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N. H. D. Bohr : What are you working on Mr. Dirac?

P. A. M. Dirac : I’m trying to take the square root of something.

- The 5th Solvay Conference, Brussels, 1927.
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Abstract

This thesis is devoted to quantum confinement effects in low-dimensional Dirac materials.

We propose a variety of schemes in which massless Dirac fermions, which are notoriously diffi-

cult to manipulate, can be trapped in a bound state. Primarily we appeal for the use of external

electromagnetic fields. As a consequence of this endeavor, we find several interesting condensed

matter analogues to effects from relativistic quantum mechanics, as well as entirely new effects

and a possible novel state of matter.

For example, in our study of the effective Coulomb interaction in one dimension, we

demonstrate how atomic collapse may arise in carbon nanotubes or graphene nanoribbons, and

describe the critical importance of the size of the band gap. Meanwhile, inspired by groundbreak-

ing experiments investigating the effects of strain, we propose how to confine the elusive charge

carriers in so-called velocity barriers, which arise due to a spatially inhomogeneous Fermi velocity

triggered by a strained lattice. We also present a new and beautiful quasi-exactly solvable model

of quantum mechanics, showing the possibilities for confinement in magnetic quantum dots are

not as stringent as previously thought. We also reveal that Klein tunnelling is not as pernicious as

widely believed, as we show bound states can arise from purely electrostatic means at the Dirac

point energy. Finally, we show from an analytical solution to the quasi-relativistic two-body prob-

lem, how an exotic same-particle paring can occur and speculate on its implications if found in the

laboratory.
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But why, some say, study Dirac materials? Why choose this as our goal? And they may

well ask, why climb the highest mountain? Why, 95 years ago, fly the Atlantic? Why

does Rice play Texas? We choose to study Dirac materials. We choose to study Dirac

materials in this decade and do the other things, not because they are easy, but because

they are hard.
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Chapter 1

Introduction

If you don’t know where you are going, any road will get you there.

- Lewis Carroll
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At the start of 1928, Paul Adrien Maurice Dirac wrote down his eponymous rel-

ativistic wave equation for the electron [1]. From this brilliant result of human thought

alone, Dirac was able to predict the existence of the positron and hence antimatter [2]. In

1933 he was duly decorated with a Nobel Prize, together with Erwin Schrödinger ‘for the

discovery of new productive forms of atomic theory’.

At the start of the new millennium, Russian-émigrés Andre Geim and Konstantin

Novoselov started to conduct a series of playful experiments - so-called ‘Friday night ex-

periments’ - at the University of Manchester. One such experiment was to simply play

with Scotch tape and bulk graphite in the hope of being able to rip down to a few thin lay-

ers of graphite, from which a transistor could be made [3, 4]. In 2010, the pair were jointly

awarded a Nobel Prize for ‘groundbreaking experiments regarding the two-dimensional

material graphene’.

These two historic scientific achievements are the foundations for the rise of Dirac

materials: condensed matter systems which have excitations described by a Dirac-like

equation [5, 6, 7]. Before Geim and Novoselov, Dirac physics was principally the domain

of high energy physicists. Now the exciting fairground of quasi-relativistic phenomena,

including Zitterbewegung [8] and Klein tunnelling [9], has been opened up to humble

condensed matter scientists [10].

In 2005, it was shown by the group of Geim that many two-dimensional crystals

(such as single layers of boron nitride, several dichalcogenides, and complex oxides) can

be fabricated with the so-called mechanical exfoliation technique (pulling layers apart

with sticky tape) [11]. However, the star among them was monolayer graphite: graphene.

The list of graphene superlatives is remarkable, the material being: almost transparent

(absorbing only 2.3% of incoming light intensity); the strongest material ever measured

(more than 100 times stronger than the strongest steel); the stiffest known material (stiffer

than diamond); the most stretchable crystal (up to 20% elastically); of record thermal

conductivity (outperforming diamond); of record high current density at room tempera-

ture (106 times that of copper); completely impermeable (even helium cannot squeeze

through) and of a record high intrinsic mobility (100 times more than in silicon). The dis-

tinctive honeycomb arrangement of carbon atoms in graphene is constructed from two tri-
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angular sublattices which give rise to a degree of freedom analogous to spin (pseudospin)

and arguably the most interesting property of graphene: excitations well described a mass-

less Dirac-Weyl Hamiltonian around the K points, with a regime of validity up to around

500 meV. In some sense, this work fired the starting gun for researchers to uncover further

low-dimensional Dirac materials. Below we outline a few examples.

Upon rolling up a sheet of graphene into a single-walled carbon nanotube, the

boundary condition of periodicity around the circumference gives rise to a quantized

transversal wavevector [12]. Depending on whether the wavevector is allowed or not,

results in either a semiconducting or metallic nanotube, which can be described by a 1-D

Dirac-like spectrum.

Transition metal dichalcogenides (TMDCs) - famous examples include molybde-

num disulfide (MoS2) and molybdenum diselenide (MoSe2) - have been known for decades,

however the realization of graphene and improvements in device fabrication have led to

a resurgence in interest [13]. The class of materials belonging to the TMDC group is

defined by the formula MX2, where M is a group IV , V or VI transition metal element

and X is a chalcogen (sulphur, selenide or tellurium). The materials are layered such that

chalcogen atoms in two hexagonal planes are seperated by a metallic atomic plane (X-M-

X). At the simplest level, they can be described by a massive Dirac Hamiltonian, with

(unlike graphene) a non-negligible spin-orbit coupling term due to the presence of heavy

metal atoms.

Three dimensional topological insulators (TIs) have a gapped spectrum in the bulk,

but the surface states are described by a 2D Dirac equation [14, 15]. In this case, the Dirac

nodes are protected by time-reversal symmetry [16, 17], rather than sublattice symmetry

as found in graphene. The simplest class of such materials include bismuth selenide

(Bi2Se3), bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3). There are also 2D

TIs, such as mercury telluride/cadmium telluride (HgTe/CdTe) quantum wells [18] or

indium arsenide/gallium antimonide (InAs/GaSb) quantum wells [19], where the chiral

and helical edge states are described by a 1D Dirac equation. Finally, there are even 1D

TIs, a historic example is polyacetylene [20], where the end states can be described by a

Dirac Hamiltonian.
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Other, perhaps more exotic, examples of where Dirac-like equations can appear

in condensed matter physics include superfluid phases of 3He [21] and high-temperature

d-wave superconductors [22]. Furthermore, artificial honeycomb lattices can allow even

more experimental control and scientifically rich explorations of Dirac physics, for exam-

ple: cold atoms in an optical lattice [23]; microwaves in a lattice of dielectric resonators

[24]; waves in photonic lattices [25]; plasmons in arrays of metallic nanoparticles [26, 27];

‘molecular graphene’ or molecules assembled over a conventional 2D electron system by

atomic manipulation [28] and a conventional 2D electron gas confined in semiconductor

quantum wells via a superlattice created by nanopatterning [29].

The common thread running throughout this thesis is the difficulty in achieving

bound states in Dirac materials [30]. A principal reason for this effect is due to the

so-called Klein tunnelling [31], whereby a Dirac particle normally incident on an elec-

trostatic barrier has a transmission probability tending towards one in the limit of a high

barrier. This physically counterintuitive result has been dubbed Klein’s paradox [32, 33,

34, 35]. In condensed matter physics, the resolution can be thought of as follows: normal

incidence corresponds to a gapless band structure, thus there are always available states

(either electron-like or hole-like) in which the propagating electron can tunnel through

[9]. The mathematical reason is as follows: at normal incidence the transversal wavevec-

tor is zero, and so the two differential equations comprising the Dirac equation decouple.

As there is only one solution to the remaining first order differential equations there is no

room for a reflected solution, leaving just the transmitted solution.

This thesis will be organized into four chapters, with a chapter devoted to one-

dimensional problems (Chapter 2) and a chapter to two-dimensional problems (Chapter 3)

sandwiched in between this introduction Chapter 1 and a conclusion Chapter 4, where

possible extension of this work are also discussed.

Chapter 2 is further divided into two sections. In the first of which, Sec. 2.1, we

encounter a low-dimensional analogue of the famous ‘fall-into the-center’ problem at

the heart of quantum mechanics, with the significant advantage that as it appears in a

mesoscopic systems it should be within the experimentalists reach to see in the laboratory.

This chapter is closed by Sec. 2.2, where we investigate confinement by so-called velocity
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barriers, formed by a spatially inhomogeneous Fermi velocity.

Chapter 3 is split into four sections. Firstly, we consider bound states in both mag-

netic quantum dots and rings in Sec. 3.1. Secondly, we present a study of fully confined

zero-energy states in electrostatic fields with (and without) the influence of a magnetic

flux in Sec. 3.2. Thirdly, we further investigate zero-energy states, with a focus on their

impact on scattering in Sec. 3.3. Finally in Sec. 3.4, we propose the existence of a novel

quasiparticle composed of a bound pair, either electron-hole or even bielectron, which

may form in gated graphene structures.





Chapter 2

One dimensional problems

The true delight is in the finding out rather than in the knowing.

- Isaac Asimov

19



2.1. ATOMIC COLLAPSE 20

2.1 Atomic collapse

We investigate the one-dimensional Coulomb potential with application to a class of

quasi-relativistic systems, so-called Dirac-Weyl materials, described by matrix Hamilto-

nians. We obtain the exact solution of the shifted and truncated Coulomb problems, with

the wavefunctions expressed in terms of special functions (namely Whittaker functions),

whilst the energy spectrum must be determined via solutions to transcendental equations.

Most notably, there are critical bandgaps below which certain low-lying quantum states

are missing in a manifestation of atomic collapse.

2.1.1 Introduction

The Coulomb problem in quantum theory is a historic problem of theoretical physics

[36]. Its solution, which can be written down analytically, is a cornerstone of quantum

mechanics and gives tremendous insight into the hydrogen atom [37, 38, 39]. Moreover,

its solution in reduced dimensions is also highly significant: experiments with electrons

confined to a plane led to considerations of the Coulomb problem in two dimensions (2D)

[40, 41, 42, 43], whilst the history of the one-dimensional (1D) Coulomb problem is long,

interesting and sometimes controversial [44, 45, 46].

The analogous relativistic problem [47, 48, 49] as governed by Dirac’s equation,

is equally fascinating and likewise the problem has also been investigated in low dimen-

sions, both in 2D [50, 51] and 1D [52, 53, 54]. The rise of Dirac materials [6], condensed

matter systems with quasi-particles well-described by the Dirac equation, has led to re-

visits of Dirac-Kepler problems with Dirac-like matrix Hamiltonians. One example is the

2D relativistic solution and its application to graphene [55, 56], which has charge carriers

described by a massless Dirac-Weyl equation. Graphene, a single atomic layer of car-

bon atoms in a honeycomb lattice [57], is the star of the Dirac materials; however, there

are in fact a plethora of other materials such as topological insulators [14, 15], transition

metal dichalcogenides [59], carbon nanotubes [60] and 3D Weyl semimetals [61], which

provide physicists a new playground to investigate quasi-relativistic phenomena.

Here we look at the quasi-relativistic Coulomb problem in 1D at the level of a two-

by-two Dirac-like matrix Hamiltonian. Our results should be useful in several areas for
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various quasi-1D Dirac systems, most notably narrow-gap carbon nanotubes and graphene

nanoribbons, for example: in the understanding of the energy spectra of donors and exci-

tons, table-top experiments on atomic collapse, vacuum polarization effects, Sommerfeld

factor and the suppression of van Hove singularities, Coulomb blockade and zero-bias

anomalies, magnetoexcitons and so on. Besides, the intrinsic beauty of analytic results in

quantum mechanics is almost always coupled with greater insight, as well as being sturdy

platforms on which to test new numerical methods or perturbative schemes.

The low-energy spectrum of a typical 1D Dirac material can be described by a

single-particle, single-valley matrix Hamiltonian

Ĥ1 = vF

 0 p̂x − i~∆

p̂x + i~∆ 0

 + U(x) (2.1)

where vF is the Fermi velocity (which can be for example vF ≈ c/300 for carbon nan-

otubes or graphene nanoribbons), 2~vF |∆| is the bandgap and the momentum operator

p̂x acts along the axis of the effectively 1D system. The same Hamiltonian, Eq. (2.1),

describes a 2D Weyl material, e.g. graphene or the surface of a topological insulator, sub-

jected to a 1D potential V(x) constant in the y-direction, in which case ∆ → ky [62]. We

assume V(x) is sufficiently smooth on the atomic scale, such that inter-valley scattering

can be neglected. We make the unitary transform U = 1
√

2

( 1 1
1 −1

)
with Eq. (2.1) to construct

a basis of symmetric and antisymmetric wavefunctions and obtain the following system

of equations ∂x −∆

∆ −∂x


 ψ1(x)

ψ2(x)

 = i(ε − V(x))

 ψ1(x)

ψ2(x)

 . (2.2)

where we have scaled the eigenvalue ε = E/~vF and potential energy V(x) = U(x)/~vF .

In what follows we investigate the quasi-1D Coulomb potential with two different

modifications, the so-called ‘shifted’ and ‘truncated’ Coulomb problems. Both modifica-

tions introduce a regularization scheme at the origin, so as to avoid problematic boundary

conditions well known in the non-relativistic case [44] and more importantly to be more

physically meaningful. A cut-off naturally arises in nanotubes and quantum wires due

to the finite (albeit small) size of the quantum confined direction, which is related to the
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radius of the wire [63]. The third main alteration to the Coulomb potential is the Ohno

potential [64], but we omit a treatment of this case as it is only quasi-exactly solvable [65]

in terms of confluent Heun functions [66].

For completeness, we note that exponentially decaying potentials, which are of a

short-range nature, have also been considered in quasi-1D Dirac systems in various forms

[67, 68, 69]. However, it is the pure Coulombic long-range interaction, decreasing like the

inverse of separation, which is the subject of this work as it is well known that screening

is suppressed in low-dimensional systems [70]. Indeed, in the case of 2D Dirac-Weyl

systems like graphene screening does not alter the long range functional dependence of

the Coulomb interaction beyond a slow, logarithmic correction [57, 58], whilst screening

is further reduced in carbon nanotubes [60]. Additionally, in a similar framework to this

work, transmission problems through periodic potentials [71] as well as linear [72] and

smooth step potentials [73] have been treated.

Furthermore, it should be mentioned that the confinement of Dirac-like particles

in one-dimensional potentials is the subject of considerable recent attention from the ap-

plied mathematics community [74, 75, 76, 77, 78]. Our results here, using two explicit

toy models of non-integrable potentials, provide a complementary approach both more

accessible to physicists and closer to experimental reality.

2.1.2 The shifted Coulomb problem

In this section we shall investigate the shifted 1D Coulomb potential plotted in Fig. 2.1

and explicitly given by

Vs(x) =
−U0

a + |x|
, (2.3)

where a is the shift length, and the dimensionless number U0 = e2

4πε
1
~c

c
vF

is an effective

fine structure constant, which in the case of carbon nanotubes or graphene nanoribbons is

U0 ≈
300
137 .

Upon substitution of Eq. (2.3) into Eq. (2.2), the wavefunction component ψ1(x) in

the region II (x > 0) satisfies a modified form of the confluent hypergeometric equation,
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-10 100

V(x) a

U0

I II

-1

x/a

Figure 2.1: A plot of the shifted Coulomb potential, defined by Eq. (2.3).

called the Whittaker differential equation, in the variable ξ = 2κ(a + x),

d2

dξ2ψ1(ξ) +

(
−

1
4

+
µ

ξ
+

1/4 − ν2

ξ2

)
ψ1(ξ) = 0, (2.4)

where

µ =
εU0

κ
, ν = iU0 −

1
2
, (2.5)

with κ =
√

∆2 − ε2 > 0, as we consider bound states (|ε| < |∆|) only. An asymptotically

convergent solution can be constructed, known as the Whittaker function of the second

kind [79]

Wµ,ν(ξ) = ξ1/2+νe−ξ/2U
(

1
2 + ν − µ, 1 + 2ν, ξ

)
, (2.6)

where the Tricomi function U(α, β, ξ) is built from a linear combination of the usual con-

fluent hypergeometric functions of the first kind:

U(α, β, ξ) =
Γ(1 − β)

Γ(α − β + 1)
F(α, β, ξ)

+
Γ(β − 1)

Γ(α)
ξ1−βF(α − β + 1, 2 − β, ξ), (2.7)
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where F(α, β, ξ) is a hypergeometric series given by

F(α, β, ξ) = 1 +
α

β
ξ +

α(α + 1)
β(β + 1)

ξ2

2!
+ ... (2.8)

This construction ensures the desired decaying behavior at infinity: U(α, β, ξ) → ξ−α,

α ∈ C.

-10

0.15 0.15

100 -10 100

-10 100 -10 100

0.30.6 a|Ψ|2 a|Ψ|2

a|Ψ|2 a|Ψ|2

(a) (b)

(c) (d)

x/a x/a

x/a x/a

Figure 2.2: Probability density plots of the first four successive bound states with bandgap ∆a = 1
and potential strength U0 = 300

137 , where (a) εa = −0.248, (b) εa = 0.350, (c) εa = 0.570 and
(d) εa = 0.703.

One can then proceed to find the full solution to the system of equations (2.2): in

region II (x > 0) we obtain

ΨII(x) =
cII
√

a

 Wµ,ν(ξII)

− κ+iε
∆

Wµ,ν+1(ξII)

 , (2.9)

similarly in region I (x < 0) it follows

ΨI(x) =
cI
√

a

 κ+iε
∆

Wµ,ν+1(ξI)

Wµ,ν(ξI)

 , (2.10)

where now the variable ξI,II = 2κ(a ∓ x).

Using the continuity condition for both wavefunction components ψI
1,2|x=0− = ψII

1,2|x=0+

with Eq. (2.9) and Eq. (2.10), yields the ratio of constants cII/cI = ±i, where cI is found
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via the normalization condition for a spinor wavefunction

∫ ∞

−∞

(
|ψ1|

2 + |ψ2|
2
)

dx = 1. (2.11)

Bound state eigenvalues must be determined from the transcendental equation

∆

κ + iε
Wµ,ν(2κa)

Wµ,ν+1(2κa)
= ±i, (2.12)

which can be solved graphically or via other standard root-finding methods. We show in

Fig. 2.2 four illustrative electron density plots of the lowest bound states for U0 = 300
137 ,

corresponding to a single charge Coulomb impurity on the axis of a single-walled carbon

nanotube, and ∆a = 1. Characteristically, the ground state density has a single peak,

followed by two peaks for the first excited state, and so on. The value of the density at the

origin alternates from being one of a local maxima to a local minima, but in a noticeable

contrast to the non-relativistic case is never zero. This arises from the matrix nature of

the Hamiltonian Eq. (2.1), which ensures both wavefunction components never vanish

simultaneously. Higher energy bound states are more spread in space, with the highest

peaks of probability density concentrated in the two outermost shoulders.

In the limit of a → 0, a pure Coulomb potential is obtained. This limit leads to

an unveiling of a signature of atomic collapse: at small a, the low energy eigenstates

possess a higher than expected number of peaks, with the expected ground state (with

single peak), first excited state (with double peak) and so on lost one after another from

the bound state spectrum into the continuum as a further approaches zero.

2.1.3 The truncated Coulomb problem

We also consider the truncated 1D Coulomb potential, plotted in Fig. 2.3 and shaped by

the piecewise function

Vt(x) =


−2U0/d, if |x| ≤ d/2

−U0/|x|, if |x| > d/2
(2.13)

where the Coulomb potential has been terminated at a radius d/2 to form a flat-bottom

quantum well at small distances.
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Figure 2.3: A plot of the truncated Coulomb potential, defined by Eq. (2.13).

In the exterior regions I and II, where |x| > d/2, the solutions follow from those of

Sec. 2.1.2 upon setting a = 0. In the interior region III, where |x| ≤ d/2, the solutions are

simply

ΨIII(x) =
cIII
√

a

 sin(kx)

f1(x)

 +
cIV
√

a

 cos(kx)

f2(x)

 , (2.14)

where we have introduced the auxiliary two-component function

 f1(x)

f1(x)

 =
k
∆

 cos(kx)

− sin(kx)

 +
ε + 2U0/d

i∆

 sin(kx)

cos(kx)

 , (2.15)

which necessitates the introduction of a new wavenumber k =
√

(ε + 2U0/d)2 − ∆2 > 0,

arising from the short-range behavior of the potential. The wavenumber defining the

long-range decay of the wavefunction remains κ, introduced after Eq. (2.5). Together,

requiring k, κ > 0, one finds a definite region in which confined states may form, restricted

maximally by |εd| < εmaxd = ∆d and minimally by εd > εmind = ∆d − 2U0.

Imposing continuity on the wavefunction components at x = ±d/2 leads to the

following transcendental equation governing the energy quantization of bound states

1 − λ+/λ− = 0, (2.16)
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Figure 2.4: Probability density plots of the first four lowest bound states with bandgap ∆d = 1
and potential strength U0 = 300

137 , where (a) εd = −0.270, (b) εd = 0.191, (c) εd = 0.460 and
(d) εd = 0.623.

where

λ± =

k
∆τ±

tan
(

kd
2

)
± η±

η± tan
(

kd
2

)
∓ k

∆τ±

, (2.17)

η± = i
(
ε + 2U0/d

∆τ±

)
∓ 1, (2.18)

τ± =

(
κ + iε

∆

Wµ,ν+1(κd)
Wµ,ν(κd)

)±1

, (2.19)

which can be solved via the usual root-searching procedures. In Fig. 2.4 we plot electron

densities for the four lowest bound states for ∆d = 1 and U0 = 300
137 . Most noticeable

is the absence of the single-peaked and double-peaked electron densities (the naturally

expected ground and first excited states). This is because for the chosen value of the

bandgap there are no such solutions to Eq. (2.16) inside the allowed region of bound

states, as represented graphically in Fig. 2.5 (where we show only the four lowest states

for clarity). The critical bandgaps, below which the three lowest bound states are lost into

the continuum, are (∆d)c = 1.86, 1.11, 0.57. As one further decreases ∆d successively

higher bound states are lost one after another. The disappearance of low-lying states from

the discrete spectrum is a generic feature of the Coulomb potential independent of its

regularization at small distance: in the case of Sec. 2.1.2, one finds the lowest three states
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merge with the continuum at (∆a)c = 0.56, 0.23, 0.10.

Lower energy bound states diving into the continuum below the bandgap is a sig-

nature of the so-called atomic collapse [80, 81, 82]. Its appearance in 1D Dirac materials,

with its dependence on critical bandgaps, opens a new avenue to explore such an exotic

relativistic quantum mechanical phenomenon in a tabletop experiment. In fact, quasi-1D

Dirac systems, like carbon nanotubes, are arguably more suitable for table-top experi-

ments on atomic collapse than graphene. Unlike graphene with a 2D Coulomb potential,

the system considered here contains a band gap, which can even be controlled by external

electric [83, 84] or magnetic [85, 86, 87, 88] fields, and admits truly bound state solutions

with square-integrable wavefunctions.

The results shown in Fig. 2.5 are somewhat similar to those found in graphene for

bound states in a 1D square potential well extended infinitely in the y-direction, with the

role of the bandgap being played by the transversal wavevector ∆ → ky [89, 90]. The

most important difference is that the Coulomb problem admits an infinitely large family

of bound states for every nonzero size of the bandgap, albeit some shallower states may be

missing for small bandgaps. In the square well, which is in fact of less practical relevance

due to the difficulty in creating sharp potential barriers in realistic devices, as the bandgap

gets smaller so does the finite number of bound states present beyond the continuum.

We should also mention the results presented here are qualitatively the same with

changing U0 (which could arise due to the dielectric environment or due to the renormal-

ization of the Fermi velocity seen towards the Dirac point). The most prominent difference

is the shape of the allowed region of confined states, due to the appearance of U0 in the

small-distance wavevector k.

2.1.4 Conclusion

We have presented the exact solutions to the quasi-relativistic shifted and truncated Coulomb

problems for a quasi-relativistic 1D matrix Hamiltonian, which has a direct application to

the growing research area of Dirac materials [6].

We have shown that manipulating the size of the bandgap allows one to exclude

from the discrete spectrum certain low-lying quantum states, for example the ground state,
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Figure 2.5: A plot of the dependence of the bound state energies on band gap for the lowest four
states: the ground state (dashed red line), the first excited state (dotted blue line), the second
state (dot-dashed green line) and the third state (dot-dot-dashed orange line) respectively, where
U0 = 300

137 . The solid black lines denote the region bound states must fall between.

in stark contrast to the non-relativistic case. The bandgap can be controlled, e.g. in the

case of carbon nanotubes, by applying an external field [83, 84, 85, 86, 87, 88] or via

strain [91]; or in graphene nanoribbons by choosing certain nanoribbons with a desirable

geometry [92]. Alternatively, the strength of the interaction potential can be controlled by

having multiple charged impurities [93] or changing the dielectric environment.

We hope some interesting features arising from Coulomb physics, such as atomic

collapse effects, can soon be observed either in the currently known quasi-1D Dirac ma-

terials or in future crystals synthesized with the latest techniques [94].
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2.2 Spatial modulations of the Fermi velocity

The particles found in Dirac materials are notorious for being difficult to manipulate due to

the absence of backscattering. Here we investigate how spatial modulations of the Fermi

velocity of Dirac particles can give rise to localization effects in one dimensions, and a

generalization to two dimensions is also possible. We present several exactly solvable

models illustrating the nature of the bound states which arise.

2.2.1 Introduction

There is a considerable resurgence in the importance of the Dirac equation in condensed

matter physics due to the rise of so-called Dirac materials, whose charge carriers behave

according to quasi-relativistic wave equations [6]. Celebrated examples include the sur-

face states of topological insulators or graphene. One important property that directly

follows is the absence of backscattering [9], which whilst leading to large electron mobil-

ities, provides a difficulty in localizing Dirac electron and so building a practical, digital

devices [68].

One interesting method proposed to manipulate the somewhat elusive quasi-relativistic

charge carriers is to consider systems with a spatially varying Fermi velocity [95, 96]. The

resulting ballistic electron transport has already been extensively studied [97, 98, 99, 100],

as has the effects of applying external electric [101] and magnetic fields [102] and a super-

lattice [103]. There are immediately apparent strong analogies in both acoustics and es-

pecially optics, where phenomena such as supercollimation can be envisaged [104, 105].

We should also mention velocity engineering of bilayer graphene has been investigated

[106].

Energy varying Fermi velocity renormalization has already been seen in experi-

ments at energies close to the Dirac point [107, 108]. Here we consider the problem of

Dirac particles that can be described with a spatially modulated Fermi velocity vF = vF(r),

which arises theoretically from both elasticity theory with tight-binding as well as quan-

tum field theory in curved space [109]. Experimentally, a spatially dependent velocity

may occur due to ripples in the material [110], the use of an SiO2 substrate[111], super-

lattices [29, 112, 113], atomic scale defects induced by ion irradiation [114], straining
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the material directly grown on a a substrate such as h-BN [115], or by placing a grounded

plane of metal nearby [98]. Indeed, a spatial dependence of the Fermi velocity has already

been noticed [113].

Previously, most of the attention has been focused on the scattering of massless

Dirac fermions on square velocity barriers, either single [102] or double [116], however

here we address the bound state problem on non-square velocity distributions.

It has been shown by Peres [96] that in order to maintain Hermitian operators, the

relevant (and Sturm-Liouville) Dirac Hamiltonian is

Ĥ =
√

vF(r)σσσ · p̂
√

vF(r), (2.20)

where σσσ = (σx, σy) are the (pseudo)spin matrices of Pauli. Eq. (2.20) is acted upon by a

two-component spinor wavefunction, Φ(r). Continuity of the probability current leads to

the boundary condition at an interface r = R

√
vF(r)Φ(r)

∣∣∣∣
r=R+δδδ

=
√

vF(r)Φ(r)
∣∣∣∣
r=R−δδδ

, (2.21)

which is analogous to what occurs in heterostructures defined by a position dependent

mass. In what follows, we make the following assignment of the auxiliary spinor for con-

venience Ψ(r) =
√

vF(r)Φ(r). Let us make the ansatz Ψ(x, y) = (Ly)−1/2eiqyy ( 1 0
0 i

)
ψ(x),

where the spinor ψ(x) =
[
ψ1(x), ψ2(x)

]T , due to translational invariance in the y direc-

tion. We shall consider several toy models of 1-D velocity barriers in what follows, with

drastically different spatial profiles, as shown in Fig. 2.6.

2.2.2 The square velocity barrier

Firstly, we revisit the square model [96, 97, 98, 99] velocity barrier of width d

v(x) =


v0, −d

2 ≤ x ≤ d
2

v1, x > d
2 , x < −d

2

(2.22)
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v(x)/v0

x/d

Figure 2.6: Profiles of the velocity barriers considered, namely the exponential barrier (solid red
line), linear barrier (dashed blue line) and square root barrier (dotted green line).

where v1 > v0. There has been much focus on scattering on such a barrier, instead we

shall investigate the associated bound states. Naturally appearing in this problem are the

wavevectors

κ =

(
q2

y −
(

E
~v1

)2
)1/2

, k =

((
E
~v0

)2
− q2

y

)1/2
(2.23)

which arise when describing the wavefunction in its evanescent and propagating stages

respectively. These wavevectors automatically restrict the region of bound states to the

fan ~v0|qy| < |E| < ~v1|qy|. The energies of the bound states are determined by

tan(kd) =
2 v1

v0

κ
k

1 +
(
1 − v1

v0

)2 ( qy

k

)2
−

(
v1
v0

κ
k

)2 . (2.24)

As is common in one-dimensional barrier problems, there is always at least one bound

state, even for arbitrarily weak barriers as v0/v1 → 1. Upon taking this limit, one can see

from Eq. (2.24) that the left hand side of the equation will grow monotonically between

0 ≤ tan(kd) ≤
(
v2

1/v
2
0 − 1

)1/2
qyd, which will always be intercepted as the right hand side

tends to zero as |E| → ~v1|qy|.

In the opposite limit v0/v1 → 0, Eq. (2.24) reduces to tan(kd) + k/qy = 0. Now
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Figure 2.7: Eigenvalue spectrum of Dirac fermions in a square velocity barrier. The lowest four
states are shown, from the ground state (dashed red line), to higher states (dotted blue line, dash-
dot green line, dash dot-dot orange line). The region of allowed bound states is denoted by a solid
black line. Here we take qyd = 1.

there are an increasing number N of bound states, which can be estimated from

N =

⌊
Υ

qyd
π

⌋
, Υ =

(
v2

1/v
2
0 − 1

)1/2
(2.25)

where b...c is the floor function. Inverting Eq. (2.25) tells us the threshold velocity bar-

rier strengths above which new bound states appear, via the approximate relation v0/v1 =(
1 +

(
Nqyd/π

)2
)−1/2

. These features can been seen from the numerical solutions to Eq. (2.24),

which we plot in Fig. 2.7.

2.2.3 The exponential velocity barrier

Let us study the exponential velocity barrier, plotted in Fig. 2.6 and defined by

v(x) = v0e|x|/d, (2.26)

where v0 is the minimal Fermi velocity, found at the center of the barrier, and d is the

length scale of the problem, from which arises the key dimensionless parameter

λ =
|E|d
~v0

. (2.27)
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Upon solving the coupled Eqs. (2.20) one finds the following wavefunction in region I

(x > 0)

ψI(x) = cI√
d
e−x/2d

 Jqd+1/2

(
λe−x/d

)
sgn(E)Jqd−1/2

(
λe−x/d

)
 , (2.28)

in terms of the Bessel function of the first kind Jα(ξ). The solution in region II (x < 0)

is found by interchanging the top and bottom wavefunction components, and making the

replacements x → −x and cI → cII = ±sgn(E)cI . Applying the boundary condition

Eqs. (2.21), one finds the spectrum of bound states is determined via the transcendental

equation

Jqd−1/2 (λ) = ±Jqd+1/2 (λ) , (2.29)

which can be solved with standard root-finding methods or indeed graphically. However,

upon taking the limit q→ 0 one arrives at the analytic expression,

En = ±π
(
n + 1

4

) ~v0

d
, n = 0,±1,±2, ... (2.30)

from which one notices there is a threshold energy of λ = π/4 before one can reach the

first bound state.

0
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|E|d
h v0

Figure 2.8: Progression of the six lowest bound states energies with traversal momentum for Dirac
particles in an exponential velocity barrier.

The solutions to Eq. (2.29) are presented in Fig. 2.8: in the regime shown the energy

bands can be approximated as linearly growing with wavevector, explicitly

|EN |d
~v0

=
π

4
(2N − 1) +

(
N/5 + 5

4

)
qyd, N = 1, 2, ... (2.31)

which is especially reasonable for N > 1.
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2.2.4 The linear velocity barrier

Now we will look at the linear velocity barrier, sketched in Fig. 2.6 and shaped by

v(x) = v0(1 + |x|/d), (2.32)

and we define the useful dimensionless quantity

γ =
Ed
~v0

. (2.33)

Proceeding in a similar manner to Sec. 2.2.3, one finds the wavefunction in region I (x >

0) is

ψI(x) = cI√
d

(
1 + x

d

)iγ
e−qx ×

 U
(
1 + iγ, 1 + 2iγ, 2qd(1 + x

d )
)

γ−1U
(
iγ, 1 + 2iγ, 2qd(1 + x

d )
)

 , (2.34)

where U(α, β, ξ) is the Tricomi function or confluent hypergeometric equation of the sec-

ond kind [79]. The solution in region II (x < 0) is found by interchanging the top and bot-

tom wavefunction components, and making the replacements x→ −x and cI → cII = ±cI .

Ensuring a conserved probability current yields the eigenvalues equation

U (iγ, 1 + 2iγ, 2qd) = ±γU (1 + iγ, 1 + 2iγ, 2qd) , (2.35)

which, although it must be solved numerically, can be solved with any desired accuracy,

as shown in Fig. 2.9. Most noticeable is the absence of threshold bound state energies as

qyd → 0, markedly different from the sharper cusp profile of Sec. 2.1.2.
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Figure 2.9: Progression of the six lowest bound states energies with traversal momentum for Dirac
particles in a linear velocity barrier.
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2.2.5 The square root velocity barrier

Finally, we consider a weakly growing square root velocity barrier, graphed in Fig. 2.6

and with the functional form

v(x) = v0

√
1 + |x|/d. (2.36)

One may obtain the wavefunction in region I (x > 0) as

ψI(x) = cI√
d

(
1 + x

d

)1/2
e−qx ×

 U
(
1 − γ2

2qd ,
3
2 , 2qd(1 + x

d )
)

γ−1 (2qd)1/2 U
(

1
2 −

γ2

2qd ,
3
2 , 2qd(1 + x

d )
)
,

 (2.37)

whilst the solution in region II (x < 0) is found by interchanging the top and bottom

wavefunction components, and making the replacements x → −x and cI → cII = ±cI .

The eigenvalues are governed by

γ−1 (2qd)1/2 U
(

1
2 −

γ2

2qd ,
3
2 , 2qd

)
= ±U

(
1 − γ2

2qd ,
3
2 , 2qd

)
, (2.38)

which is tractable with standard root-searching procedures, the result of which is shown

in Fig. 2.10.
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Figure 2.10: Progression of the six lowest bound states energies with traversal momentum for
Dirac particles in a square root velocity barrier.

Upon comparing Fig. 2.8, Fig. 2.9 and Fig. 2.10 one notices as the velocity barrier

becomes shallower the bound state energies lower and the inter-energy spacing reduces,

whilst as soon as the velocity barrier is not growing fast (exponentially) there is no thresh-

old as qyd → 0.



2.2. SPATIAL MODULATIONS OF THE FERMI VELOCITY 37

2.2.6 Conclusion

We have calculated the nature of the bound states that arise in several different velocity

barrier configurations in 1-D geometries. We have shown how velocity barriers (growing

slower than exponential) support bound modes for arbitrarily small transversal wavevec-

tors. These results open up an avenue to explore in the quest to acheive digital switching

behavior with Dirac particles.





Chapter 3

Two dimensional problems

I call our world Flatland, not because we call it so, but to make its nature clearer to you,

my happy readers, who are privileged to live in Space.

- Edwin A. Abbott

39
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3.1 Magnetic quantum dots and rings

We show how it is indeed possible to trap two-dimensional massless Dirac fermions in

both magnetic quantum dots and rings. Crucially, the spatial decay at infinity of the

magnetic field must be slower than the inverse square of the radial distance. It is also

found one sign of the electron angular momentum is excluded depending on the sign

of the field. We illustrate these characteristics with both exact solutions and a hitherto

unknown quasi-exactly solvable model based on confluent Heun functions.

3.1.1 Introduction

Inhomogeneous magnetic fields continue to play an important role in modern physics,

from the classic Stern-Gerlach experiment [117] of 1922 to the post-World War II achieve-

ments in magnetic confinement of plasmas in tokamaks [118] and the more recent mag-

netic levitation of macroscopic objects [119].

With the rise of the two-dimensional Dirac material graphene, whose electrons be-

have like massless Dirac fermions, the influence of magnetic fields has been pivotal to

research into fundamental physics, including relativistic Landau levels [120, 121, 122],

Fock-Darwin states [123], integer [124] and fractional [125] quantum Hall effects and

quantum spin Hall states [126].

An important feature of Dirac fermions is the complete absence of backscattering

[9], leading to a great difficulty in confining electrons electrostatically [127]. Therefore,

much effort has been expounded on considerations of magnetic traps [128, 129]. One-

dimensional magnetic confinement has been shown to be key for snake states [130, 131]

and many inhomogeneous field profiles have been treated [132, 133, 134, 135, 136, 137].

Zero-dimensional confinement in perpendicular magnetic fields has also been treated ex-

tensively [138], with magnetic antidots [139] and antirings [140, 141] (where the mag-

netic field is zero inside the dot and ring) being shown to confine electrons but magnetic

dots [142] (where the magnetic field is nonzero inside the dot) has been shown to not

support bound states. In fact, as long as the magnetic trap decays at infinity slower than

1/r2, bound states are indeed possible in both magnetic dots and rings as an asymptotic

reduction of the wavefunction to non-square-integrable Bessel functions is avoided. Am-
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biguities found in the case of a pure scalar potential decaying as 1/r2 are avoided because

of the structure of the quasi-relativistic equations in two-dimensions [143, 144].

Here we discuss several examples of magnetic profiles which show confinement in

magnetic quantum dots and rings. Notably, we study more realistic magnetic fields than

the well-known square-well model [139], which are both inhomogeneous and regular at

the origin. In doing so, we make use of both exact solutions and quasi-exactly solvable

(QES) models [65], which most clearly display the underlying physics.

Experimentally, nonuniform magnetic fields can be created by either deposition

of ferromagnetic microstructures [145] or superconducting stripes on top of the two-

dimensional electron gas [146], or by curving the membrane [147].

r/R

ebR B
z

h

Figure 3.1: A plot of the non-uniform magnetic field profiles considered, comprised of a singular
profile (solid red line), a regularized profile (green dash-dot line) and a smooth profile (blue dotted
line).

The single particle Hamiltonian describing the two-dimensional excitations in graphene

and other such Dirac materials in a magnetic field can be written

Ĥ = vFσ · ( p̂ + eA) , (3.1)

where vF is the Fermi velocity, σ are Pauli’s spin matrices and A is a magnetic vector
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potential. Acting on this Hamiltonian with a wavefunction of the form

Ψ(r, θ) =
eimθ

√
2π

 χA(r)

ieiθχB(r)

 , m = 0,±1,±2, ... (3.2)

leads to the following coupled equations

(
∂r + m+1

r + e
~
Aθ

)
χB = εχA, (3.3a)(

−∂r + m
r + e

~
Aθ

)
χA = εχB, (3.3b)

where the eigenvalue E = ~vFε and the magnetic field Bz = r−1∂r(rAθ(r)) enters via the

vector potential. We start by noting the problem of a Dirac fermion in a singular magnetic

field [148], with the spatial inhomogeneity

Bz(r) =
~

e
1
br
, (3.4)

where b is a length which effectively describes the magnitude of the field, can be solved

exactly. Upon reducing the system of equations Eqs. (3.3) to a single Schrödinger equa-

tion for wavefunction component χB only, one finds a formal identification with the two-

dimensional hydrogen atom [42], such that one can write down the eigenenergy spectrum

εn,mb = ±

1 −
(

1 + 2m
1 + 2n + 2|m + 1|

)2


1/2

, (3.5)

m ≤ −1, n = 0, 1, 2...

It is interesting how one may exclude one sign of angular momenta, and the dependence

on both quantum numbers n and m. However, this singular field model is somewhat

unphysical. Therefore, we study a smooth, regular profile in Sec. 3.1.2, and consider

toy models of a magnetic quantum dot and ring in Sec. 3.1.3 and Sec. 3.1.4 respectively.

Finally, we draw some conclusions in Sec. 3.1.5.
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3.1.2 A quasi-exactly solvable model

Remarkably, a further counterexample of unexpected beauty can be found in the following

QES, please consider

Bz(r) =
~

e
1

bR
2 + r/R

(1 + r/R)2 . (3.6)

We seek the lower wavefunction component in the form

χB = c
R × ξ

|m+1+R/b|e−κξw(ξ), (3.7)

with c a normalization constant and we use the notation

ξ = r/b, κ = (1 − ε2b2)1/2. (3.8)

This is reasonable, since we know the behavior of the function as ξ → 0 should be

χB ∼ ξ
|m+1+R/b|, and the exponential decrease (e−κξ) as ξ → ∞. Substitution of Eq. (3.7)

into Eq. (3.3) and elimination of χA yields the equation

w′′(ξ) + 2|m + 1 + t−1|ξ−1w′(ξ)

−

(
κ(1 + 2|m + 1 + t−1|) + 1 + 2m

z

−
t2 + 2t(m + 1)

z2 +
2(tz)−1

1 + 2t
−

z−1

(1 + tz)2 +
2t−1(1 + m)z−2

1 + tz
+

(tz)−2

(1 + tz)2

)
w(ξ) = 0, t = b/R,

(3.9)

where the prime denotes differentiation with respect to ξ. We introduce a new independent

variable ζ = − b
Rξ and take the ansatz

w(ζ) = (1 − ζ)R/bg(ζ), (3.10)

to obtain a form of the confluent Heun equation [149]

g′′(ζ) +

(
α +

β+1
ξ

+
γ + 1
ξ − 1

)
g′(ζ) +

(
µ

ξ
+ ν

ξ−1

)
g(ζ) = 0, (3.11)

µ = 1
2 (α − β − γ + αβ − βγ) − η, ν = 1

2 (α + β + γ + αγ + βγ) + δ + η, (3.12)
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with parameters

α = 2R
b κ, β = 2|m + 1 + R

b |, γ = 2R
b − 1, δ = R

b (1 + 2m), η = 1
2 . (3.13)

The Frobenius solution to Eq. (3.11) is computed as a power series expansion around the

origin ζ = 0, a regular singular point, with a radius of convergence |ζ | < 1

g(ζ) =

∞∑
n=0

vn(α, β, γ, δ, η, ζ)ζn = Hc(α, β, γ, δ, η, ζ), (3.14)

where the coefficients vn satisfy a three term recurrence relation. This confluent Heun

function Hc(ζ) must reduce to a polynomial, since otherwise it would increase exponen-

tially as ξ → ∞. The function Hc(ζ) reduces to a polynomial if two conditions are met

[66]. Firstly, δ
α

+ 1
2 (β + γ) + N + 1 = 0, or equivalently

εQES
N,m b = ±

1 −
 m + 1

2

N + 1
2 + R

b + |m + 1 + R
b |

2
1/2

,m ≤ −1, N = 1, 2... (3.15)

which ensures the (N + 1)th coefficient in the series expansion is a polynomial in η of

order N + 1. Then the second necessary condition is to find some value of δ that is a root

of that polynomial, such that the coefficient vN+1 is zero and hence (due to the recurrence

relationships) all successive coefficients are also zero. Then the series has been truncated

and Hc(ζ) is simply a confluent Heun polynomial.

As an example, consider the m = −2 state and set R/b = 1. Then one finds from

Eq. (3.15), the energy levels of the first few QES modes ε1,−2b = ±0.824, ε2,−2b = ±0.913

and ε3,−2b = ±0.948. Upon solving for the roots of the resultant quadratic, cubic and

quartic equations respectively in δ, one finds b = 0.931, 0.915, 0.948 respectively. We

plot in Fig. 3.2 these example probability densities. Thus we have found in a realistic,

regularized model truly bound modes of Dirac-Weyl excitations can exist.

It is not surprising, yet still rather beautiful, that the QES system presented here has

a directly analogous QES model in the framework of the 2D Schrödinger equation. In the
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r/R

rR
 |

χ B
|2

Figure 3.2: Probability density plots of the lower wavefunction component in the QES model
considered, with state m = −2 and parameter R/b = 1. We display a first excited state N = 1 (solid
red line), second excited state N = 2 (dashed blue line) and third excited state N = 3 (dotted green
line).

non-relativistic case, the wavefunction and QES energy levels are instead given by

Ψ(r, θ) = eimθr|m+
R
b |(1 + r/R)1/2−λe−

κr
b ×

Hc

(
2κR

b , 2|m + R
b |,−2λ, 2mR

b ,
1
2 ,−

r
R

)
, λ =

(
R2

b2 + 1
4

) 1
2 , (3.16)

where we have redefined κ = (1 − εb2) and now our particle of mass M has an effective

eigenvalue ε = 2ME/~2, explicitly

εQES
N,m b2 =

1 −
 m
1 + N + |m + R

b | − λ

2
1/2

. (3.17)

Further, rather intriguing results in the non-relativistic regime are the subject of future

study.

3.1.3 A magnetic quantum dot

Let us consider a magnetic quantum dot, defined by

Bz(r) =
~

e
1
b


R−1, r ≤ R, (region I)

r−1, r > R. (region II)
(3.18)

where we have introduced the second length scale R, which is in immediate competition

with b. The solutions in region I are the well known relativistic level Landau wavefunc-
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tions [122], which can be given in terms of Kummer’s function F(a, b, z) as

χI
B = cI

b × r|m+1|e−
r2

4bR F(aI , bI ,
r2

2bR ), (3.19)

aI = 1
2

(
1 + m + |1 + m| − ε2bR

)
, bI = 1 + |1 + m|,

and the upper wavefunction component χA can be easily found from Eq. (3.3a). The

wavefunctions in region II are similar to those of the problem in Sec. 3.1.2, explicitly

χII
B = cII

b × (r/b)|m+1|e−
κr
b U(aII , bII ,

2κr
b ), (3.20)

aII = 1
2 + |1 + m| + 2m+1

2κ , bII = 1 + 2|1 + m|,

except here we choose instead the second linearly independent solution to Kummer’s

equation U(a, b, z) [79], in order to have a square-integrable wavefunction at infinity.

Enforcing both wavefunction components to be continuous across the interface at r = R,

one obtains the matching constant

cII

cI
= e

R
b

(
κ−

1
4

) F(aI , bI ,
R
2b )

U(aII , bII ,
2κR

b )
, (3.21)

and the following transcendental equation for energy quantization to be solved by root-

finding methods

aI

bI

F(aI + 1, bI + 1, R
2b )

F(aI , bI ,
R
2b )

+ 2κaII
U(aII + 1, bII + 1, 2κR

b )

U(aII , bII ,
2κR

b )
+ κ − 1 = 0, (3.22)

which interpolates between two analytic functions in the limiting cases of (i) a singu-

lar field, governed by Eq. (3.5) in the regime R/b << 1; and (ii) a constant field, with

relativistic Landau levels

εn,m(bR)1/2 = ± (1 + m + |1 + m| + 2n)1/2 , R/b >> 1. (3.23)

such that there is a transition depending on R/b at which one sign of angular momentum is

excluded. Eq. (3.23) fully describes how the energy levels can be tuned at will depending
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on the parameters of the magnetic quantum dot.

3.1.4 A magnetic quantum ring

It is straightforward to adapt the problem magnetic dot problem of Sec. 3.1.3 to describe

a toy model of a magnetic quantum ring, defined by

Bz(r) =
~

e
1
br

Θ(r − R), (3.24)

where Θ(z) is Heaviside’s step function. Now, inside the ring r ≤ R we have the usual

free particle solution in terms of a Bessel function of the first kind χI
B = cI

b J|m+1|(εr),

and outside the ring r > R we again have a wavefunction component like Eq. (3.20).

Matching both wavefunction components at the ring boundary r = R yields the following

transcendental equation for the allowed eigenvalues

2κaII
U(aII + 1, bII + 1, 2κR

b )

U(aII , bII ,
2κR

b )
− εb

J|m+1|+1(εR)
J|m+1|(εR)

+ κ − 1 = 0. (3.25)

Solutions of Eq. (3.25) show how, even in a true ring with decaying field asymptotically,

bound states exist and their dependence on the parameters of the system.

3.1.5 Conclusion

The problem of confinement of Dirac-Weyl particles in nonuniform magnetic fields has

been considered. We have shown, with magnetic field profiles including examples of

magnetic quantum dots and rings, how such traps should be of a short-range nature and

how one sign of angular momentum is removed. We hope experimental realization of

such magnetic confinement can be realized in the near future.

Furthermore, in graphene certain configurations of strain can lead to pseudomag-

netic fields, which conserve time-reversal symmetry across the two valleys K and K′.

Thus our results suggest to achieve bound states mechanically one needs to create very

delicate strain configurations, not giving rise to short-range magnetic fields decaying at or

faster than 1/r2. Also, the sign of the effective magnetic field will be opposite in the two

valleys, giving rise to states rotating only with positive angular momentum in one valley
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and only negative angular momentum in the other valley. This could be utilized in future

mesoscopic devices.
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3.2 Zero-energy states with and without a magnetic flux

The formation of bound states in Dirac materials is a highly nontrivial task due to the

suppression of backscattering for chiral electrons with a Berry phase of π. Indeed, it

is widely claimed confinement via purely electrostatic means is impossible. Here we

provide a caveat to this belief by demonstrating theoretically bound states can arise at the

Dirac point with only a scalar potential. We also propose to add a magnetic flux tube to

the system, the modulation of which can be used as a tool to bring about confinement or

deconfinement as required.

3.2.1 Introduction

Since the early days of graphene physics the phenomena of Klein tunneling [31, 150, 151]

has led to the belief that no electric field can trap a bound state in graphene. Instead,

proposals for magnetic confinement were put forward [123, 127, 139, 152, 153] and much

work was carried out on the Aharonov-Bohm effect and graphene rings theoretically [154,

155, 155, 156] and later experimentally [158, 159].

However at the Dirac point, so-called zero-energy bound states may form at the

apex of the Dirac cone. Mathematically, this is because at finite energy the effective

Schrödinger equation at long range maps on to the problem of scattering states in a non-

relativistic system (with solutions decaying like the square root of distance); whereas at

zero energy solutions exist which decay algebraically (depending on the angular momen-

tum quantum number m). When m is nonzero the solutions are fully square-integrable,

such that they are rotating ring-like states, which always avoid the Klein tunnelling due

to their vorticity resulting in a nonzero momentum component along the potential barrier.

Here, we show how to confine zero-energy states electrostatically and suggest mag-

netic flux as a way to deconfine electrons trapped in the purely electrostatic quantum dot

or ring. Truly bound zero-energy states in graphene [160] are of great importance in

transport phenomena [68, 161], and in so-called optimal traps, where the strength of the

confining potential needs to be finely tuned. More abstractly, zero-modes of the Dirac

equation are of enormous interest due to peculiar phenomena that have been associated

with them, such as fractional charge [162] or Majorana excitations [163]. Here our model
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potential holding zero-energy states is short-range, in stark contrast to the Coulomb po-

tential [55, 164, 165, 166, 167], due to the requirement of a gate in all experiments.

To deconfine these bound modes, we propose to utilize magnetic flux tubes [168,

169]. Magnetic flux tubes have led to some interesting results in some exotic areas of

physics, including superstring theory [170] and black hole pair production [171], as well

as in condensed matter physics, for example in weak localization measurements [172].

3.2.2 Applying a magnetic flux tube

The single particle Hamiltonian describing electrons in graphene is of a Dirac-Weyl type

Ĥ = vFσ · p̂ + V(r), (3.26)

where vF is the graphene Fermi velocity and σ are Pauli’s spin matrices. Acting with this

Hamiltonian on a wavefunction of the form

Ψ(r, θ) =
Ceimθ

√
2π

 χA(r)

ieiθχB(r)

 , (3.27)

where m = 0,±1,±2, ... and C is a normalization constant, separates the variables. A flux

tube can be defined by the vector potential A = (0, Aθ, 0), where

Aθ(r) =
~

e
f
r
, (3.28)

and f = Φ/Φ0 is the number of flux quanta (Φ0 = h/e). Introducing a generalized

momentum p̂→ p̂+ eA to incorporate such a vector potential leads to the same equations

as without a flux tube after the transformation m→ m̃ = m + f , namely

(
∂r + m̃+1

r

)
χB = (ε − U(r))χA, (3.29a)(

−∂r + m̃
r

)
χA = (ε − U(r))χB, (3.29b)

where the eigenvalue E = ~vFε and V(r) = ~vFU(r). Notably, for the non-equivalent

second valley the system of Eqs. (3.29) only differs by a permutation of indices A and B,
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such that adding the flux does not change any physics compared to the first valley.

3.2.3 Confinement in a quantum well

We shall consider fully-confined zero-modes trapped in the smooth confining potential

U(r) =
−U0

1 + r2/d2 . (3.30)

We wish to solve the coupled Eqs. (3.29) by initially finding just the upper radial wave-

function component χA. A short-range analysis suggests as r → 0 our solution should

be of the form χA ∼ r±|m̃|; whilst a similar long-range analysis suggests a decay like

χA ∼ r|m̃|−p as r → ∞, where

p = 1 + |m̃| + |1 + m̃|. (3.31)

Upon introducing a new variable ξ = (r/d)2, and trying an ansatz solution of the form

χA = ξ|m̃|/2(1 + ξ)−p/2w(ξ), (3.32)

where w(ξ) is an unknown function having no bearing on the small or large asymptotics

of the solution, we find the following equation for w(ξ)

ξw′′ +
[
1 + |m̃| + (1 − p)ξ(1 + ξ)−1

]
w′

+ 1
4 [U2

0d2(1 + ξ)−2 + p2ξ(1 + ξ)−2 + 2(|m̃| − m̃ − p|m̃| − p)(1 + ξ)−1]w = 0. (3.33)

The solution can be given in terms of the Gauss hypergeometric function [79]

w(ξ) = 2F1

(
1
2 [p + U0d], 1

2 [p − U0d]; 1 + |m̃|; [1 + ξ−1]−1
)
, (3.34)

which must be terminated as follows to satisfy the required conditions on its behavior,

U0d = 2n + p, n = 0, 1, 2... (3.35)
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The lower radial wavefunction component χB is found from χA by replacing m̃→ −m̃− 1

and inserting a prefactor of either U0d/2(m̃ + 1) when m̃ > 0 or 2m̃/U0d when m̃ < −1,

whilst the normalization constant is given by

C−2
m̃,n =

1 + m̃−1

2
d2

∫ ∞

0
|χA|

2dξ (3.36)

where remarkably the integral in Eq. (3.36) can be written in closed form as follows

αn
Γ(1 + |m̃|)
Γ(n + p)

Γ(p − |m̃| + n)
|1 + m̃|

 n∏
j=1

( j + |m̃|)


−1

,where αn = nαn−1, α0 = 1. (3.37)

In the corridor −1 < m̃ < 0, we find no valid square-integrable solutions as r → ∞, as

whilst χB ∼ r−1−|m̃| when m̃ ≤ −1, in the regime m̃ > −1 we have χB ∼ r−|1+m̃|. This

corridor is bounded by marginally non-square-integrable states with m̃ = 0,−1. Thus the

introduction of a flux allows one to have non-vortex like solutions (with quantum numbers

m = 0,−1) as long as m̃ is not in the corridor of non-square-integrable solutions.

m

U0d

~
0

10

0 1 2 3

10

0 321

Figure 3.3: Plot of the condition on the scalar potential parameters U0d at which the system
supports a bound zero-mode, given by Eq. (3.35).

Please note, one needs to also consider the second linearly independent solution of

Eqs. (3.29), which has the r → 0 asymptotics χA ∼ r−|m̃|, χB ∼ r−1−|m̃| for −1 < m̃ < 0.

This is similar to the well-known situation with singular anyonic wavefunctions [173].

However, one finds the necessity for square-integrability at infinity removes this solution

in this case.

We display Eq. (3.35) graphically in Fig. 3.3. One notices a threshold U0d before

the first confined mode appears. There is also the usual symmetry about m̃ → −m̃ −
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g

U0d

Figure 3.4: Plot of the degeneracy g of each zero mode as a function of potential parameters U0d.

1. Fig. 3.4 shows the degeneracy g of each fully confined zero-energy state follows an

ascending staircase with an increase in the potential parameters U0d. It can be envisaged

that such few particle quantum dots will be naturally favored due to screening effects

supporting the tendency of the system to minimize the total energy.
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Figure 3.5: Plot of density |Ψ|2d2 as a function of distance measured in units of d, for a dot with
U0d = 8 and (left-to-right) parameters (m̃, n) = (1, 2), (2, 1) and (3, 0).

We show in Fig. 3.5 how a modulation of m̃ can lead to different states (m̃, n) in a

dot held at a constant U0d. One can see the ring-like structure of electron density for all

states, necessary to avoid Klein tunneling, and how increasing m̃ gives rise to increasingly

tight confined states, as expected from the asymptotic form of the wavefunction as r → ∞.

Notably, unlike the square-well toy model, one does not need to introduce a regularization

scheme for the vector potential[169], rather they are true quantum mechanical solutions.
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3.2.4 Confinement in a quantum ring

There is a continued interest in quantum rings [174] due to the range of exotic physical

effects that can be observed in such non-simply connected nanostructures [175, 176, 177].

For our particular interest of zero-energy states in a magnetic flux, we find a similar

situation occurs in the case of a ring-like confining potential as for a potential well, for

example consider

U(r) = U0Θ(r − a)Θ(b − r), (3.38)

where b > a defines the width of the ring. Bound states do not occur in the window

−1 < m̃ < 0, but outside can exist when the following eigenvalue condition is satisfied,

for m̃ > 0

J|m̃|(U0a)Y|m̃+1|(U0b) = J|m̃+1|(U0b)Y|m̃|(U0a), (3.39)

whilst for m̃ < −1 the required equation is found upon making the replacements a → b

and b→ a everywhere; both transcendental equations can be solved by usual root-finding

methods and a typical result is given in Fig. 3.6. Again, a threshold U0b is seen below

which no bound states are supported.
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Figure 3.6: Plot of the condition on the scalar potential parameters U0b at which the system
supports a bound zero-mode, given by Eq. (3.39) for U0a = 1.

A characteristic plot of the two lowest electron densities is shown in Fig. 3.7 for

U0b = 7 and U0a = 1. It is seen an increase in m̃, and so flux, brings about successively

higher states, distinguished by an increasing numbers of peaks, at specific values of U0b

for a set U0a.
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|Ψ|2a2 |Ψ|2a2

0 20 0 20r/ar/a
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Figure 3.7: Plot of the electron densities of the two modes supported in a ring defined by U0b = 7
and U0a = 1, such that (left) m̃ = 3.51 and (right) m̃ = 0.932.

3.2.5 Conclusion

We have suggested that the system of zero modes of the Dirac equation in an electrostatically-

defined quantum dot or ring, realizable in graphene, can be manipulated with the help of

a magnetic flux to bring about confinement and deconfinement.

The proposed effect of magnetic deconfinement of electrostatically trapped states

in graphene has important potential applications. Indeed, an ability to modify the free

carrier density by weak external magnetic fields in conjunction with graphene’s superior

transport properties can be utilized in novel magnetic read out devices [178, 179].
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3.3 Optimal electrostatic traps

We transform the two-dimensional Dirac-Weyl equation, which governs the charge car-

riers in graphene, into a non-linear first-order differential equation for scattering phase

shift, using the so-called variable phase method. This allows us to utilize the Levinson

Theorem to find zero-energy bound states created electrostatically in realistic structures.

These confined states are formed at critical potential strengths, which leads to us posit

the use of ‘optimal traps’ to combat the chiral tunneling found in graphene, which could

be explored experimentally with an artificial network of point charges held above the

graphene layer. We also discuss scattering on these states and find the m = 0 states cre-

ates a dominant peak in scattering cross-section as energy tends towards the Dirac point

energy, suggesting a dominant contribution to resistivity.

3.3.1 Introduction

The electronic properties of the two-dimensional (2-D) material graphene [180, 181] are

of great interest due to the quasi-relativistic nature of its spectrum. Interesting transport

effects such as chiral (Klein) tunneling [9, 31, 150, 151, 182], vacuum polarization [55],

atomic collapse [56, 183] and the minimum conductivity at the Dirac point [124] have

been widely discussed in the literature. The topic of elastic scattering in clean, low-

temperature graphene, which can occur due to charged impurities, ripples or strain fields,

has been addressed by many authors [184, 185, 186].

However, despite its extraordinary properties there is a major obstacle stopping

graphene from usurping silicon in the electronics industry, namely is its lack of a bandgap.

This frustrates attempts to perform digital logic with graphene due to the difficulty in

turning off the chiral charge carriers which always wish to conduct. Attempts at opening

a gap in monolayer graphene have focused on chemical functionalization [187] and strain

engineering [188], which can unfortunately blunt the remarkable electronic properties

which makes graphene so attractive. Here we propose a method not to open a gap, but to

switch off the chiral tunneling by considering zero-energy states, when the Fermi energy

coincides with the Dirac points, such that fully confined states are predicted to be able

to form due to the absence of pseudospin [68, 160]. In fact, these states are the most
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important factor when considering resonant scattering in graphene.

Despite the appearance of sophisticated experimental techniques for probing res-

onances and the modification of the density of states in the continuum [189] the search

for fully-confined (square-integrable) states remains a significant ongoing task. Efficient

manipulation of the Fermi level requires the presence of a back-gate in close proximity to

the graphene, which makes the numerous beautiful results stemming from the long-range

behavior of the bare Coulomb potential [56] to be somewhat far from experimental real-

ity, as the presence of image charges in the gate material (or screening effects) make any

realistic potential fall at large distances faster than 1/r. However, it is well known that

any fast-decaying potential cannot produce a bound state at nonzero energy [90]. Indeed,

the asymptotic of the wavefunction is a Bessel function decaying asymptotically only like

r−1/2, and so one is led to consider zero-energy states instead.

Whilst low-energy resonant scattering in monolayer graphene has been intensively

studied by previous authors both theoretically [56, 90, 190, 191, 192, 193, 194, 195, 196,

197, 198] and experimentally [199, 200, 201, 202] the importance of fully-confined zero-

energy states in realistic structures has not been fully appreciated until recently [161].

Thus far, only quasi-bound states, where only one wavefunction component is confined

or when the wavefunction is non-square integrable, have been considered for resonant

scattering. Previously, only circular wells [90, 191] or the Coulomb potential [55, 192],

have been investigated, but here we concentrate on smooth [203], short-range potentials

which are defined by two parameters, characterizing both strength and spread.

We study confined states and resonant scattering in graphene due to either scanning

probe microscopy (SPM) [204] tip-induced potentials or due to some charge displaced out

of the plane [205], with careful consideration of truly bound zero-modes. The strength pa-

rameter can arise due to, for example, the size of the charge on the SPM, whilst the spread

parameter is linked to the distance from the SPM tip to the graphene. We investigate both

the conditions required for a zero-energy bound state to form and the effect of such states

in our study on the energy dependence of scattering cross-section and resistivity contri-

butions of resonant scatterers. We also note there is increasing interest in zero-modes of

the Dirac equation in the condensed matter community due to the possibilities of both
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observing the elusive Majorana fermions [163] or indeed fractionally charged excitations

[162].

To carry out our investigations into realistic, short-range (due to the necessity of

a gate in all measurements) potentials we develop the variable phase method or VPM

[206, 207], which was found to be useful for tackling scattering problems governed by

the Schrödinger equation in 2-D [208, 209, 210, 211], for use with the 2-D Dirac-Weyl

equation - allowing us to consider the charge carriers of graphene. The VPM was origi-

nally developed [212] for use with non-relativistic wave equations in the 1930s as a neat

tool to calculate physically relevant quantities directly, rather than having to extract them

from the wavefunction, and has recently been developed for use with the Dirac-Weyl

equation in quasi-one-dimensional problems due to the intense interest in graphene in the

condensed matter community [213]. Here we derive a first-order equation from which we

can immediately find the scattering phase shift. This is advantageous as important phys-

ical properties directly follow, such as: the number of bound states (from the Levinson

Theorem) [214]; the scattering and transport cross-sections (from standard elastic scat-

tering theory) [215]; the number of states around a potential barrier (using the Friedel

sum rule) [216]; and the energy change due to the impurity interacting with neighbor-

ing electrons (the Fumi theorem) [217]. We have neglected effects due to rippling of

or dislocations in the graphene membrane. We also do not discuss scattering by multi-

ple electrostatic barriers or by magnetic barriers [139, 218, 219], but our method can be

generalized to account for the presence of vector potentials.

3.3.2 Formalism of the variable phase method

The 2-D Dirac-Weyl Hamiltonian governing the low-energy charge carriers of graphene

on Dirac cones is [181]

Ĥ = vFσ · p̂ + U(r) + σzΛ, (3.40)

where vF ≈ c/300 is the Fermi velocity of the Dirac particles, σ = (σx, σy, σz) are the

Pauli spin matrices, U(r) is a central potential and Λ is the mass term. A non-zero mass

can arise due to chemical modifications or by strain engineering [127]. We move into

polar coordinates (r, θ) for circular symmetry, and separate the variables via the following



3.3. OPTIMAL ELECTROSTATIC TRAPS 59

ansatz for the two-component spinor wavefunction

Ψ(r, θ) =
eimθ

√
2π

 χA(r)

ieiθχB(r)

 , m = 0,±1,±2, ... (3.41)

where the subscripts A and B label the two sublattices of the graphene chicken wire lattice.

This choice of wavefunction leads to two coupled first-order differential equations for the

radial wavefunction components χA,B(r)

(
d
dr

+
m + 1

r

)
χB = (k − V(r) − ∆)χA, (3.42a)(

−
d
dr

+
m
r

)
χA = (k − V(r) + ∆)χB, (3.42b)

with V(r) = U(r)/~vF, ∆ = Λ/~vF and k = E/~vF, where E is the eigenenergy. Re-

arranging Eqs. (3.42) into a second-order differential equation for a single radial wave-

function component χA(r) we obtain for the massless case

d2

dr2χA(r) +

(
1
r

+
1

k − V(r)
dV(r)

dr

)
d
dr
χA(r) +

(
(k − V(r))2 −

m
r

1
k − V(r)

dV(r)
dr

−
m2

r2

)
χA(r) = 0.

(3.43)

We consider potentials of the form V(r → ∞) = 0 such that at large distances Eq. (3.43)

reduces to
d2

dr2χA(r) +

(
1
r

)
d
dr
χA(r) +

(
k2 −

m2

r2

)
χA(r) = 0, (3.44)

this condition prohibits potentials decaying slower than r−2 as r → ∞. Otherwise the

asymptotic solution of Eq. (3.43) always adds to the phase shift however large r becomes,

as is familiar from the asymptotic behavior of the Coulomb wavefunction in the non-

relativistic case. Eq. (3.44) is a form of the Bessel equation with the well-known solution

amJm(kr) + bmNm(kr), or equivalently

χA(r) = Am [Jm(kr) cos(δm) − Nm(kr) sin(δm)] , (3.45)
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where Jm(kr) and Nm(kr) are the Bessel functions of the first and second kinds respec-

tively, and δm = arctan(−bm
am

) is the scattering phase shift, arising from the difference in

phase of the wavefunction at r → ∞ compared to the free particle case.

We now implement the VPM by treating the constants Am and δm as functions of

the radial coordinate r, such that

χA(r) = Am(r) [Jm(kr) cos(δm(r)) − Nm(kr) sin(δm(r))] , (3.46)

where Am(r) is called the amplitude function and the phase function δm is the phase shift

arising from a potential cut-off at a distance r. To completely define these newly intro-

duced functions Am(r) and δm we make the following ansatz for the first derivative of χA(r)

with respect to r

χ′A(r) = Am(r)
[
J′m(kr) cos(δm(r)) − N′m(kr) sin(δm(r))

]
, (3.47)

where ′ denotes differentiation with respect to r. Now, setting the direct derivative of

Eq. (3.46) equal to Eq. (3.47) suggests the following useful condition

A′m(r)
Am(r)

= δ′m(r)
Jm(kr) sin(δm(r)) + Nm(kr) cos(δm(r))
Jm(kr) cos(δm(r)) − Nm(kr) sin(δm(r))

. (3.48)

Upon substituting Eq. (3.46) and Eq. (3.47) into the lower coupled Eq. (3.42b) we natu-

rally find the lower radial wavefunction component χB(r) is

χB(r) =
Am(r)

k − V(r)

[(
−J′m(kr) +

m
r

Jm(kr)
)

cos(δm(r)) −
(
−N′m(kr) +

m
r

Nm(kr)
)

sin(δm(r))
]
.

(3.49)

We can now utilize the upper coupled Eq. (3.42a): upon substituting in Eq. (3.45) and

Eq. (3.49) and eliminating the amplitude function Am(r) via the application of the condi-
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tion Eq. (3.48), we obtain the following first-order differential equation

d
dr
δm(r) =

πr
2

p(r)
[

1
k − V(r)

dV(r)
dr

(
q(r) −

m
r

p(r)
)

+
(
V(r)2 − 2kV(r)

)
p(r)

]
,

p(r) = Jm(kr) cos(δm(r)) − Nm(kr) sin(δm(r)),

q(r) = J′m(kr) cos(δm(r)) − N′m(kr) sin(δm(r)),

(3.50)

where we have introduced the auxiliary functions p(r) and q(r) and in addition have used

the Wronskian of the Bessel functions W{Jm(x),Nm(x)} = Jm(x)N′m(x)−Nm(x)J′m(x) = − 2
πx

to simplify the final expression [220]. Eq. (3.50) is the so-called phase equation, and is

subject to the initial condition δm(0) = 0, as follows from being in the free particle limit.

We can see from Eq. (3.50) how the potential V(r) gradually accumulates the desired

phase shift starting from δm(0) = 0 and finishing with the total phase shift of the scattering

problem, given by

δm = lim
r→∞

δm(r). (3.51)

This condition ensures the phase shift is uniquely defined, avoiding an ambiguity of π that

appears in other methods [215].

When considering bound states in the massless case we can only consider zero-

energy states, where the Neumann function is divergent and so the following condition is

implied to guarantee that sin (δm) = 0 in Eq. (3.50)

δm = nπ, n = 1, 2, 3... (3.52)

Eq. (3.52) is related to the Levinson’s theorem for massless Dirac particles, which states

a relation between the phase shift at zero-momentum and the number of bound states.

Please note when considering the celebrated massive Dirac particles, e.g. found in

h-BN or gapped graphene [221], which allow bound states at finite energy, an equation
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analogous to the phase equation Eq. (3.52) can be derived for treating confined states

d
dr
ηm(r) = −r f (r)

[
1

k − V(r)
dV(r)

dr

(
g(r) −

m
r

f (r)
)

+
(
V(r)2 − 2kV(r)

)
f (r)

]
,

f (r) = Im(κr) cos(ηm(r)) − Km(κr) sin(ηm(r)),

g(r) = I′m(κr) cos(ηm(r)) − K′m(κr) sin(ηm(r)),

(3.53)

where Im(κr) and Km(κr) are the modified Bessel and Neumann functions respectively and

the effective wavevector κ = (∆2−k2)1/2. Eq. (3.53) has been simplified [220] by noting the

Wronskian of the modified Bessel functions W{Im(x),Km(x)} = Im(x)K′m(x)−Km(x)I′m(x) =

−1
x . Notably, Eq. (3.53) is also relevant for considerations of the surface states on 3-

D topological insulators such as Bi2Te3, where in this case the mass term arises from

the exchange energy from a magnetic insulator [222]. When considering bound states

we note the modified Bessel function of the first kind is divergent and so the following

condition is implied so that cos (δm) = 0 in Eq. (3.53)

ηm =

(
n −

1
2

)
π, n = 1, 2, 3... (3.54)

Eq. (3.54) is connected to the Levinson’s theorem for the massive Dirac equation [223,

224].

3.3.3 Influence on scattering

We now check we can reproduce known results by solving the phase equation Eq. (3.51),

describing the massless charge carriers of graphene, for the case of zero-energy states

formed in a Lorentzian potential V(r) = −V0/(1 + (r/d)2) , an analytically solved problem

[225]. In this case the condition for bound states when m ≥ 0 is (V0d)N,m = 2(N + m),

where N = 1, 2, 3... is a positive integer. Thus when solving Eq. (3.51), the phase equation

for massless Dirac particles, when k → 0 we should see the threshold value of V0d met

before step-like behavior as V0d is turned up and more confined zero-energy states appear.

This is exactly what we find in Fig. 3.8 (top). We also note the sign of V0 is irrelevant for

the creation of zero-energy confined states as a well for electron is a hill for a hole and

vice versa, thus Fig. 3.8 has mirror symmetry about the δm axis. At the Dirac point, when
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the density of states vanishes yet the conductivity remains finite, these zero-energy states

should be important as we shall see later on.
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Figure 3.8: Plots of scaled phase shift δm/π against potential strength V0d for massless Dirac par-
ticles, of energy tending towards zero, incident on (top) the Lorentzian potential and (bottom) the
model potential of Eq. (3.55) with the realistic 1/r3 decay. We show results for angular momen-
tum m = 0, 1, 2 corresponding to the solid line (red), dashed line (blue) and dotted line (green)
respectively.

Whilst screening only affects the strength of the Coulomb potential and not its

characteristic decay [186], due to the quasi-relativistic nature of the carriers in graphene,

a cut-off is necessary at the origin and the presence of an image charge necessarily in the

substrate will lead to a dipole-like 1/r3 decay at large distances, thus a convenient choice

of model potential is

V(r) =
−V0

1 + (r/d)3 . (3.55)

In Fig. 3.8 (bottom) we investigate confined states with Eq. (3.55) and again see a char-

acteristic threshold potential strength product spread V0d, followed by the signature stair-

case behavior of confined zero-energy states. Of course, compared to the exactly-solvable
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Lorentzian potential with its accidental degeneracies, the staircase does not share the same

beautiful symmetries and the condition for full-confined states can be approximated by

(V0d)N,m ≈ 2.63N + 1.89m − 0.34. However we can now predict in realistic graphene

flakes, where we would expect charged impurities to cause potentials similar to the type

of Eq. (3.55), there is the possibility for the appearance of fully-confined zero-energy

states.

Experimentally, such states should be able to be detected by SPM experiments, as

previously proposed [225], where smoothly changing either the charge on the SPM tips

or their distance above the graphene plane, and continuously holding the Fermi level at

the Dirac point using the back-gate should be sufficient to see confined zero-modes. A

network of SPM tips, of radius Rtip and separated in a square grid defined by a distance

s, held at a distance h2 above a metallic back gate and h2 − h1 above the graphene plane

gives a similarly behaved potential to Eq. (3.55), but in a more complicated form due to

the method of images,

U(r) =
eQtip

4πε0εr
f (r),

f (r) =

n2∑
j,k=−n1

(
(x + js)2 + (y + ks)2 + (h2 − h1)2

)−1/2
−
(
(x + js)2 + (y + ks)2 + (h2 + h1)2

)−1/2
.

(3.56)

Fitting Eq. (3.55) to Eq. (3.56) by matching the functions at both their maximum and

half-maximum values, one finds that the tip voltage Vtip at which one would see such

zero-modes is

Vtip =
(V0d)N,m

f (0)d
~vF

eRtip
, subject to the constraint 2 f (d) = f (0), (3.57)

where we have seen from Fig. 3.8 (bottom) the dimensionless parameter (V0d)N,m,0 =

4.16, 6.06, 6.79... such that we are dealing with tip voltages of the order of tens of mV,

Vtip = 20mV, 29mV, 33mV and so on. (In this estimate, we use h2 = 300nm, h1 = 200nm,

s = 40nm, R = 5nm and n1 = n2 = 2). The existence of confined states opens up the

possibility of Coulomb blockade-type physics in graphene. Indeed, the quantum dots
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created with careful adjustment of the key parameters can be be seen to be ‘optimal traps’.

An estimate of the charging energy of the optimal trap, using a simple disc capacitor

model, shows a charging energy of the order of meV, thus such effects could be seen at

room temperature. The effect arises due to the tightly confined nature of the wavefunction

in optimal traps which leads to small capacitance and a significant charging energy, which

is negligible for the usual deconfined states.

We also show in Fig. 3.9 that the zero-modes of the Dirac equation in the potential

Eq. (3.55), as predicted in the continuum model, are indeed present as shown via tight-

binding calculations [226, 227]. It is found the wavefunctions have a ring-like structure,

which ensures avoidance of any Klein tunneling effects, i.e the states are zero-energy

vortices with m , 0. It is most noticeable how by adjusting the parameter V0d one can go

from a tightly confined state to a state with a highly spread probability density. We have

also checked the zero-modes are robust to the shape of the graphene flake by investigating

triangle and hexagon geometries, with both zig-zag and armchair boundaries.
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Figure 3.9: Probability density plots of near zero-energy states confined within the model con-
fining potential Eq. (3.55), as calculated via tight-binding methods. We show example critical
V0d = 4.10 (left) and non-critical V0d = 2.60 (right) states, as well as the associated cumulative
probability plots (right).

As mentioned previously, once the scattering phase shift is known a number of

other useful physical properties can be quickly calculated. The partial cross-section ζm

can be taken as

kζm = sin2(δm), (3.58)

whilst the total scattering cross-section ζ, a measure of the one-dimensional area felt by
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oncoming particles, and the transport cross-section ζT easily follow from the scattering

phase shifts via

ζ =
4
k

∞∑
m=−∞

sin2(δm), ζT =
2
k

∞∑
m=−∞

sin2(δm+1 − δm), (3.59)

and we note for low-energy scattering we can take the s-wave approximation, i.e. only

small m need to be considered as Eq. (3.58) is derived from partial-wave expansions

where terms with high m are negligible when k → 0. Detailed derivations of Eq. (3.58)

and Eq. (3.59) via 2D elastic scattering theory adapted for Dirac fermions have been given

by Novikov [192].
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Figure 3.10: A plot of dimensionless partial scattering cross-section kζm as a function of scaled
energy k for massless Dirac particles incident on the model potential with 1/r3 decay given by
Eq. (3.55), with example noncritical potential strength (left) V0d = 1.00 and critical (right)
(V0d)1,0 = 2.27. We show results for m = 0, 1, 2, corresponding to the solid line (red), dashed
line (blue) and dotted line (green) respectively.

The energy dependence of scattering cross-section has previously been considered

for a square well [90, 191]. We will now revisit the problem with a smooth, short-range

potential given by Eq. (3.55), which is relevant for gated structures or for hypercritical

charges. We show in Fig. 3.10 plots of dimensionless partial cross-section kζm for the

case of non-critical (left) and critical (right) parameters of the potential Eq. (3.55). We

find, in contrast to the general case, at the critical potential strength the m = 0 non-square-

integrable state does not go to zero in kζm as quickly as k tends towards zero, and thus is

divergent in partial cross-section ζm as energy tends towards zero. This is because m = 0 is
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a resonant state with a non-normalizable wavefunction (and a non-zero probability density

at the origin r = 0) and so such a particle has an enhanced likelihood of being scattered.

Of course, this behavior remains in calculations of transport scattering cross-section via

Eq. (3.59).

We also note, in striking contrast to non-relativistic particles, at large energies the

phase shift δ∞ is non-zero [228]. Remarkably, δ∞ is also angular momentum-independent

and we find from Eq. (3.51) the explicit form

δ∞ = −

∫ ∞

0
V(r)dr, (3.60)

such that for the considered potential Eq. (3.56) the dimensionless partial scattering cross-

section in the large energy limit is given by kζm → sin2( 2π
3
√

3
V0d), as displayed in Fig. 3.10.

Thus, the transport cross-section ζT vanishes in this limit.

The smoking gun of confined zero-modes in the laboratory could be via their con-

tribution to resistivity, which in semiclassical Boltzmann theory can be expressed as [191]

ρ =
h

4e2

2ns

πne
kζT (3.61)

where ns is the density of scatterers and the electron density ne = k2/π. We show in

Fig. 3.11 the behavior of resistivity at small kd. The presence of confined zero-modes

leads to a divergence in resistivity at energies tending towards zero in the critical case

only, ρ[h/4e2] → ∞. It should be possible to utilize this consequent drastic suppression

of mobility to create an off-state in graphene, perhaps this can be explored artificially with

a series of point gates held above the graphene monolayer. In the non-critical cases, we

find as k → 0 resistivity saturates to a constant.

3.3.4 Conclusion

We have derived the phase equations for the 2-D Dirac equation using the VPM, suit-

able for use straightaway in scattering calculations concerning graphene. In doing so,

we provide a numerical (experimental) proof of the Levinson Theorem for massless 2-D

particles. These phase equations are of first-order, and so relatively undemanding compu-
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Figure 3.11: A plot of resistivity ρ, measured in units of h/4e2, as a function of energy kd for
massless Dirac particles scattering on the model potential with 1/r3 decay. We show results for
example uncritical cases V0d = 1.00, 3.00, corresponding to the dash-dot line (green) and dash-
dot-dot line (purple) respectively, and example critical cases V0d = 2.27, 4.87, corresponding to
the solid line (red) and dashed line (blue) respectively. We set 2nsd2 = 1.

tationally, and have solutions in terms of scattering phase shifts, thus other desired scatter-

ing properties readily follow. Applying the method to fully-confined states in graphene,

we reproduce an exact result from the literature and go on to investigate a more physical

potential again finding that a certain potential strengths and spreads zero-energy bound

states are likely to form, which is most important when describing resonant scattering.

We have also calculated the energy dependence of scattering cross-section, finding a

major distinction for the m = 0 mode for critical potential strengths (those able to support

truly bound states). In this special case, we predict a dominant peak in scattering cross-

section at zero-energy, suggesting a high probability of being scattered, which can be

explored experimentally via scanning probe microscopy. In an experiment with a series of

point gates above the graphene layer, one may be able to use artificial resonant scattering

to switch off the chiral tunneling effect found in monolayer graphene by greatly reducing

the mobility of carriers.
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3.4 Pair states in gapless graphene

We study the formation of bound two-particle states, either excitons or bi-electronic pairs,

in gapless monolayer graphene in gated structures. We find that, even in the regime of

massless Dirac particles, coupling can occur at zero-energy. We propose the possibility

of a condensate of such excitons, and suggest a new picture of the experimentally seen

Fermi velocity renormalization.

3.4.1 Introduction

The two-dimensional allotrope of carbon graphene continues to attract attention in the

condensed matter community, and a particular current focus is in creating exotic het-

erostructures [229, 230]. Recently, some remarkable Coulomb drag experiments have

been performed on spatially separated graphene systems [231, 232], where it has been

shown there is a giant magnetodrag at the charge neutrality point. Additionally, several

recent theoretical treatments have been proposed to explain this phenomena [233, 234,

235, 236, 237]. Theoretical works prior to the groundbreaking experiments have posited

fascinating effects, such as a ghost excitonic insulator transition [238], non-Fermi liquid

behavior [239, 240], and metal-insulator phase transitions [241, 242]. Importantly in such

spatially separated graphene systems, there is a hope to find a so-called interlayer exciton,

comprised of a stable bound state between an electron and a hole in different layers [243].

This raises the prospect of soon seeing an exciton condensate of Dirac particles in the

laboratory.

Previous theoretical works on excitonic effects in Dirac materials have approached

the problem in either a Bethe-Salpeter formalism [244] or in the language of a two-body

matrix Hamiltonian [69]. It has been shown there is a nontrivial coupling between the

center-of-mass and the relative coordinates in the quasi-relativistic two-body problem, and

the special case of zero total momentum of the pair has been mostly considered [245, 246].

Indeed, it claimed excitons do not exist in gapless graphene [247] but considerations of

trigonal warping have been suggested as a route towards excitonic formation [248, 249].

However no gap has as yet been observed experimentally [250] and a question remains:

can excitons exist in gapless graphene? We should mention with the help of a gap, Berman
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and co-workers have studied Bose-Einstein condensation in bilayer graphene [251] and

superfluidity [252, 253] and condensation [254] in two-layer graphene. Additionally,

Lozovik and co-workers have studied the superconducting pairing of electrons due to

phonons [255, 256, 257].

Whilst in quasi-one dimensional Dirac materials, bound states do appear, we note

truly (square-integrable) bound states occur only at zero-energy for Dirac particles in the

single particle picture in a radial scalar potential [160, 258]. Mathematically, this is be-

cause at finite energy the effective Schrodinger equation at long range maps on to the

problem of scattering states in a non-relativistic system (with solutions decaying like the

square root of distance); whereas at zero energy solutions exist which decay algebraically

(depending on the angular momentum quantum number m). When m is nonzero the solu-

tions are fully square-integrable, such that they are rotating ring-like states, which always

avoid the Klein tunneling due to their vorticity resulting in a nonzero momentum com-

ponent along the potential barrier. In this work, we show via an exact solution of the

quasi-relativistic two-body problem zero-energy pairs can occur in gapless graphene, as

long as they are rotating vortices with nonzero angular momentum m , 0,−1.

As only states with nonzero angular momentum are square-integrable, one should

not be able to find bound states with a nonzero center-of-mass momentum K. In this cir-

cumstance angular momentum is not a good quantum number and so one must construct

solutions as a series expansion over all momenta, which will include the zero angular mo-

mentum state which acts to deconfine the whole state and hence will not correspond to a

truly bound solution. Then it is natural to conclude one can only condense the excitons in

the zero-energy state at K = 0, they are pinned vortex pairs.

An important feature of this system is the fact that the zero-mode eigenvalue spec-

trum will be insensitive to the sign of the interaction U(r) as it only appears as a logarith-

mic derivative or squared. Therefore as well as standard excitons there is the possibility

to obtain somewhat exotic bi-electronic (electron-electron) pairs.

It is important to consider gated structures, which modifies the situation from a

pure Coulomb problem [55, 56]. The necessity for metallic gates inevitably leads to

image charges which leads to short-range interactions [205, 259] and an Ohno-type cutoff
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as is known in studies of polymer systems [64]. Of course, in this setup the dielectric

environment is still of great importance [260], as is the geometry of the device which

both contribute to the effective strength of the interaction.

The necessity for pairing at zero-energy leads to the requirement of a fine-tuning of

the interaction strength to support an excitonic state that can be naturally achieved in the

system via screening.

3.4.2 A proposal to pair electrons

The two-body Hamiltonian can be written as the Kronecker sum of the single-particle

Hamiltonians H = H1 ⊕ H2, or explicitly (as there are two sublattices and two particles)

as the 4 × 4 matrix

H = vF



0 px2 − ipy2 −px1 + ipy1 0

px2 + ipy2 0 0 −px1 + ipy1

−px1 − ipy1 0 0 px2 − ipy2

0 −px1 − ipy1 px2 + ipy2 0


, (3.62)

where the subscripts 1 and 2 refer to the two particles. The Hamiltonian acts upon a

two-particle wavefunction constructed via the Kronecker product Ψ(r1, r2) = ψi(r1) ⊗

ψ j(r2), where i, j = (A, B). In the absence of an interaction potential IU(r), we find upon

diagonalization of Eq. (3.62) four eigenenergies:

E = ±vF

(
p2

x1
+ p2

y1

)1/2
± vF

(
p2

x2
+ p2

y2

)1/2
. (3.63)

As is usual with two-body problems, utilizing center of mass and relative motion coor-

dinates: X = (x1 + x2)/2, Y = (y1 + y2)/2, x = x1 − x2, y = y1 − y2; and assuming a

translationally-invariant system such that the center-of-mass momentum ~K is a constant

of motion, one can employ the ansatz Ψi(R, r) = exp(iK · R)ψi(r), where i = (1, 2, 3, 4)

builds the four component wavefunction components via the two sublattices and two par-

ticle species. Now the eigenenergies are redefined via

E/~vF = ±
(
(KX/2 + kx)2 + (KY/2 + ky)2

)1/2
±

(
(KX/2 − kx)2 + (KY/2 − ky)2

)1/2
, (3.64)
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where kx,y and KX,Y are the wavevectors along the relative coordinates x, y and center-

of mass coordinates X,Y respectively. As shown previously [245], when K = 0 one can

move the relative motion coordinates (x, y) into polar coordinates (r, θ) such that one deals

with a system of three equations only,


U(r)−E
~vF

∂r + m
r 0

2
(
−∂r + m−1

r

)
U(r)−E
~vF

−2
(
∂r + m+1

r

)
0 ∂r −

m
r

U(r)−E
~vF



φ1(r)

φ2(r)

φ4(r)

 = 0, (3.65)

with m = 0,±1,±2, ... and where one can take φ3 = 0.

Let us now consider a model potential given by U(r) = −U0/(1 + (r/d)2), with

Ohno-like on-site energy U0, such that we can find an exact solution to the system of

Eqs. (3.65). Notably this functional form is well known in optics as the spatially inhomo-

geneous fish-eye lens of Maxwell [261], and remarkably is the simplest exactly solvable

model as the square well does not admit a nontrivial solution. When r ∼ 0, one finds the

usual short-range behavior φ2 ∼ r|m|, whilst the asymptotic behavior as r → ∞ is given by

the decay φ2 ∼ r|m|−2η, where

η =
|m| + 1 +

√
m2 + 1

2
, (3.66)

thus we seek a solution in the form

φ2(r) =
A
d
×

(r/d)|m|

(1 + (r/d)2)η
f (r), (3.67)

where A is a normalization constant and f (r) is some polynomial in r that does not af-

fect the short- and long-range behavior. Upon substituting Eq. (3.67) into Eqs. (3.65),

eliminating φ1,4(r), and changing the variable with ξ = (r/d)2 we arrive at the following

equation for f (ξ)

ξ(1 + ξ)2 f ′′(ξ) + (1 + ξ)
[
m + 1 + (m + 2 − 2η)ξ

]
f ′(ξ) +

[
( 1

4
U0d
~vF

)2 − η2
]

f (ξ) = 0, (3.68)
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which is a form of the Gauss hypergeometric equation [79]. The solution is

f (ξ) = 2F1

(
−n,−n + 1

2
U0d
~vF

; |m| + 1; ξ

1+ξ

)
, (3.69)

where we have terminated the power series to ensure decaying solutions, leading to the

following condition for bound electron-hole pairs

U0d
~vF

= 17.2 × d[nm] = 4(n + η), n = 0, 1, 2... (3.70)

where we have used the standard Ohno cut-off on-site energy [64] of 11.3 eV. Weak

screening by a small number of mobile uncoupled carriers allows the system to adjust

the inter-particle interaction potential so that it satisfies the strength condition given by

Eq. (3.70) to support bound states, resulting in an energetically-favorable drastic reduction

in the chemical potential of the many-electron system.
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Figure 3.12: Radial probability densities for the pair states with quantum numbers (n,m) =

(0, 429), (1, 428) left-to-right, measured in units of d.

The other wavefunction components φ1,3,4(r) are readily obtainable from Eqs. (3.65),

and their long range behavior r → ∞ tells us the m = 0 state is non-square-integrable,

(φ1, φ2, φ4)T
→ r−

√
1+|m|2

(
1, r−1, 1

)T
. Thus the pair states are rotating ring-like modes.

The requirements for a monolayer exciton follow from Eq. (3.70). Due to the

necessity of a metallic back gate inducing image charges, d ≈ 100 nm, suggesting

U0d/~vF ≈ 1718 and so only many pair states may exist, corresponding to the quan-

tum numbers (n,m) = (0, 429), (1, 428), ..., (427, 2), (428, 1). Probability density plots are

displayed in Fig. 3.12 for the two lowest node states.
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Figure 3.13: A plot of the average size of the pair state as a function of quantum number m,
measure in terms of the length sale d.

The average particle separation is shown in Fig. 3.13, illustrating the minimum size

of the state is d, which is found for high m states, and the maximum size is 2d. For low m

states the size of the pair is 1.6d. Thus zero-energy bi-electronic states can exist for carrier

densities n up to several units of 1010cm−2, whereas at higher densities they are destroyed

by the Mott transition caused by overlap of the pairs. To avoid pair overlap we require

kFd < 1, such that we can estimate kF < 1/d ∼ 107m−1 with density n ∼ k2
F ∼ 1010cm−2.

Of course, the presence of a metallic gate suggests an interaction potential with a

dipole-like (1/r3) decay due to image charges. It is most convenient to deal with this

situation by expanding the eigenfunctions in a Fourier-Bessel series, defined by

φ2(r) =

√
2

L

∞∑
n=1

an

Jm+1(αn)
Jm(αn

r
L ), (3.71)

where αn are roots of the Bessel function and we satisfy orthonormality over a length L,∫ L

0
φ2φ2rdr = δn,l, which is taken to be large enough such that the confined state wave-

functions are insensitive to the boundary condition φ2(L) = 0. Evaluating the consequent

matrix elements and solving the secular equation numerically, one finds the eigenval-

ues for the more realistically decaying potential U(r) = −U0/(1 + (r/d)3) are U0d
~vF

=

7.47, 10.86, 12.70 and so on. Another approach would be to do develop the variable phase

method for two Dirac particles.

The appearance of stationary bipartite states could be of some practical importance.

Indeed, a Bose-Einstein condensation of zero-energy coupled electrons or holes offers
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an alternative explanation of the experimentally-seen Fermi velocity renormalization in

gated graphene structures [107, 108] which is observed instead of the widely theorized

gap. In this picture, the Fermi velocity renormalization is an artifact of miscalculating the

number of charge carriers when the Fermi level moves towards the Dirac point energy, due

to their disappearance in a mostly silent many-body ground state. A significant increase

in the apparent carrier concentration in graphene in a quantizing magnetic field compared

to the low-field measurements has been observed experimentally [262, 263, 264], which

could be another indicator of our proposed pair states. Indeed, when the magnetic length

becomes smaller than the size of a bipartite vortex, the pair breaks up and the behavior of

charge carriers is defined by a strong magnetic field.

3.4.3 Conclusion

In conclusion, we have demonstrated, contrary to a widespread belief, that fully square-

integrable electron-hole bound pairs are realizable at zero-energy in gapless monolayer

or spatially separated two-layer graphene, despite the massless nature of the Dirac par-

ticles. These exciton states are vortices, defined by a nonzero angular momentum, and

are bosonic in nature opening up the possibility for a condensate at zero-energy. The re-

quirements on the strength and spatial extent of the interaction potential to support such

excitons will likely be naturally favored to reduce the total energy of the system, perhaps

via a renormalization of the Fermi velocity.

The observed puddles of charged carriers in graphene in the case of long-range dis-

order [110] can be treated as many-body mesoscopic domains containing condensates of

bosonic bipartite vortices, thus removing the controversy of having carrier puddles despite

the absence of single-particle localization due to the Klein phenomenon. Investigations of

this new and unconventional many-body state, with special regard to possible occurrences

of quantum critical phase transitions, will form part of a future work.





Chapter 4

Conclusions

We can only see a short distance ahead, but we can see plenty there that needs to be done.

- Alan Turing
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It is a truth universally acknowledged, that a single electron in possession of a linear

gapless spectrum, must be in want of a bound state. In this thesis, we have proposed

several schemes to achieve a bound state in condensed matter systems with excitations

described by quasi-relativistic wave equations.

The first half of this work was composed of physical situations in which one spatial

dimension was most relevant. In Sec. 2.1, we treated the quasi-one dimensional Coulomb

problem. We showed how the interesting phenomena of relativistic quantum mechan-

ics, so-called atomic collapse physics, can manifest itself in 1-D Dirac materials. We

hope experiments can soon be preformed to see such effects in the near future, in analogy

with experiments controlling the Coulomb interaction with multiple charged impurities in

graphene [93]. Sec. 2.2 laid the foundations for the area of confinement of Dirac particles

via Fermi velocity engineering by detailing the solutions to a number of exactly-solvable

models. With the spectacular improvements in experimental fabrication of strained meso-

scopic devices [265, 266], we see no reason why such velocity barriers cannot be demon-

strated in the laboratory, at least in the longer term.

The second half of this thesis encompassed studies of systems where two spatial

dimensions were required to describe the prevalent physics. Confinement in inhomoge-

neous magnetic fields was discussed in Sec. 3.1, where it was found how both magnetic

quantum dots and rings were indeed capable of trapping Dirac particles under some con-

ditions, not previously appreciated in the literature. Forming a bound state by purely

electrostatic means is widely thought to be impossible, yet in Sec. 3.2 we demonstrated

how it may arise for zero-energy states, and also considered the application of a mag-

netic flux to the model. In Sec. 3.3, we developed a scattering theory for massless Dirac

fermions based on the variable phase method and posited that optimal traps of zero-energy

states are important in measurable ways, for example in resistivity. A recent experiment

has reported resonant states in a photo-switchable self-assembled molecular graphene hy-

brid, and we believe a similar experiment could soon see truly bound states [267]. We

proposed the existence of a novel and rather exotic bielectron quasiparticle in Sec. 3.4,

based on an analytical solution of the quasi-relativistic quantum two-body problem. The

probing of such a state has already led to preliminary discussions with a couple of leading
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experimental groups [268].

4.1 Further work

There are several problems that can be tackled in the near future, either as simple exten-

sions of the work described in this thesis, or related problems that are somewhat analo-

gous and would compliment the areas studied here. Below we discuss both types of future

work.
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Figure 4.1: The eigenspectrum of a massless Dirac particle with transversal wavevector qy in a 1D
square well of width 2d and (a) vanishing magnetic field and (b) finite magnetic field. In (b) we
track the states from (a) only, removing higher energy states for clarity.

In Sec. 2.1, atomic collapse was considered in a simple 1-D model. In discussions

with experts in experimental carbon nanotube science, it became clear how the collapse

effect changes with the application of a magnetic field is of great interest as it is a key

experimental parameter than can be manipulated. Thus a treatment of an effective 1-D

Coulomb interaction in a quantizing magnetic field will be the subject of future study.

In fact, the associated problem of a Coulomb center in a magnetic field in 2-D materi-

als is also in need of a fully analytic study [269]. We present in Fig. 4.1 the result of

a preliminary calculation of the eigenspectrum of a Dirac-Weyl electron in a 1D poten-

tial square-well subjected a perpendicular magnetic field. One notices at high transversal

wavevectors qdd ≥ 2 the states are highly similar to those in the nonmagnetic case, how-

ever with decreasing transversal wavevector the energy levels are bent somewhat away

from purely potential well result, and quickly break out from the previously required
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bound state region, defying atomic collapse.

The work of Sec. 2.1 joins a plethora of literature on one-dimensional potentials

[72, 89, 90]. However as yet asymmetric potentials, which may arise in a spatially in-

homogeneous dielectric environment, have been overlooked. It is known from the non-

relativistic case such asymmetric potentials [270] can lead to exotic electron transport

effects [271]. Therefore a detailed analytic study of asymmetric barrier is ripe for investi-

gation. Furthermore, another phenomenon from relativistic quantum mechanics that can

be expected to be realized in Dirac materials is Schwinger pair production, the particle-

antiparticle creation out of the vacuum by a strong electric field [272]. Preliminary cal-

culations have shown for a mode smooth step potential the production rate can be found

analytically.

In Sec. 2.2, the work on how a spatially inhomogeneous Fermi velocity can lead

to bound states can certainly be adapted to 2-D. In both cases, a more detailed study of

what the strain distributions are required to realize the model velocity barriers considered

is needed.

The work on unusual coupling of Dirac fermions in Sec. 3.4 can be significantly ex-

tended. The ground zero-energy state requires a full blown quantum many-body descrip-

tion, adapted to deal with the peculiar nature of the state. However, the quasi-relativistic

two-body problem is still rich. So far, the finite energy two-body Coulomb problem has

only admitted a solution for the s-state, with quantum number m = 0 [245]. There is a

great hope for the full analytic solution with m , 0 to be found as it would lead to great

insight into the full many-body problem [243], in direct analogy to Cooper pairs [273].

Remarkably, our preliminary calculations show an exact solution can be obtained in terms

of confluent Heun functions [274].

The quasi-relativistic two-body problem for treating bielectrons in two dimensions

necessitated the construction of a four-by-four Hamiltonian. A similar Hamiltonian writ-

ten down in one dimension will allow one to describe excitons in nanostructures such

as carbon nanotubes. Therefore solving the associated two-body problem and a refor-

mulation of the Elliot formula for absorption [275] will allow one to map the absorption

spectra, find the Sommerfeld factor and explain some experimental data showing peaks
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that, whilst being attributed to excitons, have not yet had a solid theoretical description

[276].

Finally, we briefly report on the latest interesting experimental and theoretical work.

In this thesis we have completely neglected three dimensional Dirac materials. However

new experiments [277, 278] have uncovered so-called 3-D Dirac semimetals, where 3-D

Dirac fermions in the bulk are described by a Hamiltonian H = vF

(
σx px + σy py + σz pz

)
,

opening up another dimension of exotic physics. The appearance of single valley Dirac

fermions has also been demonstrated in the laboratory [279], which could be important

for effects depending on the number of valleys in which Dirac fermions are present. Ad-

ditionally a new type of particle, dubbed a massless Kane fermion, has been recently

reported [280] in a zinc-blende crystal (HgCdTe) alongside a Hamiltonian that has no

analogy in quantum electrodynamics. Perhaps more abstractly, quasiparticles following

non-Abelian statistics are being increasingly studied in topological materials, examples

include: Majorana fermions, parafermions, Ising anyons, Fibonacci anyons and genons

[281]. Indeed, it seems for the story of new and exotic quasiparticles in condensed matter

systems it is not the end, not even the beginning of the end, just perhaps the end of the

beginning.



I think it’s a peculiarity of myself that I like to play about with equations,

just looking for beautiful mathematical relations which maybe don’t have

any physical meaning at all. Sometimes they do.

- Paul Dirac
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