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ABSTRACT

The water distribution network (WDN) design problem is primarily concerned with finding the optimal

pipe sizes that provide the best service for minimal cost; a problem of continuing importance both in

the UK and internationally. Consequently, many methods for solving this problem have been

proposed in the literature, often using tailored, hand-crafted approaches to more effectively optimise

this difficult problem. In this paper we investigate a novel hyper-heuristic approach that uses genetic

programming (GP) to evolve mutation operators for evolutionary algorithms (EAs) which are

specialised for a bi-objective formulation of the WDN design problem (minimising WDN cost and head

deficit). Once generated, the evolved operators can then be used ad infinitum in any EA on any WDN

to improve performance. A novel multi-objective method is demonstrated that evolves a set of

mutation operators for one training WDN. The best operators are evaluated in detail by applying them

to three test networks of varying complexity. An experiment is conducted in which 83 operators are

evolved. The best 10 are examined in detail. One operator, GP1, is shown to be especially effective

and incorporates interesting domain-specific learning (pipe smoothing) while GP5 demonstrates the

ability of the method to find known, well-used operators like a Gaussian.
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INTRODUCTION

The water distribution network (WDN) design problem is

primarily concerned with optimising the size (diameters)

of pipes in a network in order to satisfy customer demand

while adhering to operational hydraulic constraints such

as head and velocity requirements. Modification of pipe

sizes affects the hydraulic conditions in a network and

hence the quality of the network based on its ability to

serve the various demand points. As such, the problem is

complicated as the overall hydraulic conditions are affected

by each pipe and so changes to one pipe will have a different

effect on the overall conditions depending on the sizes of all

the other pipes in the network, creating interdependencies

between the relative sizes of different pipes in the network.

As such, each pipe cannot be designed in isolation, but

rather as a combination of sizes for all pipes in the network.

This combinatorial effect means that even for relatively

small networks, the number of possible combinations of

pipes is very large and makes enumeration of all the possible

designs impossible within reasonable time. If, for example,

there were six potential sizes for each pipe in a network of

just 30 pipes, there would be 2.21 × 1023 possible combi-

nations – far more than is possible to evaluate within

reasonable time – and so WDN design is therefore known

as a NP-hard problem (Yates et al. ).
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The quality of potential WDN designs (candidate sol-

utions) can be evaluated against a range of criteria, such

as the ability to satisfy demand, by building computational

models of these networks in programs such as EPANET

(Rossman ). Such models provide a means for automati-

cally evaluating candidate network designs and therefore

enables the use of optimisation techniques like genetic algor-

ithms (GAs) (Goldberg ; Simpson et al. ; Savić &

Walters 1997) to automatically search for approximately

optimal network designs. GAs are a type of evolutionary

algorithm (EA) which are nature inspired methods that

mimic Darwinian evolution and use populations of candi-

date solutions (potential network designs) to explore the

problem search space, looking for optimal network designs

over a number of generations by iteratively mutating and

proposing new designs. Although these traditional optimis-

ation methods have been demonstrated numerous times in

the literature to be effective at solving the WDN design pro-

blem, in recent years a new methodology called hyper-

heuristics has been established which is more effective at

solving a wide range of optimisation problems, including

the WDN design problem. Hyper-heuristics are able to pro-

vide improved performance over traditional optimisers, like

EAs, as they utilise machine learning techniques to tailor the

optimiser (e.g., EA) to each problem, like the WDN design

problem, through automated learning methods or, as is in

this paper, construction of optimised heuristics (like a

GA’s mutation operator). The benefit of meta-optimisation

methods like hyper-heuristics is that they are able to more

efficiently solve optimisation problems by optimising the

optimiser and tailoring them to the problem, reducing the

resources required to obtain the same quality network

designs which makes optimisation of large-scale problems

more feasible within a reasonable time.

Generative hyper-heuristic approaches automate the

process of creating tailored, more effective optimisation

operators for a specific problem, such as the WDN design

problem. By automating this process of optimising the opti-

miser, rather than hand-crafting new mutation operators,

hyper-heuristics are able to consider a much larger set of

mutation operators than a human expert and thus poten-

tially able to find better mutation operators. Once the

hyper-heuristic has evolved a tailored mutation operator

(or collection of operators), the evolved mutation operator(s)

is then fixed and thus reusable and can be easily incorpor-

ated into existing meta-heuristic optimisers like the well-

known genetic algorithm NSGA-II (Deb et al. ) or any

other EA of choice. The power of this approach is even

more apparent when it can be conceived that a set of tai-

lored mutation operators could be utilised by selective

hyper-heuristics such as AMALGAM (Raad et al. ) or

the MCHH (McClymont et al. b), both of which have

been successfully applied to the WDN problem, and so com-

bine the tuning of the generative hyper-heuristic and the

adaptive strength of the online selective hyper-heuristic.

This paper presents a hyper-heuristic approach for evol-

ving mutation operators for the WDN design problem. The

proposed approach extends the early, single-objective

method presented in McClymont et al. (a) and presents

a novel application of genetic programming (GP) based

hyper-heuristics for the bi-objective WDN design problem.

The paper studies the potential of evolving novel EA

mutation operators tailored for the WDN design problem

and for use in any EA. The evolved mutation operators are

examined through an experiment which illustrates the

potential of this method.

The remainder of this section is dedicated to a summary

of the key relevant works in the areas of WDN design and

hyper-heuristic research. The Method section describes the

hyper-heuristic method used in this study which is applied

to a bi-objective WDN design problem outlined in the

Water distribution network problem sub-section of Exper-

imental setup. The Experimental setup section describes

an experiment which demonstrates the efficacy of the

method which is shown in the Results section. In particular,

one mutation operator is highlighted which has interesting

properties that reflect useful, domain-specific behaviour.

The method, results and findings are discussed in the

Conclusion.

The water distribution network design problem

Traditionally, the WDN design problem has been formu-

lated as a single-objective problem where the quality of the

network is based solely on the economic impact of the

design; i.e., given a fixed layout, the optimal network

design is one which meets the hydraulic requirements with

the least possible cost. The hydraulic constraints are usually
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given as an acceptable range of node pressures or pipe

velocities.

A range of methods has been proposed in the literature

for solving the WDN problem. Perhaps the most common

approach is the use of meta-heuristic EAs (Laumanns et al.

), such as GAs (Goldberg ; Simpson et al. ;

Savić &Walters ). Themethods use ‘populations’ of indi-

vidual network designs and evolutionary operators, like

crossover and mutation, to mimic the process of evolution

and search for good network designs over a number of gener-

ations. While these methods have been shown in numerous

studies to be effective at solving a variety of single-objective

and multi-objective variants of the WDN, it is acknowledged

that EA methods require a large number of evaluations of

potential networks in order to locate good network designs.

While this is acceptable for small networks, the expensive

nature of EA search (in terms of time and computing

resources) coupled with the complex and slow run times of

many network simulation tools can be prohibitive when

searching larger network designs.

In order to combat the problem of expensive EA

searches, a number of fast methods have been explored in

the literature that aim to either boost the initial EA gener-

ations or replace the EA search process altogether. For

example, Keedwell & Khu () proposed a cellular auto-

mata (CA) inspired approach to solving the WDN design

problem which required significantly less evaluations. Fur-

thermore, when coupled with GAs, the CA approach was

shown to provide an efficient enhancement to the early

stages of the GA search. This technique and others like

them have led to the creation of algorithms for particular

problems and problem types through the construction of

specialised heuristics and GA operators. This has typically

been undertaken as a manual process, utilising human

expertise and incorporating this into the search process.

However, recently, an automated approach to this problem

has been developed in the field known as hyper-heuristics,

effectively the automated construction of meta-heuristics.

Hyper-heuristics

In recent years, a new methodology has emerged in the field

of optimisation called hyper-heuristics (Cowling et al. ;

Burke et al. ). This new paradigm is dedicated to

extracting key optimisation mechanics and in order to

make them more generalised across many different sets of

optimisation problems while utilising highly specialised

domain-specific knowledge.

Two types of hyper-heuristics have been identified in the

literature, called selective and generative hyper-heuristics

(Burke et al. , ). Selective hyper-heuristics are

designed to optimise the selection and sequencing of exist-

ing ‘low-level heuristics’, such as mutation operators in an

EA, to optimise both search speed and quality of results.

Examples of selective hyper-heuristics in hydro-informatics

include the MCHH (McClymont et al. b), an online

selective hyper-heuristic for embedding in meta-heuristics

and AMALGAM (Raad et al. ), a multi-method online

selective hyper-heuristic which controls population assign-

ment for multiple meta-heuristics.

Generative hyper-heuristics, an example of which is

studied in this paper, are designed to automate the creation

of specialised, domain-specific ‘low-level heuristics’, e.g.,

mutation operators. For example, an EA uses two ‘low-

level heuristics’ to create new network designs: crossover

and mutation. While crossover and mutation are effective

at solving a range of problems, specialised operators such

as that proposed in Keedwell & Khu () demonstrate

the power of utilising knowledge of the domain to signifi-

cantly improve the efficiency of the optimisation search

process. Generative hyper-heuristics are able to automati-

cally construct these domain-specific EA operators using

techniques such as GP (Koza ).

By creating EA operators using GP, it is possible to

search and compare a vast range of different mutation oper-

ators and select those that are most appropriate for a given

problem. Furthermore, GP evolved mutation operators are

able to represent a wider set of operational behaviour

beyond normal mutation and crossover operators and,

theoretically, could locate entirely new EA operators that

are better suited to a specific problem. GP is particularly

appropriate for this as the approach is not constrained to a

specific type of operation (such as applying an additive

single-point mutation) and rather than searching for better

parameters for existing types of operation, GPs search the

space of different operational behaviour and so have the

potential to discover entirely novel EA operator behaviours.

The method discussed below utilises this GP approach and
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so is classed as a generative hyper-heuristic rather than

simply a parameter tuning method.

METHOD

As highlighted in Keedwell & Khu (), the WDN design

problem has a number of features that can be exploited to

potentially improve the search process. First, the network

layout is fixed and each pipe (the optimisation parameters)

has a fixed relationship with every other pipe. Furthermore,

through simulation, it is possible to associate specific con-

ditions with each pipe. For example, while we assess the

overall head conditions of the network to determine a

design’s validity, it is possible to associate the downstream

node’s head with each contributing pipe. For example, if a

node has excessive head, it is reasonable to assume that

the supplying pipes may be too large and so are eligible

for diameter reduction. Likewise, if a node has head deficit,

then the supplying pipe is likely to be too small. Using these

principles, it is possible to create mutation operators that

take these hydraulic factors into account when creating

new network designs, i.e., building informed mutation oper-

ators. This section describes a novel multi-objective

generative hyper-heuristic framework for building novel

mutation operators for the WDN design problem.

A generative hyper-heuristic framework

Figure 1 depicts the general generative hyper-heuristic frame-

work used in this study. The approach uses a training

network, i.e., a simple WDN, to evolve ‘optimal’ mutation

operators for use on any WDN. The generative framework

is split into three phases: initialise, generate and evaluate.

The initialise phase generates the initial random population

of mutation operators to seed the optimisation process. The

initialise phase also generates the sample network designs

to the underlying WDN which are used to evaluate the

evolvedmutation operators. The sample solutions (candidate

WDN designs) are fixed and to ensure a fair as is possible

Figure 1 | General generative framework. Elements with dashed, shaded boxes indicate generative optimisation actions and grey shaded elements indicate interaction underlying problem

class. The framework shows how a probability distribution function (PDF), in this case a specialised GP tree, can be evolved using samples from a training network in using the

generative hyper-heuristic approach.
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comparison between the evolving mutation operators. The

generate phase is an optimisation loop where the current

population of mutation operators are varied, evaluated

using the network designs sampled from the underlying train-

ing network, and selected for propagation into the next

generation. This optimisation loop is repeated until some ter-

mination criteria are met – such as a fixed number of

generations. Once the generative optimisation phase is com-

pleted, the best evolved mutation operators are then

evaluated in more detail by inserting them into identical

EAs and applying them to a set of test networks (in this

case the Anytown benchmark and two real-world WDNs).

The evaluation phase is used to examine howwell the evolved

mutation operators perform across the whole search process

and to what extent they are useful in practical applications.

The evaluation phase is also used for removing mutation

operators which are over-fit to the training network.

Evolutionary algorithm for testing

In this study, a (μþ λ) evolution strategy (ES) (Laumanns

et al. ) is used to test and compare the best evolved

mutation operators. ESs are similar to GAs, using similar

population selection methods with only a few different fea-

tures. GAs use both mutation and crossover operators to

generate new network designs while ESs use only a

mutation operator. ESs are therefore more appropriate in

this study for comparing the evolved mutation operators as

they remove the influence of the GA crossover operator.

ESs also maintain an additional population, called an

archive, which contains the best, non-dominated candidate

network designs found so far in each optimisation run. In

this case, the archive stores the best candidate networks gen-

erated by the ESs using the evolved mutation operators. The

archives can then be used to calculate the hypervolume indi-

cator and compare the performance of the difference

evolved mutation operators. The terms μ and λ refer to the

size of the parent and child populations, respectively.

Optimisation method

Any optimising method could be used to optimise the GP

mutation operators in the generate phase of the framework

given in Figure 1. In the following experiments the optimiser

SPEA2 (Strength Pareto Evolutionary Algorithm 2) (Zitzler

et al. ) was used to optimise the GP mutation operators.

SPEA2 was given an unlimited passive archive. The network

design encoding, evaluation functions, variation operators

and selection methods are described below.

Genetic programming

GPwas proposed byKoza () as amethod for utilising EAs

for automating the creation of programs. GPs use trees to rep-

resent computer programs, such as the example GP tree

shown in Figure 2. The trees can be manipulated by mutating

Figure 2 | Decision tree representation used in the generative hyper-heuristic to create GP evolved mutation operators for the WDN design problem with the illustrated path and action in

thick bold lines.
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nodes on the tree or rearranging branches of the tree or even

swapping sections of different trees. These modifications act

in much the same way as mutation and crossover in GAs

and enables the automatic creation and search of small ‘pro-

grams’. Usually the fitness of a program is assessed by testing

it with a range of inputs and determining howclose the output

of the evolved program is to some target.

Traditionally, GP was used to represent functions and

evolved to approximate some given target function. For

example, in classification, the evolved programs could be

used to label samples and associate them with a specific

class. However, with the emergence of the field of hyper-

heuristics, the power of GP was quickly realised and utilised

to automatically generate new, novel heuristics that were

specialised for a given problem (Burke et al. ). This

method uses GPs to evolve new mutation operators, repre-

senting the mutation operators as program trees in order

to evolve different mutation behaviours.

GP evolved mutation operators

All GP evolved mutation operators first selected a fixed

number of pipes at random. Each of the selected pipes

were parsed by the GP in turn and mutated depending on

the tree’s structure. In this study we used a simple decision

tree structure constructed of branches and terminals (see

example in Figure 2). All branches in the tree represent Boo-

lean conditional statements and all terminals represent

mutation operations. The Boolean branches compared the

pipe’s features or used random numbers to determine

which terminal mutation operation would be applied. The

branches were nested, allowing for a number of conditional

statements in succession. For example, given a pipe with

more than twice the target head at the downstream node,

the features of the pipe would be used to navigate the tree

and apply the terminal operation as illustrated in Figure 2.

If a pipe with different attributes was parsed by the same

tree, the output would potentially be different. The combi-

nation of the conditionals and fixed mutation operations

enable the creation of ‘expert’ mutation operators that deter-

mine the most appropriate form of mutation given the pipe

characteristics.

The Boolean conditional statements either compared

the selected pipe’s downstream node’s head to the target

head (or some relative value) or compared a randomly

drawn number with a given threshold. These two types of

conditional statements allowed for domain-specific branch-

ing and, if desired, a random element. The Boolean

branches are given in Table 1.

The mutation operations (terminals) determined what

type of mutation action would be applied to the selected

pipe. Two types of mutation were used: fixed mutation and

randommutation. The fixed mutation always either increased

or decreased the pipe by afixed amount. The randommutation

replaced the pipe diameter with a new randomly selected pipe

diameter. All the mutation operations are given in Table 1.

Sampling training solutions (network designs)

To evaluate the evolved mutation operators, the proposed

generative framework tests the operators on a set of sampled

network designs from the underlying problem (in this case

WDN designs) and determines whether the operator is

likely to create better networks by mutating each sample

multiple times and comparing the newly generated networks

with the original sample. In this study, sample networks

were obtained by optimising the test network and recording

each of the network designs created during this optimisation

search. This ensured that a range of samples (networks) of

varying quality were produced; poor at the start of the

search and good at the end of the search. The variety of qual-

ity allowed the GP mutation operators to be evaluated on

both good and poor networks to assess whether it was

useful at the start or end of an optimisation search.

A (μþ λ)-ES (parent and child populations of size 10)

with traditional uniform crossover and additive multi-point

Gaussian mutation was used to optimise the test network

and collect the sample network designs. The network

designs generated by this optimiser were then used for train-

ing. A (μþ λ)-ES was used instead of SPEA2 (which was

used to evolve the GP mutation operators) for sampling net-

works as the selection mechanism gave minimal bias to the

distribution of network generated by the meta-heuristic.

SPEA2 is a faster, more efficient optimiser compared to

the (μþ λ)-ES and so would generate a larger quantity of

good networks compared to the (μþ λ)-ES which generated

a more even distribution; the latter is preferable for training

the evolved GP mutation operators.
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The (μþ λ)-ES optimiser is run on the test WDN a set

number of times to generate the desired number of

sample network designs. The set of sample network designs

are then sorted into three sets of equal size: random and

early networks (referred to later as ‘far’); mid optimisation

networks (referred to later as ‘mid’); and networks closest

to the global optima (referred to later as ‘close’). These

three categories broadly define the general stages in the

optimisation search. Again, once the sets are generated

they are fixed for all evaluations of candidate GP mutation

operators; i.e., these networks form the pool of initial net-

works which the mutation operators must then perturb.

The deviation in fitness value (or Pareto domination) of

the new heuristically derived networks (generated by the

evolved mutation operator) from the original sampled net-

works informs the fitness of that particular mutation

operator.

To create the tree sample sets of ‘close’, ‘mid’ and ‘far’,

the sampled network designs from the multi-objective

problems created by the (μþ λ)-ES optimiser runs were

initially combined and sorted into fronts using Pareto dom-

inance. The network designs in each front (those that all

mutually non-dominated one another) were then sorted

again within the front by the sum of their objective values;

e.g., the network designs in the first front were sorted by

the sum of their objective values – producing an ordered

front. The network designs in the next front were then

sorted – producing a second ordered front – and so on

until all the network designs were sorted first by front

number and then by the sum of their objective values (in

ascending order, giving preference to smaller summed

objectives). The whole population of sorted network designs

was then split equally into the categories as described above.

Providing an ordering to the network designs enabled an

even split of network designs across each of the categories.

While the ordering introduces a small bias to the network

designs in fronts split between two adjacent categories, the

bias has little effect on the evolved distributions.

Table 1 | Base mutation operations represented as GP branches (if-else statements) and terminals (conditional expressions and actions)

GP element Description

if-else statements (branches)

if [condition] then [action] else [action] Evaluates a condition and, if true, executes the first action, otherwise the second action is
executed.

if [condition] and [condition] then [action]
else [action]

Evaluates both conditions and if both are true then executes the first action, otherwise the
second action is executed.

Conditional expressions (operands)

rand> [0, 1] Generates a new random real-valued number in the range [0, 1] (inclusive) and returns true if
the random number is greater than a constant real-valued number in the range [0, 1] (fixed
in the GP).

rand< [0, 1] Generates a new random real-valued number in the range [0, 1] (inclusive) and returns true if
the random number is less than a constant real-valued number in the range [0, 1] (fixed in
the GP).

[downstream / upstream]_diameter<
current_diameter

Compares the diameter of the current pipe with the diameter of either the downstream or
upstream pipe and returns true if the current pipe is larger.

[downstream / upstream]_diameter>
current_diameter

Compares the diameter of the current pipe with the diameter of either the downstream or
upstream pipe and returns true if the current pipe is smaller.

[downstream / upstream]_head< [0,
90 m]

Compares the head of the current pipe’s downstream or upstream node with a constant value
in range [0, 90 m] returns true if the head is less than the constant (fixed in the GP).

[downstream / upstream]_head>
[0, 90 m]

Compares the head of the current pipe’s downstream or upstream node with a constant value
in range [0, 90 m] returns true if the head is greater than the constant (fixed in the GP).

Actions (terminals)

Increase diameter by [1, 3] Increases the current pipe’s diameter by 1, 2 or 3 pipe diameter sizes (fixed in the GP).

Decrease diameter by [1, 3] Decreases the current pipe’s diameter by 1, 2 or 3 pipe diameter sizes (fixed in the GP).
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Evaluating GP mutation operators

Multi-objective problems are more difficult to evaluate than

single-objective problems as network designs to these pro-

blems cannot be directly and fairly compared using a

single scalar value, rather the difference between the

network designs is described by a vector. This is a funda-

mental issue for multi-objective optimisation research and

a variety of methods have been explored to overcome this

problem, such as weighted average and more commonly

Pareto dominance.

The Pareto dominance relation describes the relative

quality of two network designs based on their objective vec-

tors. If a network design, a, is shown to be equal or better in

quality in all objectives and at least better in one when com-

pared to another network design, b, it is said to dominate b;

denoted as a ≺ b. Likewise, if b is shown to be equal or better

in all objectives and better in at least one when compared

with a, then b is said to dominate a. If neither a dominates

b nor b dominates a then they are said to be mutually non-

dominating.

The Pareto dominance relationship provides a method

for describing the relationship between two network designs

and can be used as a proxy for the improvement of a new

child network design compared to its parent. The calcu-

lation of difference between two network designs is

represented by a scalar value representing the dominance

relationship between the two network designs. If the new

perturbed network design dominates the parent sampled

network design then a difference score of �1 is given

(better). If the new perturbed network design is dominated

by the sampled network design then a difference score of

1 is given (worse). Otherwise, a difference of zero is given.

A GP evolved mutation operator is evaluated by apply-

ing the GP mutation operator to each of three sets of

WDN solution samples. The mutation is applied a fixed

number of times (q) to each sample in each set to generate

q new perturbed network designs per sample. Each new per-

turbed network design is evaluated on the underlying

benchmark WDN design problem used for training and

compared to the original sample network design.

The dominance of the perturbed network designs over

the original sampled network design is recorded and aver-

aged over all q perturbations. The averaged variance

(i.e., average dominance, mutual non-dominance or domi-

nated score) is then averaged over all the sample network

designs in each set and used to denote the quality of the

mutation operator on that set of sampled network designs.

The values are normalised in the range [0, 2]. The objective

function used for the GP mutation evaluation is given in

Equation (1) below. The term var refers to the average vari-

ation of the mutated objective values from the original

sampled network design objective values. The term len

(samples) is a function which returns the number of

sample network designs used to evaluate the GP mutation

operator. The term avg(samples) is a function which returns

the average objective value from the sampled network

designs.

objective ¼
var> 0, 1þ var

len samplesð Þ � avg samplesð Þ
����

����

var< 0,
avg samplesð Þ þ var

avg(samples)

8>><
>>:

(1)

EXPERIMENTAL SETUP

An experiment is described in this section which demon-

strates the application of the above hyper-heuristic method

to the optimisation of EA mutation operators for the

WDN design problem. The experiment was designed to

demonstrate the feasibility of the proposed method in gen-

eral terms and not specifically in relation to any one EA

method. Rather, the proposed approach is designed to be

intentionally agnostic of any one EA and can be used in con-

junction with any specialised or a more advanced EA than

the ES used herein. A simple EA, in this case an ES, was

selected for this experiment as it had relatively few advanced

features which may introduce additional dynamics into the

results and obfuscate features pertinent to this study.

The experiment is conducted to allow for the compari-

son of evolved, specialised mutation operators for the

WDN design problem against one another and also against

a typical operator from the literature for reference, such as a

Gaussian mutation. Comparisons with other more advanced

optimisation techniques are not conducted as they fall out-

side of the scope of this study and could not be fairly

compared against the evolved operators as many additional
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factors, such as the selection strategy, will significantly bias

the results. Furthermore, such a study is not necessary as the

evolved operators do not ‘compete’ with other optimisers as

they are only components within an EA, rather than an

entire stand-alone optimisation method.

The water distribution network design problem

A traditional bi-objective formulation of the WDN design

problem was used in this experiment similar to di Pierro

et al. (). The problem was formulated as follows:

Minimize cost where cost ¼
X

i¼0 to k

d × lð Þ (2)

Minimize head hð Þ deficit hdð Þ where hd

¼
X

i¼0 to k

(min 0, h� 30)ð Þ (3)

The terms k, d, l and h in Equations (2) and (3) refer to

the number of pipes, diameter, length and downstream node

head respectively. The term hd represents the head deficit at

a pipe’s downstream node. The function min (…) returns the

minimum value of the two given arguments.

All the networks used in the experiment were arranged

as partial expansion problems, where only fixed pipes of the

network could be adjusted. The layout and pump operations

were fixed. Only pipe diameters were optimised using a

fixed set of possible diameters with associated costs per kilo-

metre. For simplicity, the same pipe diameter and associated

costs were used which are given below given that the real-

world network pipe choices and scaling of costs was similar

to those of Hanoi and Anytown.

Training the GP evolved mutation operators

The GP evolved mutation operators were constructed as out-

lined in the Method section. The trees were limited to a

depth of 4 – i.e., 3 conditional branches deep with terminals.

The GPs were evolved using SPEA2 (Zitzler et al. ) with

a passive archive. The passive archive stored the 100 best

mutation operators found during the search. SPEA2 was

run for 250 generations with a population of 50. The trees

were encoded using a fixed length encoding scheme to

enable the use of traditional uniform random mutation

and uniform crossover to be applied.

The GP evolved mutation operators were evaluated by

inserting them into a (10þ 10)-ES (without crossover) (Lau-

manns et al. ) and applying the (10þ 10)-ES to a

training problem for 500 generations over 20 trial runs.

The (10þ 10) refers to a size of the parent and child popu-

lations. The quality of the GP evolved mutation operator

was then evaluated using the method outlined in the Evalu-

ating GP mutation operators sub-section of the Method

section. The GP evolved mutation operators were evaluated

on the same training network, Hanoi. The Hanoi network

consists of 34 links which connects the 32 nodes and a reser-

voir. The cost tables for the Hanoi and Anytown benchmark

networks are used from the original papers and are available

online at http://centres.exeter.ac.uk/cws/.

Testing the GP evolved mutation operators

After evolving the GP evolved mutation operators with

SPEA2, the 10 best GP evolved mutation operators stored

in the passive archive were compared on a set of test

WDN networks. In order to compare the automatically con-

structed EA mutation operators, they were each inserted

into identical (10þ 10)-ESs with passive archives. As

before, the (10þ 10)-ESs did not apply crossover and used

elitist selection – basing the performance of the (10þ 10)-

ESs solely on the efficacy of the mutation operators. Each

of the (10þ 10)-ESs were run for 2,000 generations and

applied for 20 trial runs on each test problem with the

results at each generation recorded for every run.

Three networks were used for testing: one benchmark

network (Anytown) and two real-world networks. Six

pipes were able to be resized in Anytown while 27 and 81

pipes were able to be resized in the two industrial networks.

The Anytown network consists of one reservoir, one pump-

ing station, two tanks, 22 nodes and 42 links. For each of the

two industrial networks all the pipes for resizing were

located within the same area in a single group. We selected

the pipes from sub-regions that were mostly self-contained

but that were still reasonably well connected to a number

of areas in the network. The real-world networks were

sourced by one and two reservoirs, respectively. Each of

the sub-regions being optimised contained no pumping
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stations, other than the largest real-world network contained

one tank and associated pump which operated during the

two daily peak periods.

Performance measure for comparing mutation

operators

Hypervolume (Bader et al. ) was used to evaluate and

compare the selected evolved mutation operators. Hyper-

volume is a commonly used performance indicator in

multi-objective optimisation research which provides a

single scalar value for the quality of an optimiser’s popu-

lation (in this case, the ES archive) at each generation of a

single run. Hypervolume evaluates a population both in

terms of its spread and convergence by measuring the popu-

lation’s coverage of objective space. The scalar hypervolume

measure is useful as it allows for information to be obtained

about the method’s average performance by completing

multiple optimisation runs and averaging the hypervolume

results from each run. Comparing Pareto front’s alone is

useful if comparing specific solutions to a specific problem

(as is done when discussing the evolved GP operators, see

Figure 3). However, when discussing the performance of

the GP evolved mutation operators on the WDN design pro-

blem in general, the hypervolume measure is more

appropriate as it allows the evolved operators to be com-

pared in terms of their expected behaviour on any

network, using the selected networks as examples (shown

later).

The hypervolume indicator (Bader et al. ) (which

was normalised to 1) was used to monitor the performance

of each of the evolved GP evolved mutation operators over

all generations during all test optimisation runs. The hypervo-

lume indicator was calculated using random samples drawn

from within the objective space as outlined in Bader et al.

(). At each generation, the hypervolume was calculated

by finding the number of points which were dominated by

each GP evolved mutation operator’s current population of

candidate network designs – thus, giving an indication of

the proportion of space covered by the population and

hence quality of the population as a whole. As such, the

hypervolume indicator gives a scalar representation of the

ratio of objective space dominated by the population. Once

a sample set had been generated it was kept and used for

all hypervolume calculations on that problem for all algor-

ithms and trials. Each of the GP evolved mutation

operators were run 20 times and the hypervolume results

averaged to ensure a fair comparison of performance.

RESULTS

Evolved mutation operators

The GP evolved mutation operators evolved on the Hanoi

training problem using SPEA2 are shown in Figure 3 as a

scatter plot of their hyper-heuristic objective values and

given in Table 2 for 20 of the evolved mutation operators,

including the 10 selected mutation operators. The complete

results for all 83 Pareto optimal evolved operators are given

in Appendix 1, Table 3 (available online at http://www.

iwaponline.com/jh/016/226.pdf).

Each of the evolved mutation operators were evaluated

by applying them to three sets of sample network designs

from a selected training network (in this case Hanoi) as out-

lined in the Method section. The overall performance of the

Figure 3 | Scatter plot showing the Pareto optimal GP evolved mutation operators for the

bi-objective WDN problem evolved using SPEA2. The ‘close’ and ‘mid’ range

objectives are shown on the (x, y) axes and the ‘far’ objective indicated by

point size. All objectives are to be minimised, where smaller point sizes indi-

cate a better objective value.
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operator on sample network designs from each sample set

was used to determine the fitness, or objective quality, of

the mutation operator. The performance on best network

designs (the ‘close’ sample set) was used to evaluate the

‘close’ objective. Similarly, the average and worst quality

network design sets were used to evaluate the ‘mid’ and

‘far’ objectives respectively.

Two of the objectives are shown on the (x, y) axes for the

mutation operator quality on the ‘close’ and ‘mid’ range set

of network designs used for training. The third objective,

assessing mutation operators on network designs ‘far’ from

the Pareto front, is indicated by the size of the points;

where smaller point sizes are given for smaller, better objec-

tive values on that set of points. Generally, the mutation

operators which perform well on the ‘close’ range network

designs objective do not perform well on the ‘far’ objective,

while those that are good in the ‘mid’ objective tend to

perform well on the ‘far’ objective. The weak correlation

between the ‘mid’ and ‘far’ objectives can be seen by the gen-

eral increase in point sizes (‘far’ objective) as the ‘mid’

objective values increase.

The evolved mutation operators produce an interesting

Pareto front where the GP evolved mutation operators are

most commonly specialised for one of the three different

objective values. This produces a higher density of evolved

solutions at the extremities of the Pareto front with fewer

mutation operators producing a good trade-off between all

three objectives. Ten GP evolved mutation operators are

highlighted on the plot (Figure 3) which represent a range

of GP trees and objective values. Of specific interest are

GP1, GP5 and GP10, which are shown later in the test

WDN optimisation results to produce very different conver-

gence behaviours. Of note are objective values of the GP1

and GP5 mutation operators which are both shown below

Table 2 | Objective values for 20 of the 83 best evolved mutation operators. The top 10 highlighted mutation operators show the objective values for the 10 selected mutation operators

indicated in Figure 3 and explored in more detail below. The columns show the objective values for each GP operator on the ‘close’, ‘mid’ and ‘far’ objectives. Additional

columns have been included which show the variability of the mutation operators’ performance on each objective through the standard deviation of values obtained

across the training set

GP evolved mutation operator Close (mean) Close (std. dev.) Mid (mean) Mid (std. dev.) Far (mean) Far (std. dev.)

GP1 0.349 ±0.014 0.329 ±0.021 0.352 ±0.022

GP2 0.109 ±0.005 0.898 ±0.014 0.576 ±0.109

GP3 0.324 ±0.1 0.869 ±0.013 0.615 ±0.194

GP4 0.367 ±0.049 0.769 ±0.033 0.576 ±0.117

GP5 0.374 ±0.14 0.193 ±0.03 0.29 ±0.074

GP6 0.326 ±0.093 0.541 ±0.155 0.452 ±0.135

GP7 0.529 ±0.15 0.16 ±0.021 0.312 ±0.033

GP8 0.681 ±0.164 0.211 ±0.039 0.376 ±0.052

GP9 0.715 ±0.044 0.348 ±0.1 0.453 ±0.178

GP10 0.849 ±0.111 0.228 ±0.009 0.426 ±0.073

GP11 0.358 ±0.001 0.811 ±0.111 0.595 ±0.051

GP12 0.307 ±0.061 0.858 ±0.083 0.606 ±0.146

GP13 0.623 ±0.213 0.252 ±0.058 0.382 ±0.107

GP14 0.167 ±0.012 0.809 ±0.056 0.546 ±0.028

GP15 0.694 ±0.152 0.29 ±0.002 0.419 ±0.001

GP16 0.27 ±0.071 0.865 ±0.031 0.6 ±0.116

GP17 0.494 ±0.23 0.231 ±0.019 0.339 ±0.053

GP18 0.173 ±0.009 0.88 ±0.021 0.583 ±0.107

GP19 0.608 ±0.133 0.246 ±0.051 0.375 ±0.027

GP20 0.763 ±0.112 0.275 ±0.063 0.429 ±0.158
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to perform well on the test WDN problems as well as obtain-

ing potentially the most favourable trade-off between the

three objectives on the training Hanoi problem.

The GP1, 5 and 10 mutation operators are shown in

Figure 4. Each of the three mutation operators represent a

different class of evolved mutation operator and were

selected to illustrate the variety of mutation operators that

can be constructed using the multi-objective generative

hyper-heuristic method proposed in the Method section.

The mutation operators range from entirely deterministic

operations in GP10 through to the entirely random GP5.

GP1 provides a mix of these two types of operation through

a combination of random mutation and deterministic,

domain-specific operations.

GP5

One of the more common classes of mutation operators

evolved by the generative hyper-heuristic method was that

of entirely random mutations, such as GP5. This result

suggests that even with the potential for including domain-

specific information, such as pipe smoothing, into the GP

evolved mutation operator operations the optimisation pro-

cess of EAs can accommodate and promote the use of

entirely random mutation in its stochastic search. Indeed,

it is important to note that the GP5 mutation operator is

the equivalent of a single-peaked mutation operator, in this

case a Gaussian, and so provides a good representation for

these more traditional mutation operators. The nesting of

the larger mutations under subsequent 50:50 random

choices reduces the likelihood of applying large pertur-

bations compared to the smaller one pipe size step

mutations which will be applied in approximately 50% of

all mutations whereas the two pipe size steps will be applied

to only 25% of mutations and so on.

It should be noted that the evolved GP5 operator is

effectively a Gaussian mutation distribution and, as such,

identical to a manually tuned mutation distribution which

would normally be compared against. For this reason,

GP5 is used below in Figure 5 as a suitable proxy for a typi-

cal operator for comparative purposes, rather than

replicating results with an effectively identical Gaussian

mutation operator. In particular, this mutation operator is

of interest for three reasons: (1) it demonstrated the

method could find existing well-used operators; (2) it

showed that existing typical operators were very

competitive; and (3) it provided a typical operator for

benchmarking and comparison.

Figure 4 | Pseudo-code for the GP1, GP5 and GP10 mutation operators evolved using

SPEA2 on the Hanoi training problem, where rand refers to a randomly gen-

erated real number in the range [0, 1].
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Figure 5 | Hypervolume results for 10 selected GP evolved mutation operators on the Anytown benchmark and real-world networks 1 and 2. The GP evolved mutation operators are

labelled on each plot (in order) adjacent to their respective trend lines.
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GP10

The GP10 mutation operator provides the clearest example

of an entirely domain-specific mutation operator. The gen-

erative hyper-heuristic method proposed above was

designed to evolve mutation operators which contained

some domain-specific information learned in the search

(such as that in GP1) but it was not expected that mutation

operators, such as GP10, would be evolved that perform

highly specialised tasks. The mutation operator effectively

applies a pipe smoothing operation by averaging the pipe

size between the upstream and downstream pipes, increas-

ing the pipe size to match the upstream pipe (if it is

larger), or increasing the pipe size above the downstream

node (increasing the upstream capacity). The random appli-

cation of the mutation operator to pipes in the network

generates a seemingly random but overall smoothing effect

after a number of applications, where the main supplying

pipes are increased in size and the downstream nodes

reduced in size. As will be shown later, the deterministic

nature of this mutation operator means that its search

capacity is significantly limited compared to those mutation

operators with random mutation elements but could, in

combination with random mutation operators, provide a

useful function in producing sensible WDN designs with

well-formed pipe diameter properties.

GP1

The GP1 mutation operator is an interesting example of

random mutation that is biased by network design-specific

features and so encodes some domain-specific knowledge –

providing both pipe smoothing and demand deficit correc-

tion operations. This mutation operator is one of the most

complex evolved in this study which accommodates the

biased random search with the two specialised functions.

As is shown later, the combination of these features enables

the mutation operator to outperform many of the other

mutation operators and consistently perform better than

the more traditional mutation operator on all the test

problems.

It should also be noted that part of the mutation oper-

ator is effectively a ‘dead branch’ which is redundant as it

will never be used and should be trimmed if the mutation

operator were to be coded for more permanent application

and inclusion in a meta- or hyper-heuristic algorithm. The

remainder of the GP is split by a random branching which

either applies a random mutation or the ‘specialist function’

branch of the GP. This part of the GP is again split by a

random branch which differentiates between the ‘smooth-

ing’ operation and the ‘excess/deficit correction’ operation.

It should be noted that the mutation operator has a greater

tendency to increase pipe sizes as the random mutation is

positively biased.

Comparing the evolved mutation operators

Of the evolved mutation operators on the Hanoi training

problem, the 10 selected mutation operators (highlighted

in Table 2) were each tested on the Anytown benchmark

network and two real-world networks with theoretical

expansion options. The results from these optimisation

runs are given in Figure 5 which shows the average hyper-

volume (Bader et al. ) trends of each of the mutation

operators on the bi-objective formulation of the WDN

design problem. As the problem is bi-objective, the hyper-

volume indicator (to be maximised) was used to indicate

the convergence of each of the optimisers; averaged over

the 20 trial optimisation runs. As explained in the Perform-

ance measures for comparison sub-section, the hypervolume

indicator measures the population’s coverage of the objec-

tive space – the larger the hypervolume score the more of

the objective space that is dominated by the population

and the closer the population is to the Pareto front. Hyper-

volume is ideal for this type of experimental study as the

true Pareto fronts for each of the instances of this problem

are unknown and not needed by the indicator to provide a

comparative scoring of each of the mutation operators.

The hypervolume results are normalised in the range [0, 1]

where 1 indicates complete coverage of the objective

space and 0 indicates no coverage. The Anytown and real-

world networks are shown in Figure 5.

Network ‘difficulty’

The results from the GP evolved mutation operators,

especially GP10 which represents the traditional, unbiased

random mutation, indicate that the Anytown benchmark
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network is easier to optimise than the two selected real-

world networks with all the mutation operators obtaining

reasonably good hypervolume results. Even the GP1

mutation operator plateaus on this problem and converges

early in the search. The real-world network 2 stimulates

the widest early convergence of all the problems with all

the mutation operators (excluding GP1 and GP2) conver-

ging before 1,000 generations. This suggests the problem

encourages convergence on local optima and that the net-

work has a number of deceptive fronts which discourages

the (10þ 10)-ESs from continuing to explore the optimis-

ation search space.

Comparing mutation operators

A set of interesting features are shown by annotations on the

plots illustrating the results in Figure 5. These features are

described more fully below.

• Final generation results (rankings): Of all the mutation

operators, GP1 is consistently the best performing

mutation operator over all the test problems. The GP10

mutation operator produces average results on the Any-

town network but obtains the worst results on the real-

world networks – limited by its fixed mutation operations.

It is also interesting to note that the mutation operators

with better ‘mid’ and ‘far’ objective results from the train-

ing evaluations converge earlier than those which

perform better on the ‘close’ objective which tend to con-

verge more slowly but eventually achieve better final

generation results. The more traditional mutation oper-

ator, GP5, consistently obtains the fourth or fifth best

result and is a good average performing mutation oper-

ator on these test networks. This is to be expected as

the mutation operator enables a reasonable guided

random search through the standard ES selection mech-

anism but fails to take advantage of the domain-specific

learning which is encapsulated in the GP1, 2, 10 and

other mutation operators.

• Early convergence (flat-lining): One of the most appar-

ent problems with the mutation operators’ performance

results is the GP evolved mutation operators’ tendency

to converge early on sub-optimal results. This is shown

by a flat-line in hypervolume results, which is most evi-

dent on the Anytown network. Early convergence is a

significant problem in meta-heuristic optimisers and so

the more robust GP1 and GP2 mutation operators are

very favourable mutation operators as they both appear

to continue to converge for a longer period in the

search. The behavioural tendency to increase the pipe

diameters in the GP1 mutation operator means that it

converges more slowly than the other mutation operators

but, importantly, allows it to continue exploring different

configurations throughout the search and potentially

accounts for its superior results compared to the other

algorithms. However, the early convergence of the

more deterministic mutation operators, like GP10,

could be beneficial in cases where reasonable network

designs to a problem are desired at a minimal cost; i.e.,

with a minimal number of evaluations. The mix of behav-

ioural traits is also beneficial to meta-optimising methods

like selective hyper-heuristics which can ‘pick and

choose’ the mutation operators and apply both the

slower converging, more explorative mutation operators

in combination with the faster converging exploitative

mutation operators to a greater effect that applying

them individually (McClymont et al. b).

• Noise (jagged steps): Both GP1 and GP2 produce ‘jagged’

convergence trends. This feature is produced as a result of

the mutation operators’ variable performance on the

optimisation problem and sudden advances in their popu-

lations. This feature also indicates (which was confirmed in

the results data) that there is a higher variance in the

optimisation runs compared to mutation operators with

more consistent performance, such as GP10, which pro-

duce smoother trend lines. It is interesting that these two

mutation operators, which both have the largest GP

trees, are the most variable in their optimisation perform-

ance, also achieve the highest average hypervolume results.

• Over-fitting: One concern when using machine learning

techniques to optimise the performance of a system, such

as an EA’s mutation operator for the WDN design pro-

blem is over-fitting; the effect by which the results are

highly tuned to the training data but not general enough

to perform well on test or practical data. The results

from the experiment described above show how some

of the evolved mutation operators were more robust on

the larger test networks than others and indicated that

some of the evolved mutation operators were overly
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tuned to the training networks. Indeed, the GP10

mutation operator illustrates how evolved mutation oper-

ators can ‘over-fit’ to training problems, performing well

on the smaller networks but not scaling well on the

larger 81 pipe industrial network. The GP10 mutation

operator therefore would not be a suitable candidate for

reuse in practical optimisation studies. This study

reinforces the point that tuned, tailored or optimised

search algorithms must be qualified on test networks

prior to application to ensure such over-fitting does not

occur or is not carried through to practical use.

CONCLUSION

This paper presents a novel GP evolved decision tree genera-

tive hyper-heuristic method which is used to automatically

build novel mutation operators for the bi-objective WDN

design problem. Many of the GP decision tree-based

mutation operators utilise domain knowledge in the form

of features like downstream node head conditions to

inform the type of mutation to apply to each selected pipe.

The method is applied to and trained on the Hanoi bench-

mark problem with the GP evolved mutation operators

evolved using SPEA2. The 10 varied GP evolved mutation

operators from the best evolved mutation operators were

compared on the Anytown benchmark and two real-world

networks. The results demonstrated how the mutation oper-

ators varied in behaviour and produced different

convergence characteristics. Furthermore, the results also

showed how some of the evolved mutation operators were

more robust on the larger test networks. Indeed, the GP10

mutation operator illustrates how evolved mutation oper-

ators can ‘over-fit’ to training problems, performing well

on the smaller networks but not scaling well on the larger

81 pipe industrial network. However, the results also

demonstrated the potential of the method with one mutation

operator (GP1) outperforming consistently, obtaining the

best final generation result on all the test networks. Interest-

ingly, GP1 converges less quickly that many of the GP

evolved mutation operators which suggests it has a better

exploration capacity, and thus better results, which is sup-

ported by the analysis of the GP tree.
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