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Abstract

This study considers the application of the Ignorance Score (also known
as the Logarithmic Score) in the context of ensemble verification. In par-
ticular, we consider the case where an ensemble forecast is transformed
to a Normal forecast distribution, and this distribution is evaluated by
the Ignorance Score. It is shown that the standard Ignorance score is
biased with respect to the ensemble size, such that larger ensembles yield
systematically better expected scores. A new estimator of the Ignorance
score is derived which is unbiased with respect to the ensemble size. In an
application to seasonal climate predictions it is shown that the standard
Ignorance score assigns better expected scores to simple climatological
ensembles or biased ensembles that have many members, than to physi-
cal dynamical and unbiased ensembles with fewer members. By contrast,
the new bias-corrected Ignorance score ranks the physical dynamical and
unbiased ensembles better than the climatological and biased ones, inde-
pendent of ensemble size. It is shown that the unbiased estimator has
smaller estimator variance and error than the standard estimator, and
that it is a fair verification score, which is optimized if the ensemble mem-
bers are statistically consistent with the observations. The finite ensemble
bias of ensemble verification scores is discussed more broadly. It is argued
that a bias-correction is appropriate when forecast systems with different
ensemble sizes are compared, and when an evaluation of the underlying
distribution of the ensemble is of interest; possible applications to unbi-
ased parameter estimation are discussed.
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1 Introduction

Weather and climate services routinely issue their forecasts as ensemble fore-
casts, i.e. collections of forecasts that refer to the same target, but that differ in
their initial conditions, boundary conditions, or model formulation [Sivillo et al.,
1997]. Ensembles can serve as the basis to derive different forecast products,
such as point forecasts, using e.g. the ensemble mean, or probability forecasts,
using e.g. the ensemble mean and standard deviation to forecast a Normal dis-
tribution [Zhu, 2005]. These different forecast products derived from ensembles
require different methods of forecast verification [Jolliffe and Stephenson, 2012,
ch. 8]. In this paper we shall be particularly interested in the application of
probabilistic scoring rules to ensemble forecasts [Gneiting and Raftery, 2007,
Winkler et al., 1996].

The Ignorance score [Roulston and Smith, 2002], also called the Logarithmic
Score [Good, 1952, Gneiting and Raftery, 2007], is a proper verification score
for probability forecasts. If the forecast is issued as a (unit-less) probability
density function p(z) and the forecast target materializes as the value x, then
the Ignorance score is given by the negative logarithm of the forecast density
evaluated at x:

I(p;x) = − log p(x). (1)

The Ignorance difference between two forecasts ∆ = − log q(x) + log p(x) can
be interpreted that the density that p(z) assigns to the observations x is e∆

times as large as the density that q(z) assigns to the same observation x. In
the negative-log representation of Eq. (1), the Ignorance score acts as a penalty
which a forecaster will try to minimize. When the natural logarithm is used (as
in Eq. (1)), Ignorance differences are measured in nats, and can be transformed
to bits by dividing by log 2, and to bans by dividing by log 10 [MacKay, 2003,
sec. 18.3]. The Ignorance score has been used as a verification measures for
probabilistic forecasts of weather and climate [Barnston et al., 2010, Krakauer
et al., 2013, Smith et al., 2014, Rodrigues et al., 2014], and for parameter esti-
mation in dynamical systems [Du and Smith, 2012]. The Ignorance score has an
information-theoretic interpretation [Roulston and Smith, 2002, Peirolo, 2011],
and an interpretation in terms of betting returns [Hagedorn and Smith, 2009].
Benedetti [2010] shows that “the logarithmic score is the only [verification score]
to respect three basic desiderata whose violation can hardly be accepted” and
argues that the Ignorance score is therefore the “univocal measure of forecast
goodness”.

If the forecast density is issued as a Normal distribution with mean µ and
variance σ2, then the Ignorance is given by

I
(
µ, σ2;x

)
=

1

2
log 2π +

1

2
log σ2 +

1

2

(
x− µ
σ

)2

, (2)

which follows from the distribution law of the Normal distribution [Gneiting
et al., 2005]. The Ignorance score depends on the spread σ of the forecast
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distribution and on the squared normalized error [(x − µ)/σ]2 of the forecast
mean. If two probability forecasts have the same squared normalized error, the
one with the smaller spread gets assigned the lower Ignorance score. Likewise,
if two forecast distributions have the same spread, the one with the smaller
squared normalized error has the lower score.

Probability forecasts are often generated by running an ensemble of m simula-
tions of a deterministic model to approximate a forecast distribution [Gneiting
and Raftery, 2005]. There are different possibilities to transform a finite en-
semble into a continuous forecast distribution [e. g. Bröcker and Smith, 2008,
Déqué et al., 1994, Gneiting et al., 2005]. One simple possibility is to trans-
form the ensemble forecast with members {y1, · · · , ym} into a Normal forecast
distribution, whose mean and variance are given by the ensemble mean

µ̂ =
1

m

m∑
i=1

yi (3)

and the ensemble variance

σ̂2 =
1

m− 1

m∑
i=1

(yi − µ̂)2, (4)

respectively.

The estimators µ̂ and σ̂2 are unbiased, that is E(µ̂) = µ and E(σ̂2) = σ2 for
all m ≥ 2, where E(·) denotes the expectation with respect to the underlying
distribution from which the ensemble members {y1, · · · , ym} were drawn. In
other words, the sample estimators µ̂ and σ̂2 are, on average, equal to the
values µ and σ2 of the underlying distribution; µ̂ and σ̂2 are therefore unbiased
with respect to the ensemble size.

Suppose a forecaster chooses to transform an m-member ensemble forecast to
a Normal forecast distribution with mean µ̂ and variance σ̂2. If the forecast
target materializes as the value x, the Ignorance score of this forecast is

I(µ̂, σ̂2;x) =
1

2
log 2π +

1

2
log σ̂2 +

(x− µ̂)2

2σ̂2
. (5)

Note that, since the ensemble members {y1, · · · , ym} are assumed to be random
variables, the sample mean µ̂, the sample variance σ̂2, and the Ignorance score
given by Eq. (5), are random variables, too.

In section 2 we will show that, even though the estimators µ̂ and σ̂2 are unbiased
with respect to the ensemble size, the Ignorance score estimated by I(µ̂, σ̂2;x)
is biased, that is

E[I(µ̂, σ̂2;x)] 6= I(µ, σ2;x), (6)

where x is assumed constant, and the expectation is taken over the random
variables µ̂ and σ̂2. The Ignorance score estimated for a finite ensemble by
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Figure 1: Artificial ensembles of size m and observations are drawn indepen-
dently from a standard Normal distribution. The circles depict the ensemble
Ignorance score (calculated by Eq. (5)), averaged over 105 realizations for each
value of m. The solid line depicts the mathematical expectation of the ensemble
Ignorance score, calculated by the results of section 2. The dashed line depicts
the expected Ignorance score of the underlying standard Normal distribution.

Eq. (5) is, on average, different from the Ignorance score that the underlying
Normal distribution N (µ, σ2) would achieve, if it were known. A finite ensemble
only allows for an imperfect estimation of the underlying distribution. There-
fore, the Ignorance score of the estimated distribution N (µ̂, σ̂2;x) is different
from the Ignorance score of the underlying distribution N (µ, σ2;x) - different
for particular realisations of a finite ensemble, but also different in expectation.
In this article we will point out a number of consequences of this inequality, and
argue that there are situations where an equality in Eq. (6), that is, an unbi-
ased estimation of the Ignorance score of the underlying distribution N (µ, σ2),
is actually desirable.

Figure 1 illustrates the finite-ensemble bias of the Ignorance score by an artificial
example. Suppose ensembles of size m and observations are drawn from a stan-
dard Normal distribution N (0, 1). From each m-member ensemble, a Normal
forecast distribution N (µ̂, σ̂2) is constructed, with mean and variance calculated
by Eq. (3) and Eq. (4). We have approximated the expectation of the Ignorance
score of the forecasts N (µ̂, σ̂2) by simulating 105 ensemble-observation pairs for
a few values of m. We have also calculated the expectation analytically, an-
ticipating results from section 2. Figure 1 shows that the expected Ignorance
score of the ensemble-based forecast N (µ̂, σ̂2) differs significantly from the ex-
pected Ignorance score of the underlying distribution N (0, 1). The difference is
especially large for small ensembles; for 5-member ensembles, for example, the
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scores differ by more than 0.5 in absolute value, that is, the average score of
distributions derived from 5-member ensembles is almost 40% larger than the
average score of the underlying distribution. The average Ignorance difference
can also be interpreted as an average information deficit of 0.5 nats (or 0.72 bits)
of the distribution derived from a finite 5-member ensemble compared to the
underlying distribution.

The finite ensemble bias of the Ignorance score, its correction, and its implica-
tions for ensemble verification are the main subjects of this paper. The impact
of ensemble-size on forecast performance was studied for example by Buizza and
Palmer [1998], who found that increasing the ensemble size improves a number
of verification measures. The effect of ensemble-size on probabilistic verification
measures, as well as possibilities to quantify or remove the finite ensemble effect,
were studied in more detail, for example by Ferro [2007] for the Brier Score, by
Ferro et al. [2008] for the discrete and continuous ranked probability score, by
Müller et al. [2005] for the ranked probability skill score, and by Richardson
[2001] for the reliability diagram, the Brier (Skill) score and potential economic
value. Further discussions of finite-sample effects on verification scores for en-
semble forecasts can be found for example in Fricker et al. [2013] and Ferro
[2013].

In section 2 of this article an analytic expression of the finite ensemble bias of
the Ignorance score of Normal distributions is derived, as well as a new estima-
tor of the Ignorance score, which is unbiased with respect to the ensemble size.
The expectation of the new estimator is independent of the number of ensemble
members, and it is an unbiased estimator of the Ignorance score of the under-
lying distribution of the ensemble. In section 3 the possible benefits of using a
bias-corrected score are illustrated using data from a seasonal hindcast experi-
ment of average European summer temperatures. It is shown that the standard
Ignorance score favors simple climatological or biased ensemble forecasts with
many members over physical dynamical and unbiased ensemble forecasts having
fewer members. The new bias-corrected score ranks the physical dynamical and
unbiased ensembles better on average, independent of ensemble size. In sec-
tion 4 we discuss the important difference between the underlying distribution
and distributions derived from finite ensembles. We discuss applications where
a correction of the finite-ensemble bias of verification scores is desirable. We
point out the variance and error reduction of the new Ignorance estimator, con-
sider its applicability to non-Normal ensemble data, and examine the relation
to recently proposed fair scores for ensemble forecasts. Section 5 concludes with
a summary and outlook.

2 The bias-corrected Ignorance score

For the rest of the paper we will refer to I(µ, σ2;x) as the population Ignorance
score – it is the score that an infinitely large ensemble drawn from N (µ, σ2)
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would achieve. We will further refer to I(µ̂, σ̂2;x) as the standard Ignorance

score, also denoted by Î, as it appears to be the natural Ignorance score to
calculate for a Normal distribution derived from an ensemble forecast. We
remind the reader that simply fitting a Normal distribution to an ensemble
forecast might not be the optimal method of deriving a probability distribution
from a finite ensemble, and other methods, for example based on kernel dressing
[Bröcker and Smith, 2008], might be more applicable. The theory developed in

this paper does not apply to such methods. The finite-ensemble bias of Î will
be calculated explicitly in this section, and a bias-corrected Ignorance score I∗
for finite ensemble forecasts is derived.

Under the assumption that the ensemble members {y1, · · · , ym} are independent
and identically distributed (iid) draws from a Normal distribution N (µ, σ2), the
sampling distributions of µ̂ and σ̂2, as calculated by Eq. (3) and Eq. (4), are
given by

µ̂ ∼ N
(
µ,
σ2

m

)
(7)

and
m− 1

σ2
σ̂2 ∼ χ2

m−1, (8)

where χ2
m−1 denotes the χ2-distribution with m−1 degrees of freedom; further-

more, µ̂ and σ̂2 are statistically independent [Mood, 1950, sec. 4.3].

To calculate (and eventually remove) the bias of Î, we calculate the expected
values of log σ̂2 and (µ̂ − x)2/σ̂2 under the above assumptions. In appendices
A.1 and A.2 it is shown that these expectations are

E
[
log σ̂2

]
= log σ2 + Ψ

(
m− 1

2

)
− log

(
m− 1

2

)
, (9)

and

E

[
(µ̂− x)2

σ̂2

]
=
m− 1

m− 3

(
µ− x
σ

)2

+
m− 1

m(m− 3)
, (10)

where Ψ(x) is the digamma function1. Note that Eq. (10) only holds for m ≥ 4;
otherwise the expectation is undefined due to the diverging second-moment of
the t-distribution (cf. appendix A.2).

It follows from Eq. (9) and Eq. (10) that the bias of the standard Ignorance
score is given by

E
[
I(µ̂, σ̂2;x)− I(µ, σ2;x)

]
=

1

2

{
Ψ

(
m− 1

2

)
− log

(
m− 1

2

)}
+

1

m− 3

(x− µ)2

σ2
+

m− 1

2m(m− 3)
. (11)

1Numerical approximations of the digamma function are widely implemented in scientific
software, for example digamma(x) in R (version 3.1.1), and special.psi(x) in SciPy (version
0.14.0).
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The expectation E[·] is taken over µ̂ and σ̂2; the observation x is a constant.
Equation (11) shows that, for finite m, the expected standard Ignorance score
is different from the population Ignorance score.

By combining Eq. (9) and Eq. (10), and solving for the population Ignorance
score, we find that the score

I∗(µ̂, σ̂2;x) =
1

2
log 2π +

1

2
log σ̂2 +

1

2

(
m− 3

m− 1

)
(µ̂− x)2

σ̂2

− 1

2

{
Ψ

(
m− 1

2

)
− log

(
m− 1

2

)
+

1

m

}
(12)

is an unbiased estimator of the population Ignorance score, that is

E[I∗(µ̂, σ̂2;x)] = I(µ, σ2;x). (13)

We will refer to I∗(µ̂, σ̂2;x) as the bias-corrected Ignorance score. Note that,
Ψ(x) − log(x) is of order 1/x for large x [Abramowitz and Stegun, 1972, eq.
6.3.18]. Consequently, I∗(µ̂, σ̂2;x) converges to I(µ, σ2;x) for m → ∞. More-
over, note that unbiasedness implies that the Ignorance score calculated for
a finite ensemble using Eq. (12) is, on average, equal to the Ignorance score
achieved by an infinitely large ensemble for which µ̂ = µ and σ̂2 = σ2.

Figure 2 illustrates differences between the standard and bias-corrected Igno-
rance score if ensembles and observations are drawn from different distributions
(unlike Figure 1). Artificial observations are drawn again iid from N (0, 1), and
artificial m-member ensembles are drawn iid from N (0, σ2). The expectations
of the standard Ignorance score, of the population Ignorance score, and of the
bias-corrected Ignorance score, taken over the distributions of the observations
and ensembles, are shown as functions of σ. Note that these expectations could
also be approximated by sample averages over large data sets of forecasts and
observations drawn from the respective distributions. The systematic bias due
to the finiteness of the ensemble shows as a vertical offset of the curves. The
vertical offset is the larger, the smaller the ensemble is, and at any given value
of σ, the expected standard Ignorance score can be improved by generating
a larger ensemble. In contrast to the standard Ignorance score, the expecta-
tion (or long-term average) of the bias-corrected Ignorance score is equal to the
expected population Ignorance score for all values of σ and m.

Figure 2 further shows that the standard Ignorance score rewards ensembles
that violate statistical consistency [Anderson, 1996] (i.e., the statistical indis-
tinguishability between ensemble members and observations). The expected
standard Ignorance score obtains its optimum at a value of σ which differs from
the standard deviation of the observation. The standard Ignorance score there-
fore rewards ensemble forecasts that have different statistical properties than
the observation. The ensemble that optimizes the expected standard Ignorance
score is overdispersive, that is its spread is on average higher than that of the
observation. The ensemble forecasts that minimise the expected standard Igno-
rance score would therefore not pass the test for statistical consistency proposed
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Figure 2: Verifications x are drawn iid from N (0, 1), and m-member ensem-
bles are drawn iid from N (0, σ2). The dashed gray line corresponds to the
expected Ignorance score for m→∞, the black dashed lines correspond to the
expected standard Ignorance scores of finite ensembles (from top to bottom:
m = 5, 10, 20, 50), and the black full line shows the expected bias-corrected
Ignorance score (independent of m). Markers indicate the minima along their
respective curves.
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by Anderson [1996], and the individual ensemble members cannot be interpreted
as equally likely scenarios for the observation.

The expectation of the bias-corrected Ignorance score I∗ is equal to the popu-
lation Ignorance score. The equality holds for all ensemble sizes greater than 3.
Increasing the ensemble size, say from 5 to 10, does not improve the expected
value of I∗. As a consequence of unbiasedness with respect to the ensemble size,
the score I∗ does not suffer from the bias of the optimum. The expectation of
I∗ is optimized if the ensemble members are drawn from the same distribution
as the observation. Ensembles are rewarded for being statistically consistent
with the observation.

The expectation of the estimator I∗ is insensitive to the number of ensemble
members. It can therefore be used to compare ensembles of different sizes. But
I∗ also estimates the potential Ignorance score of an infinitely large ensemble.
There might be cases where am-member ensemble is available, but the forecaster
is interested in the potential score if the ensemble had M 6= m members. For
example, he might be interested in the number of members he would have
to generate in order to achieve a certain Ignorance score, or whether his m-
member ensemble forecasting system would outperform a competing M -member
ensemble if it had the same number of members. In appendix A.4, we have
derived an estimator of the Ignorance score, denoted I∗m→M (Eq. (30)), which
extrapolates the Ignorance score of an m-member ensemble to the score that
it would achieve if it had M 6= m members. The score I∗m→M is included for
completeness, and will not be discussed further in this article.

3 Application to seasonal climate prediction

We illustrate the possible benefits of using a bias-corrected score by a practi-
cal example. We consider ensemble predictions of the summer (JJA) mean air
surface temperature over land over the area limited by 30N – 75N and 12.5W
– 42.5E, initialized on the 1 May of the same year. The forecasts are generated
by ECMWF’s seasonal forecast system “System4” [Molteni et al., 2011] with
start dates from 1981 to 2010 (n = 30), and m = 51 ensemble members. Veri-
fying observations are taken from the WFDEI gridded data set [Weedon et al.,
2011, Dee et al., 2011]. All data were downloaded through the ECOMS user
data gateway [ECOMS User Data Gateway, 2014]. The ensemble and obser-
vation time series are plotted in Figure 3, along with the geographical region
over which temperatures have been averaged. Visual inspection shows that a
Normal approximation of the ensemble forecasts is justified, which is strength-
ened by the approximately uniform distribution of the p-values of Shapiro-Wilk
normality tests applied to the ensembles. The System4 ensemble has a cold bias
of ≈ −0.3K. The observations show a linear trend of ≈ 0.05K/yr which is rea-
sonably well reproduced by the ensemble mean (≈ 0.03K/yr). After removing
linear trends, the Pearson correlation coefficient between ensemble means and
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Figure 3: Upper panel: Time series of System4 ensemble forecasts (small gray
markers) and observations (large black markers) for surface air temperature
averaged over the gray area in the lower left panel. Lower right panel: P-values
of Shapiro-Wilk normality tests applied to the individual ensemble forecasts,
plotted over time.
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Figure 4: Illustration of the effect of finite ensemble sizes on the average Igno-
rance score, comparing climatological ensembles of size m̃ (triangles) to System4

ensembles of size m̃ (circles). The standard Ignorance score Î is shown in gray,
and the bias-corrected Ignorance score I∗ is shown in black.

observations is 0.46.

We study the effects of finite ensemble sizes by sampling smaller subensembles
from the full 51-member ensemble and calculate their Ignorance scores. At each
time t = 1, · · · , 30 we randomly sample m̃ ≤ m ensemble members without
replacement, and calculate the Ignorance score (averaged over all t), using the

estimators Î and I∗. At each value of m̃, scores are averaged over 103 realiza-
tions of random subensembles.

In Figure 4, the average standard Ignorance score and average bias-corrected
Ignorance score of the m̃-member System4 ensembles are compared to the scores
of m̃-member climatological ensembles. These are randomly sampled without
replacement from the 30 years of observation data. In order to avoid spurious
skill, a climatological ensemble for time t never includes the observation at time
t; the maximum value of m̃ for the climatological ensemble is therefore 29. Fig-
ure 4 shows that the average standard Ignorance score Î depends systematically
on the number of ensemble members, while the average bias-corrected Ignorance
score I∗ is insensitive to the ensemble size, except for a slight trend at small
values of m̃. The dependence of Î on the ensemble size leads to the conclu-
sion that a 29-member climatological ensemble is preferable to a 10 member
System4 ensemble. For very small ensemble sizes, the climatological ensemble
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Figure 5: Illustration of the effect of finite ensemble sizes on the average Ig-
norance score, comparing unbiased ensembles of size m̃ (circles) to artificially

biased ensembles of size m̃ (diamonds). The standard Ignorance score Î is shown
in gray, and the bias-corrected Ignorance score I∗ is shown in black.

has a lower standard Ignorance score than the System4 ensemble, even if the
number of members is equal. This difference might be due to the cold bias of
the System4 ensemble. The above remarks highlight the important difference
between the two scores: While the standard Ignorance score evaluates the fore-
cast that was derived from a finite ensemble, the bias-corrected Ignorance score
evaluates the underlying distribution from which the finite ensemble was drawn.
The sensitivity to ensemble size of the score that evaluates the derived forecast
can lead to the conclusion that forecasts derived from a large ensemble gener-
ated by a simple forecasting system such as climatology is superior to a small
ensemble generated by a sophisticated physical-dynamical forecasting system.
Larger ensembles allow for more robust estimation of the forecast distribution,
which is reflected by the finite-ensemble bias of the standard Ignorance score.
On the other hand, the underlying distribution is independent of the ensemble
size. If the bias-corrected Ignorance score is used to evaluate this underlying
distribution, the more sophisticated System4 always outperforms the climato-
logical ensemble in this score, independent of the number of ensemble members.
This result suggests that the underlying (time-varying) distributions from which
System4 samples its ensembles assign, on average, higher probability to the ob-
servations than the (time-constant) climatological distribution.

For the next analysis we create artificial ensembles whose underlying distribu-
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tions vary in time, but which are (with great certainty) not more skilful than
System4. We first transform System4 ensemble and observation data to anoma-
lies by removing their respective grand averages. We then create a biased version
of System4 by adding to each forecast an artificial bias of 0.25 climatological
standard deviations (≈ 0.15K). We assume that a verification measure that
evaluates the underlying distribution should be expected to rank the unbiased
System4 ensemble better than the artificially biased System4 ensemble, indepen-
dent of ensemble size. In Figure 5 we compare the unbiased System4 ensemble
with the artificially biased System4 ensemble at different values of m̃, using the
standard estimator and bias-corrected estimator of the Ignorance score. Fig-
ure 5 shows that the standard Ignorance Î on average assigns a better score to
a biased ensemble with more than 20 members than to an unbiased ensemble
with less than 10 members. On the other hand, the bias-corrected Ignorance
score always ranks the two ensemble forecasts such that the unbiased ensembles
obtains a better average score than the biased ensembles, independent of the
number of members. This analysis shows that, forecast distributions derived
from a biased ensemble can achieve better average scores than forecast distribu-
tions derived from unbiased ensembles if the biased ensemble has more members.
The more robust estimation of the forecast distribution from a larger ensemble
offsets the disadvantage due to the systematic bias. On the other hand, if the
bias-corrected Ignorance score is used to evaluate the underlying distributions
of the ensembles, the average score of an inferior (e.g. biased) ensemble cannot
be improved simply by adding more members.

The resampling approach of this section can be used as an alternative method
to estimating the finite-ensemble effect of a verification score. By subsampling
the larger ensemble down to the size of the smaller ensemble, and averaging over
many realizations of the subsampling, we can approximate the standard Igno-
rance score that the larger ensemble would achieve if it had less members. This
makes the average standard Ignorance scores of two competing ensembles com-
parable at the smaller ensemble size. This alternative approach to accounting
for the finite-ensemble bias deserves further attention, but will not be studied
here in more detail. We only note that subsampling and averaging is compu-
tationally more expensive than calculating a bias-corrected score that accounts
for the finite-ensemble effect by its mathematical properties. Furthermore, the
subsampling approach cannot be used to estimate the score that an ensemble
would achieve if it had more members.

4 Discussion

4.1 The underlying distribution and derived forecasts

By correcting the finite-ensemble bias of the standard Ignorance score, we have
derived an unbiased estimator of the score of the underlying distribution. De-
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riving a score whose expectation is independent of the ensemble size seems
irreproachable, and has been achieved for different scores (cf. references in sec-
tion 1). But the concept of evaluating the unknown underlying distribution
warrants further discussion. In this section, we argue that a clear distinction
must be made between an evaluation of a derived forecast distribution, which
depends on ensemble size, and an evaluation of the underlying distribution,
which should be independent of ensemble size.

The underlying distribution is a hypothetical concept. The individual ensemble
members are perceived as random quantities and this randomness is described
by an underlying distribution. Ensemble forecasting systems can be imagined
as (high-dimensional) random number generators that draw samples from the
underlying distribution. The underlying distribution can therefore be thought
of as a part of the ensemble forecasting system. Estimating the score of the
underlying distribution can therefore be interpreted as a quantification of the
skill of the ensemble forecasting system. Evaluating the score of the underly-
ing distribution is therefore especially relevant for model developers, who are
interested in the quality of the forecasting system.

Even though we can retrospectively estimate its score, the underlying distribu-
tion is not accessible for forecasting. Only finite ensembles drawn from that
distribution are ever available and the number of members is limited by the
computational resources. Forecasters and decision-makers have to rely on prob-
abilistic forecasts derived from the finite ensemble. These forecast users will
probably be more interested in an estimate of the score of the derived forecast
than in an estimate of the score of the underlying distribution. For these users,
the finite-ensemble bias is a practically relevant effect – more ensemble members
allow for a more robust estimation of the forecast distribution, and it is sensible
to assume that larger ensembles provide better forecasts. However, the same
user might also be interested in statistically consistent ensemble forecasts, for
example if individual members of a global forecast model are used as scenarios
to drive a high-resolution regional model. In that case, rewarding ensembles for
being statistically consistent by using a bias-corrected score might be preferable.

We have shown that, due to the finite-ensemble bias, the average Ignorance score
of the derived forecast is not necessarily indicative of the average Ignorance score
of the underlying distribution. Due to the finite-ensemble bias, it is possible that
a forecast derived from a statistically inconsistent, biased, or simple climatolog-
ical forecast system outperforms forecasts derived from statistically consistent,
unbiased, or sophisticated physical-dynamical ensemble forecasts. If the under-
lying distribution were available, the latter forecasts might be preferable to the
former. But the difference in ensemble size, and the fact that derived forecasts
from finite ensembles are evaluated, reverses the preference.
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4.2 When is the finite-ensemble bias-correction desired?

There are situations, where the bias-correction is clearly not desired, namely
when the quality of the derived probability forecast is of interest, instead of
the quality of the underlying ensemble distribution. If a probability forecast is
always generated using a specified number of ensemble members, and a Normal
approximation N (µ̂, σ̂2) is used, the standard Ignorance score Î rather than
the bias-corrected Ignorance score I∗ is the correct version of the Ignorance
score to evaluate this probability forecast. The potential score for m→∞ is of
no interest in this case, because only finitely many ensemble members are ever
available. The bias of the optimum is acceptable if it implies that a statistically
inconsistent ensemble provides a better probability forecast than a statistically
consistent one. However, due to the bias of the optimum, the members of
the optimal ensemble are not necessarily exchangeable with the observation.
The individual members must therefore not be interpreted as “possible future
scenarios”. In fact, the individual ensemble members should not be interpreted
at all in this case; only the derived continuous forecast distribution is of interest.

There are at least three applications where an estimation or correction of the
finite-ensemble bias is clearly desirable: Firstly, in numerical model develop-
ment, often new ensemble prediction systems are to be explored, using for
example a new initialization technique, a new parametrization scheme, or an
experimental dynamical core. If we adopt the notion that the hypothetical un-
derlying distribution is a property of the forecasting system, such modifications
of the forecasting system change, and possibly improve, the score of the un-
derlying distribution. In such pilot studies, it might be desirable to limit CPU
time by generating ensembles with fewer members than the final (operational)
forecast product will have, and then accounting for the finite ensemble bias by
using a suitable score. Estimating the score of the underlying distribution then
provides a more realistic estimate of the score of the final product, especially in
relation to competing forecasting systems with possibly larger ensembles.

Secondly, if ensembles of different sizes are compared and forecasts derived from
them have different scores, it might be of interest whether the larger ensemble
achieves a better score due to the finite-ensemble bias, or because its underlying
distribution is more skilful at predicting the real world and therefore assigns
higher probablity to the observations. This difference is illustrated in section 3,
where it is shown that a biased ensemble can outperform an unbiased ensemble
merely by having more members. A score that accounts for the finite-ensemble
bias can be used to inform the forecaster that increasing the size of the smaller
ensemble to the size of the bigger ensemble could produce an even better fore-
cast.

Lastly, the bias of the optimum of the standard Ignorance score, illustrated in
Figure 2, is clearly undesirable when the Ignorance score is used as an objective
function for parameter estimation and optimization. For example, a verification
score might be used to tune parameters of the ensemble forecasting system to
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match as well as possible the corresponding parameter of the observation (such
as the standard deviation in Figure 2). A biased score which evaluates the de-
rived forecast distribution might favor an ensemble that differs systematically
from the observations. Even though the ensemble system optimized by the bi-
ased score has been tuned to generate the best possible forecasts, the ensemble
members do not behave like the real world. Removing the bias of the optimum
by using a bias-corrected score ensures that the optimised ensemble is statisti-
cally consistent with the observations. The optimised parameter values of the
ensemble are equal to the parameter values of the real world (provided the pa-
rameter really has a physical interpretation). Additionally, the optimal value
of the parameter does not change if the ensemble size is changed. If the score
that is used for parameter tuning has a bias of the optimum, the parameters
would have to be re-tuned whenever the ensemble size is changed. We con-
sider unbiased parameter estimation and optimisation a relevant and promising
application of bias-corrected verification scores, but more work is necessary to
fully explore their applicability and limitations.

4.3 Propriety and fairness

A scoring rule S is proper (relative to a class P of probability measures) if, for
any q ∈ P, the expected score taken over the distribution q of the observation x,
Ex∼q[S(p, x)], is optimized when p = q [Gneiting and Raftery, 2007]. A proper
scoring rule thus favours (on average) forecasts p that equal the distribution q
of the observation. The standard Ignorance score defined by Eq. (1) is a proper
scoring rule. Here, S is a function of an observation x and a distribution p. Our
forecast is an ensemble, not a distribution, so we must decide what distribution
to use for p. If we use a distribution derived from the ensemble, such asN (µ̂, σ̂2),
then the standard Ignorance score favours (on average) ensembles for which the
derived distribution N (µ̂, σ̂2) equals the distribution of the observation. If we
want to evaluate the derived distribution as a probability forecast then the
standard Ignorance score is a proper score to use. But we have shown that
ensembles that optimise the standard Ignorance score on average are not those
whose underlying distribution equals the distribution of the observation.

Recently, Fricker et al. [2013] and Ferro [2013] introduced fair scores as a pos-
sible extension of proper scores to ensemble forecasts. If we want to evaluate
the underlying distribution, and thereby favour ensembles whose underlying
distribution equals the distribution of the observation (so that ensembles and
observations are statistically consistent, for example) then we should use a fair
score. A scoring rule S∗ is fair (relative to a class P of probability measures) if,
for any p, q ∈ P, the expectation of the score, taken with respect to the distri-
bution q of the observation x, and with respect to the distribution p from which
the ensemble members yi were independently drawn, Ex∼qEyi∼p[S

∗(y, x)], is
optimized when p = q. A fair score thus favours (on average) ensembles whose
underlying distribution is equal to the distribution of the observation. The bias-
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corrected Ignorance score is fair relative to the class of Normal distributions.
Here, S∗ is a function of an observation x and an ensemble y. Since y is not a
distribution, it would not be meaningful to ask whether I∗ is proper. It is true,
however, that S(p, x) := Eyi∼p[S

∗(y, x)] is proper. The reader is referred to
Ferro [2013] for more discussion of the relation between fair and proper scores.

Unbiasedness of the bias-corrected Ignorance I∗ only holds for independent and
identically Normal distributed ensemble members. If the ensemble members are
non-Normal, I∗ is biased (cf. section 4.4 and appendix B). Therefore, (adopt-
ing the terminology of Gneiting and Raftery [2007]), we say that the score I∗
is fair relative to the class of Normal distributions. In contrast, the fair con-
tinuous ranked probability score (fair CRPS) for continuous ensemble forecasts
proposed by Fricker et al. [2013] is independent of the distribution of the en-
semble members, and therefore has wider applicability than the fair Ignorance
score presented here. Note that there is an interesting difference between the
Ignorance score and the CRPS. According to Figure 2, the standard Ignorance
score favors overdispersive ensemble forecasts. By contrast, according to Figure
2 of Ferro [2013], the CRPS without fairness adjustment favors underdisper-
sive ensembles. This difference shows that without a bias-correction for finite
ensemble sizes, different proper scores can favor ensembles that are not only
inconsistent with the observation, but the nature of the inconsistency can also
be fundamentally different for different scores. This is shown by the bias of the
optimum of the standard deviation, which is positive for the standard Ignorance
score and negative for the unadjusted CRPS.

4.4 Non-Normal data

We have shown in section 2 that the bias-corrected Ignorance score I∗ com-
pletely removes the finite-ensemble bias if the ensemble members are identically
and independently Normal distributed. In practical applications such as atmo-
spheric forecasts, where ensemble members are generated by complex numerical
computer simulations, Normality appears to be too strong an assumption. It
is unrealistic to assume that outputs from computer simulations are exactly
Normally distributed. However, if the ensemble members are not iid Normal
distributed, a basic assumption in the derivation of I∗ is violated, and I∗ might
be biased after all.

We show in appendix B that for non-Normal ensemble members, I∗ is indeed
biased. This is shown for ensembles with heavy-tailed distributions, skewed
distributions and bimodal distributions. But the bias of I∗ is always consid-
erably smaller than the bias of Î. This reduction of the finite-ensemble bias
implies that if the ensemble data suggests a Normal approximation, and if the
finite-ensemble bias of the Ignorance score is undesired, I∗ should be used for
ensemble verification, rather than Î.
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4.5 Bias-variance decomposition

Bias is not the only factor that contributes to differences between a finite sample
estimator and the corresponding population value. Another important factor is
the estimator variance, i.e. the average squared difference of the estimator from
its expectation. The sum of the squared bias and the variance can be shown to be
equal to the expected squared error of the estimator, i.e. the expected squared
difference between the estimator and the population value [Mood, 1950, sec.
7.3]. That is, an unbiased estimator can still have a larger error than a biased
estimator, by having a very large variance. This is not the case for I∗. We
show in appendix A.3, that under a first order approximation, the conditional
variance of I∗(µ̂, σ̂2;x), given x, is always smaller than the conditional variance

of Î. This means, that I∗ is not only equal to the population score on average,
it is also on average closer to the population score in a mean-squared sense,
which provides further motivation to use I∗ instead of Î.

5 Summary and outlook

We have studied the applicability of the Ignorance score for ensemble verifica-
tion. We focused on Normal approximations, where the ensemble forecast is
transformed to a continuous Normal forecast distribution whose parameters are
estimated by the ensemble mean and variance. It was shown that the Ignorance
score applied to this forecast distribution is biased with respect to the ensemble
size: Larger ensembles obtain systematically better scores. In section 2 a new
estimator of the Ignorance score was derived which removes the finite ensemble
bias; the expectation of the new estimator is independent of the number of en-
semble members. The main advantage of the new score is that it allows for a
fair comparison of ensemble forecasts with different number of members. This
was illustrated in section 3 by application to seasonal climate forecasts. It was
shown that the standard Ignorance score favors biased or climatological ensem-
bles with many members over unbiased and physical dynamical ensembles with
few members. In contrast, the bias-corrected Ignorance score on average ranks
the statistically consistent and physical dynamical ensemble better, regardless
of the number of members. In section 4, we concluded that the bias-corrected
Ignorance score is applicable also to non-Normal ensemble data, and that the
new score estimator not only reduces the bias, but also the estimator variance,
thereby decreasing the overall estimation error of the score. It was shown that
the new estimator is a strictly fair score, and situations were discussed when
bias-corrected scores are preferable for ensemble evaluation.

There is some scope to extend the results of this paper. For example, it might
be possible to derive a bias-corrected Ignorance score of a multivariate Normal
forecast, since the sampling distributions of the multivariate sample mean and
covariance matrix are known. Further, a bias-corrected score for affine trans-
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formations of ensemble forecasts would be useful to assess the quality of ensem-
ble forecasts that were recalibrated by such a transformation. However, affine
transformations can introduce correlations between the ensemble members, and
deriving a bias-corrected score for non-independent ensembles is difficult. It
might also be possible to derive bias-corrected estimators of different verifi-
cation scores under a Normal assumption, or bias-corrected estimators of the
Ignorance under different distributions. This paper provides a framework for
how these problems can be approached, and how the properties of the resulting
estimators can be analysed.

The results of this article are potentially useful outside the area of forecast
verification. First of all, the Ignorance score can be regarded as the negative
log-likelihood of a Normal distribution which is represented by a finite sample.
The bias correction derived in section 2 might be useful for maximum likelihood
parameter estimation. Furthermore, the Ignorance score is motivated by the en-
tropy as an information-theoretic measure of predictability [Roulston and Smith,
2002]. The bias-corrected version derived in this article might therefore be use-
ful to account for finite-ensemble effects in information-theoretic predictability
frameworks [DelSole and Tippett, 2007].
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A Appendix: Proofs

A.1 E[log σ̂]

The derivation follows from the properties of distributions in the exponential
family and their sufficient statistics [Lehmann and Casella, 1998, sec. 1.5]. If
X ∼ χ2

m−1, we can define τ := (m− 1)/2− 1 and write the pdf of X as

pX(x) = exp
{
τ log x− x

2
− (τ + 1) log 2− log Γ(τ + 1)

}
. (14)

Differentiating the integral
∫
dx pX(x) with respect to τ yields

E[logX] = log 2 + Ψ

(
m− 1

2

)
(15)
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where Ψ(x) = d/dx log Γ(x) is the digamma function. Applying Eq. (15) to σ̂2,
whose distribution is given by Eq. (8), we get

E
[
log σ̂2

]
=E

[
log

m− 1

σ2
σ̂2

]
+ log

σ2

m− 1
(16)

= log σ2 + Ψ

(
m− 1

2

)
− log

(
m− 1

2

)
. (17)

A.2 E
[(

µ̂−x
σ̂

)2
]

Let the independent random variables Z and V have distributions Z ∼ N (0, 1)
and V ∼ χ2

m−1. Then the non-central t-distribution tm−1,x, with m− 1 degrees
of freedom and noncentrality parameter x, is defined through

Z + x√
V/(m− 1)

∼ tm−1,x (18)

Using the sampling distributions of µ̂ and σ̂2, and their independence, we get
the following relation:

√
m
µ̂− x
σ̂

=

µ̂−µ
σ/
√
m

+
√
m
σ (µ− x)√

m−1
σ2 σ̂2/

√
m− 1

(19)

∼ t
m−1,

√
m
σ (µ−x)

. (20)

The raw moments of a random variable T ∼ tm,x are given by Hogben et al.
[1961]:

E
[
T k
]

=
(m

2

) k
2 Γ

(
m−k

2

)
Γ
(
m
2

) exp

(
−x

2

2

)
∂k

∂xk
exp

(
x2

2

)
. (21)

By calculating the second raw moment of
√
m(µ̂− x)/σ̂ and dividing by m we

get

E

[(
µ̂− x
σ̂

)2
]

=
m− 1

m− 3

(
µ− x
σ

)2

+
m− 1

m(m− 3)
. (22)

A.3 var(I∗) ≤ var(Î)

In this appendix, we calculate approximate expressions for the variances of the
standard and bias-corrected Ignorance score. To be more precise, we calculate
the conditional variance of I(µ̂, σ̂2;x), given x. Only variability of the random
variables µ̂ and σ̂2 contributes to the variance, while the observation x is kept
constant. The results are used to show that var(I∗) ≤ var(Î).
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It follows from the sampling distributions of µ̂ and σ̂2 (Eq. (7) and Eq. (8))
that var(µ̂) = σ2/m and var(σ̂2) = 2σ4/(m − 1). Furthermore, µ̂ and σ̂2 are

statistically independent. We use these results to approximate the variance of Î
by propagation of error [Mood, 1950, sec. 2.3]. A first-order Taylor expansion

of Î(µ̂, σ̂2;x) around µ and σ2 yields

var[Î(µ̂, σ̂2;x)] ≈

(
∂Î
∂µ̂

)2

var(µ̂) +

(
∂Î
∂σ̂2

)2

var(σ̂2) (23)

and analogously for I∗. Define the variable ẑ = (µ̂−x)/σ̂. Then the approximate

variances of Î and I∗ are given by

var(Î) ≈ ẑ2

m
+

1

2(m− 1)

(
1− ẑ2

)2
, and (24)

var(I∗) ≈
(
m− 3

m− 1

)2
ẑ2

m
+

1

2(m− 1)

(
1− m− 3

m− 1
ẑ2

)2

(25)

It follows from Eq. (24) and Eq. (25) that the difference between the variances
is

var(Î)− var(I∗) =
2ẑ4

(m− 1)2

(
1− 1

m− 1

)
+

2ẑ2

m(m− 1)2
(m− 4) (26)

which is non-negative for all m ≥ 4. That is, under the first-order approxima-
tion, the conditional variance of I∗, given x, is never greater than the conditional
variance of Î. The result is independent of the value of the observation x.

A.4 I∗m→M

We write the ensemble mean and variance calculated from an m-member en-
semble by µ̂m and σ̂2

m, respectively. In this appendix we show how to use µ̂m
and σ̂2

m to estimate the Ignorance score that the same ensemble would achieve
if it had M 6= m members. First note that it follows from Eq. (9) that

E
[
log σ̂2

M

]
= E

[
log σ̂2

m −Ψ

(
m− 1

2

)
+ Ψ

(
M − 1

2

)
+

log

(
m− 1

2

)
− log

(
M − 1

2

)]
, (27)
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where σ̂2
m and σ̂2

M are ensemble variances of m- and M -member ensembles
sampled from the same distribution. Similarly, it follows from Eq. (10) that

E

[
(µ̂M − x)2

σ̂2
M

]
= E

[{(
m− 3

m− 1

)
(µ̂m − x)2

σ̂2
m

− 1

m

}
M − 1

M − 3
+

M − 1

M(M − 3)

]
, (28)

where µ̂m and µ̂M are ensemble means of m- and M -member ensembles sampled
from the same distribution. Using Eq. (27) and Eq. (28), we can derive the score

I∗m→M (µ̂m, σ̂
2
m;x) (29)

=
1

2
log 2π +

1

2
log σ̂2

m +
1

2

(
M − 1

M − 3

)(
m− 3

m− 1

)
(µ̂m − x)2

σ̂2
m

+
1

2

[
Ψ

(
M − 1

2

)
−Ψ

(
m− 1

2

)
+ log

(
m− 1

M − 1

)
+

(m−M)(M − 1)

Mm(M − 3)

]
, (30)

which satisfies

E
[
I∗m→M (µ̂m, σ̂

2
m;x)

]
= E

[
Î(µ̂M , σ̂

2
M ;x)

]
. (31)

That is, the score I∗m→M is a function of the sample mean and variance of
an m-member ensemble, but on average it is equal to the Ignorance score of a
hypothetical M -member ensemble sampled from the same distribution.

B Appendix: Behavior for Non-Normal ensem-
ble data

In this appendix, we consider the effect of non-Normal ensemble data on the bias
of the Ignorance score. If the ensemble members are not iid Normal distributed,
an additional systematic error arises. By making the Normal assumption for
non-Normal ensembles, possible features of the forecast distribution such as
heavy-tailedness, skewness, or multimodality are neglected. Suppose the obser-
vation is a skewed random variable, and the ensemble is indeed drawn from the
correct skewed distribution. Transforming the ensemble to a Normal distribu-
tion degrades the skill of the ensemble forecasting system, because skewness is
ignored. In this case, the average Ignorance score of the Normal approximation
of the forecast distribution is worse than the average Ignorance score that the
true ensemble distribution would achieve, if it were known. Clearly, the ensuing
bias due to non-Normality of the ensemble is not removed by I∗.
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Figure 6: Illustration of the types of Non-Normality considered. Left column:
Heavy-tailed t-distributions with θ = 4 ( ) and θ = 20 ( ) degrees of freedom.
Middle column: Positively skewed Gamma distributions with shape parameter
θ = 5 ( ) and θ = 50 ( ). Right column: Bimodal Normal mixture with modes
at θ = ±0.9 ( ) and θ = ±0.75 ( ). All distributions have been scaled and
shifted to have zero mean and unit variance. The standard Normal distribution
is shown in gray.

For ensemble forecasts which are obviously non-Normal, i.e. which have mem-
bers that are gross outliers, which are heavily skewed or which exhibit strong
multimodality, a Normal assumption would not be made in practice. The Ig-
norance score should not be estimated by Eq. (5) for these ensembles, and a
bias-corrected Ignorance score for Normal ensembles is of no interest in such
cases.

On the other hand, there might be a moderate violation of Normality, which is
not immediately obvious, or which is small enough such that a Normal assump-
tion seems a good approximation. In this section, we consider three kinds of
moderate deviations from Normality that might occur in practical applications:
Heavy-tailedness, skewness, and bimodality. In order to keep things simple, we
consider only reliable ensembles which are always drawn from the same distri-
bution as their verifying observation. Furthermore, all distributions are scaled
and shifted to have zero mean and unit variance. In each case, the degree of
Normality is tuned by a distribution-specific Normality parameter θ, that has
a limiting value for which the respective distribution converges to the standard
Normal distribution.

We simulate heavy-tailed ensembles and observations by Student’s t-distribution,
denoted by tθ. The parameter θ (which we assume to be > 2) denotes the degree
of freedom of the t-distribution. The t-distribution has zero mean and converges
to the Normal distribution for θ → ∞. The random variable X ∼ tθ has vari-
ance θ/(θ − 2). Thus, the random variable

√
(θ − 2)/θX has unit variance, as

desired for our study. Secondly, we simulate skewed ensembles and observations
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by a Gamma distribution Γ(θ,
√
θ) with shape parameter θ. By setting the rate

parameter to
√
θ the variance is set to unity. The random variable X ∼ Γ(θ,

√
θ)

has mean equal to
√
θ, thus the random variable X −

√
θ has zero mean. The

Gamma distribution Γ(θ,
√
θ) has skewness 2/

√
θ and converges to the Normal

distribution for θ → ∞. Lastly, we simulate bimodal ensembles and observa-
tions by a Normal mixture. Define the Bernoulli-distributed random variable
U ∼ Ber(1/2) and the Normal random variable Y ∼ N (θ, 1 − θ2). Then the
random variable X = (2U−1)Y has a bimodal Normal distribution with modes
at ±θ, zero mean, and unit variance2. The parameter θ ∈ [0, 1) tunes the Nor-
mality; for θ = 0 the distribution of X is the standard Normal. The three types
of non-Normal distributions are sketched in Figure 6 for different values of θ.

For observations and ensembles sampled from a Nonnormal distribution with
some parameter θ, we calculate 4 different Ignorance scores:

1. The population Ignorance score of the underlying distribution p(x|θ) from
which the observation was sampled, denoted by Ip := − log p(x|θ).

2. The Ignorance score of the Normal approximation of p(x|θ), denoted by
In. Recall that all non-Normal distributions that we consider always have
zero mean and unit variance; the standard Normal is therefore always
the best Normal approximation of the true p(x|θ), and we have In(x) =
log(2π)−1/2 + x2/2 every time.

3. The standard Ignorance score Î, calculated by Eq. (5), using the ensemble
mean and ensemble standard deviation; and

4. The bias-corrected Ignorance score I∗, calculated by Eq. (12), where we
also use the ensemble mean and ensemble standard deviation.

Note that Ip and In are independent of any ensemble forecast.

We illustrate the effect of nonnormality on the Ignorance score for Normal en-
sembles by simulating artificial data from the three types of nonnormal distri-
butions for different values of the non-Normality parameter θ, and for different
values of the ensemble size m. For each combination of θ and m we have sim-
ulated data sets of 106 pairs of ensemble forecasts and observations. For each
data set we have then calculated the average of each of the four Ignorance scores
described above. The results are illustrated in Figure 7, Figure 8, and Figure 9
for heavy-tailed, skewed, and bimodal distributions, respectively.

In the upper panel of Figure 7 the average Ignorance scores are shown as a
function of θ for the heavy-tailed t-distribution. Due to convergence to Normal-
ity, the score of the continuous Normal approximation In and the score of the
correct t-distribution Ip converge for θ →∞. That is, the bias due to the Nor-
mal approximation vanishes for large θ, as expected. The standard Ignorance

2Note that the distribution function is truly bimodal (i.e. has a local minimum at x = 0)

only for θ >
√

1/2
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Figure 7: Ignorance scores and their biases for heavy-tailed data as functions of
the non-Normality parameter θ. Upper panel: Population Ignorance scores of
the t-distribution ( ), of the Normal approximation N (0, 1) ( ), and for finite
ensemble forecasts (black: m = 5, dark gray: m = 10, light gray: m = 50;
thick dashed lines: standard Ignorance score, thinner lines with markers: bias-
corrected Ignorance score). Lower panel: The respective biases, i.e. the differ-
ences between the three Ignorance scores that use a Normal approximation, and
the population Ignorance score of the t-distribution, plotted in log-normal axes.
See text for details about the scores and the definition of the non-Normality
parameter θ.
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Figure 8: Same as Figure 7 but for skewed distributions. See text for the
definition of the non-Normality parameter θ.
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Figure 9: Same as Figure 7 but for bimodal distributions. See text for the
definition of the non-Normality parameter θ.
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scores of small ensembles are much larger than both, Ip and In. The differ-
ences decrease as the distribution becomes more Normal (i.e. for higher θ), and
as the ensembles get larger. The average values of I∗ are always closer to the
population Ignorance score Ip of the true t-distribution than the corresponding

values of Î, i.e. the bias is reduced by I∗, albeit not removed completely.

The biases of In, Î and I∗, i.e. their average absolute differences to the score of
the true t-distribution, Ip, are shown in the lower panel of Figure 7. The bias of
I∗ is close to the bias of In. That is, the bias correction of I∗ reduces the bias
due the finiteness of the ensemble, and provides an approximation of the score
that an infinitely large ensemble would achieve under a Normal approximation.
The bias of I∗ is consistently smaller than the bias of Î, even though the
assumptions that were made to derive I∗ are not satisfied. In summary, I∗
cannot remove the bias due to the deviation from Normality, but it does reduce
the bias due to the finiteness of the ensemble.

Figure 8, which summarizes the results for the skewed ensemble data, looks
qualitatively similar to Figure 7. One striking difference is that, for large en-
sembles with m = 50 members, the bias of I∗ is considerably larger than the
bias of In in the case of the t-distribution (Figure 7), but it is almost identical
to the bias of In for the Gamma distribution. That means that I∗ provides a
better approximation to In in the skewed case than in the heavy-tailed case.
The biases in the bimodal case are illustrated in Figure 9. As for the other two
types of non-Normality, the biases of I∗ are generally smaller than the biases
of Î. Interestingly, the bias of I∗ is even smaller than the bias of In in some
cases. The general message from Figure 7, Figure 8, and Figure 9 is clear: I∗ is
systematically less biased than Î, even if the ensemble members are not exactly
Normal distributed.
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