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INTEGRAL GALOIS MODULE STRUCTURE FOR
ELEMENTARY ABELIAN EXTENSIONS WITH A

GALOIS SCAFFOLD

NIGEL P. BYOTT AND G. GRIFFITH ELDER

Abstract. This paper justifies an assertion in [Eld09] that Galois
scaffolds make the questions of Galois module structure tractable.
Let k be a perfect field of characteristic p and let K = k((T )).
For the class of characteristic p elementary abelian p-extensions
L/K with Galois scaffolds described in [Eld09], we give a necessary
and sufficient condition for the valuation ring OL to be free over
its associated order AL/K in K[Gal(L/K)]. Interestingly, this
condition agrees with the condition found by Y. Miyata, concerning
a class of cyclic Kummer extensions in characteristic zero.

1. Introduction

Let k be a perfect field of characteristic p > 0, and let K = k((T ))
be a local function field over k of dimension 1. For any finite extension
L of K, we write OL for the valuation ring of L with maximal ideal
PL, and write vL : L � Z∪ {∞} for the normalized valuation on L. If
L/K is a Galois extension with Galois group G = Gal(L/K), we write

AL/K = {α ∈ K[G] | αOL ⊆ OL}

for the associated order of OL in the group algebra K[G]. Then AL/K

is an OK-order in K[G] containing OK [G], and OL is a module over
AL/K . It is natural then to ask whether OL is a free module over AL/K .

This question was investigated by Aiba [Aib03] and by de Smit and
Thomas [dST07] when L/K is an extension of degree p. (For the
analogous results in characteristic zero, see [BF72, BBF72].) Ramified
cyclic extensions of degree p in characteristic p are special in that
they possess a particular property, a Galois scaffold. In [Eld09], a
class of arbitrarily large fully ramified elementary abelian p-extensions
L/K, the near one-dimensional elementary abelian extensions, was
introduced. These extensions are similarly special. They too possess a
Galois scaffold.
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Definition. Let K = k((T )) as above. An elementary abelian
extension L = K(x0, . . . , xn) of K of degree q = pn+1 is a one-

dimensional elementary abelian extension of K if xp
i − xi = Ωpn

i β for
elements β,Ω0 = 1,Ω1, . . .Ωn ∈ K such that vK(β) = −b < 0 with
(b, p) = 1, vK(Ωn) ≤ . . . ≤ vK(Ω1) ≤ vK(Ω0) = 0, and whenever
vK(Ωi) = · · · = vK(Ωj) for i < j, the projections of Ωi, . . . ,Ωj into
ΩiOK/ΩiPK are linearly independent over the field with p elements.

The extension L is a near one-dimensional elementary abelian
extension of K if β, Ω0, . . . ,Ωn and x0 are as above, but for 1 ≤ i ≤ n,

xp
i − xi = Ωpn

i β + εi,

for some “error terms” εi ∈ K satisfying

vK(εi) > vK(Ωpn

i β) +
(pn − 1)b

pn
− (p− 1)

n−1∑
j=1

pjvK(Ωj).

The purpose of this paper is to use the existence of Galois scaffolds
for near one-dimensional elementary abelian extensions (recalled here
as Theorem 2.1) to determine a necessary and sufficient condition for
OL to be free over AL/K . So that we can state our main result (Theorem
1.1), we introduce some further notation.

As observed in [Eld09], any near one-dimensional elementary abelian
extension L/K is totally ramified, and its lower ramification numbers
are the distinct elements in the sequence

(1) b(i) = b+ pn

i∑
j=1

pjmj

where mj = vK(Ωj−1)− vK(Ωj). This means that the first ramification
number of L/K is b, and that all the (lower) ramification numbers are
congruent modulo q = pn+1 to r(b), the least non-negative residue of b.

Given any integer j ≥ 0, let j(s) denote the base-p digits of j:

j =
∞∑

s=0

j(s)p
s

with 0 ≤ j(s) < p and j(s) = 0 for s large enough. Thus r(b) =∑n
s=0 b(s)p

s. Following [Byo08], we define a set S(q).

Definition. Given c ∈ Z with (c, p) = 1, let h = hc be the unique
solution of hc ≡ −1 (mod q), 1 ≤ h ≤ q − 1. Then S(q) consists of
all integers c with (c, p) = 1 and 1 ≤ c ≤ q − 1 satisfying the following
property: For all u, v ≥ 1 with u + v < c there exists s ∈ {0, . . . , n}
with

(hu)(s) + (hv)(s) < p− 1.

The main result of this paper is the following.
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Theorem 1.1. Let L/K be any near one-dimensional elementary
abelian extension L/K of degree q = pn+1. Then OL is free over its
associated order AL/K if and only if r(b) ∈ S(q). Moreover, when
r(b) ∈ S(q), any element ρ∗ ∈ L with vL(ρ∗) = r(b) is a free generator
of OL over AL/K.

The definition for S(q) is difficult to digest, so we state a simpler
(but weaker) version of the result.

Corollary 1.2. Let L/K be as in Theorem 1.1.

(i) Suppose that n ≤ 1. Then OL is free over AL/K if and only if
r(b) divides q − 1.

(ii) Suppose that n ≥ 2. Then OL is free over AL/K if r(b) divides
pd − 1 for some d ∈ {1, . . . , n+ 1}.

Applying Theorem 1.1 and Corollary 1.2 to the examples of near
one-dimensional extensions provided by [Eld09, Lemmas 5.1 and 5.2],
we obtain the following Corollaries.

Corollary 1.3. If k contains the field Fq of q = pn+1 elements with
n ≥ 0, K = k((T )), and L = K(y) where

(2) yq − y = β ∈ K with vK(β) = −b < 0, (b, p) = 1,

then L/K is a totally ramified elementary abelian extension of degree
q, with unique ramification break b. Moreover, if r(b) denotes the least
non-negative residue of b modulo q, then OL is free over its associated
order AL/K if and only if r(b) ∈ S(q). In particular, assertion (i) or
(ii) of Corollary 1.2 holds for L/K (according as n ≤ 1 or n ≥ 2).

Corollary 1.4. If k has characteristic 2 and K = k((T )) and L is any
totally ramified biquadratic extension of K (i.e. Gal(L/K) ∼= C2×C2),
then OL is free over AL/K.

Corollary 1.4 should be compared with the more complicated
situation in characteristic zero [Mar74].

To close our introduction, we now explain how Theorem 1.1 can
be seen to be an analogue of a result of Miyata [Miy98] for certain
extensions in characteristic 0, as reformulated in [Byo08]. We will also
record in Lemma 1.6 some results from [Byo08] which will be needed
to prove Theorem 1.1 and Corollary 1.2.

Let F be a finite extension of the p-adic field Qp that contains a
primitive q = pn+1 root of unity. Again, for any finite Galois extension
E/F with Galois group G, we may consider the valuation ring OE

as a module over its associated order AE/F . A nice, natural class of
extensions consists of those totally ramified cyclic Kummer extensions
F (α) of degree q where

(3) αq = a ∈ F with vF (a− 1) = t > 0, (t, p) = 1.
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Miyata [Miy98, Theorem 5] gave the following criterion for OE to be
free over AE/F .

Theorem 1.5 (Miyata). Let E/F be as above, satisfying (3). Let
t0 = r(t), where, for each j ∈ Z, we write r(j) for be the least non-
negative residue of j mod q. Then OE is free over its associated order
AE/F if and only if t0 satisfies the following condition:

t0 + r(it0)− r(ht0) > 0

for all integers h, i, j with 0 ≤ h ≤ i ≤ j < n such that i+j = n−1+h
and

(
i
h

)
6≡ 0 (mod p).

The lower ramification numbers of E/F are all congruent modulo
q to −t [Miy98, Lemma 2 and Proposition 3]. Thus, writing b for
the first ramification number of E/F , we may view the condition
in Theorem 1.5 as a condition on r(b) = q − t0. Miyata was able
to deduce some more explicit results for certain special values of t0
[Miy98, Theorem 6]; expressed in terms of r(b), his result asserts that
if r(b) divides q − 1 then OE is free over AE/F , and if q − r(b) divides
q − 1 and 1 < r(b) < q − 1 then OE is not free over AE/F . Note
that these statements are considerably weaker than the corresponding
assertions in Corollary 1.2. For further results on the family of Kummer
extensions satisfying (3), see [Miy95, Miy04].

The set S(q) defined above was introduced in [Byo08] to give
an alternative formulation of Miyata’s condition from which further
consequences could be deduced. Indeed, the following results were
obtained.

Lemma 1.6. Let q = pn+1, let 1 ≤ t0 ≤ q − 1 with (t0, p) = 1, and let
b0 = q − t0. Then the following conditions are equivalent:

(i) t0 + r(it0)− r(ht0) > 0 for all integers h, i, j with 0 ≤ h ≤ i ≤
j < n such that i+ j = n− 1 + h and

(
i
h

)
6≡ 0 (mod p);

(ii) b0 ∈ S(q).

Moreover, the following assertions hold.

(iii) Suppose that n ≤ 1. Then b0 ∈ S(q) if and only if b0 divides
q − 1.

(iv) Suppose that n ≥ 2. Then b0 ∈ S(q) if b0 divides pd − 1 for
some d ∈ {1, . . . , n+ 1}.

Proof. The equivalence of (i) and (ii) is shown on pp. 153–154 of
[Byo08]; see specifically Propositions 2.1 and 2.2 and the paragraph
headed Proof of Theorem 1.8. Assertion (iii) is [Byo08, Lemma 2.3(ii)],
and (iv) follows [Byo08, Lemma 2.3(i) and Lemma 2.4(ii)] as in [Byo08,
p. 155, Proof of Theorem 1.6]. �

Note that Lemma 1.6 asserts properties of the set of integers S(q),
whose definition depends only on the prime power q and is otherwise
independent of the field extensions under consideration.
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Combining Theorem 1.5 with Lemma 1.6, we obtain the fact,
previously recorded as [Byo08, Theorem 1.8], that OE is free over
AE/F if and only if r(b) ∈ S(q). Also, returning to the characteristic
p situation, Corollary 1.2 follows immediately from Theorem 1.1 and
Lemma 1.6.

It is shown in [Byo08, §3] that the converse of Lemma 1.6(iv) does
not always hold. Hence the converse of assertion (ii) in Corollary 1.2
(and so also in Corollary 1.3) does not always hold.

The appearance of the same necessary and sufficient condition for
freeness of the valuation ring over its associated order, both in the case
of Miyata’s cyclic extensions in characteristic 0 and in the case of the
near one-dimensional elementary abelian extensions in characteristic p,
is unexpected. It suggests that we should regard near one-dimensional
extensions as somehow analogous to Miyata’s cyclic characteristic 0
extensions. In particular, it seems natural to regard the families of
extensions in Corollary 1.3 and Theorem 1.5 (both defined by a single
equation) to be analogous. If this analogy has merit, then Theorem 1.1
suggests that there should be a larger family of Kummer extensions,
“deformations” of Miyata’s family, for which, in some appropriate
sense, Miyata’s criterion holds.

2. Proof of Theorem 1.1

In §2.1 and §2.2, we introduce the Galois scaffold constructed in
[Eld09] for near one-dimensional elementary abelian extensions, and
then use this scaffold to provide OK-bases for both OL and K[G]. In
§2.3, we use these bases to prove Theorem 1.1.

2.1. Galois scaffold. The definition of Galois scaffold in [Eld09] has
been clarified in [BE]. There are two ingredients: a valuation criterion
for a normal basis generator and a generating set for a particularly nice
K-basis of the group algebra K[G].

In our setting, where L/K is a near one-dimensional elementary
abelian extension of degree q = pn+1, the valuation criterion is vL(ρ) ≡
r(b) mod q, which means that if vL(ρ) ≡ r(b) mod q then L = K[G]ρ.

The second ingredient is a generating set of logp |G| = n+1 elements
{Ψi} from the augmentation ideal (σ− 1 : σ ∈ G) of K[G] that satisfy
a regularity condition, namely vL(Ψj

iρ)−vL(ρ) = j ·((vL(Ψiρ
′)−vL(ρ′))

for 0 ≤ j < p, and for all ρ, ρ′ ∈ L satisfying the valuation criterion,
vL(ρ), vn(ρ′) ≡ r(b) mod q. Furthermore, if we define Ψ(a) =

∏n
s=0 Ψ

a(s)
s

for a =
∑

s a(s)p
s, then {vL(Ψ(a)ρ) : 0 ≤ a < q} is a complete set of

residues modulo q.
The main result of [Eld09], restated here as Theorem 2.1, is that a

Galois scaffold exists for L/K.

Theorem 2.1. Let L/K be a near one-dimensional elementary abelian
extension of degree q = pn+1, let G = Gal(L/K) and let bmax be the
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largest lower ramification number of L/K. Then for 0 ≤ i ≤ n there
exist elements Ψi in the augmentation ideal (σ − 1 : σ ∈ G) of K[G]
such that Ψp

i = 0 and, for any ρ ∈ L with vL(ρ) ≡ bmax (mod q) and
any 0 ≤ a < q, we have

vL

(
Ψ(a)ρ

)
= vL

(
n∏

i=0

Ψ
a(i)

i · ρ

)
= vL(ρ)+

n∑
i=0

a(i)p
ibmax = vL(ρ)+a·bmax.

Proof. In [Eld09, Theorem 4.1], take Ψi = αn−i(Θ(i) − 1). �

In the next two sections, we describe the associated order AL/K in
terms of these Ψi, and show that OL is free over AL/K if and only if
r(b) ∈ S(q). To do so, we require nothing more than the existence
of the Ψi described in Theorem 2.1, and the fact that, from (1), the
parameter b in Theorem 1.1 satisfies b ≡ bmax mod q.

2.2. Associated order. For the fixed prime power q = pn+1, there is
a partial order � on the integers x ≥ 0 defined as follows. Recall the p-
adic expansion of an integer: x =

∑∞
s=0 x(s)p

s with x(s) ∈ {0, . . . , p−1}.
Define

x � y ⇔ x(s) ≤ y(s) for 0 ≤ s ≤ n.

Write y � x for x � y. Note that � does not respect addition: if
0 ≤ x, y ≤ q− 1 then x � q− 1− y is equivalent to y � q− 1−x (both
say that no carries occur in the base-p addition of x and y) but these
are not equivalent to x+ y � q − 1 (which always holds).

Recall that for a =
∑

s a(s)p
s, we have defined Ψ(a) =

∏n
s=0 Ψ

a(s)
s .

Since Ψp
s = 0 for all s we have

(4) Ψ(a)Ψ(j) =

{
Ψ(a+j) if a � q − 1− j;
0 otherwise.

Now set da = b(1 + a)bmax/qc for 0 ≤ a ≤ q − 1. This means that
(1 + a)bmax = daq + r((1 + a)bmax) with 0 ≤ r((1 + a)bmax) < q. Let
ρ∗ ∈ L be any element with valuation vL(ρ∗) = r(b) = r(bmax). Recall
that K = k((T )) with vK(T ) = 1, so that vL(T ) = q. Set ρ = T d0ρ∗,
so vL(ρ) = bmax, and set

ρa = T−daΨ(a) · ρ.
This means that, based upon Theorem 2.1, we have vL(ρa) = −qda +
vL(ρ) + abmax = −qda + (1 + a)bmax = r((1 + a)bmax). Using (4), we
also have

(5) Ψ(j) · ρa =

{
T da+j−daρj+a if a � q − 1− j
0 otherwise.

Lemma 2.2. {ρa}0≤a≤q−1 is an OK-basis for OL. Moreover
{Ψ(a)}0≤a≤q−1 is a K-basis for the group algebra K[G], and ρ generates
a normal basis for the extension L/K.
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Proof. The first assertion follows from the fact that since p - bmax,
vL(ρa) = r((1 + a)bmax) takes all values in {0, . . . , q − 1} as a does.
From the definition of the ρa, we then deduce that the elements Ψ(a) ·ρ
span L over K. Comparing dimensions, it follows that ρ generates a
normal basis, and that the Ψ(a) form a K-basis for K[G]. �

2.3. Freeness over associated order. Let q = pn+1 and define

wj = min{da+j − da | 0 ≤ a ≤ q − 1, a � q − 1− j}.
Then w0 = 0 and (taking a = 0), we have wj ≤ dj−d0 for all 0 ≤ j < q.

We now give an overview of the remainder of the proof of Theorem
1.1. In Theorem 2.3, we will provide a necessary and sufficient
condition, in terms of the wj, for OL to be free over AL/K . We
will also show that, when this condition holds, any ρ∗ ∈ L with
vL(ρ∗) = r(bmax) = r(b) is a free generator of OL over AL/K . We will
then show in Lemma 2.4 that this condition is equivalent to Miyata’s
condition, which appears as (i) in Lemma 1.6. Theorem 1.1 will then
be an immediate consequence of Theorem 2.3, Lemma 2.4, and the
equivalence of (i) and (ii) in Lemma 1.6.

Theorem 2.3. Let L/K be any near one-dimensional elementary
abelian extension L/K of degree q = pn+1, with largest ramification
number bmax. The associated order AL/K of OL has OK-basis

{T−wj Ψ(j)}0≤j≤q−1. Moreover OL is a free module over AL/K if and
only if wj = dj − d0 for all 0 ≤ j < q, and in this case any element
ρ∗ ∈ L with vL(ρ∗) = r(bmax) is a free generator of OL over AL/K.

Proof. Since {Ψ(j)}0≤j≤q−1 is a K-basis of K[G], any element α of K[G]

may be written α =
∑q−1

j=0 cjΨ
(j) with cj ∈ K. Let ρ∗ be as in the

statement, and define ρa for 0 ≤ a ≤ q − 1 as in §2.2 above. Using (5)
we have

α ∈ AL/K ⇔ α · ρa ∈ OL for all a

⇔
∑

j�q−1−a

cjT
dj+a−daρj+a ∈ OL for all a

⇔ cjT
dj+a−da ∈ OK if j � q − 1− a

⇔ vK(cj) ≥ da − dj+a if j � q − 1− a
⇔ −vK(cj) ≤ wj for all j.

Hence the elements T−wj Ψ(j) form an OK-basis of AL/K .
Now suppose that wj = dj − d0 for all j. As ρ∗ = ρ0, the definition

of ρj yields T−wj Ψ(j) ·ρ∗ = ρj, so the basis elements {T−wj Ψ(j)}0≤j≤q−1

of AL/K take ρ∗ to the basis elements of {ρj}0≤j≤q−1 of OL. Hence OL

is a free AL/K-module on the generator ρ∗.
Conversely, suppose that OL is free over AL/K , say OL = AL/K · η

where η =
∑q−1

r=0 xrρr with xr ∈ OK . Then {T−wiΨ(i) · η}0≤i≤q−1
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is an OK-basis for OL, and using (5) we have T−wiΨ(i) · η =∑
0≤r�q−1−i xrT

−wi+di+r−drρi+r, which is an OK-linear combination of
the ρj with j ≥ i. In other words, there is an upper triangular

matrix (ci,j) with ci,j ∈ OK such that T−wiΨ(i) · η =
∑q−1

j=i ci,jρj. This

matrix is invertible, since {ρj}0≤j≤q−1 is also an OK-basis for OL. Thus
vK(ci,i) = 0 for 0 ≤ i < q, which means that vK(x0T

−wi+di+0−d0) = 0,
and thus wj = dj − d0 for all j, as required. �

Lemma 2.4. wj = dj − d0 for all 0 ≤ j < q if and only if condition
(i) of Lemma 1.6 holds with b0 = r(b).

Proof. The condition on the wj can be restated as

(6) dx+y − dx ≥ dy − d0 if x � q − 1− y.

As this is symmetric in x and y, we may assume x ≥ y.
Let i = q−1−x, j = q−1−y and h = q−1−x−y. So i+j = q−1+h.

The first step is to prove that 0 ≤ y ≤ x ≤ q − 1 and x � q − 1− y if
and only if 0 ≤ h ≤ i ≤ j ≤ q − 1 and

(
i
h

)
6≡ 0 (mod p). Observe that(

i
h

)
6≡ 0 (mod p) holds if and only if there are no carries in the base-p

addition of h and i− h = y (see for example [Rib89, p. 24]).
Observe that x � q − 1 − y means that x(s) + y(s) ≤ p − 1 for all

0 ≤ s ≤ n. Using the definition of h, this means that h ≥ 0 and
h(s) = p − 1 − x(s) − y(s) for all 0 ≤ s ≤ n. So 0 ≤ y ≤ x ≤ q − 1 and
x � q− 1− y means that 0 ≤ h ≤ i ≤ j ≤ q− 1 and h(s) + y(s) ≤ p− 1
for all 0 ≤ s ≤ n. No carries occur in the base-p addition of h and y.

On the other hand, assume that 0 ≤ h ≤ i ≤ j ≤ q − 1,
h(s) +y(s) ≤ p−1 for all 0 ≤ s ≤ n, and for a contradiction that there is
an s such that x(s)+y(s) ≥ p. We may assume that s is the smallest such
subscript. Thus x(r)+y(r) ≤ p−1 for all 0 ≤ r < s and x(s)+y(s) = p+cs
where 0 ≤ cs ≤ p− 1. This means that h(r) = p− 1− x(r) − y(r) for all
0 ≤ r < s, and h(s) = p− 1− cs. So h(r) + y(r) ≤ p− 1 for all 0 ≤ r < s
and h(s) + y(s) = p− 1− cs + y(s) = 2p− 1− x(s) ≥ p.

Since b0 = r(b), we have t0 = q − r(b) = r(−b). It therefore only
remains to show that the inequality dx+y−dx ≥ dy−d0 corresponds to
r(−b) + r(−ib)− r(−hb) > 0. For any j ∈ Z, we have r(jbmax) = r(jb).
Thus, for 0 ≤ m ≤ q − 1, we have (m + 1)bmax = qdm + r((m + 1)b),
so that q(dx+y − dx) = ybmax − r((x+ y + 1)b) + r((x+ 1)b). Hence

dx+y − dx ≥ dy − d0

⇔ ybmax − r((x+ y + 1)b) + r((x+ 1)b) ≥ ybmax − r((y + 1)b) + r(b)

⇔ −r(−hb) + r(−ib) ≥ −r(−jb) + q − r(−b)
⇔ r(−b) + r(−ib)− r(−hb) ≥ q − r(−jb).

Now r(−b)+r(−ib)−r(−hb) ≡ −r(−jb) (mod q) since i+j = q−1+h,
and 1 ≤ q − r(−jb) ≤ q. Thus the last inequality is equivalent to
r(−b) + r(−ib)− r(−hb) > 0, as required. �
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