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The Rolling Tide Evolutionary Algorithm:
A Multi-Objective Optimiser

for Noisy Optimisation Problems
Jonathan E. Fieldsend Member, IEEE and Richard M. Everson

Abstract—As methods for evolutionary multi-objective optimi-
sation (EMO) mature and are applied to a greater number of
real world problems, there has been gathering interest in the
effect of uncertainty and noise on multi-objective optimisation.
Specifically, how algorithms are affected by it, how to mitigate
its effects, and whether some optimisers are better suited to
dealing with it than others. Here we address the problem of
uncertain evaluation, where the uncertainty can be modelled
as additive noise in objective space. We develop a novel algo-
rithm, the rolling tide evolutionary algorithm (RTEA), which
progressively improves the accuracy of its estimated Pareto set,
whilst simultaneously driving the front towards the true Pareto
front. It can cope with noise whose characteristics change as a
function of location (both design and objective), or which alter
during the course of an optimisation. Four state-of-the-art noise-
tolerant EMO algorithms, as well as four widely used standard
EMO algorithms, are compared to RTEA on 70 instances of
ten continuous space test problems from the CEC’09 multi-
objective optimisation test suite. Different instances of these
problems are generated by modifying them to exhibit different
types and intensities of noise. RTEA is seen to provide competitive
performance across both the range of test problems used, and
noise types.

I. INTRODUCTION

Evolutionary computation (EC) techniques are now exten-
sively used when attempting to discover the optimal or near-
optimal parametrisation for problems with complex function
transformation from parameters (design variables) to objec-
tive(s). Almost all optimisation procedures search the parame-
ter space by evaluating the objectives for a given parametrisa-
tion before proposing a new, hopefully better, parametrisation.
It is generally assumed that repeated evaluation of the objec-
tives for a single parametrisation yields the same objective val-
ues. However, in many problems there is additional uncertainty
in the veracity of the results obtained from the system model.
Clear examples arise in “embodied” optimisation [1], [2], [3],
where measurement error or stochastic elements in a physical
system leads to different results for repeated evaluations at
the same parameter values [4], [5] or when the objectives are
derived from Monte Carlo simulations or data-driven systems
[6], [7].
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Work in the scalar optimisation EC community to tackle these
types of problem has indicated that elitist techniques often
prove fragile [8], [9], [10], as there is no longer the guarantee
that fitness of the elite solution improves as an optimiser
progresses. As most modern multi-objective evolutionary al-
gorithms (MOEAs) rely heavily on elitism, this should be of
concern when optimising uncertain multi-objective problems.

As early as 1993, the effect of noise on multi-objective
optimisation was being considered, with Horn & Nafpliotis
(at the end of [11]), discussing the ways in which uncertainty
in an evaluation might be tackled. However, it was not until the
early 2000s that a significant number of multi-objective opti-
misers began to be developed specifically to tackle uncertain
optimisation [12], [13], [14], [5], [6], [15], [7], [16], [17], [18],
[19], [20], [21], [22], [23]. Typically uncertainty is modelled
as noise added to the function evaluations, although recent
work has begun looking at the situation where the objective
functions themselves are uncertain [24].

In this paper we model the uncertainty in the objectives as
observational noise. For the reader interested in the effect
and mitigation of parametrisation uncertainty (often referred to
as robust optimisation, or reliablity-based optimisation [25]),
we recommend the work of Deb & Gupta [26]. This is
also distinct from dynamic optimisation [27], in which the
objectives change with time, but there is no uncertainty about
each objective evaluation. The algorithm we examine here
does, however, allow for dynamic noise characteristics; see
also [6]. From here on we will use the term ‘optimisation
with uncertainty’ as shorthand for objective uncertainty, which
is the focus of this work.

We describe the multi-objective optimisation problem and
some different types of observational noise which may be
experienced in Section II, and in Section III we examine the
effect of noise on a number of popular multi-objective evolu-
tionary algorithms (MOEAs) – namely the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) [28], the Pareto
Archived Evolution Strategy (PAES) [29], the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [30] and the Indicator-
Based Evolutionary Algorithm (IBEAε+) [31]. In Section IV
we briefly describe some MOEAs that have been developed
to cope with different types of observational noise prior to
introducing our new algorithm, the rolling tide evolutionary
algorithm (RTEA) in Section V.

In Section VI we evaluate our new optimiser along with four
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other recent noise-tolerant MOEAs [6], [16], [21], [22], on
standard test problems modified by the addition of noise. In
particular we show that our proposed optimiser performs well
in the presence of noise with a wide range of characteristics,
including when the noise varies spatially and temporally
during the course of the optimisation. We conclude with a
discussion in Section VII.

II. MULTI-OBJECTIVE OPTIMISATION AND NOISE

Before discussing the effect of uncertainty in the evaluation
of objectives, we briefly review the ideas of dominance and
Pareto optimality which are central to multi-objective optimi-
sation.

A general multi-objective optimisation problem seeks to si-
multaneously extremise D objectives: fd(x), d = 1, . . . , D
where each objective depends upon a vector x =
(x1, . . . , xk, . . . , xK) of K parameters or design variables.

The parameters may also be subject to equality and inequality
constraints which, for simplicity, we assume can be evaluated
precisely. When the objectives are to be minimised, the multi-
objective optimisation problem may thus be expressed as:

minimise f(x) = (f1(x), . . . , fD(x)) (1)

with x ∈ X ⊆ RK , the feasible domain as defined by
the constraints. When faced with only a single objective an
optimal solution is one which minimises the objective given
the model constraints. However, when there is more than
one objective to be minimised, solutions may exist for which
performance on one objective cannot be improved without
reducing performance on at least one other. Such solutions
are said to be Pareto optimal.

The notion of dominance may be used to make Pareto opti-
mality clearer. Assuming, without loss of generality, that the
goal is to minimise the objectives and there is no noise, a
design vector x is said to strictly dominate another x′ iff

fd(x) ≤ fd(x′) ∀d = 1, . . . , D and f(x) 6= f(x′). (2)

This is often denoted as x ≺ x′ (as opposed to f(x) ≺ f(x′)).
A set of design vectors A is said to be a mutually non-
dominating set if no member of the set is dominated by any
other member. A solution to the minimisation problem (1)
is thus Pareto optimal if it is not dominated by any other
feasible solution, and the non-dominated set of all Pareto
optimal solutions is the Pareto set P .

The Pareto dominance notation can also be extended to sets
(see e.g. [32]). This leads to a larger number of distinctions;
however the set comparison we need here is: A ≺ B, which
signifies that every x ∈ B is dominated by at least one member
of A.

In this paper we are concerned with problems in which the
objectives themselves are unobservable, but instead we have
access to yd the objectives contaminated by observational
noise ε:

yd = fd(x) + εd. (3)

We assume throughout that the observational noise encoun-
tered at each evaluation is independent of other evaluations.

The imposition of noise in an optimisation environment means
that the dominance relationship calculated between solutions
may be incorrect. Prior to discussing its effects it is useful to
consider the different types of observational noise that might
be experienced in a particular industrial problem.

A. Unknown noise

The most severe case is when the noise characteristics are
completely unknown. It may be asymmetric, it may be multi-
modal, and there may be dependencies between noise in
different objectives. Therefore, it could well be the case that
the mean of a number of re-evaluations of y is a very poor
approximation to f(x). In this case the degree of dominance
between two solutions can only reasonably be estimated by
repeated evaluation at the fixed parameter values x and x′.
Suppose that Y (x) = {yi}ni=1, are the noisy objectives eval-
uated n times at x, and Y (x′) = {y′i}n

′

i=1 are n′ evaluations
at x′, then the probability that x dominates x′ is estimated by
the fraction of times that yi dominates y′j :

p(x ≺ x′) =
1

nn′

n∑
i=1

n′∑
j=1

I(yi ≺ y′j) (4)

where I(·) is the indicator function.

Estimating dominance by this sampling method clearly re-
quires several evaluations of the objectives at both x and x′,
which may be prohibitively expensive.

The cost of this approach can be substantially reduced if
it is known or it can be assumed that the noise corrupting
each objective is independent. In this case the evaluations for
each objective dimension can be permuted to form additional
samples, providing with nD objective vectors for x and n′

D

objective vectors for x′ respectively.1

B. Independent noise for each objective

If the noise contaminating each objective can be assumed to
be independent of the other objectives, then the probability of
dominance can be decomposed into a product of probabilities
for each dimension:

p(x ≺ x′) =

D∏
d=1

p(fd(x) < fd(x
′)). (5)

Each of the constituent probabilities p(fd(x) < fd(x
′)) is:∫ ∞

−∞
p(fd(x) |Yd(x))

∫ ∞
fd(x)

p(fd(x
′) |Y ′d(x)) dfd(x′) dfd(x)

(6)

where Yd(x) and Y ′d(x) represent the set of evaluations from
repeated samples of (3) for x and x′ respectively. These inte-
grals can be computed if additional information about the noise

1This was incorrectly reported as 2n and 2n
′

in [6].
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distributions is known. Hughes [14] has addressed the case of
Gaussian noise with known noise variance, and his work has
been built upon by a number of researchers, e.g. [6], [21],
[22], [23]. An important simplification occurs when the noise
is known to be bounded: Teich [13] has modelled the noise
as uniform and has proposed modified archive acceptance
schemes. Note however, that the boundedness of the noise
means that if the solutions are sufficiently well separated in
objective space then dominance or lack of dominance may be
decided with no uncertainty.

C. Estimators of the noise-free objectives

In order to make as few assumptions about the noise as possi-
ble we assume that the noise-free objectives can be estimated
from a collection of samples at x. Let Y (x) = {yi(x)}ni=1, be
n evaluations of the objectives corresponding to x. Then we
denote the estimate of the noise-free objectives by est(Y (x)).
Commonly est(·) will be a maximum likelihood estimator and
will thus depend on the noise distribution; often the estimator
will be some sort of average, for example, the maximum
likelihood estimator is the mean for Gaussian noise and the
median for Laplacian noise. In general the accuracy of the
estimate increases in proportion to the square root of the
number of samples. We assume that the estimator is unbiased
in the sense that with sufficiently many samples it converges
to the noise-free objectives:

lim
n→∞

est({yi(x)}ni=1) = f(x). (7)

Estimators for symmetrically distributed noise (e.g., the mean
for Gaussian noise and the median for Laplacian noise) are
usually unbiased, but with asymmetric noise distributions it
is possible that the estimator will be biased, converging to
f(x) plus a constant. Dominance-based optimisation can still
be performed with biased estimators, because the dominance
relation is not affected by the addition of a constant, however
the resulting objective values can only be estimated up to the
additive constant.

D. Time-varying noise and spatially-varying noise

Most work on noisy multi-objective optimisation has focussed
on static noise, however there are many instances where
the noise characteristics may vary, depending on either the
location (in objective or design space), the time, or indeed
both [6], [21], [23]. Example real world sources of temporal
noise are sensors which degrade over time, or vary due to
replacement during an optimisation run. Spatial noise may be
derived from sensors whose noise varies with the value being
measured (for example heat sensors).

III. THE EFFECT OF NOISE ON STANDARD MOEAS

Elitist MOEAs generally maintain a mutually non-dominating
set or archive A of solutions which form their estimate of the
Pareto set, because the archive is also usually non-dominated

with respect to all solutions evaluated by an optimiser.2 As
the optimisation proceeds new solutions are generated, either
by copying and perturbing solutions in A (e.g., [29]) or by
mutating and recombining solutions in a search population,
often in combination with A (e.g., [33], [28], [31]). If a new
solution x′ is not dominated by a member of A then x′ is
added to A, and any solutions in A that are dominated by x′

are deleted from A. In this way A is always a non-dominated
set, whose image in objective space cannot move away from
the Pareto front, F , the image of P in objective space. Note
however, that when the size of |A| is limited, new additions
to A can move the estimated front away from the true Pareto
front [34], [35].

Taking as a starting point an elitist MOEA, the effect of
noise is threefold. Firstly, solutions which should be added
to A may be rejected due to the corrupting noise which
may misrepresent them as being dominated by an element of
A, and conversely, solutions that should not be inserted into
the archive may be erroneously entered, as the noise makes
them seem better than they actually are. This therefore has
the effect of reducing the algorithm’s efficiency. Secondly,
the final archive may overestimate the true Pareto front due
to outlier noise realisations making the performance of a
parameterisation not only appear better than it is, but also
better than is feasible by any point in X . Finally the resultant
archive may also contain a large number of solutions which,
if evaluated without noise, would actually be dominated by
other members of A or, indeed, by other solutions that were
encountered earlier in the search and rejected from A.

A. Quality measures for noisy optimisation

The quality of the output of a MOEA is generally difficult to
quantify, with different criteria often used to evaluate the non-
dominated estimate of the Pareto set produced [36]. In a noisy
optimisation, we are concerned with how well the estimated
Pareto set matches the actual Pareto set, and also how well the
objective values associated with solutions’ est(Y (x)) match
their noise-free objective values. Here we use the inverse
generational distance and hypervolume measure to quantify
how well the estimated non-dominated solutions match the
true Pareto set. We also measure the average distance of the
objectives associated with designs returned by an optimiser to
the true noiseless objective values for the designs. We call this
measure of quality the noise misinformation (NM) measure.
Figure 1 provides an illustration of how these quality measures
are calculated.

The noise misinformation measure (see Figure 1b) is the root
mean squared Euclidean distance between the best estimate,
est(Y (x)), of the objectives for a particular design and the

2Some MOEAs such as SPEA2 augment the archive with dominated
solutions if insufficient non-dominated solutions are available; however, the
non-dominated subset from such archives is easy to extract.
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Figure 1. Illustrations of the calculation of NM, IGD, and hypervolume in noisy optimisation problems. a) First the estimated objective locations for each
x in A needs to be determined. If there is only a single evaluation per x then this value is directly used. If multiple samples have been evaluated at each
parametrisation (illustrated here with two samples for each archive solution), then these are used to generate the est(Y (x)). b) Illustrates the calculation
of the NM measure. Filled circles indicate the estimated Pareto front (est(Y (x)) locations) returned by an algorithm. Unfilled circles indicate the actual
(noise-free) objective values for each x. NM is calculated as the root mean squared distance between the est(Y (x)) and f(x). c) Illustrates the IGD2

calculation. Unfilled squares indicate samples from the true/noise-free Pareto front and the unfilled circles the noise free evaluations of A. Solutions which
are dominated by other elements of A in the noise-free evaluation are discarded. IGD2 is the root mean squared distance between each member of the true
Pareto front which is stored in F and the closest noise-free objective f(x) for x ∈ A. d) Illustrates the hypervolume calculation. The region dominated by
both the Pareto front and the elements of A assessed through the non-dominated noise-free evaluations f(x) for x ∈ A is filled with a dark grey, and the
region dominated by only the true Pareto front F is shown in light grey (the reference point used is indicated with the small cross in the top right of the
panel). As in c, dominated noise-free evaluations are discarded. The hypervolume is the ratio between the area/volume of the dark grey region and that of
the combined dark grey and light grey regions.

noise-free value:

NM =

(
1

|A|
∑
x∈A
‖ est(Y (x))− f(x)‖22

) 1
2

. (8)

The closer on average the estimated Pareto optimal solutions
are to their actual noise-free location, the smaller the NM for
a particular algorithm.

If the solutions in A are evaluated using the noise-free objec-
tives, the set of objectives associated with the solutions may
now contain some dominated solutions. After these dominated
solutions have been rejected (see Figure 1c) the proximity and
coverage of the estimated Pareto front is also assessed using
two widely used quality measures, the inverse generational dis-
tance and the hypervolume. Let F̂ = nondom(f(x) |x ∈ A),
where nondom(E) is the function that returns the maximal
set of non-dominated members of E:

nondom(E) = {u ∈ E |@(v ∈ E ∧ v ≺ u)}. (9)

We use the power mean version of the inverse generational
distance (IGDp) [37], which is not biased by the size of the
estimated Pareto front unlike standard IGD. Given a set F of
samples from the true front, this is calculated as:

IGDp(F̂ , F ) =

(
1

|F |
∑
u∈F

dist(u, F̂ )p

) 1
p

. (10)

Here the function dist(u, F̂ ) is the Euclidean distance between
u and the closest member of F̂ , so that IGDp(F̂ , F ) measures
how well on average each sample from the true Pareto front
has been approximated by the estimate. As is standard, we use
p = 2 in our calculations.

The hypervolume measures the proportion of a given region
(defined by F — or a representative subset F — along with a
reference point) that is dominated by both the Pareto front and
the (noise-free) estimate returned by an MOEA. Unlike the
other two measures, the hypervolume is to be maximised. As

with the selection of individuals for assessment in IGDp, the
solutions used from A in the calculation of the hypervolume
are F̂ , the non-dominated subset when assessed using the
noise-free test function (see Figure 1d).

B. Empirical effects

Here we evaluate the effect of different intensities of noise
on the performance of four standard (unmodified) MOEAs —
PAES, SPEA2, NSGA-II and IBEAε+. For these optimisers,
therefore, the estimated objective values for a solution are sim-
ply a single evaluation of that solution, i.e. est(Y (x)) ≡ y(x).
We use the problems UP1-10 from the CEC’09 multi-objective
optimisation competition suite [38], and modify them by
adding zero-mean isotopic Gaussian noise to each objective,
i.e., in (3): εd ∼ N (0, σ2).

A number of the CEC’09 problems are scalable, and for
illustration we use the number of parameters and objectives
used in the competition itself [38]. Each MOEA was run 30
times for 300000 function evaluations (as in the competition)
for four different σ levels, σ = {0.00, 0.01, 0.10, 1.00}. When
σ = 0.00 the objective vector returned for a solution during
a run is the true (noiseless) evaluation. The non-dominated
members of an unconstrained passive elite archive are recorded
for each algorithm every 500 function evaluations; these track
the best locations (as perceived in the noisy objective space)
that each MOEA has ever visited.

Figures 2 and 3 show the median performance of the algo-
rithms using the IGD2 and hypervolume measures. It is clear
that noise inhibits convergence, and that the effect increases
with increasing variance. Even for a very small level of noise,
σ = 0.01, the performance of algorithms that previously found
solutions in the vicinity of F all degrade. Interestingly one
of the problems UP7, behaves slightly differently to the rest:
when σ = 0.10 performance of SPEA2 actually improves.
A similar effect is seen on UP9 for σ = 0.01. This effect
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Figure 2. Effect of different noise intensities on popular MOEAs on the
IGD2 measure. Top to bottom: CEC’09 problems 1-10, Left to right: σ
values of {0.00, 0.01, 0.10, 1.00} used. Median results over 30 runs plotted
on log scales.

is not peculiar to SPEA2 (as we shall see later, some noise-
tolerant optimisers also exhibit this behaviour on UP7), and
our conjecture is that the increased diversity in the elite
population that results from low levels of noise actually makes
UP7 and UP9 easier to search (albeit for different small values
of noise).
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Figure 3. Effect of different noise intensities on popular MOEAs on the
hypervolume measure. Top to bottom: CEC’09 problems 1-10, Left to right: σ
values of {0.00, 0.01, 0.10, 1.00} used. Median results over 30 runs plotted.
Reference points used in the hypervolume calculation are (2, 2) and (2, 2, 2),
for two-objective and three-objective test problems respectively.

The noise misinformation in the elite solutions for each
algorithm is presented in Figure 4. All the results on this
measure show a great degree of similarity, so we simply
provide plots for UP1 and UP8 (prototypical two and three
objective problems). On average, NSGA-II and PAES tend
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Figure 4. Effect of different noise intensities on popular MOEAs on the NM
measure. Top to bottom: CEC’09 problems UP1,8, Left to right: σ values of
{0.01, 0.10, 1.00} used. Median results over 30 runs plotted on log scales.
Horizontal dashed lines denote the expected NM values if the deviation of
passive archived solutions from the noiseless values was unbiased. Note: when
σ = 0.00 the MN measure is 0 and so is not plotted.)

to be a little lower, however all algorithms perform in a
narrow performance band on this measure. As the optimisation
proceeds the NM values can all be seen to rise above the value
that would be expected if the solutions were not members
of a non-dominated archive. That is, with D objectives it
might be anticipated that NM =

√
Dσ. In Figure 4 the initial

NM is approximately
√
Dσ, but then rapidly increases above

this level. This phenomenon is well-known and is noted in
e.g. [16], [17]. In noisy optimisation there are essentially two
drivers pushing the estimated Pareto front forward. The first
is (as in noiseless multi-objective optimisation) simply the
selection of better solutions. The second driver is the selection
of solutions which are affected by outlier noise [5], [16], [17],
that is, noise of large magnitude that makes a solution appear
much better than it actually is on one or more objectives.
This can rapidly become the main driver for the movement of
the estimated front, which quickly becomes filled with those
solutions that due to the noise appear to dominate others. This
results in the early divergence of the NM measure from the
expected value, and highlights the bias introduced by noise
which skews the assigned objective values in archives.

In this section we have examined the effect of noise on
some popular MOEAs, and seen that it causes premature
convergence and can exacerbate existing search difficulties for
most problem types even with moderate noise. We now briefly
look at some of the approaches that have been developed to
tackle noisy multi-objective optimisation problems.

IV. NOISE-TOLERANT MOEAS

A number of different avenues have been explored by re-
searchers tackling noisy multi-objective optimisation prob-
lems. Broadly these can be categorised as those which modify
how solutions are compared and stored (as an attempt to
prevent ‘bad’ solutions polluting the archive), and those which
accept that misleading solutions will exist in the elite set and
therefore attempt to reduce the effect of these sub-optimal
solutions in the elite population.

The dominance adjustment/redefining approaches almost all

involve resampling at a particular parameter value. Resampling
is used to refine the dominance estimation between pairs
of solutions, such that the objective quality of a solution is
calculated not on a single assessment at a location, but the
average over a number of samples. In [5] a fixed number of
samples is used and in [21] the number (up to a user-defined
maximum) is dynamically varied, based on the estimated
variance calculated for a solution; this allows dominance
between solutions to be assessed at a particular confidence
level prior to assignment to the estimated Pareto subset. The
confidence-based dynamic resampling used by [21] is demon-
strated to perform favourably compared to basic sampling
with a fixed number of samples, fitness inheritance, modified
ranking and dominance-dependant lifetime approaches (which
are also discussed briefly below) on noisy versions of the ZDT
test functions [39]. A variant incorporating a neural network
surrogate is also demonstrated on a real world noisy industrial
problem. In [6], rather than sample solutions repeatedly until
a certain degree of confidence is obtained for a mutually
non-dominating set, the probability of dominance is estimated
from a fixed number of samples at each design location and
used to define an envelope in objective space within which
all solutions have a certain probability of actually being non-
dominated (if they were to be evaluated without noise), even
though the est(Y (x)) may suggest that some members are
dominated. This results in an algorithm which maintains a
‘thick’ elite archive including some suboptimal solutions, but
which has a low probability of excluding a solution which
would actually be non-dominated without noise. These ap-
proaches all build on the work of [13], [14] for the calculation
of dominance probabilities. In [7] each solution is modelled as
having a probability distribution over objective space, which is
estimated by drawing samples at locations and used to estimate
the expected indicator function to drive the search process. In
[23] the probability of dominance is calculated based on [14]
(which assumes the noise is independent on each dimension
and Gaussian in nature) and integrated into an estimation of
distribution/particle swarm optimisation hybrid algorithm. No
resampling is done however, meaning the variance must be
known or estimated prior to the optimisation.

In [22] an adaptive number of samples is taken, however unlike
[21] the number is not limited. Instead, at each generation
all members of a fixed sized archive have additional resam-
ples (alongside the resamples of new locations in the search
population). This means that the archive members accumu-
late resamples as the search progresses, and, if the archived
solution is found to perform worse than originally estimated
after additional sampling, it may be removed from the archive.
Selection for archive membership is based on (confidence-
adjusted) Pareto rank and crowding, and selection for the
parent population is based on the ranking and a weighted
fitness derived from the number of probabilistically dominated
points, reweighted by the number of resamples a solution has
(thereby favouring ‘younger’ solutions). Promising results are
presented on five of the ZDT problems, when compared to
NSGA-II (and noise-tolerant variants thereof).

[16] introduces the MOEA with Robust Features (MOEA-RF).
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This does not use resampling, but instead uses a range of
other techniques to mitigate the effect of noise, principally
experimental learning directed perturbation (which attempts to
use learning early on in an optimisation run, when noise tends
to have a less detrimental effect on an elite population, in order
to learn and exploit ‘good’ directions for perturbations), gene
adaptation selection strategy (GASS), which attempts to learn
a model of the appropriate area in design space to search, and
the use of possibilistic archiving which uses fuzzy membership
functions to limit the size of the archive (which has an effect
akin to ε-dominance [40]). Good results for MOEA-RF are
reported in comparison with a range of standard MOEAs, as
well as the noise-tolerant SPEA [5] and the multi-objective
probabilistic selection evolutionary algorithm (MOPSEA) of
[12] on the ZDT test problems corrupted with static noise.

In [15] a number of variants of NSGA-II are developed. These
include a version which incorporates the probabilistic ranking
method of [14], a version which uses resampling to refine
the objective location estimate of each solution, and versions
where the objective values associated with a new solution
are first estimated based upon the mean fitness and noise
experienced by its two parents (a form of fitness inheritance),
before a decision of whether to resample is taken (this is
implemented as an extension of the other approaches). If the
observed objectives of the child on evaluation fall within a
confidence interval defined by the estimated fitness and noise,
then the assigned objective values are accepted, otherwise
additional resamples are taken and its fitness is assigned to
the mean of these. The performance of these algorithms and
standard NSGA-II are compared on noisy ZDT test functions.
The resampling approach performing best, with the fitness
inheritance variant improving its performance further.

In [5] a number of variants of SPEA are presented and
compared on test functions with different noise types. In the
best performing version non-dominated solutions in the pop-
ulation are given a maximum lifespan (in terms of algorithm
iterations). The lifespan is inversely proportional to the number
of solutions in the general population that a non-dominated
solution dominates. That is, if it dominates many, it has a
short lifespan, but if it dominates just a few, its lifespan is
longer. At the end of its life a solution is removed from the
elite set, reevaluated, and its objective values replaced with
the new values. The procedure continues as if the reevaluated
solution was a newly proposed solution so that a good solution
is likely to be included once more into the non-dominated set,
but one that experienced outlier noise is likely to be discarded.
Results are also presented on the optimisation of a burner in
a gas turbine combustion test rig.

The algorithm we now introduce builds on a number of themes
in these earlier works. It seeks to minimise the number of
algorithm parameters that need tuning and maximise the range
of noise types it can be applied to, as well as delivering
estimated Pareto optimal solutions which are well converged
to F and whose est(Y (x)) are highly accurate reflections of
f(x).

V. THE ROLLING TIDE EVOLUTIONARY ALGORITHM

In this study we eschew the use of variance learning tech-
niques, and instead we focus on the observation that the
best estimate for the noise free objectives associated with
a design improves with the number of samples taken. Our
resultant algorithm is effective not only for static noise, but
also time varying and spatially varying noise. As such it can
tackle a broader range of problems than many noise-tolerant
MOEAs developed so far, with the only a priori assumption
being that an unbiased estimator of the noise-free objectives
is available; often this will just be the mean of the noisy
evaluations for a particular design. It also does not require
additional parameters for e.g. confidence levels, population
size, truncation parameters, etc. that are required by other
methods, and instead requires the typical parameters of an
evolutionary optimiser, such as crossover rate, crossover type,
mutation rate and mutation width, plus a variable determining
the number of resamples per iteration, and the refinement
length at the end of a run.

The algorithm we introduce here repeatedly hones the esti-
mated fitness of the stored elite solutions, meaning that the
final elite archive solutions have increased accuracy, but not at
the cost of reevaluating all designs proposed by the optimiser
in its search. This balances the explorative nature of the search
with the accuracy of the solutions driving the search forward.
The algorithm employs a search population X , together with
an elite archive A. Decisions on whether to add a solution x
to A are based on the estimated noise-free objective values
est(Y (x)), estimated from a number (possibly 1) of samples
Y (x) = {yi(x)}ni=1. In order to gain accurate estimates of the
noise free objectives, but to avoid the overhead of reevaluating
poor solutions, the algorithm repeatedly reevaluates solutions
in A, the leading edge of the estimated Pareto front.

RTEA is outlined in Figure 5. On lines 1-2, r design vectors
are sampled uniformly in X and each of these is evaluated
a single time. We denote by Y the set of sets comprising
the objective evaluations; each element of Y is the set of
objective evaluations corresponding to a single solution, x.
After initialisation each element of Y has a single element
corresponding to the single evaluation of a member of X .
The non-dominated elite archive is initialised from the initial
evaluations (line 3), and extracted from X , meaning that A
is the estimated Pareto set, and X contains the solutions
evaluated by the algorithm that are not in A. Also, for each
member of X , a single solution which dominates it is recorded;
this dominating element may be in X or in A.

After initialisation, the algorithm continues in an optimisation
loop. During each iteration the algorithm proceeds by assess-
ing a new solution in design space (as long as the exclusive
refinement phase of the algorithm has not been reached). Two
solutions are selected at random from the estimated Pareto
set of the solutions evaluated so far (line 7). These solutions
are then crossed over with probability pcross, using simulated
binary crossover [41], to create a single child (line 9). This
child, x, (or clone of an individual parent if no crossover
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Require: r Number of random locations to initially sample
Require: g Total number of function evaluations
Require: pcross Probability of crossover occurring
Require: k Number of archive resamples per iteration
Require: z Proportion of run to be spent solely refining the archive

1: X := initial samples(r) Generate r random feasible solutions
2: Y := evaluate samples(X) Evaluate members of the initial set just once each
3: {A,F} := get front(X,Y) Extract estimated Pareto set and associated objective evaluations and track dominators
4: t := r Track number of evaluations taken thus far
5: while t < g : do
6: if t < (1− z)g then
7: {v,u} := sample leading edge(A, est(F)) Sample from the estimated Pareto set
8: if uniform rand() < pcross then
9: x := crossover(v,u) Create a single child via simulated binary crossover

10: else
11: x := v If no crossover, then first parent is copied for later mutation
12: end if
13: x′ := vary(x) Mutate x
14: y′ := evaluate(x′) Evaluate child solution (single evaluation, so y′ and est(Y (x′)) are identical)
15: t := t+ 1
16: if est(F) 6≺ y(x′) : then
17: {A,F, X,Y} := update front(A,F,x′, {y′}, X,Y) Update archive and search population
18: else
19: track dominator(A,F,x′, {y′}) Track a single dominating member of current A for x′

20: end if
21: end if
22: for k iterations do
23: x′′ := argmin{|Y (x)| for x ∈ A } Element with fewest samples
24: {Xx′′ ,Yx′′} := remove tracking(x′′, Y (x′′), X,Y) Get members which have x′′ as their dominator
25: y′′ := evaluate(x′′) Evaluate x′′ an extra time
26: Y (x′′) := Y (x′′) ∪ {y′′} Update store of evaluations associated with x′′, thereby changing est(Y (x′′))
27: t := t+ 1
28: A := A \ {x′′} Remove x′′ from A
29: F := F \ {Y (x′′)} Remove evaluations of x′′ from F
30: {A,F, X,Y} := update front(A,F,x′′, Y (x′′), X,Y) If x′′ still on leading edge, put in A, otherwise put in X
31: for each x and Y (x) pair in Xx′′ and Yx′′ do
32: {A,F, X,Y} := update front(A,F,x, Y (x), X,Y) See if previously dominated solutions should now be in A
33: end for
34: end for
35: end while

Figure 5. The rolling-tide evolutionary algorithm (RTEA).

occurs) is mutated, creating x′ (line 13). Although we use
simulated binary crossover and single element mutation here,
other genetic operators could be used.

After its generation, x′ is evaluated once and if it is not
dominated by the current estimated Pareto set (based on
comparing y′ with est(Y (x)) for x ∈ A), it is added to the
archive (lines 16 and 17), and any elements in A which are
dominated by x′ (based on their est(Y (x))) are returned to X
with x′ recorded as their single tracked dominator. If however
x′ is dominated by the estimated Pareto front, then a single
member of A is chosen as the single dominator for x′ (line
19), from the members of A which dominate x′. After this, the
member of the elite archive with the fewest number of function
evaluations, x′′, is selected and reevaluated an additional time

(lines 23, 25 and 26). Prior to reevaluation, all solutions in X
which have the selected archive member x′′ recorded as their
single dominator are extracted (line 23); this set is denoted
Xx′′ .

Lines 28-30 ensure that if the reevaluation of x′′ means that
the solution should no longer be in A, it is removed from
A and placed in X . Likewise, lines 31 and 32 ensure that if
solutions are no longer dominated by an element of A, they
are transferred into A. This may be necessary because, for
example, the reevaluated solution’s new est(Y (x′′)) means
that it now dominates or is dominated by other members of
A. An illustration of possible movements of est(Y (x′′)) and
implications for the management of A and X is shown in
Figure 6. On line 32 elements which are not inserted into A
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f2(x)

f1(x)

a

b
c

Figure 6. Potential effects when reevaluating a member of A. The estimated
objective values est(Y (x)) of elements of A are shown with filled black
circles and estimated objective values of elements of X are shown with
unfilled circles. The (estimated) attainment surface is plotted with a dashed
line. If on reevaluation, the solution marked a shifts in its est(Y (a)) position
to any location in the light-grey region, A and X will be unchanged. If it
moves to any location in the dark-grey region, the membership of A will be
reduced because it now is estimated to dominate other solutions in A, but
there will be no new entrants to A from X . Movement to any other location
will cause b and/or c to become non-dominated by A and one or both of
them enter A from X , as well as potentially causing the removal of other
members of A (including a itself).

remain in X , and a dominating member of A∪Xx′′ is set as
their single tracked dominator.

It is the k reevaluations of leading edge solutions each iteration
which gives the algorithm its rolling tide name. The effect
is to constantly refine the estimate of the leading edge of
solutions evaluated thus far. As the search progresses the
proposal of new solutions drives the elite archive forward, but
the reevaluations pull solutions away from the leading edge
(or move them around), leaving others that had previously
been dominated to take their place. This differs from e.g.
[22], where elite members from the archive may be rejected
on reevaluation, but previous solutions are not stored beyond
the fixed archive size, and so cannot be pulled back in. The
rolling tide approach also has the benefit that although we use
a single initial evaluation for search points, the final estimated
non-dominated archive tends to have many reevalutions per
member and therefore higher confidence in their est(Y (x))
being a good estimate of the underlying true objective values.

Finally, RTEA incorporates a refinement phase, in which the
search aspect of RTEA is switched off during the final stages
of a run, so the algorithm focuses exclusively on increasing
the accuracy of the archive. During the refinement phase lines
7-21 are not executed.

A. Efficiently maintaining all evaluations

Since the estimated objectives associated with solutions are
uncertain RTEA keeps all solutions that have been evaluated
because as solutions are re-evaluated their new estimated
objectives may warrant including them in A. As pointed
out above, re-evaluation of solutions means that solutions
can move back and forth between X and A. Retaining a

large number of solutions in X is potentially computationally
expensive because, on the face of it, when a solution in A
is reevaluated it has to be compared with all other solutions
in A and all those which it previously dominated to discover
whether it should still be a member of A. In practice however
the computational overhead may be vastly reduced by main-
taining a single reference for each member of X to another
member in X or A which dominates it [42]. A member of
X need only be compared to A again if its single tracked
dominator is the member of A being reevaluated, because
if the tracked dominator is not reevaluated, then the tracked
dominator solution will still dominate the member of X at the
current iteration.

In the worst case situation |Xx′′ | (the number of solutions
which have a resampled member of A, x′′, noted as their single
tracked dominator) could equal all the members of X that
x′′ previously dominated, making the |A| × |Xx′′ | dominance
comparisons required computationally punitive. However, in
practise |Xx′′ | averages between 3 or 4, as most often the noted
dominator for a solution will end up residing in X (as search
progresses) rather than A. See [42] for complexity derivations
and empirical assessments on both synthetic data and optimiser
runs.

VI. EMPIRICAL COMPARISON OF RTEA WITH
NOISE-TOLERANT MOEAS

In this section we investigate the performance of RTEA and
a selection of state-of-the-art noise-tolerant multi-objective
optimisers, both for noise whose variance is constant and for
noise whose variance varies during the optimisation and over
space. The MOEAs compared are:

• The Bayesian (1+1)–ES using probabilistic dominance
which we proposed in [6] (labelled BES here).

• The MOEA-RF optimiser of Goh & Tan [16], [17].
• The algorithm of Syberfeldt et al. [21] which is designed

to cope with variable noise. We follow the practice of [21]
and do not incorporate the optional surrogate which they
advise for expensive real-world problems, but do not use
in their evaluations on cheap-to-compute test problems.
We label the algorithm MOP-EA here.

• The NMOE-AS optimiser of Park & Ryu [22].
• The RTEA optimiser.

As in Section III-B, results are presented on test problems
UP1-10 from the CEC’09 test suite [38]. Each algorithm is
run 30 times on each of the test problems, for a maximum of
300000 function evaluations. Algorithm parameters used are
as suggested by the algorithm proposers [6], [16], [21], [22].3

3For MOEA-RF Goh & Tan recommend repeatedly evaluating a single
point to estimate the noise width L at the start of an optimisation. The
recommended number of samples is not provided in [16], [17], so here 100
samples are used as a reasonable but not excessive number. The values for
the reliability threshold Nr and α reweighting term for the crowding distance
used in NMOE-AS are not reported in [22], however the values of Nr = 16
and α = 3 are used here, after personal correspondence with Dr Park.
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◦ RTEA, 4 NMOE-AS, + MOP-EA, × BES, O MOEA-RF
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Figure 7. IGD2 of archived solutions, reevaluated on noiseless cost
function on UP1-10; 30 runs, plotted on a log scale. Left to Right: σ =
{0.00, 0.01, 0.1, 1.0}. Top to bottom: UP1-10. A light grey background
indicates when the median performance of RTEA is better than all of the
other noise-tolerant algorithms, and a darker grey background denotes when
it is significantly better.

Here RTEA is started with r = 100 initial random solutions,
the mutation probability is set at 1/|x|, mutation width = 0.2,
crossover probability = 0.8, crossover type = SBX, additional

◦ RTEA, 4 NMOE-AS, + MOP-EA, × BES, O MOEA-RF
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Figure 8. Hypervolume of archived solutions, reevaluated using the noiseless
cost function on UP1-10; 30 runs. Left to Right: σ = {0.00, 0.01, 0.1, 1.0}.
Top to bottom: UP1-10. Reference points are (2, 2) and (2, 2, 2) for two and
three-objective problems respectively. A light grey background indicates when
the median performance of RTEA is better than all of the other noise-tolerant
algorithms, and a darker grey background denotes when it is significantly
better.

resamples per iteration k = 1, refinement phase z = 5% and
est(Y (x)) ≡ mean(Y (x)).
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A. Static noise

In our first set of experiments we use static Gaussian noise
in (3), as used in the experiments with standard MOEAs in
Section III-B. We compare the performance of the algorithms
for four noise magnitudes: σ = {0.00, 0.01, 0.10, 1.00} and,
as before, use the power mean IGD2, the hypervolume and
the NM measure to assess the performance of the algorithms.

The significance of the comparisons is assessed using the
single-tailed non-parametric Mann-Whitney U test at the 5%
level. In the plots we present a region with a light grey
shading when the median result from RTEA is better than
the other noise-tolerant algorithms, and darker grey when it
is significantly outperforming all of them, as assessed with
paired comparisons using the significance test.

Figure 7 shows the IGD2 results and Figure 8 shows the
hypervolume results. RTEA can be seen to be very com-
petitive compared to the other noise-tolerant MOEAs when
considering the hypervolume, rapidly outperforming the other
algorithms across the majority of problems and noise levels,
performing better than the other four noise-tolerant MOEAs
across problems and noise levels 75% of the time. Assess-
ment with the IGD2 measure shows similar performance,
with RTEA performing better than the other noise-tolerant
MOEAs 71% of the time. On the NM measure, the NMOE-AS
algorithm (which also resamples its archive members) tends
to do better on the lower noise levels, with RTEA doing better
on the higher noise levels, and both outperform the other
noise-tolerant algorithms on this measure. Table I compares
all the algorithms across UP1-10 for each noise level, and
presents the percentage (averaged across the length of a run)
for which the median performance of one algorithm is better
(and significantly better) than all the others, averaged across
the ten test problems, for each noise level.

It is interesting to note that the ‘standard’ MOEAs actually per-
form better than some of the noise-tolerant optimisers, not just
in the noiseless case, but also at very low noise levels. In these
situations the search/archive populations become slightly more
diverse for standard MOEAs, but still hold ‘good’ solutions,
meaning the noise-tolerant MOEAs only gain an advantage
when the estimated Pareto set is well-converged. Also, many
of the noise-tolerant MOEAs were previously assessed only on
the ZDT test functions and it is possible that the more difficult
UP1-10 problems may demand more sophisticated search and
diversity management techniques than they provide. Finally,
many all of the noise-tolerant MOEAs expend a substantial
proportion of their allotted function evaluations re-evaluating
a previously visited location, rather than searching for new
samples, which may affect convergence speed. Nevertheless,
RTEA is seen to perform better on average on IGD2 when
σ ≥ 0.01, and hypervolume when σ ≥ 0.10, although, as
mentioned NMOE-AS does better on the NM measure for
lower σ.

Figure 9 shows the median over 30 runs of the NM measure.
For those algorithms which resample (RTEA, NMOE-AS, BES
and MOP-EA) est(Y (x)) is the mean of the samples at a

◦ RTEA, 4 NMOE-AS, + MOP-EA, × BES, O MOEA-RF
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Figure 9. NM measure (plotted on the log scale) of archived solutions on noise
injected UP1-10; 30 runs. Left to Right: σ = {0.01, 0.1, 1.0}. Top to bottom:
UP1-10. A light grey background indicates when the median performance of
RTEA is better than all of the other noise-tolerant algorithms, and a darker
grey background denotes when it is significantly better.

location x. We note that for MOEA-RF, which makes only a
single evaluation at each design, est(Y (x)) = y. NMOEA-
AS and RTEA can be seen to improve the measure as the
search continues. In contrast, for a number of problems the
other algorithms become worse according to NM as search
progresses. Note also the effect of the final 5% of the RTEA
runs: when searching is discontinued and the archive further
refined with resamples it is clear from Figure 9 that the
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Table I
PERCENTAGE OF TOTAL RUN LENGTH THAT THE MEDIAN PERFORMANCE OF EACH ALGORITHM WAS BETTER THAN THE OTHER EIGHT, AVERAGED OVER
UP1-10, ON STATIC NOISE TYPES WITH σ = {0.00, 0.01, 0.10.1.00}. PERCENTAGE SIGNIFICANTLY BETTER GIVEN IN PARENTHESIS. BOLD INDICATES

LARGEST PERCENTAGE. VALUES ROUNDED TO NEAREST WHOLE NUMBER.

Hypervolume IGD2 NM
σ 0.00 0.01 0.10 1.00 0.00 0.01 0.10 1.00 0.00 0.01 0.10 1.00
RTEA 17 (10) 32 (24) 56 (48) 53 (37) 10 (4) 46 (28) 73 (51) 56 (41) - 19 (16) 15(12) 77 (69)
MOP-EA 0 (0) 0 (0) 1 (0) 12 (9) 8 (2) 0 (0) 6 (4) 18 (9) - 0 (0) 0 (0) 0 (0)
BES 0 (0) 0 (0) 0 (0) 4 (0) 8 (0) 0 (0) 0 (0) 3 (0) - 1 (1) 1 (1) 2 (1)
MOEA-RF 9 (1) 6 (0) 0 (0) 1 (0) 3 (0) 3 (0) 0 (0) 7 (2) - 0 (0) 0 (0) 0 (0)
NMOE-AS 0 (0) 0 (0) 23 (4) 3 (0) 6 (0) 2 (1) 19 (10) 1 (0) - 79 (77) 84 (81) 21 (18)
IBEAε+ 31 (6) 13 (2) 9 (2) 12 (2) 11 (0) 4 (0) 2 (0) 9 (2) - 0 (0) 0 (0) 0 (0)
SPEA2 38 (23) 49 (20) 1 (0) 2 (0) 53 (50) 45 (23) 1 (0) 6 (0) - 0 (0) 0 (0) 0 (0)
NSGA-II 3 (0) 0 (0) 14 (9) 12 (10) 0 (0) 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0)
PAES 1 (1) 0 (0) 0 (0) 0 (0) 2 (1) 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0)

Table II
PERCENTAGE OF TOTAL RUN LENGTH THAT THE MEDIAN PERFORMANCE OF EACH ALGORITHM WAS BETTER THAN THE OTHER EIGHT, AVERAGED OVER
UP1-10, ON VARIABLE NOISE TYPES. PERCENTAGE SIGNIFICANTLY BETTER GIVEN IN PARENTHESIS. BOLD INDICATES LARGEST PERCENTAGE. VALUES

ROUNDED TO NEAREST WHOLE NUMBER.

Hypervolume IGD2 NM
Noise type y x t y x t y x t
RTEA 45 (28) 54 (40) 49 (26) 62 (45) 70 (57) 60 (38) 12 (11) 31 (31) 4 (3)
MOP-EA 15 (3) 10 (9) 0 (0) 12 (3) 11 (9) 0 (0) 25 (20) 34 (28) 4 (0)
BES 1 (0) 0 (0) 0 (0) 5 (0) 0 (0) 10 (10) 0 (0) 0 (0) 1 (0)
MOEA-RF 0 (0) 0 (0) 0 (0) 5 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
NMOE-AS 33 (23) 35 (26) 14 (7) 2 (1) 8 (3) 0 (0) 6 (1) 14 (8) 0 (0)
IBEAε+ 4 (0) 0 (0) 10 (0) 10 (3) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0)
SPEA2 1 (0) 0 (0) 17 (0) 1 (0) 0 (0) 24 (0) 39 (24) 0 (0) 75 (69)
NSGA-II 2 (0) 1 (0) 10 (9) 3 (0) 10 (10) 0 (0) 18 (0) 20 (20) 20 (20)
PAES 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

NM measure decreases sharply in this final phase of the
optimisation run. Nonetheless, even in the general search
(during the first 95% of the optimisation) the discrepancy
between the true objectives and the estimated objectives is
smaller for RTEA than other algorithms, bar NMOEA-AS, due
to its iterative re-estimation of the leading part of the front.
These more accurate estimates of the front’s location in turn
allow faster convergence towards the true front.

B. Variable noise

In the previous experiments the noise was static. We now
investigate the effect of different forms of noise which varies
with objective space location or the duration of the optimi-
sation. We modify the CEC’09 test functions to have noisy
objectives, via (3), in three ways. First, the noise variance
depends on the objective space location of the solution:
εd ∼ N (0, fd(x)). Second, the noise depends on the design
space location of the solution: εd ∼ N

(
0, (0.1||x||1)2

)
. Of

course, noise that varies with design space location can be
regarded as a function of objective space location and vice
versa. Nonetheless, the quality of the noise variation will be
different and, in general, noise that varies as a function of
design space is likely to vary more rapidly in objective space
than noise that is a function of objective values. Finally, the
noise is made temporally dependent noise: εd ∼ N (0, ω2

d,t),
where ωd,t is generated via a filtered random walk for each
objective independently, with t denoting the time step of the
walk. ωd,t is generated according to the following nonlinear

autoregressive process:

ωd,t =

{
0.1, if t = 1

|ωd,t−1 + ξd|, otherwise
(11)

with ξd ∼ N (0, 0.012). In the case of temporal noise, we
generate a single set of 30 random walks using (11), and use
these 30 for each algorithm so that each algorithm encounters
the same temporal noise as its comparators.

The BES algorithm incorporates a term η which progressively
down-weights the influence of historically observed noise in
the Bayesian update scheme in order to cope with temporally
varying noise [6]. We can also apply BES to the spatially-
varying noise problems, because, since BES is a point-based
optimiser, spatially varying noise is equivalent to temporally
varying noise, although with high frequency variations. We
use η = 0.95 here for the temporally varying noise and for the
noise dependent on objective space location, and η = 0.75 for
the noise dependent on design space location which changes
more rapidly.

Since MOP-EA and NMOE-AS continuously re-estimate the
noise by resampling, they can also be applied to situations
where the noise varies spatially, as they effectively maintain
a noise estimate at each design space location. Although a
stationary, zero mean, Gaussian distributed model is no longer
accurate, [21] still recommends its use when the noise is non-
Gaussian, although the accuracy of the estimated confidence
intervals will be affected. We therefore also apply it to the
temporally varying noise problem. [22] adjusts the probability
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◦ RTEA, 4 NMOE-AS, + MOP-EA, × BES, O MOEA-RF

10
0

10
1

U
P

1
 I

G
D

2

10
0

U
P

2
 I

G
D

2

10
−0.3

10
0.3

U
P

3
 I

G
D

2

10
0

U
P

4
 I

G
D

2

10
0

10
1

U
P

5
 I

G
D

2

10
0

10
1

U
P

6
 I

G
D

2

10
0

U
P

7
 I

G
D

2

10
0

U
P

8
 I

G
D

2

10
0

10
1

U
P

9
 I

G
D

2

0 1 2 3

x 10
5

10
0

10
1

Evaluations

U
P

1
0

 I
G

D
2

0 1 2 3

x 10
5Evaluations

0 1 2 3

x 10
5Evaluations

Spatial x Spatial y Temporal t

Figure 10. IGD2 of archived solutions on varying noise problems, reeval-
uated on noiseless cost function on UP1-10; 30 runs, plotted on a log scale.
Left to Right: Spatial x, spatial y, temporal. Top to bottom: UP1-10. A light
grey background indicates when the median performance of RTEA is better
than all of the other noise-tolerant algorithms, and a darker grey background
denotes when it is significantly better.

of dominance calculation when the noise variance is assumed
to vary at different locations.

Like a number of noise-tolerant optimisers, MOEA-RF is

◦ RTEA, 4 NMOE-AS, + MOP-EA, × BES, O MOEA-RF
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Figure 11. Hypervolume of archived solutions on varying noise problems,
reevaluated on noiseless cost function on UP1-10; 30 runs. Left to Right:
Spatial x, spatial y, temporal. Top to bottom: UP1-10. Reference points used
in the hypervolume calculation are (2, 2) and (2, 2, 2), for two-objective and
three-objective test problems respectively. A light grey background indicates
when the median performance of RTEA is better than all of the other
noise-tolerant algorithms, and a darker grey background denotes when it is
significantly better.

designed for situations with a fixed noise width and requires
the noise variance to be specified as a parameter of the
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Figure 12. IGD2 of RTEA with k = {1, 2, 3, 5, 10}. UP1, UP8, σ =
{0.01, 1.00}.
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Figure 13. Hypervolume of RTEA with k = {1, 2, 3, 5, 10}. UP1, UP8,
σ = {0.01, 1.00}.

algorithm. Consequently we anticipate that the algorithm will
perform relatively poorly on varying noise problems, however
we include the results here for completeness.

Figures 10 and 11 show the results using the IGD2 and
hypervolume. A similar ordering of algorithms is seen as with
the static noise, with RTEA performing better than the other
four noise-tolerant MOEAs across problems and noise types
on the hypervolume measure 58% of the time; and on the
IGD2 measure 73% of the time.

Table II compares all the algorithms across UP1-10 for each
type of variable noise. When the noise varies according to
y or x RTEA and NMOE-AS perform better than all other
algorithms on the hypervolume measure, although RTEA tends
to do much better on IGD2 than NMOE-AS. When the noise
varies over time NMOE-AS performs markedly less well,
although it remains in second place. The NM measure is not
well-correlated with the other two quality measures on variable
noise, but this is unsurprising — for many of the problems the
closer solutions are to the Pareto set (or sub regions thereof)
the larger the noise intensity they experience, and therefore
the higher the NM that would be expected.
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Figure 14. NM of RTEA with k = {1, 2, 3, 5, 10}. UP1, UP8, σ =
{0.01, 1.00}.
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Figure 15. Average number of resamples of archive members in RTEA with
k = {1, 2, 3, 5, 10}. UP1, UP8, σ = {0.01, 1.00}.

C. Sensitivity analysis of RTEA

The lower the number of k resamples of archive members
taken at each iteration, the more evaluations are available to
RTEA for searching new locations (given a limited number of
total function evaluations). But the archived solutions, from
which the new solutions are evolved, will have estimated ob-
jective values of lower accuracy. Here we perform a sensitivity
analysis of RTEA with various numbers of resamples taken of
archive members at each iteration. We run RTEA 30 times
for 100000 function evaluations on the two-objective CEC’09
problem UP1 and the three-objective CEC’09 problem UP8,
with k = {1, 2, 3, 5, 10}. The corresponding median IGD2,
hypervolume and NM measure results of these experiments
are shown in Figures 12-14, and the median number of
resamples per archive member is shown in Figure 15, for
σ = {0.01, 1.0}. The greyscale of the lines plotted correspond
to the value of k, with k = 1 drawn with black and k = 10
with the lightest grey.

When the noise level is small, RTEA with lower k performs
better than with higher k on IGD2 and hypervolume. NM is
always lower with higher k, irrespective of the noise level –
this is as expected, because the larger k, the more resamples
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(on average) an archived solution will have (see Figure 15),
and therefore the more accurate the est(Y ). For the large
noise level smaller k performs better initially on IGD2 and
hypervolume, but is then rapidly overtaken by the RTEA
algorithms using larger k. Based on these observations, there
is potential in to developing a variant of RTEA in which k
is adapted during the search, based on the noise properties
encountered. However, as seen here, even with k = 1, RTEA
performs competitively with other state-of-the-art approaches.

VII. DISCUSSION

In this paper we have presented a novel algorithm for multi-
objective optimisation with uncertain objectives, the rolling
tide evolutionary algorithm (RTEA). RTEA can cope with
noisy optimisation problems in which the noise characteristics
may be fixed or variable. We make the minimal assumption
that the noiseless objectives can be accurately estimated from a
sufficiently large number of samples. The algorithm attempts
to both harness the exploitation/exploration power of tradi-
tional EAs, whist simultaneously refining the accuracy of its
active elite archive by constantly resampling the elite solutions,
thus ensuring that ‘high-quality’ individuals feed into the
evolutionary process. The approach also means that solutions
are not ‘lost’ if another solution is thought to dominate them
initially, but on reevaluation this is found to perform less well,
thus allowing previously dominated solutions to be pulled
into the archive at a later time step. If the algorithm is run
with a single reevalution each iteration, roughly half of all
function evaluations are at new locations and half are used
in the reevaluation of previously evaluated locations, allowing
RTEA to search to a much greater extent than most other
noise-tolerant MOEAs.

We have shown that for even small values of noise the
performance of standard MOEAs is significantly impaired,
and we have also shown the ability of RTEA to cope well
with noisy optimisation problems in comparison to a number
of state-of-the-art noise-tolerant MOEAs. RTEA produces
competitive results with state-of-the-art algorithms on a range
of problem types, noise types and intensities. We find the
next best competing algorithm is NMOE-AS, which like
RTEA progressively resamples its archive (although without
the ability to pull in previously dominated solutions to its
archive). Progressive resampling therefore appears to be a very
useful technique for noise-tolerant MOEAs

RTEA is simple to implement and also has the benefit of
requiring relatively few parameters. It does rely on keeping all
previously evaluated solutions (which has a storage overhead),
however we have also discussed a method to ameliorate the
cost associated with updating the elite archive in conjunction
with these past solutions, based on tracking just a single dom-
inating solution for each member of the non-elite population.

A potential extension of RTEA would be an automatic pro-
cedure for determining when to resample. Currently at each
iteration a new location is evaluated and existing estimated
elite solution(s) reevaluated. By tracking, for instance, the

region dominated by the elite estimate over time the ratio of
new location evaluations and resamples could be beneficially
varied. When the elite front is advancing more new designs
could be evaluated, whereas if the front is stalled or oscillating
(due to reevaluations pulling the estimate back), then more
resamples may be preferred. This would allow the algorithm to
tune itself to different problem types and convergence stages.

Although RTEA has shown good performance on spatially
varying noise, we believe there is still scope to improve
performance on these types of problems further, by learning
the spatially dependent characteristics of the noise during the
search using, for instance, machine learning methods [10].
We look forward to the development of more sophisticated
algorithms that can take advantage of learned characteristics
to reduce the number of function evaluations required.
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