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Fault Tolerant Sliding Mode Control Design with
Piloted Simulator Evaluation

H. Alwi, C. Edwards, O. Stroosma and J. A. Mulder

Abstract

This paper considers sliding mode allocation schemes for fault tolerant control. The schemes allow redistribution
of the control signals to the remaining functioning actuators when a fault or failure occurs. The paper analyzes the
schemes and determines conditions under which closed–loop stability is retained for a certain class of faults and
failures. It is shown that faults and even certain total actuator failures can be handled directly without reconfiguring
the controller. The results obtained from implementing the controllers on the SIMONA research flight simulator,
configured to represent a B747 aircraft, show good performance in both nominal and failure scenarios even in wind
and gust conditions.

NOMENCLATURE

6–DOF = 6 degree of freedom
EPR = engine pressure ratio
cmd = command signal
ru, rl = upper and lower rudders
sp = spoiler
air, ail, aor, aol = inner right, inner left, outer right and outer left ailerons
p, q, r = roll, pitch and yaw rate (rad/sec)
Vtas = true air speed (m/s)
α, β = angle of attack and sideslip angle (rad)
ϕ, θ, ψ = roll, pitch and yaw angle (rad)
he, xe, ye = geometric earth position along the z (altitude), x and y axis (m)
λ̄(·), λ(·) = largest and smallest eigenvalues
∥ · ∥ = Euclidean norm (vectors) or induced spectral norm (matrices)
u(t) = control input
ν(t) = virtual control input
IR, IR+ = field of real numbers and the set of strictly positive real numbers
s = Laplace variable
Subscript
lat, long = lateral and longitudinal axis

I. INTRODUCTION

Modern aircraft are designed to incorporate actuator redundancy of different forms in order to provide tolerance
to faults. Incidents such as the Kalita Air freighter in Detroit, Michigan, October 2004 (which shed an engine mid-
flight but was landed safely by the crew) and the DHL flight, Baghdad, November 2003 (which was hit by a missile
on its left wing and lost all hydraulics, but landed safely using only the engines) represent examples of successful
landings using clever manipulation of the remaining functional control surfaces after faults/failures have occurred
in-flight. The inclusion of actuator redundancy typically results in so-called over actuated systems. Control allocation
(CA) has emerged as one potential technique for systematically dealing with over actuated plants. Researchers, for
examples Buffington et al.[1] and Davidson et al.[2] have shown the capabilities of CA for systems with faults and
failures. One of the benefits of CA is that the controller structure does not have to be reconfigured in the case of
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faults and it can deal directly with total actuator failures without requiring reconfiguration/accommodation of the
controller, because the CA scheme ‘automatically’ redistributes the control signal.

The insensitivity and robustness properties of sliding mode control to certain types of disturbances and uncertainty
(see §3.4 in Edwards & Spurgeon[3]), especially to actuator faults, make it attractive for fault tolerant control (FTC)
especially in the area of flight control. Sliding mode controllers (as well as many other traditional control methods)
cannot deal directly with actuator failures. However control allocation provides one solution to this problem by
providing access to the ‘redundant’ actuators. Therefore, a combination of sliding mode and control allocation
provides a powerful tool for the development of simple, robust fault tolerant flight controllers that work for a wide
range of faults and failures without requiring any reconfiguration (provided there is enough redundancy in the
system).

The work in Shtessel et al.[4] and Wells & Hess [5] provides practical examples of the combination of sliding
mode control (SMC) and CA for FTC. The work by Shin et al.[6] uses control allocation ideas, but formulates
the problem from an adaptive controller point of view. However none of these papers provide a detailed stability
analysis and discuss sliding mode controller design issues when using control allocation. Recent work by Corradini
et al.[7] shows that total failures can be dealt with by SMC schemes provided that there is enough redundancy in
the system. However, Corradini et al.[7] considers exact duplication of actuators to achieve redundancy, whereas
in many over actuated real engineering systems, the redundant actuators do not have identical dynamics to the
‘primary’ ones. More recently in Alwi & Edwards [8] a sliding mode control allocation scheme was proposed for
a more general class of uncertain linear systems. A set of easily testable conditions was developed to guarantee
the stability of the closed–loop system subject to a class of actuator faults. The scheme in Alwi & Edwards [8]
uses a control law which depends on (an estimate of) the ‘efficiency/effectiveness’ of the actuators. In this paper,
these ideas are extended and an adaptive scheme is proposed which does not depend explicitly on the estimate of
actuators ‘efficiency’.

In this paper, the potential of SMC and CA is demonstrated through an implementation of these ideas on an
aircraft research motion simulator. The sliding mode control allocation schemes have been designed and tested
on an advanced 6 degree of freedom (6–DOF) research flight simulator called SIMONA (SImulation, MOtion
and NAvigation) running a high fidelity non–linear aircraft model based on FTLAB747[9]. The control strategy
considered in this paper uses the SMC robustness properties and CAs capability to redistribute the control effort
to the remaining functional actuators when faults/failures occur.

II. TEST FACILITIES (SIMONA)

For the study of faults and failures, a high fidelity nonlinear aircraft model can accurately simulate real life
conditions and the performance of an aircraft in a safe way. The FTLAB747 software running under MATLAB1

has been developed for the study of fault tolerant control and fault detection & isolation (FDI) schemes [10].
It represents a ‘real world’ model of a B747-100/200 aircraft with 77 states incorporating rigid body variables,
sensors, actuators and aeroengine dynamics. All the control surfaces and engine dynamics are modelled with realistic
position limits and rate limits. The software was originally developed at Delft University of Technology by van
der Linden (Delft University Aircraft Simulation and Analysis Tool, DASMAT) [11] and Smaili (Flight Lab 747,
FTLAB747) [12], and later developed and enhanced for use in terms of fault detection and fault tolerant control by
Marcos & Balas [10] (FTLAB747 V6.1/V6.5). This software has been used as a realistic platform to test FTC and
FDI schemes by many researchers (see for example Marcos et al.[13], Szaszi et al.[14], Maciejowski & Jones [15]).
More recently this software has been upgraded to V6.5/7.1/2006b by Smaili et al.[9] to allow all the control surfaces
to be controlled independently offering more degrees of control flexibility especially during faults or failures.

The SIMONA (SImulation, MOtion and NAvigation) Research Simulator (SRS) in Figure 1 is a pilot-in-the-loop
flight simulator operated by the Delft University of Technology. It provides researchers with a powerful tool that
can be adapted to various uses [16]: for example research into human (motion) perception [17], [18], [19], aircraft
handling qualities [20], [21], fly-by-wire control algorithms and flight deck displays [22], [23], flight procedures [24],
[25] and air traffic control [26]. The simulator’s flexible software architecture and high-fidelity cueing environment
allows the integration of the B747 model from Smaili et al. [9]. Its inputs and outputs were standardized to fit the
SRS software environment and the SIMULINK model was converted to C code using Real-Time Workshop. Finally

1MATHWORKS trademark
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the model was integrated with the pilot controls, aircraft instruments (Figure 1(b)) and other cueing devices of the
SRS (i.e. outside visual and motion systems). On the fight deck of the SRS the evaluation pilot was presented with
flight instruments representative of the B747 aircraft, a control column with B747 feel system dynamics, a central
pedestal with dual engine controls, a Mode Control Panel (MCP) for controlling the autopilot and a wide collimated
view on a virtual outside world. The simulator’s motion system was tuned to give the pilot realistic inertial motion
cues in nominal and failure conditions.

(a) Outside view (b) Flight deck view

Fig. 1. SIMONA research simulator

III. A SLIDING MODE CONTROL ALLOCATION SCHEME

In this paper, a sliding mode control scheme using control allocation will be designed based on a linearization of
the aircraft about an operating condition. This section describes the problem formulation and introduces the control
scheme that will be tested.

A. Problem Formulation

This paper considers a situation where a fault associated with the actuators develops in a system. It will be
assumed that the system subject to actuator faults or failures, can be written as

ẋ(t) = Ax(t) +Bu(t)−BK(t)u(t) +BK(t)d(t) (1)

where A ∈ IRn×n and B ∈ IRn×m. The effectiveness gain K(t) = diag(k1(t), . . . , km(t)) where the ki(t) are scalars
satisfying 0 ≤ ki(t) ≤ 1. These scalars model a decrease in effectiveness of a particular actuator. If ki(t) = 0, the
ith actuator is working perfectly whereas if ki(t) > 0, a fault is present, and if ki(t) = 1 the actuator has failed
completely. The exogenous signal d(t) represents a disturbance which may impact on the system as a result of a
fault/failure. For example, the moment generated by a control surface which has stuck in a non-neutral position in
control channel i could be modeled as ki = 1 and di ̸= 0.

In most CA strategies, the control signal is distributed equally among all the actuators [6], [4], [5] or distributed
based on the limits (position and rate) of the actuators [2], [27], [28]. In this section, equal weight redistribution
will be considered to redirect the control signals to the remaining actuators when faults/failures occur. For most
systems with actuator redundancy, the assumption that rank(B) = l < m, often employed in the literature, is not
valid. However, often the system states can be reordered, and the matrix B from (1) can be partitioned as:

B =

[
B1

B2

]
(2)

where B1 ∈ IR(n−l)×m and B2 ∈ IRl×m has rank l. The partition is in keeping with the notion of splitting the control
law from the control allocation task [28], [2]. In aircraft systems, B2 is associated with the equations of angular
acceleration in roll, pitch and yaw [28]. Here it is assumed that the matrix B2 represents the dominant contribution
of the control action on the system, while B1 generally will have elements of ‘small’ magnitude compared with
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∥B2∥. Compared to the work in Shin et al.[6] where it is assumed that B1 = 0, here B1 ̸= 0 will be considered
explicitly in the controller design and in the stability analysis. It will be assumed without loss of generality that
the states of the system in (1) have been transformed so that B2B

T
2 = Il and therefore ∥B2∥ = 1. This is always

possible since rank(B2) = l by construction. As in Alwi & Edwards [8], let the ‘virtual control’ ν(t) be defined as

ν(t) := B2u(t) (3)

so that
u(t) = B†

2ν(t) (4)

where the pseudo inverse is chosen as
B†

2 := ΩBT
2 (B2ΩB

T
2 )

−1 (5)

and Ω ∈ IRm×m is a symmetric positive definite (s.p.d) diagonal weighting matrix. It can be shown that the
pseudo-inverse in (5) arises from the optimization problem

min
u(t)

u(t)TΩ−1u(t) subject to B2u(t) = ν(t) (6)

In Alwi & Edwards [8], the weighting matrix was chosen to be Ω(t) = I −K(t). The effect of this choice is that
u(t) in (4) depends explicitly on K(t) because B†

2 from (5) does. Here instead, and perhaps more conventionally,

Ω := I (7)

With this choice of weighting matrix, equation (4) becomes

u(t) = B†
2ν(t) = BT

2 (B2B
T
2︸ ︷︷ ︸

I

)−1ν(t) = BT
2 ν(t) (8)

In Alwi & Edwards [8], sliding mode control (SMC) techniques[3], have been used to synthesize the ‘virtual
control’ ν(t). Define a switching function s(t) : IRn → IRl to be

s(t) = Sx(t)

and let S be the hyperplane defined by S = {x(t) ∈ IRn : Sx(t) = 0}. If a control law can be developed which
forces the closed–loop trajectories onto the surface S in finite time and constrains the states to remain there, then
an ideal sliding motion is said to have been attained (see §3.2 in Edwards & Spurgeon[3]).

In terms of the stability analysis which follows, the effect of the exogenous disturbance d(t) from (1) is ignored.
Clearly this external signal does not affect the stability or otherwise of the closed-loop system – although of course
it affects the closed-loop performance of the system. In the following stability analysis d ≡ 0. Using a change of
coordinates x 7→ Trx(t) = x̂(t) where

Tr :=

[
I −B1B

T
2

0 I

]
(9)

it is shown in Alwi & Edwards [8] that (1) becomes (in the new coordinate system)

˙̂x(t) = Âx̂(t) +

[
0
I

]
︸ ︷︷ ︸

B̂ν

ν(t)−
[
−B1B

N
2 (I −K)BT

2

I −B2(I −K)BT
2

]
ν(t) (10)

where Â := TrAT
−1
r and

BN
2 := (I −BT

2B2) (11)

The last term in (10) is zero in the fault free case (K = 0), but is treated as (unmatched) uncertainty when K ̸= 0.
Define

W = I −K (12)

and write
B+

2 :=WBT
2 (B2WBT

2 )
−1 (13)
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It is shown in Alwi & Edwards [8] that there is an upper bound on the norm of the pseudo-inverse B+
2 in (13)

which is independent of W , so that there exists a γ0 such that

∥B+
2 ∥ = ∥WBT

2 (B2WBT
2 )

−1∥ < γ0 (14)

for all W = diag(w1 . . . wm) such that 0 < wi ≤ 1. For the system in the x̂(t) coordinates in (10), a suitable
choice for the sliding surface is

Ŝ = ST−1
r =

[
M Il

]
(15)

where M ∈ IRl×(n−l) represents design freedom. Introduce another transformation so that x̂ = (x̂1, x̂2) 7→ Tsx =
(x̂1, s(t)), where x̂1 ∈ IR(n−l) associated with the nonsingular matrix

Ts =

[
I 0
M I

]
(16)

Equation (10) then becomes[
˙̂x1(t)
ṡ(t)

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
x̂1(t)
s(t)

]
+

[
0
I

]
ν(t)−

[
−B1B

N
2 WBT

2

I −MB1B
N
2 WBT

2 −B2WBT
2

]
ν(t) (17)

where Ã11 := Â11−Â12M , Ã21 :=MÃ11+Â21−Â22M . If (A,Bν) is controllable, then (Â11, Â12) is controllable
(see §3.4 in Edwards & Spurgeon[3]) and so M can always be chosen to make Â11 − Â12M stable. If a control
law can be designed to induce sliding, then, the reduced order sliding motion is governed by

˙̂x1(t) = Ã11x̂1(t)−B1B
N
2 B

+
2 (I +MB1B

N
2 B

+
2 )

−1Ã21x̂1(t) (18)

Define
γ1 := ∥MB1B

N
2 ∥ (19)

then it follows that ∥MB1B
N
2 B

+
2 ∥ < ∥MB1B

N
2 ∥∥B+

2 ∥ < γ0γ1. Since B+
2 is independent of M , the term γ0 can

be calculated a–priori using the boundedness result from equation (14). If the design matrix M can also be chosen
so that γ1 from (19) satisfies γ0γ1 < 1, this guarantees ((I +MB1B

N
2 B

+
2 )(B2WB2))

−1 exists for all W and so
the last expression in (18) is well defined.

Remark 1: In a fault free condition, W = I and therefore B+
2 |W=I = BT

2 since B2B
T
2 = I . Also

BN
2 B

+
2 = (I −BT

2B2)B
+
2 = (I −BT

2B2)B
T
2 = 0

and the system in (18) ‘collapses’ to ˙̂x1(t) = Ã11x̂1(t) which is the nominal sliding mode reduced order system
for which M has been designed to guarantee stability. The system in (18) depends on W and so stability needs to
be established.

Define
G̃(s) := Ã21(sI − Ã11)

−1B1B
N
2 (20)

where s represents the Laplace variable. By construction the transfer function matrix G̃(s) is stable. If

γ2 = ∥G̃(s)∥∞ (21)

then, it is shown in Alwi & Edwards [8] that during a fault or failure condition, for any combination of 0 < wi ≤ 1,
the closed–loop system will be stable if

0 <
γ2γ0

1− γ1γ0
< 1 (22)

where the scalar γ0 is defined in (14), the positive scalar γ1 is defined in (19) and γ2 is defined in (21).

Remark 2: Both γ1 and γ2 depend on the design of the sliding surface since they depend on M ; however they
are independent of W . The scalar γ0 depends on W but is independent of M .
Remark 3: If B1 = 0 (which is an assumption in many schemes: for example Shin et al.[6]), then γ1 = 0 and
γ2 = 0 and equation (22) is trivially satisfied. Furthermore, as ∥B1∥ → 0, the scalar γ2γ0

1−γ1γ0
→ 0 and so the

requirements of equation (22) are satisfied. This means loosely speaking, for weakly coupled systems in which
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∥B1∥ is small, the approach will be feasible. The situation where B1 = 0 can be regarded as the special extreme
case as ∥B1∥ → 0.

In Alwi & Edwards [8], a unit vector controller using knowledge of W (t) = I −K(t) was developed to induce
a sliding motion. This requires a FDI scheme to estimate W (t) in real-time. In the next subsection, to circumvent
this, a different control law will be proposed which does not require the W (t). In this regard the FTC scheme
which is proposed is ‘passive’[29] and does not rely on an FDI scheme.

1) Adaptive Nonlinear Gain: The proposed control law has a structure given by ν(t) = νl(t) + νn(t) where

νl(t) := −Ã21x̂1(t)− Ã22s(t) (23)

and νn(t) represents a nonlinear unit vector term. In a fault free situation it is not necessary and indeed is not
advisable to have a large gain on the switched term – therefore ideally the nonlinear gain term should only adapt
to the onset of a fault and react accordingly. It is easy to see from (23) that

∥νl(t)∥ < l1∥x(t)∥+ l2 (24)

where l1 and l2 are known positive constants. Consider the following expression for the nonlinear control law
component

νn(t) := −(ρ(t, x) + η) s(t)
∥s(t)∥ for s(t) ̸= 0 (25)

where η is a positive scalar and the gain ρ is defined to be

ρ(t, x) = r(t)(l1∥x(t)∥+ l2) (26)

The scalar variable r(t) is an adaptive gain which varies according to

ṙ(t) = a
(
l1∥x(t)∥+ l2

)
Dϵ(∥s(t)∥)− br(t) (27)

where r(0) = 0 and the a and b are positive design constants. The function Dϵ : IR 7→ IR is the nonlinear function

Dϵ(∥s∥) =
{

0 if ∥s∥ < ϵ
∥s∥ otherwise

(28)

where ϵ is a positive scalar. (A similar function to (28) is considered in Xu et al.[30]). Here, ϵ is set to be small
and defines a boundary layer about the surface S, inside which an acceptably close approximation to ideal sliding
takes place. Provided the states evolve with time inside the boundary layer, no adaptation of the switching gains
takes place. If a fault occurs, which starts to make the sliding motion degrade so that the states evolve outside the
boundary layer i.e. ∥s(t)∥ > ϵ, then the dynamic coefficients r(t) increase in magnitude, (according to (27)), to
force the states back into the boundary layer around the sliding surface.

Remark 4: This adaptation scheme differs from the one in Wheeler et al.[31] and is more akin to the gain scheme
from Xu et al.[30].

The choice of the design parameters η, a, b and ϵ depends on the closed-loop performance specifications and
requires some design iteration. In general, η needs to be chosen as the nominal (no fault) gain for the nonlinear
component of the control law (25) to ensure that sliding occurs in the fault free system. The parameter ϵ is chosen
to be small to form a boundary layer about S, but not too small to cause unnecessary increases in ρ(t). Thus
ϵ dictates how sensitive the adaptive gain r(t) is to changes in s(t). The gain a dictates the rate at which r(t)
increases in reaction to faults: a large value for a indicates a fast increase of r(t). On the other hand b dictates the
rate at which r(t) decreases to the nominal gain η when the fault has been rectified. A relationship between ϵ, η, a
and b will be determined in the proof of the proposition which follows. The choice of these design parameters will
be discussed further in §IV. The following lemma will show that r(t) is bounded and motion inside a boundary
layer around S is obtained.

Let W be the set of faults such that

W = {(w1 . . . wm) ∈ [0, 1]× [0, 1] . . .× [0, 1]︸ ︷︷ ︸
m times

| λ(B2WBT
2 ) > w > 0} (29)
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where w is a strictly positive scalar. Notice that (w1, . . . wm) ∈ W ⇒ det(B2WBT
2 ) ̸= 0.

Proposition 1: Consider the potentially faulty system represented by (1) with the control law in (23)-(25); then
the adaptive gain r(t) remains bounded and the switching states s(t) enter a boundary layer around S in finite time
for any fault condition (w1 . . . wm) ∈ W .
Proof: See appendix.

Remark 5: For an appropriate choice of a, b and ϵ, close approximation to ideal sliding can be maintained even in
the presence of faults. If ϵ = 0 and b = 0, then ideal sliding can be guaranteed since it follows from (50) that the
Lyapunov derivative V̇ ≤ −w2∥s∥(1 − γ1γ0)η. This means ideal sliding can be attained and maintained in finite
time. However this scheme has disadvantages in practice since r(t) may become unbounded in the presence of
noise [31].

B. Sliding Mode Controller Design Issues

Based on the stability analysis above, the sliding mode control design problem can be summarized as follows:
• Pre-design calculations:

(a) Make an appropriate re-ordering of the states in (1) so that the input distribution matrix B is partitioned
to identify B1 and B2.

(b) Scale the states so that B2B
T
2 = I .

(c) Change coordinates using the linear transformation x(t) 7→ x̂(t) = Trx(t), where Tr is given in (9),
to achieve the canonical form in (10) and isolate the matrices Â11, Â12, Â21 and Â22.

(d) Compute the smallest possible scalar γ0 so that ∥W 2BT
2 (B2W

2BT
2 )

−1∥ < γ0, ∀ 0 < W ≤ I . This
value is an a–priori calculation and is independent of the choice of sliding surface and control law.

• Design of matrix M :
(a) The design objective is to compute M from (15) so that Ã11 := Â11− Â12M is stable. This is always

possible if (A,Bν) is controllable.
• Stability analysis:

(a) Compute and check if γ1 := ∥MB1B
N
2 ∥ < 1

γo
is satisfied. Otherwise re-design M .

(b) Calculate G̃(s) := Ã21(sI−Ã11)
−1B1B

N
2 If ∥G̃(s)∥∞ := γ2 <

1
γ0
−γ1,the closed–loop is guaranteed

to be stable ∀ 0 < W ≤ I , since γ2 < 1
γ0
−γ1 ensures inequality (22) in (22) holds. Otherwise consider

re-designing the matrix M .
• Obtain the virtual control law using (23), (25) and the actual control law using (8).

C. General Remarks

Note that the above analysis is based on the equal distribution of the virtual control i.e. Ω = I in the optimization
(6) in both the nominal and faulty case. This is a popular choice in the literature [6], [4], [5]. During the SIMONA
trials, an on–line control allocation scheme as proposed in Alwi & Edwards [8] has also been tested. The idea in
Alwi & Edwards [8] is that, instead of using a fixed weight Ω = I in (12), the effectiveness level of the actuators
K(t) is used to change the weight Ω (i.e Ω = I−K) to allow the control allocation scheme to efficiently redistribute
the control signals to the remaining functioning actuators when a fault or failure occurs. The information necessary
to compute Ω online can be supplied by a fault reconstruction scheme as described in Tan & Edwards [32] for
example, or by using measurements of the actual actuator deflection compared to the demand which is available in
many systems e.g. passenger aircraft. From Alwi & Edwards [8], it can be seen that even though the strategy for the
control allocation is different, the design procedure for the sliding surface and the stability analysis (as discussed
in III-B) is similar and is subject to the same constraints. The only difference is the definition of control law and
the nonlinear gain required to maintain sliding. Here it is proposed that

u(t) = BT
2 ν(t) (30)

where ν(t) is given in (23), (25), (26)–(28). In Alwi & Edwards[8], it is suggested that u(t) has the form

u(t) =WBT
2 (B2W

2BT
2 )

−1ν(t) (31)
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However, the control law proposed in Alwi & Edwards [8] is exactly the same as the one proposed in this paper
when Ω = I; for details see Alwi & Edwards [8].

The choice u(t) = BT
2 ν(t) is simpler. The benefit of the scheme proposed in Alwi & Edwards [8] is that a

smaller nonlinear gain is sufficient to maintain sliding due to the efficient redistribution of the control signals.
Faulty actuators will have small control signal demands compared to healthy actuators and in fact the control signal
sent to a failed actuator will be shut off completely. The disadvantage of this method is that the effectiveness level
of each actuator needs to be available. For some systems, this information can be obtained directly by measuring
the input and output signals to the actuator or by using a fault estimator such as Tan & Edwards [32]. However
for some systems, the effectiveness level of the actuators is difficult to estimate accurately. This has motivated
the use of a fixed control allocation scheme proposed in this paper. A drawback is the size of the nonlinear gain
which may need to be large when faults or failures occur, to maintain sliding and ensure that stability still holds.
A conservatively large nonlinear gain or an adaptive nonlinear gain scheme (as discussed in section III-A1 above)
needs to be employed.

IV. CONTROLLER DESIGN

The 12 rigid body states of the B747 aircraft can be divided into 6 longitudinal axis states and 6 lateral and
directional axes states which are all determined from the 6-degree of freedom equations of motion. The states are
given by x = [p q r Vtas α β ϕ θ ψ he xe ye]

T. For the longitudinal axis, the states are pitch rate q, true airspeed
Vtas, angle of attack α, pitch angle θ and altitude he. Meanwhile for the lateral and directional axes, the states are
roll rate p, yaw rate r, sideslip angle β, roll angle ϕ and yaw angle ψ. The control surfaces comprise 4 ailerons
(inner and outer on each wing), 12 spoilers (2 inner spoilers and 4 outer spoilers on each wing), 2 rudders (upper
and lower), 4 elevators (an inner and outer on each left and right elevator), a horizontal stabilizer and 4 engine
thrusts (which are controlled via engine pressure ratios (EPR)).

In this paper both lateral and longitudinal control is considered. One of the controller design objectives considered
here is to bring a faulty aircraft to a near landing condition. This can be achieved by a change of direction through
a ‘banking turn’ manoeuvre, followed by a decrease in altitude and speed. This can be achieved by tracking
appropriate roll angle (ϕ) and sideslip angle (β) commands using the lateral controller, and tracking flight path
angle (FPA) and airspeed (Vtas) commands using the longitudinal controller. For lateral control, the settling time
when there is no fault/failure should be approximately 20sec for ϕ and 20sec for β. If a fault/failure occurs, the
tracking requirement is 25sec for ϕ and β. These specifications are chosen to ensure that there is almost zero
side force and therefore passenger comfort is maintained (page 233 of Bryson [33]). For longitudinal control, the
settling time when there is no failure should be 20sec for FPA and 45sec for Vtas. If a failure occurs, the tracking
requirement is 30sec for FPA with no difference in the Vtas tracking. These specifications are taken from Ganguli
et al.[34].

A linearization has been obtained around an operating condition of 263,000 Kg, 92.6 m/s true airspeed, and an
altitude of 600m at 25.6% of maximum thrust and at a 20deg flap position. The result is a 12th order linear model
(separated into two 6th order models) associated with the lateral and longitudinal states. For design purposes, only
the first four longitudinal (xlong = [q Vtas α θ]T) and lateral states (xlat = [p r β ϕ]T) have been retained. For
lateral control, the 4 individual engine pressure ratios (EPR) and the 4 individual ailerons have been used. The 10
spoilers2 have been aggregated to produce two control inputs on each wing (spoilers 1-4, 5, 8 and 9-12 have been
grouped respectively). The other input represents rudder deflection (the upper and lower rudder has been aggregated
to produce a single control signal). For longitudinal control, the 4 elevators have been aggregated to produce one
control input while the 4 longitudinal EPRs can be controlled independently. The other input represents horizontal
stabilizer deflection. The following state-space system pairs represent the lateral and longitudinal systems about the
trim condition

2Spoilers 6 & 7 are ground spoilers and are not used during flight.



THIS PREPRINT APPEARS IN ITS FINAL FORM IN THE JOURNAL OF GUIDANCE, CONTROL AND DYNAMICS, VOL.31, NO.5 (2008), PP.1186-1201. (DOI: 10.2514/1.35066) 9

Alat =

 −1.0579 0.1718 −1.6478 0.0004
−0.1186 −0.2066 0.2767 −0.0019
0.1014 −0.9887 −0.0999 0.1055
1.0000 0.0893 0 0

 (32)

Blat =

 −0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678
−0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052

0 0 0 0 0.0017 0.0006 −0.0006
0 0 0 0 0 0 0

0.2625 0.1187 0.0246 0.0140 −0.0140 −0.0246
0.0180 −0.2478 0.1269 0.0724 −0.0724 −0.1269

−0.0017 0.0174 0.0005 0.0005 −0.0005 −0.0005
0 0 0 0 0 0


}
Blat,2}
Blat,1

(33)

and

Along =

 −0.5137 0.0004 −0.5831 0
0 −0.0166 1.7171 −9.8046

1.0064 −0.0021 −0.6284 0
1.0000 0 0 0

 (34)

Blong =

 −0.6228 −1.3578 0.0082 0.0218 0.0218 0.0082
0 −0.1756 1.4268 1.4268 1.4268 1.4268

−0.0352 −0.0819 −0.0021 −0.0021 −0.0021 −0.0021
0 0 0 0 0 0


}
Blong,2}
Blong,1

(35)

where the states represent xlat = [p r β ϕ]T and xlong = [q Vtas α θ]T. The lateral control surfaces are δlat =
[δair δail δaor δaol δsp1−4 δsp5 δsp8 δsp9−12 δr e1lat

e2lat
e3lat

e4lat
]T which represent aileron deflection (right &

left - inner & outer)(rad), spoiler deflections (left: 1-4 & 5 & right: 8 & 9-12) (rad), rudder deflection (rad) and
lateral engine pressure ratios (EPR). The longitudinal control surfaces are δlong = [δe δs e1long

e2long
e3long

e4long
]T

which represent elevator deflection (rad), horizontal stabilizer deflection (rad), and longitudinal EPR. The partition
of B in (33) and (35) shows the terms B1 and B2 (although a further change of coordinates is necessary to obtain
the form in (2) to scale B2 to ensure B2B

T
2 = I). The controlled output distribution matrices are

Cclat =

[
0 0 1 0
0 0 0 1

]
, Cclong =

[
0 0 −1 1
0 1 0 0

]
which represent the states ϕ and β for lateral control and flight path angle (FPA) and Vtas for longitudinal control.

These linear models will be used to design the control schemes described in the next sections.
To include a tracking facility, integral action has been included for both longitudinal and lateral control. For the

generic system in (1), let xr(t) represent integral action states:

ẋr(t) = r(t)− Ccx(t) (36)

where Cc ∈ IRl×n is the distribution matrix associated with the controlled outputs and the differentiable (filtered
reference) signal r(t) satisfies

ṙ(t) = Γ (r(t)− rc) (37)

with Γ ∈ IRl×l a stable design matrix and rc a constant demand vector (for details see §4.4.2 in Edwards &
Spurgeon[3]). Augmenting the states from (32)-(35) with the integral action states and defining xa(t) = col(xr(t), x(t))
it follows that

ẋa(t) = Aaxa(t) +Bau(t) +Brr(t) (38)

where

Aa =

[
0 −Cc

0 A

]
Ba =

[
0
B

]
Br =

[
Ip
0

]
(39)

If (A,B) is controllable and (A,B,Cc) does not have any zeros at the origin then (Aa, Ba) is controllable (see
§4.4.2 in Edwards & Spurgeon[3]). Define a switching function sa(t) : IR(n+l) → IRl to be

sa(t) = Saxa(t) (40)
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where Sa ∈ IRl×(n+l) and SaBa = Il. As in equation (23)-(25), the proposed ‘virtual control’ law comprises two
components ν(t) = νl(t)+νn(t). Now because of the reference signal r(t), the linear component has a feed-forward
reference term and so νl(t) = Lxa(t) +Lrr(t) where L = −ŜaÂa and Lr = −ŜaB̂r. Here Â, B̂r and Ŝ are the
matrices from (39) and (40) after a transformation to achieve the regular form in equation (10) has been performed.
The nonlinear component is defined as

νn(t) = −ρ(t, xa) sa(t)
∥sa(t)∥ for sa(t) ̸= 0 (41)

From (8) it follows that
u(t) = BT

2 ν(t) (42)

for an equally distributed control is distributed to all the control surfaces. (For on–line CA control law definition,
see Alwi & Edwards [8]).

A. Lateral Controller Design

In normal operation, the ailerons will be the primary control surface for ϕ tracking, whilst the spoilers introduce
redundancy. Meanwhile for β tracking, the rudder will be the primary control surface and differential engine thrust
is the associated redundancy. It will be assumed that at least one of the control surfaces for both ϕ and β tracking
will be available when a fault or failure occurs (i.e. one of either the four ailerons or the four spoilers will be
available and one of either the rudder or the four engine thrusts are available). Based on these assumptions, it can
be verified from a numerical search that γ0lat

from (14) is γ0lat
= 8.1314.

The matrix which defines the hyperplane must now be synthesized so that the conditions of (22) are satisfied.
A quadratic optimal design has been used to obtain the sliding surface Salat

which depends on the matrix Mlat in
equation (15) (see for example chapter 9 in Utkin [35] and §4.2.2 in Edwards & Spurgeon[3]) where the symmetric
positive definite state weighting matrix has been chosen as Qlat = diag(0.005, 0.1, 6, 6, 1, 1). The first two terms
of Qlat are associated with the integral action and are less heavily weighted. The third and fourth term of Qlat

are associated with the equations of the angular acceleration in roll and yaw (i.e. Blat,2 term partition in (2)) and
thus weight the virtual control term. Thus by analogy to a more typical LQR framework, they effect the speed of
response of the closed–loop system. Here, the third and fourth terms of Qlat have been heavily weighted compared
to the last two terms to reflect a reasonably fast closed–loop system response. The poles associated with the reduced
order sliding motion are {−0.0707,−0.3867,−0.3405±0.1484i}. Based on this value of Mlat, simple calculations
from (19) show that γ1lat

= 0.0145, therefore γ0lat
γ1lat

= 0.1180 < 1 and so the requirements of (22) are satisfied.
Also for this particular choice of sliding surface, ∥G̃lat(s)∥∞ = γ2lat

= 0.0764 from (21). Therefore from (22),
γ2lat

γ0lat

1− γ1lat
γ0lat

= 0.7043 < 1

which shows that the system is stable for all choices of 0 < wi ≤ 1. The pre-filter matrix from (37) has been
designed to be Γlat = diag(−0.5,−0.5). This may be viewed as representing the ideal response in the ϕ and the β
channels. For implementation, the discontinuity in the nonlinear control term in (41) has been smoothed by using
a sigmoidal approximation

νδn,lat =
slat

∥slat∥+ δlat

where the scalar δlat = 0.05 (see for example §3.7 in Edwards & Spurgeon[3]). This removes the discontinuity and
introduces a further degree of tuning to accommodate the actuator rate limits – especially during actuator fault or
failure conditions.

To emulate a real aircraft flight control capability, an outer loop heading control was designed based on a
proportional controller plus washout filter, to provide a roll command to the inner loop sliding mode controller.
In the SIMONA implementation, this outer loop heading control can be activated by a switch in the cockpit. The
proportional gain was set as Kplat

= 0.5 and the washout filter s
s+5 was assigned a gain Kwflat

= 0.1 The
variables related to the adaptive nonlinear gain (§III-A1) have been chosen as l1lat

= 0 and l2lat
= 1. This was

found to gave sufficiently good performance. This removes the dependence of r(t) on x(t) and simplifies the
implementation. The parameter ηlat from (25) was chosen as ηlat = 1. In practice, a maximum limit ρmax for the
adaptive nonlinear gain in (26) is imposed to avoid the actuators from becoming too aggressive. Here, the maximum
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gain was set at ρmaxlat
= 2. The adaptation parameters from (27) have been chosen as alat = 100, blat = 0.001

and ϵlat = 1× 10−2. The parameter ϵlat was chosen to be able to tolerate the variation in ∥slat(t)∥ due to normal
changes in flight condition but small enough to enable the adaptive gain to be sensitive enough to deviation from
zero due to faults or failures. Here alat has been chosen to be large to enable small changes in ∥slat(t)∥ to cause
significant changes in the gain, so that the control system reacts quickly to a fault. The parameter blat on the other
hand dictates the rate at which ρlat(t) will decrease, after ∥slat(t)∥ has returned below the threshold ϵlat.

B. Longitudinal Controller Design

In normal operation, the elevators will be the primary control surface for FPA tracking, whilst the horizontal
stabilizer introduces redundancy. For Vtas tracking, the collective thrust (from the four engines) will be the actuator.
It will be assumed that at least one of the control surfaces for FPA tracking will still be available when a fault or
failure occurs. It is also assumed that at least one of the four engines is available for Vtas tracking. Based on these
assumptions, it can be verified from a numerical search that γ0long

= 8.2913.
As in the lateral controller, a quadratic optimal design has been used to obtain the sliding surface matrix (and

therefore the matrix Mlong). The weighting matrix has been chosen as Qlong = diag(0.1, 0.1, 10, 50, 1, 1). Again,
similar to the lateral controller design, the first two terms of Qlong are associated with the integral action and are less
heavily weighted. The third and fourth terms of Qlong are associated with the Blong,2 term partition in (2) (i.e. states q
and Vtas) which weight the virtual control term, and have been heavily weighted compared to the last two terms. The
poles associated with the reduced order sliding motion are {−0.7066,−0.2393± 0.1706i,−0.0447}. Based on this
value of Mlong, simple calculations from (19) show that γ1long

= 1.9513×10−4: therefore γ0long
γ1long

= 0.0016 < 1

and so the requirements of equation (22) are satisfied. For this choice of sliding surface, ∥G̃long(s)∥∞ = γ2long
=

0.0112 from (21). Therefore from (22),
γ2long

γ0long

1− γ1long
γ0long

= 0.0931 < 1

which shows that the system is stable for all choices of 0 < wi ≤ 1. The pre-filter matrix from (37) has been
designed to be Γlong = diag(−0.5,−0.125). The discontinuity in the nonlinear control term in (41) has been
smoothed by using a sigmoidal approximation

νδn,long =
slong

∥slong∥+ δlong

where the scalar δlong = 0.05.
An outer loop altitude control scheme was designed based on a proportional controller plus washout filter to

provide a FPA command to the inner loop sliding mode controller. In the SIMONA implementation, this outer
loop altitude control can be activated by a switch in the cockpit. The proportional gain was set as Kplong

= 0.001
and the washout filter s

s+5 with the gain Kwflong
= 0.05 An adaptive nonlinear gain has been implemented. The

variables related to the adaptive nonlinear gain (§III-A1) have been chosen as l1long
= 0 and l2long

= 1. This has
been verified to give sufficiently good performance and removes the dependance of r(t) on x(t) which simplifies
the implementation. The parameter ηlong from (25) was chosen as ηlong = 1. To avoid the actuators from becoming
too aggressive, the maximum gain set was set at ρmaxlong

= 2. The adaptation parameters from (27) have been
chosen as along = 100, blong = 0.01 and ϵlong = 1× 10−2. The parameter ϵlong was chosen to be able to tolerate
the variation in ∥slong(t)∥ due to normal changes in flight condition but small enough to enable the adaptive gain
to be sensitive enough to deviation from zero due to faults or failures. Here along has been chosen to be large
to enable small changes in ∥slong(t)∥ to cause significant changes in the gain, so that the control system reacts
quickly to a fault.

Note that both the lateral and longitudinal controller manipulate the engine EPRs. For lateral control, differential
engine EPR is required as a secondary ‘actuator’ for β tracking; whilst for longitudinal control, collective EPR is
used for Vtas tracking. In the trials, ‘control mixing’ was employed, where the signals from both the lateral controller
(e1lat

, e2lat
, e3lat

and e4lat
) and longitudinal controller (e1long

, e2long
, e3long

and e4long
) were added together before

being applied to the engines (page 14 of Burcham et al.[36]). This is similar to the control strategy used for the
NASA propulsion control aircraft described in Burcham et al.[36].

Remark 6: In terms of the control laws no actuator magnitude or rate saturations are accounted for explicitly
– although in the evaluations on SIMONA these effects are present. However, if a rate limit or position limit is
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Fig. 2. SIMONA interconnections

Fig. 3. Mode control panel (MCP)

exceeded, a difference between the expected actuator position and the commanded one occurs which would be
interpreted as a ‘fault’. The proposed scheme would then inherently attempt to reduce the burden in this channel
and redistribute the control effort to other actuators, which would mitigate the effect of the saturation.

V. RESULTS FROM THE SIMONA IMPLEMENTATIONS

The results presented in this paper are all from the 6–DOF SIMONA simulator. The controllers have been
implemented as SIMULINK (version 2006b) models with appropriate inputs and outputs to connect with the
aircraft model and the SIMONA hardware. Figure 2 gives a schematic of the overall control architecture and its
connections with the SIMONA hardware. The controllers employ an Ode4 solver with a fixed time step of 0.01s.
Using the Real-Time Workshop, the SIMULINK controller block diagrams were converted to C-code and integrated
into the SRS, where they run in real-time on a dual Pentium III 1 GHz processor within the allowed 10 ms update
frame.

A connection with the Mode Control Panel on the flight deck (Figure 3) enables the selection of ‘control modes’
e.g. altitude hold, heading select and reference values. The pilot commands new headings, speeds or altitudes by
adjusting the controls on the MCP.

For passenger comfort during turning manoeuvres, the reference command for ϕ was limited to 25deg and a
0deg reference applied to β to force slide-slip free flight. It was assumed that the aircraft has recently taken off and
reached an altitude of 600m. After a few seconds of straight and level flight, failures occur on the actuators. The
immediate action requested by the pilot is to change the heading to 180deg and to head back to the runway. The
altitude is then changed from 600m (1967.2ft) to 30.5m (100ft) before the Vtas is reduced from 92.8m/s(180kn) to
82.3m/s(160kn), to approximate a landing manoeuvre. For clarity and reproducibility, no measurement noise was
introduced to the signals used in the controller calculations.

Five different control surface failures have been tested on the simulator: all elevators jam with a 3deg offset,
all ailerons jam with a 3deg offset, a stabilizer runaway, all rudders runaway and finally both rudders detach from
the vertical fin [9]. All the trials have been done with and without fault detection, isolation and estimation (FDI),
and with and without wind and turbulence. However due to space limitations, only the most significant results are
shown in this paper. The results from two distinct controllers will be presented: the results from the adaptive gain
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Fig. 5. no fault condition, FDI off

scheme proposed earlier in the paper in §III; and also results from a more complex scheme proposed by Alwi &
Edwards[8].

Figures 4-6 show the fault–free responses of the controller. Figure 4 shows that there is a small amount of
coupling between roll and sideslip during a heading change. There is also a small change in altitude during heading
change. The heading is changed by means of two 90deg step inputs followed by a change in altitude from 600m
to 30m in 3 steps: 600m to 366m to 183m and finally to 30m above the runway. Figure 4 shows good tracking
by the states of the command signals. Figure 5 shows the nominal variation in the norm of the switching function
signals for the longitudinal and lateral controller. Finally figure 6 shows the overall trajectory of the aircraft in 3D.
Here, the change in heading and altitude can be seen more clearly.

A. Fixed Control Allocation

This subsection presents implementation results from the adaptive gain scheme proposed earlier in §III. No
explicit FDI is required and the strong robustness properties of the sliding mode control allocation scheme are
exploited to achieve passive fault tolerant control.

Figures 7-9 show the responses when all ailerons become jammed with an offset of 3deg (figure 8) after 6.3sec
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Fig. 10. stabilizer runaway with wind & gust, FDI off: controlled states

in straight and level flight. Figure 8 shows that the spoilers become more active compared to the no fault condition.
(Note: in figure 8, ru: upper rudder, rl: lower rudder, sp: spoilers, aol: left outer aileron, ail: left inner aileron, air:
right inner aileron and aor: outer right aileron). Figure 9 shows that due to the abrupt offset of 3deg during the jam
failure, the lateral switching function temporarily exceeds the threshold ϵlat and this triggers the adaptive mechanism
which increases the gain ρ(t). However the switching function never exceeds this threshold again and the lateral
adaptive gain gradually begins to decrease. Figure 7 shows no degradation in performance of the controlled states
compared to the nominal condition.

Figures 10-12 show responses dealing with a stabilizer runaway in the presence of wind and gusts. Figure 11
shows that the stabilizer has moved at its maximum deflection rate to its maximum deflection of 3deg. This is
quite a catastrophic failure as this deflection causes the aircraft to pitch down suddenly. Figure 12 indicates the
severity of the stabilizer runaway failure since the switching function exceeds and stays outside the threshold and
the adaptive gain reaches its maximum value. Figure 11 shows that the elevator reacts to the failure and begins to
counteract the effect of the stabilizer runaway. Figure 10 shows only a small degradation in performance compared
to the nominal fault free condition.

B. On–line Control Allocation

In this subsection, the implementation results of an earlier sliding mode control allocation scheme proposed by
Alwi & Edwards[8] will be presented. The only significant difference between this one and the scheme proposed
in §III is that the control law is now given by

u(t) =WBT
2 (B2W

2BT
2 )

−1ν̂(t)

This control law arises from choosing the weighting matrix Ω in (12) as the efficiency measure W . However in
order to implement this control law, information about the wi that comprise the diagonal elements of W must be
available online. This therefore requires a FDI scheme – or more specifically, a fault estimation scheme. In this
paper, it will be assumed that a measurement of the actual actuator deflection is available. This is not an unrealistic
assumption in aircraft systems. Information provided by the actual actuator deflection can be compared with the
signals from the controller to indicate the effectiveness of the actuator. This therefore constitutes an FDI scheme
and incurs additional computational overhead in terms of the online implementation. The idea is to use a ‘least
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Fig. 11. stabilizer runaway with wind & gust, FDI off: actuator positions
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Fig. 13. stabilizer runaway, FDI on: controlled states

squares’ method to estimate the coefficients wi and ci in a relationship of the form

u(i,a) = wiui + ci

where u(i,a) represents the actual deflection and ui represents the demanded deflection i.e. the controller output.
The scalars wi and ci can be obtained from a least squares optimization and W := diag(w1, ..., wm). If the ith
actuator is working perfectly, wi = 1 and ci = 0. If wi < 1 then a fault is present. In the SIMONA implementation,
10 data samples from a ‘moving window’, collected at 100Hz are used to compute the wi and ci. In the SIMONA
implementation, both the lateral and longitudinal controller has its own fault estimation block based on the control
surfaces to be controlled.

Figures 13-15 show a stabilizer runaway failure. Figure 13 shows no visible degradation in performance. The
switching function shown in Figure 15, exceeds the threshold briefly after the failure, but immediately returns inside
the threshold. Compared to Figure 12, the on-line allocation scheme with only a fixed nonlinear gain (ρlong = 1)
has maintained the switching function below the threshold. This shows the advantage of using the on–line control
allocation scheme when information about the effectiveness of the control surface is available. Figure 15 shows that
the effectiveness of the stabilizer has been successfully estimated and this information has been used to provide
on–line control allocation.

Figures 16-18 show the responses for a rudder runaway. Figure 17 shows that the upper and lower rudders
runaway to the 5deg position. This is the hardest situation to control. Not only does the rudders runaway cause
a tendency to turn to one side (and therefore affecting the lateral performance), it also creates difficulties in the
longitudinal axis and results in a tendency to pitch up. Figure 16 shows that the controller is tested on a slightly
different manoeuvre. The sideslip command is kept at 0deg and has only small degradation in its performance. The
heading is changed by 180deg by banking to the right and at the same time the speed is increased to 113.18m/s
(220kn) adding further difficulties to the banking manoeuvre. Then a bank left is tested by changing the demanded
heading back to 135deg, followed by a reduction in speed to 92.6m/s. The altitude is also decreased to 30m, before
a small increase in altitude to 182m above the runway. In these tests, only a small degradation in performance is
visible. Figure 18 shows that the switching function just exceeds the threshold at high speed indicating that at higher
speed, the effect of the rudder runaway is harder to control. However, using the rudder effectiveness information
in Figure 18 the control signal sent to the rudder is shut–off and the control signals are sent to the remaining
functioning actuators causing a visible split in the control surface deflections seen in Figure 17. Figure 17 shows
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Fig. 14. stabilizer runaway, FDI on: actuator positions
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Fig. 16. rudder runaway, FDI on: controlled states

the 4 engine pressure ratios (EPR) have split to counteract the effect of the banking turn to the left. Engine 3 and
4 on the right wing show less EPR compared to Engine 1 and 2 on the left wing to counteract the tendency to turn
to the left. The spoilers and ailerons also show a visible split in terms of the deflections to counteract the effect of
the rudder runaway.

VI. CONCLUSIONS

This paper has presented sliding mode control allocation schemes for fault tolerant control. The control allocation
aspect is used to allow the sliding mode controller to redistribute the control signals to the remaining functioning
actuators when a fault or failure occurs, without reconfiguring or switching to another controller. This paper has
provided a rigorous analysis of the proposed sliding mode control allocation scheme and has determined the
nonlinear gain required to maintain sliding. The two schemes, implemented on the SIMONA research flight simulator
have shown good performance not only in nominal conditions, but also in the case of total actuator failures, even
in wind and gust conditions.
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APPENDIX

Proof of Proposition 1: Define a scalar

ζ :=
(2 + γ1)

w2(1− γ1γ0)
(43)

The expression for ζ in (43) is guaranteed to be positive, since in the requirements of equation (22), the inequality
γ1γ0 < 1 must hold. Assume that K̇(t) = 0 almost always, this implies Ẇ (t) = 0 almost always and so only
isolated abrupt step changes in the effectiveness are considered here. Using the fact that (B2WBT

2 ) > 0 for all
w ∈ W , the following candidate Lyapunov function

V =
1

2

(
sT(B2WBT

2 )s+
1

a
λ(B2WBT

2 )
2(1− γ1γ0)(r(t)− ζ)2

)
(44)

where a is the positive scalar from (27), is positive definite with respect to s, the adaptive gain error r(t)− ζ, and
is radially unbounded. Taking derivatives along trajectories

V̇ = sT(B2WBT
2 )ṡ+

1

a
λ(B2WBT

2 )
2(1− γ1γ0)(r(t)− ζ)ṙ(t) (45)

where from (17),

ṡ(t) = Ã21x̂1(t) + Ã22s(t) + ν(t)− (I −MB1B
N
2 WBT

2 −B2WBT
2 )ν(t)

= (I +MB1B
N
2 B

+
2 )(B2WBT

2 )νn(t)− (I −MB1B
N
2 WBT

2 −B2WBT
2 )νl(t)

Using the fact that s(t)T(B2WBT
2 )(B2WBT

2 )s(t) = ∥B2WBT
2 s∥2 where ∥(B2WBT

2 )∥ ≤ ∥B2B
T
2 ∥ = 1, and

∥WBT
2 ∥ ≤ ∥W∥∥BT

2 ∥ ≤ 1 for all (w1, . . . wm) ∈ W , it follows that when s ̸= 0

sT(B2WB2)ṡ = −(ρ+ η)

∥s∥
∥B2WBT

2 s∥2 − (ρ+ η)sT(B2WBT
2 )(MB1B

N
2 B

+
2 )(B2WBT

2 )
s

∥s∥
−sT(B2WBT

2 )(I −MB1B
N
2 WBT

2 −B2WBT
2 )νl(t)

≤ −(ρ+ η)

∥s∥
∥B2WBT

2 s∥2 +
(ρ+ η)

∥s∥
∥B2WBT

2 s∥2∥(MB1B
N
2 B

+
2 )∥

+∥B2WBT
2 s∥∥(I −MB1B

N
2 WBT

2 −B2WBT
2 )∥∥νl(t)∥

≤ ∥B2WBT
2 s∥

(
− (ρ+ η)

∥s∥
∥B2WBT

2 s∥(1− γ1γ0) + (2 + γ1)∥νl(t)∥
)

(46)

since ∥MB1B
N
2 B

+
2 ∥ ≤ ∥MB1B

N
2 ∥∥B+

2 ∥ ≤ γ0γ1, and

∥I −MB1B
N
2 WBT

2 −B2WBT
2 ∥ ≤ 1 + ∥MB1B

N
2 WBT

2 ∥+ ∥B2WBT
2 ∥ ≤ 2 + γ1

Using the Rayleigh principle, −∥B2WBT
2 s∥2 ≤ −λ(B2WBT

2 )
2∥s∥2 ≤ −w2∥s∥2, and using the fact that λ̄(B2WBT

2 ) =
1, inequality (46) implies

sT(B2WBT
2 )ṡ ≤ −w2∥s∥(ρ+ η)(1− γ1γ0) + ∥s∥(2 + γ1)∥νl(t)∥

= w2∥s∥(1− γ1γ0)
(
− (ρ+ η) + ζ∥νl(t)∥

)
(47)

where ζ is defined in (43). Using (24) and (26), the inequality above can be written as

sT(B2WBT
2 )ṡ ≤ −w2∥s∥(1− γ1γ0)η − w2∥s∥(1− γ1γ0)(l1∥x(t)∥+ l2)(r(t)− ζ) (48)

Finally, substituting (27) and (48) into (45) yields

V̇ ≤ −w2∥s∥(1− γ1γ0)η − w2∥s∥(1− γ1γ0)(l1∥x(t)∥+ l2)(r(t)− ζ)

+w2(1− γ1γ0)(r(t)− ζ)
(
l1∥x(t)∥+ l2

)
Dϵ(∥s(t)∥)

− b
a
w2(1− γ1γ0)(r(t)− ζ)r(t) (49)
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If ∥s∥ > ϵ then Dϵ(∥s∥) = ∥s∥ and so substituting in (49) and simplifying terms yields

V̇ ≤ −w2∥s∥(1− γ1γ0)η −
b

a
w2(1− γ1γ0)(r(t)− ζ)r(t) (50)

By construction 0 ≤ γ1γ0 < 1 and r(t) ≥ 0. Further manipulation of (50), and using (43) yields

V̇ ≤ −w2∥s∥(1− γ1γ0)η −
b

a
w2(1− γ1γ0)(

1

2
ζ − r)2 +

b

4a

(2 + γ1)
2

w2(1− γ1γ0)
(51)

since expanding the quadratic term on the right-hand side of (51) gives the right-hand side of (50). If ∥s∥ > ϵ, then
w2∥s∥(1− γ1γ0)η ≥ w2(1− γ1γ0)ηϵ. The quantities ϵ, η, a and b are design parameters and so if they are chosen
to satisfy

ϵη ≥ b

4a

(2 + γ1)
2

w4(1− γ1γ0)2
=

b

4a
ζ2 (52)

then from (51)
V̇ ≤ − b

a
w2(1− γ1γ0)(

1

2
ζ − r)2 ≤ 0

If ∥s∥ < ϵ then Dϵ(∥s∥) = 0 and so substituting in (49) and simplifying terms yields

V̇ ≤ −w2∥s∥(1− γ1γ0)η − w2∥s∥(1− γ1γ0)(l1∥x(t)∥+ l2)(r(t)− ζ)− b

a
w2(1− γ1γ0)(r(t)− ζ)r(t) (53)

Notice by construction γ1γ0 < 1 and r(t) ≥ 0 and therefore for ∥s∥ < ϵ and r(t) > ζ, it follows V̇ < 0. Define a
rectangle in IR2 as R = {(∥s∥, r) | ∥s∥ ≤ ϵ, 0 ≤ r ≤ ζ} (54)

Also define R+ ∈ IR2 as R+ = {(∥s∥, r) | r ≥ 0}. By construction of the adaptive gains, r(t) ≥ 0 for all time
and so the trajectory of (∥s(t)∥, r(t)) ∈ R+ for all time, and so outside the set R∩R+ = R, from (51) and (53),
the derivative of the Lyapunov function V̇ < 0. Let Vd denote the truncated ellipsoid

Vd = {(∥s∥, r) | V (∥s∥, r) ≤ d} ∩ R+

where V (·) is defined in (44). Because R in (54) is a compact set, for a given w > 0, there exists a unique d0 > 0
such that d0 = min{d ∈ IR+ | R ⊂ Vd}. As shown in Figure 19, since R ⊂ Vd0

, it follows outside Vd0
the

derivative of the Lyapunov function V̇ < 0 and so Vd0
is an invariant set which is entered in finite time t0. Since

Vd0
is entered in finite time, V (∥s∥, r) ≤ d0 for all t > t0 which implies ∥s∥ ≤

√
2d0/w for t > t0, and hence s

enters and remains in a boundary layer of size
√
2d0/w around the ideal sliding surface S.

 
                                                                                                                                                                                                  
 

            
 

                  
 
        

                                                                                                                     

                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Level set of the Lyapunov functions V


