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Abstract

River quality analysis is an important activity which, in Serbia, has been performed using the
Serbian Water Quality Index (SWQI). This is a measure based on a weighted aggregation of
10 water quality parameters. In this work, alternative methods drawing on visualisation
approaches used in multi-criterion decision analysis are applied to the problem of evaluating
river quality in the Danube. Two methods are considered: one which constructs a graph using
the dominance relation combined with a further multi-criterion ranking method, average rank,
and the other in which the dimensionality of the data is reduced using PCA for visualisation.
Results for data collected in 2010 are analysed and compared with the corresponding SWQI
values for the river in that year, and we find that by employing these methods it is possible to

reveal more information within the data than is possible by using SWQI alone.

1. Introduction

Water quality plays a vital role in all aspects of human and ecosystem survival. All living and
industrial activities are controlled by physical, chemical, biological and microbiological
activities (Mahapatra ef al., 2011; Vasiliev et al., 2014). Anthropogenic influences and
natural processes degrade surface waters and impair their use for drinking, industry,
agriculture, recreation and other purposes (Sanchez et al., 2007). In aquatic environments
organisms are exposed to mixtures of pollutants whose effects are hardly interpreted and
predicted exclusively from chemical analyses. Moreover, the analyses of pooled chemicals,
present at different compounds, increase uncertainty when evaluating water quality
(Monferran et al., 2011). Hence, analysing the quality of river water requires a range of
quality indicators, from which an overall measure of quality can be produced. Evaluation of
water quality parameters is necessary to plan and develop better water resource management

(Mahapatra et al., 2011). To establish water quality criteria, measures of chemical and
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physical constituents must be specified, as well as methods for reporting and comparing
results of water analysis (Saxena and Gangal, 2010). In order to evaluate water quality
synthetically, many techniques have been introduced to monitor and evaluate the effects of
pollution: traditional methods, modelling approaches, water quality indices (WQIs, e.g.
Armitage et al. (1983) and Prati ef al. (1971)), multivariate statistical techniques, such as
principal component analyses (PCA), artificial neural networks, artificial intelligence, fuzzy
logic, as well as combinations of some of them (Ma et al., 2013; Othman et al. 2012;
Monferran et al. 2011; Taner et al., 2011; Saxena and Gangal, 2010; Simdes et al. 2008;
Nasirian, 2007). The work presented in this paper is distinct from these examples in that none
of them are based on multi-criterion visualisation techniques constructed in terms of the

water quality parameters on which WQIs are based.

Multi-criterion decision making (MCDM) is a process by which a set of options can be
assessed according to a set of criteria. MCDM is often applied in cases where the selection of
a single choice from a set of alternatives is required, and provides techniques for drawing
together information from all of the criteria so that a decision maker can make an appropriate
selection. Often the criteria are in conflict with each other, and selecting an option which
performs well against one criterion means accepting poor performance on another criterion.
A range of MCDM techniques exist, and in this work we are concerned with those in which
alternatives are ranked, providing an ordering of the alternatives so that the best one can be
readily identified through visualisation. Visualisation of alternatives allows the decision
maker to observe how they relate to each other, for example, making use of spatial
information gleaned from the placement of alternatives in the visualisation, to better
understand the nature of the alternatives from which they must choose (e.g., Walker et al,

2013).
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In addition to selecting the best alternative, it can also be useful to identify the worst
alternatives. Engineers often undertake activities such as constructing maintenance schedules.
It is not usually feasible to maintain all of the components of an infrastructure, so those
components most urgently in need of maintenance must be identified so that they can be
prioritised in the schedule. This too is often formulated as a MCDM task, and one of the
visualisation methods used in this study has been applied in this area (for ranking district
metered areas in a water distribution network (McClymont ef al., 2011) and for analysing the
performance of the wireless access points in a mobile telephone network (Walker, 2013) for
the purpose of constructing maintenance timetables). MCDM techniques of this variety are
particularly well suited to river quality analysis as they allow engineers and scientists to
identify regions of the river that have particularly poor quality so that remedial action can be

taken.

In this work, we examine the quality of water in the Danube in Serbia. Due to its great
international importance, the Danube River has been the subject of numerous water quality
studies (Zivadinovié et al., 2012; Mici¢ et al., 2011; Bird et al., 2010; Kirschner et al., 2009;

Mici¢ and Hofmann, 2009; Maljevi¢ and Bala¢, 2007; Reli¢ et al., 2005).

Data was collected at a range of stations; in the MCDM context, these stations are the
alternatives, or individuals. A range of water quality parameters have been collected for each
of the stations at approximately monthly intervals for a year. These parameters are used as
criteria in order to compute the Serbian Water Quality Index (SWQI) which ranks stations

according to 10 criteria.

This paper presents an analysis of the water quality data using the criteria constructed under
the scheme. We use multi-criterion visualisation techniques, one based on methods for

ranking multi-criterion sets (Walker et al., 2010) and the other employing principal
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component analysis (Jolliffe, 2002). The visualisations are used to provide new insight into

the data, before which we discuss avenues of future work arising from this study.

2. Multi-criterion Visualisation

Visualisation is an active area of research within the MCDM community because of the
potential for revealing more about the characteristics of a multi-criterion dataset, or
population of individuals. Visualising a population of multi-criterion individuals is usually a
nontrivial task, since it is often the case that a large number of criteria must be incorporated
into the visualisation. In the case of a two or three dimensional population the task is
relatively straightforward: we must simply construct a scatter plot in two or three dimensions,
a visualisation approach with which most people are familiar and able to use. Unfortunately,
since most people are not able to comprehend four or more spatial dimensions visually, this is
not possible for populations comprising four or more criteria. It is therefore necessary to
develop techniques for visualising such populations, and one of two approaches can be taken:
either reduce the dimensionality of the population so that it can be visualised with a scatter

plot, or find a way of visualising all of the data in an intuitive fashion.

A range of methods have been developed for visualising a population in terms of the full set
of criteria. A considerable amount of work in visualising populations has been done in the
optimisation community; optimisation problems are often formulated in terms of a set of

problem objectives.

One of the early approaches developed was the Pareto race (Korhonen and Wallenius, 1988),
which enabled a decision maker to “drive” through the space of possible solutions to an

optimisation problem in order to steer an interactive optimisation procedure. More recently,
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another method developed as part of an interactive optimisation framework was the Pareto

navigator (Eskelinen et al., 2010).

Vilfredo Pareto defined the Pareto dominance relation; dominance is one of the most
frequently used methods for comparing multi-criterion individuals, and is used in MCDM so
that the relative quality of individuals can be considered without requiring a weighted
summation of their respective criterion values. The dominance relation will be formally
introduced shortly. Other techniques for visualising the complete criterion set are heatmaps
(Pryke et al., 2006; Walker et al., 2013), which represent individuals as the rows in a matrix,
criteria as the columns, and criterion values with colour (where “cool” colours indicate low
values and “warm” colours indicate high values). The alternative is to use a dimension
reduction method to identify a two or three dimensional representation of the individuals that
can be visualised with a scatter plot. Two varieties of dimension reduction can be used:
feature selection and feature extraction. In feature selection, the most representative features
are retained, and the remainder are discarded. In MCDM, this means finding the two or three
most important criteria; methods for doing this have been demonstrated (e.g. Saxena ef al.,
2013). Under feature extraction, a completely new set of coordinates is identified which
represent the individuals. Common examples are PCA, which seeks to preserve as much of
the variance within the data as possible, and multidimensional scaling (MDS) which
preserves pairwise distances between individuals. MDS was recently used in combination
with a metric defined in terms of dominance to visualise multi-criterion populations (Walker
et al., 2013). The application of other feature extraction techniques, neuroscale and
generalised topographic mappings, were examined by Fieldsend and Everson (2005), and

Obayashi (2002) demonstrated the use of self-organising maps for visualising criterion data.

Of particular relevance to this work are interactive decision maps, which have been used for

analysing river quality (Lotov et al., 2004). Interactive decision maps are used to identify
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goal points, regions of criterion space that are perceived to be of high quality. This is done by
allowing the decision maker to experiment with different combinations of criterion values to
find the most satisfactory trade-off possible. In their work, Lotov et al. (2004) present two
relevant analyses using interactive decision maps. The first tackles the problem of designing
wastewater treatment strategies that would enhance water quality, while the second optimises
the parameters of a water quality decision support system. Another relevant application of
multi-criterion visualisation was reported by Udias et al., (2012) in which a watershed
management system was presented. Their visualisation was based on a combination of
interactive decision maps and 2-dimensional scatter plots. The scatter plots displayed the
overall quality in the ordinate axis and the monthly cost for each of four criteria in the

abscissa.

Each visualisation method has features that make them attractive for specific uses. For
example, heatmaps are useful because they incur no information loss and the original
criterion values can be recovered from the visualisation. Projection techniques, on the other
hand, incur information loss in that the original criterion values are discarded, however are
very useful for identifying spatial relationships in the data. In this work, in order to overcome
the shortcomings of existing approaches, we employ two methods. The first method uses
dominance and rank information to visualise the water quality stations in such a way that no
information is discarded. The second uses PCA to project the stations into two dimensions so
that they can be visualised using scatter plots, in order to compare the resulting spatial

arrangement with the dominance-based approach.

2.1 Pareto Sorting Visualisation

Ranking is an important component of MCDM framework, as well as in evolutionary

algorithms (EAs) used to solve multi-objective optimisation problems. The first method we
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use draws on ranking methods from multi-objective EAs. One of the most common
approaches to ranking a population of multi-criterion individuals is Pareto or non-dominated
sorting, particularly well known for its use in the popular non-dominated sorting genetic
algorithm (NVSGA) (Srinivas and Deb, 1994), and its successor NSGA-II (Deb et al., 2002).
Non-dominated, or Pareto sorting is a technique that is based on the dominance relation.
Under dominance, an individual u dominates individual v if its criterion values u,, are no

worse than those of v, and are better than v on at least one criterion. More formally:
u<ve vmu, <v,)AIml,, <v,) (1)

If an individual exists such that it is dominated by no other individuals within the population,
it is called non-dominating. A pair of individuals where neither dominates the other are called
mutually non-dominating. Pareto sorting follows a simple procedure by which a partial
ordering of solutions is constructed. This begins by identifying all of the individuals in the
population that are non-dominated. Those individuals are the strongest, and are assigned to
the first Pareto shell before being temporarily discarded. The removal of shell 1 individuals
means that a new subset of the individuals in the population are non-dominated (those
previously dominated only by shell 1 individuals). These become the second Pareto shell, and
are themselves discarded from the population, leaving a third subset of non-dominated
individuals. This procedure continues until the entire population has been assigned to a Pareto

shell.

A visualisation method was presented in Walker et al. (2010) that uses dominance
information and the partial ordering resulting from Pareto sorting to construct a visualisation
of a population. The population is cast as a directed graph, such that individuals are nodes
arranged into columns according to their Pareto shell (each column represents a shell) and

edges are used to show dominance relations between individuals in adjacent shells.
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2.2  Average Rank

The Pareto sorting visualisation furnishes us with a way of discriminating between
individuals in different Pareto shells, however it provides limited information about the
difference between individuals in the same shell. We therefore enhance the visualisation with
a complementary ranking method. Additionally, while dominance is capable of distinguishing
between individuals comprising a small number of criteria, it is known that individuals
comprising a large number of criteria (often called “many-objective” or “many-criterion”
individuals) are likely to be mutually non-dominating (Farina and Amato, 2003). As such,
various alternative schemes for ranking multi-criterion populations have been developed; one
of these methods is average rank (Bentley and Wakefield, 1998). In order to calculate the
average rank 7: of an individual ¥: the population is ranked M times, once for each criterion.
This converts the population to rank-coordinates, such that each criterion is on the scale 1 to
N; the best individual has a score of 1, and the worst has a score of N. Then, an average of the

rank-coordinate values for the individual is taken:

M
e 1
= 37 Tim
J‘f mZ:l (2)

Other multi-criterion ranking methods can be employed instead of average rank; several were
demonstrated in Walker et al., (2010), and were found to provide complementary rankings to
the partial ordering resulting from Pareto sorting. In fact, any colour scheme can be used. In

the next section, we also colour the nodes according to the classification of the stations under

SWQL

2.3 Principal Component Analysis

A widely used visualisation method is Principal Component Analysis (PCA) (Jolliffe, 2002),

and we use it here to perform multi-criterion analyses. PCA is well suited to reducing the
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dimensionality of multi-criterion individuals. It has, for example, been used to reduce the
dimensionality of populations of solutions in evolutionary algorithms (e.g., Deb and Saxena,
2005). In terms of water quality analysis, Astel et al. (2007), Kowalkowski et al. (1971) and
Vega et al. (1998) presented visualisations of water quality using PCA. Other studies have
used PCA for reasons other than visualisation, such as data clustering. Examples include
Koklu et al. (2010), Simeonov ef al. (2003), Singh et al. (2004), Alberto et al. (2001) and

Zhang et al. (2010).

PCA projects data points into a low-dimensional space such that their new low-dimensional
representation retains as much of the variance contained within the original, high-dimensional,
data as possible. The low-dimensional space does not comprise any of the original criteria. In
the context of MCDM, each individual is a data point, and the original dimensions are the
criteria. Projecting the individuals into a low-dimensional space should therefore preserve as
much of the original variance within in the criteria, so that the most important information is
preserved. The principal components are identified by first computing the covariance matrix
of the data. Given the covariance matrix, the principal components are the eigenvectors
corresponding to the eigenvalues, which correspond to the original criteria, with largest
magnitude. In this study, as the goal is to produce a visualisation, the first two principal
components are retained. Having projected the individuals onto the first two principal

components, they can be visualised with a two-dimensional scatter plot.

3. Case Study

We apply the methods described above to the analysis of water quality in the Serbian
stretches of the Danube; this region of the river is 588km long and constitutes 20.6% of the
total 2857km river (Fig 2a). Data is collected for eleven monitoring stations along the river,

shown in Fig. 2b. The available data is for 2010, and was collected at monthly intervals with
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some exceptions. Number of measurements for each constituent was following: 1) Bezdan
station: 11 measurements for 8 constituents, 10 for Oxygen Saturation and BOD; 2) Bogojevo
station: 9 measurements for all constituents; 3) Backa Palanka station: 8 measurements for all
constituents except 7 for BOD; 4) Novi Sad station: 12 measurements for all constituents; 5)
Slankamen station: 11 measurements for all constituents; 6) Centa station: 11 measurements
for all constituents; 7) Smederevo station: 12 measurements for all constituents; 8) Banatska
Palanka station: 10 measurements for all constituents; 9) Veliko Gradiste station: 12
measurements for all constituents; 10) Dobra station: 12 measurements for all constituents
except 11 for BOD; 11) Radujevac station; 12 measurements for all constituents. E. Coli
criterion is omitted from this study, because of small number of measurements in all stations.
Where a station was omitted from data collection, it is omitted from the results presented

herein. No attempt was made to impute missing values.

The parameters collected in the study (Jakovljevi¢, 2012) are used to calculate the Serbian
Water Quality Index (SWQI). SWQI is an environmental indicator, developed by Serbian
Environmental Protection Agency and based on the Water Quality Index method (Scottish
Development Dept., 1976). SWQI uses ten quality parameters: oxygen saturation,
biochemical oxygen demand (BODs), ammonium, pH, total nitrogen oxides, orthophosphate,
suspended solids, temperature, conductivity and most probable number of coliform bacteria
(E. Coli/MPN). Each of these parameters has value ¢; (the water quality of the i-th parameter)
and weight unit w; (the weight attributed to the i-th parameter). Parameters have varying
degrees of importance on the overall water quality, specified by an appropriate weight (w;)
where the sum of all weights is 1. By summarizing the products of all quality parameters (g; )
and all weights (w;) an index is created representing a weight sum of all parameters (g; ).
(Veljkovi¢, 2013; Veljkovi€ et al., 2010; Veljkovi¢ et al., 2008). SWQI is then calculated as

the sum of @: X W; . The maximum value of each parameter is shown in Table 1.
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Table 1: SWQI parameters and their corresponding maximum i X W;

value (Veljkovié et al., 2010).

Parameter (unit)

Maximum 9i X W; value

Oxygen Saturation (%) 18
BOD;s (mg/1) 15
Ammonium (mg/1) 12
pH 9
Total Nitrogen oxides (mg/1) 8
Orthophosphates (mg/1) 8
Suspended solids (mg/1) 7
Temperature (°C) 5
Conductivity (uS/cm) 6
E. Coli (MNP/100 ml) 12
SWQI = 5(g; xw;) 100

12
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For each SWQI range a descriptive quality indicator has been defined ranging from very poor
(0-38), poor (39-71), good (72—83), very good (84—89), and excellent (90—100) (Veljkovic et

al., 2008). Parameter values are shown in Table 2.
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Table 2: Parameters concentration corresponding to 9i X Wi (Scottish Development Department, 1976)

Water Oxygen saturation (%) BOD (mg/l) Ammonium E.coli (coli/100ml) Suspended
quality solids (mg/1)
(ax ) (mg/l.)

18 93-109 - - - -

17 88-92 110-119 - - - - -

16 85-87 120-129 - - - - -

15 81-84 130-134 0 0.9 - - -

14 78-80 135-139 1.0 1.9 - - -

13 75-77 140-144 2.0 2.4 - - -

12 72-74 145-154 2.5 29 0 0.09 0 249 -

11 69-71 155-164 3.0 34 0.10 0.14 250 999 -

10 66-68 165-179 3.5 39 0.15 0.19 1000 3999 -

9 63-65 180 + 4.0 44 0.20 0.24 4000 7999 -

8 59-62 - 4.5 4.9 0.25 0.29 8000 14999 -

7 55-58 - 5.0 5.4 0.30 0.39 15000 24999 0-9

6 50-54 - 5.5 6.1 0.40 0.49 25000 44999 10-14

5 45-49 - 6.2 6.9 0.50 0.59 45000 79999 15-19

4 40-44 - 7.0 7.9 0.60 0.99 80000 139999 20-29

3 35-39 - 8.0 8.9 1.00 1.99 140000 249999 30-44

2 25-34 - 9.0 9.9 2.00 3.99 250000 429999 45-64

1 10-24 - 10.0 14.9 4.00 9.99 430000 749999 65-119

0 0-9 15.0+ 10.00+ 750000+ 120+

Water pH Total nitrogen Orthophosphate Conductivity Temperature
quality oxides (mg/1) (uS/cm) °C)
(@ x W) (mg/h)

18 - - . - -

17 - - . - -

16 - - - - -
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14 - - -

13 - 5 5

12 - - 5

11 5 - 5

10 - - 5

9 6.5-79 : 3 ;

8 6.0-64 | 8.0-84 0 0.49 0 0.029 - -

7 5859 | 8587 050 | 149 | 0.030 0.059 - -
6 5657 | 8.8-89 150 | 249 | 1.060 0.099 | 0-49 | 50-188
5 5455 | 9.09.1 250 | 349 | 0.100 0.129 | 189 | 190-239 0-17.4
4 5253 | 9.2:94 350 | 449 | 0.130 0.179 | 240 289 17.5-19.4
3 5.0-5.1 95-99 450 | 549 | 0.180 0219 | 290 379 195214
2 4549 | 10.0-104 | 550 | 699 | 0220 0279 | 380 539 21.5-22.9
1 3544 | 105-114 | 700 | 999 | 0.280 0369 | 540 839 23.0-24.9
0 0-34 11.5-14 10.00+ 0.370+ 810+ 25+

According to the Regulation — Official Gazette 1978, all surface waters in Serbia are

categorized in four classes (class I — best water quality). Parameters from Regulation were

used as input parameters for SWQI calculation. Maximum Concentration Level (MCL) is

defined for each of these classes; this is shown in Table 3. MCL values have been established

by the Regulation 1978 and they have been constant. There were no their changes, as well as

maximum 9 X W; values have not changed during the time. This is an important for

calculation of long term trends by SWQI method.
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Table 3: Correlation between SWQI and Maximum Concentration Level (MCL), (Veljkovic¢ et al., 2010).

Temperature and conductivity are omitted as they are not used in water quality characterisation using MCL.

Parameter (unit) Max MCL MCL MCL MCL
q; Xw,
value | Class I Class IT | Class Il | Class IV
Oxygen saturation (%) 18 70-90 50-75 30-50
90-105
105-115 | 115-125 | 125-130
BOD (mg/1) 15 2 4 7 20
Ammonium (mg/l) 12 0.1 0.1 0.5 0.5
pH 9 6.8-8.5 |6.8-85 |6-9 69
Total Nitrogen Oxides (mg/l) | 8 10 10 15 15
Orthophosphate (mg/I) 8 0.005 0.005 0.01 0.01
Suspended solids (mg/1) 7 10 30 80 100
Temperature (°C) 5 - - - -
Conductivity (uS/cm) 6 - - - -
E.coli (coli/100ml) 12 200 10000 20000 20000
(9 X w, )=WQI 100 85-84 69-71 4448 35-36
74-71 56-52 5146

4. Results

16

The two visualisation methods described above are now applied to the case study data. Due to

its absence in many cases, the E. Coli criterion is omitted from these results. The results
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presented herein are based on the remaining 9 SWQI parameters. In all cases, the criteria
were arranged for minimisation, such that small criterion values are preferred to large ones
when stations are ranked. This is in some ways an arbitrary choice, but was made because in
a ranking of NV items 1 is generally the best rank and N is the worst. The methods were
applied to all of the populations (one for each month that data was collected), and we begin

by illustrating the features of each visualisation.

4.1 Rank-based Visualisation

Figure 3 illustrates the population describing the water quality stations in February 2010. The
left-hand plot shows the data visualised as a Pareto shell graph. The stations sort into four
Pareto shells; the most powerful (best) station is Smederevo, which is in shell 1 and has the
best average rank (light colours indicates a good average rank; dark colours indicates a poor
average rank). Generally, the ordering of individuals according to Pareto sorting corresponds
to that average ranking; stronger individuals are on the left-hand side of the visualisation and
weaker individuals are on the right-hand side. This corresponds to the findings presented in
Walker et al., (2010). That said, according to the Pareto sorting Veliko Gradiste is the
weakest station, Bezdan (shell 2) has the worst average rank of any in the population. This
highlights a useful feature of the method first observed in Walker et al., (2010), whereby it is
possible for an individual with an extremely poor average rank to be placed in a high Pareto
shell. In order for this to happen, the individual must have a very strong score on one of the
criteria, making it very hard for other individuals to dominate it; this means that the
individual is likely to be placed into a strong Pareto shell. If the remainder (and majority) of
the criterion values are extremely poor, the overall average rank for the individual will be
very poor. In fact, Bezdan has a very strong score on the BOD criterion, and poor scores on

the other eight criteria. By combining the two ranking methods we prevent stations from
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being unduly rewarded for extreme criterion values, as was demonstrated by Walker et al.

(2010).

Figure 4 presents the visualisations shown in Figure 3, this time coloured according to the
quality rating assigned to each station using SWQI. With the exception of three stations
(Smederevo, Centa and Radujevac) all are “good”. Of the three that are not, two are “very
good” and one (Smederevo) is “excellent”. This corresponds with the ranking induced by
average rank, under which the strongest station was Smederevo, followed by Radujevac and
Centa. This is a useful result, as it shows that the average rank procedure allows for
comparison between individuals that were incomparable under the SWQI scheme without
conflicting with the partial ordering produced under SWQI. Average rank scores for the
stations throughout the year are shown in Table 4. Note, that these scores do not take account
of the absence of some stations from the data in some months, which causes artificially low
average rank scores (this is particularly prevalent in December, where the measurement of
just five stations results in a maximum average rank of 5). Figure 6 presents the distribution
of average ranks graphically; in order to facilitate comparison of stations, the average rank
values shown in Table 4 have been ranked, placing them on the scale 1, ..., N (for N stations

in a given month) and then normalised to the range (0, 1).

Table 4: Monthly average rank scores for water quality stations.
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Jan | Feb | Mar | Apr | May |Jun |Jul | Aug |Sep | Oct | Nov | Dec

Backa - - 11 |9 8 11 |3 4 6.5 |10 |- -
Palanka

Banatska 75 |5 10 |5 6 7 - 10 |8 8 10 |1
Palanka

Bezdan 45 19 3 10 |10 |5 6 7 65 |11 |2 -
Bogojevo - - 5 3 7 4 2 6 1 7 8 -
Centa 75 |35 |5 |8 |9 |10 |5 [3 |3 |5 [55 |-
Dobra 45 |7 1 4 4 3 8 8 10 |1 35 |25
Novi Sad 9 6 5 1 |11 6 8 9 5 3 35 |5
Radujevac |2 2 9 2 3 2 8 1 2 9 1 4
Slankamen | 3 35 |8 6.5 |5 85 |10 |2 4 5 55 |-
Smederevo | 1 1 7 1 1 85 |1 5 1 |5 7 -
Veliko 6 8 2 6.5 |2 1 4 11 |9 2 9 2.5
Gradiste

Radujevac had the highest quality according to Pareto sorting. It achieved rank 1 on nine

occasions and rank 2 twice. One of these two occasions was February, in which it was

dominated by Smederevo. Radujevac in turn dominated Dobra and Veliko Gradiste. The

SWQI values for these four stations agree with the ordering according to dominance:
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Smederevo is rated excellent, Radujevac is very good, while Dobra and Veliko Gradiste are
rated good. The parameter that causes this relationship is BOD. In the case of Smederevo, the
BOD result was 2mg/1 (14 according to SWQI and class I according to the maximum
concentration level (MCL)). Radujevac had BOD of 2.8mg/1 (12 according to SWQI, class II
MCL), while Dobra and Veliko Gradiste measured 4.8mg/1 (8 under SWQI and class 111
MCL) and 5.3 mg/1 (7 under SWQI, class IIl MCL). The average rank results support this
ordering too: Smederevo and Radujevac are the best two individuals in the population, while
Dobra and Veliko Gradiste are two of the worst. This agreement between the Pareto sorting
method and well understood measures such as SWQI and MCL is reassuring, as it provides a
simple approach to visualising the relationship between stations in a context with which
engineers and scientists are familiar. This, when combined with its ability to compare stations
without requiring WQIs to be weighted, illustrates the potential of the visualisation method
for analysing multi-criterion water quality data. That said, if weights are available, as is the
case here, then they can be incorporated via the colouring approach taken (e.g., there is an

optional provision for incorporating weights into average rank).

The other occasion in which Radujevac was dominated was October, when it was dominated
by Veliko Gradiste. Both stations were rated very good under SWQI, however Veliko
Gradiste's Ammonium value was better than that of Radujevac (0.05mg/1, or 12 according to
SWQI and MCL class I-1I, in the case of Veliko Gradiste; 0.19mg/1, or 10 under SWQI and
MCL class III-IV in the case of Radujevac). Interestingly, however, Radujevac has a poor
average rank. This, in concert with the fact that Radujevac does not dominate anything in the
next shell, indicates overall poor quality. By observing the average rank results for the rest of
the year we can see that its performance according to average rank was poor in five months.
In three of these cases, March, July and December, its SWQI rating is good, the worst

classification assigned to a station in those months. That said, when considering the
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distribution of normalised ranks in Figure 6, Radujevac has the best overall quality according
to average rank. While it might be tempting to interpret Smederevo as the best station (it
achieves rank 1 in five months, more than any other station) its ranking in some months is
particularly poor. Radujevac, on the other hand, has more consistent performance. It appears

in the top three positions in the ranking in all but four months of the year.

One of the important utilities of this type of analysis is that hydrologists can use them to
observe stations with low quality, so that efforts can be made to improve river quality at those
locations. Two stations with poor performance under Pareto sorting were Veliko Gradiste and
Bogojevo. Veliko Gradiste was in rank 1 on 8 occasions, rank 2 twice, and on one occasion
was the sole member of rank 4. Though it achieved a good rank in some of the months, its
lower rank on other occasions reduced its overall quality. On the occasion it appeared in rank
4, it had one of the lowest average ranks for that month (February). Bogojevo was in rank 1
on 7 occasions, rank 2 twice and rank 4 once. Backa Palanka also achieved poor results.
Though it was in rank 1 on 5 occasions, there was also a month in which it appeared in ranks
2, 3 and 4, respectively. This corresponds to relatively low quality SWQI results. It was
predominantly classified "good" under SWQI, and was classified "very good" just once; most
of the other stations achieved a "very good" classification multiple times. In June it was
classified "poor", the worst possible classification under SWQI. Novi Sad was the worst
station according to Pareto sorting. It appeared in rank 1 only once, and was mainly placed

into rank 2. It was also placed into ranks 3 and 4 on one occasion each.

Beyond analysing the relative performance of individual months, considering the
visualisations for the year as a whole also offers useful insight. Under SWQI, the months
with lowest water quality are the summer months, June to September, inclusive. June is the
only month in which stations were classified "poor", and both July and August are entirely

comprised of "good" classifications, with no station achieving "very good" or "excellent".
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Examining the Pareto shell visualisations for these months shows that they are also the
months in which the overall structure of the dominance graph is flattest. Figure 7 shows the
distribution of values throughout the year for the temperature and oxygen saturation
parameters. As can be seen, there is a significant peak in the values for the summer months,
which implies that these parameters have significant influence on the overall structure of the
population; we can infer a large degree of conflict between these parameters and one of the
other parameters, as the increased temperature appears to cause the stations in the data to
become mutually non-dominating. In order to properly evaluate this result it would be

necessary to collect data over a number of years, and currently this data is unavailable.

4.2 PCA Visualisation

We also applied PCA to the data, in order to produce two dimensional scatterplots of the data.
In this work we did not consider the data a time series; rather, each month was treated as its
own case, unrelated to the other data. One of the potential difficulties with using PCA is that
a loss of information is incurred. The data was projected onto the first two principal
components, which, as explained earlier, represent the stations in a new coordinate space that
may be, but is not necessarily, correlated with the original criterion values. Inspection of the
eigenvalues indicates in all cases between 89 and 99% of the variance in the data was
contained in the first two eigenvectors. This means that the majority of the information in the

data has been retained for all 12 months.

As with the Pareto sorting visualisations, the data is presented in terms of both average rank
and SWQI classification. The lower panel of Figure 3 illustrates the PCA projection of the
data for February, and examining the clustering reveals an interesting result. The data can be
broadly grouped into four clusters. The first cluster contains four stations: Centa, Slankamen,

Bezdan and Novi Sad. Examining the Pareto shell visualisation of February (Figure 2) shows
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that these four stations form a cluster in terms of their dominance relations too. Slankamen
and Centa are Pareto optimal, and both Bezdan and Novi Sad are dominated by Centa.
Bezdan is also dominated by Centa. The second cluster includes Radujevac, Banatska
Palanka and Smederevo. Smederevo is Pareto optimal, and dominates both Radujevac and
Banatska Palanka. The final two clusters contains the final two stations, Dobra (in a shell of
its own and dominated only by Radujevac) and Veliko Gradiste (dominated only by Dobra,
again the sole member of its shell). This is an interesting result, as it shows potential for
revealing spatial coherence in the data using PCA even with such small datasets. Figure 8
shows examples for other months, and this effect is again seen in October. In that case,
Bezdan is the station with the worst quality and is placed far away from the main grouping of
stations.

Further insight into the data for August is possible using this technique. As can be seen in the
average rank case the stations have been arranged such that those with a poor average rank
are together and those with a strong average rank are further away. In the extreme, Radujevac
is placed away from the main cluster of stations; it has the best average rank for that month
and in the Pareto sorting example is Pareto optimal but dominates nothing in the subsequent

shell.

While it is possible to observe relative quality between individuals using the Pareto shell and
PCA visualisations, the actual WQI values of the stations are either not conveyed, in the case
of the Pareto shell visualisation, or discarded, in the case of PCA. Having provided this
information, we enhance their decision making potential by producing corresponding parallel
coordinate plots (Inselberg, 2009). The examples shown in Figure 9 are for February (which
corresponds to the results shown in Figure 4) and May. Each line represents a station, and is
coloured according to its SWQI score for that month (NB: stations achieving a SWQI score

of "excellent" are in this case represented with a dashed line, rather than colouring with
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white). It can be seen that the station with excellent SWQI is generally at the lowest point of
the graph, indicating its superiority. It is, however, difficult to infer the overall quality of a
station from these visualisations alone, and thus we recommend that they are used in

combination with the Pareto shell or PCA visualisations.

As previously mentioned, the station with the best water quality was Radujevac. This was
caused by better quality of specific parameters comparing with other stations. The other
station with the high water quality was Smederevo, which was caused by high average water
quality. At the other hand the station with the worst water quality was Novi Sad, because of
low average water quality and Backa Palanka due to bad quality of specific parameters.
Considering the location of these stations, this suggests that downstream stations had a better
water quality than upstream ones. This can be explained by high selfpurification of the
Danube River, which enabled reduction of organic loading. The other unexpected outcome
was the best water quality in the June according to the Pareto sorting visualisation, which was
the month with the worst water quality according to the SWQI. The explanation is in the fact
that due to the impairment of water quality in all stations and in most parameters, there was
no possibility that the stations dominated each other, except in one case. This produced the
result that the stations with the worst water quality were in the Rank 1. The parameter which
caused the water quality decline was Oxygen saturation with the following values: 34%
(Backa Palanka), 52% (Banatska Palanka), 59% (Centa) and 64% (Slankamen). Due to this
parameter all these stations had poor water quality according to the SWQI as well as III class
(Banatska Palanka, Centa and Slankamen) and IV class (Backa Palanka). This case is very
important in terms of environmental conditions, because low Oxygen saturation values can

threaten life of aquatic organisms.
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5. Conclusions

Analysing river quality is an important task for environmental scientists and engineers. Given
the range of available criteria according to which river quality can be measured, multi-
criterion visualisation is a natural candidate for presenting the information. This work has
illustrated the application of such methods to the analysis of water quality in the Serbian

stretches of the Danube in 2010.

One of the methods employed multi-criterion ranking methods; the first used Pareto sorting,
based on the dominance relation, to produce a partial ordering of water quality stations on
which a directed graph can be constructed. This graph was shown to produce comparable
results to those achieved using SWQI, which is a well-known measure of river quality used in
Serbia. Additional information can be included in the visualisation by illustrating the average
rank of each station with the colour of its corresponding node in the graph. This also revealed
additional information, such as identifying stations with poor quality that had been unduly
promoted to a high rank by the Pareto sorting procedure. Examining the average rank of
stations provides a useful insight into the overall quality of a station; for example, by
inspection it was clear that Radujevac was the station with highest quality in the data used for
this study. Principal component analysis provided some additional insight into the data,
however it is likely to be more useful in cases where larger numbers of stations are employed.
We note that while in some applications using PCA can cause unacceptable levels of
information loss, in this case the vast majority of variance in the data was retained in the two
principal eigenvalues (89% in the worst case). Using PCA in combination with the Pareto
shell visualisations facilitated further insight into the data, as well as the identification of
facets of the data that appeared in both visualisations. We plan to extend the use of PCA in
this area by considering the criteria as a time series, which we feel will provide further

information to the decision maker given the temporal nature of the data.
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The analyses described in this work have considered each visualisation a description of the
river at a specific point in time. Relationships between stations were described in that context,
as well as in the context of their results throughout the year. The criteria on which the
visualisations are based do not take account of any temporal variation in the parameter values,
however the results discussed clearly show that there is a seasonal aspect to them. The rise in
temperature and oxygen saturation levels in the summer months demonstrate this. Therefore,
beyond the demonstration that the techniques illustrated in this study can provide useful
information about river quality, a useful direction of future work would involve incorporating
this temporal or seasonal variation into the visualisation. One possibility that is currently
under investigation would be to construct additional criteria so that the historical quality of
river water can be understood, and issues regarding the sensitivity of the data can be

addressed.

Water quality has traditionally been assessed in terms of complex variable—by—variable and
water body—by—water body summaries. This type of information is of value to water quality
experts, but needs to be improved for users who want to know about the state of their local
water bodies and for managers and decision makers who require concise information about
those water bodies. Water quality index methodologies partially overcome the shortcomings
of these methods, and provide the ability to describe water quality with a single value based
on arrange of indicators and measurements. This facilitates simple communication of water
quality results to interested parties. Disadvantages of such methods include the sensitivity of
the results to the formulation of the index and the loss of potentially important interactions
between variables. By using the multi-criterion visualisation approaches proposed in this

paper, some of these disadvantages can be ameliorated.

The Pareto shell visualisation is advantageous in the visualisation of data of this type. It does

not require any dimension reduction, presenting the decision maker with a visualisation based
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on all available data, and does not require the a priori selection of importance weights for the
criteria (although they can be incorporated into the secondary ranking method used to colour
the nodes in the graph if they are available). The method is generally very scalable, and can
be combined with well known domain-specific techniques, as was done with SWQI in this
paper. That it does not visually represent specific criterion values might be seen as a
limitation, however we feel that this is easily addressed by combining it with a separate
visualisation, such as the parallel coordinate plots demonstrated in this work. PCA is a
suitable choice as it relies on spatial proximity to convey similarity, which decision makers
can generally comprehend easily. The obvious limitation with this method is that it discards
potentially important information, however it was demonstrated here that the amount of

information lost was minimal.

Many studies have applied multi criterion decision making to conduct sustainability
assessment (Cinelli et al, 2014) in environmental and human health risk assessment (Topuz et
al., 2011), to assess habitats and wildlife (Cortina and Boggia, 2014), in the case of urban
water strategies (Moglia ef al, 2012) and water supply infrastructure planning and
rehabilitation (Scholten et al., 2015; Schoelten et al., 2014) in order to support decision
makers, in agricultural systems according to the decision-makers' expectations (Carof et al.
2012), in the risk assessment of contaminated ground water (Khadam et al., 2003).
Techniques presented in this paper could also help decision makers to determine the best and
worst quality sites, as well as to determine how these water quality estimation tools relate to
land characteristics management choices, urban versus rural designations etc. Ravier et al.,
(2015) have used PCA for water quality preservation programme. Pareto optimal set was
used in different land uses, crops, pastures, forestry and soil water conservation practices at
the basin scale in the Pampas in Argentina (Cisneros et a/., 2011), minimising probable flood

damages and maximizing water demand supply (Malekmohammadi et al., 2011) as well as
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Pareto frontier visualisation in support of decision makers in rehabilitation of water quality in
Googong Reservoir in Australia (Castelletti et al., 2010). It can be inferred that these water
quality estimation techniques have already played important role as support in the process of

decision making and their importance will be increase in a future.
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Abstract

River quality analysis is an important activity which, in Serbia, has been performed using the
Serbian Water Quality Index (SWQI). This is a measure based on a weighted aggregation of
10 water quality parameters. In this work, alternative methods drawing on visualisation
approaches used in multi-criterion decision analysis are applied to the problem of evaluating
river quality in the Danube. Two methods are considered: one which constructs a graph using
the dominance relation combined with a further multi-criterion ranking method, average rank,
and the other in which the dimensionality of the data is reduced using PCA for visualisation.
Results for data collected in 2010 are analysed and compared with the corresponding SWQI
values for the river in that year, and we find that by employing these methods it is possible to

reveal more information within the data than is possible by using SWQI alone.

1. Introduction

Water quality plays a vital role in all aspects of human and ecosystem survival. All living and
industrial activities are controlled by physical, chemical, biological and microbiological
activities (Mahapatra ef al., 2011; Vasiliev et al., 2014). Anthropogenic influences and
natural processes degrade surface waters and impair their use for drinking, industry,
agriculture, recreation and other purposes (Sanchez et al., 2007). In aquatic environments
organisms are exposed to mixtures of pollutants whose effects are hardly interpreted and
predicted exclusively from chemical analyses. Moreover, the analyses of pooled chemicals,
present at different compounds, increase uncertainty when evaluating water quality
(Monferran et al., 2011). Hence, analysing the quality of river water requires a range of
quality indicators, from which an overall measure of quality can be produced. Evaluation of
water quality parameters is necessary to plan and develop better water resource management

(Mahapatra et al., 2011). To establish water quality criteria, measures of chemical and
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physical constituents must be specified, as well as methods for reporting and comparing
results of water analysis (Saxena and Gangal, 2010). In order to evaluate water quality
synthetically, many techniques have been introduced to monitor and evaluate the effects of
pollution: traditional methods, modelling approaches, water quality indices (WQIs, e.g.
Armitage et al. (1983) and Prati ef al. (1971)), multivariate statistical techniques, such as
principal component analyses (PCA), artificial neural networks, artificial intelligence, fuzzy
logic, as well as combinations of some of them (Ma et al., 2013; Othman et al. 2012;
Monferran et al. 2011; Taner et al., 2011; Saxena and Gangal, 2010; Simdes et al. 2008;
Nasirian, 2007). The work presented in this paper is distinct from these examples in that none
of them are based on multi-criterion visualisation techniques constructed in terms of the

water quality parameters on which WQIs are based.

Multi-criterion decision making (MCDM) is a process by which a set of options can be
assessed according to a set of criteria. MCDM is often applied in cases where the selection of
a single choice from a set of alternatives is required, and provides techniques for drawing
together information from all of the criteria so that a decision maker can make an appropriate
selection. Often the criteria are in conflict with each other, and selecting an option which
performs well against one criterion means accepting poor performance on another criterion.
A range of MCDM techniques exist, and in this work we are concerned with those in which
alternatives are ranked, providing an ordering of the alternatives so that the best one can be
readily identified through visualisation. Visualisation of alternatives allows the decision
maker to observe how they relate to each other, for example, making use of spatial
information gleaned from the placement of alternatives in the visualisation, to better
understand the nature of the alternatives from which they must choose (e.g., Walker et al,

2013).
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In addition to selecting the best alternative, it can also be useful to identify the worst
alternatives. Engineers often undertake activities such as constructing maintenance schedules.
It is not usually feasible to maintain all of the components of an infrastructure, so those
components most urgently in need of maintenance must be identified so that they can be
prioritised in the schedule. This too is often formulated as a MCDM task, and one of the
visualisation methods used in this study has been applied in this area (for ranking district
metered areas in a water distribution network (McClymont ef al., 2011) and for analysing the
performance of the wireless access points in a mobile telephone network (Walker, 2013) for
the purpose of constructing maintenance timetables). MCDM techniques of this variety are
particularly well suited to river quality analysis as they allow engineers and scientists to
identify regions of the river that have particularly poor quality so that remedial action can be

taken.

In this work, we examine the quality of water in the Danube in Serbia. Due to its great
international importance, the Danube River has been the subject of numerous water quality
studies (Zivadinovié et al., 2012; Mici¢ et al., 2011; Bird et al., 2010; Kirschner et al., 2009;

Mici¢ and Hofmann, 2009; Maljevi¢ and Bala¢, 2007; Reli¢ et al., 2005).

Data was collected at a range of stations; in the MCDM context, these stations are the
alternatives, or individuals. A range of water quality parameters have been collected for each
of the stations at approximately monthly intervals for a year. These parameters are used as
criteria in order to compute the Serbian Water Quality Index (SWQI) which ranks stations

according to 10 criteria.

This paper presents an analysis of the water quality data using the criteria constructed under
the scheme. We use multi-criterion visualisation techniques, one based on methods for

ranking multi-criterion sets (Walker et al., 2010) and the other employing principal
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component analysis (Jolliffe, 2002). The visualisations are used to provide new insight into

the data, before which we discuss avenues of future work arising from this study.

2. Multi-criterion Visualisation

Visualisation is an active area of research within the MCDM community because of the
potential for revealing more about the characteristics of a multi-criterion dataset, or
population of individuals. Visualising a population of multi-criterion individuals is usually a
nontrivial task, since it is often the case that a large number of criteria must be incorporated
into the visualisation. In the case of a two or three dimensional population the task is
relatively straightforward: we must simply construct a scatter plot in two or three dimensions,
a visualisation approach with which most people are familiar and able to use. Unfortunately,
since most people are not able to comprehend four or more spatial dimensions visually, this is
not possible for populations comprising four or more criteria. It is therefore necessary to
develop techniques for visualising such populations, and one of two approaches can be taken:
either reduce the dimensionality of the population so that it can be visualised with a scatter

plot, or find a way of visualising all of the data in an intuitive fashion.

A range of methods have been developed for visualising a population in terms of the full set
of criteria. A considerable amount of work in visualising populations has been done in the
optimisation community; optimisation problems are often formulated in terms of a set of

problem objectives.

One of the early approaches developed was the Pareto race (Korhonen and Wallenius, 1988),
which enabled a decision maker to “drive” through the space of possible solutions to an

optimisation problem in order to steer an interactive optimisation procedure. More recently,
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another method developed as part of an interactive optimisation framework was the Pareto

navigator (Eskelinen et al., 2010).

Vilfredo Pareto defined the Pareto dominance relation; dominance is one of the most
frequently used methods for comparing multi-criterion individuals, and is used in MCDM so
that the relative quality of individuals can be considered without requiring a weighted
summation of their respective criterion values. The dominance relation will be formally
introduced shortly. Other techniques for visualising the complete criterion set are heatmaps
(Pryke et al., 2006; Walker et al., 2013), which represent individuals as the rows in a matrix,
criteria as the columns, and criterion values with colour (where “cool” colours indicate low
values and “warm” colours indicate high values). The alternative is to use a dimension
reduction method to identify a two or three dimensional representation of the individuals that
can be visualised with a scatter plot. Two varieties of dimension reduction can be used:
feature selection and feature extraction. In feature selection, the most representative features
are retained, and the remainder are discarded. In MCDM, this means finding the two or three
most important criteria; methods for doing this have been demonstrated (e.g. Saxena ef al.,
2013). Under feature extraction, a completely new set of coordinates is identified which
represent the individuals. Common examples are PCA, which seeks to preserve as much of
the variance within the data as possible, and multidimensional scaling (MDS) which
preserves pairwise distances between individuals. MDS was recently used in combination
with a metric defined in terms of dominance to visualise multi-criterion populations (Walker
et al., 2013). The application of other feature extraction techniques, neuroscale and
generalised topographic mappings, were examined by Fieldsend and Everson (2005), and

Obayashi (2002) demonstrated the use of self-organising maps for visualising criterion data.

Of particular relevance to this work are interactive decision maps, which have been used for

analysing river quality (Lotov et al., 2004). Interactive decision maps are used to identify
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goal points, regions of criterion space that are perceived to be of high quality. This is done by
allowing the decision maker to experiment with different combinations of criterion values to
find the most satisfactory trade-off possible. In their work, Lotov et al. (2004) present two
relevant analyses using interactive decision maps. The first tackles the problem of designing
wastewater treatment strategies that would enhance water quality, while the second optimises
the parameters of a water quality decision support system. Another relevant application of
multi-criterion visualisation was reported by Udias et al., (2012) in which a watershed
management system was presented. Their visualisation was based on a combination of
interactive decision maps and 2-dimensional scatter plots. The scatter plots displayed the
overall quality in the ordinate axis and the monthly cost for each of four criteria in the

abscissa.

Each visualisation method has features that make them attractive for specific uses. For
example, heatmaps are useful because they incur no information loss and the original
criterion values can be recovered from the visualisation. Projection techniques, on the other
hand, incur information loss in that the original criterion values are discarded, however are
very useful for identifying spatial relationships in the data. In this work, in order to overcome
the shortcomings of existing approaches, we employ two methods. The first method uses
dominance and rank information to visualise the water quality stations in such a way that no
information is discarded. The second uses PCA to project the stations into two dimensions so
that they can be visualised using scatter plots, in order to compare the resulting spatial

arrangement with the dominance-based approach.

2.1 Pareto Sorting Visualisation

Ranking is an important component of MCDM framework, as well as in evolutionary

algorithms (EAs) used to solve multi-objective optimisation problems. The first method we
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use draws on ranking methods from multi-objective EAs. One of the most common
approaches to ranking a population of multi-criterion individuals is Pareto or non-dominated
sorting, particularly well known for its use in the popular non-dominated sorting genetic
algorithm (NSGA) (Srinivas and Deb, 1994), and its successor NSGA-II (Deb et al., 2002).
Non-dominated, or Pareto sorting is a technique that is based on the dominance relation.
Under dominance, an individual u dominates individual v if its criterion values u,, are no

worse than those of v, and are better than v on at least one criterion. More formally:
u<ve vmu, <v,)AIml,, <v,) (1)

If an individual exists such that it is dominated by no other individuals within the population,
it is called non-dominating. A pair of individuals where neither dominates the other are called
mutually non-dominating. Pareto sorting follows a simple procedure by which a partial
ordering of solutions is constructed. This begins by identifying all of the individuals in the
population that are non-dominated. Those individuals are the strongest, and are assigned to
the first Pareto shell before being temporarily discarded. The removal of shell 1 individuals
means that a new subset of the individuals in the population are non-dominated (those
previously dominated only by shell 1 individuals). These become the second Pareto shell, and
are themselves discarded from the population, leaving a third subset of non-dominated
individuals. This procedure continues until the entire population has been assigned to a Pareto

shell.

A visualisation method was presented in Walker et al. (2010) that uses dominance
information and the partial ordering resulting from Pareto sorting to construct a visualisation
of a population. The population is cast as a directed graph, such that individuals are nodes
arranged into columns according to their Pareto shell (each column represents a shell) and

edges are used to show dominance relations between individuals in adjacent shells.
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2.2  Average Rank

The Pareto sorting visualisation furnishes us with a way of discriminating between
individuals in different Pareto shells, however it provides limited information about the
difference between individuals in the same shell. We therefore enhance the visualisation with
a complementary ranking method. Additionally, while dominance is capable of distinguishing
between individuals comprising a small number of criteria, it is known that individuals
comprising a large number of criteria (often called “many-objective” or “many-criterion”
individuals) are likely to be mutually non-dominating (Farina and Amato, 2003). As such,
various alternative schemes for ranking multi-criterion populations have been developed; one
of these methods is average rank (Bentley and Wakefield, 1998). In order to calculate the
average rank 7: of an individual ¥: the population is ranked M times, once for each criterion.
This converts the population to rank-coordinates, such that each criterion is on the scale 1 to
N; the best individual has a score of 1, and the worst has a score of N. Then, an average of the

rank-coordinate values for the individual is taken:

M
e 1
= 37 Tim
J‘f mZ:l (2)

Other multi-criterion ranking methods can be employed instead of average rank; several were
demonstrated in Walker et al., (2010), and were found to provide complementary rankings to
the partial ordering resulting from Pareto sorting. In fact, any colour scheme can be used. In

the next section, we also colour the nodes according to the classification of the stations under

SWQL

2.3 Principal Component Analysis

A widely used visualisation method is Principal Component Analysis (PCA) (Jolliffe, 2002),

and we use it here to perform multi-criterion analyses. PCA is well suited to reducing the
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dimensionality of multi-criterion individuals. It has, for example, been used to reduce the
dimensionality of populations of solutions in evolutionary algorithms (e.g., Deb and Saxena,
2005). In terms of water quality analysis, Astel et al. (2007), Kowalkowski et al. (1971) and
Vega et al. (1998) presented visualisations of water quality using PCA. Other studies have
used PCA for reasons other than visualisation, such as data clustering. Examples include
Koklu et al. (2010), Simeonov ef al. (2003), Singh et al. (2004), Alberto et al. (2001) and

Zhang et al. (2010).

PCA projects data points into a low-dimensional space such that their new low-dimensional
representation retains as much of the variance contained within the original, high-dimensional,
data as possible. The low-dimensional space does not comprise any of the original criteria. In
the context of MCDM, each individual is a data point, and the original dimensions are the
criteria. Projecting the individuals into a low-dimensional space should therefore preserve as
much of the original variance within in the criteria, so that the most important information is
preserved. The principal components are identified by first computing the covariance matrix
of the data. Given the covariance matrix, the principal components are the eigenvectors
corresponding to the eigenvalues, which correspond to the original criteria, with largest
magnitude. In this study, as the goal is to produce a visualisation, the first two principal
components are retained. Having projected the individuals onto the first two principal

components, they can be visualised with a two-dimensional scatter plot.

3. Case Study

We apply the methods described above to the analysis of water quality in the Serbian
stretches of the Danube; this region of the river is 588km long and constitutes 20.6% of the
total 2857km river (Fig 2a). Data is collected for eleven monitoring stations along the river,

shown in Fig. 2b. The available data is for 2010, and was collected at monthly intervals with
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some exceptions. Number of measurements for each constituent was following: 1) Bezdan
station: 11 measurements for 8 constituents, 10 for Oxygen Saturation and BOD; 2) Bogojevo
station: 9 measurements for all constituents; 3) Backa Palanka station: 8 measurements for all
constituents except 7 for BOD; 4) Novi Sad station: 12 measurements for all constituents; 5)
Slankamen station: 11 measurements for all constituents; 6) Centa station: 11 measurements
for all constituents; 7) Smederevo station: 12 measurements for all constituents; 8) Banatska
Palanka station: 10 measurements for all constituents; 9) Veliko Gradiste station: 12
measurements for all constituents; 10) Dobra station: 12 measurements for all constituents
except 11 for BOD; 11) Radujevac station; 12 measurements for all constituents. E. Coli
criterion is omitted from this study, because of small number of measurements in all stations.
Where a station was omitted from data collection, it is omitted from the results presented

herein. No attempt was made to impute missing values.

The parameters collected in the study (Jakovljevi¢, 2012) are used to calculate the Serbian
Water Quality Index (SWQI). SWQI is an environmental indicator, developed by Serbian
Environmental Protection Agency and based on the Water Quality Index method (Scottish
Development Dept., 1976). SWQI uses ten quality parameters: oxygen saturation,
biochemical oxygen demand (BODs), ammonium, pH, total nitrogen oxides, orthophosphate,
suspended solids, temperature, conductivity and most probable number of coliform bacteria
(E. Coli/MPN). Each of these parameters has value ¢; (the water quality of the i-th parameter)
and weight unit w; (the weight attributed to the i-th parameter). Parameters have varying
degrees of importance on the overall water quality, specified by an appropriate weight (w;)
where the sum of all weights is 1. By summarizing the products of all quality parameters (g; )
and all weights (w;) an index is created representing a weight sum of all parameters (g; ).
(Veljkovic, 2013; Veljkovic¢ ef al., 2010; Veljkovi¢ ef al., 2008). SWQI is then calculated as

the sum of @i X W; . The maximum value of each parameter is shown in Table 1.
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Table 1: SWQI parameters and their corresponding maximum i X W;

value (Veljkovié et al., 2010).

Parameter (unit)

Maximum 9i X W; value

Oxygen Saturation (%) 18
BOD;s (mg/1) 15
Ammonium (mg/1) 12
pH 9
Total Nitrogen oxides (mg/1) 8
Orthophosphates (mg/1) 8
Suspended solids (mg/1) 7
Temperature (°C) 5
Conductivity (uS/cm) 6
E. Coli (MNP/100 ml) 12
SWQI = 5(g; xw;) 100

12
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For each SWQI range a descriptive quality indicator has been defined ranging from very poor
(0-38), poor (39-71), good (72—83), very good (84—89), and excellent (90—100) (Veljkovic et

al., 2008). Parameter values are shown in Table 2.



269

270

14

Table 2: Parameters concentration corresponding to 9i X Wi (Scottish Development Department, 1976)

Water Oxygen saturation (%) BOD (mg/l) Ammonium E.coli (coli/100ml) Suspended
quality solids (mg/1)
(ax ) (mg/l.)

18 93-109 - - - -

17 88-92 110-119 - - - - -

16 85-87 120-129 - - - - -

15 81-84 130-134 0 0.9 - - -

14 78-80 135-139 1.0 1.9 - - -

13 75-77 140-144 2.0 2.4 - - -

12 72-74 145-154 2.5 29 0 0.09 0 249 -

11 69-71 155-164 3.0 34 0.10 0.14 250 999 -

10 66-68 165-179 3.5 39 0.15 0.19 1000 3999 -

9 63-65 180 + 4.0 44 0.20 0.24 4000 7999 -

8 59-62 - 4.5 4.9 0.25 0.29 8000 14999 -

7 55-58 - 5.0 5.4 0.30 0.39 15000 24999 0-9

6 50-54 - 5.5 6.1 0.40 0.49 25000 44999 10-14

5 45-49 - 6.2 6.9 0.50 0.59 45000 79999 15-19

4 40-44 - 7.0 7.9 0.60 0.99 80000 139999 20-29

3 35-39 - 8.0 8.9 1.00 1.99 140000 249999 30-44

2 25-34 - 9.0 9.9 2.00 3.99 250000 429999 45-64

1 10-24 - 10.0 14.9 4.00 9.99 430000 749999 65-119

0 0-9 15.0+ 10.00+ 750000+ 120+

Water pH Total nitrogen Orthophosphate Conductivity Temperature
quality oxides (mg/1) (uS/cm) °C)
(@ x W) (mg/h)

18 - - . - -

17 - - . - -

16 - - - - -
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15

14 - - -

13 - 5 5

12 - - 5

11 5 - 5

10 - - 5

9 6.5-79 ; 3 3

8 6.0-64 | 8.0-84 0 0.49 0 0.029 - -

7 5859 | 8587 050 | 149 | 0.030 0.059 - -
6 5657 | 8.8-89 150 | 249 | 1.060 0.099 | 0-49 | 50-188
5 5455 | 9.09.1 250 | 349 | 0.100 0.129 | 189 | 190-239 0-17.4
4 5253 | 9.2:94 350 | 449 | 0.130 0.179 | 240 289 17.5-19.4
3 5.0-5.1 95-99 450 | 549 | 0.180 0219 | 290 379 195214
2 4549 | 10.0-104 | 550 | 699 | 0220 0279 | 380 539 21.5-22.9
1 3544 | 105-114 | 700 | 999 | 0.280 0369 | 540 839 23.0-24.9
0 0-34 11.5-14 10.00+ 0.370+ 810+ 25+

According to the Regulation — Official Gazette 1978, all surface waters in Serbia are

categorized in four classes (class I — best water quality). Parameters from Regulation were

used as input parameters for SWQI calculation. Maximum Concentration Level (MCL) is

defined for each of these classes; this is shown in Table 3. MCL values have been established

by the Regulation 1978 and they have been constant. There were no their changes, as well as

maximum @i X W; values have not changed during the time. This is an important for

calculation of long term trends by SWQI method.
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Table 3: Correlation between SWQI and Maximum Concentration Level (MCL), (Veljkovic¢ et al., 2010).

Temperature and conductivity are omitted as they are not used in water quality characterisation using MCL.

Parameter (unit) Max MCL MCL MCL MCL
q; Xw,
value | Class I Class IT | Class Il | Class IV
Oxygen saturation (%) 18 70-90 50-75 30-50
90-105
105-115 | 115-125 | 125-130
BOD (mg/1) 15 2 4 7 20
Ammonium (mg/l) 12 0.1 0.1 0.5 0.5
pH 9 6.8-8.5 |6.8-85 |6-9 69
Total Nitrogen Oxides (mg/l) | 8 10 10 15 15
Orthophosphate (mg/1) 8 0.005 0.005 0.01 0.01
Suspended solids (mg/1) 7 10 30 80 100
Temperature (°C) 5 - - - -
Conductivity (uS/cm) 6 - - - -
E.coli (coli/100ml) 12 200 10000 20000 20000
>(q X wy )=WQI 100 85-84 69-71 4448 35-36
74-71 56-52 5146

4. Results

The two visualisation methods described above are now applied to the case study data. Due to

its absence in many cases, the E. Coli criterion is omitted from these results. The results
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presented herein are based on the remaining 9 SWQI parameters. In all cases, the criteria
were arranged for minimisation, such that small criterion values are preferred to large ones
when stations are ranked. This is in some ways an arbitrary choice, but was made because in
a ranking of NV items 1 is generally the best rank and N is the worst. The methods were
applied to all of the populations (one for each month that data was collected), and we begin

by illustrating the features of each visualisation.

4.1 Rank-based Visualisation

Figure 3 illustrates the population describing the water quality stations in February 2010. The
left-hand plot shows the data visualised as a Pareto shell graph. The stations sort into four
Pareto shells; the most powerful (best) station is Smederevo, which is in shell 1 and has the
best average rank (light colours indicates a good average rank; dark colours indicates a poor
average rank). Generally, the ordering of individuals according to Pareto sorting corresponds
to that average ranking; stronger individuals are on the left-hand side of the visualisation and
weaker individuals are on the right-hand side. This corresponds to the findings presented in
Walker et al., (2010). That said, according to the Pareto sorting Veliko Gradiste is the
weakest station, Bezdan (shell 2) has the worst average rank of any in the population. This
highlights a useful feature of the method first observed in Walker et al., (2010), whereby it is
possible for an individual with an extremely poor average rank to be placed in a high Pareto
shell. In order for this to happen, the individual must have a very strong score on one of the
criteria, making it very hard for other individuals to dominate it; this means that the
individual is likely to be placed into a strong Pareto shell. If the remainder (and majority) of
the criterion values are extremely poor, the overall average rank for the individual will be
very poor. In fact, Bezdan has a very strong score on the BOD criterion, and poor scores on

the other eight criteria. By combining the two ranking methods we prevent stations from
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being unduly rewarded for extreme criterion values, as was demonstrated by Walker et al.

(2010).

Figure 4 presents the visualisations shown in Figure 3, this time coloured according to the
quality rating assigned to each station using SWQI. With the exception of three stations
(Smederevo, Centa and Radujevac) all are “good”. Of the three that are not, two are “very
good” and one (Smederevo) is “excellent”. This corresponds with the ranking induced by
average rank, under which the strongest station was Smederevo, followed by Radujevac and
Centa. This is a useful result, as it shows that the average rank procedure allows for
comparison between individuals that were incomparable under the SWQI scheme without
conflicting with the partial ordering produced under SWQI. Average rank scores for the
stations throughout the year are shown in Table 4. Note, that these scores do not take account
of the absence of some stations from the data in some months, which causes artificially low
average rank scores (this is particularly prevalent in December, where the measurement of
just five stations results in a maximum average rank of 5). Figure 6 presents the distribution
of average ranks graphically; in order to facilitate comparison of stations, the average rank
values shown in Table 4 have been ranked, placing them on the scale 1, ..., N (for N stations

in a given month) and then normalised to the range (0, 1).

Table 4: Monthly average rank scores for water quality stations.
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Jan | Feb | Mar | Apr | May |Jun |Jul | Aug |Sep | Oct | Nov | Dec

Backa - - 11 |9 8 11 |3 4 6.5 |10 |- -
Palanka

Banatska 75 |5 10 |5 6 7 - 10 |8 8 10 |1
Palanka

Bezdan 45 19 3 10 |10 |5 6 7 65 |11 |2 -
Bogojevo - - 5 3 7 4 2 6 1 7 8 -
Centa 75 |35 |5 |8 |9 |10 |5 [3 |3 |5 [55 |-
Dobra 45 |7 1 4 4 3 8 8 10 |1 35 |25
Novi Sad 9 6 5 1 |11 6 8 9 5 3 35 |5
Radujevac |2 2 9 2 3 2 8 1 2 9 1 4
Slankamen | 3 35 |8 6.5 |5 85 |10 |2 4 5 55 |-
Smederevo | 1 1 7 1 1 85 |1 5 1 |5 7 -
Veliko 6 8 2 6.5 |2 1 4 11 |9 2 9 2.5
Gradiste

Radujevac had the highest quality according to Pareto sorting. It achieved rank 1 on nine

occasions and rank 2 twice. One of these two occasions was February, in which it was

dominated by Smederevo. Radujevac in turn dominated Dobra and Veliko Gradiste. The

SWQI values for these four stations agree with the ordering according to dominance:
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Smederevo is rated excellent, Radujevac is very good, while Dobra and Veliko Gradiste are
rated good. The parameter that causes this relationship is BOD. In the case of Smederevo, the
BOD result was 2mg/1 (14 according to SWQI and class I according to the maximum
concentration level (MCL)). Radujevac had BOD of 2.8mg/1 (12 according to SWQI, class II
MCL), while Dobra and Veliko Gradiste measured 4.8mg/1 (8 under SWQI and class I11
MCL) and 5.3 mg/1 (7 under SWQI, class IIl MCL). The average rank results support this
ordering too: Smederevo and Radujevac are the best two individuals in the population, while
Dobra and Veliko Gradiste are two of the worst. This agreement between the Pareto sorting
method and well understood measures such as SWQI and MCL is reassuring, as it provides a
simple approach to visualising the relationship between stations in a context with which
engineers and scientists are familiar. This, when combined with its ability to compare stations
without requiring WQIs to be weighted, illustrates the potential of the visualisation method
for analysing multi-criterion water quality data. That said, if weights are available, as is the
case here, then they can be incorporated via the colouring approach taken (e.g., there is an

optional provision for incorporating weights into average rank).

The other occasion in which Radujevac was dominated was October, when it was dominated
by Veliko Gradiste. Both stations were rated very good under SWQI, however Veliko
Gradiste's Ammonium value was better than that of Radujevac (0.05mg/1, or 12 according to
SWQI and MCL class I-1I, in the case of Veliko Gradiste; 0.19mg/1, or 10 under SWQI and
MCL class III-IV in the case of Radujevac). Interestingly, however, Radujevac has a poor
average rank. This, in concert with the fact that Radujevac does not dominate anything in the
next shell, indicates overall poor quality. By observing the average rank results for the rest of
the year we can see that its performance according to average rank was poor in five months.
In three of these cases, March, July and December, its SWQI rating is good, the worst

classification assigned to a station in those months. That said, when considering the
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distribution of normalised ranks in Figure 6, Radujevac has the best overall quality according
to average rank. While it might be tempting to interpret Smederevo as the best station (it
achieves rank 1 in five months, more than any other station) its ranking in some months is
particularly poor. Radujevac, on the other hand, has more consistent performance. It appears

in the top three positions in the ranking in all but four months of the year.

One of the important utilities of this type of analysis is that hydrologists can use them to
observe stations with low quality, so that efforts can be made to improve river quality at those
locations. Two stations with poor performance under Pareto sorting were Veliko Gradiste and
Bogojevo. Veliko Gradiste was in rank 1 on 8 occasions, rank 2 twice, and on one occasion
was the sole member of rank 4. Though it achieved a good rank in some of the months, its
lower rank on other occasions reduced its overall quality. On the occasion it appeared in rank
4, it had one of the lowest average ranks for that month (February). Bogojevo was in rank 1
on 7 occasions, rank 2 twice and rank 4 once. Backa Palanka also achieved poor results.
Though it was in rank 1 on 5 occasions, there was also a month in which it appeared in ranks
2, 3 and 4, respectively. This corresponds to relatively low quality SWQI results. It was
predominantly classified "good" under SWQI, and was classified "very good" just once; most
of the other stations achieved a "very good" classification multiple times. In June it was
classified "poor", the worst possible classification under SWQI. Novi Sad was the worst
station according to Pareto sorting. It appeared in rank 1 only once, and was mainly placed

into rank 2. It was also placed into ranks 3 and 4 on one occasion each.

Beyond analysing the relative performance of individual months, considering the
visualisations for the year as a whole also offers useful insight. Under SWQI, the months
with lowest water quality are the summer months, June to September, inclusive. June is the
only month in which stations were classified "poor", and both July and August are entirely

comprised of "good" classifications, with no station achieving "very good" or "excellent".
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Examining the Pareto shell visualisations for these months shows that they are also the
months in which the overall structure of the dominance graph is flattest. Figure 7 shows the
distribution of values throughout the year for the temperature and oxygen saturation
parameters. As can be seen, there is a significant peak in the values for the summer months,
which implies that these parameters have significant influence on the overall structure of the
population; we can infer a large degree of conflict between these parameters and one of the
other parameters, as the increased temperature appears to cause the stations in the data to
become mutually non-dominating. In order to properly evaluate this result it would be

necessary to collect data over a number of years, and currently this data is unavailable.

4.2 PCA Visualisation

We also applied PCA to the data, in order to produce two dimensional scatterplots of the data.
In this work we did not consider the data a time series; rather, each month was treated as its
own case, unrelated to the other data. One of the potential difficulties with using PCA 1is that
a loss of information is incurred. The data was projected onto the first two principal
components, which, as explained earlier, represent the stations in a new coordinate space that
may be, but is not necessarily, correlated with the original criterion values. Inspection of the
eigenvalues indicates in all cases between 89 and 99% of the variance in the data was
contained in the first two eigenvectors. This means that the majority of the information in the

data has been retained for all 12 months.

As with the Pareto sorting visualisations, the data is presented in terms of both average rank
and SWQI classification. The lower panel of Figure 3 illustrates the PCA projection of the
data for February, and examining the clustering reveals an interesting result. The data can be
broadly grouped into four clusters. The first cluster contains four stations: Centa, Slankamen,

Bezdan and Novi Sad. Examining the Pareto shell visualisation of February (Figure 2) shows
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that these four stations form a cluster in terms of their dominance relations too. Slankamen
and Centa are Pareto optimal, and both Bezdan and Novi Sad are dominated by Centa.
Bezdan is also dominated by Centa. The second cluster includes Radujevac, Banatska
Palanka and Smederevo. Smederevo is Pareto optimal, and dominates both Radujevac and
Banatska Palanka. The final two clusters contains the final two stations, Dobra (in a shell of
its own and dominated only by Radujevac) and Veliko Gradiste (dominated only by Dobra,
again the sole member of its shell). This is an interesting result, as it shows potential for
revealing spatial coherence in the data using PCA even with such small datasets. Figure 8
shows examples for other months, and this effect is again seen in October. In that case,
Bezdan is the station with the worst quality and is placed far away from the main grouping of
stations.

Further insight into the data for August is possible using this technique. As can be seen in the
average rank case the stations have been arranged such that those with a poor average rank
are together and those with a strong average rank are further away. In the extreme, Radujevac
is placed away from the main cluster of stations; it has the best average rank for that month
and in the Pareto sorting example is Pareto optimal but dominates nothing in the subsequent

shell.

While it is possible to observe relative quality between individuals using the Pareto shell and
PCA visualisations, the actual WQI values of the stations are either not conveyed, in the case
of the Pareto shell visualisation, or discarded, in the case of PCA. Having provided this
information, we enhance their decision making potential by producing corresponding parallel
coordinate plots (Inselberg, 2009). The examples shown in Figure 9 are for February (which
corresponds to the results shown in Figure 4) and May. Each line represents a station, and is
coloured according to its SWQI score for that month (NB: stations achieving a SWQI score

of "excellent" are in this case represented with a dashed line, rather than colouring with
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white). It can be seen that the station with excellent SWQI is generally at the lowest point of
the graph, indicating its superiority. It is, however, difficult to infer the overall quality of a
station from these visualisations alone, and thus we recommend that they are used in

combination with the Pareto shell or PCA visualisations.

As previously mentioned, the station with the best water quality was Radujevac. This was
caused by better quality of specific parameters comparing with other stations. The other
station with the high water quality was Smederevo, which was caused by high average water
quality. At the other hand the station with the worst water quality was Novi Sad, because of
low average water quality and Backa Palanka due to bad quality of specific parameters.
Considering the location of these stations, this suggests that downstream stations had a better
water quality than upstream ones. This can be explained by high selfpurification of the
Danube River, which enabled reduction of organic loading. The other unexpected outcome
was the best water quality in the June according to the Pareto sorting visualisation, which was
the month with the worst water quality according to the SWQI. The explanation is in the fact
that due to the impairment of water quality in all stations and in most parameters, there was
no possibility that the stations dominated each other, except in one case. This produced the
result that the stations with the worst water quality were in the Rank 1. The parameter which
caused the water quality decline was Oxygen saturation with the following values: 34%
(Backa Palanka), 52% (Banatska Palanka), 59% (Centa) and 64% (Slankamen). Due to this
parameter all these stations had poor water quality according to the SWQI as well as III class
(Banatska Palanka, Centa and Slankamen) and IV class (Backa Palanka). This case is very
important in terms of environmental conditions, because low Oxygen saturation values can

threaten life of aquatic organisms.
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5. Conclusions

Analysing river quality is an important task for environmental scientists and engineers. Given
the range of available criteria according to which river quality can be measured, multi-
criterion visualisation is a natural candidate for presenting the information. This work has
illustrated the application of such methods to the analysis of water quality in the Serbian

stretches of the Danube in 2010.

One of the methods employed multi-criterion ranking methods; the first used Pareto sorting,
based on the dominance relation, to produce a partial ordering of water quality stations on
which a directed graph can be constructed. This graph was shown to produce comparable
results to those achieved using SWQI, which is a well-known measure of river quality used in
Serbia. Additional information can be included in the visualisation by illustrating the average
rank of each station with the colour of its corresponding node in the graph. This also revealed
additional information, such as identifying stations with poor quality that had been unduly
promoted to a high rank by the Pareto sorting procedure. Examining the average rank of
stations provides a useful insight into the overall quality of a station; for example, by
inspection it was clear that Radujevac was the station with highest quality in the data used for
this study. Principal component analysis provided some additional insight into the data,
however it is likely to be more useful in cases where larger numbers of stations are employed.
We note that while in some applications using PCA can cause unacceptable levels of
information loss, in this case the vast majority of variance in the data was retained in the two
principal eigenvalues (89% in the worst case). Using PCA in combination with the Pareto
shell visualisations facilitated further insight into the data, as well as the identification of
facets of the data that appeared in both visualisations. We plan to extend the use of PCA in
this area by considering the criteria as a time series, which we feel will provide further

information to the decision maker given the temporal nature of the data.
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The analyses described in this work have considered each visualisation a description of the
river at a specific point in time. Relationships between stations were described in that context,
as well as in the context of their results throughout the year. The criteria on which the
visualisations are based do not take account of any temporal variation in the parameter values,
however the results discussed clearly show that there is a seasonal aspect to them. The rise in
temperature and oxygen saturation levels in the summer months demonstrate this. Therefore,
beyond the demonstration that the techniques illustrated in this study can provide useful
information about river quality, a useful direction of future work would involve incorporating
this temporal or seasonal variation into the visualisation. One possibility that is currently
under investigation would be to construct additional criteria so that the historical quality of
river water can be understood, and issues regarding the sensitivity of the data can be

addressed.

Water quality has traditionally been assessed in terms of complex variable—by—variable and
water body—by—water body summaries. This type of information is of value to water quality
experts, but needs to be improved for users who want to know about the state of their local
water bodies and for managers and decision makers who require concise information about
those water bodies. Water quality index methodologies partially overcome the shortcomings
of these methods, and provide the ability to describe water quality with a single value based
on arrange of indicators and measurements. This facilitates simple communication of water
quality results to interested parties. Disadvantages of such methods include the sensitivity of
the results to the formulation of the index and the loss of potentially important interactions
between variables. By using the multi-criterion visualisation approaches proposed in this

paper, some of these disadvantages can be ameliorated.

The Pareto shell visualisation is advantageous in the visualisation of data of this type. It does

not require any dimension reduction, presenting the decision maker with a visualisation based
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on all available data, and does not require the a priori selection of importance weights for the
criteria (although they can be incorporated into the secondary ranking method used to colour
the nodes in the graph if they are available). The method is generally very scalable, and can
be combined with well known domain-specific techniques, as was done with SWQI in this
paper. That it does not visually represent specific criterion values might be seen as a
limitation, however we feel that this is easily addressed by combining it with a separate
visualisation, such as the parallel coordinate plots demonstrated in this work. PCA is a
suitable choice as it relies on spatial proximity to convey similarity, which decision makers
can generally comprehend easily. The obvious limitation with this method is that it discards
potentially important information, however it was demonstrated here that the amount of

information lost was minimal.

Many studies have applied multi criterion decision making to conduct sustainability
assessment (Cinelli et al, 2014) in environmental and human health risk assessment (Topuz et
al., 2011), to assess habitats and wildlife (Cortina and Boggia, 2014), in the case of urban
water strategies (Moglia ef al, 2012) and water supply infrastructure planning and
rehabilitation (Scholten et al., 2015; Schoelten ef al., 2014) in order to support decision
makers, in agricultural systems according to the decision-makers' expectations (Carof et al.
2012), in the risk assessment of contaminated ground water (Khadam et al., 2003).
Techniques presented in this paper could also help decision makers to determine the best and
worst quality sites, as well as to determine how these water quality estimation tools relate to
land characteristics management choices, urban versus rural designations etc. Ravier et al.,
(2015) have used PCA for water quality preservation programme. Pareto optimal set was
used in different land uses, crops, pastures, forestry and soil water conservation practices at
the basin scale in the Pampas in Argentina (Cisneros et al., 2011), minimising probable flood

damages and maximizing water demand supply (Malekmohammadi et al., 2011) as well as
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Pareto frontier visualisation in support of decision makers in rehabilitation of water quality in
Googong Reservoir in Australia (Castelletti ez al., 2010). It can be inferred that these water
quality estimation techniques have already played important role as support in the process of

decision making and their importance will be increase in a future.
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Figure

Shell 1 Shell 2 Shell 3

Figure 1: A simple Pareto shell visualisation of a population comprising eight individuals. Edges represent
dominance relations, e.g., individual B (shell 1) dominates individuals D and E (shell 2). Although B may also
dominate individuals in later shells (e.g., individual F in shell 3) this relationship is omitted to preserve the clarity
of the visualisation.
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Figure 2: (top) Danube River Basin (Reli¢ et al, 2011); (bottom) A map showing the locations of the 11
monitoring stations used in this study. The stations are as follows: 1 - Bezdan, 2 - Bogojevo, 3 - Baka Palanka, 4
- Novi Sad, 5 - Slankamen, 6 - Centa, 7 - Smederevo, 8 - Banatska Palanka, 9 - Veliko Gradiste, 10 - Dobra, 11 -

Radujevac.
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Figure 3: Visualisations of the water quality stations for February 2010. The upper plot shows a Pareto shell
visualisation of the population in which the nodes are coloured according to average rank. The lower plot shows
the corresponding PCA embedding of the individuals, again, coloured according to average rank.
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Figure 4: The visualisations of the February 2010 population shown in Figure 3. Rather than the colour scale
used in the earlier average rank visualisations (Figure 3) these stations are coloured according to the class
indicated by their SWQI scores.
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Figure 5: The complete set of Pareto shell visualisations for 2010 (for February, see Figure 3), coloured
according to SWQI scores.
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Figure 6: The distribution of ranks for the stations throughout the year. This type of visualisation makes it
possible to begin identifying the best and worst stations throughout the year according to average rank; Radujevac
is the best station, with the joint lowest normalised rank and the lowest median rank of any of the stations.
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Figure 7: The distribution of temperature (top) and oxygen saturation (bottom) values throughout the year; each
line represents a station. The peak corresponds to the months in which the Pareto shell visualisations are flattest,
indicating that this parameter has a strong structural influence on the data.
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Figure 8: PCA projections for August (left-hand column) and October (right-hand column). The visualisations in
the top row are coloured according to average rank while those in the bottom row are coloured according to the
stations” SWQI classification.
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Figure 9: Parallel coordinate plots of the populations for February (top) and May (bottom). The colours
correspond with that used for the SWQI scheme in earlier figures; white stations are now shown with a dashed
line. With these plots it is possible to observe the individual criterion values of an individual, however it is more
difficult to compare the overall quality of two stations.



