now have \(n \) prediction errors corresponding to a LHC (the reserved sub-design) in the inputs. We term this diagnostic a Leave One Latin Hypercube Out (LOLHO) diagnostic and it is available for k-extended and sliced LHC’s.

We plot the prediction with error bars representing the uncertainty in the prediction from the emulator and overlay the true values. We do this for each LHC in the full design, leaving that LHC out, refitting the emulator using the rest of the design, then plotting the predictions and truth, against the fitted values or against each parameter in \(\mathbf{x} \). These plots we term LOLHO diagnostic plots. They allow us to check the consistency of our uncertainty specification, as in the leave one out situation, by seeing if enough/too many points are within the error bars, as well as finding any systematic sources of prediction error in certain locations of the parameter space that we may correct for, perhaps by adding further terms to \(h(\mathbf{x}) \), or otherwise.

We produce \(k \) LOLHO plots, one for each of the different sub-hypercubes, as part of diagnostic checking and emulator validation, before finally using the full LHC to construct our emulator if we are happy with the diagnostics. We demonstrate the use of LOLHO plots
in Section 5. Note that we should still perform some other diagnostic checks on our final model (see Bastos and O’Hagan, 2009).

5. K-EXTENDED LHC DESIGN OF A CLIMATE MODEL ENSEMBLE

5.1. The model and its parameter space

We are interested in finding settings of the NEMO ocean model (Madec, 2008) that remove certain biases currently present in the model versions being explored by various projects concerned with the model. NEMO is an ocean model which takes, as inputs, atmospheric forcing files, and settings of parameters to control sub-gridscale mixing. Figure 3 shows the output global mean temperature and salinity depth profiles for the current standard 2° version of the model (blue line) compared to the observed temperature and salinity (red line, with dashed lines representing the observation uncertainty). The grey lines represent runs at the alternative parameter settings described in this section.

[Figure 3 about here.]

Following the approach of Williamson et al. (2014), where versions of the HadCM3 climate model (Gordon et al., 2000) were found with dramatically improved ocean circulations, the ultimate goal will be to history match the 2° version we have over several experiments wherein the ocean model is run at parameter settings chosen from within a region of parameter space that is not ruled out yet (NROY) by comparisons to observations. Emulators are built using these runs, and are then used to further reduce NROY space. History matching is an established statistical methodology for focussing a search for informative models through successive waves of comparison to observations. Craig et al. (1996) first applied it to oil reservoir models, and it has also been applied to Galaxy formation models (Vernon et al., 2010) and climate models (Edwards et al., 2011; Williamson et al., 2013).
In all but the first wave, the parameter space will not be transformable to the unit hypercube (and may not even be simply connected depending on the constraints imposed by the observations), so special designs will be required to fill these spaces (for example Williamson and Vernon, 2014). However, the initial parameter space, containing 1 switch variable with 2 settings and 20 continuous parameters defined on a hypercube with the ranges for each input elicited by the author from the developer of the code, Gurvan Madec, must be explored somehow and our preference is for a LHC design. As has been common in many applications we have worked on, very little is known about how the model will respond to the sort of large changes to the parameters that are possible in an elicited design space. Indeed, discovering how this response surface behaves is of great interest to the modellers involved.

The model is extremely computationally expensive, taking approximately 7.5 hours to complete 30 years of model time on the UK supercomputer ARCHER. Running expensive climate models on supercomputers lends itself well to batch design. During the same 7.5 hours, we can run hundreds of parallel simulations. However, the pre- and post-processing of this information requires human effort, hence the modellers prefer to run in relatively large batches. We allocated 400 runs to this initial exploration of parameter space.

5.2. Experimental design

In order to quantify the major sources of uncertainty, it will be important to quantify uncertainty due to model parameters and due to perturbations to the initial conditions. Normally called “internal variability” by climate modellers, this initial condition uncertainty will also depend on the model parameters. Much of this variability will be driven by the variability in the atmospheric forcing we impose upon the model and how it interacts with the ocean physics. There are two main options regarding the atmospheric forcing. We can force the model using observations taken over a 30 year period, or we can apply a constant
forcing using a climatology. Initially, our collaborators prefer to apply climatological forcing to enable them to better understand the parametric response and to assist rapid convergence to equilibrium from rest. We run the model for 180 model years under climatological forcing, resubmitting the ensemble every 30 years, and perform our analysis on the results.

At this point, it makes little sense to waste a large amount of computing resource and storage varying the initial conditions under climatological forcing, as the internal variability will be damped by the constant atmosphere. However, having spun the model up and allowed the parametric effect to be observed, we can continue each run applying the observed atmosphere. When the oceanographers decide to run these experiments then, at this point, initial condition uncertainty will become important and we may want to use some of our computing resource to vary the initial conditions. To ensure that we can do this effectively when the time comes, we create our 400 member ensemble using a 25-extended 16 point LHC generated using the algorithm of Section 2. When we then perturb the initial conditions, we can choose one of these LHC’s and select 7 initial condition perturbations for each member. This would increase the ensemble size to 512, which is the largest size we can run without doubling the number of processors that need to be reserved on the supercomputer. This breakdown of our budget was chosen so that we felt we would have “enough” repeats to approximate the internal variability, and so that our initial condition ensemble was spread out “enough” to capture any parameter-dependencies in the initial condition uncertainty.

However, this particular breakdown of the design is not only useful if, in the future, we intend to explore the response to changes in the initial conditions. It allows us to build emulators with LOLHO diagnostics as described in Section 4.2. There were 2 settings of the only switch in the model. For the first 16-member LHC, that which is earmarked for initial condition perturbations if the modellers decide to run those experiments, we select 8 runs at each setting of the switch and configured them in order to minimize the maximum absolute correlation between the switch vector and any continuous input in the design. We
then selected 4 sub-LHC’s at random and fixed the switch at its first setting, and 4 more at the other. This allows us to model differences between emulators developed for each switch setting if it becomes apparent that these are substantial. The remaining 16 LHC’s were each randomly assigned 8 values at each of the two settings. The configurations of all of the 25 switch vectors were then fixed, however, in order to minimize any correlation we may have introduced into the system, we searched through 1000 permutations of the last 24 vectors (preserving the order within each vector) for the lowest maximum absolute correlation between the switch vector and each continuous parameter vector in the large design. We note that with such a small sample size compared with the number of possible permutations, this configuration of switch settings is unlikely to be optimal with respect to, say, ρ^2. Optimally configuring k-extended LHC’s with switch variables would be an interesting topic of further investigation.

5.3. Emulating the ocean model

We will emulate the global mean sea surface temperature (SST) over the last 30 years of the model output. SST is the ocean quantity for which we have the most complete real world data, so it is logical as part of our wider goal of history matching to begin with this output. Our emulator takes the form of model (4). We only provide brief details of the statistical modelling here, as neither emulation techniques, nor the emulation of this ocean GCM are the main topic of this paper. We report only the details required in order to present novel emulator diagnostics based on having a k-extended Latin Hypercube design. Results of history matching ORCA2 to SST and to other variables will be presented in another paper.

We begin the emulation process by searching for the regressors in the vector $h(x)$ of Equation (4) using a forwards and backwards stepwise selection method, discussed in the appendix of Williamson et al. (2013). We then construct a Gaussian process emulator using the technology described by Haylock and O’Hagan (1996) and Kennedy and O’Hagan (2001),
but adding a nugget term (so fitting model (2), see Andrianakis and Challenor, 2012). The covariance function for the Gaussian process was a power exponential form with power 1.9, as opposed to the usual fully Gaussian function with power 2, as it has been argued that this is often too smooth (Bayarri et al., 2007).

We use the reference prior for the mean and variance parameters of the emulator as in Haylock and O’Hagan (1996), but specify a prior distribution for the correlation lengths and the nugget term (the latter is actually a parameter specifying the proportion of the residual variation (from the regression surface) that is uncorrelated “noise”). Our prior for the nugget is Beta(3.8, 1.7), with the beta parameters selected by elicitation using the MATCH elicitation tool (Morris et al., 2014). To specify a prior for the correlation parameters, we use the half-length correlation idea, which forms the prior question as one of thinking about a prior for the correlation between $\epsilon(x_1)$ and $\epsilon(x_2)$ where x_1 and x_2 are equal for all but the parameter in question, and where the distance between x_1 and x_2 is equal to half of the range of the parameter in question. We use a Beta prior for the half length correlations of each parameter and elicit the parameters using the MATCH tool so that the prior for each half length correlation was Beta(2.9, 5). This prior form allows us to derive our priors for the actual correlation parameters (see Williamson and Blaker, 2014, for more details).

To avoid running a long MCMC whenever we want to evaluate the emulator, we fix the correlation and nugget parameters after conditioning on the ensemble, as suggested by Kennedy and O’Hagan (2001). We choose to fix these at their maximum a posteriori (MAP) estimates instead of maximum likelihood estimates, as these account for our prior modelling. MAP estimates are obtained using simulated annealing. We generate LOLHO plots by leaving out each of the 25 16-member sub-LHC’s that make up our k-extended Latin Hypercube design, in turn, and refitting the emulator to the remaining ensemble. Each time we use the same $h(x)$ and correlation parameters and recondition the prior with the reduced ensemble.
5.4. LOLHO diagnostics

We present two LOLHO plots in Figures 6 and 7. Each panel represents a left out LHC, with the black points and error bars representing the emulator prediction and 2 standard deviation prediction interval (conditioned on the MAP estimates for the correlation lengths and nugget) (see, for example, Craig et al., 1996). The true values are plotted in either green, if they are within 2 standard deviations of the prediction, or red (and larger) otherwise. Figure 6 plots each left out LHC against the parameter rn_{lc}, the coefficient for Langmuir cells in the vertical mixing scheme, and Figure 7 plots each LHC against rn_{ediff}, a coefficient controlling the vertical behaviour of eddies. In both figures, from the left the first 4 panels depict LOLHO plots for the four hypercubes with the switch exclusively in its first setting, the next 4 in its second setting and the remaining panels represent a balanced design in the switches.

The plots indicate that the emulator represents the model well. The prediction intervals are approximately 95%, so we should expect around 20 points not to be within the uncertainty bounds, and we see 18. Additionally, we would be concerned if any of the red points were very far from the error bars, indicating a miss-specification of the variance across parameter space. We do not see any such points. Broadly, the plots indicate that there is little difference in our predictive capabilities for any setting of the switches. Figure 8 shows box plots for 100 predictions of the emulator at each switch setting, 100 alternative parameter choices, indicating that there is very little difference between the model output for the different switch settings in the full parameter space.
The breakdown of the diagnostic into distinct LHC’s allows us to assess whether there are any areas of parameter space that do not validate well. For example, if the emulator were a good representation of our uncertainty, then the number of failures (red dots) in any individual panel, should be approximately Binomial(16, 0.05). Hence we can compute the probability of seeing more than one failure in a given LHC (approximately 0.19), and the probability that we see more than 3 failures in one LHC (as we do in the 8th panel). Having 5 LHC’s out of 25 with more than one fail is consistent with our uncertainty specification. The probability of more than 3 failures is 0.007, hence we might view the 8th left out LHC as unusual and look at it in more detail.

We might start by seeing how unusual this result is. Suppose we view our LOLHO diagnostic as a sample from a Binomial(25, 0.007) distribution with success defined to be viewing more than 3 non-validating points in any plot. Then the chance of having observed at least one such plot is 0.16, which is not particularly rare, though perhaps merits some investigation. Comparing the relevant panel in Figures 6 and 7, we can see that three of the failures are in the same corner of parameter space, where \texttt{rn.ediff} is large and \texttt{rn.lc} is small. Exploring some of the other panels we see that this pattern is repeated (e.g. 2nd, 19th, 22nd and 23rd panels). The diagnostic hence suggests that our emulator may require more uncertainty in this corner of parameter space.

Whether we attempt to build this into a refined statistical model or not will depend on the purpose of the emulator. For example, if history matching reveals that this corner of parameter space leads to output that is far away from the observations, we may be happy with our current level of accuracy as we will cut this region of parameter space out anyway. Similarly, if this corner is always contained in the NROY region, again we would be happy to take this emulator forward because our next design will be able to increase our density of model runs in this region and we will be able to build a new, accurate, emulator anyway. If we are calibrating, and this region of parameter space appears to produce predictions that are
close to observations, we might seriously consider building a more accurate emulator for the given region of parameter space as our emulators here will be influential for our calibrated predictions.

Figure 9 presents the more traditional leave one out (LOO) diagnostic (again plotted against parameters \texttt{rn lc} and \texttt{rn ediff}). The emulator does pass this test, but we do not have the insight into the problem corner of parameter space as with the LOLHO plot. Along with traditional LOO plots, LOLHO plots offer valuable additional diagnostic information.

[Figure 7 about here.]

6. DISCUSSION

We have presented a class of exploratory ensemble designs based on extending an algorithm for adding to existing designs first introduced by Sallaberry et al. (2008) that we call \(k \)-extended latin hypercubes (LHC’s). They are comprised of \(k \) smaller, equally sized, LHC’s each added sequentially so that the composite design at each stage is “optimal”. Though an analyst may choose any such properties to optimise using our algorithm, we also provide a criterion and algorithm for finding what we term “orthogonal-maximin \(k \)-extended LHC’s.” \(K \)-extended LHC’s are different from nested LHC’s (Qian, 2009) in that though each sub-cube may be thought of as nested in the overall design, the entire large design is comprised of the union of such smaller LHC’s. They can be thought of as a type of sliced LHC (Qian, 2012), LHC’s that are entirely comprised of smaller LHC’s, with a construction that is focussed on optimising the composite designs of size \(n, 2n, \ldots, kn \), sequentially.

We have argued for their use in applications such as those involving experiments with climate models, where the chaotic behaviour of the processes in the model means that the output varies with the initial conditions at which the model is run, so that some part of the design must be devoted to quantifying this uncertainty and its relationship to the model
parameters. A particular advantage of k-extended LHC’s in these applications is that we may optimise a single sub-LHC to be used for modelling initial condition uncertainty throughout the parameter space. Given an optimal configuration of the first sub-LHC, further LHC’s are added to the design so that the composite design is optimal subject to the constraints imposed by the previous design. This property will be particularly useful in situations where the experiments are queued on supercomputers and when there is a chance, for whatever reason, that the whole queue may not complete before a deadline.

We described a novel emulator diagnostic called “leave one LHC out” (LOLHO) plot, based on extending “leave one out” methods. This diagnostic can be used for emulators built using k-extended and sliced LHC’s. We provided a k-extended LHC design for a real ocean model, the NEMO ocean model, that must be run on a supercomputer and showed the results of our emulation and LOLHO diagnostics for the largest ensemble of runs of the NEMO we are aware of, run using a k-extended LHC design. Though storage and allocated run-time are factors affecting how such experiments are managed, often one of the biggest overheads is the time and experience of the modeller required to submit and manage the ensemble. If the storage and run time are available, a large ensemble takes the same amount of man-hours to manage as a small one, so that the preference is often for fewer experiments (to the extent that this is possible whilst meeting the experimental goals) with larger ensembles at each step.

At the early stage of such a project, when little or nothing is known about how the model will respond to parameter changes, but where you may have been asked to use a large portion of your run budget, a design such as the one advocated here, where multiple sources of uncertainty can be addressed within one large LHC, is ideal. Though constructing a more involved LHC design, such as an orthogonal-maximin k-extended LHC (or even a sliced LHC) might be more effort and personal computer time than using existing code to construct a more traditional maximin LHC, the computer time and effort will pale into comparison when
compared with the cost (both in time and money) of the supercomputer experiment itself.

Space filling designs such as LHC’s are only useful up to a point. Following an exploratory first experiment, it will be clear, after emulation of the computer model, that certain regions of parameter space are irrelevant to the analysis. For example, in a climate model we may have an ice planet or no polar sea ice in winter, so that the model is a long way from the real world (and our uncertainty in our emulator predictions effectively means that we are sure that this is the case). Perhaps the most interesting avenue for future research in the design of experiments will be in designs that aim to “fill” the remaining space, however complex its shape, in some optimal way. Dragulic et al. (2012) began to think about this problem for parameter spaces with known constraints on the input variables. In many applications, however, all we have is a membership rule for parameter space with potentially very complex, unconnected shapes. Optimal designs in such spaces would have wide applicability for multi-wave computer experiments.

Acknowledgements

This work was supported by an EPSRC fellowship, grant number EP/K019112/1. The author would like to thank Adam Blaker and Bablu Sinha at the National Oceanography Centre in Southampton for their support of this work and their advice regarding the experimental configurations of the ocean model. Thanks to Adam in particular for running the large ocean model ensemble and post processing the output. Thanks also to Gurvan Madec for his time and enthusiasm when eliciting ranges for each of the input parameters to the ocean model.

REFERENCES

Exploratory Ensemble Design

biases in climate models with history matching. *Climate Dynamics*, Available online 10.1007/s00382-014-2378-z

APPENDIX

DERIVING BOUNDS FOR THE COVERAGE STATISTIC

We take the same approach as Joseph and Hung (2008) in deriving the bounds for ϕ_p in Section 3. Joseph and Hung (2008) first prove 2 lemmas, and use these to derive bounds. The first of these applies directly to designs generated during k-extension unchanged, so we simply state it as a result and refer interested readers to Joseph and Hung (2008) for the proof.

Result 1 Consider a set of positive values $d_{j,1}, d_{j,2}, \ldots, d_{j,l}$ and write $d_{j,(1)} \leq \cdots \leq d_{j,(l)}$ for $j = 1, \ldots, m$. Then

$$\sum_{i=1}^{l} \frac{1}{\sum_{j=1}^{m} d_{j,i}} \leq \sum_{i=1}^{l} \frac{1}{\sum_{j=1}^{m} d_{j,(i)}}$$

The second of the required lemmas establishes the value of \bar{d}, the average intersite distance in our design. However, because at step 2 of the k-extension algorithm for any value of c we do not have an integer LHC, but rather a composite of $c n \times m$ integer LHC's, we must state and prove a new result.

Lemma 1 For any value c at step 2 of the k-extension algorithm, the integer representation of the current design and proposed extension, M^c, has average intersite distance

$$\bar{d} = \frac{mnc(ck(n^2 - 1) + 3(c - 1))}{6k^{\binom{cn}{2}}}$$
Proof. With our definition of \(d_i \), we have

\[
\left(\begin{array}{c} \binom{cn}{2} \\ \end{array} \right) \bar{d} = \sum_{i=1}^{\binom{cn}{2}} d_i = \sum_{i=2}^{n} \sum_{j=1}^{i-1} d(s_i, s_j)
\]

\[
= \sum_{i=2}^{m} \sum_{i=2}^{n} \sum_{j=1}^{i-1} |s_{ij} - s_{jl}| + 1 \{ s_{ij} = s_{jl} \} / k.
\]

However, every column of \(M^c \) contains \(c \) permutations of the integers \(\{1, \ldots, n\} \), so

\[
\left(\begin{array}{c} \binom{cn}{2} \\ \end{array} \right) \bar{d} = m \sum_{i=2}^{n} \sum_{j=1}^{i-1} |s_{i1} - s_{j1}| + 1 \{ s_{i1} = s_{j1} \} / k.
\]

Assessing a column with \(c \) 1s then \(c \) 2s and so on, ending with \(c \) ns, we can write

\[
\left(\begin{array}{c} \binom{cn}{2} \\ \end{array} \right) \bar{d} = m \sum_{i=2}^{n} \sum_{j=1}^{c} \left(\sum_{l=1}^{i} (l - 1)c \right) + mn \sum_{j=1}^{c-1} (c - j) / k
\]

\[
= m \left(\sum_{i=1}^{n} c^2(i - 1) + \frac{nc(c - 1)}{k} \right)
\]

and the result follows.

The lower bound \(\phi_{p,L} = \left(\binom{cn}{2} \right)^{1/p} / \bar{d} \) is established on page 184 of Joseph and Hung (2008) as they show that using Lagrange multipliers to minimise \(\left(\frac{1}{\bar{d}_p} \right)^{1/p} \) subject to \(\sum_{i=1}^{\binom{cn}{2}} \bar{d} \) gives the optimal solution when \(d_1 = d_2 = \cdots = d_{\binom{cn}{2}} = \bar{d} \).

For the upper bound, because we have \(d_i = \sum_{j=1}^{m} d_{j,i} \) for \(i = 1, \ldots, \binom{cn}{2} \), by result 1

\[
\phi_p = \left(\sum_{i=1}^{\binom{cn}{2}} \frac{1}{d_i^p} \right)^{1/p} \leq \left(\sum_{i=1}^{\binom{cn}{2}} \sum_{j=1}^{m} d_{j,i}^p \right)^{1/p} \leq \left(\sum_{i=1}^{\binom{cn}{2}} \sum_{j=1}^{m} \frac{1}{d_{j,(i)}^p} \right)^{1/p},
\]

where now, for each column of the design, the inter site distances are ordered in the same way by the right most expression. For given \(n \) and \(c \), each column will have \(\sum_{l=1}^{c-1} l \) inter site distances of \(1/k \) and then, for each \(h \in \{1, \ldots, (n - 1)\} \), there will be \(c^2(n - h) \) inter site
distances of h. Hence

$$\phi_p \leq \left(\frac{1}{n} \sum_{i=1}^{c} \sum_{j=1}^{m} d_{j,i}^p \right)^{1/p} = \left(\frac{nk^p(c - 1)}{2m} + \sum_{i=1}^{n-1} \frac{c^2(n - i)}{mi^p} \right)^{1/p} = \phi_{p,U}.$$
Figure 1. An 8-point LHC in 2 dimensions generated via an integer LHC. The shaded boxes highlight the solids identified by the integer LHC, with the points representing the LHC in $[0, 1]^2$.
Figure 2. Comparing orthogonality and coverage of a sliced LHC, a k-extended LHC and a maximin LHC. Red lines show the sliced LHC performance, blue the k-extended LHC and green the maximin LHC. Darker colours represent the values of each measure for each individual sub-LHC (hence there are no dark green lines) and lighter colours represent the cumulative values of each measure using the first 8, 16, 24, 32 and 40 points in the design. Solid lines represent ρ^2 and dashed lines are ϕ_{50} both calculated using the scaled design values.
Figure 3. Global mean temperature and salinity depth profiles for the NEMO ensemble (grey lines) with the standard setting of the parameters (blue depth profile) and the observed profiles (with uncertainty) the red solid and dashed lines.
Figure 4. (a) The integer LHC used to generate the first extension of our example 8-point LHC in 2 dimensions. The cyan panels highlight the new integer LHC that will be used to generate new points. (b) Dividing each solid in the identified integer LHC into k^m equally sized solids. One of the mini-solids that has no points along it in either dimension will be chosen at random to contain the new LHC points for each of the larger cyan solids identified by the integer LHC.

Figure 5. (a) The first 3 8-point LHC’s generated during application of the extension algorithm with the different coloured grid squares representing the 3 integer LHC’s used to identify the regions of the new points. (b) The full 40 point LHC comprising 5 8-point LHC’s. The integer LHC’s used to generate each extension are highlighted as different coloured grid squares.
Figure 6. LOLHO plots for each of the 25 16-member sub-LHC’s that made up our ocean model design. Each panel is constructed by removing a sub LHC from the design, refitting our emulator using the same basis function and correlation parameters, and predicting the model output. The predictions and 2 standard deviation prediction intervals are in black. The true values are in either green, if they are within 2 standard deviations of the prediction, or red otherwise. The x-axis in each plot is the parameter $r_{n,lc}$, the coefficient for Langmuir cells in the vertical mixing scheme.
Figure 7. LOLHO plots against rn_diff, a coefficient controlling vertical eddies, for each of the 25 16-member sub-LHC’s that made up our ocean model design.
Figure 8. Boxplots illustrating the differences between emulator predictions for 100 new points in the continuous parameter space for each setting of the model switch.
Figure 9. Traditional Leave One Out plots against \(\text{rn}_\text{lc} \) and \(\text{rn}_\text{ediff} \).