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Abstract

System identification involves identification of a behavioral model that best ex-
plains the measured behavior of a structure. Unlike traditional studies that focus on
identifying parameters in a single model for system identification, this research uses a
strategy of generation and iterative filtering of multiple candidate models. The task
of model filtering is supported by measurement cycles. During each measurement cy-
cle, the location for subsequent measurement can be chosen using current candidate
model predictions. In this paper, data mining techniques are proposed to support such
measurement-interpretation cycles. Candidate models, representing possible states of
a structure, are clustered using a technique that combines principal component anal-
ysis and K-means clustering. Representative models of each cluster are used to place
sensors for subsequent measurement on the basis of the entropy of their predictions.
Models are filtered from candidate model sets using new measurements. Results show
that clustering is necessary to identify the different groups of candidate models. The
entropy of predictions is found to be a valid stopping criterion for iterative sensor
addition. While measurement-interpretation cycles can lead to a unique model for
structures with low levels of complexity, engineers may be left with large numbers of
models for structures with higher levels of uncertainty. In those situations, clustering
is a powerful tool to classify models and provide only a few representative models for
engineers.

1 Introduction

Recently, the use of sensors has strongly increased and it is now common to find them in
everything that surrounds us. The large number of sensors leads to an enormous amount of
data. Most data are often redundant or meaningless, which makes them difficult to deal with.
One way to solve this issue is to put sensors so that maximum information is obtained. This
process, which stands upstream to the data interpretation, is known as sensor placement. In
civil engineering, and in other engineering domains, this process is iterative. After placing
an original set of sensors, measurements are taken and sensors can be added afterward. To
support this iterative process, data mining techniques such as clustering are helpful.

Sensors are increasingly used worldwide for tasks such as fault diagnosis (Camelio et al.,
2005), robotics (Sedas-Gersey, 1993), automatic control (Culler and Hong, 2004), computer
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vision (Cowan, 1988) and aeronautics (Padula and Kincaid, 1999). The field of sensor con-
figuration has emerged recently and research concerning sensor networks is now emerging in
parallel. Examples of the interest in this field are the special issue of Communications of the
ACM on wireless sensor networks in 2004 and the publication of a new journal, ACM Trans-
actions on Sensor Networks, in 2005. Moreover, research evolves in managing these sensor
networks mainly to satisfy the always growing user needs (Mullen et al., 2006). Work on
sensors goes in directions such as multi-sensor management (Xiong and Svensson, 2002), re-
liability (Bagajewicz and Sanchez, 2000) and uncertainty (Guratzsch and Mahadevan, 2006).

One of the most concerned domains is civil engineering. Applications areas in this domain
include fault detection (Worden and Burrows, 2001), water networks (Akinci et al., 2006)
and health monitoring (Meo and Zumpano, 2005). Installation of sensors and measurement
campaigns are time-consuming tasks. This motivates the use of a framework for automating
the sensor placement process. Li et al. (2006) use norm based techniques to place sensors.
Parker et al. (2006) propose experimental validation of their genetic algorithm strategy
for sensor placement. In Schulte et al. (2006), a forward-backward selection algorithm is
envisaged for optimal sensor placement. Minimization of an information entropy criterion
is used in Ntotsios et al. (2006). All of these studies, however have a structural dynamics
viewpoint and have therefore not been used with static data.

One of the most important reasons for making measurements is system identification
(Ljung, 1999), where the idea is to understand the behavior of a structure. In this case, the
challenge is to determine the true state of the structure according to measurements. System
identification can be model-based. In this case, goals are to find models and estimate the
model parameters that best match measurements. Part of this task is known as parameter
estimation or model updating. Existing work in model-based system identification involves
matching observations (measurements) with hypotheses (models). For such a task, the use
of an optimization technique for minimizing the error between measurements and models is
needed. In recent work (Robert-Nicoud et al., 2000), the idea of working with several models
in system identification instead of only one has emerged.

Recently, sensor placement strategies regarding multiple models have been studied (Robert-
Nicoud et al., 2005b,a). In Saitta et al. (2006), greedy and global search approaches have
been compared for initial sensor placement. Although successful in some situations, global
search cannot be used for iterative sensor addition. Therefore, the above mentioned refer-
ences, are limited in the way of supporting iterative sensor placement. The sensor placement
methodology using multiple models is divided in two parts. In the first part, upstream model
generation, stands the initial sensor placement which consist of finding the number and lo-
cations of sensors. The next step, is to iteratively add new sensors. This iterative process
is needed to achieve the final objective of finding the state of the structure. Data mining
techniques, such as clustering, can support engineers in this process.

Data mining (Tan et al., 2006; Witten and Frank, 2005) is a field of research concerned
with finding patterns in data for both understanding and predicting purposes. Data mining
algorithms are especially useful when dealing with considerable amount of data which makes
human processing infeasible. Data mining methods have already been successfully applied
in research areas such as gene classification, speech processing, image recognition and web
mining. More applications can be found in Pal and Mitra (2004). Data mining has also
been applied in engineering (Melhem and Cheng, 2003; Alonso et al., 2004). Examples of
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applications include oil production prediction (Nguyen and Chan, 1999), connection damage
assessment (Yun et al., 2001), traffic pattern recognition (Yan et al., 2005) and composite
connection behavior (Shirazi Kia et al., 2005). However, all of these contributions use data
mining to make predictions. There are engineering tasks in which it is more appropriate to
use data mining to extract knowledge from the data.

Iterative sensor placement is an example of such a task where clustering can be used to
support engineer in system identification. The goal of clustering (Webb, 2002; Tan et al.,
2006) is to group data points that are similar according to a given similarity metric (by
default Euclidean distance is used). Clustering usually aims at finding compact and clearly
separated clusters. Clustering techniques have been applied in various domains such as color
image segmentation (Ray and Turi, 1999), sensory time series (Yin and Yang, 2005), text
mining (SanJuan and Ibekwe-SanJuan, 2006) and information exploration (Hearst, 2006).
It has been used in engineering as well (Fisher et al., 1993).

This paper presents a iterative methodology for supporting system identification using
clustering. The objective of clustering is to group together models that are similar. At each
iteration, a new measurement at an appropriate location should eliminate the maximum
number of models. An algorithm that finds such a location for subsequent measurement
based on cluster information is presented. Section 2 contains a description of concepts
behind multiple-model system identification and clustering. The proposed methodology for
iterative sensor addition is described in Section 3. Results of applying the methodology on
an existing bridge are shown in Section 4. Finally, conclusions drawn from this work are
presented in the last Section.

2 Multiple Model System Identification

Traditionally, system identification is treated as an optimization problem in which the dif-
ference between model predictions and measurements is minimized. Values of model param-
eters for which model responses best match measured data are determined by this approach.
However, this approach is not reliable because different types of modeling and measurement
errors are present (Banan et al., 1994; Sanayei et al., 1997). Moreover, they can compensate
each other such that the global minimum may be far away from the correct state of the
system (Robert-Nicoud et al., 2005c). Therefore, instead of optimizing one model, a set of
candidate models is identified in our approach such that their prediction errors lie below a
certain threshold value. For this paper, a model is defined as values for a set of parameters.
The threshold is computed using an estimate of the upper bound of errors due to modeling
assumptions as well as measurements. The set of candidate models is iteratively filtered
using subsequent measurements for system identification. This approach could generate an
unique model for the structure or a set of models which are equally capable of representing
the structure. This depends on parameters chosen for the identification problem and errors.

Modeling assumptions define the parameters for the identification problem. The set of
model parameters may consist of quantities such as elastic modulus, connection stiffness and
moment of inertia. Each set of values for the model parameters corresponds to a model of
the structure. An objective function is used to evaluate the quality of candidate models.
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Figure 1: Schema of the truss structure used to justify the need of a multiple model approach
for system identification.

The objective function E is defined as follows:

E =

{

ε if ε > τ
with ε =

√

∑

(mi − pi)2

0 if ε ≤ τ
(1)

ε is the error which is calculated as the difference between predictions pi and measurements
mi. τ is a threshold value evaluated from measurement and modeling errors in the identifi-
cation process. The set of models that have E = 0 form the set of candidate models for the
structure. Given sensor measurements and the parameters for the identification problem,
stochastic search is used to generate the set of candidate models.

The need for a strategy of generation and iterative filtering of multiple models is demon-
strated with a simple truss example. The structure is made of ten bars each with a cross-
sectional area of 16 cm2. Figure 1 shows the truss. The structure is subject to a vertical
load F of 40 kN at position A. The vertical displacement (10.5 mm) is measured at this
position. The objective is to detect damage in the truss. The three distinct candidate models
are given in Table 1. All of them have predictions that lie within 5% error of measurement
(at point A) and will be part of a candidate model set for this identification problem. The
uncertainty in identifying the model that represents the structure is due to errors and lack
of sufficient measurements. Including more measurements such as having strain gauges on
certain members can filter models from the candidate model set. However, minimizing the
difference between errors and measurements can lead to the wrong model. Consequently,
multiple models are needed to correctly handle system identification. The concept of multi-
ple models deeply affects the measurement system design since sensor placement has to be
undertaken accounting for several models instead of one.

2.1 Clustering Multiple Models

In system identification the process goes from measurements (consequences) to a possible
model (causes). This is an abductive task. This, and the presence of errors, motivate the
idea of multiple-model system identification. The presence of several models distributed in
a multi-dimensional parameter space is a justification for the use of a data mining method
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Case Damage scenario Description Displacement

Model 1 Element 2 damaged 87% area reduction 10.3 mm

Model 2 Element 5 and 6 damaged 69% area reduction 10.1 mm

Model 3 Support B damaged roller behaviour 11.0 mm

Table 1: Details of three models that can explain the truss structure. For each model, the
damaged element(s) and the modified area(s) are given. All other elements have an area of
16cm2.

Clustering procedure

1. Normalize the data.
2. Transform the data using PCA.
3. Choose the number k of clusters (Section 2.1).
4. Loop i from 1 to t

5. Run K-means with k clusters.
6. Evaluate results (Section 2.1).
7. End

8. Select clustering i with best results

Table 2: Pseudo-code of the clustering procedure combining PCA and K-means to separate models
into clusters. k is the number of clusters and t the number of times K-means is run.

such as clustering. In this research, the objective of clustering is to improve iterative sensor
addition. This Section presents the clustering strategy and then describes the index used to
correctly estimate the number of clusters among the models.

Clustering Algorithm

The methodology for grouping models into clusters combines PCA and K-means in order to
improve visualization of results. After normalization, the PCA procedure is applied to the
models. Using all the principal components, the complete set of models is transformed into
the feature space. After that, the number of clusters is estimated using a score function.
More details about this step are given in Section 2.1. Once the number of clusters is known,
K-means algorithm is applied to the data in the feature space. Table 2 presents the pseudo-
code of the methodology used.

Principal Component Analysis: When a clustering technique such as K-means is
applied to data in more than three dimensions, the solution space becomes difficult to repre-
sent. PCA is a method for linearly transforming the data to a new and uncorrelated feature
space (Jolliffe, 2002). Ultimately, PCA finds a set of principal components (PC) that are
sorted such that the first few components explain most of the variability of the data. The
first step to obtain the principal components of a data set is to construct the covariance
matrix S. Each element of the covariance matrix is given by Equation 2:
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cov(x, y) =
n

∑

i=1

(xi − x)(yi − y) (2)

where n is the number of samples. The particular case of cov(x, x) refers to the variance
of variable x. The next step is to write the covariance matrix as the product which realizes
the eigen decomposition. It is given by Equation 3:

S = V LV T (3)

where L is a diagonal matrix that contains the eigenvalues of the covariance matrix
S. The columns of V are made by eigenvectors. Each eigenvector is directly related to
its eigenvalue. The principal components are the eigenvectors sorted in decreasing order
of their eigenvalues. Each sample can then be transformed into the feature space using
selected principal components. In the machine learning community, PCA is usually used as
a preprocessing technique, for example before a supervised algorithm. In this research, PCA
is used for visualization purposes. By plotting the two firsts PC instead of two randomly
chosen parameters, the obtained clusters will be better visualized.

K-means: The K-means clustering algorithm (Webb, 2002) is widely used in practice.
Although it is simple to understand and implement, it is effective only if applied and inter-
preted correctly. The K-means algorithm divides the data into k clusters according to a given
distance measure. Although the Euclidean distance is usually chosen, other metrics may be
more appropriate. More precisely, K-means is a procedure that iterates over k clusters in
order to minimize their intra-cluster distances, shown as the measure J in Equation 4

J =
k

∑

j=1

∑

xi∈cj

||xi − zj||
2 (4)

where k is the number of clusters, xi the ith data point and zj the centroid of cluster
cj. The k starting centroids are chosen randomly among all data points. The data set
is then partitioned according to the minimum squared distance. The cluster centers are
iteratively updated by computing the mean of the points belonging to the clusters. The
process of partitioning and updating is repeated until either the cluster centers or J do not
significantly change over two consecutive iterations.

The standard K-means algorithm has two main drawbacks. First, the number of clusters
has to be specified by the user a-priori. The next section describes a function to estimate
the number of clusters in a data set. Second, the k initial centroids are chosen randomly at
the beginning of the K-means procedure. Therefore, running the algorithm two times may
result in two different clustering of the same data. To limit such a problem, K-means is run
t = 20 times and the best result according to a score function is chosen. This score function
is described next.

Optimal Number of Clusters

As stated in the previous Section, the number of clusters is an input to the K-means algorithm
and is not known in advance. Moreover, the number of clusters obviously has a crucial impact
on the clustering results and therefore on the sensor placement process. If this number is not
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correctly chosen, K-means will produce clusters of bad quality. These clusters would be of no
use to the engineer performing system identification. In this paper, we use a score function
derived from Saitta et al. (2007) to: i) estimate the number of clusters and ii) evaluate the
quality of the clustering results.

The score function is a function of the combination of two terms: the distance between
clusters and the distance inside a cluster. The first notion is defined as the between class
distance (bcd) whereas the second is the within class distance (wcd) . In this research, the
bcd is defined by Equation 5:

bcd =

√

√

√

√

1

k · n · d

k
∑

i=1

dist(zi, ztot) · ni (5)

where n is the number of models, d the dimensionality, k the number of clusters, zi the
centroid of ci, ztot the centroid of all clusters and ni the number of models in ci. The function
dist(x, y) is the Euclidean distance between x and y. In this work, the bcd indicates how
different the k situations are. The wcd is given through Equation 6:

wcd =
1

k

k
∑

i=1

√

1

n · d

∑

x∈ci

dist(x, zi) (6)

where the same notation as for Equation 5 stands. The wcd gives an overview of the
spread of groups of models. For the score function to be effective, it should i) maximize the
bcd, ii) minimize the wcd and iii) be bounded. Maximizing Equation 7 satisfies the above
conditions:

SF = 1 −
1

ee(bcd−wcd)
(7)

The higher the value of the SF , the more suitable the number of clusters. Therefore, with
the proposed SF, it is now possible to estimate the number of clusters (groups of models)
for a given set of models. The procedure to determine the best number of clusters is to
evaluate the SF value for different number of clusters from kmin to kmax. As for the previous
Section, the randomness of K-means, through its starting centroids, has to be taken into
consideration. For this, the algorithm is run t times and the maximum value for the score
function is chosen. The procedure is described in Table 3. More details can be found in
Saitta et al. (2007).

2.2 Sensor Placement using Entropy

In the field of model-based system identification, configuring a measurement system can be
defined as finding optimal positions for sensors in order to best separate model predictions1.
Different methods can be used to measure the separation between predictions. For example,
variance was compared to entropy as a measure of model separability and entropy was
found to be better. Therefore, as in Robert-Nicoud et al. (2005b), the notion of entropy is
used. The expression used to calculate entropy is the Shannon’s entropy function (Shannon

1The term predictions will be used in place of model predictions for readability.

7



Score Function Procedure

1. Loop i from 1 to t

2. Loop j from kmin to kmax

3. Run K-means with j clusters.
4. Calculate score function (SF).
5. End

6. End

7. Select results corresponding to maximum SF.

Table 3: Procedure to estimate the number of clusters in a data set. t is the number of time
K-means is run. kmin and kmax are the bound for the number of clusters.

and Weaver, 1949) which comes from the field of information theory. Shannon’s entropy
function represents the disorder within a set. In the present work, a set is an ensemble of
predictions for a particular system identification task. The entropy or disorder is maximum
when predictions show wide dispersion.

Since the goal is to have the maximum useful information, positions with maximum
prediction disorder are the most interesting. In other words, the best measurement location
is the one with maximum entropy (model predictions have maximum variations). For a
random variable X, the entropy H(X) is given by Equation 8:

H(X) = −

|X|
∑

i=1

pi · log(pi) (8)

where pi are the probabilities of the |X| different possible values of X. For practical
purposes, 0 · log(0) is taken to be zero. When a variable takes |X| discrete values, the
entropy is maximum when all values have the same probability log(X). Thus entropy is
a measure of homogeneity in a distribution. A completely homogeneous distribution has
maximum entropy. In the present study, the entropy for a given sensor location is calculated
from the histogram of predictions. The probability pi of an interval is the ratio of the
number of predictions ri in the interval by the total number of predictions rtot (see Figure
2). Therefore, for S possible sensor locations, S histograms are evaluated according to the
entropy measure.

Once candidate models are generated (Robert-Nicoud et al., 2005b; Raphael and Smith,
2003), the finite element method is used and predictions at all possible sensor locations are
computed. It can be seen as a matrix in which each line corresponds to predictions for
a model and each column is a specific sensor location. At each possible sensor location, a
histogram containing predictions is built. Each bar in the histogram represents those models
whose predictions lie within that interval. Note that intervals are defined by the accuracy of
the measurement devices. At each iteration, the sensor location corresponding to maximum
entropy of predictions is chosen. Sensors are therefore sorted in ascending order according
to their efficiency in separating model predictions.
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Figure 2: Histogram for a specific sensor position. The x-axis is the sensor prediction range.
The y-axis is the number of models. The vertical size of each bar corresponds to the number
of models lying in the corresponding interval. The probability pi is the ratio of the number
ri of predictions in an interval by the total number of predictions rtot.

3 Methodology

The overall objective of the study is to improve a measurement system - by correctly adding
new sensors - in order to support system identification. To achieve this goal, the following
methodology combines techniques such as global search, entropy and clustering. A schema
of the overall methodology is given in Figure 3 and details about it are given below.

Structure assumptions and measurements: During the original measurement sys-
tem design phase, engineers provide modeling assumptions that define parameters of the
structure. An initial set of sensor is placed according to a chosen technique (Saitta et al.,
2006).

Model generation: The next step creates a set of candidate models that may represent
the real state of the structure using stochastic search. Measurements, a set of model param-
eters and an objective function (Equation 1) that defines candidate models are needed to
generate the set of candidate models.

Clustering: Once the models have been generated, the described clustering algorithm
(Section 2.1) is used to group models. Models are grouped into clusters to i) facilitate visu-
alization of the model space and ii) reduce the number of models given to the engineer (the
centroid of the cluster is a possible representative model for the entire cluster). Visualization
of clusters is improved through the use of principal components. As described earlier, PCA
is first applied to models before the K-means algorithm is used (see Section 2.1).

Representative model selection: In the representative model selection step, a few
models representing each cluster are selected. Only models which are close to the center of
the cluster are selected. In this study, 5% of the total number of models in each cluster are
taken to be representative models (with a minimum of 10 models). This number has been
chosen after experimental testing. Then, Shannon entropy is used as a measure of prediction
separability to identify the next measurement location (see Equation 8). If model sets have
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Figure 3: Overall schema showing the methodology for iterative sensor placement using
multiple models.

high values of entropy, more candidate models can be filtered.
The first stopping criterion, scentropy is using the entropy of remaining sensors. If the

entropy of predictions is not significant (below 1) at every sensor location, then scentropy < 1.
If this is not the case, the next step is sensor addition and further measurements. If this is the
case, it is then checked if there are multiple clusters using the sccluster < λ stopping criterion.
scentropy is defined as the maximum distance between all the remaining models and the mean
(i.e. center of cluster) of all the models. If sccluster < λ, where λ is a user-defined constant,
a unique cluster is considered. It thus means that the current set of measurement locations
is incapable of further filtering models. The engineer has to provide other measurement
locations to the algorithm in order to find the correct model (add new sensor placement

locations step). If there is only one cluster and the entropy is null, center of all remaining
models is given to the engineer as the correct model for the structure (model identification

step).
Sensor addition and further measurements: During this step, entropies of selected

representative models are used to find the position of the next sensor. The location with
the highest entropy is chosen as the best position for the next measurement. Then, the
measurement is taken on the structure.

Model filtering: In this step, sensor measurements at the new location are compared
for every candidate models. Candidate models that do not predict the measurement are
eliminated from the current set of models.

If there are models left, then the next step is clustering. However, if no model is left,
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then it is likely that all models were not generated by the model generation step. While it
may be possible to generate all models for a simple problem, it is practically impossible to
generate all possible models in a complex structure. In that case, the model generation phase
is revisited. On the other hand, if all models have been generated, then some assumptions
related to modeling the structure are incorrect. Therefore, structure assumptions have to be
checked and modified by the engineer (structure assumptions and measurements step).

4 Results

4.1 Case study: the Schwandbach Bridge

To demonstrate the methodology for sensor addition, the Schwandbach bridge (designed by
Maillart in 1933) is taken as a case study (Figure 4). The Schwandbach bridge is an early
example of a deck stiffened open-spandrel arch. The elliptic horizontal ground-plan curve
that is supported by a vertical curved thin-walled arch is also an example of daring structural
engineering that has inspired engineers for over seventy years. The proposed methodology
is demonstrated for identifying connection behavior of the Schwandbach bridge.

Figure 4: Schema of the Schwandbach bridge used to illustrate the proposed methodology
for iterative sensor placement.

This structure is inspected periodically and has been the subject of many verifications
as codes have improved, for example Salvo (2006). The Schwandbach bridge is now a pedes-
trian bridge, although it can be reopened for traffic at any time. Deflection measurements
have not been carried out since the 1930s and while the bridge shows no visible evidence
of deterioration, the question of taking measurements arises periodically. In Switzerland,
bridges are mainly measured for changes in deflection at mid-span during load tests. A
single model (usually the design model) is used with the deflection measurement and the
loading to determine values for parameters that have some uncertainty, such as the elastic
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modulus multiplied by the moment of inertia, EI. However, this bridge is too complex for
such rudimentary model-calibration strategies.

Boundary conditions that were used in the analysis at the design stage can be found in
Smith and Saitta (2007). While such assumptions are acceptable at the design stage for
achieving safety and serviceability, they are not appropriate for interpreting measurements.
Structures do not behave this way in reality. For example, there is no physical hinge at
the extremities of the vertical spandrel elements. These connections cannot be assumed
to be fixed either since cracking may reduce connection stiffness. Furthermore, not all
connections are expected to have the same stiffness due to factors such as relative slenderness
and varying locations on the structure. The Schwandbach bridge has 20 such connections.
They are shown in Figure 5 using unshaded circles. In this paper, the system identification
methodology (see Section 3) is used to determine the behavior of these connections.

Figure 5: Schematic view of the bridge showing the 20 connections (1-20), the 17 possible
sensor locations (1-10, 21-27) and the 10 vertical slabs (circle, 1-10).

In the case of the Schwandbach bridge, the number of permutations and combinations
of modeling assumptions - connection stiffnesses - results in several tens of thousands of
possible models. Although this case has important technical and historical attributes, these
conclusions are equally valid for most ordinary structures of moderate complexity. Rather
than “stab” at one model and hope for the best, this paper proposes explicit treatment of
multiple models and iterative sensor placement using the methodology described in Section
3.

Bridges in Switzerland are tested periodically using static loads to check for strength
degradation. The response of the bridge for trucks positioned on the bridge is measured
using sensors. Engineers estimate the stiffness of the bridge from measured responses and
compare those with results from previous tests. In this paper, such a scenario is simulated
for the Schwandbach bridge. It is schematically represented in Figure 6. For simulation,
a three dimensional finite element model of the complete bridge is created. The vertical
slab-girder connections and the vertical-slab arch connections are modeled using rotational
springs.

In this paper, a load test is simulated that involves two trucks (see Figure 6) that are
placed at a distance of 15m from the left end of the bridge. The details of the load test are
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Figure 6: Example of the load case for the Schwandbach bridge given the scenario that the
bridge is reopen for traffic.

Information Description

Distance between trucks 3.7 [m]
Distance front-rear axle 2.6 [m]
Front axle load 17 [kN]
Rear axle load 44 [kN]
Spacing between front wheels 1.8 [m]

Table 4: Details of the two trucks and their positions.

given in Table 4.
Measurements at different sensor locations (see each example below) are given as input

to the model generation module. The parameters of the models generated, however, are the
logarithms of the stiffness. In this paper, only inclinometers are used. Sensor precision are
9.5 · 10−6, τ (see Section 2) is taken to be the sum of τmeas (3 · 10−6) and τpred (8 · 10−6).

4.2 Application of the Proposed Methodology

Example 1

This example illustrates the ability of the proposed methodology to iteratively add sensors
to uniquely identify the system. The bridge has 10 vertical slabs and therefore 10 slab-girder
connections and 10 slab-arch connections. For this example, it is assumed that the stiffnesses
of the connections in slabs 1, 2, 9 and 10 are known. Other assumptions are (a) symmetry
about axis X-X, (b) the stiffness values of the top and bottom connections are equal for each
slab and (c) the stiffness values of these connections lie between 106 and 1012 Nm/rad . Thus
there are three parameters in this example. p1 represents the stiffness of the connections of
slabs 3 and 8, p2 for slabs 4 and 7 and p3 for slabs 5 and 6. p1, p2 and p3 are permitted to
vary between 6 and 12.

For simulation, a model representing the real structure is required. The correct model
for this example is given in Table 6. The predictions given by this model are taken as the
measurements. The starting measurement system is assumed to consist of inclinometers
measuring the rotation at the following locations: 1, 10 and 24 (Figure 5). Since there are
only three parameters, models can be directly visualized in three-dimension plots. Therefore,
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Iterations 0 1 2 3 4

Number of models 1000 926 907 906 10
Selected sensor 4 6 5 23

Table 5: Evolution of the number of models at each iteration for example 1. The selected
sensors are given as well.

the PCA step is not used.
1000 candidate models are generated for this example. Initially, sensors are only added

on the deck. At the first iteration, only sensor locations on the deck can be chosen. This
decision follows from the fact that it is easier to place sensor on the deck of the bridge. When
the entropy for sensors on the deck is below 1 (SCent < 1), then other sensor locations are
also included. Table 5 shows the number of models remaining and the selected sensors.

The first observation concerns the sensors on the deck. In this example they do not
help in filtering candidate models. However, only one sensor on the vertical slab is needed
to uniquely identify the system. After four iterations, the entropy values at the remaining
sensor locations are close to zero. Therefore, there is no need to add more than four sensors.
At iteration 0, the sccluster (see Section 3) is 3.59. After four iterations it drops to 1.20.
According to parameter precisions, this is interpreted as a single cluster by the engineer.
Consequently, the mean of this cluster is calculated, and the model closest to this mean is
given to the engineer. A plot of the models in the original parameter space at iteration 0
and 3 are given in Figure 7. The model found as well as the correct model (which is known
for this problem) are given in Table 6.

Iteration 0 Iteration 4

6

7

8

9

6

7

8

9
6

7

8

9

10

11

12

First dimensionSecond dimension

Th
ird

 d
im

en
si

on

6

7

8

9

6

7

8

9
6

7

8

9

10

11

12

First dimensionSecond dimension

Th
ird

 d
im

en
si

on

Figure 7: Models in the original parameter space at iteration 0 (left) and 4 (right).

Figure 7 shows how the space is gradually decreased from iteration 0 to 4. Four correctly
placed sensors can therefore drastically reduce the solution space. From Table 6 it is noted
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Parameters p1 p2 p3

Correct model 8.0 8.0 8.0
Model found 8.2 7.4 8.1

Table 6: Model found and correct model in the case of example one (in log scale).

that the model found is very close to the correct model for this example. This is especially
true for parameters p1 and p3. This illustrates the ability of the proposed methodology to
uniquely identify the system. This example has only three parameters and a unique cluster
of models. A more complex example is shown below.

Example 2

In many practical situations, the identification problem involves dozens of parameters. In
such cases, it is impossible to visualize the model space as was done for the previous example
for reasons of high dimensionality. The identification methodology is illustrated for such
an example. The Schwandbach bridge is again considered, however, with more elaborate
modeling assumptions. Symmetry about X-X (see Figure 5) is assumed. This examples
models 10 parameters. Each parameter corresponds to two connections, one on either side
of X-X. Here, the starting measurement system consists of inclinometers at the following
locations: 1, 7, 11, 23 and 25 (Figure 5). The stiffness values (K) of each connection is
permitted to vary between 102 and 1012 Nm/rad. 1719 candidate models are generated for
this example. Input data for the PCA part of the methodology are the stiffness values of 10
sets of connections [give the sets?].

The number of clusters is estimated using the score function. The procedure of Table
2 is thus executed. The starting point for PCA is a matrix where each row is a different
model and each column contains values of a parameter. Figure 8 shows the curve of the
score function from kmin = 2 to kmax = 10 clusters at the very first iteration.

The first observation from Figure 8 is regarding the global maximum achieved for k = 3.
This number has to be interpreted carefully since values for k = 2 and k = 4 are very close
to the global maximum. This result have to be combined with the PCA plot of the models
(Figure 9). The role of the engineer here is to carefully interepret these results using his
domain knowledge. This conclusion can be extended to data mining tasks in overall. Since
there is no magic behind data mining, a user is usually required for results interpretation.
According to the results of Figure 8, the number of clusters is chosen to be 3 for this case.
The clustering results after applying Table 3 procedure is given in Figure 9.

In Figure 9, every point is obtained from a model. Although all principal components
are used in the K-means algorithm, only the two first components are used for visualization.
The reader must be aware of the fact that other dimensions (i.e. other principal components)
explain these data and therefore the three clusters. Even if not well defined, clusters are
already visible. It is noted that clusters overlap. In addition, a cluster may contain more
models (and outlier models). This is not an issue since the score function is using the cluster
size as a weight in Equation 5 and 6. Again this plot taken alone is not enough to estimate
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Figure 8: Curve of the score function from kmin = 2 to kmax = 10 clusters. The best value
is taken over t = 20 runs.

the correct number of clusters. This is mainly due to the multidimensionalily of the data set
and the overlapping between clusters. Combined with Figure 8, it can help the engineer to
estimate the most reliable number of clusters. The centroid of each cluster defines a possible
state of the structure. Instead of having to examine 1719 models, the engineer can examine
the three groups of models, each represented by its center. Indeed, the center of each cluster
represents a bridge with a particular set of stiffness values for the connections.

The next step is to iteratively add sensors to reduce the total number of models. Repre-
sentative models are selected in each cluster for evaluating entropy. Representative models
are chosen around each cluster centroid. This way, only models that really represent the
cluster are taken into account. The selected number of representative models is 5% of the
total number of remaining models. Thus, a number proportionate to the cluster size (i.e.
the number of models inside the cluster) is chosen from each cluster. Therefore, bigger clus-
ters have more influence on the selection of the next sensor. Figure 10 shows representative
models selected at the first iteration.

The plot of Figure 10 shows that representative models are a good representation of each
cluster. They are seem however not close to the centroid. This is due to multidimensionality
(10) of the data. Entropy is calculated at every remaining sensor location on the represen-
tative model predictions and a new sensor is chosen where entropy is greatest. The entropy
value is found to be a valid stopping criteria (scentropy) for the methodology. Once the new
sensor is known, a new measurement is taken. All models whose predictions do not match
the new measurement are eliminated. Figure 11 shows a plot of the models and their error
(Equation 1) after adding the new sensor.

Models with a high error (dark) are filtered for the next iteration. This is repeated until
the entropy of model predictions is null for every sensor location. At each iteration, the
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Figure 9: Clustering results at the very first iteration. Every point represents a model using
the two firsts principal components (out of 10).

Iterations 0 1 2 3

Number of models 1719 923 243 71
Selected sensor 8 21 26

Table 7: Evolution of the number of models at each iteration for example 2. The selected
sensors are given as well.

number of models is either reduced or the same.
At iteration 3, however, multiple clusters are still present. Indeed, at sccluster at iteration

zero and three is respectively 9.68 and 5.85. This is a good example of a more complex
case since the solution space is much higher. It is observed that, in this case, sensors on the
deck are useful for reducing the number of candidate models. This was not the case in the
previous example. Therefore, it is concluded that the sensor localisation is dependant on
the parameter set. Table 8 shows the entropy of each sensor for iteration 0 to 2 (all entropy
values are 0 at iteration 3).

From Table 8, it is observed that sensors in the middle of slabs are more useful to identify
the system. For example, at iteration 1, all sensors on the deck have an entropy smaller than
1. At iteration i + 1 the entropy for a given sensor is not the same that at iteration i. After
each iteration, models are filtered, and therefore the entropy of each remaining sensor may
be different. In this example no unique model is found, rather the model closest to the mean
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Figure 10: Plot of the representative models (points) among other models (circles) for the
first iteration.

of every cluster is given to the engineer. The proposed models as well as the correct model
are given in Table 9.

From Table 9 it is noted that more than one model is proposed as a correct model.
Among them, only one is close [?] to the correct model. Nearly all models have a value of 10
for both p5 and p6. Since the variation for these parameters is very small, this means that
they have a big influence on predictions. This illustrates the complexity of the problem in
such a situation. It is concluded that the engineer is needed for further measurements and
on site inspection according to the methodology.

5 Conclusions

In this paper, a methodology combining entropy and clustering is used for supporting itera-
tive sensor addition. Representative models of each cluster are iteratively used to place the
next sensor. The work is illustrated by an example with a real bridge.

The use of K-means, for grouping models, and PCA for displaying them helps in vi-
sualizing the solution space. This support is needed since the methodology involves the
use of several models for system identification. Since models are grouped into clusters, the
centroids of clusters of resulting models can be given to engineers instead of all the gener-
ated models. A score function was used to find the most reliable number of clusters in the
model space, hence resolving the main issue of K-means concerning the user-defined number
of clusters. It has been found in a simple case (example 1) that the methodology helps
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Iteration 0 Iteration 1 Iteration 2

Sensor Entropy Sensor Entropy Sensor Entropy
26 3.58 21 2.47 26 1.49
21 3.45 27 1.93 22 1.31
27 3.12 26 1.88 2 0.00
22 3.12 22 1.64 3 0.00
8 2.46 3 0.86 4 0.00
3 2.30 7 0.67 5 0.00
4 2.19 2 0.00 6 0.00
2 2.04 4 0.00 7 0.00
7 1.96 5 0.00 9 0.00
9 1.86 6 0.00 27 0.00
6 1.46 9 0.00
5 0.90

Table 8: Selected sensors and entropy corresponding to every sensors. Values in bold rep-
resent the chosen sensors. After iteration 2, the entropy value is null for every remaining
sensor location.

Parameters p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Correct solution 3.0 3.0 7.0 7.0 10.0 10.0 7.0 7.0 3.0 3.0
Solution 1 6.3 5.7 5.5 5.5 10.0 10.0 6.6 7.0 4.7 4.2
Solution 2 4.7 7.8 5.0 4.8 7.6 10.0 7.4 5.2 8.3 9.6
Solution 3 5.4 6.1 6.5 6.6 10.0 10.0 7.1 5.8 5.9 6.2
Solution 4 3.2 3.3 5.2 5.6 10.0 10.1 5.4 6.6 3.6 6.2

Table 9: Models found in the case of example 1 and correct solution of the problem (in log
scale).
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Figure 11: Plot of the error of each model after adding the first new sensor (sixth sensor).
Dark models have a high error and light ones have a small error (i.e. their predictions are
close to measurements).

finding the correct model in the multiple-model system identification process. On a more
complex case (example 2), finding the correct model may not be straightforward. However,
the methodology helps engineers by providing cluster centers as possible models explaining
the structure. This is useful information for the engineer who can then use this result to add
new sensor placement locations. Moreover, according to these observations, it is concluded
that the sensor localisation is dependant on the parameter set. Finally, the entropy value
obtained at every sensor position is an iterative indication of the number of sensor needed
on the structure. It is therefore used as a stopping criteria. When the entropy is null for
every remaining sensor location, no additional sensor need to be added.

Several extensions to this work are in progress. Application of other clustering algorithms
is under study. Work is in progress for devising a standard way of estimating the number
of representative models required from each cluster to identify subsequent measurement
locations. The number of candidate models required for correct system identification is
being treated probabilistically in ongoing work. Finally, further investigations on the search
method are planned.
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