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Wind-induced odd gravitational harmonics of Jupiter
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ABSTRACT
While the rotational distortion of Jupiter makes a major contribution to its lowermost order
even zonal gravitational coefficients Jn with n ≥ 2, the component of the zonal winds with
equatorial antisymmetry, if sufficiently deep, produces a gravitational signature contained in
the odd zonal gravitational coefficients Jn with n ≥ 3. Based on a non-spherical model of a
polytropic Jupiter with index unity, we compute Jupiter’s odd gravitational coefficients J3, J5,
J7, . . . , J11 induced by the equatorially antisymmetric zonal winds that are assumed to be deep.
It is found that the lowermost odd gravitational coefficients J3, J5 and J7 are of the same order
of magnitude with J3 = −1.6562 × 10−6, J5 = 1.5778 × 10−6 and J7 = −0.7432 × 10−6,
and are within the accuracy of high-precision gravitational measurements to be carried out by
the Juno spacecraft.
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1 IN T RO D U C T I O N

Jupiter is rotating rapidly, resulting in significant departure from
spherical geometry: its shape eccentricity at the one-bar surface is
EJ = 0.3543 (Seidelmann et al. 2007). The shape and gravitational
field of Jupiter can provide an important constraint on the physical
and chemical properties of its interior. In 2016, the Juno spacecraft,
now on its way to Jupiter, will make high-precision measurements
of the Jovian gravitational field (Hubbard 1999; Bolton 2005) whose
zonal external potential Vg can be expanded in terms of the Legendre
functions Pn,

Vg = −GMJ

r

[
1 −

∞∑
n=2

Jn

(
Re

r

)n

Pn(cos θ )

]
, r ≥ Re, (1)

where MJ is Jupiter’s mass, n takes integer values, J2, J3, J4,
J5, . . . , are the zonal gravitational coefficients, (r, θ , φ) are
spherical polar coordinates with the corresponding unit vectors
(r̂, θ̂ , φ̂) and θ = 0 is the axis of rotation, Re is the equato-
rial radius of Jupiter and G is the universal gravitational constant
(G = 6.673 84 × 10−11 m3 kg−1 s−2). At present, only the first three
even zonal gravitational coefficients J2, J4, J6, which are mainly
produced by the effect of rotational distortion of Jupiter, are accu-
rately measured. By circling Jupiter in a polar orbit, the Juno space-
craft will carry out high-precision measurements of the gravitational
coefficients up to J12 (Bolton 2005). While both the rotational dis-
tortion and the equatorially symmetric zonal winds contribute to
the even gravitational coefficients Jn with n ≥ 2, the component of
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the equatorially antisymmetric winds, if sufficiently deep, induces
the odd coefficients Jn with n ≥ 3. How the equatorially symmetric
zonal winds modify the even gravitational coefficients Jn with n ≥ 2
has been investigated in several studies (Hubbard 1999; Kaspi et al.
2010; Kong et al. 2013). This study focuses on the odd gravitational
coefficients Jn with n ≥ 3 in equation (1) caused by the equatorially
antisymmetric zonal winds that are assumed to be deep.

In a recent study, Kong et al. (2014) computed the gravitational
signature produced by the Jovian equatorial winds that are equato-
rially symmetric and confined within a small equatorial region be-
tween the latitudes ϕ = ±25◦ with the maximum penetration depth
about 10 per cent of Jupiter’s equatorial radius containing about
0.18 per cent of the total Jovian mass. The study was motivated by
the likelihood that the equatorial zonal jets cannot be strongly af-
fected by either the Jovian magnetic field or the stable stratification
(Liu, Goldreich, & Stevenson 2008; Lian & Showman 2010; Gas-
tine & Wicht 2012). By comparing to the results from a model of
the deep zonal winds at all latitudes, Kong et al. (2014) found the
equatorial zonal jets contribute 90 per cent of the high-order even
gravitational coefficient J12 in equation (1). Thus, the high-order
gravitational coefficients – whose values were thought to reflect the
penetration depth of the zonal winds – are nearly independent of
the depth of the Jovian zonal winds in the non-equatorial regions
with the latitudes 25◦ ≤ ϕ ≤ 90◦ and −90◦ ≤ ϕ ≤ −25◦. This result
highlights the importance of the gravitational signature contained
in the odd gravitational coefficients in equation (1) produced by the
component of the equatorially antisymmetric zonal winds.

It is important to notice that, while the effect of Jupiter’s de-
parture from spherical geometry makes a leading-order contri-
bution to the lower-order even gravitational coefficients Jn with
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n ≥ 2 in equation (1), the non-spherical effect is likely less signif-
icant on estimating the lower-order odd gravitational coefficients
Jn with n ≥ 3 caused by the equatorially antisymmetric zonal
winds. Kaspi (2013) carried out the first study of the gravitational
signature induced by the equatorially antisymmetric zonal winds
in Jupiter which rotates with the angular velocity � and is as-
sumed to be spherical. He considered the thermal wind equation
in the form

− 2� · ∇ (ρ0u) = ∇ρ ′ × g0, (2)

where ρ0 and g0 represent the density and gravity profile of the
hydrostatic state, respectively, while ρ ′ denotes the density pertur-
bation to ρ0 caused by the zonal winds u. Upon neglecting the
effect of non-spherical geometry, g0 is only a function of r and
can be readily related to the density profile ρ0(r) from an interior
model (see, for example, Guillot & Morel 1995). By denoting the
zonal winds u = U (r, θ )φ̂, the azimuthal component of equation
(2) gives rise to the density perturbation

ρ ′(r, θ ) = C(r) + 2r�

|g0(r)|

×
∫ θ

π/2

[
cos θ

∂

∂r
(ρ0U ) + sin θ

r

∂

∂θ
(ρ0U )

]
dθ, (3)

where C(r) is an arbitrary function of r. Kaspi (2013) recognized
that∫ π

0

∫ R

0
C(r)P2l+1(cos θ ) r2 sin θ dr dθ = 0, l = 1, 2, 3, . . . ,

where R is the radius of a spherical planet. It follows that the ar-
bitrary function C(r) does not make any contribution to the odd
gravitational coefficients Jn in equation (1). By performing the inte-
gration over θ in equation (3) using a given ρ0(r) and g0(r) together
with

U (r, θ ) = u0(r, θ )e−(R−r)/H , (4)

where u0(r = R, θ ) denotes the observed cloud-level zonal winds
which extend into the interior on cylinders parallel to the rotation
axis and H is a depth parameter, Kaspi (2013) calculated the values
of J3, J5, J7, . . . in equation (1) for different values of H. When
H becomes sufficiently large, the values of J3, J5, J7, . . . repre-
sent an upper bound on the odd zonal gravitational coefficients in
equation (1). This approach based on equation (3) is inapplicable to
rapidly rotating giant gaseous planets that depart substantially from
spherical geometry.

In this study, we compute the odd gravitational coefficients Jn

with n = J3, J5, . . . , J11 in equation (1) induced by the compo-
nent of the equatorially antisymmetric zonal winds in the rota-
tionally distorted, non-spherical Jupiter without making use of the
thermal wind equation (2). The non-spherical geometry represents
a mathematically difficult and challenging problem because the
spherical-harmonic-expansion method – which can treat the equa-
torial symmetry by simply selecting different parities in the spher-
ical harmonic expansion – is no longer suitable. We carry out an
accurate computation of the gravitational coefficients J3, J5, J7, . . . ,
J11 in equation (1) for the oblate spheroidal Jupiter with its shape
eccentricity EJ = 0.3543 using a three-dimensional finite- element
mesh containing 32 × 106 tetrahedral elements. An unusual mathe-
matical approach has to be adopted in order to capture the equatorial
antisymmetry when using a fully three-dimensional finite-element
method. Instead of solving the governing equations in the whole
oblate spheroidal domain of Jupiter, we solve them in the Northern

hemisphere of Jupiter such that the equatorially antisymmetric con-
dition required at the equatorial plane can be explicitly imposed. In
comparison to the approach based on the thermal wind equation (2)
in spherical geometry (Kaspi 2013), our approach is geometrically
non-spherical as is the rapidly rotating Jupiter and mathematically
marked by the uniqueness of the solution satisfying an appropriate
physical boundary condition. We begin by presenting the model
and the governing equations in Section 2 which is followed by the
discussion of the results in Section 3 while a summary and some
remarks are given in Section 4.

2 MO D E L A N D G OV E R N I N G E QUAT I O N S

Our model assumes that (i) Jupiter with mass MJ and equatorial
radius Re is isolated and rotating rapidly about the symmetry z-
axis with an angular velocity � ẑ, (ii) Jupiter is axially symmet-
ric, described by an oblate spheroid with eccentricity EJ = 0.3543
(Seidelmann et al. 2007), and consists of a compressible barotropic
fluid (a polytrope of index unity) whose density ρ is a function only
of the pressure p (Chandrasekhar 1933; Roberts 1962; Hubbard
1999) and (iii) the zonal winds observed on Jupiter have an equa-
torially antisymmetric component that depends only on distance s
from the rotation axis and extends from the cloud surface to the
equatorial plane. In an inertial frame of reference, the equilibrium
equations are

u · ∇u = − 1

ρ
∇p − ∇Vg, (5)

∇2Vg = 4πGρ, (6)

∇ · (uρ) = 0, (7)

where u denotes the fluid motion and Vg represents the gravitational
potential. Equations (5)–(7) are solved subject to the two boundary
conditions

p = 0, (8)

Vg + Vc = constant, (9)

at the bounding surface S of Jupiter described by r = R̃(θ ), where
Vc is the centrifugal potential.

We solve equations (5)–(7) by making the expansions

ρ = ρ0 + ρ1, p = p0 + p1, u = � ẑ × r + U (r, θ )φ̂, (10)

where U (r, θ )φ̂ denotes the profile of the zonal winds satisfying

U0

�Re
	 1,

where U0 is the typical speed of the winds. In the leading-order
problem, we determine the bounding surface r = R̃(θ ) and compute
the even zonal gravitational coefficients J2, J4, J6 up to J12 taking
into account the full rotational distortion (Kong et al. 2013). In the
next-order problem, which is the focus of this study, we compute
the odd zonal gravitational coefficients J3, J5, J7 up to J11 in the
expansion (1) induced by the deep equatorially antisymmetric winds
U(r, θ ) that satisfy

U (r, θ ) = −U (r, π − θ ) for 0 < θ < π/2, (11)

where U (r = R̃(θ ), θ ) at the bounding surface of Jupiter represents
the observed, equatorially antisymmetric cloud-level zonal winds.
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It is important to notice that the equatorially antisymmetric winds
only produce the density anomaly ρ1 that is also equatorially anti-
symmetric, imposing the extra boundary condition

ρ1(r, θ = π/2) = 0 at the equatorial plane. (12)

In the rotationally distorted Jupiter whose shape is described by
r = R̃(θ ), the equatorially antisymmetric condition (12) has to be
explicitly imposed using an appropriate numerical method.

3 M E T H O D A N D R E S U LT S

The observed Jovian winds (Porco et al. 2003) can be decomposed
into two different components: the equatorially symmetric winds
and the equatorially antisymmetric winds. Fig. 1 shows the profile
of the total observed Jovian cloud-level zonal winds and its decom-
position. The strength of the equatorially antisymmetric component
is weaker than that of the symmetric component. We assume that the
equatorially antisymmetric zonal winds shown in Fig. 1(c) extend
on cylinders parallel to the axis of rotation from the cloud level to

Figure 1. (a) The profile of the total observed Jovian zonal winds at the
cloud level, (b) the profile of its equatorially symmetric component and
(c) the profile of its equatorially antisymmetric component.

Figure 2. Sketch of a three-dimensional tetrahedral mesh in the Northern
hemisphere which also represents the domain of the numerical solution in
this Letter. At the equatorial plane, the density anomaly ρ1 induced by the
equatorially antisymmetric zonal winds must vanish. In our actual numerical
computation, 32 × 106 tetrahedral elements in the Northern hemisphere are
used for the numerical computation.

the equatorial plane, which represents the case of the profile given
by equation (4) with sufficiently large H.

It should be emphasized that the equatorially antisymmetric
winds U(r, θ ) defined by equation (11) and shown in Fig. 1(c)
induce the density anomaly ρ1 obeying the parity,

ρ1(r, θ ) = −ρ1(r, π − θ ),

which produces only the odd gravitational coefficients Jn with n ≥ 3.
A challenging numerical hurdle is how to enforce the equatorially
antisymmetric condition (12) in a non-spherical planet when us-
ing a three-dimensional, local numerical method. We found that an
effective way of computing an antisymmetric solution satisfying
equation (12) is to solve only the Northern hemisphere of the planet
defined by 0 ≤ θ < π/2 and 0 ≤ r < R̃(θ ) such that both the bound-
ary conditions at r = R̃(θ ) given by equation (8) and at θ = π/2
given by equation (12) can be explicitly imposed. The solution of
the Southern hemisphere defined by π/2 < θ ≤π and 0 ≤ r < R̃(θ )
can be simply obtained by making use of the symmetry property.

A three-dimensional finite-element method – whose high accu-
racy in non-spherical geometry was confirmed by an exact solution
(Kong, Zhang & Schubert 2015) – is employed to solve equations
(5)–(7) for the density anomaly ρ1 satisfying the conditions (8) and
(12). We construct a three-dimensional finite-element mesh by mak-
ing a tetrahedralization of the Northern hemisphere of Jupiter with
its shape eccentricity E = 0.3543. A sketch of the finite-element
mesh for the northern spheroidal domain is illustrated in Fig. 2,
which contains 0.16 × 106 tetrahedral elements. In comparison to a
spectral method, our finite-element method is local, free of the pole
and central numerical singularities and, more significantly, geomet-
rically flexible. A Galerkin weighted residual approach is adopted
in the finite-element formulation along with a Krylov subspace it-
erative method. For the results reported in this Letter, the northern
spheroidal domain is divided into about 32 × 106 tetrahedral el-
ements that enable us to compute the accurate odd gravitational
coefficients up to J11. All the numerical computations presented in
this Letter are fully three-dimensional, but all the numerical solu-
tions turn out to be always axisymmetric.

Fig. 3 shows the meridional cross-section of the density anomaly
ρ1 in the northern interior of Jupiter, reflecting the redistribution of
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Figure 3. The equatorially antisymmetric density anomaly ρ1 in a merid-
ional plane of the Northern hemisphere induced by the equatorially anti-
symmetric deep winds.

Table 1. The odd zonal gravitational
coefficients Jn, n ≥ 3 in the expan-
sion (1) induced by the equatorially
antisymmetric zonal winds in the ro-
tationally distorted Jupiter.

n Jn × 106

3 − 1.6562
5 1.5778
7 − 0.7432
9 0.3168

11 − 0.0210

mass within Jupiter due to the effect of the deep equatorially anti-
symmetric zonal winds depicted in Fig. 1(c). The density anomaly
ρ1 takes place largely within the cylindrical structure in the interior
region where the zonal winds are strong. In the vicinity of r = R̃(θ )
and θ = π/2 where the boundary condition (8) and the symmetry
condition (12) must be satisfied, however, the density anomaly ρ1

is weak. After obtaining the density anomaly ρ1, we can then com-
pute the odd zonal gravitational zonal coefficients Jn with n ≥ 3,
induced by the deep winds in equation (11), by performing the
two-dimensional integration over the non-spherical Jupiter

Jn = − 4π

MJRn
e

×
∫ π/2

0

∫ R̃(θ )

0
ρ ′(r, θ )Pn(θ ) sin θrn+2 dr dθ, (13)

for n = 3, 5, 7, . . . , 11. The results are presented in Table 1,
showing that the effect of the zonal winds yields the strongest
gravitational signature in the lowermost order odd coefficients J3,
J5 and J7 which are of the same order of magnitude. For instance,
|J3| = 1.6562 × 10−6 is of the same order as |J7| = 0.7432 × 10−6.
They represent an upper bound on the odd gravitational coefficients
that can be induced by the equatorially antisymmetric zonal winds
on the rotationally distorted Jupiter. More significantly, the size of
the odd coefficients J3, J5 and J7 is well within the accuracy of
the high-precision gravity measurements to be carried out the Juno
spacecraft in 2016 (Bolton 2005).

4 SU M M A RY A N D R E M A R K S

The Jovian zonal winds have been accurately measured and ex-
tensively studied for a number of decades, but their generation
and penetration depth still remain highly controversial (Ingersoll &
Cuzzi 1969; Busse 1976; Zhang & Schubert 1996; Liu et al. 2008;
Jones & Kunzanyan 2009; Lian & Showman 2010; Gastine & Wicht
2012). An important objective of the Juno spacecraft is to probe the

extent of penetration of the zonal winds into the interior of Jupiter
by accurately measuring their effects on its gravitational field with
unprecedentedly high precision. Since the high-order coefficients Jn

with even n are found to be nearly independent of the depth of the
zonal winds in the non-equatorial regions (Kong et al. 2014), and
since the size of Jn with odd n are directly related to the depth of the
equatorially antisymmetric zonal winds (Kaspi 2013), accurately
determining the odd coefficients Jn in equation (1) would play a
critical role in understanding the structure of the zonal winds in the
deep interior of Jupiter.

This study, based on the polytropic model of Jupiter with in-
dex unity (Chandrasekhar 1933; Hubbard 1999), represents an at-
tempt to compute the odd gravitational coefficients, J3, J4, . . . , J11,
induced by the equatorially antisymmetric zonal winds in a rota-
tionally distorted gaseous Jupiter. In order to impose the equatori-
ally antisymmetric condition (12) at the equatorial plane, we have
constructed a three-dimensional finite-element mesh by making a
tetrahedralization of the Northern hemisphere of Jupiter and, then,
solving the governing equations in the Northern hemisphere. The
solution for the Southern hemisphere is obtained simply by using
the equatorial antisymmetry. It is found that the lowermost-order
odd coefficients J3, J5 and J7 – which correspond to the case with
the profile given by equation (4) for sufficiently large H – are of the
same order of magnitude O(10−6).

Our results are, however, substantially different from those of the
previous study (Kaspi 2013) in spherical geometry based on the
thermal wind equation (2). In the fig. 4 of Kaspi (2013), the values
of the odd coefficients J3, J5 and J7 are displayed as a function of
H for 10 km ≤ H ≤ 6 × 104 km in which J3, J5 and J7 show an
asymptotic behaviour when H > 2 × 104 km. It follows that a direct
comparison can be made between our results and those of Kaspi
(2013) when H in equation (4) is sufficiently large. The values of
the odd coefficients J3, J5 and J7 from his spherical model can be
estimated from the fig. 4 of Kaspi (2013). In particular, Kaspi (2013)
obtained J7 ≈ 6 × 10−7 for large H, while our computation gives
J7 = −7.4 × 10−7. There is also an O(100) per cent difference in
the size of J3: his value is J3 ≈ −10−6 while our computation yields
J3 = −1.66 × 10−6. Although his value for J5 does not fully reach
the asymptotic value for large H in his fig. 4, it also indicates a more
than 100 per cent difference: his value is J5 ≈ 0.4 × 10−6 while ours
is J5 = 1.58 × 10−6.

It should be recognized that there exist several significant dif-
ferences between our model and that of Kaspi (2013). First, our
model has non-spherical geometry while his is spherical. However,
it is anticipated that the effect of geometry would not cause a sub-
stantial difference in the values of odd gravitational coefficients.
Secondly, our model is mathematically marked by a solution of
equations (5)–(7) satisfying the boundary condition (8) required at
the bounding surface r = R̃(θ ) while his model is based on the
thermal wind equation (2) that represents a diagnostic relation and
does not require any boundary condition. Thirdly, our model has
assumed that the compressible fluid in Jupiter is barotropic and,
hence, the zonal winds U must satisfy the geostrophic condition,
i.e. ∂U/∂z = 0, where z denotes the coordinate in the direction of
rotation axis, while Kaspi (2013) did not make the barotropic as-
sumption – which represents an important advantage of his spherical
model. The profile of the equatorially antisymmetric zonal winds U
in our model satisfies the geostrophic condition ∂U/∂z = 0 every-
where in both the Northern hemisphere defined by 0 ≤ θ < π/2 and
0 ≤ r ≤ R̃(θ ) and the Southern hemisphere defined by π/2 < θ ≤ π

and 0 ≤ r ≤ R̃(θ ). But it introduces a physically unrealistic shear at
the equatorial plane θ = π/2 – which represents a disadvantage of
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our non-spherical model. Since the wind-induced density anomaly
ρ1 vanishes exactly at the equatorial plane θ = π/2 in the form
of the imposed boundary condition, it is expected that the shear at
θ = π/2 would produce insignificant effects on the odd gravita-
tional coefficients. Evidently, a further study is required to identify
the key reasons why there exist such large differences between our
results and those of Kaspi (2013).
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