Evaluating the influence of surface soil moisture and soil surface roughness on optical directional reflectance factors
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Abstract
Fine-scale information on soil surface roughness (SSR) is needed for calculating heat budgets, monitoring soil degradation and for parameterising surface runoff and sediment transfer models.  Previous work has demonstrated the potential of using hyperspectral Hemispherical Conical Reflectance Factors (HCRFs), to retrieve the SSR of different soil crusting states.  However, this was using dry soil surfaces generated in controlled laboratory conditions.  The primary aim of this study was therefore to test the impact that in situ variations in surface soil moisture (SSM) content had on the ability of directional reflectance factors to characterise SSR conditions. Five soil plots (20 x 20 cm in area) representing different agricultural conditions were subjected to different durations of natural rainfall, producing a range of different levels of SSR.  SSM values varied from 8.70 to 20.05% across all soil plots. Point laser data (4 mm sample spacing) were geostatistically analysed to give a spatially-distributed measure of SSR, giving sill variance values from 3.15 to 22.99.  HCRFs from the soil states were measured using a ground-based hyperspectral spectroradiometer for a range of viewing zenith angles from extreme forwardscatter (θr = -60°) to extreme backscatter (θr = +60°) at a 10° sampling resolution in the solar principal plane.  The results showed that despite a large range of SSM values, forward-scattered reflectance factors exhibited a very strong relationship to SSR (R2 = 0.84 at θr = -60°).  These results demonstrate the operational potential of HCRFs for providing spatially-distributed SSR measurements, across spatial extents containing spatio-temporal variations in SSM content.
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Introduction
Soil surface roughness (SSR) at the centimetre scale is important in controlling surface runoff and the ability of surface water flow to entrain, transport and deposit materials (Darboux et al., 2001). Consequently, soil surface roughness  is a key parameter in erosion and hydrological models (Jetten et al., 1999; King et al., 2005), with its decline indicating soil structural degradation (Lal, 2001).  Accurate, spatially-distributed measurements of SSR are also needed for calculating heat budgets and modelling land-atmosphere gaseous exchange (Bastiaanssen et al., 1998; Morner and Etiope, 2002; Mosier, 1998).  However, traditional methods of monitoring SSR are resource heavy and time consuming.  Of remote sensing methods, RADAR techniques have shown the greatest developments and application for quantifying SSR (Anderson and Croft, 2009), however this is restricted to coarse classifications (smooth, moderately smooth and rough; Baghdadi et al., 2008).  Strong relationships between optical directional reflectance factors and SSR have been found for laboratory-produced soil states, under controlled conditions (Anderson and Kuhn, 2008; Croft et al., 2009; Croft et al., 2012a).  However, in field conditions the interaction between other soil properties may perturb the signal from SSR (Mouazen et al., 2006).  Soil surface moisture (SSM) and soil organic carbon (SOC) are known to have a similar impact on reflectance as SSR, i.e. the lowering of baseline reflectance with increasing water and SOC contents (Baumgardner et al., 1985; Bowers and Hanks, 1965; Lobell and Asner, 2002). Accurate characterisation of SSR is also needed for quantifying spatio-temporal SSM and SOC content from remotely sensed data (Croft et al., 2012b); which are also important soil properties and environmental variables and can be confounded by variations in SSR. When predicting SSM and SOC in coarsely ground (<2 mm) soil samples, Dalal and Henry (1986) found a much higher standard error compared to finely ground (<0.25 mm) samples. 

This study aims to investigate the effects of SSM and SOC on the ability of directional reflectance factors to retrieve accurate measurements of SSR. Five soil plots were used where reflectance measurement acquisition was coincident with collection of SSM and SOC data.  This study also aims to take early steps to address the call of Lobell and Asner (2002) for additional research on the relationship between SSM and soil reflectance with respect to surface roughness and viewing geometry, in this case to investigate the opportunity of estimating soil moisture on an operational basis.  The specific research aims of this paper are to:

-  assess if directional reflectance factors can be used to retrieve SSR in situ and with varying SSM content;
- investigate if physical changes in soil structure, such as aggregate stability and SSR, are represented by changes in directional reflectance factors;
-  investigate if soil moisture shows a directional reflectance response.

2. Methods
2.1 Site and soil properties
The sites used in this experiment were located in two adjacent agricultural fields near the town of Möhlin, located approximately 15 kilometres east of Basel, Switzerland (47.55°N; 7.83°E).  The climate is temperate, with approximately 1000 mm of rainfall annually and an average annual temperature of 9.5°C (Egli et al., 2004).    The sites were located on an upper Rhine river terrace covered by loess, dating back to the last glaciation (Egli et al., 2004) and underlain by gravel terraces and thin layers of moraine (Egli and Fitze, 1995).  The region supports intensive agriculture, and the soils are loess rich and well-drained, although are prone to erosion (Schaub et al., 1997). The high base saturation and good drainage make Luvisols excellent for agriculture (FAO, 2006).  However, whilst clay accumulates in a subsurface horizon, the high silt content and low carbon and clay content of surface horizons mean that they are prone to structural degradation, particularly by slaking.  For the study, a silt loam soil was used for two sites representing agricultural management conditions (freshly tilled (TL) and seedbed condition (SB)).  From the two agricultural condition sites, five soil plots (each 20 x 20 cm in area) were prepared (including one control and one degraded).  The control plot was left covered for the duration of the experiment, representing the original SSR conditions after agricultural treatment (Table 1).  The selected soil plots are assumed to be representative of the agriculture conditions.




[Insert Table 1 here]




The degraded plots were left uncovered and exposed to natural rainfall 49.3 mm over 9 days (T9 and S9). For the degraded seedbed plot, an intermediary stage was captured, after 4 days (T4) of 4.3 mm where SSR, SSM and SOC were measured concomitantly.  

2.2  Soil tests
2.2.1  Aggregate stability
Aggregate stability is a measure of how resistant aggregates are to breakdown under external forces and is the percentage weight of water-stable aggregates retained after wet-sieving of the soil samples (Yoder, 1936; Bryan, 1968).  Wet sieving was chosen to measure aggregate stability because it is an efficient and relatively rapid technique which bears some relation to field conditions (Blackman, 1992), representing the resistance of soil aggregates to raindrop impact and water erosion (Chepil, 1962; López et al., 2007; Zobeck et al., 2003).  The soil was air dried to remove any moisture, because moisture content has a large influence on both aggregate breakdown and soil erosion (Haynes and Swift, 1990; Le Bissonnais et al., 1989; Le Bissonnais et al., 1995; Truman et al., 1990).  To achieve comparability between different soil samples at moisture levels, Le Bissonnais (1996) recommends air drying the samples.  Soil aggregates with a diameter >2 mm were used to allow comparison between soils with different initial soil structures (Henin et al., 1958; Le Bissonnais et al., 1996).  The soils were then sieved for 5 mins, with a lift of 10 cm at a frequency of 30 lifts per minute.

2.2.2	Bulk density
Bulk density (ρb) is the weight of soil for a given volume, indicating the degree of compaction and pore space within the soil and the degree of water and air movement, root growth and seedling germination (Grable and Siemer, 1968; Vepraskas, 1988).  Bulk density can also be used to provide information on soil management strategies, for example changes in erodibility after tillage (da Silva et al., 1997; Knapen et al., 2008).  It also affected by inherent soil properties, such as particle size distribution and organic matter content (da Silva et al., 1997).  To collect the soil sample, a metal bulk density ring was driven in to the soil until the top of the soil was level with the top of the ring, giving a volume of 100 cm3.  The soil sample was returned to the laboratory and oven-dried to a constant mass at 105° C and weighed using a balance with a precision of 0.0001 g.

2.2.3 	Soil moisture
Water content was determined from mass measurements of soils by sampling during the in situ reflectance measurement acquisition and expressed on a gravimetric basis.  Previous studies of soil reflectance have quantified moisture based on mass (Muller and Décamps, 2000; Narayanan et al., 1993) or volume (Lobell and Asner, 2002; Weidong et al., 2002).  The soil moisture content is expressed by mass as the difference between the weights of wet and oven dry samples .  The soil sample was the same as that used for the calculation of bulk density. The wet soil sample was weighed on a balance with a precision of 0.0001g and oven dried to constant weight at 105°C.

2.2.4	Soil organic carbon content
SOC content was measured at the University of Basel, Environmental Sciences laboratory using a dry combustion method with a Leco RC-612 (Mönchengladbach, Germany) multiphase analyser. Approximately 0.5 g of dried, ground and homogenized sample was placed into a clean, carbon-free combustion boat. The soil carbon content was determined by burning the soil sample in a pure oxygen atmosphere at a regulated temperature of 550°C. 

2.3	Modelling soil surface roughness
A calibrated laser-profiling instrument was used to characterise surface roughness, following the method outlined in Anderson and Kuhn (2008) and Croft et al., (2009).  The surface height (mm) of a 20 cm x 20 cm area was measured at a sample spacing of 4 mm. Variations in spatial surface structure associated with differences and changes in soil microtopography through agricultural management practices, and aggregate breakdown through raindrop impact were measured. From the laser data, digital surface models (DSM) were created to give 20 cm x 20 cm representations of surface height.  As plots T4 and T9 were dominated by steep topographic gradients, the original digital soil model (DSMs) were filtered using a two-dimensional, finite impulse response, linear filter function (Filter2) in Matlab, in order to extract aggregate-scale roughness elements for comparison with the reflectance spectra. The filter calculates running spatial mean values within a 10 x 10 mm moving window. This method created a coarse resolution DSM of slope gradients, which was used to subtract from the original DSM to extract fine-scale roughness.  The laser-derived elevation data for all plots were then geostatistically analysed using semi-variogram analysis to provide a quantitative, spatially distributed measure of surface roughness (Anderson and Kuhn, 2008; Croft et al., 2013). This analysis was performed on the original DSMs that were not influenced by slope gradients (S0, S9 and T0) and the slope removed DSMs (T4 and T9) to ensure that all SSR values were related to aggregate-scale roughness. A spherical model was used (Equation 1); because it was visually judged to best describe the data and due to its suitability for representing properties with greater short-range variability (Corwin et al., 2006). 

			[Eq. 1]

Where  is semi-variance for a given lag distance (h) and a is the variogram range.  The total sill variance (cT) is the nugget (c0) plus total sill variance (c1); for ha and (h)=c for h>a (Deutsch and Journal, 1998).  Semi-variogram analysis was performed using the Gstat geostatistical software package (Pebesma, 2001).

2.4	Hemispherical Conical Reflectance Factor (HCRF) acquisition
Hyperspectral HCRF measurements were collected using an Ocean Optics USB2000 spectroradiometer (400 – 1000 nm), using an A-frame device (Anderson et al., 2012). This allowed measurements to be collected at a fixed distance from the ground (60 cm), in the solar principal plane (SPP) from θr = -60° (forwardscatter) to θr = +60° (backscatter) at a 10° sampling resolution (Croft et al., 2009).  A collimated fore-optic attachment with an 11° field of view gave a measurement area on the ground of 12 cm diameter at nadir.  Measurements were carried out under ‘blue sky’ conditions and regularly referenced (< 2 minutes) to nadir measurements of a calibrated Kodak grey card with nominal 18% reflectance at 700 nm (Anderson et al., 2012).  HCRF was derived as a ratio to the calibrated standard (Milton, 1987) according to Equation 2:


			[Eq.  2]

where Vt is the radiance from the target and Vsλ the radiance as measured from a calibrated white standard Lambertian surface.  Kλ is the measured reflectance of the standard reflector in channel λ under the same illumination conditions (Duggin and Philipson, 1982).

3. 	Results 
3.1	Soil surface structure
The digital surface models (DSMs), created from point laser data, for all plots are shown in Figure 1.  The soil plots reveal different levels of roughness (i.e. spatial dissimilarity) at a range of ‘spatial scales’ (i.e. aggregate, orientated, slope).  
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The surface structure in S0 clearly shows regular linear orientations, reflecting secondary tillage treatment, along with overlying aggregate-scale roughness elements.  The degraded SB plot (S9) shows no indication of orientated roughness, with soil aggregates experiencing structural breakdown through raindrop impact and slaking. This structural disruption resulted in lateral movement of aggregate fragments and primary particles, through rainsplash and transfer by runoff into the topographic depressions within the orientations.  The control tilled plot (T0) shows random roughness elements and a large furrow running across the top of the DSM.  The degraded plots (T4 and T9) show a smoother, more continuous surface structure, with fewer and smaller aggregates present.

3.2	Changes in soil properties over time
In order to verify the visual observations from the DSMs to physical changes at the soil surface, a number of soil properties were measured. These physical soil properties include SSR (as represented by sill variance), bulk density and aggregate stability.  SSM and SOC were also measured in order to investigate their relationship to changes in soil structure (Table 2).   
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The aggregate stability values confirm that a structural decline has occurred from the control plots (S0 and T0), with values declining from 0.55 to 0.46 and 0.83 to 0.41 and 0.37, respectively.   This decline is also reflected in the SSR measurements, as represented by geostatistical analysis of the laser-derived elevation data, with a steady decrease from control plots (S0 = 22.99; T0 = 12.90) to their degraded counterparts (S9 = 10.14; T4 = 10.39 and T9 = 3.15).  The corresponding semi-variograms are shown in Figure 2. 



[Insert Figure 2]

This corresponding decline in sill variance and aggregate stability demonstrates that the geostatistical analysis of three-dimensional laser data reflects physical changes in soil surface structure.  This structural breakdown also corresponded to a decline in soil carbon values in the tilled plots, from 1.15% to 1.05%, probably due to the release of soil carbon during aggregate breakdown and preferential erosion along with lighter soil particles. The seedbed plots displayed higher carbon contents which could reflect the physical differences in soil properties for this agricultural treatment, for example, the less compacted nature of the soil (S0 = 1.31 g/cm3; T0 = 1.17 g/cm3).  Despite differences in bulk density between the values for TL and SB plots, they stayed relatively stable on exposure to rainfall, with the exception of the most degraded tilled plot (T9 = 1.08 g/cm3).  Soil moisture contents showed a positive relationship with exposure time to rainfall, increasing progressively from the control plots (protected from rainfall) to the degraded sites (SB = 17.07 to 20.05; TL = 8.70 to 10.12 and 14.08), reflecting the 49.3 mm of rainfall that fell during this period.

3.3	Reflectance spectra of the soil plots
It has been well-documented that SSR, SSM and SOC have a similar impact on soil reflectance at nadir, i.e. the lowering of baseline reflectance factors and an overall ‘darkening’ of the soil (Irons et al., 1989; Bowers and Smith, 1972; Baumgardner et al., 1985). Figure 3 shows on-nadir reflectance factors for the five experimental soil plots, across all wavelengths.






[Insert Figure 3 here]


As the experimental plots are of the same soil type, there are no variations in reflectance spectra as a result of different absorption features.  Instead, differences in ‘baseline’ reflectance exist across all wavelengths, which could be attributable to the different SSR, SSM and SOC values for the soil plots (Table 1). This equifinality with on-nadir reflectance illustrates the difficulty of separating the contribution of each soil variable to soil reflectance factors, and the complexity that exists in attempting to retrieve SSR, SSM and SOC from optical remotely sensed data.

3.3	Retrieving SSR from directional reflectance factors with varying SSM and SOC
In order to test potential of using directional reflectance factors for retrieving SRR across plots containing different SSM and SOC values, directional reflectance factors are first regressed against sill variance (SSR), alongside similar figures for SSM and SOC for comparison. Figure 4 shows the θr that represents the strongest relationship alongside the R2 values across all θr.
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Figure 4 shows very strong relationships for all three soil properties with directional reflectance factors, although at different θr (SSM θr +20°, R2 = 0.99; SOC θr 0°, R2 = 0.85); indicating that there is a directional component to their respective relationships. Despite varying SSM and SOC contents, SSR (sill variance) still shows a strong relationship (R2 = 0.84) at extreme forwardscattering θr, due to shadow-casting by soil aggregates, confirming previous findings (Croft et al., 2009).  The strength of this relationship is greater than previous results using dry soils with a SOC value of 2.71% (R2 = 0.64; 870 nm; Croft et al., 2009).  This could be because of the lower SOC contents in the present study (Table 1), which had less of a perturbing effect on reflectance factors. Figure 4 illustrates operational potential of using forward-scattered reflectance factors for characterising SSR in situ and with variable soil properties.

3.4	Separating SSR and SSM using directional reflectance
In order to further investigate the potential of using off-nadir reflectance factors to enhance the separability of the three studied soil variables, their statistical relationship (R2) with directional reflectance factors is shown across a θr range of -60 to +20 (Figure 5).  The extreme backscattering view zenith angles were omitted due to shadowing cast by the sensor with varying θi across the different reflectance acquisition sequences.  
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Surface roughness (sill variance) shows the strongest relationship at extreme forwardscattering θr, progressively decreasing until backscattering measurement angles (θr = +20°).  However, SOC and SSM both show low R2 values over forwardscattering θr, with values progressively increasing towards the nadir and backscattering θr.  If only nadir reflectance factors were used to extract values for SSR, SSM and SOC, the R2 values associated would be 0.20, 0.86 and 0.84, respectively.  Interestingly, SSM R2 values show a progressive increase from a low at forwardscattering θr (θr = -60°; R2 = 0.20), to a maximum at θr = +20° (R2 = 0.99).  Figure 5 indicates that SSM could have a directional signal, due to a change in the refractive index (n) from air (n = 1) to water (n = 1.33), decreasing the contrast between soil particles (n = 1.5) and their surrounding medium (Lobell and Asner 2002). This consequently results in increased forward-scattered reflectance (Twomey et al., 1986) and an increased probability that the radiation will be absorbed by the soil and resulting in less reflectance and a darker soil.  Thus, explaining the negative regression seen in Figure 4a, where the higher moisture contents resulted in less reflectance at backscattering θr.  It is recognized that only five data points were used in this analysis and in order to test this hypothesis further, more measurements across a greater number of soil surfaces would need to be taken.

3.5	Interdependency of soil properties
Whilst SSR, SSM and SOC all show different regression results across the measured θr, this could be due to an inter-dependency between the soil variables. Figure 6 shows the relationships of the soil properties to each other to test if it is each respective variable that is being directly modelled in the R2 values seen in Figure 5, or if they are a result of complex associations with the other variables.
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Figure 6 shows that SOC exhibits a stronger relationship with surface roughness and moisture (R2 = 0.34 and 0.56, respectively), than that between SSR and SSM (R2 = 0.02).  The presence of carbon acts as a binding agent, reducing soil breakdown and contributing to the presence of larger and more stable aggregates at the soil surface thereby increasing SSR.  These results suggest that the high R2 value between reflectance and SOC (Figure 5) is affected by its close relationship to the other soil properties.  However, the extremely weak relationship (R2 = 0.02) between SSR and SSM in Figure 6a indicates that the results with directional reflectance at different θr (Figure 5) are directly influenced by the measured variable, rather than a secondary interaction.  

3.6	Regression analysis at different wavelength channels
The relationship between reflectance factors and SSR and SSM at a θr range -60° - +20° across all wavelengths are shown in Figure 7.  The R2 values show reasonable consistency across all wavelengths at a given viewing angle, for both soil variables, with the most variation occurring in the shorter wavelengths (< 450 nm).  This is due to the higher signal to noise ratio associated with the ocean optics spectroradiometer at these wavelengths (Anderson et al., 2012) and increased Rayleigh scattering.
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Figure 7 shows that there are two spectral features at approximately 670 nm and 750 nm which affect the relationship between reflectance and both SSR and SSM.  There is a decrease in R2 values for SSR at 670 nm and a slight increase at 750 nm, ascribed to oxygen presence.  This sees a corresponding increase and decrease for SSM at these wavelengths.  The 670 nm absorption feature is attributed to the presence of a chlorophyll absorption feature, present on biogenic crusts (Karnieli et al., 1999). This feature is not visible on the spectra of the individual soil surfaces (Figure 1), and is only present in the regressions between soil properties and reflectance factors.

4.0	Summary and conclusions
It is well recognised that distinguishing between SSR and SSM using remotely sensed data is problematic (Anderson and Croft, 2009).  These soil variables, along with SOC, can lead to an overall change in baseline reflectance factors.  This difficultly in separating SSR and SSM has also been experienced by studies using RADAR techniques (Baghdadi et al., 2008).  Multiple view angle research has been shown to strongly represent changes in SSR (Croft et al., 2009; 2012a), but has not yet been tested on soils of varying SSM content.  This study found that forward-scattered reflectance showed a strong relationship with SSR (R2 = 0.84 at θr = -60°), despite the range of SSM values (8.70% to 20.05%).  The presence of varying SOC content had little impact on this relationship, but this was probably due to the small amount of SOC present and low range of values (1.05-1.33%).  An interesting result to arise from the study was the apparent directional response of SSM, showing very high R2 of 0.99 (θr = +20°; 0.01). However, as this result was for only five data points, further work is needed to test the accuracy of these findings, for example, over soils with unchanging SRR and the same measurement conditions (θi).  Nonetheless, the accurate characterisation of SSR in situ and with changing SSM conditions illustrates the operational potential of optical directional remote sensing techniques, for retrieval over coarser spatial extents and possible integration with other RS techniques (i.e RADAR).
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	Sites
	Plots

	Agricultural condition
	Sand (%)*
	Silt (%)*
	Clay (%)*
	Soil series
	Soil type
	Notation
	Rainfall (mm)
	Exposure duration (days)

	Seedbed (SB)
	30.15
	54.67
	15.18
	Luvisol
	Silt loam
	S0
	0
	0

	
	
	
	
	
	
	S9
	49.3
	9

	Tilled (TL)
	9.76
	75.41
	14.83
	Luvisol
	Silt loam
	T0
	0
	0

	
	
	
	
	
	
	T4
	4.3
	4

	
	
	
	
	
	
	T9
	49.3
	9


*Number of replicates = 6 
Table 1: Properties of experimental plots.





	Site
	Solar zenith angle
	Surface roughness
(Sill variance)
	Aggregate stability
	Bulk density (g/cm3)
	Moisture content (%)
	Carbon content (%)

	S0
	58°
	22.99
	0.55
	1.31
	17.07
	1.27

	S9
	45°
	10.14
	0.46
	1.30
	20.05
	1.33

	T0
	35°
	12.90
	0.83
	1.17
	8.70
	1.15

	T4
	34°
	10.39
	0.41
	1.22
	10.12
	1.09

	T9
	35°
	3.15
	0.37
	1.08
	14.08
	1.05



Table 2: Soil properties of plots used for in situ regressions with soil roughness (sill variance), moisture content (%) and carbon content (%).









	S0
	S9
	T0
	T4
	T9

	[image: Site1_200x200mm_big]
	[image: Site2_200x200mm_big_nolabels]
	[image: Site3_200x200mm_big_nolabels]
	[image: Site_TillC_1400808Site3_x0-20y0-20_10x10FILTERED_big_nolabels]
	[image: Site4_detrended_10x10filter_big_nolabels]



	Figure 1: DSMs of all five soil plots, constructed using point laser data.


[image: ]

Figure 2: Empirical semi-variograms of the laser-derived surface height data for each  sampled soil plot. 


[image: All sites_all wvls_11deg]

Figure 3: Soil spectra for studied soil plots (θr = 0°).







a)				         b)					  c)
[image: Sill_refl regression_minus60][image: SSM_refl regression_plus20_870nm][image: SOC_refl regression_minus10_870nm]

Figure 4: Regressions for reflectance factors and a) surface roughness (θr -60°; λ – 870 nm); b) moisture content (θr +20°; λ – 870 nm); c) carbon content (θr 0°; λ – 870 nm).





[image: R2_refl_soil properties_all vza_870nm]

Figure 5: R2 values between reflectance factors and surface roughness (sill variance), moisture content (%) and carbon content (%) across θr -60° - +20° (λ – 870 nm).



a)		b)	c)
[image: SSR+SSM_regression][image: SSR+SOC_regression][image: SSM+SOC_regression]

Figure 6: Inter-dependency of the soil variables, where a) SSR and SSM; b) SSR and SOC; c) SSM and SOC).





a)	b)
[image: SSR regressions_all wvls_11fov][image: SSM regressions_all wvls_11fov]

Figure 7: R2 values between reflectance factors a) sill variance and b) moisture content, for θr = -60° to +20° and at all sampled wavelengths.

14

oleObject2.bin

image3.png
DSM height 50 60
(mm)

200 z >
= e

T

5150 o, ’
g Lo
21007, a
g wry

»

o o Yy 9 4

0 50 100 150 200
Distance (mm)




image4.png
50 100 150 200
Distance (mm)




image5.png
-';A [

0 50 100 150 200
Distance (mm)




image6.png
0

50
Distance

1
(

mm)




image7.png
o

-

.
¥

-J
/'

100
Dlstance (mm)

150




image8.tiff
30

25 g
x X x x
x
x xxxxxx" xxx
o 201 X X x 1
3 x
=
8
® 15} * A
?15 +++++++
E x $+++++++++++
$107 o?'_g °oooooooooo*o*o*o*o*o*ow*9
x o+ PP
+ wt®
2 *“"**
5F % . ¥ E
* ¥oooooDoDOooo0O000O00O0O0OO0DOO0O D
o
0 . . . .
0 20 40 60 80 100

o0 + % Xx

S0
s9
To
T4
To

Distance (mm)





image9.png
Reflectance factor

0.25

0.2

0.15

0.1

0.05

400 500 600 700 800 900
Wavelength (nm)




image10.png
Reflectance factor

0.25¢

0.20¢

0.15¢

0.10¢

0.05¢

0.00

= 0.01x + 0.22]

R?=0.84

10 15 20
Sill variance

25




image11.png
Reflectance factor

0.15

0.10¢

0.05¢

0.00

y = -0.01x + 0.32

R?=099

10

15
Soil moisture (%)

20

25




image12.png
Reflectance factor

0.25¢
0.20¢
0.15¢
0.10¢

0.05¢

0.8.

y = -0.30x + 0.53]

R?=085

11 12 13 14
Soil organic carbon (%)

1.5




image13.png
0.8/ P ]
N e .
2 0.6} . S . |
© e Ko N

- T

W 0.4 S 1

.

0.2r % .

ol . . . . . . ‘>\(‘ T

60 -50 -40 -30 -20 -10 0 10 20

View zenith angle (er)

-%-88R
SSM

-+-80C





image14.png
Soil moisture (%)
N - N o
o o o o
\

a

y=0.11x + 12.66
R?=003

5 10 15

Sill variance

20 25 30




image15.png
0.01x + 1.06
R?=0.34

y=

30

0
<

S
- <

(9%) uog.eo

&

- =
olueblo 105

0.90

Sill variance




image16.png
-
a

Soil organic carbon (%)

-
N

-
w

-
N

-
-
T

-
o

y = 0.02x + 0.91
R’ =0.56 ]
X

10 15
Soil moisture (%)

20 25




image17.png
o o o
EN o)) @

R2 (sill variance)

o
[

- _600
- _400
PR _200
700
+20°

+20°

400 500 600 700 800 900
Wavelength (nm)





image18.png
R2 (SSM %)

0.8

0.4

0.2

+20°

0°

-20°

-40°
|

O — | -B0°

40 500 600 700
Wavelength (nm)

800

900

7_600

——_40°
——q°
—q°

+20°





image1.wmf
0

3

1

5

.

0

5

.

1

)

(

c

a

h

a

h

c

h

+

ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

-

×

=

g


oleObject1.bin

image2.wmf
l

l

l

l

K

V

V

HCRF

s

t

´

=


