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Abstract

This paper develops a new test of true versus spurious long memory, based on log-
periodogram estimation of the long memory parameter using skip-sampled data. A correction
factor is derived to overcome the bias in this estimator due to aliasing. The procedure is
designed to be used in the context of a conventional test of signi�cance of the long memory
parameter, and a composite test procedure is described that has the properties of known
asymptotic size and consistency. The test is implemented using the bootstrap, with the dis-
tribution under the null hypothesis being approximated using a dependent-sample bootstrap
technique to approximate short-run dependence following fractional di¤erencing. The prop-
erties of the test are investigated in a set of Monte Carlo experiments. The procedure is
illustrated by applications to exchange rate volatility and dividend growth series.

1 Introduction

Estimation of the long memory parameter d by the method due to Geweke and Porter-Hudak
(1983), or one of its variants, is a popular methodology in time series analysis. This estimator
(henceforth, GPH) exploits fact that the autocovariances of a long memory process are nonsum-
mable, and the spectral density f accordingly diverges at the origin at a particular rate, with
f(�) = O(j�j�2d) as � ! 0. GPH estimates d by regressing the logarithms of the periodogram
points in the neighbourhood of zero onto a suitable trend. However, except in very large samples
this method has well-known limitations. As documented by Agiakloglou et al. (1993), the neglect
of components of f representing short-run autocorrelation imply omitted terms in the regression,
resulting in potentially substantial bias. In particular, the method is problematic as a basis for
testing the null hypothesis of short memory, the case d = 0, since the conventional Wald statistic
can be severely over-sized.

A simple illustration of this di¢ culty is provided by the observational equivalence between
the fractionally integrated process (1 � L)dxt = ut with d = 1 and the autoregressive process
(1� �L)xt = ut with � = 1. The ARFI model

(1� �L)(1� L)dxt = ut

can exhibit a characteristically bimodal likelihood function when either of the parameters � and
d is close to unity in the process generating the sample. For every �nite sample size, there exists
a � close enough to unity to bias the GPH estimator of d signi�cantly, when its true value is zero.

�We thank David Peel for helpful discussions on this problem, and an anonymous referee for perceptive comments
which have materially improved the paper.
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It is desirable to have a means of distinguishing the cases of true d and spurious d, and goodness
of �t criteria are an unreliable guide.

The approach explored in this paper is to devise a test with null and alternative interchanged.
Recent research has highlighted the well-known property of self-similarity of hyperbolic decay
processes under transformations such as periodic aggregation and periodic sub-sampling, other-
wise known as skip-sampling. Chambers (1998) was the �rst to point out that if a long memory
process is recorded at di¤erent rates, the rate of decay of the autocovariances is invariant to the
rate of observation.

There are two ways to conceive of lowering the observation rate. Temporal aggregation means
taking the sums of N successive observations to create the new sequence. This is the natural
transformation for �ow data, such that (for example) quarterly �ows are each the sum of three
successive monthly �ows. Ohanissian et al. (2008) implement a test of long memory based on
comparing log-periodogram estimates under di¤erent rates of temporal aggregation.

Skip-sampling, by contrast, means taking every Nth observation and discarding the remain-
der. This is the natural way of lowering the observation rate for stock or price data, although for
the present purpose the nature of the observations is irrelevant, since the required properties of
the skip-sampled series hold in all cases. Consider this transformation in the context of hyper-
bolic memory decay. Let the parameter � index the rate of decay such that the autocovariance
sequence f
j ; j = 1; 2; : : :g of a stationary process satis�es


j = O(j
��) (1.1)

for some � > 0. The hyperbolic memory class includes short memory processes having summable
autocovariances, such that � > 1, and long memory processes where � = 1 � 2d for 0 < d < 1

2 ,
and hence 0 < � < 1. It is immediately evident that, for any �xed, �nite N ,


Nj = O(j
��):

It follows that for the long memory class, the property of the spectral density near the origin
should likewise be invariant to the sampling frequency.

This is in contrast to the case of exponential memory decay where 
j = o(j
��) for every �nite

�, but there exists � > 0 such that

j = O(e

��j): (1.2)

In this case, note that

jN = O(e

��Nj)

so that the memory decay parameter rises from � to �N following skip-sampling. Since the
estimator of (spurious) d in the exponential decay case is inevitably sensitive to the value of �,
this suggests that comparing estimates under di¤erent rates of sampling might yield a useful test
of the null hypothesis of long memory.

A range of nonlinear models, such as threshold autoregressive and Markov-switching processes,
are often thought of as likely to be to be mistaken for long memory, since they can exhibit local
patterns of apparent persistence, switches of local mean, for example or, in the case of ESTAR
threshold models, unit root-like behaviour in the neighbourhood of the origin. As for the linear
autoregressive model, the essential di¤erence between these models and the long-memory case
is that the serial dependence decays exponentially as the lag increases beyond a certain point,
whereas long memory implies hyperbolic decay. Whether linear or nonlinear, stable di¤erence
equations of �nite order necessarily exhibit exponential decay (see Gallant and White 1988,
Davidson 1994) whereas unstable di¤erence equations are nonstationary, featuring unit roots or
explosive behaviour.

2



The class of cases of (1.1) with � > 1 count as instances of the alternative hypothesis for
present purposes, because the autocovariances are summable. Models with this characteristic
have not been signi�cantly exploited in econometrics to date except in two rather special contexts,
over-di¤erenced fractional models (where d < 0 and there is the additional "anti-persistence"
property of the autocovariances summing to zero) and stochastic volatility modelling. The FI-
GARCH (Baillie et al. 1996) and HYGARCH (Davidson 2004) models are cases of the ARCH(1)
model where the lag weights in the conditional variance equation decline hyperbolically but are
nonetheless summable. The co-moments of fourth order (when they exist) are likewise summable
in these latter models. In the present case, by contrast, our null hypothesis is that of true long
memory with d > 0.

This paper considers tests of the long memory hypothesis based on a comparison of the
log-periodogram estimator of the d parameter in skip-sampled data with that from the original
data. The test statistic is asymptotically standard Gaussian under the null hypothesis, given
the usual assumptions of this literature (notably Gaussianity of the observations, see Robinson
1995, Hurvich et al., 1998). Convergence to the limit may be slow, and the formulation adopted
depends on ancillary assumptions. The test is therefore implemented, for evaluation purposes,
both as an asymptotic test and as a bootstrap test. We further recognise that the test is not
consistent, for the rejection probabilities must be ultimately decreasing in sample size under the
alternative hypothesis. However, we propose that the procedure be utilized as a component of
a composite test, in combination with the Wald signi�cance test on the fractional integration
parameter in which the roles of null and alternative are reversed. The composite test can be
formalized by the construction of a pseudo-p-value, and we show that this de�nes a test of the
null of long memory that is both consistent and asymptotically correctly sized.

The paper is organized as follows. Section 2 reviews the important issue of aliasing in skip-
sampled data, and its consequences for the form of the periodogram. Section 3 derives a bias-
corrected form of the GPH estimator appropriate to skip-samples. Next, Section 4 describes the
test procedure and derives the null asymptotic distribution of the statistic. Section 5 describes the
implementation of the bootstrap version of the test. Section 6 describes the composite test, and
Section 7 comments on the nonstationary case of the null hypothesis. Monte Carlo �ndings are
reported in Section 8, Section 9 describes two contrasting applications, and Section 10 contains
concluding comments. Some proofs are gathered in the appendix.

2 Aliasing

The distribution of the GPH estimator in skip-sampled data has been studied inter alia by Smith
and Souza (2002, 2004) and Souza (2005). Skip-sampling induces a bias in the estimator due to
the e¤ect of aliasing on the form of the spectral density. For a comprehensive analysis of the
aliasing phenomenon, see Hassler (2011). The essential result is that the spectral density of the
skip-sampled data can be represented as an average of the spectral densities over the range of
aliased frequencies.

Proposition 2.1 If fyt; t = 1; 2; : : :g is a discrete stationary stochastic process with spectral
density f and xt = ytN for t = 1; 2; 3; : : : and N > 1, the spectral density of the process xt is

fN (�) =
1

N

N�1X
j=0

f

�
�+ 2�j

N

�
; 0 � � � �:

The straightforward proof is given in the appendix. Note that cycles of frequency �=N in the
original data become cycles of frequency � in the skip-sampled data, and frequencies above �=N
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are no longer identi�able. Hence, these contributions to the variance of the series are e¤ectively
aggregated with the identi�able frequencies.

In the fractionally integrated case where

f(�) = j1� ei�j�2dg(�) = [2 sin(�=2)]�2d g(�) (2.1)

with 0 < g(0) < 1, we �nd that fN (�) cannot be directly log-linearized in the GPH manner.
What can be done, following the suggestion of Smith and Souza (2002), is to write

fN (�) =
1

N

N�1X
k=0

�
2 sin

�
�+ 2�k

2N

���2d
g

�
�+ 2�k

N

�
(2.2)

=

�
2 sin

�

2N

��2d
g

�
�

N

�
HN (�)

where

HN (�) =
1

N

N�1X
k=0

�
sin (�k=N)

tan(�=2N)
+ cos(�k=N)

��2d g ((�+ 2�k)=N)
g(�=N)

: (2.3)

There is, evidently, an omitted term logHN in the log-periodogram regression in skip-sampled
data, depending on d as well as �: The omission of this term will be liable to produce a bias in
the GPH regression, and its omission is not rendered negligible by taking frequencies close to the
origin. Indeed, what is commonly observed is that estimates of d > 0 obtained from skip-sampled
data are substantially closer to zero than those from the original data.

Remark
Note the implication for the standard analysis of a model such as (2.1), which is revealed to be

speci�cally linked to the frequency of observation. Without this assumption, there is no reason
to suppose that the function g does not also depend on d, nor that it is constant near the origin.
In this light, the standard long memory analysis appears a little more fragile than is commonly
taken for granted. Nonetheless, in this paper we shall work with the standard assumptions for
the purposes of developing a test.

3 The Bias-corrected Estimator

The test we propose is based on the comparison of two narrow-band regression estimators of the
memory parameter d, one based on the full sample, the other based on skip-sampling of the test
series. As before, let N denote the periodicity of the skips. Skip-sampling is done by taking every
Nth observation, so yielding a sample of size [T=N ] where [z] denotes the largest integer below
z. This can be done N times, by o¤-setting the initial observation, so that the N skip-samples
can be represented as fx0tg,fx1tg; : : : ; fxN�1;tg where, for k = 0; : : : ; N � 1,

xk1 = yk+1

xk2 = yN+k+1

xk3 = y2N+k+1

� � �
xkT = y([T=N ]�1)N+k+1:

Each of these samples can be used to compute a modi�ed log-periodogram estimator, which we
denote d̂Nk for k = 0; : : : ; N � 1.
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As shown in Section 2, the conventional GPH estimator applied to skip-sampled data is biased.
To be more speci�c, it exhibits a bias di¤erent in character from the well-known case of data with
short run dependence in the fractional di¤erences, being present even if the original series is a
pure fractional without short-run components. Moreover, the bias is not attenuated by choosing
a narrow bandwidth. The logarithm of HN in (2.3) is a missing term in the log-periodogram
regression, and bias correction involves �nding a computable surrogate for this function.

Expression (2.3) as a function of � depends in the �rst place on the unknown d, and the
natural approximation is to replace this with the asymptotically unbiased estimator d̂. It also
depends on the unknown spectral density component g evaluated at di¤erent points, and except
in the case of the pure fractional model, the term g (�+ 2�k)=N) =g(�=N) in (2.3) varies with � in
general over the whole of the interval [0; 2�], including points close to the origin. Approximating
it by a constant, in the manner of dealing with g(�) in the narrow-band estimator, is therefore
not an attractive option.

Possible methods for estimating this term include constructing a kernel estimator of g from
the spectrum of the fractional di¤erences. However, in this implementation we have adopted
a semiparametric approach. Let the null hypothesis specify that the random sequence has a
representation of the ARFI form

�(L)(1� L)dxt = ut (3.1)

where �(L) is an invertible lag polynomial, of possibly in�nite order, and ut � NI(0; �2) where �NI�
denotes independent Gaussian. To approximate �(L) we use the the Durbin-Levinson algorithm
to �t an autoregression of order pT = 0:6T 1=3 to the fractional di¤erences (1� L)d̂xt, where d̂ is
the estimator of d based on the full sample. This yields an estimated lag polynomial �̂(L), and
we then approximate g(�) by

ĝ(�) = j�̂(e�i�)j�2: (3.2)

It su¢ ces for our application that ĝ(�) converges in probability to g(�) pointwise in a neighbour-
hood of zero, and since ĝ is a smooth di¤erentiable function of the data this property should in
fact hold in a wider class of processes than (3.1). Absolute summability of the autocovariances of
the fractional di¤erences should hold in processes for which log-periodogram regression has good
properties. Since the estimators in question depend only on second moments, they will yield
the same consistency properties if ut in (3.1) is merely white noise. With caveats concerning
invertibility, the Wold theorem therefore extends validity to the general covariance stationary
case. The issues arising here are carefully analysed, in the bootstrap context, by Kreiss et al.
(2011). They show that Gaussianity of the series is certainly su¢ cient and this is, in any case, an
assumption adopted for our subsequent asymptotic analysis and imposed in our experiments. Of
course, these considerations strictly relate to the case where d is known, and the largest source
of error in �nite samples will be due to the replacement of d by d̂.

Letting �j = 2�j=T as usual, the skip-sampled series consists of [T=N ] observations, and
the frequencies at which the periodogram is evaluated are �Nj = 2�Nj=T for j = 1; : : : ;MN

where MN = [(T=N)
q], for 0 < q < 1, represents the usual GPH bandwidth function of sample

size. In practice q should be chosen according the the established prescriptions of the literature
and, following Hurvich Deo and Brodsky (1998) (henceforth HDB), setting q < 4=5 ensures
limiting Gaussianity of the estimator, with bias of O(T 2(q�1)): Let INk denote the periodogram
computed from the kth skip-sampled data set with period N , and let ĤN (�) denote the formula
in (2.3) approximated as described, using the estimated parameters and the representation of
the short-run spectral density in (3.2). The kth bias-corrected skip-sample estimator then takes
the form

d̂Nk =

PMN
j=1(XNj � �XN )[log INk(�Nj)� log ĤN (�Nj)]PMN

j=1(XNj � �XN )2
(3.3)
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where XNj = �2 log (2 sin�Nj=2). Provided N is treated as �xed and not linked to sample size
note that MN = O(M) where M = [T q], and this is the assumption we maintain henceforth.

While the formula in (3.3) employs an estimator of the function g as a component of the
aliasing correction, note that this estimator has not been included in the log-periodiogram re-
gression itself, and this remains a narrow-band estimator. Be careful to note that ĝ depends on
the narrow-band estimator of d based on the full sample, which is used to fractionally di¤erence
the data, and hence it does not provide a direct route to a broad-band estimation procedure of
the type proposed by Moulines and Soulier (1999), for example.

4 The Skip-sampling Test

Letting the conventional GPH estimator based on the complete sample be denoted d̂, the test
statistic we consider is

�̂ =
d̂� d̂N

s:e:(d̂� d̂N )
(4.1)

where d̂N = N�1PN�1
k=0 d̂Nk. We use the signed statistic and perform a one-tailed test, on the

assumption that the leading cases of the alternative will give rise to a smaller value of d in the
skip-sampled data. Also note that, in view of the form of the estimator, using the average of
the d̂Nk estimates from the N skip samples is equivalent to adopting the average of the log-
periodogram points across the N o¤set samples as regressand. This scheme makes the most
e¢ cient use of the available data.

When the sample is large enough, both the conventional GPH estimator d̂ and the skip-
sampled estimator d̂N de�ned in (3.3) can be analysed using the techniques developed in HDB.
These authors obtain their results from the following assumptions, which here relate to our null
hypothesis under test.

Assumption 1 The process fyt; t = 1; 2; : : :g is stationary and Gaussian with the spectral density
given in (2.1) with 0 < d < 1

2 .

Assumption 2 M !1 as T !1 with M=T ! 0 and (M logM)=T ! 0:

Assumption 3 g0(0) = 0, and g00(�), g000(�) are bounded for all � in a neighbourhood of zero.

Letting "Nkj = log(INk(�Nj)=f(�Nj)) there exists a function f� such that (analogous to the
expression in HDB page 42)

d̂Nk � d =
1

SN

MNX
j=1

aNj log f
�
Nj +

1

SN

MNX
j=1

aNj"Nkj

where aNj = XNj � �XN and SN =
PMN
j=1 a

2
Nj = O(M). Under our assumptions. the �rst right-

hand side term is o(1). In the case N = 1, such that there is no skip sampling and d̂Nk = d̂,
f�1j = f

�
j = g (�j) and "10j = "j . In the cases with N > 1, on the other hand,

log f�Nj = log g

�
�Nj
N

�
� log

 
Ĥ(�Nj)

H(�Nj)

!
:

Since H is twice-di¤erentiable with respect to d and d̂ is M1=2-consistent under our assump-
tions, we can expand log Ĥ(�Nj) as

log Ĥ(�Nj) = logH(�Nj) +
H(�Nj)

0

H(�Nj)
(d̂� d) +Op(M�1):
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Then, using Lemma 1 of HDB, and letting

BT (N; d) =
1

SN

MNX
j=1

aNj
H(�Nj)

0

H(�Nj)

we have

d̂Nk � d = �BT (N; d)(d̂� d) +
1

SN

MNX
j=1

aNj"Nkj + op(M
�1=2):

Note that the relevant properties of the random variables "Nkj extend from the full-sample
to the skip-sampled case, speci�cally, that their distribution has �nite second moments that
asymptotically do not depend on nuisance parameters �see Lemmas 2 and 6-8 of HDB. Since
the regressors are the same for each k, we further �nd

d̂N � d = �BT (N; d)(d̂� d) +
1

NSN

MNX
j=1

aNj

N�1X
k=0

"Nkj + op(M
�1=2): (4.2)

and hence

d̂� d̂N = [1 +BT (N; d)](d̂� d)�
1

NSN

MNX
j=1

aNj

N�1X
k=0

"Nkj + op(M
�1=2)

=
1 +BT (N; d)

S

MX
j=1

aj"j �
1

NSN

MNX
j=1

aNj

N�1X
k=0

"Nkj + op(M
�1=2) (4.3)

where aj = Xj � �X and S =
PM
j=1 a

2
j : In the appendix, we show the following.

Proposition 4.1 For �xed �nite N , and d such that (1 � L)dxt is a weakly dependent process,
BT (N; d) converges in probability to a �nite nonstochastic limit B(N; d):

The next thing to note using further results from HDB is that, with q < 4=5,

1p
S

MX
j=1

aj"j
D! N(0; �2=6).

Also note that S�1=2N

PMN
j=1 aNj"Nkj has the same limit in distribution for each k, where SN =PMN

j=1 a
2
Nj , and so similarly,

1p
NSN

MNX
j=1

aNj

N�1X
k=0

"Nkj
D! N(0; �2=6).

It follows that under these conditions,

M1=2(d̂� d̂N )
D! N(0; V ) (4.4)

where .

V =

�
(1 +B(N; d))2

�S
+

N q

N �SN

�
�2

6
� 2N

q=2(1 +B(N; d))p
�S
p
N �SN

C(q;N) + op(1)
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N 4 6 8 10 12
q 0.5 0.350 0.245 0.183 0.156 0.129

0.55 0.336 0.234 0.178 0.143 0.124
0.6 0.328 0.226 0.173 0.142 0.118
0.65 0.322 0.220 0.167 0.139 0.120
0.7 0.311 0.213 0.165 0.092 0.103
0.75 0.302 0.278 0.118 0.121 0.131

Table 1: Numerical estimates of C(n; q)

where �S = limT!1 S=M , �SN = limT!1 SN=MN , and

C(q;N) = lim
T!1

PM
j=1 aj

PMN
j0=1 aNj0

PN�1
k=0 E("j"Nkj0)p

�S
p
N �SN

:

To derive a formula for C(q;N) analytically would entail quite a challenging calculation, and we
have circumvented the need for this by a numerical evaluation. Note that "j is the logarithm of the
periodogram point of an independent Gaussian series (having d = 0 and g constant) whereas the
"Nkj0 are the log-periodograms of the corresponding skip-sampled series. Therefore, C(q;N) can
be approximated as closely as desired, for given q and N , by a simulation based on a su¢ ciently
large sample. The accuracy of the approximation can be monitored by computing the sample
variances of the components at the same time, and checking how close these lie to their known
asymptotic counterpart of �2=6. We have performed the simulation with 200,000 replications in
a sample size of 2000, with the results shown in Table 1. Denoting by V̂ the variance formula
computed using these approximations, replacing d by its full-sample GPH estimator, the test
statistic is calculated as

�̂ =
d̂� d̂N
(V̂ =M)1=2

: (4.5)

This statistic is used as the basis for a one-tailed test with rejections in the upper tail.

5 The Bootstrap Test

A di¢ culty with the semiparametric approach to estimation is the slow convergence to the as-
ymptote, at the rate M1=2 rather than T 1=2. The mean and variance approximations derived
in the previous section are accordingly slow to improve, especially with the reduction in e¤ective
sample size following skip-sampling. This suggests that the bootstrap may have a useful role to
play in implementing the test, while not overlooking that the parametric bootstrap is likewise
dependent on slowly converging estimated parameters. Nonetheless, a comparison of the two
procedures, asymptotic and bootstrap, may serve to triangulate the uncertainty.

The bootstrap distribution of the statistic has to be estimated by simulating the null hypoth-
esis as a fractionally integrated process, while allowing for the possibility of short-run dependence
of the fractional di¤erences Given an estimator d̂ of the fractional parameter and test statistic
�̂ computed from the sample, the calculation is performed as follows.

1. Compute the fractional di¤erences ût = (1�L)d̂+(yt� y1) where (1�L)d̂+ =
Pt
j=0 âjL

j and

a0 = 1, aj = aj�1(j � d̂� 1)=j for j � 1.

2. Repeat the following steps for j = 1; :::; B:
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a) Draw a random sample û�ij ; : : : ; û
�
Tj from the distribution of û1; : : : ; ûT using a method

that preserves the dependence structure; see Remark 1 below.

b) Construct the sequence

ŷ�tj = (1� L)�d̂+ û�tj + ẑtj ; t = 1; : : : ; T

where (1� L)�d̂+ =
Pt
s=0 bjL

j where b0 = 1, bj = bj�1(j + d̂� 1)=j for j � 1, and ẑtj
is explained in Remark 2 below.

c) Compute the bootstrap test statistic �̂�j as in (4.5) for the sample ŷ
�
ij ; : : : ; ŷ

�
Tj .

3. Compute the estimated p-value for the test as 0 if �̂ > �̂�(B) or else as

1�
min

n
j : �̂ � �̂�(j)

o
B

;

where �̂�(j) is the jth order statistic for the bootstrap statistics �̂
�
1; : : : ; �̂

�
B.

Remarks

1. Methods for constructing the drawings û�ij ; : : : ; û
�
Tj include the stationary bootstrap of

Politis and Romano (1994) and the sieve autoregression method of Bühlmann (1997). Note
that the latter calculation is also used to obtain expression (3.2), and the same remarks
apply regarding the validity of the sieve AR method in this context; see Kreiss et al. (2011).

2. The correction terms ẑtj are constructed using Gaussian drawings and weights computed
from the estimated parameters to have a covariance structure matching the components
omitted through truncating the innovation sequence at 0. These replace the sample initial
condition which has been truncated in step 1. The resulting sequence is approximately
stationary for jd̂j < 1

2 . If d̂ �
1
2 the data are modelled in di¤erences, replacing d̂ by d̂� 1,

and the simulation is then integrated using the �rst observation for the initial condition.
Nonstationary processes generated by this procedure converge after normalization to Type
I Brownian motion. For details of the simulation procedure, see Davidson and Hashimzade
(2009).

3. In practice, di¤erent estimators of d, employing di¤erent bandwidths in particular, might
be used to compute the statistic and to implement the bootstrap resampling as in Step 1.
Using a wider bandwidth in the former case could increase power by emphasizing bias under
the alternative, while a di¤erent balance between bias and variance might be advantageous
in achieving the best bootstrap distribution. Such choices can be guided by simulation
experiments.

6 The composite test

Testing the degree of persistence of a time series is a problem that has attracted a degree of
controversy, as documented by one of the present authors (Davidson 2009). This is one of a class
of problems have been characterized by Dufour (1997) as �ill-posed�, and has close links with
the testing frameworks critically analysed by Pötscher (2002) and Faust (1996, 1999), inter alia.
Tests of the null hypothesis that the series has summable autocovariances �the �I(0) hypothesis�
� face a common di¢ culty for valid inference. This di¢ culty manifests itself in di¤erent ways

9



in di¤erent contexts, but the essential common feature is that the null hypothesis constitutes an
open set in the parameter space. It follows that test power cannot exceed test size, where the
latter is de�ned as the supremum of the rejection probabilities over the null set of the model
space. While this problem extends to more general parameterizations it is most transparent in
the case where the �I(0)�property relates to the modulus of the maximal autoregressive root.1

The null hypothesis is represented by the interval [0; 1) with its closure containing the leading
case of the alternative.

Although the null and alternative are interchanged, the present case is clearly similar. The
null hypothesis relating to the value of d is the open interval (0;1), with its closure containing the
cases of the alternative with d = 0: This is another situation where, under a literal interpretation,
power cannot exceed size. The test is based on a comparison of two estimators of d, where under
the alternative, one (the full-sample estimator) is expected to exhibit more bias than the other
(the skip-sampled estimator) as estimators of zero. Since the estimators being compared are both
consistent, albeit biased in �nite samples, the test is evidently inconsistent. The probability of
exceeding the rejection criteria under the alternative evidently cannot be monotone nondecreasing
in sample size.

While the test might therefore appear of doubtful value in applications, this conclusion over-
looks the context in which such a test might be applied. The question actually being posed,
in most cases, is whether a �signi�cantly positive�estimator of d should be treated as a biased
estimator of zero. If the signi�cance test does not result in rejection, then we might on these
grounds decide to reject the null hypothesis of long memory and either forego the skip-sampling
test or, at least, to overlook a non-rejection in the latter test.

To formalize this idea, consider a composite test in which the skip-sampling test is performed
in partnership with a one-tailed Wald test of the hypothesis d � 0 with alternative d > 0. With
contamination by short-run positive autocorrelation, we anticipate possible over-rejection in this
latter test. Non-rejection in the Wald test implies e¤ective rejection of the null hypothesis of
long memory, and there is, arguably, no need to proceed to the skip-sampling test. Here�s how
we can compute a composite test which delivers a p-value taking account of the outcome of the
initial Wald test. Suppose that the Wald test delivers a p-value �1T in a sample of size T , and
the skip-sampling test a p-value �2T . Consider the pseudo-p value calculated as

�̂2T = �2T (1� �1T )T
�

(6.1)

for some � > 0:

Proposition 6.1 The test "reject H0 when �̂2T < �" is consistent and asymptotically of size �:

To prove the proposition, �rst consider the behaviour of the statistic �̂2T in the case d > 0
(the null hypothesis). Let the Wald statistic be denoted tT . The corresponding p-value �1T is
the area under the upper tail of the null distribution (standard normal) bounded by tT . Since
the Wald test is consistent with tT = Op(T q=2), we have

�1T =
1p
2�

Z 1

tT

e�x
2=2dx

= e�t
2
T =2

1p
2�

Z 1

0
e�x

2=2�tT xdx

= Op(e
�T q=2):

1We assume the model is parameterized so that stable autoregressive roots lie inside the unit circle.
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Hence, consider �̂2T =�2T = (1� �1T )T
�
, and note that for every � <1,

log(�̂2T =�2T ) = T
� log(1� �1T )

= �T �(�1T +O(�21T ))
= op(1):

It follows that �̂2T =�2T ! 1 in probability. Since the null hypothesis is true, �̂ converges to
N(0; 1) in distribution according to (4.4). Therefore, �2T is asymptotically uniformly distributed
on the unit interval. By the indicated convergence in probability the composite test shares this
property, and so rejects asymptotically with probability � in an �-level test.

Next, suppose that the null is false, with d � 0. Recalling that the Wald test is one-sided,
�1T is asymptotically uniformly distributed on the unit interval in this case and so, in particular,
P (�1T > 0)! 1. When � > 0, it follows that for any " > 0,

P (�̂2T > ") = P (�2T (1� �1T )T
�
> ")! 0

as T !1, and the proposition is proved.
The convergence of �̂2T to the uniform distribution under the null must be somewhat slower

than that of �2T , depending on the choice of �. The smaller that � is chosen, the nearer �̂2T =�2T
is to unity in any given sample size and the smaller is the size distortion ceteris paribus, while not
overlooking the fact that the test based on �2T may itself exhibit size distortion in one direction
or another, so that the net distortion in a given sample size is unpredictable. On the other hand,
the larger � is chosen, the more rapidly �̂2T approaches 0 under the alternative. Hence, the choice
of � represents a trade-o¤ of power against size.

Take care to note that the consistency of the composite test holds whether or not �2T ! 0
under the alternative. To appreciate the contribution of the skip-sampling test, it may be helpful
to envisage the "test" based on simply drawing a uniform random number from [0; 1] at the second
stage, instead of computing the quantile of the skip-sampling statistic. Proposition 6.1 holds also
for this test! What we have done here is to give an alternative way of formalizing the properties
of the Wald test. The tendency of this test to over-reject the conventional null hypothesis d � 0,
due to bias, is converted into a case of low �nite-sample power to reject the hypothesis d > 0.
However, the expectation is that the power of the composite test in �nite samples is greater, to
the extent that �2T is distributed closer to zero than a uniform variate under the alternative.
The simulation experiments reported in Section 8 show that such improvements, judged by the
performance of the basic skip-sampling test, can be large.

We emphasize once again that the composite test does not need to be taken literally as an
operational procedure. We can think of it as a formalization of the procedure of taking two test
results into account in making a decision. If we cannot reject the hypothesis d � 0 on the Wald
test, we are unlikely to proceed to the second stage. If we do �nd d "signicantly positive" on
conventional criteria, then we want to know how far this outcome might be attributable to bias,
and the the skip-sampling test can in this case provide countervailing evidence.

7 The nonstationary case

As the observational equivalence issue raised in the introduction would lead us to predict, autore-
gressively generated series with a root in the stable region but close to unity characteristically
yield an estimated d in the non-stationary range 1

2 � d � 1. However it is known (from, e.g.
Velasco 1999, Kim and Phillips 2006) that log-periodogram regression in this range is consis-
tent, and also asymptotically normal, under regularity conditions, for d < 3

4 . Our test should
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exhibit similar characteristics in stationary and nonstationary cases of the null hypothesis, and
this conjecture is borne out by the simulation experiments reported in Section 8.

In a well-known paper, Diebold and Inoue (2001) point out that in certain models exhibiting
structural change, in which the frequency of change has a particular relation with sample size,
there is the appearance of hyperbolic memory decay. In some of their examples, the processes
in question are �revealed�as really I(1) (stationary in di¤erences) as T is extended with �xed
parameters. To understand how the skip-sample test might behave in these cases, we must
not overlook the fact that a unit root process, like a serially independent process, is technically
a case of the null hypothesis. Both cases exhibit the invariance of memory to skip-sampling
characteristic of fractional integration. Thus, a skip-sampled unit root remains a unit root. For
this reason we should not expect the present test to have greatest power against local-to unity
autoregressive alternatives. The natural approach, faced with a time series that does not exhibit
mean reversion, might be to test for hyperbolic memory in the di¤erences. Diebold and Inoue
also propose examples in which processes appearing to show hyperbolic decay in a given sample
size are �revealed�as I(0) as T increases, and here our test should perform better. In particular,
they consider a simple independent process subject to Markov-switching, which is one of the cases
to be studied in the next section.

8 Monte Carlo experiments.

We present some experiments using three sample sizes, T = 250, 1000 and 5000, with 5000
replications in each case. Following preliminary investigations a bandwidth for the GPH estimator
ofM = [T 0:7] was chosen to compute the tests, with a skip-sampling period of N = 8. A relatively
wide bandwidth, emphasizing bias, is intended to optimize the performance of the test under the
alternative. The skip-sampling periods N = 4 and N = 12 have also been tried, although the
properties of the test do not appear very sensitive to this setting. These settings emerged as the
best compromise in performance in null and alternative cases. The experiments returned both
asymptotic and bootstrap p-values, using 300 bootstrap replications. The fractional di¤erencing
of the series prior to resampling has to be performed with an estimated d, as described in Section
5, and for this purpose a narrower bandwidth M = [T 0:55] was used, to attenuate the bias. The
simple bootstrap with independent resampling was used in the simulations of the pure fractional
null hypothesis.

Table 2 shows the results obtained in nominal 5% tests for three cases of the null hypothesis.
Under H0, the data are generated as

yt = (1� L)�d+ "t + zt(d) "t � NI(0; 1)

where zt(d) is an independent Gaussian term generated by the method of Davidson and Hashimzade
(2009), such that the sequence fytgTt=1 is stationary (see also Remark 2 of Section 5). The chosen
values of d are shown in the column headings. The table entries show the proportion of repli-
cations in which the asymptotic and bootstrap p-values, respectively, fell below 0.05. The rows
of the table show the performance in the three sample sizes of the basic skip-sampling test, and
three cases of the composite test based on (6.1), with the values of � shown in the �rst column
of the table. The bootstrap p-values were computed using the algorithm from Section 5 using
simple independent sampling to draw the fractional di¤erences.

Under-sizing of the asymptotic test occurs in all sample sizes, and also in the bootstrap test
in the larger samples, suggesting that the convergence is non-monotone.2 If it is found surprising

2That this size distortion is wholly due to the replacement of true d by the estimated d was veri�ed by conducting
experiments using the former. In this case, the tests appear exact apart from experimental error.
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d = 0:2 d = 0:4 d = 0:6
� T Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap
Basic Test

250 0.009 0.080 0.003 0.091 0.013 0.064
1000 0.008 0.086 0.010 0.058 0.023 0.040
5000 0.001 0.108 0.020 0.040 0.027 0.026

Composite Test
0:1 250 0.073 0.193 0.022 0.109 0.019 0.067

1000 0.005 0.116 0.013 0.069 0.025 0.042
5000 0.007 0.115 0.015 0.037 0.029 0.032

0:3 250 0.247 0.321 0.057 0.140 0.029 0.080
1000 0.152 0.245 0.019 0.069 0.025 0.040
5000 0.040 0.140 0.016 0.031 0.028 0.029

0:6 250 0.594 0.623 0.219 0.271 0.055 0.090
1000 0.472 0.504 0.061 0.097 0.029 0.047
5000 0.219 0.266 0.018 0.036 0.027 0.037

Table 2: Rejection rates in cases of the pure null (0.05 tests).

that these errors in rejection probability do not diminish more quickly, it is as well to remember
that the components of the statistic depend upon as few as [T=8]0:55 periodogram points, a mere
34 even in the case of T = 5000. The convergence to the asymptote is inevitably slow.

The issue of size distortion would clearly bene�t from further study, and alternative estima-
tors and bandwidths could certainly be considered. However, we note that under-rejection is
a relatively benign problem provided the rejection rates under null and alternative di¤er suf-
�ciently. Moreover, because the composite test yields a pseudo p-value that is always smaller
than the bootstrap p-value, under-rejection is a desirable feature in the sense that the composite
test is less prone to over-rejection under the null. Considering the alternative cases of � in the
composite test, the trade-o¤ between power and size is evident here. The rate of over-rejection
by the pseudo p-value under the null can be unacceptably large, but even with � = 0:6 this is a
problem chie�y in small samples, or when d is close to zero. The latter results are not surprising,
because when d is small, �1T in (6.1) is on average closer to 1 then otherwise, and hence �̂2T =�2T
smaller and over-rejection more acute. It is interesting that this e¤ect persists in the largest
sample considered but, again, it is important to remember that the slow rate of convergence: It
is, if anything, more surprising to see how well the test can perform in modest sample sizes.

Next, in Tables 3 and 4 some cases of the alternative are shown. The performance of the
simple and composite tests with the data generated as �rst-order autoregressions is reported in
Table 3. This is the exponential decay model

yt = �yt�1 + "t; "t � NI(0; 1)

with y0 = 0, for three di¤erent values of �. Note that these are rejection rates, not power estimates,
since the test sizes are uncorrected. With our compound null hypothesis, no consistent scheme for
correcting rejection rates can be de�ned. This table therefore needs to be read in conjunction with
Table 2. It�s interesting to note that the rejection rate increases as � is increased. This re�ects the
fact that the test has most power when autocorrelation is substantial but not hyperbolic. When
the amount of autocorrelation is small, it is correspondingly di¢ cult for the test to discriminate
between exponential and hyperbolic decay, and this fact is re�ected in the lower rejection rates
observed.
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� = 0:5 � = 0:7 � = 0:9
� T Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap
Basic Test

250 0.010 0.336 0.133 0.513 0.280 0.393
1000 0.010 0.382 0.306 0.713 0.914 0.885
5000 0.005 0.375 0.369 0.742 1.00 1.00

Composite Test
0.1 250 0.244 0.498 0.296 0.584 0.284 0.398

1000 0.357 0.557 0.551 0.762 0.917 0.882
5000 0.430 0.568 0.675 0.801 1.00 1.00

0.3 250 0.539 0.641 0.469 0.649 0.289 0.396
1000 0.733 0.762 0.736 0.804 0.905 0.871
5000 0.828 0.815 0.873 0.871 1.00 1.00

0.6 250 0.874 0.886 0.731 0.787 0.332 0.414
1000 0.950 0.947 0.925 0.928 0.924 0.892
5000 0.984 0.979 0.982 0.977 1.00 0.999

Table 3: Rejection rates, cases of the AR alternative (0.05 tests).

Table 4 shows rejection rates, in the basic test only, against a range of nonlinear I(0) processes.
Here, we report the averages over replications of the log-periodogram estimates of d, side by side
with the rejection frequencies by the bootstrap test, where we know in each case that the true d
is zero. The models reported are as follows, where in each case "t � NI(0; 1):

� "Bilinear" is of the form

yt = �1yt�1 + �2yt�1"t�1 + �3yt�1"t�2 + "t

with �1 = 0:8 and �2 = �2 = 0:3.

� "ESTAR" is the exponential self-exciting threshold AR case,

yt = �1yt�1(1� e(�
y
2
t�1)) + �2yt�1 + "t;

where �1 = �1:5, �2 = 1, 
 = 0:01.

� "Markov Mean" is a model with Markov�switching intercepts. This takes the form

yt = �(St) + "t;

where �(1) = 1, �(2) = �1 and St = 1 or 2 with P (St = 1jSt�1 = 2) = P (St = 2jSt�1 =
1) = 0:05.

� "Markov AR " is an autoregressive Markov-switching model,

yt = �(St)yt�1 + "t;

where �(1) = 1:0, �(2) = 0:6 and P (St = 1jSt�1 = 2) = 0:03 and P (St = 2jSt�1 = 1) =
0:05.

All of these models generate I(0) series, in the sense that their memory decay is ultimately
exponential, but they have tended to give rise to highly biased GPH estimates, even in quite
large samples.
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Bilinear ESTAR Markov Mean Markov-AR
T p-val d̂ p-val d̂ p-val d̂ p-val d̂

250 0.720 0.343 0.415 0.503 0.138 0.457 0.292 0.653
1000 0.887 0.164 0.853 0.276 0.660 0.297 0.710 0.523
5000 0.960 0.052 0.993 0.099 0.995 0.125 0.994 0.309

Table 4: Bootstrap rejection rates in Nonlinear I(0) Alternatives (0.05 tests)

Asymptotic � � � � � � � � � Bootstrap � � � � � � � � �
Independent � � � Stationary � � � Sieve AR

d T Block Mean 5 Block Mean 10
0:2 250 0.008 0.182 0.063 0.039 0.047

1000 0.007 0.146 0.066 0.039 0.045
5000 0.014 0.086 0.065 0.029 0.053

0:4 250 0.028 0.138 0.060 0.028 0.040
1000 0.040 0.081 0.037 0.022 0.026
5000 0.044 0.021 0.021 0.009 0.025

0:6 250 0.044 0.086 0.045 0.023 0.036
1000 0.054 0.054 0.035 0.021 0.023
5000 0.061 0.036 0.024 0.009 0.016

Table 5: Bootstrap rejection rates for ARFIMA(1,d,0) Models, � = 0.3 (0.05 tests)

Our �nal set of experiments examines rejection rates (basic test only) under what we might
call the "contaminated null hypothesis", in other words, models in which the fractional di¤erences
of the process are autocorrelated. In such cases we have to consider resampling the di¤erences
using a bootstrap for dependent data. We consider two cases of the stationary bootstrap of
Politis and Romano (1994) with exponential block length distributions with mean block lengths
of 5 and 10 observations, and also the sieve-autoregressive method of Bühlmann (1997), where
the lag length for the autoregression is chosen by the Akaike criterion up to a maximum of 10
lags. Including the asymptotic criterion, this makes for �ve test variants in all. Table 5 shows
the results for models and sample sizes as in Table 2, but with an autoregressive component with
� = 0:3. Thus, these are cases of the ARFIMA(1,d,0) class

(1� �L)yt = (1� L)�d+ "t + zt(d); "t � NI(0; 1)

The asymptotic test acquits itself relatively well here, and the independent bootstrap fails
seriously only in the smallest sample. Under-rejection in the larger samples is again a feature
of the �ndings, with the poorest performance delivered by the stationary bootstrap with the
block-length 10.

9 Applications

We report two applications of the skip-sampling test. The �rst case considers a volatility measure
for daily exchange rates of the British pound sterling against six currencies, in excess of 9,500
observations covering the period January 1975 to October 2012, (source: Bank of England). The
measure in question is the logarithm of the absolute value of daily appreciation (log-change)
augmented by 0.005. Taking logarithms normalizes the distribution by alleviating asymmetry
and excess kurtosis, while adding the small constant overcomes the problem of days when zero
change was recorded, so that the volatility measure is unde�ned.
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Bootstrap p-values
d̂ Wald test Skip-sample test Bias test

Australian Dollar 0.532 0 0:789 0:013
Canadian Dollar 0.548 0 0:375 0:251
Danish Krone 0.471 0 0:883 0
Japanese Yen 0.414 0 0:987 0:278
New Zealand Dollar 0.523 0 0:977 0
US Dollar 0.429 0 0:319 0:144

Table 6: Tests for long memory in exchange rate volatility

Bootstrap p-values
Dividend growth d̂ Wald test skip-sample test Bias test
1946.1-2012.6 0:330 0:003 0 0.873
1871.2-2012.6 �0:068 1 0 0.575

Table 7: Tests for long memory in dividend growth

Table 6 reports in the �rst column the estimated d from GPH estimation with a bandwidth of
[T 0:55] where T is sample size. The succeeding columns show the bootstrap p-values for three tests:
the usual Wald test (t-test) of signi�cance of d, the skip-sampling test (skip period 8, bandwidth
of [T 0:7]), and lastly the bias test of Davidson and Sibbertsen (2009) with a bandwidth of 0.92.
The latter test has the null hypothesis of a pure fractional process, and tests for the presence
of short-run autocorrelation in the fractional di¤erences. The stationary block-bootstrap with
a mean block-length of 5 was implemented with 299 bootstrap replications. Note that in these
cases, given the signi�cance test outcomes, the composite test could not return a result di¤erent
from the simple skip-sampling test.

As can be seen, none of these skip-sampling tests leads to a rejection, so that the skip-
sampling test reinforces the evidence from the Wald test that these series are long memory. The
skip-sampling p-values tend to appear at the upper end of the unit interval, which is expected
behaviour of the bootstrap in samples of this size, given the Monte Carlo �ndings. Even allowing
for this distortion, however, the evidence in favour of the null hypothesis appears unequivocal.

Our second application is to the growth (log-change) in Shiller�s S&P500 monthly real divi-
dends series for January 1871�June 2012.3 First, consider the sub-period starting in January 1946
(798 observations) with the results shown in the �rst row of the Table 7. The estimation and test
settings are the same here as for the previous example and, once again, note that the composite
test cannot return di¤erent �ndings. This result suggests that the long memory indicated by the
Wald test is spurious. However, we have a more direct check on this �nding in the present case,
by extending the sample. The result with the full set of 1697 observations, starting in February
1871, is shown in the second row of Table 7, where the Wald test p-value falls emphatically in
the non-rejection region of the 1-tailed test. This result shows how the biases in log-periodogram
regression can persist in large samples, but also how the skip-sampling test o¤ers the possibility
of providing counter-evidence to this spurious signi�cance.

3Posted by Robert Shiller at http://www.econ.yale.edu/~shiller/data.htm.
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10 Conclusion

In this paper we have investigated the performance of a test for the null hypothesis of long
memory, based on the self-similarity property of sequences with hyperbolic memory decay. The
idea is to compare GPH log-periodogram estimators in original and skip-sampled versions of
the data set. The aliasing phenomenon, which introduces an estimation bias in skip-samples,
poses a problem for the implementation of this test, but a bias-corrected estimator permits the
construction of an asymptotically pivotal statistic.

The use of a semiparametric method to construct the estimators and test statistic, with
correspondingly slow convergence to the asymptote, inevitably poses a challenge for the imple-
mentation of the test, and the bootstrap variant of the test performs relatively well, in spite of
being implemented using semi-parametric estimates of the null distribution. This combination
of factors proves to pose a problem of under-rejection even in quite large samples, in the Monte
Carlo evaluations. A bias reduction strategy such as the double bootstrap (Beran 1988) might
alleviate this problem, at the cost of a large computational overhead, but in the settings where
the test might be applied, under-rejection is a relatively benign problem, and the experiments in-
dicate reasonable power properties. Alternative choices of test settings, such as GPH bandwidths
and skip period, could prove helpful, although to research these must take us beyond the scope
of this study. Notwithstanding these quali�cations, the test may prove a useful addition to the
arsenal of diagnostic procedures for long memory models, beside the bias test of Davidson and
Sibbertsen (2009), which compares log-periodogram estimates with di¤erent bandwidths, and the
aggregation test of Ohanissian et al. (2008).
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Appendix

Proof of Proposition 2.1
Let 
k denote the kth autocovariance, de�ned by the identity


k =

Z 2�

0
cos(k!)f(!)d!:

For the skip-sampled data with sampling period N , the autocovariances are 
Nk where


Nk =

Z 2�

0
cos(Nk!)f(!)d!

=

N�1X
j=0

Z 2�(j+1)=N

2�j=N
cos(Nk!)f(!)d!

=
N�1X
j=0

Z 2�=N

0
cos(Nk!)f(! + 2�j=N)d!

=

Z �

0
cos(k�)fN (�)d�:

where the third equality makes use of the fact that cos(Nk!) = cos(Nk!+ 2�j), and the fourth
one makes the change of variable � = N! and the substitution

fN (�) =
1

N

N�1X
j=0

f((�+ 2�j)=N):

Proof of Proposition 4.1
Letting

A(�; k;N) =
sin (�k=N)

tan(�=2N)
+ cos(�k=N)

note �rst that

dH

dd
=
1

N

N�1X
k=0

A(�; k;N)�2d
�
�2g ((�+ 2�k)=N)

g(�=N)
logA(�; k;N)

+
d

dd

�
g ((�+ 2�k)=N)

g(�=N)

��
:

We obtain a formula for the derivative in the second term, and show that this is bounded in the
limit. The terms of the form (3.2) depend on d because the data used to construct the sieve
autoregressive estimates are the fractional di¤erences of the measured data. Assume that p is
�xed, and let zt = (1�L)dxt and so letZ0 (T�p�p) be the normalized data matrix whose columns
are the vectors zj = (zp+1�j ; : : : ; zT�j)0 for j = 1; : : : ; p. Also, let Zj for j = 1; : : : ; p denote the
matrix equal to Z0 except that the jth column has been replaced by z0 = (zp+1; : : : ; zT )0. Then,
note that the coe¢ cients �̂j in the autoregression of order p can be written using Cramer�s rule
as

�̂j =
jZ 00Zj j
jZ 00Z0j

; j = 1; : : : ; p:
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Let these elements de�ne the p+ 1� 1-vector �̂ by also putting �̂0 = �1.
Now, let Q(�) (p + 1 � p + 1) denote the real part of the Fourier matrix with elements

qrs = cos �(r � s) for r; s = 0; : : : ; p. Setting �1 = (�+ 2�k)=N and �2 = �=N , note that

ĝ(�1)

ĝ(�2)
=
j�̂(e�i�1)j�2

j�̂(e�i�2)j�2
=
�̂
0
Q(�2)�̂

�̂
0
Q(�1)�̂

=
b0Q(�2)b

b0Q(�1)b

where b is the p + 1-vector having elements b0 = �T�p jZ 00Z0j and bj = T�p jZ 00Zj j for j =
1; : : : ; p. In this notation we have

d

dd

�
ĝ(�1)

ĝ(�2)

�
=

�
b0[Q(�2) +Q

0(�2)]

b0Q(�1)b
� b

0Q(�2)bb
0[Q(�1) +Q

0(�1)]

[b0Q(�1)b]
2

�
db

dd

and it remains to evaluate the second right-hand side factor.
Start with the elements of the Zj matrices. Considering row t, let m denote the generic

lag associated with a column of Zj . Using the argument from Tanaka (1999), Section 3.1, the
derivatives with respect to d can be written as

dzt�m
dd

=
d

dd
(1� L)dxt�m

= log(1� L)(1� L)dxt�m

= �
1X
k=1

k�1zt�m�k

= z�t�m

where the last equality de�nes z�t�m. We have from Magnus and Neudecker (1988), p149, that
for j = 0; : : : ; p;

d
��T�1Z 00Zj�� = ��T�1Z 00Zj�� :tr(T�1Z 00Zj)�1T�1d(Z 00Zj)

=
��T�1Z 00Zj�� :tr(T�1Z 00Zj)�1T�1 �dZ 00Zj +Z 00dZj�

=
��T�1Z 00Zj�� :tr(T�1Z 00Zj)�1 �T�1Z�0

0 Zj + T
�1Z 00Z

�
j

�
dd

= b�jdd

(de�ning b�j ) where the Z
�
j denote the matrices with elements z

�
t�m, with the value of m de�ned

as appropriate, according to the construction of Zj . Letting b� denote the vector with elements
�b�0 and b�j , for j = 1; : : : ; p, we now have the result

d

dd

�
ĝ(�1)

ĝ(�2)

�
=
b0[Q(�2) +Q

0(�2)]b
�

b0Q(�1)b
� b

0Q(�2)bb
0[Q(�1) +Q

0(�1)]b
�

[b0Q(�1)b]
2 :

Since fztg is a weakly dependent process by hypothesis, the process z�t is covariance stationary.
It follows directly that, for every �nite p, b� converges in probability to a non-stochastic limit,
depending on the autocovariances of fztg. From the fact that b converges in the same manner,
and the Slutsky theorem, the proposition follows under the conditions stated.

Two simplifying assumptions have been made to reach this conclusion. The �rst is that zt
has been constructed as an in�nite order moving average, whereas in practice the sums will be
truncated, containing only the �rst t �m terms. However, since the truncation a¤ects at most
a �nite number of terms, this cannot change the value of the limit. Second, the lag length p
has been assumed �xed. However, since zt is a weakly dependent process by hypothesis, the
autocovariances are summable and hence equal zero for lags exceeding some �nite value. Letting
p tend to in�nity with T cannot change the distribution of B(N; d) beyond some point, since the
additional elements of b and b� have sums converging to zero as p increases.
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