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Forecasting New Product Trial with Analogous Series 

 

Abstract 

 

     This study develops a simple method for forecasting consumer trial for national product 

launches. The number of consumers who try a brand in its first year on the market is accurately 

predicted from the number trying the brand in the first thirteen weeks following launch. No 

information about the specific category or marketing activities is required– just a simple 

multiplier computed from analogous series in other markets. These analogues provide an 

empirical generalization that can be easily applied by practicing managers to track and forecast 

the success of new brand launches. When subject to an out-of-sample test involving 34 fresh data 

sets, the analogues demonstrated 43 percent reduction in Mean Absolute Percentage Error 

compared to the most accurate marketing science model.  
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1. Introduction   

Accurate forecasts of new product performance have many uses: they help to decide whether to 

launch the new product; they guide production plans and optimal stock levels; they encourage 

sales and retailer support; and they provide benchmarks for sales targets over the first year. 

Although there are many complex marketing science models available for making new product 

forecasts, these complex models are rarely (if ever) used by managers, and when forecasting is 

undertaken its performance remains notoriously poor. For example, Khan’s (2002) survey of 

marketing managers asked them to report the level of accuracy achieved for their new product 

forecasts; he found that self-reported forecast accuracy averaged just 58 percent, dropping to 47 

percent for new category entrants and 40 percent for products that were new to the world. 

The present work addresses one part of this problem, by developing forecasts and 

benchmarks for growth in consumer trial over the first year of sales. Consumer trial is the 

proportion of the target market who purchase once or more in a given period after product 

launch. Consumer trial is a simple measure and one of the most commonly used metrics for 

evaluating new product launch as it is easy to gather via syndicated panel data or ad-hoc tracking 

surveys (e.g. using the question “have you ever bought/tried this product?”). Logically, consumer 

trial is a hurdle which must be cleared before repeat purchase and long-term sales can be 

established. 

Strictly speaking, the first purchase is not the same as the sociological concept of a trial. 

Trialability is an important characteristic of innovations in the diffusion literature, and may be 

promoted through, for example, a test drive for a car, product sampling or a first purchase of a 

frequently consumed product. For durables such as cars, first purchases are adoption rather than 

trial, and even if followed by replacement or disenchantment discontinuance the purchase was 



3 

 

 

nonetheless adoption and not just trial; see Rogers (1995) for further discussion of these 

concepts. For frequently purchased products, there is some argument about whether the first 

purchase represents trial, immediate adoption, or simply a rate of purchase that may be revised 

up or down depending upon satisfaction with the product experience; see Fader et al. (2003) and 

East, Wright, and Vanhuele (2013) for a discussion of this issue and the associated literature. In a 

similar vein, Meade and Islam (2001) distinguish the adoption process (e.g. for durables) from a 

consumption process (e.g., for packaged goods) in which adoption choices are revocable. Despite 

these complications, common usage applies the term trial to the cumulative penetration metrics 

obtained for new products from consumer surveys for consumption processes. The present work 

follows common usage, with consumer trial referring to those who have bought a newly 

launched frequently purchased product at least once. 

Consumer trial has long been forecast using marketing science models, although there are 

few systematic evaluations of the performance of these models. Meade and Islam (2001) assess 

adoption models in which choices are not easily revocable. Hardie, Fader and Wisniewski (1998) 

– hereafter HFW – evaluate consumption models for frequently purchased products in 

BehaviorScan controlled test markets (see also Fader and Hardie 2001 and Fader, Hardie and 

Zeithammer 2003).  

More recent work extends these modeling approaches by introducing additional complexity. 

Du and Kamakura (2011) apply an individual-level trial hazard model to evaluate the role of 

contagion in the diffusion of new product trial. Liutec, Du, and Blair (2012) develop Du and 

Kamakura’s model (2011) using BehaviorScan data; they describe their approach as follows: 

The actual forecasting procedure has several steps. First, estimates for the historical 

set of products are obtained. Second, these estimates are used as priors for estimation of 
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the “forecasting model”, which is calibrated on data for both the focal product (first 

weeks available post launch, and incorporating more observations as they become 

available) and the historical adoption data. Third, posterior estimates for all (focal) 

product-level and individual level parameters are computed (e.g., Train 2003). Finally, 

the posterior estimates obtained above are used to simulate out-of-sample purchases for 

the focal product. More specifically, many out-of-sample “purchase paths” are simulated 

for each consumer, then averaged across the number of simulations and summed across 

consumers.  (Liutec, Du. and Blair, (2012, p. 17)  

The complexity of Liutec et al’s approach may prevent widespread utilization by marketing 

managers. Further, much of the evaluation of the consumer trial models takes place in 

BehaviorScan controlled test markets, and it is unclear how well these models will generalize to 

the different context of national product launches. 

While the BehaviorScan markets used by HFW and Liutec at al. (2012) possess many 

attractive features, such as high levels of marketing control, immediate distribution, and 

provision of complete information on purchases, they are restricted to small test cities with 

relatively homogenous populations. BehaviorScan market tests are expensive, are only available 

in a few countries, and are restricted to grocery products. They are not necessarily representative 

of broader domestic or international markets. In contrast, most brand managers rely on panel 

tracking or survey data to assess the performance of new products. The trial curves observed in 

test markets may not generalize to national launches due to the uncontrolled environment and 

varied populations involved. These varied populations may adopt simultaneously, as with test 

markets, or serially, and this may vary between countries (e.g. see Meade and Islam 2001). 
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Therefore, the first objective of the present work is to extend the analysis of forecasting 

performance of the marketing science models of consumer trial from test markets to national 

launches. This provides baseline results against which a simplified forecasting technique can be 

compared. Simplified forecasting techniques are desirable as even the best marketing science 

model may be limited in its practical application. Khan (2002) finds the more popular statistical 

forecasting techniques for new products are trend line and moving average analysis. Techniques 

such as diffusion, ARIMA or regression are rarely utilized, and one reason for this could be the 

impact of a ‘bias’ in forecasting Gigerenzer and Brighton, (2009); Brighton and Gigerenzer (this 

issue). Overall, Khan (2002) finds a preference for qualitative techniques.  

Analogous series is a simpler quantitative technique that can be applied to forecast consumer 

trial. Duncan, Gorr and Szczpula (2001) argue that pooling of analogous series improves 

forecasting accuracy when time series are highly volatile or when they have outlier data points. 

As consumer trial frequently shows early fluctuations in the data (volatility) analogous series are 

an appropriate method of analysis. If successful, they may provide an empirical generalization 

that is easily applied by managers, helping to resolve the forecasting performance issues 

identified by Khan (2002). That is, analogous series would provide managers with a simple and 

successful quantitative tool for forecasting consumer trial of new products. 

Therefore, the second objective is to apply the simpler technique of analogous series to 

forecasting consumer trial, and to compare the results with those of the marketing science 

models. Analogous series comprise  

data that are expected to be related and are conceptually similar. Such series are  

 expected to be affected by similar factors (Armstrong, 2001, p. 764).   
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The final objective is to evaluate the results for analogous series using out-of-sample tests 

with fresh data sets. This gives more confidence in the generalizability of the findings. 

The remainder of the paper is structured as follows: Section 2 introduces the data used in the 

initial studies. Section 3 extends the baseline marketing science models from 19 controlled test 

market product launches to the context of 12 national product launches. Section 4 develops and 

applies the analogous series to these 31 examples of controlled test markets and national product 

launches. Section 5 applies the analogues for national product launches to a further 34 out-of-

sample test data sets. The paper concludes with a discussion and summary. 

 

2. Data 

The data for the baseline comparison of marketing science models are cumulative trial panel data 

sets for 12 new product launches from three countries. Commercial confidentiality prevents full 

description, but a summary appears in Table 1. The data are a mix of really new products, line 

extensions and simple variants. The New Zealand data are provided courtesy of AC Nielsen 

Homescan. The USA data are provided by a marketing science consultant. The data on UK drug 

prescribing come from Jigsaw, a commercial panel of UK General Practitioners operated by 

Synovate. The four drugs analyzed are Didronel used to treat osteoporosis, and three new drugs 

used to treat hypertension: Cozaar was the first to market followed by Diovan (a me-too) two 

years later and Amias (another me-too) launched a year after Diovan.  

 

Table 1 here. 

 

The range of product categories studied is deliberately diverse to provide a strong test of the 

analogous series approach. As well as geographical differences there are varying degrees of 
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innovativeness, and even general practitioners’ prescriptions of new drugs. Although 

qualitatively very different, patterns of prescribing behavior for existing drugs are known to be 

similar to patterns of purchase behavior for packaged goods (Stern and Ehrenberg, 1995) and so 

are suitable for this analysis. 

The results for these data are compared with the results for 19 BehaviorScan cumulative trial 

data sets provided online at brucehardie.com. Sample sizes for the BehaviorScan data sets range 

from 566 to 2946 and average 1146. No details are provided about the individual brands. 

The performance of the analogous series prompts an examination of further data as a check 

on the initial results. This uses 34 fresh test data sets, consisting of cumulative trial panel data for 

GP’s prescriptions of new drugs. Sample sizes range from 272 to 460 and average 373. The 

sample sizes are slightly smaller but of the same magnitude as those used by HFW. These data 

include new products from a variety of categories ranging from antidepressants, to drugs for 

lowering cholesterol, treatments for erectile dysfunction and rheumatoid arthritis, and widely 

differing degrees of innovativeness and success. 

 

3. Method and Results – Baseline Models  

The work of HFW guided the selection of the baseline marketing science models. Many 

marketing science models of consumer trial include the exponential, exponential gamma, 

Weibull-gamma, lognormal-lognormal, double exponential and Bass models. In some cases, 

these models are further complicated by the inclusion of a never-triers parameter or a stretch 

parameter. HFW compare the forecasting performance of eight such models using 52 weeks of 

data for each of 19 BehaviorScan data sets. They used both 13-week and 26-week calibration 

periods and examine forecasting performance for the remaining weeks using Forecast MAPE 
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(mean absolute percentage error), to show the evolving performance of each model as well as the 

difference between forecast and actual trial at fifty-two weeks (52 Week APE, or absolute 

percentage error). They find the four simpler exponential trial growth models provide more 

accurate forecasts than the four more complex models (Weibull with never triers, Lognormal-

Lognormal, Double Exponential and Bass). In subsequent work they abandon these complex 

models and also a fifth model, the gamma never-triers with stretch (Fader and Hardie 2001) due 

to the logical inconsistency of the formulation which can lead to trial proportions exceeding 

unity (Hardie 2006 Personal Communication). 

The present work therefore restricts use of baseline marketing science models to the three 

that survived HFW’s winnowing. These are, in order of decreasing simplicity; an exponential 

model with a segment of never-triers, the exponential gamma model (which is the purchase-

timing analogue of familiar Negative Binomial Distribution model (Ehrenberg, 1959)), and the 

exponential-gamma model with a segment of never-triers.  

 

  



9 

 

 

3.1 Model Specification 

HFW note their exponential with never-triers model arises from the well-known approach of 

Fourt and Woodlock (1960). They propose a continuous-time revision of this model to 

incorporate a segment of never-triers, as follows: 

 

P (t) = p (1 – e –t)        (1) 

 

 where P(t) = cumulative trial of the new product at time t, 

  p = proportion that will ever try the new product, 

 = probability of trial, given that trial has not yet occurred, 

for those that will ever try the new product, 

t = time period since launch. 

 

Consumer heterogeneity is added to this model by allowing the purchase rate to vary across 

the population. This is achieved using a gamma distribution with scale parameter  and shape 

parameter r, leading to the following exponential-gamma model: 

 

  P (t) = 1 – ( / ( + t)) r       (2) 

 

Adding back the allowance for never-triers yields the third model, exponential-gamma with 

never triers: 

 

  P (t) = p [1 – ( / ( + t)) r]       (3) 
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3.2 Estimation 

Estimation is through non-linear least squares (NLLS) using cumulative trial. This involves 

minimizing the sum of the squared errors between estimated and actual cumulative trial using the 

iterative procedures available in standard commercial software packages. HFW find this 

approach produces better results than NLLS using non-cumulative trial, and similar results to 

maximum likelihood estimation. Although maximum likelihood estimation is theoretically 

superior, the empirical results are only marginally better (Fader and Hardie 2001, p625). NLLS 

can be computed using the Solver function in Excel, making both replication and practical 

application of this approach easier. Following HFW, model estimation is based on 13-week and 

26-week calibration periods. 

The USA data sets have some missing data. These data are aggregated into four-weekly 

intervals, so values for weeks 13 and 26 are not available. They are interpolated using a simple 

linear model. These imputations are used for model fitting only, and not to assess forecasting 

performance. Also, one New Zealand product launch has only 47 weeks of data with a maximum 

183 cumulative trialists. The interpolated value for week 52 is imputed as 189 trialists; this value 

yields identical 52-week percentage errors to the other 11 data sets, and so does not bias the 

estimate of 52-week forecast performance. 

 

  



11 

 

 

3.3 Results 

For the 13-week calibration period, Table 2 shows forecast period mean absolute percentage 

error (Forecast MAPE, also called Tracking MAPE) and 52-week forecast absolute percentage 

error (52w_APE) for the three models. The Forecast MAPE shows how closely the estimated 

cumulative trial curves track empirical cumulative trial, while the 52-week APE assesses the 

accuracy of the forecast of year-end cumulative trial. Each number represents the average across 

all twelve data sets, based on the 13-week calibration period. The equivalent results obtained by 

HFW from their 19 BehaviorScan test market data sets are included for comparison. Smaller 

numbers indicate lower forecast error. 

 

Table 2 here. 

 

Comparing the three rows of alternative models, the differences in relative performance 

within each set of data are small. In each case, any one model performs about as well as any 

other, although the simpler Exp.-Gamma model performs best overall. However, comparing the 

column means between the two sets of data, the Forecast MAPE for national launches is almost 

double that found using the BehaviorScan data (28 percent versus 16 percent). This is likely due 

to the greater variety among the national launches, including more differences between 

customers, more random disturbances and greater marketing variations when moving from 

BehaviorScan test markets to panel tracking data. Despite this, the 52-week APE values are 

reasonably close across both sets of data, albeit slightly smaller for the test markets.  

Table 3 provides an identical analysis for the 26-week calibration period. As expected the 

longer calibration period results in improved forecasting performance. The results for national 
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launches are now comparable with those found by HFW, and in fact are slightly better. This 

confirms that the original pattern of results found by HFW can be extended to national product 

launches, with the proviso that a 26-week calibration period is necessary to achieve comparable 

accuracy to BehaviorScan test markets. 

 

Table 3 here. 

 

These results are consistent with several of the forecasting principles reported by Fader and 

Hardie (2001): that is simpler models perform well; that including consumer heterogeneity 

(variation in purchase rates) improves forecasts; and that a never-triers parameter does not 

improve Forecast MAPE.  

Despite the different patterns of trial growth, the marketing science models used in test 

markets can be extended to national panel data and this provides a baseline against which the 

performance of analogous series can be compared for both national product launches and 

BehaviorScan test markets. 

 

4. Method and Results – Analogous Series  

Implementing analogous series first requires that all cumulative trial curves are made directly 

comparable. This involves converting trial figures into proportions then, for each data set, 

calculating the ratio of Week <x> cumulative trial to 52-week cumulative trial, which normalize 

each period’s trial to year-end values. For forecasting, the average of these values for any 

particular period t, is used to estimate the proportion of year-end cumulative trial achieved by 

period t.  
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Formally, 

 

 Pj (t) = (1 / n)  ∑ j = 1 to n  ( pjt / pj52 )        (4) 

 

 Where  Pj (t)    =   average proportion of 52-week cumulative trial achieved by 

time t, for the group of data sets j, where j varies from 1 to n 

pjt  = cumulative trial for new product j at time t 

pj52 = cumulative trial for new product j at Week 52 

  

Equation (4) uses all the data available to identify the analogous empirical pattern. While 

this is the best estimate of the analogous series for future applications, this is not appropriate for 

assessment of forecasting performance; by including all the data sets, Equation (4) includes the 

values to be forecast. Assessing the accuracy of analogous series requires a modification to omit 

the data set under consideration (j=i), as follows. 

 

 Pi (t) = (1 / (n-1))   ∑ j = 1 to n, j  i (pjt / pj52)       (5) 

 

This gives, for each data set, the analogous pattern present in all the other data sets. This is 

used to forecast the focal data set as shown Equation (6). This specification allows measures of 

forecast error to be calculated in exactly the same way as for the exponential trial growth models 

in Equations (1) to (3). 
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 Pi52  = pit  / Pj (t)        (6) 

 

In BehaviorScan test markets cumulative trial grows more quickly than in national product 

launches, probably due to their homogenous populations, immediate distribution and tightly 

managed marketing programs. This is part of the purpose of BehaviorScan test markets; as by 

achieving trial more quickly they allow a faster assessment of the test brand. Thus separate sets 

of analogues are calculated for national product launches and BehaviorScan test markets.  

Table 4 shows the results. The second and third columns report the proportions of year-end 

trial, which are the average ratios across all data sets using equation (4); in other words, the 

analogous series. The next two columns show the 52w_APE values for the estimates derived 

from equation (5) and (6).  

 

Table 4 here 

 

The forecasting errors (52w_APE) are highest soon after launch when the least data is 

available. Forecast errors from national launches are higher than those from BehaviorScan test 

markets initially, but become lower once 13 weeks of data are available. Consistent with another 

principle that Fader and Hardie (2001) propose, lengthening the calibration period eventually 

ceases to have much impact on accuracy – in this case, at around 26 weeks. 

So far, this pattern of results is qualitatively similar to that found for the marketing science 

models. In order to assess how analogous series perform, the 52w_APE values in Table 4 are 

compared with the 52w_APE values in Tables 2 and 3. 
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For national product launches with a 13-week calibration period, the analogous series value of 13 

is much lower than the values of 27, 29 and 30 for the marketing science models. For a 26-week 

calibration period, the analogous series value of 6 is much lower than the values of 9, 9, and 10 

for the marketing science models. (US national launches do not include data for the 26-week 

period; however, they do include data for the 24-week period, and the analogous series for 24-

weeks has a 51w_APE of 10.) 

For BehaviorScan test markets with a 13-week calibration period, the analogous series value of 

23 is similar to or lower than the values of 23, 24 and 24 for the marketing science models. For 

26-week calibration period the analogous value of 11, is lower than the values of 12, 12 and 18 

for the marketing science models  

 

Thus, the analogous series provide comparable or better estimates than the marketing science 

models. Analogous series dominate the three more complicated models. In the case of the 

simplest exponential-gamma model, the analogous series has lower forecast error for three of the 

comparisons, and equivalent forecast error for the fourth. 

 

5. Method and Results: Additional Data sets 

The initial results are surprising and so should be checked using challenging tests against 

competing approaches. This is accomplished with the use of 34 additional pharmaceutical data 

sets, obtained after the initial analysis was completed, to determine how well the analogous 

series for the original 12 national product launches predicts for genuinely new data. 

 Figure 1 presents the average of the normalized cumulative trial proportions for all three 

data sets – the 19 HFW BehaviorScan test market data sets, the 12 national product launch data 
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sets, and the 34 extra pharmaceutical test data sets.  In other words, Figure 1 presents the two 

analogous series from Table 4, and a new analogous series calculated from the 34 additional 

pharmaceutical test data sets. 

 

Figure 1 here. 

 

The pattern of growth in normalized cumulative trial proportions for test markets differs 

from the other series; this is as expected, due to the controlled conditions present in the test 

market.  In contrast, the analogous series for national launches and extra pharmaceutical data sets 

are similar. This similarity implies the analogous series approach will fit the extra 

pharmaceutical data sets on average; however, this does necessitate accurate forecasting 

performance, as individual data sets vary considerably around the series average, as appearing in 

Figure 2. 

 

Figure 2 here 

 

The competing approaches against which the analogous series is assessed are a naïve 

straight-line growth in cumulative trial, and the exponential-gamma marketing science model. As 

before, forecasts are made at 13 and 26 weeks, and evaluated using Forecast MAPE and 

52w_APE, together with a new measure of 52w_MPE, defined as the mean percentage error, or 

bias, of the 52 week forecast. A positive value of 52w_MPE indicates the actual trial is higher 

than the forecast trial.  
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Table 5 shows the results, including a summary of the performance of the exponential 

gamma model previously reported in Tables 2 and 3. These results are not directly comparable 

with the new analysis, but do provide a reminder of the magnitude of typical forecast errors for 

the best performing marketing science model. 

 

Table 5 here. 

 

The naïve comparator of a straight line provides a surprising challenge, with forecast 

(tracking) MAPE within the range of values typically found for the exponential-gamma model. 

However, the exponential-gamma model does still outperform the naïve comparator and 

substantially so on 52w_APE and 52w_MPE.  

 More generally, the fit of the exponential-gamma model is almost as accurate as for the 

other 31 data sets examined. While forecast errors are a few points higher, this is not surprising 

given the smaller sample sizes in the 34 test data sets (averaging 373 compared to 1146 for 

BehaviorScan and 2039 for the national product launches).  

 Nonetheless, the analogous series out-performs both other methods. For the 13-week 

calibration period the analogous series dominate the exponential-gamma method over all three 

measures of forecast error with a 43 percent reduction in Forecast MAPE, an 8 percent reduction 

in 52w_APE, and a lower level of bias as shown by 52w_MPE. For the 26-week calibration 

period, the analogous series out-perform the exponential gamma method on two measures of 

forecast error with a 38 percent reduction in Forecast MAPE and a 14 percent reduction in 

52w_APE, and closely follow on the third measure of 52w_MPE. Further, the value of 2 percent 

for 52w_MPE indicates minimal bias arising from the analogous series approach in the 26-week 
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calibration period. Again the simplest model – in this case the analogous series - works best, 

consistent with forecasting principles proposed by Duncan, Gorr and Szczpula (2001), Fader and 

Hardie (2001), and Meade and Islam (2001).  

 Should the analogous series in Table 4 include values from the 34 test data sets? The 

appropriateness of doing so is unclear, and the differences are in any event trivial – no more than 

.01 for the two estimation periods, and seldom more than this for any subsequent period. 

Therefore, rather than pool the test data set with the estimation data set, the present work leaves 

the analogous series unchanged from those in Table 4. 

These analogues provide: (i) a benchmark for cumulative trial growth; and (ii) projection of 

year-end results. Consider benchmarking: if cumulative trial in a national launch is forecast to be 

50 percent at year-end, and only 20 percent has been achieved by week 16, is this high, low or 

just right?  Multiplying the year-end forecast (.50) by the analogy from Table 4 (.35 from week 

16) yields forecast cumulative trial of 17.5 percent. Therefore, a rate of 20 percent is on target, or 

even slightly high. Conversely, if cumulative trial has reached 15 percent by week 26, the 

analogue can be used to forecast the end of year trial rate. The analogue for week 26 is .62 of 

year-end trial. So the forecast for year-end trial is simply .15/.62 or 24 percent.   

As an illustration and further test of the method, the analogues in Table 4 can be applied to 

data from Singh, Scriven, Clemente, Lomax, and Wright (2012). They report in passing the 

average quarterly cumulative penetration for 47 brand extensions in UK packaged goods 

categories. In this case the quarters are 3 x 4 week periods, or 12 rather than 13 weeks. The 

appropriate analogues from Table 4 are therefore: the 12-week value for the first quarter (Q1); 

and, the 48-week value for the fourth quarter (Q4). Using these analogues, Q4 cumulative 

penetration is forecast to be .95/.25 or 3.82 times the Q1 value. The actual Q1 value in Singh et 
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al. (2012) is 1.4 percent so the forecast Q4 value is 5.35 percent (3.82 * 1.4 percent). This is 

within 6 percent of the observed Q4 value of 5.7 percent. This provides additional support for the 

use of the analogues in Table 4. 

Anecdotally, practitioners know they need to wait a few months for distribution to settle 

down before interpreting market performance data. Therefore, forecasting year-end cumulative 

trial from first quarter results, after distribution is established, is likely a very common problem. 

Table 4 indicates that 25 percent of year-end trial will be achieved after 12 weeks, and 31 percent 

after 13 weeks. To aid memorability, and in line with the principle of conservatism in forecasting 

(Armstrong, Green and Graefe, this issue), the second figure could reasonably be rounded up to 

one third. So managers wishing to know year-end cumulative trial could simply multiply the 

cumulative trial achieved at week 12 by four, or that achieved at week 13 by three. Given the 

rapid growth of consumer trial between 12 and 13 weeks, a 13-week time period should be used 

in preference to a 12-week time period, if possible. 

 

6. Discussion 

This work first investigates whether exponential trial growth models can be generalized beyond 

controlled test markets. That is, given the lesser control and greater variability of national 

markets, will these models still apply? This research yields a clear answer – the shape of 

cumulative trial curves in national markets is different, but the exponential trial growth models 

do still apply. 

Next, this research investigates whether analogous series can provide forecasts as accurate as 

the marketing science models. Again, the answer is clear - they do, in both BehaviorScan test 

markets and national product launches, and this enables a simple table of ratios to be used in 
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place of the marketing science models. Aside from the practical applications of this result, this 

confirms the worth of the analogous series approach (Armstrong, Green and Graefe, 201X, in 

this issue), for which empirical validation has been somewhat lacking (Armstrong 2001, p696, 

Principle 7.6). 

These results rest on a firm empirical base. To assess the method, each series 

is forecast separately while being held out from the estimation sample, and this procedure is 

repeated in two differentiated contexts. Validation of the method therefore involves 31 hold out 

tests including a differentiated replication. Furthermore, the original analogues are used to derive 

forecasts for a number of completely fresh data sets. For an additional 34 test data sets, the 

original analogues give more accurate forecasts than both a naive comparator and the best 

performing marketing science model. This is surprising as, unlike the analogues, the marketing 

science model was re-estimated for each of these 34 test data sets. Finally we apply the original 

analogues to a further 47 data sets previously reported in the literature and find that the forecast 

is within 6% of the observed value. 

These results fulfill Bass’ (1995) criteria for an empirical generalization, as a “pattern or 

regularity that repeats over different circumstances and can be described simply by 

mathematical, graphic or symbolic methods”. These results also meet Barwise’s (1995) criteria 

for a good empirical generalization, namely being based on repeated evidence and having scope, 

precision, parsimony, usefulness and a link with theory (i.e. stochastic models of consumer 

behavior). 

This generalization does stand in contrast to Meade and Islam’s (2001, p. 583) view that, 

“Even for diffusion processes that are homogenous in the sense that they describe the same 

innovation in different geographical areas, there is evidence that no single model performs well 

Commented [P1]: Copy editor please insert correct year 
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in all cases.”  However, aside from confirming Meade and Islam’s (2001, p. 587) simplicity 

principle, the results directly support their principle that, “unconditional forecasts based on a 

data-based estimate of a fixed saturation level form a difficult benchmark to beat.”   

The emergence of this empirical generalization also highlights one of the weaknesses of 

statistical modeling. Statistical modeling can be very good at identifying small effects and 

variations between markets; however, seeking best fits to individual series may miss large effects 

and patterns that are the same in many markets. The identification of these similar patterns is a 

strength of both the analogous series and empirical generalization approaches. Of course more 

sophisticated problems, such as early forecasting incorporating marketing covariates, or trial-

repeat modeling of long-term total demand, will require more sophisticated modeling. The 

present work makes no claim to solve such problems. Nonetheless, Khan’s (2002) results suggest 

that many practitioners do not undertake such sophisticated modeling, and for them the empirical 

generalization arising from the analogous series forecasting has practical application. Given 

Khan’s (2002) findings on management forecasting practice, complex approaches of the type Du 

and Kamakura (2011) and Liutec et al. (2012) report may not find widespread application. Also, 

their approaches are only validated for consumer packaged goods in one geographical location. 

In contrast, the simpler approach reported in the present work predicts trial for new launches, in 

different geographical locations, and for highly varied types of product.  

Ideally, those seeking to use this approach in new situations should develop their own 

analogues for these new situations, as follows: gather 6 to 12 previous time series of weekly 

cumulative trial data for new products; for each new product, divide each week by the 

cumulative trial achieved at the end of the first year; average the time series across products to 

yield a table of ratios similar to that in Table 4. As the national product launch data analyzed in 
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this study is quite varied, individual applications are unlikely to yield very different results. 

Nonetheless, special circumstances sometimes apply–as with the different analogues for the 

controlled test-markets – so checking the results in each new context would be wise. The 

analogues may be further decomposed to match different situations; for example, first movers 

versus followers, or successes versus failures. This decomposition remains a matter for further 

research, for which the techniques described in Green and Armstrong (2007) will provide a 

useful starting point. 

 

7. Summary 

This research extends findings from BehaviorScan test markets to national product launches 

monitored by consumer panels, and compares traditional marketing science forecasting methods 

with the simpler approach of analogous series. As expected, longer calibration periods are 

required for comparable accuracy in the messier environments of a national product launch. 

Nonetheless, the broad pattern of results for marketing science models is consistent between the 

two types of markets. Also, consistent with Armstrong (2001), Fader and Hardie (2001) and 

Meade and Islam (2001), simpler models perform well, the inclusion of consumer heterogeneity 

improves forecasts, and a never-triers parameter does not improve Forecast MAPE. These results 

should extend managerial and academic confidence in the use of marketing science models from 

BehaviorScan test markets to panel data for national product launches. Yet the simpler approach 

of analogous series forecasting performs just as well as the more complicated statistical models, 

and dominates the best performing marketing science model in the case of a challenging test 

involving 34 further new product launch data sets. 
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Analogous series do currently offer less scope for the inclusion of more complex behaviors; 

such as the effect of marketing covariates, or the revision of purchase probabilities after product 

experience. However, the use of structured analogies (Green and Armstrong 2007) may enable 

the analogous series approach to be extended to these more complex behaviors, and may also 

provide help to guidelines for disaggregating series into successful and unsuccessful new product 

launches. These remain matters for future research. 

Nonetheless, based on the present research, managers can use this approach for forecasting 

and benchmarking the simple cumulative trial metric widely used in new product launches. 

Managers may often simply wish to know, if they have achieved a certain level of trial after the 

first quarter, where will they be at the end of the year? Analogous series provide a simpler and 

better forecast than those available from marketing science models. 
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Table 1 

Summary of Data Sets for National Launches 

Behavior New Product n Country Innovativeness 

Household Purchases Biscuit Flavor 1719 New Zealand Brand Variant 

Household Purchases Health Snack 1569 New Zealand Category Entry 

Household Purchases Yellow Fat 2020 New Zealand Line extension 

GP Prescribing Drug Molecule 322 UK New to the UK 

GP Prescribing Drug Molecule 370 UK Category Entry 

GP Prescribing Drug Molecule 441 UK Category Entry 

GP Prescribing Drug Molecule 394 UK Category Entry 

Household Purchases Yellow Fat 3000 USA Line Extension 

Household Purchases Yellow Fat 3000 USA Line Extension 

Household Purchases Yellow Fat 3000 USA Category Entry 

Household Purchases Salad Dressing 4631 USA Line Extension 

Household Purchases Mayonnaise 4000 USA Line Extension 
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Table 2: Average Results for 13-week Calibration Period 

 National Launches 

 – 12 Panel Tracking 

Data sets 

Test Markets (HFW) 

 – 19 BehaviorScan Data 

sets 

Model  Forecast 

MAPE 

 

52w_APE 

 Forecast 

MAPE 

 

52w_APE 

Exp.-Gamma  27 28  17 23 

Exp.-Gamma w /NT  29 28  16 24 

Exp. w/NT  30 31  16 24 

Mean  28 29  16 24 
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Table 3 

Average Results for 26-week Calibration Period 

 National Launches 

 – 12 Panel Tracking 

Data sets 

Test Markets (HFW) 

 – 19 BehaviorScan Data 

sets 

Model  Forecast 

MAPE 

52w_APE  Forecast 

MAPE 

52w_APE 

Exp.-Gamma  9 9  10 12 

Exp.-Gamma w /NT  9 9  9 12 

Exp. w/NT  9 10  12 18 

Mean  9 10  10 14 
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Table 4 

Analogous Series of Cumulative Trial 

 

Proportion of Year-End 

Trial (Analogous Series) 

52w_APE 

 

Week 

National 

Launches 

Test 

Markets  

National 

Launches 

Test 

Markets  

4 0.05 0.32 84 33 

8 0.15 0.47 57 24 

12 0.25 0.58 26 22 

*13 0.31 0.60 13 23 

16 0.35 0.64 18 22 

20 0.45 0.70 11 18 

24 0.56 0.74 10 14 

*26 0.62 0.78 6 11 

28 0.64 0.80 7 9 

32 0.72 0.84 9 7 

36 0.78 0.88 7 6 

40 0.85 0.91 4 3 

44 0.89 0.94 4 2 

**48 0.95 0.98 5 1 

52 1.00 1.00 0 0 

*US national launches interpolated for these periods due to missing data 

**One New Zealand launch interpolated for this period due to missing data 
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Figure 1 

Analogous Series for Three Data Sets 

 

 
 

  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Weeks After Launch

Test Markets National Launches Extra Pharma



32 

 

 

 

Figure 2 

Normalized Trial for 34 Test Data Sets 
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 Table 5 

Comparative Results for Additional 34 Test Data Sets 

 13-week Calibration Period 26-week Calibration Period 

 Forecast 

MAPE 

52w 

_APE 

52w 

_MPE 

Forecast 

MAPE 

52w 

_APE 

52w 

_MPE 

12 National Launches - Exp.-Gamma 27 28  9 9  

19 BehaviorScan - Exp.-Gamma 17 23  10 12  

34 Test Data Sets – Straight Line 25 41 -33 13 25 -23 

34 Test Data Sets – Exp.-Gamma 20 28 7 12 15 1 

34 Test Data Sets - Analogous Series 12 26 -6 7 13 2 

 


