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ABSTRACT 1 

Airborne laser scanning systems (LiDAR) are very well suited to the study of landscape and 2 

vegetation structure over large extents. Spatially distributed measurements describing the 3D 3 

character of landscape surfaces and vegetation architecture can be used to understand eco-4 

geomorphic and ecohydrological processes, and this is particularly pertinent in peatlands given 5 

the increasing recognition that these landscapes provide a variety of ecosystem services (water 6 

provision, flood mitigation, carbon sequestration). In using LiDAR data for monitoring 7 

peatlands, it is important to understand how well peatland surface structures (with fine length 8 

scales) can be described. Our approach integrates two laser scanning technologies, namely 9 

Terrestrial Laser Scanning and airborne LiDAR surveys, to assess how effective airborne 10 

LiDAR is at measuring these fine scale microtopographic ecohydrological structures. By 11 

combining airborne and terrestrial laser scanning, we demonstrate an improved spatial 12 

understanding of the signal measured by the airborne LiDAR. Critically, results demonstrate 13 

that LiDAR DSMs are subject to specific errors related to short-sward ecosystem structure, 14 

causing the vegetation canopy height and surface-drainage network depth to be underestimated. 15 

TLS is shown to be effective at describing these structures over small extents, allowing the 16 

information content and accuracy of airborne LiDAR to be understood and quantified more 17 

appropriately. These findings have important implications for the appropriate degree of 18 

confidence ecohydrologists can apply to such data when using them as a surrogate for field 19 

measurements. They also illustrate the need to couple LiDAR data with ground validation data 20 

in order to improve assessment of ecohydrological function in such landscapes.  21 

Keywords: LiDAR, Terrestrial Laser Scanning, DSM, Uncertainty, Peatlands, Uplands, 

Ecohydrology, Ecosystem services, Exmoor, UK. 

  22 

Page 2 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

INTRODUCTION 23 

There is a new monitoring imperative for peatlands as global policy recognises the importance 24 

of these ecosystems in tackling climate change, water management objectives and biodiversity 25 

conservation (Bain et al. 2011; Grand-Clement et al. 2013). Spatially distributed measurements 26 

from airborne laser scanning systems such as Airborne Light Detection And Ranging (LiDAR), 27 

are useful for describing the three dimensional structure of landscape surfaces and vegetation 28 

(Emanuel 2013; Hutton and Brazier 2012; Mitchell et al. 2012; Rango et al. 2000; Zimble et al. 29 

2003), and there is considerable evidence that such data provide valuable information on 30 

ecohydrological and eco-geomorphic processes in peatlands (Korpela et al. 2009; Anderson & 31 

Bennie 2010).  In addition, landscape and ecosystem structure have long been recognised as 32 

important controls on peatland function (Moore and Bellamy 1974; Barber 1981). More 33 

recently Belyea and Clymo (2001) have explored the link between microtopography and peat 34 

formation and the ecohydrology of mires, leading to the contemporary understanding of links 35 

between microtopography and ecohydrological functioning summarised by Holden (2005) and 36 

Lindsay (2010).  37 

The use of laser scanning techniques in peatlands could permit the quantification of how 38 

peatland structure and function change through time, leading to a dynamic understanding of 39 

landscape-scale ecohydrological behaviour (Fisher et al. 2009; Lane and D’Amico 2010; 40 

Turnbull et al. 2008). However, progress towards this in an operational sense is limited by our 41 

understanding of what the LiDAR signal actually represents in real terms – e.g. can LiDAR 42 

deliver robust measurements of both the short-sward canopy and/or the landscape surface?  43 

Spatially distributed information on both of these factors is needed because many temperate 44 

peatlands are dominated by low sward vegetation (Drewitt and Manley 1997) with structurally 45 

subtle micro-topographic features (Kincey and Challis 2009; Lindsay 2010): both of which 46 

impart significant effects on the ecohydrological functioning of peatlands (Holden et al. 2004). 47 

Page 3 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Small shifts in ecological structure or drainage pattern may, for example, elicit major shifts in 48 

the hydrological response of the system.  49 

LiDAR technologies use a precisely timed laser pulse and measure the return signal to capture 50 

accurate altimetry measurements of the Earth’s surface, over large spatial extents. When 51 

analysing LiDAR datasets at landscape scales, there is often an assumption that the data are 52 

directly representative of the 3-D habitat structure (e.g. forest canopy) or the true ground 53 

surface (Jones et al. 2008; Kincey and Challis 2009). For example, LiDAR-derived digital 54 

surface models (DSMs) are often used to calculate hillshade products (Barbier et al. 2011; 55 

Kincey and Challis 2009), canopy height models for forestry (Zimble et al. 2003), or used to 56 

support numerical models of  wetness, surface roughness or surface flows. (Beven 2012; Beven 57 

and Freer 2001; Jones et al. 2008). Previous work (Ivanov 1981; Taylor 1983) highlights the 58 

need for accurate representation of peatland surface flows in particular, to characterise peatland 59 

systems effectively. As a result, this approach can provide a powerful means of separating 60 

ecological and topographic structures (Hutton and Brazier 2012; Hinsley et al. 2002; Vierling 61 

et al. 2008; Chassereau et al. 2011; Clawges et al. 2008; Horning et al. 2010). However, in 62 

using these data it is important to note that the applicability of LiDAR is always constrained by 63 

the spatial resolution of the processed LiDAR surface (i.e. the resolution of the DSM) and the 64 

spatial support (or footprint) of the laser beam itself (Fisher and Tate 2006).  Datasets derived 65 

from airborne LiDAR are, therefore, subject to implicit (but often unquantified) uncertainty 66 

(Aguilar et al. 2010).  67 

Whilst we acknowledge that LiDAR datasets offer an as yet unparalleled ability to understand  68 

landscape structure and function (Korpela et al. 2009; Vierling et al. 2008; Zimble et al. 2003; 69 

Evans and Lindsay 2010; Rango et al. 2000), herein we stress the need to better quantify the 70 

spatial (x, y) and vertical (z) uncertainty in such data. This would permit an improved 71 

interpretation of LiDAR products describing the biotic and abiotic structure of peatlands. One 72 
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way of approaching the problem is to integrate data from other laser scanning technologies 73 

operating at finer spatial resolutions (Danson, F. M. et al. 2007), in order to validate the 74 

information content of the LiDAR.  Here we combine data from a terrestrial laser scanner 75 

(TLS) with airborne LiDAR surveys of an upland peatland system in the UK to test the 76 

following hypotheses:  77 

1. TLS data can be used to validate the information content of a LiDAR DSM in an 78 

upland peatland context, thereby allowing improved spatial characterisation of 79 

ecohydrological structures such as above-ground biomass and surface-flow pathways. 80 

2. Airborne LiDAR data allow the discrimination of different ecohydrologically relevant 81 

vegetation communities in peatlands. 82 

3. Airborne LiDAR data are capable of detecting the presence and position of 83 

anthropogenic landscape features such as drains and archaeological remains which may 84 

alter hydrological function in peatlands. 85 

METHODS 86 

Airborne LiDAR data acquisition and initial processing 87 

Airborne LiDAR data were collected by the Environment Agency Geomatics Group (EAGG) 88 

(www.geomatics-group.co.uk) in May 2009 at a 0.5 m spatial resolution in the horizontal 89 

plane. Two headwater catchments within degraded upland peatland areas in Exmoor National 90 

Park, UK were selected to include a wide range of drainage ditch morphology, slope 91 

morphology, aspect and vegetation composition. The location of the watershed of these upland 92 

catchments (known locally as ‘Aclands’ [SS 733,384] and ‘Spooners’ [SS 776,374]) is shown 93 

in Figure 1. LiDAR data supplied by EAGG were provided as a ‘first return’ dataset (0.3 m 94 

diameter footprint) and fitted to an even grid of 0.5 × 0.5 m by the data supplier.  These data 95 

were then processed within a Geographical Information System (GIS; ArcGIS version 9.3.1) to 96 

produce a DSM with a cell size equal to 0.5 m. The LiDAR dataset was checked for accuracy 97 
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at 5 separate locations by Geomatics group, using a differential Global Positioning System 98 

(DGPS) survey.  These ground truth data indicated an average systematic error (or bias) of + 99 

0.0004 m and an average random bias of ± 0.047 m in elevation. The combined RMSE for 100 

these data was 0.029 m which was well within the product specification of 0.15 m (personal 101 

communication to the author from the EAGG, 2012). 102 

#Figure 1 approximately here# 103 

TLS data collection and processing 104 

Ground-based, terrestrial laser scanning (TLS) systems utilise a similar approach to airborne 105 

LiDAR, but typically cover smaller extents at finer spatial resolutions. Unlike airborne LiDAR, 106 

TLS systems are deployed from one or more fixed locations on the ground surface and have 107 

proven useful in providing data describing spatial structural proxies for peatland 108 

ecohydrological condition (Anderson et al. 2009; Anderson et al. 2010). Here, TLS data were 109 

collected in situ using a Leica Geosystems HDS 3000 scanner at the Spooners headwater 110 

catchment, in January 2011. The scanner collected ca. 1800 points per second spaced at 0.003 111 

m, with a resultant dataset of > 7.5 × 10
6
 points over a spatial extent of 4.2 × 10

3 
m

2
 in this 112 

example. The instrument uses a green laser (wavelength 532 nm), with a beam size of < 6 mm, 113 

positional accuracy of < 6 mm and range accuracy of < 4 mm (at a range of < 50 m; Anderson 114 

et al. 2009). Data were collected from multiple viewpoints above the peatland surface (Figure 115 

2), and were registered into a single point cloud for each site following the method of 116 

Anderson et al (2009). Highly visible static stakes were deployed within the survey area to 117 

facilitate point-cloud registration; their positions were known to an accuracy of 0.005 m 118 

following a DGPS survey. To ensure the scanner had sufficient height above the peatland 119 

surface and thus an appropriate angle of incidence to the ground, a flat-bedded tracked vehicle 120 

was deployed at each of the scan locations providing a stable elevated platform of a consistent 121 

height (ca. 2 m) throughout the survey. The site selected for the survey included three artificial 122 
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drainage ditches measuring approximately 0.3 m × 0.3 m in cross section and was dominated 123 

by vegetation typical of the majority of the hill slope area within the catchment. The vegetation 124 

included a mixed soft rush (Juncus effusus) and purple moor grass (Molinia caerulea) 125 

dominated sward in which the M. caerulea grew in tussock form. 126 

#Figure 2 approximately here# 127 

A DGPS survey was also used to provide validation transects through the TLS scan areas to 128 

provide an independent means of verifying the information content and accuracy of both the 129 

TLS and LiDAR datasets during subsequent stages of the analysis. DGPS survey points were 130 

taken at 3 – 5 m intervals along a transect and at each location the position of the ground 131 

surface and the top of the nearest dense grass tussock structures were recorded, creating pairs 132 

of measurements along the transect. The accuracy of the DGPS measurements was  ± 0.5 cm in 133 

x, y and ± 2 cm in z. The registered TLS point cloud data were imported into Arc GIS 9.3.1. A 134 

10 m × 10 m area of interest (AOI) was chosen in an area of dense point cloud coverage and to 135 

include a known surface drainage feature.   136 

 137 

Subsequent processing aimed to extract the vertical extent of the top of canopy and ground 138 

surface respectively. The highest and lowest z values within a moving window filter of 0.05 139 

m×0.05 m were extracted for the AOI extent and then processed into a 0.01 m discontinuous 140 

horizontal grid. A 1 cm grid resolution was chosen to preserve the fine scale variability of the 141 

point cloud in the surface generated. To prevent over-representation of outlying cloud points, 142 

the resultant data were then aggregated to a grid with a cell size matching the 0.05 m × 0.05 m 143 

filter used. Finally, a continuous 0.01 m grid was then interpolated from these data, using the 144 

ordinary spherical Kriging method to match the resolution of the discontinuous grid surface. 145 

The result was two products - (a) ‘TLSmax’ - the maximum vertical extent (assumed top of 146 

canopy) and (b) ‘TLSmin’ – the minimum vertical extent (assumed ground surface).  For the 147 
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next stage of processing the same AOI was extracted from the airborne LiDAR data so that the 148 

two datasets could be combined. 149 

Combined TLS and LiDAR data analysis 150 

In order to address hypothesis one, DSMs generated from both LiDAR and TLS data were 151 

compared to understand their information content. A new dataset was derived from the 152 

TLSmax, TLSmin and LiDAR data to describe their spatial relationship in three dimensions.  153 

Both TLSmax and TLSmin surfaces were classified as either above the height of the LiDAR 154 

DSM or below the LiDAR DSM. These classified data were then overlaid on top of a simple 155 

hillshade model of both TLSmax and TLSmin to enhance the visual comparison. The 156 

percentage of the TLSmax and TLSmin surfaces above and below the LiDAR DSM was then 157 

calculated. A transect through both DSMs was plotted alongside the raw TLS point cloud to 158 

provide a cross-sectional representation of the relationship between the datasets. 159 

LiDAR analysis to discriminate vegetation and anthropogenic structures  160 

To address hypotheses two and three, a model describing the high frequency spatial variation 161 

in LiDAR z (height) was needed.  Data were filtered using a ‘low pass’ moving window (11 × 162 

11 pixel neighbourhood) in ERDAS Imagine 2011, resulting in a ‘smoothed’ surface. These 163 

data were subtracted from the original DSM to derive a detrended surface. The low pass 164 

window of 11 × 11 pixels was selected to be larger than the maximum patch size of the canopy 165 

and microtopographic structure without degrading the signature of the underlying topography. 166 

The detrended surface enabled discontinuities in the data to be extracted and classified. For 167 

example, step changes that could indicate human activity (e.g. drainage ditches or 168 

archaeological remains) (Newman 2010), or areas where the DSM structure changed as a 169 

function of shifts in vegetation structure or composition. 170 
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Detrended data derived from the LiDAR DSM were used to identify the x, y position of 171 

microtopographic sinks within the peatland (e.g. tussock/hollow topography or drains). Within 172 

the detrended data, sinks were identified automatically by selecting pixels with a height (z) 173 

threshold of -0.11 m. As the z values in the detrended data represent the height difference from 174 

a smoothed surface, negative values highlighted the microtopographic sinks in the landscape, 175 

such as drainage features. A z threshold of -11 cm was chosen on the basis of expert field 176 

knowledge of this catchment (this was the minimum depth in the model that could highlight 177 

known anthropogenic drainage networks). To analyse the resultant layer further, data were 178 

processed to calculate the density of the classified pixels in two dimensional (x, y) space. Step 179 

changes in the density of these pixels were then used to classify the sinks as being either 180 

drainage features or vegetation characteristic of wet flushes.  181 

Comparison with hydrological models and vegetation maps 182 

Finally, high-resolution aerial photography (2 cm spatial resolution, collected April 2012) was 183 

used for the whole Aclands catchment to define the spatial distribution of six distinct 184 

vegetation communities based on the species assemblages outlined by Backshall et al. (2001) 185 

(wet and dry Molinia caerulea, Juncus flush, minerotrophic grassland, wet bog, and wet 186 

heath). These communities were differentiated using visual changes in canopy structure that 187 

were present in the imagery used. These vegetation categories were then manually digitised in 188 

order to support interpretation of the RS data analysis under hypothesis two. Although 189 

subjective, this technique identified abrupt changes in vegetation at a finer spatial resolution 190 

(0.02 m) than the LiDAR DSM (0.5 m) and was therefore considered sufficiently accurate. 191 

In addition, to support hypothesis three, the raw LiDAR DSM was interrogated with an 192 

overland flow accumulation modelling algorithm based on the methods described in Jenson 193 

and Domingue (1988). This methodology includes the removal of topographic sinks to ensure 194 
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flow connectivity. The resulting stream network was then classified using the Strahler stream 195 

order hierarchy (Strahler 1957). The Jenson and Domingue (1988) model assumes all 196 

precipitation becomes runoff and none is lost to interception or groundwater. Although this 197 

approach is hydrologically simplified, overland flow is often the predominant discharge from 198 

upland peatland systems (Charman 2002; Holden 2005) and therefore this simplicity is 199 

scientifically justified and appropriate to describe the hypothetical functioning of surface 200 

drainage features in the catchment. 201 

RESULTS 202 

Hypothesis one: results of combined TLS and LiDAR analysis 203 

To address hypothesis one, the difference between topographic patterns from the TLS and 204 

LiDAR data was evaluated. The comparison of TLSmin and TLSmax surfaces to the LiDAR 205 

DSM (Figure 3) help to quantify the spatial relationship of TLS and LiDAR data in three 206 

dimensions. Most strikingly, the patterning evident in figure 3 illustrates that the linear surface 207 

drain feature (highlighted) in the TLSmin surface is almost entirely below the plane of the 208 

LiDAR DSM. In the TLSmax surface (3a) almost all of the areas that are lower than the 209 

LiDAR DSM correspond with gaps in the vegetation canopy, and are common to both 3a and 210 

3b. These locations are visible as shared surface elements and low points in the landscape by 211 

both TLSmax and TLSmin. The results in table 1 illustrate that 45% of the TLSmin layer is 212 

below the plane of the LiDAR DSM. In contrast, for TLSmax over 87% of the surface is above 213 

the plane of the LiDAR DSM. Therefore if TLS data are considered to be ‘correct’, LiDAR 214 

data overestimate the level of the ground surface in 45% of the AOI and underestimate the 215 

vegetation canopy in 87% of the AOI.  216 

#Figure 3 approximately here# 217 

#Table 1 approximately here# 218 
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Figure 4 provides more detailed illustration of the relationship between these surfaces along an 219 

east – west cross section through the LiDAR and TLS derived DSMs within the AOI. The TLS 220 

point cloud exhibits significant vertical variation along this transect with an increased density 221 

toward the bottom of its range. The TLSmin surface has an overall trend similar to the LiDAR 222 

surface (illustrated in figure 5) although data are more variable than the LiDAR data, falling 223 

both above and below the LiDAR DSM in figure 4. Importantly, there is a region (annotated as 224 

Drainage Ditch in figure 4) that falls markedly below the plane of the LiDAR data but also 225 

corresponds with the position of a drainage ditch in the landscape. In contrast, the TLSmax 226 

surface demonstrates a level consistently above the plane of the LiDAR data both as discrete 227 

data (figure 4) and as an overall trend (figure5).   228 

Along this transect, the TLSmax surface also exhibits areas of both high and low variation 229 

from the TLSmin surface.  In addition, there are six discrete regions in which the TLSmin layer 230 

displays increased divergence from the plane of the LiDAR layer (figure 4). These regions also 231 

correspond with positions at which the TLSmax surface peaks and the density of the TLS point 232 

cloud noticeably decreases. Plotting DGPS points measuring the position of the dense tussock 233 

structures and the adjacent ground surface across an extended transect, permits a further test of 234 

how well the LiDAR data represents the ground surface (figure 6).  235 

#Figure 4 approximately here# 236 

#Figure 5 approximately here# 237 

Data in figure 6 confirm that the LiDAR DSM is largely bounded by the surveyed ground 238 

surface and the vertical height of the dense tussock structure in this transect. Furthermore, at 239 

any DGPS point pair, the LiDAR surface appears skewed toward either the ground surface 240 

(DGPS tussock bottom) or the tussock tops, with no consistent bias.  241 
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#Figure 6 approximately here# 242 

Hypotheses two and three: discrimination of vegetation and anthropogenic structures  243 

The extraction of spatially distinct areas of microtopographic sinks from the detrended LiDAR 244 

DSM supports evaluation of both hypotheses 2 and 3. In this analysis, dense areas of 245 

microtopographic sinks do not fit the expected position of the discrete linear features known to 246 

be anthropogenic drainage features. Figure 7 illustrates the results of manually digitising 247 

dominant vegetation classes across the catchment (7a) from high-resolution aerial photography 248 

(7b) and comparing these with the dense areas of microtopographic sinks classified from 249 

detrended LiDAR data from (7c). Visual comparison of the images suggests that the large 250 

extents of wet Molinia caerulea and wet Juncus spp. dominated vegetation observed in the 251 

catchment are also captured by the LiDAR data as a complex surface characterised by a high 252 

density of microtopographic sinks. The contiguous area that is mapped as wet Molinia 253 

caerulea and wet Juncus spp. from aerial photography represents 15.9% of the catchment, 254 

versus 18.6% that the LiDAR classification delineates as dominated by vegetation and 255 

microtopography characteristic of flushed areas. The smaller (often linear) areas of Juncus spp. 256 

in the west of the catchment are however, not described well by the LiDAR classification.                                                                 257 

#Figure 7 approximately here#                                                                                                                                                                        258 

With respect to hypothesis three, figure 8a reveals that anthropogenic landscape features with 259 

constrained vertical variation (≥ -0.11 m) can also be identified and classified using the 260 

detrended LiDAR DSM, and the spatial extent of such features delineated and measured. The 261 

linear structure of surface drains is visible here as black pixels, alongside the dense areas of 262 

microtopographic sinks (blue pixels) used to delineate the flushed (wet Molinia caerulea and 263 

wet Juncus spp dominated) areas. The linear anthropogenic features extracted using these 264 

classifications appear discontinuous across the land surface. Indeed, when the LiDAR DSM is 265 

used as an input to simple overland flow routing algorithms (Fig 8b) the anthropogenic 266 
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drainage features extracted (shown as blue lines) demonstrate only a weak control on these 267 

flow pathways (grey scale, darker colours representing higher order channels). Many higher 268 

order flow accumulation pathways also appear to function entirely independently of the 269 

mapped artificial drainage network outlined in blue (Fig 8b), in agreement with the 270 

disconnected nature of linear features extracted in fig 8b. The LiDAR data, whilst able to 271 

detect the 2D location of drainage ditches, does not therefore appear able to quantify whether 272 

or not they are continuous drainage features in the landscape.   273 

#Figure 8 approximately here# 274 

DISCUSSION 275 

Moving beyond qualitative visual analysis of LiDAR data, such as simple hillshade models, is 276 

an essential step to quantify landscape scale ecohydrological functioning and the associated 277 

landscape services. Given this, understanding the accuracy with which LiDAR products are 278 

able to measure ecohydrologically-relevant structures in the uplands is critical if such analysis 279 

is to be considered representative of “real world” structure and subsequent function. This study 280 

has shown that while vegetation canopy height and drainage ditch depth are underestimated by 281 

airborne LiDAR DSMs, the aerial extent of these features can still be determined in a spatial 282 

context. The following sections discuss the various ramifications of these findings. 283 

Vertical accuracy of LiDAR Data – combined LiDAR and TLS analysis  284 

Hypothesis one explored how airborne LiDAR DSMs compare with TLS data, in relation to 285 

their abilities to capture structural information about vegetation and topography. Numerous 286 

researchers have alluded to the sources of error in a wide range of DSM’s (Fisher and Tate 287 

2006; Li et al. 2011; Wise 2011). However, few authors propose solutions to resolve levels of 288 

error with respect to independent measurements (see Aguilar et al. 2010 and Hodgson and 289 

Bresnahan 2004 for notable exceptions).  Herein, we illustrate that the TLSmax and TLSmin 290 
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surfaces describe the maximum and minimum measured vertical extent of the vegetation 291 

canopy at a fine spatial resolution. Therefore, TLS data are extremely useful in describing the 292 

information content and error associated with airborne LiDAR data and its ability to describe 293 

spatial shifts in vegetation organisation. Data presented in figure 3 illustrate that the LiDAR 294 

DSM elevation values correlate with the TLSmin surface far more than they do with the 295 

TLSmax surface over the extent of the AOI (87% of TLSmax is above the plane of the LiDAR 296 

data). These results demonstrate that the LiDAR data most closely represent the ground surface 297 

and not the canopy structure. Furthermore, the highlighted surface drain feature (figure 3) is 298 

entirely below the plane of the LiDAR DSM in the AOI studied. Such underestimation of 299 

vegetation canopy heights and the depth of drainage features have important implications 300 

where LiDAR-derived structures are used as indicators of ecohydrological condition (Anderson 301 

et al. 2010), and as inputs to spatially distributed models (Beven, 2011).  302 

More detailed analysis of the magnitude of vertical variation between the LiDAR and TLS 303 

layers (figures 4 and 5) also illustrated that the LiDAR DSM more closely represents a 304 

smoothed version of the ground surface (described by the TLSmin data) lacking 305 

microtopographic structure. Topographic features, such as the surface drainage network, are 306 

estimated in error in DSM data for the following reasons according to Fisher and Tate (2006): 307 

• Variability in the accuracy, density and distribution of source data,  308 

• Processing and interpolation  309 

• Characteristics of the terrain surface being modelled.   310 

In this case the LiDAR DSMs created provide one x, y, z coordinate for every 0.5 m cell, which 311 

is a relatively coarse resolution when compared with the scale of drainage ditch features (often 312 

they are only 0.3 m wide in these landscapes). In addition, the dense, low-sward vegetation 313 

tussocks disrupt the return of the laser pulse from the ground surface such that 314 
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microtopographic depressions are not captured consistently, especially when tussock forming 315 

grasses occur within, or overhang, surface drainage pathways (as evident in figure 3).  316 

Therefore, in contrast to forested landscapes, where vegetation is typically less dense and more 317 

uniform in height (Vierling et al 2008), it is likely that LiDAR DSMs will always generate an 318 

uncertain representation of the ecosystem structure in short-sward ecosystems. In this example, 319 

the LiDAR DSM is biased towards the ground surface, as delineated by the TLSmin dataset, 320 

which lies consistently close to and above the trend line for the LiDAR DSM (figure 5).   321 

To understand the specific effect of denser vegetation components on the LiDAR DSM, DGPS 322 

survey data were also compared with the LiDAR surface.  Figure 6 illustrated that the LiDAR 323 

DSM data captured the ground surface and dense grass tussock centres reasonably well as a 324 

composite surface, with all points falling within the bounds created from the DGPS 325 

measurements. This additional data analysis suggests that the LiDAR DSM data represent both 326 

the ground surface and the denser components of the vegetation structure only and not the 327 

sward canopy structure. For an airborne product flown at an altitude of 800 – 1000m above 328 

ground level, this ability to approximate the range of tussock top-bottom values suggests some 329 

promise in using the LiDAR DSM in these low-sward landscapes to assess habitat structure 330 

(Anderson et al. 2010; Korpela et al. 2009; Vierling et al. 2008). However, these results 331 

highlight the necessity to evaluate the modelled LiDAR surface with finer resolution data prior 332 

to inference of ecohydrological structure. Indeed, where LiDAR data are used to provide 333 

metrics of habitat condition without three-dimensional validation of observed vegetation 334 

structures such as TLS (Kincey and Challis 2009; Korpela et al. 2009; Li et al. 2011; Streutker 335 

and Glenn 2006), the certainty with which we can use LiDAR data to understand the condition 336 

of these systems spatially is limited. 337 

TLS data in isolation also provide a useful tool in the quantification of both the ecological and 338 

hydrological structure of these upland ecosystems over smaller extents. The technique 339 
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presented here provides discrete layers which are useful in measuring vegetation 340 

canopy/biomass and the underlying surface structure.  Whether used independently or in 341 

conjunction with airborne LiDAR, critical evaluation of TLS data is still necessary to ensure 342 

robust interpretation. For example, data presented here (figure 4) illustrate that at locations 343 

where the point cloud becomes sparse the TLSmin layer appears to offer a markedly poorer 344 

representation of the underlying ground surface. In agreement with wider studies using TLS 345 

(Anderson et al. 2009; Watt and Donoghue 2005), these findings highlight the difficulties of 346 

using TLS data to measure complex and fine-scaled vegetation structure in situ. In this case, 347 

the error is attributable to the method of data generation (Fisher and Tate 2006). i.e. vegetation 348 

canopy completely obscuring the ground from the laser or because the area is subject to 349 

shadowing in the point cloud. As such, this deviation of the TLSmin surface from the LiDAR 350 

DSM agrees with the LiDAR data predominantly describing a smoothed ground surface. 351 

However, these results illustrate that structural measurements from any platform, even at fine 352 

spatial scales, can be subject to the same sources of error in short sward ecosystem.  353 

Discrimination of vegetation and anthropogenic structures  354 

Although the preceding results and discussion demonstrate that LiDAR data underestimate 355 

both canopy height and drainage network volume, numerical interrogation of detrended LiDAR 356 

data has shown that spatial information on ecohydrologically relevant vegetation communities 357 

(hypothesis 2) and anthropogenic drainage features (hypothesis 3), can still be captured. Data 358 

in figure 7 confirm that the detrended LiDAR data can be used to effectively map the extent of 359 

flushed (i.e. wetter) vegetation communities. However, the preceding findings suggest that 360 

increased surface complexity used to delineate these areas is, in fact, a measurement of the 361 

change in the sub-canopy, highlighting microtopographic landforms associated with these 362 

waterlogged vegetation communities dominated by Juncus spp. and wet Molinia caerulea 363 

stands.  364 
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Features identified as anthropogenic peatland surface drainage in this analysis have been 365 

validated as being (largely) continuous and connected, following extensive fieldwork and GPS 366 

mapping of drainage features at these sites (figure 8). However, results in figure 8 suggest that 367 

they appear to be highly discontinuous features when detected by LiDAR. Under-368 

representation of microtopographic structure in LiDAR DSMs (figure 4) explains why such 369 

drainage features extracted for the Aclands catchment in figure 8a appear to be discontinuous. 370 

Consequently, these features are shown to have only a limited influence on the flow paths 371 

modelled in the flow accumulation model illustrated in figure 8b, though in reality, they may 372 

be highly significant in controlling surface-flow networks. The extent to which such LiDAR 373 

data can be relied upon as good representations of microtopography (anthropogenic or 374 

otherwise) controlling ecohydrological function, is therefore subject to the same implicit error 375 

or uncertainty previously discussed (Jones et al. 2008). Where such data are used as inputs to 376 

numerical hydrological models in peatland landscapes (Rothwell et al. 2010), understanding 377 

such uncertainty in the representation of drainage structure is critical to ensure the spatial 378 

quality of model predictions.  379 

Acknowledging the error and understanding the source of it in such data can also be 380 

advantageous to the ecohydrologist. Knowing the nature of the error and its magnitude makes 381 

airborne LiDAR data potentially far more powerful as inputs to ecohydrological modelling 382 

frameworks. For example, using numerical processing such as “growing” extracted features 383 

(Espindola et al. 2006) describing discontinuous drainage features and using these to modify 384 

DSM values (Li et al. 2011) may allow researchers to represent the connectivity of surface 385 

drainage structures in a modelled catchment more accurately. Subsequently, better predictions 386 

of both the spatial distribution of flow routing and resultant downstream hydrographs may 387 

result, in turn aiding the quantification of the associated ecohydrological landscape services 388 

(Grand-Clement et al. 2013). These data also highlight the value of a combined RS approach in 389 
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confirming assumptions made from any one dataset. For example, cross validation of modelled 390 

surface wetness indices generated from LiDAR and TABI (airborne thermography data), 391 

(Luscombe et al. 2012) or LiDAR and near infra-red data (Harris and Bryant 2009) can be 392 

performed, enabling the observed ecohydrological patterning to be evaluated prior to 393 

integration into numerical modelling of the ecohydrological functioning.  394 

CONCLUSION 395 

This paper demonstrates that the spatially explicit measurements provided by LiDAR datasets 396 

are subject certain to specific errors, related to both the spatial resolution of the dataset and the 397 

interaction of laser ranging systems with short-sward landscapes. Results show that airborne 398 

LiDAR data underestimate vegetation canopy volume/height and the volume/depth of surface 399 

drainage networks, both of which are key spatial variables in understanding ecohydrological 400 

functioning at a landscape scale.  Understanding this uncertainty improves the way in which 401 

these data can be used as numerical model inputs, and the confidence which researchers should 402 

place on these data when used as a surrogate for field measurements over a variety of 403 

disciplines and ecosystems. Furthermore, this work demonstrates that using TLS data, the 404 

canopy structure can be described at a fine spatial resolution and with greater precision than 405 

with LiDAR data, although over far smaller extents. These data illustrate the need to couple 406 

LiDAR data with fine spatial resolution altimetry data (i.e. TLS) and field measurements, to 407 

improve models of the ecosystem structure and describe the spatial attributes of the ecosystem 408 

at a scale that is appropriate to capture the ecohydrological functioning of the landscape.  409 

  410 

Page 18 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

References 411 

 412 

Aguilar FJ, Mills JP, Delgado J, Aguilar MA, Negreiros JG, Perez JL. 2010. Modelling vertical 413 

error in LiDAR-derived digital elevation models. ISPRS Journal of Photogrammetry and 414 

Remote Sensing 65(1) : 103-110. 415 

 416 

Anderson K, Bennie J, Wetherelt A. 2009. Laser scanning of fine scale pattern along a 417 

hydrological gradient in a peatland ecosystem. Landscape Ecology 25(3) : 477-492. 418 

 419 

Anderson K, Bennie J, Milton EJ, Hughes PDM, Lindsay R, Meade R. 2010. Combining 420 

LiDAR And Ikonos Data For Eco-hydrological Classification Of An Ombrotrophic Peatland. 421 

Journal of Environmental Quality. 39(1) : 260-273. 422 

 423 

Backshall J, Manley J, Rebane M. 2001. The Upland Management Handbook. English Nature.  424 

 425 

Bain CG, Bonn A, Stoneman R, Chapman S, Coupar A, Evans M, Gearey B, Howat M, 426 

Joosten H, Keenleyside C, Labadz J, Lindsay R, Littlewood N, Lunt P, Miller CJ, Moxey A, 427 

Orr  H, Reed M, Smith P, Swales V, Thompson D.B.A, Thompson P.S, Van de Noort R, 428 

Wilson JD, Worrall F. 2011. IUCN UK Commission of Inquiry on Peatlands. IUCN UK 429 

Peatland Programme: Edinburgh. 430 

 431 

Barber KE. 1981. Peat Stratigraphy and Climatic Change. Rotterdam : Balkema. 432 

 433 

Barbier N, Proisy C, Vega C, Sabatier D, Couteron P. 2011. Bidirectional texture function of 434 

high resolution optical images of tropical forest: An approach using LiDAR hillshade 435 

simulations. Remote Sensing of Environment 115(1) : 167-179. 436 

 437 

Belyea LR, Clymo RS. 2001. Feedback control of the rate of peat formation. Proceedings of 438 

the Royal Society of London: Biological Sciences 268 : 1315 - 1321. 439 

 440 

Beven K. 2012. Rainfall-Runoff Modelling, The Primer. John Wiley & Sons Ltd: Chichester. 441 

 442 

Beven K, Freer J. 2001. A dynamic TOPMODEL. Hydrological Processes 15(10) : 1993-2011. 443 

Page 19 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 444 

Charman D. 2002. Peatlands and Environmental Change. John Wiley & Sons Ltd: Chichester.  445 

 446 

Chassereau JE, Bell JM, Torres R. 2011. A comparison of GPS and LiDAR salt marsh DEMs. 447 

Earth Surface Processes and Landforms 36(13) : 1770-1775. 448 

 449 

Clawges R, Vierling K, Vierling L, Rowell E. 2008. The use of airborne lidar to assess avian 450 

species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of 451 

Environment 112(5) : 2064-2073. 452 

 453 

Danson FM, Hetherington D, Morsdorf F, Koetz B, Allgower B. 2007. "Forest Canopy Gap 454 

Fraction From Terrestrial Laser Scanning." Geoscience and Remote Sensing Letters, IEEE 4(1) 455 

: 157-160. 456 

 457 

Drewitt AL, Manley VJ. 1997. The vegetation of the mountains and moorlands of England. 458 

English Nature Research Reports. English Nature, pp. 218. 459 

 460 

Emanuel RE, Hazen AG, McGlynn BL, Jencso KG. 2013. Vegetation and topographic 461 

influences on the connectivity of shallow groundwater between hillslopes and streams. 462 

Ecohydrology 7 : 887-895. DOI: 10.1002/eco.1409 463 

 464 

Espindola GM, Camara G, Reis IA, Bins LS, Monteiro AM. 2006. Parameter selection for 465 

region growing image segmentation algorithms using spatial autocorrelation. International 466 

Journal of Remote Sensing 27(14) : 3035-3040. 467 

 468 

Evans M, Lindsay J. 2010. High resolution quantification of gully erosion in upland peatlands 469 

at the landscape scale. Earth Surface Processes and Landforms 35(8) : 876-886. 470 

 471 

Fisher B, Turner RK, Morling P. 2009. Defining and classifying ecosystem services for 472 

decision making. Ecological Economics 68(3) : 643-653. 473 

 474 

Fisher PF, Tate NJ. 2006. Causes and consequences of error in digital elevation models. 475 

Progress in Physical Geography 30(4) : 467-489. 476 

 477 

Page 20 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Grand-Clement E, Anderson K, Smith D, Luscombe DJ, Gatis N, Ross M. Brazier RE. 2013. 478 

Evaluating ecosystem goods and services after restoration of marginal upland peatlands in 479 

South-West England. Journal of Applied Ecology 50(2) : 324-334. 480 

 481 

Harris A, Bryant RG. 2009. A multi-scale remote sensing approach for monitoring northern 482 

peatland hydrology: Present possibilities and future challenges. Journal of Environmental 483 

Management 90(7) : 2178-2188. 484 

 485 

Hinsley SA, Hill RA, Gaveau DLA, Bellamy PE. 2002. Quantifying woodland structure and 486 

habitat quality for birds using airborne laser scanning. Functional Ecology 16(6) : 851-857. 487 

 488 

Hodgson ME, Bresnahan P. 2004. Accuracy of airborne lidar-derived elevation: empirical 489 

assessment and error budget. Photogrametric Engineering and Remote Sensing 70(3) : 331-490 

340. 491 

 492 

Holden J, Chapman PJ, Labadz JC. 2004. Artificial drainage of peatlands: hydrological and 493 

hydrochemical process and wetland restoration. Progress in Physical Geography 28(1) : 95–494 

123. 495 

 496 

Holden, J. 2005. Peatland hydrology and carbon release: why small-scale process matters. 497 

Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering 498 

Sciences 363 : 2891-2913. 499 

 500 

Horning N, Robinson JA, Sterling EJ, Turner W, Spector S (eds). 2010. Remote Sensing for 501 

Ecology and Conservation: A Handbook of Techniques. Oxford University Press: Oxford and 502 

New York.  503 

 504 

Hutton C, Brazier RE. 2012. Quantifying riparian zone structure from airborne LiDAR: 505 

Vegetation filtering, anisotropic interpolation, and uncertainty propagation. Journal of 506 

Hydrology 442-443(0) : 36-45. 507 

 508 

Ivanov KE. 1981. Water movement in mirelands. Academic Press Inc: London. 509 

 510 

Page 21 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Jenson SK, Domingue JO. 1988. Extracting topographic structure from digital elevation data 511 

for geographic information system analysis. Photogrammetric Engineering and Remote 512 

Sensing 54(11) : 1593-1600. 513 

 514 

Jones KL, Poole GC, O'Daniel SJ, Mertes LAK, Stanford JA. 2008. Surface hydrology of low-515 

relief landscapes: Assessing surface water flow impedance using LIDAR-derived digital 516 

elevation models. Remote Sensing of Environment 112(11) : 4148-4158. 517 

 518 

Kincey M, Challis K. 2009. Monitoring fragile upland landscapes: The application of airborne 519 

lidar. Journal for Nature Conservation 18(2) : 126-134. 520 

 521 

Korpela I, Koskinen M, Vasander H, Holopainen M, Minkkinen K. 2009. Airborne small-522 

footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, 523 

vegetation, and habitats. Forest Ecology and Management 258(7) : 1549-1566. 524 

 525 

Lane C, D’Amico E. 2010. calculating the ecosystem service of water storage in isolated 526 

wetlands using LiDAR in north central Florida, USA. Wetlands 30(5) : 967-977. 527 

 528 

Li S, MacMillan RA, Lobb DA, McConkey BG, Moulin A, Fraser WR. 2011. Lidar DEM 529 

error analyses and topographic depression identification in a hummocky landscape in the 530 

prairie region of Canada. Geomorphology 129(3-4) : 263-275. 531 

 532 

Lindsay R. 2010. Peatbogs and Carbon: A Critical Synthesis. University of East London: 533 

London.  534 

 535 

Luscombe DJ, Anderson K, Grand-Clement E, Le-Feuvre N, Smith D, & Brazier RE. 2012. 536 

April. Assessing the ecohydrological status of a drained peatland: Combining thermal airborne 537 

imaging, laser scanning technologies and ground water monitoring. EGU General Assembly 538 

Conference Abstracts (Vol. 14, p. 740). 539 

 540 

Mitchell PJ, Lane PNJ, Benyon RG. 2012. Capturing within catchment variation in 541 

evapotranspiration from montane forests using LiDAR canopy profiles with measured and 542 

modelled fluxes of water. Ecohydrology 5(6) : 708-720. 543 

 544 

Page 22 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Moore PD, Bellamy DJ. 1974. Peatlands. London : Elek Science. 545 

 546 

Newman P. (2010). Domestic and industrial peat cutting on North-Western Dartmoor, 547 

Devonshire. An archaeological and historical investigation. In. South-West landscape 548 

Investigations reports, Dartmoor National Park. 549 

 550 

Rango A, Chopping M, Ritchie J, Havstad K, Kustas W, Schmugge T. 2000. morphological 551 

characteristics of shrub coppice dunes in desert grasslands of southern new mexico derived 552 

from scanning LIDAR. Remote Sensing of Environment 74(1) : 26-44. 553 

 554 

Rothwell JJ, Lindsay JB, Evans MG, Allott THE. 2010. Modelling suspended sediment lead 555 

concentrations in contaminated peatland catchments using digital terrain analysis. Ecological 556 

Engineering 36(5) : 623-630. 557 

 558 

Strahler AN. 1957. Quantitative analysis of watershed geomorphology. American Geophysical 559 

Union Transactions 38(6) : 912-920. 560 

 561 

Streutker DR, Glenn NF. 2006. LiDAR measurement of sagebrush steppe vegetation heights. 562 

Remote Sensing of Environment 102(1) : 135-145. 563 

 564 

Taylor J. 1983. Peatlands of Great Britain and Ireland. In: Mires: Swamp, Bog, Fen and Moor. 565 

4B Regional Studies (Ecosystems of the World) ed. Gore AJP. pp. 1-46. Elsevier Scientific: 566 

Amsterdam.  567 

 568 

Turnbull L, Wainwright J, Brazier RE. 2008. A conceptual framework for understanding semi-569 

arid land degradation: ecohydrological interactions across multiple-space and time scales. 570 

Ecohydrology 1(1) : 23-34. 571 

 572 

Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM. 2008. LiDAR: shedding 573 

new light on habitat characterization and modeling. Frontiers in Ecology and the Environment 574 

6(2) : 90-98. 575 

 576 

Watt PJ, Donoghue DNM. 2005. Measuring forest structure with terrestrial laser scanning. 577 

International Journal of Remote Sensing 26(7) : 1437-1446. 578 

Page 23 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 579 

Wise S. 2011. Cross-validation as a means of investigating DEM interpolation error. 580 

Computers & Geosciences 37(8) : 978-991. 581 

 582 

Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD. 2003. Characterizing 583 

vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment 584 

87(2-3) : 171-182. 585 

  586 

Page 24 of 35

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Tables 587 

 588 

Table 1, Percentage of the TLSmax and TLSmin layers that have z values above 589 

and below the plane of the LiDAR derived DSM. 590 

 591 

  592 

Classification

TLS Max 

Surface

TLS Min 

Surface

% below 

LiDAR DSM 13 45

% above 

LiDAR DSM 87 55
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Figure captions 593 

 594 

Figure 1: a) and b) Location of Aclands and Spooners study catchments and c) the 595 

TLS study area within Spooners watershed defined from airborne LiDAR data. d) 596 

and e) illustrate the study area used for the TLS survey. d) Shows the scan locations 597 

and AOI overlaying an aerial photograph of the study area (Co-ordinates for upper 598 

left 51° 7'23.81"N, 3°45'2.76"W and bottom right 51° 7'21.69"N,  3°44'59.70"W). e) 599 

Shows the spatial extent of the TLS data collected as a grid, each dot representing 600 

one of > 7.5 × 10
6
 data points. 601 

Figure 2: TLS data capture locations and respective overlapping scan zones. The 602 

darker polygon within the station 4 scan region represents the area of greatest point 603 

cloud overlap as shown in figure 1e). The Area of Interest (AOI) is indicated, 604 

showing that it lies within the zone of maximal point-cloud overlap. 605 

Figure 3: Hillshade models of both (a) TLSmax and (b) TLSmin Surfaces for the 606 

Area of Interest (AOI). Areas higher than the LiDAR DSM surface are overlain with 607 

black and those below the LiDAR DSM are overlain with white.  608 

Figure 4: TLS and LiDAR topographic profiles extracted from the Studied AOI 609 

within Spooners Catchment. TLSmax and TLSmin represent the maximum and 610 

minimum vertical extent of the TLS data along this transect. Annotations highlight 611 

the position of the drainage ditch in the transect and an example of a location where 612 

TLSmin and LiDAR surfaces diverge as a result of a sparser point cloud density. 613 
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Figure 5: Modelled relationships (second order polynomial, N =1040 for TLSmax 614 

and TLSmin) describing the under-representation of the vegetation canopy 615 

(TLSmax) by LiDAR DSM data. Data are generated as trends of topographic 616 

profiles extracted in figure 4.  617 

Figure 6: Alternate LiDAR topographic profile extracted from the wider TLS scan 618 

zone (figure 1) within Spooners catchment. DGPS Survey data describing the 619 

maximum and minimum vertical extent of dense vegetation components (tussocks) 620 

are included as paired measurements along the transect length. 621 

Figure 7: Habitat mapping of Aclands Catchment. (a) Vegetation communities 622 

digitised from aerial imagery. (b) High resolution aerial photograph. (c) Flushed 623 

vegetation Area delineated from classified LiDAR data. 624 

Figure 8: Mapping of surface drainage. (a) Data extracted from detrended LiDAR 625 

data (Aclands Catchment) and classified into surface drainage networks, whether 626 

natural or artificial (Black pixels) and rush dominated “flushed” zones (blue 627 

pixels). Pixels were classified using a threshold of pixel density. (b) A simple 628 

overland flow accumulation model with streams ordered using the Strahler 629 

classification (Strahler 1957) whereby stream size is classified according to a 630 

hierarchy of tributaries. A stream with no tributaries is 1st order; when two 1st 631 

order streams meet they subsequently form a 2nd order stream and so on. Only 4th 632 

to 9th order streams are displayed.  633 
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Figure 1: a) and b) Location of Aclands and Spooners study catchments and c) the TLS study area within 
Spooners watershed defined from airborne LiDAR data. d) and e) illustrate the study area used for the TLS 

survey. d) Shows the scan locations and AOI overlaying an aerial photograph of the study area (Co-

ordinates for upper left 51° 7'23.81"N, 3°45'2.76"W and bottom right 51° 7'21.69"N, 3°44'59.70"W). e) 
Shows the spatial extent of the TLS data collected as a grid, each dot representing one of > 7.5 × 106 data 

points.  
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Figure 2: TLS data capture locations and respective overlapping scan zones. The darker polygon within the 
station 4 scan region represents the area of greatest point cloud overlap as shown in figure 1e). The Area of 

Interest (AOI) is indicated, showing that it lies within the zone of maximal point-cloud overlap.  
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Figure 3: Hillshade models of both (a) TLSmax and (b) TLSmin Surfaces for the Area of Interest (AOI). 
Areas higher than the LiDAR DSM surface are overlain with black and those below the LiDAR DSM are 

overlain with white.  
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Figure 4: TLS and LiDAR topographic profiles extracted from the Studied AOI within Spooners Catchment. 
TLSmax and TLSmin represent the maximum and minimum vertical extent of the TLS data along this 
transect. Annotations highlight the position of the drainage ditch in the transect and an example of a 

location where TLSmin and LiDAR surfaces diverge as a result of a sparser point cloud density.  
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Figure 5: Modelled relationships (second order polynomial, N =1040 for TLSmax and TLSmin) describing the 
under-representation of the vegetation canopy (TLSmax) by LiDAR DSM data. Data are generated as trends 

of topographic profiles extracted in figure 4.  
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Figure 6: Alternate LiDAR topographic profile extracted from the wider TLS scan zone (figure 1) within 
Spooners catchment. DGPS Survey data describing the maximum and minimum vertical extent of dense 

vegetation components (tussocks) are included as paired measurements along the transect length.  
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Figure 7: Habitat mapping of Aclands Catchment. (a) Vegetation communities digitised from aerial imagery. 
(b) High resolution aerial photograph. (c) Flushed vegetation Area delineated from classified LiDAR data.  
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Figure 8: Mapping of surface drainage. (a) Data extracted from detrended LiDAR data (Aclands Catchment) 
and classified into surface drainage networks, whether natural or artificial (Black pixels) and rush dominated 
“flushed” zones (blue pixels). Pixels were classified using a threshold of pixel density. (b) A simple overland 

flow accumulation model with streams ordered using the Strahler classification (Strahler 1957) whereby 
stream size is classified according to a hierarchy of tributaries. A stream with no tributaries is 1st order; 
when two 1st order streams meet they subsequently form a 2nd order stream and so on. Only 4th to 9th 

order streams are displayed.  
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