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ABSTRACT 

Introduction: Impairments in vascular function are present in asymptomatic youths with risk 

factors for cardiovascular disease. Exercise can promote vascular health in youth, but the 

effect of exercise intensity and the time course in response to acute exercise are unknown. 

Methods: Twenty adolescents (10 male, 14.1 ± 0.3 y) on separate days, and in a counter-

balanced order: 1) cycled at 90% of the gas exchange threshold (moderate-intensity exercise; 

MIE); 2) completed 8x1 min cycling at 90% peak power with 75 s recovery (high-intensity 

interval exercise; HIIE). The duration of MIE (25.8 ± 2.1 min) was work-matched to HIIE 

(23.0 min). Macro- and micro-vascular function were assessed before, immediately post, and 

1 and 2 hours after exercise by flow mediated dilation (FMD) and laser Doppler imaging 

(total reactive hyperaemia). Results: FMD was attenuated immediately after HIIE (P<0.001, 

ES=1.20) but not MIE (P=0.28, ES=0.26). Compared to pre-exercise, FMD was elevated 1 

and 2 hours after HIIE (P<0.001, ES=1.33 and P<0.001, ES=1.36) but unchanged in MIE 

(P=0.67, ES=0.10 and P=0.72, ES=0.08). Changes in FMD were unrelated to shear or 

baseline arterial diameter. Compared to pre-exercise, total reactive hyperaemia was always 

greater after MIE (P<0.02, ES>0.60 for all) and HIIE (P<0.001, ES>1.18 for all). Total 

reactive hyperaemia was greater in HIIE compared to MIE immediately after (P=0.03, 

ES=0.67) and 1 hour after (P=0.01, ES=0.62) exercise, with a trend to be greater 2 hours after 

(P=0.06, ES=0.45). Conclusion: Exercise intensity is positively associated with macro- and 

micro-vascular function 1 and 2 hours after exercise. Performing HIIE may provide superior 

vascular benefits than MIE in adolescents.  
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INTRODUCTION 1 

Whilst the clinical manifestations of CVD are not detectable until adulthood, it is well 2 

established that the atherosclerotic process originates in the first decade of life (32). Impaired 3 

vascular function is thought to precede structural adaptations to the vessel wall (44), and both 4 

macro- and micro-vascular function have been shown to be impaired in asymptomatic 5 

adolescents with CVD risk factors (8, 19). Therefore, interventions which improve vascular 6 

function in young people are warranted.  7 

 8 

Data are available demonstrating that time spent performing vigorous-, but not moderate-, 9 

intensity physical activity is related to improved macrovascular function (17) and attenuated 10 

cardiometabolic risk (7) in youth. Additionally, exercise interventions have been shown to 11 

improve macrovascular function in obese adolescents (41). It has been suggested that changes 12 

in vascular function after a single exercise bout provide the foundation for these chronic 13 

adaptations (3, 12). Consequently, there is value in identifying the acute vascular responses to 14 

a single bout of exercise.  15 

 16 

Previous studies with adults report conflicting results on the effects of acute exercise on 17 

macrovascular function, with some reporting increases (16, 18), decreases (3, 18) and no 18 

change (3) in flow mediated dilation (FMD). However, differences between exercise loads, 19 

modalities, the timing of the post exercise FMD measurement(s) (12) and the problems 20 

associated with reporting the ratio-scaled FMD statistic (1), currently limit our understanding 21 

of the FMD response to an acute bout of exercise. To our knowledge, only one study has 22 

assessed FMD immediately post exercise in young people (22). These authors reported that 23 

FMD immediately decreased after high-intensity, but not low-intensity, exergaming, and 24 

concluded that repeating high-intensity exergaming may provide a stimulus for favourable 25 



macrovascular adaptations. However, the exercise bouts were not work-matched in this study 26 

and FMD was only assessed immediately post exercise. Given that changes in vascular 27 

function within ~ 2 hours of exercise are thought to be biphasic in nature (12), it is important 28 

to document the time course of the change in vascular function after a single bout of exercise 29 

in youth to establish the influence of exercise intensity on the FMD response.  30 

 31 

An impairment in microvascular reactive hyperaemia has been identified in asymptomatic 32 

children with clustered CVD risk (19) and it is thought that microvascular dysfunction may 33 

play a primary role in the pathogenesis of insulin resistance (25). Microvascular function has 34 

been shown to be elevated in adolescent football players compared to their untrained peers 35 

(29), however we are not aware of any study which has isolated the acute effect of exercise 36 

intensity on microvascular function in young people or adults. Furthermore, post exercise 37 

changes in microvascular reactive hyperaemia have been shown to be unrelated to FMD (31). 38 

Therefore, it is inappropriate to adopt post exercise changes in FMD as a surrogate of 39 

microvascular function. 40 

 41 

The purpose of this investigation was to test the hypothesis that macrovascular function is 42 

immediately impaired, and then subsequently improved, following high-intensity interval 43 

exercise (HIIE), but remains stable following a work-matched bout of moderate-intensity 44 

exercise (MIE) in adolescents. A secondary aim was to identify the effect of exercise 45 

intensity on the time course of the microvascular response following exercise.  46 

 47 

METHODS 48 

Twenty 12 to 15-year-old adolescents (10 males) volunteered to take part in this study. 49 

Written participant assent and parental consent were obtained before participation in the 50 



project, which was approved by the institutional ethics committee. Exclusion criteria included 51 

the use of any medication or substance known to influence fat metabolism or vascular 52 

function. 53 

 54 

Experimental overview 55 

This study required three visits to the laboratory and included a within-measures design. All 56 

exercise tests were completed using an electronically braked cycle ergometer (Lode 57 

Excalibur Sport, Groningen, the Netherlands). 58 

 59 

Visit 1: Fitness assessment 60 

Participants were habituated to the cycle ergometer before completing a combined ramp and 61 

supramaximal test to exhaustion to establish maximal oxygen uptake (𝑉̇O2 max) (2). 62 

Pulmonary 𝑉̇O2 was monitored throughout (Cortex Metalyzer III B, Leipzig, Germany) and 63 

the gas exchange threshold was identified as the disproportionate increase in carbon dioxide 64 

production (𝑉̇CO2) relative to 𝑉̇O2 and an increase in expired ventilation (𝑉̇E)/ 𝑉̇O2 with no 65 

increase in 𝑉̇E/𝑉̇CO2. All exercise was performed on an electronically braked cycle ergometer 66 

(Lode Excalibur Sport, Groningen, the Netherlands). 67 

 68 

Visits 2 and 3: Exercise interventions 69 

Participants completed two experimental conditions, separated by approximately one week. 70 

Following a ~ 12 h overnight fast, participants were transported to the laboratory at 08:00 and 71 

then consumed 30 g of commercially available Corn Flakes with 130 mL of skimmed milk. 72 

The macronutrient contribution of this breakfast is unlikely to have influenced endothelial 73 

function (40). 74 



At 08:45, participants rested in a darkened, temperature-controlled (24°C) room for 15 min 75 

before the simultaneous assessment of macrovascular (flow mediated dilation (FMD)) and 76 

microvascular (laser Doppler perfusion imaging (LDI)) function (methods described below).  77 

 78 

At 09:15, one hour after breakfast, participants completed on separate days and in a 79 

randomised order: 1) ~ 30 min of continuous MIE at 90% of the gas exchange threshold; or 80 

2) 23 min of HIIE (4). The HIIE bout consisted of a 3 min warm up at 20 W, followed by 8 x 81 

1 min intervals at 90% of the peak power determined from the ramp test to exhaustion, 82 

interspersed with 75 s of recovery at 20 W, before a 2 min cool down at 20 W. The duration 83 

of the MIE trial was calculated to match the total work performed during the HIIE bout. 84 

Participants provided a rating of perceived exertion (RPE) (43) in the final 10 s of exercise, 85 

before completing the 16-point Physical Activity Enjoyment Scale (PACES) (23) 86 

immediately after the exercise. After their final exercise trial, each participant was asked to 87 

identify which exercise bout they preferred.  88 

 89 

Macro- and micro-vascular function were reassessed immediately after exercise cessation, 90 

with further measures 1 and 2 hours post exercise to facilitate comparison between extant 91 

literature in adults (12). Participants remained seated and were inactive at all times other than 92 

during the exercise bouts.  93 

 94 

Measures of vascular function 95 

FMD was measured using high resolution ultrasonography in duplex mode (Sequoia 512, 96 

Acuson, Siemens Corp, Aspen, USA) using a 12-14 MHz linear array transducer in 97 

accordance with recent guidelines (33) and our earlier work (4). Baseline and post occlusion 98 

brachial artery diameter was assessed during end diastole using validated ECG-gating 99 



software (Medical Imaging Applications LLC, Coralvile USA) (10, 21). Baseline arterial 100 

diameter was measured for 1.5 min. Endothelium-dependent vasodilation was calculated as 101 

the percentage increase in arterial diameter after a 5 min ischaemic stimulus induced by rapid 102 

forearm pneumatic cuff inflation (Hokanson, Bellevue, USA) to 220 mmHg (33). The 103 

between-trial coefficient of variation for FMD was 9.7%.  104 

 105 

During the FMD protocol, microvascular function was simultaneously assessed using a laser 106 

Doppler perfusion imager (Periscan PIM II, Perimed, Järfälla, Sweden) at a reproducible 107 

point on the distal third of the forearm (11). High resolution data were collected at 4.33 Hz, 108 

and then interpolated to 1 s averages before being smoothed using a 5 s moving average. 109 

Peak reactive hyperaemia (PRH) was defined as the highest point after occlusion. The total 110 

hyperaemic response was calculated in by determining the area under the post-occlusive 111 

reactive hyperaemic curve minus the baseline (pre-occlusion) blood flow (expressed as a 112 

percentage of PRH), multiplied by the time taken for reactive hyperaemia to return to 113 

baseline (42). When calculated in this manner, the post-occlusive hyperaemic response is 114 

known to be nitric oxide independent (42), and accounts for differences in baseline skin 115 

perfusion. The between-trial coefficient of variation for PRH and the total hyperaemic 116 

response was 13.3 and 21.7% respectively. 117 

 118 

Standardisation of diet and physical activity  119 

With parental supervision, participants were asked to replicate their evening meal prior to 120 

each laboratory visit. Participants also completed a food diary during the 48 hour period 121 

immediately preceding each visit, which were subsequently assessed for total energy and 122 

macronutrient intake (CompEat Pro, Nutrition Systems, UK). Participants were instructed to 123 

avoid strenuous exercise and wear a tri-axial accelerometer on their wrist (GENEActiv, 124 



Activinsights Ltd, Cambridge, UK) during the 48 hour prior to each visit. Time spent 125 

performing moderate to vigorous activity was determined using established cut points for 126 

paediatric groups (13). 127 

 128 

Statistical analyses 129 

The primary outcome for macro-vascular function was the difference between log-130 

transformed peak and baseline arterial diameter, adjusted allometrically for baseline diameter 131 

(1). Data were analysed using a linear mixed model with a random intercept (accounting for 132 

repeated measures within participants) plus fixed effects for condition (moderate/ high 133 

intensity), time (pre, post, 1-hour, 2-hour), and their interaction. As appropriate for a 134 

crossover trial, we also adjusted for any period effect. Differences on the log-scale were 135 

back-transformed to provide percent (ratio) effects. Point estimates are presented together 136 

with 95% confidence intervals. Additionally, the area under the curve for estimated shear rate 137 

was calculated from the last 30 s of occlusion until the time of peak dilation (SRAUC) (15), 138 

however FMD was not related to SRAUC at rest or at any point post exercise in either trial (P 139 

= 0.21 to 0.80, r = -0.1 to 0.4) which is consistent with other paediatric data (4, 34). 140 

Consequently, FMD was not normalised for SRAUC. 141 

 142 

Descriptive statistics were calculated using SPSS (version 19.0, Chicago, USA) and 143 

presented as mean ± SD. Mean differences in descriptive statistics between boys and girls 144 

were analysed using independent samples t tests. The mean differences in the physiological 145 

and perceptual responses of the boys and girls during HIIE and MIE were analysed using 146 

paired samples t tests. Parameters of macro- and microvascular function were analysed using 147 

a mixed model ANOVA with trial (MIE, HIIE) and sex (male, female) as the main effects. 148 

The inclusion of sex into the ANOVA model did not reveal a significant interaction effect for 149 



parameters of macro- and micro-vascular function. Data were subsequently pooled for these 150 

outcomes. Pairwise comparisons between means were interpreted using the P value, 95% 151 

confidence intervals and standardised effect sizes (ES) to document the magnitude of the 152 

effect using the thresholds: small (0.2), moderate (0.5) and large (0.8) (9). Relationships 153 

between changes in vascular outcomes and mechanistically important variables were 154 

explored using Pearson’s correlations.  155 

 156 

RESULTS 157 

Baseline participant characteristics are presented in Table 1. The maturation status for boys 158 

and girls was as follows; Tanner stage 2, n=1 and n=0; stage 3, n=3 and n=0; stage 4, n=5 and 159 

n=7; stage 5, n=1 and n=3. No differences in energy intake, individual macronutrient 160 

contributions, or time spent performing moderate to vigorous physical activity were apparent 161 

for boys or girls during the 48 hour preceding each laboratory visit (P>0.50, ES<0.20; Table 162 

2).  163 

 164 

The physiological and perceptual data from the exercise trials are presented in Table 3. All 165 

participants completed both exercise trials. The highest 𝑉̇O2 achieved during the HIIE 166 

condition equated to 96 ± 5%. Average length of the MIE trial was 25.8 ± 2.1 min. Nine boys 167 

and eight girls indicated that they preferred the HIIE exercise bout. 168 

 169 

Macrovascular function 170 

Baseline arterial diameter, SRAUC and FMD are illustrated in Figure 1. A time by trial 171 

interaction was present for FMD (P<0.001). No differences in mean FMD at baseline were 172 

apparent between trials (P=0.62, 95% CI -1.2 to 0.7, ES=0.12).  Compared to baseline, FMD 173 

was attenuated immediately after HIIE (P<0.001, 95% CI -4.4 to -2.3, ES=1.20), but was 174 



unchanged immediately following MIE (P=0.28, 95% CI -1.5 to 0.4, ES=0.26). 175 

Consequently, FMD was lower in HIIE compared to MIE immediately post exercise 176 

(P<0.001, 95% CI -3.4 to -1.6, ES=1.57). FMD was not different to baseline 1 hour (P=0.67, 177 

95% CI -0.8 to 1.2, ES=0.10) and 2 hours (P=0.72, 95% CI -0.8 to 1.1, ES=0.08) after MIE, 178 

however FMD was greater than baseline after HIIE at these time points (P<0.001, 95% CI 179 

1.7 to 3.7, ES=1.33 and P<0.001, 95% CI 1.8 to 3.7, ES=1.36, respectively). Consequently, 180 

FMD was greater in HIIE compared to MIE 1 hour (P<0.001, 95% CI 1.8 to 3.8, ES=1.31) 181 

and 2 hours (P<0.001, 95% CI 1.8 to 3.8, ES=1.33) post exercise. Changes in FMD post 182 

exercise were not related to age, maturity (Tanner stage) or aerobic fitness in either MIE or 183 

HIIE (r<0.43 and P>0.10 for all). 184 

 185 

There was a main effect of time (P<0.001), but not trial (P=0.28), or time by trial interaction 186 

(P=0.75) for SRAUC. Pairwise comparisons revealed that SRAUC was elevated immediately 187 

after exercise compared to baseline in MIE (P<0.001, 95% CI 206 to 564, ES=1.20) and HIIE 188 

(P=0.001, 95% CI 205 to 704, ES=1.31). There was also a trend for SRAUC to be greater 1 189 

hour after MIE (P=0.06, 95% CI -10 to 358, ES=0.55) and HIIE (P=0.08, 95% CI -27 to 394, 190 

ES=0.64) compared to baseline. SRAUC was not different from baseline 2 hours after exercise 191 

for either trial (P>0.14, ES<0.36 for both). 192 

 193 

There was a main effect of time (P<0.001), but not trial (P=0.68), or time by trial interaction 194 

(P=0.09) for baseline arterial diameter. Baseline arterial diameter was greater immediately 195 

after exercise compared to pre exercise values in MIE (P=0.03, 95% CI 0.01 to 0.22, 196 

ES=0.32) and HIIE (P=0.01, 95 CI 0.05 to 0.35, ES=0.51). Baseline diameter was not 197 

different from pre exercise values at any other point in either trial (P>0.21, ES<0.20 for all). 198 

 199 



Microvascular function 200 

Differences in parameters of microvascular function are presented in Figure 2. There was a 201 

main effect of trial (P=0.002) and time (P<0.001) for PRH, but no time by trial interaction 202 

(P=0.14). There were no differences between trials in mean PRH at baseline (P=0.51, 95% 203 

CI -0.18 to 0.09, ES=0.12). Compared to baseline, PRH increased immediately after MIE 204 

(P=0.048, 95% CI 0.02 to 0.46, ES=0.72) and HIIE (P<0.001, 95% CI 0.26 to 0.61, 205 

ES=1.16). PRH was greater in HIIE compared to MIE immediately after (P=0.02, 95% CI 206 

0.05 to 0.44, ES=0.73) and 1 hour after exercise (P=0.002, 95% CI 0.13 to 0.48, ES=0.67). 207 

There was also a trend for PRH to be greater in HIIE 2 hours after exercise (P=0.08, 95% CI 208 

-0.03 to 0.42, ES=0.43). 209 

 210 

There was a main effect of trial (P=0.01) and time (P<0.001) for the total hyperaemic 211 

response, but no time by trial interaction (P=0.17). There were no differences in total 212 

hyperaemic response between trials at baseline (P=0.65, 95% CI -28 to 18, ES=0.12). 213 

Compared to baseline, the total hyperaemic response was greater at all times after MIE 214 

(P<0.02 and ES>0.60 for all) and HIIE (P<0.001 and ES>1.18 for all). The total hyperaemic 215 

response was greater in HIIE compared to MIE immediately after (P=0.03, 95% CI 3 to 57, 216 

ES=0.67) and 1 hour after exercise (P=0.01, 95% CI 12 to 72, ES=0.62), with a strong trend 217 

for a statistical difference 2 hours after exercise (P=0.06, 95% CI -1 to 56, ES=0.45). 218 

 219 

DISCUSSION 220 

The purpose of this investigation was to establish the effect of exercise intensity on macro- 221 

and micro-vascular function in adolescents, and to document the time course of the response. 222 

The novel findings from this study are: compared to baseline, 1) FMD is attenuated 223 

immediately following a single bout of HIIE but not MIE; 2) FMD is elevated 1 and 2 hours 224 



after HIIE, but unchanged in MIE; 3) PRH and total hyperaemic response are both increased 225 

during the 2 hours immediately following MIE and HIIE, and the magnitude of this increase 226 

is greater after HIIE than MIE. This is the first study to isolate the effect of exercise intensity 227 

and include serial measures of vascular function in adolescents after a single bout of exercise. 228 

The findings indicate that exercise intensity has an independent effect on macro- and micro-229 

vascular function in young people, which likely have important implications for vascular 230 

health. 231 

 232 

Macrovascular function 233 

Our data demonstrate that an immediate post exercise nadir in FMD is present following 234 

HIIE but not MIE, which is consistent with work-matched data in adults (3, 18) and the only 235 

available data in young people (22). Mills et al. (22) hypothesised that this attenuation in 236 

FMD after high-intensity exercise might precede an increase in FMD, and might therefore be 237 

considered to be beneficial. However, these authors did not include serial measures of FMD 238 

in their investigation, and evidence of this response in endothelial function post exercise is 239 

scarce (18). Furthermore, the “high-intensity” exergaming trial included by Mills et al. 240 

elicited a mean 𝑉̇O2 peak of 3.6 ± 2.5 metabolic equivalents, which the authors correctly 241 

classify as moderate-intensity (24). Therefore, the present study extends the work by Mills et 242 

al. and, to our knowledge, is the first to confirm that the initial impairment in FMD following 243 

high-intensity exercise precedes an increase in macrovascular function, and that this 244 

improvement is present at least two hours later. Thus, exercise which elicits a greater acute 245 

challenge on the vasculature may be associated with larger increases in FMD in adolescents, 246 

and the evidence of a biphasic response in FMD post high-intensity exercise is compelling. 247 

 248 



Our failure to observe any changes in FMD immediately after MIE is consistent with the data 249 

provided by Mills et al. following “low-intensity” exergaming (22), however we extend their 250 

findings and report that endothelial function remained unchanged during the 2 hours that 251 

followed. Interestingly, the lack of change in FMD in the hours after MIE is consistent with 252 

some (3, 18), but not all (16, 39) data in healthy adults. However, in addition to differences in 253 

exercise stimulus, timing of the FMD measurement and interpretation of the ratio-scaled 254 

FMD statistic (1, 12), an independent effect of training status (16) has been observed on the 255 

acute FMD response. Furthermore, evidence suggests that age might modulate vascular 256 

reactivity to the FMD protocol (34). Although we were unable to confirm a potential 257 

confounding effect of age, maturity (Tanner stage) or aerobic fitness on the change in FMD 258 

post MIE and HIIE, it appears that a direct comparison between our findings with apparently 259 

healthy adolescents and the available adult literature may be problematic.  260 

 261 

Shear (when expressed as SRAUC) is thought to be the main stimulus underlying the FMD 262 

response in healthy adults at rest (26). However, the relationship between SRAUC and FMD is 263 

not as robust following exercise (20). Indeed, we report here that FMD remained elevated in 264 

the hours following HIIE despite a steady decline in SRAUC. The relationship between SRAUC 265 

and FMD has been shown to be weak in young people even at rest (34), a finding also 266 

observed in this study. It is therefore not surprising that differences in the FMD response 1 267 

and 2 hours post exercise were independent of changes in SRAUC. Considering that baseline 268 

arterial diameter remained unchanged 1 and 2 hours following MIE and HIIE, and that we 269 

followed recent statistical guidelines designed to partition out the influence of vessel calibre 270 

(1), our findings are also not explained by this factor. We are therefore unable to identify the 271 

mechanism(s) underlying the disparity in FMD response presented here. It has been 272 

speculated elsewhere that the initial impairment in FMD immediately following exercise 273 



relates to an increase in oxidative stress (12, 18), which would reduce the bioavailability of 274 

nitric oxide (6). Whilst we did not measure this outcome, an increase in oxidative stress 275 

following high-intensity exercise is not consistent with the augmented FMD response 276 

observed 1 and 2 hours after HIIE. Conversely, an exercise-intensity dependent increase in 277 

total antioxidant status has been reported during the hours following work-matched HIIE but 278 

not MIE (39), which would prevent the reduction in nitric oxide bioavailability associated 279 

with an increase in exercise-induced oxidative stress. However, this is not a consistent 280 

finding (16, 18), and we have previously reported that changes in FMD 1 hour after identical 281 

HIIE in adolescents were not related to total antioxidant status (4). Alternatively, given that 282 

the exercise bouts were work-matched in the present study, our data may be explained by a 283 

positive association between the intensity of exercise and subsequent activity of endothelial 284 

nitric oxide synthase. Indeed, data in adults demonstrate that brachial artery shear increases 285 

with the intensity of cycling exercise (35), and this has been demonstrated to play a leading 286 

role in the post exercise FMD response (36). We did not quantify brachial artery shear during 287 

the exercise bouts as this is technically challenging during HIIE. However, we have 288 

previously observed a reduction in postprandial systolic blood pressure in the 5 hours after 289 

HIIE, but not MIE, in adolescents (5), which would be consistent with an upregulation in 290 

endothelial nitric oxide synthase activity. 291 

 292 

An interesting finding of the present study is that the magnitude of the increase in FMD 293 

observed 1 hour after HIIE was also present after 2 hours. Further study is needed to identify 294 

the precise decay in this favourable response after high-intensity exercise, although this 295 

benefit has been reported the following day in adults (39). Additionally, we have previously 296 

observed that a similar increase in FMD is present 4 hours after exercise despite the 297 

consumption of a meal which impaired FMD in a non-exercise control trial (4), whilst 298 



Sedgwick et al. reported an increase in postprandial FMD the day after repeated sprint 299 

cycling in adolescent boys (30). Therefore, a single bout of HIIE appears to provide a potent 300 

stimulus for macrovascular health, and may provide superior health benefits compared to 301 

MIE if repeated on a regular basis. Indeed, high-intensity interval training has been 302 

demonstrated to be more effectual in promoting macro-vascular function than moderate-303 

intensity training in adults at risk of vascular dysfunction (37), and offer superior 304 

improvements in FMD than a multi-disciplinary approach in overweight adolescents (38). 305 

Furthermore, only time spent performing vigorous-, but not moderate-, intensity exercise is 306 

related to vascular function in children (17).  307 

 308 

Microvascular function 309 

A novel feature of this investigation was the simultaneous assessment of post-occlusive 310 

reactive hyperaemia in the cutaneous circulation (11) during the FMD protocol. We have 311 

demonstrated that microvascular function is improved following both MIE and HIIE, and that 312 

the magnitude of this improvement is greater following HIIE. Furthermore, PRH and the total 313 

hyperaemic response to occlusion remained elevated 2 hours after exercise.  314 

 315 

Our data show that transient improvements in microvascular function are possible following 316 

exercise without concomitant changes in FMD. No association has been demonstrated 317 

between FMD and reactive microvascular hyperaemia in adults post exercise (31), 318 

presumably because the post-occlusive cutaneous response is not mediated by nitric oxide 319 

(42). Our finding that micro-, but not macro-, vascular function was improved in the hours 320 

after MIE is probably testament to the different mechanisms underlying the post-occlusive 321 

hyperaemic response in our investigation, i.e. only the latter is NO-mediated (42). 322 

Furthermore, the microvascular post-occlusive response may include both endothelial-323 



independent and dependent pathways (11). It is therefore likely inappropriate to adopt 324 

measures of macrovascular health as an indication of global vascular function, especially as 325 

the earliest changes in vascular function due to the metabolic syndrome may be specifically 326 

linked to the capillary and arteriole beds, rather than the larger, conduit arteries (25). As a 327 

result, simultaneously assessing microvascular function alongside FMD may offer a novel 328 

insight regarding the effects of exercise intensity on vascular health. 329 

 330 

We are the first to show that a single bout of MIE or HIIE can improve microvascular 331 

function in the hours following exercise, and that HIIE may provide a superior benefit. Whilst 332 

we were unable to identify the time course of the decay in these favourable responses post 333 

exercise, Gill et al. reported that endothelium-dependent microvascular function remained 334 

elevated 16-18 hours after 90 minutes of walking at 50% 𝑉̇O2 max in adults (14). Therefore, 335 

repeating a single bout of exercise may have some utility in promoting microvascular 336 

function the following day, although this needs to be confirmed in adolescents. Conversely, 337 

there is evidence suggesting that the intensity of habitual physical activity may not influence 338 

microvascular endothelial function in adolescents (27). However, this study determined 339 

microvascular function by means that are considered to be NO-dependent, which is 340 

mechanistically disparate from our assessment (42). Currently, no study has identified the 341 

efficacy of HIIE training on microvascular health in asymptomatic adolescents. Further study 342 

is therefore needed to identify whether the acute benefits in microvascular function observed 343 

in the present study translate into meaningful benefits in this group with time. 344 

 345 

Considerations 346 

This is the first study to isolate the effect of exercise intensity on vascular function in 347 

adolescents. The strengths of this investigation include a work-matched design, control of 348 



prior physical activity and dietary factors, serial measures of macro- and micro-vascular 349 

function and allometric scaling of the FMD statistic. However, apart from reporting SRAUC 350 

and baseline arterial diameter, we are not able to provide any mechanistic data which could 351 

potentially explain the changes in vascular function following MIE and HIIE. A further 352 

limitation is that we were unable to measure the time course of these changes beyond 2 hours 353 

post exercise. Thus, the rate of decay in microvascular function following MIE and HIIE, and 354 

macrovascular function following HIIE remains unknown. We also cannot rule out that an 355 

increase in skin temperature following exercise influenced our measure of microvascular 356 

function. However, this unavoidable confounding effect is likely limited to the time point 357 

immediately post exercise as participants were acclimatised to the temperature-controlled 358 

(24°C) room for all other vascular measures. Furthermore, our analysis of the post-occlusive 359 

reactive hyperaemic response accommodates differences in baseline perfusion (42). Finally, 360 

we are unable to comment on the interaction between exercise intensity and diurnal variation 361 

in FMD. Data in adults suggests that FMD could decline by ~ 1% from baseline values over 362 

the course of our measurement period (28). However, the magnitude of this effect is far 363 

lower, and in the opposite direction, than the change observed following HIIE in the present 364 

study.   365 

 366 

CONCLUSION 367 

Our data indicate that the intensity of exercise has an independent effect on macro- and 368 

micro-vascular function in adolescents. Specifically, macrovascular function was improved in 369 

the hours after HIIE but not MIE. Additionally, both exercise bouts promoted microvascular 370 

function, although the magnitude of this increase was greater after HIIE. Therefore, it is 371 

likely that repeating high-intensity exercises may provide superior health benefits and lower 372 



cardiovascular disease risk than moderate-intensity activities. Given that HIIE was deemed to 373 

be more enjoyable than MIE, HIIE may provide an attractive, alternative to traditional MIE.  374 
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TABLES 504 

Table 1: Participant characteristics 505 

 Boys (n = 10) Girls (n = 10)  P value ES 

Age (y) 14.1 ± 0.3 14.1 ± 0.3  0.72 0.00 

Body mass (kg)    61.6 ± 15.9 54.9 ± 4.6  0.23 0.57 

Stature (m)    1.66 ± 0.10   1.65 ± 0.08  0.82 0.11 

𝑉̇O2 max (L∙min
-1

)    2.77 ± 0.80   2.04 ± 0.36  0.02 1.18 

𝑉̇O2 max (mL∙min
-1

∙kg
-1

) 44.8 ± 6.4 37.1 ± 5.3  0.01 1.26 

GET (L∙min
-1

)    1.36 ± 0.35   1.08 ± 0.17  0.04 1.02 

GET (% 𝑉̇O2 max) 49 ± 4 53 ± 6  0.11 0.78 

 506 

𝑉̇O2, oxygen uptake; GET, gas exchange threshold; ES = effect size. Data presented as mean 507 

± SD 508 

 509 

 510 

 511 

 512 

Table 2: Accelerometer and food diary data during the 48 hours preceding each trial 513 

 MIE HIIE  P value  ES 

 

Moderate-vigorous activity (min day
-1

)   38 ± 12   36 ± 15 0.50  0.15 

Total energy intake (kcal day
-1

) 1945 ± 301           1887 ± 341           0.59   0.18 

Energy from carbohydrates (%) 47 ± 5 47 ± 5 0.84 <0.01 

Energy from fat (%) 38 ± 4 38 ± 6 0.95 <0.01 

Energy from protein (%) 15 ± 4 15 ± 3 0.73 <0.01 

   
  

 514 
MIE, moderate-intensity exercise trial; HIIE, high-intensity interval exercise trial 515 
95% CI = 95% confidence limits for the true difference 516 
Data have been pooled as ANOVA analysis revealed no main effect for sex 517 
 518 

 519 

 520 

 521 

 522 

 523 



Table 3: Physiological and perceptual responses to MIE and HIIE  524 

 MIE HIIE P value ES 

Mean HR (b∙min
-1

)*      129 ± 14 150 ± 14 <0.001 1.50 

Mean HR (% HRmax)*        66 ± 6 77 ± 6 <0.001 1.83 

Mean 𝑉̇O2 (L∙min
-1

)  1.19 ± 0.26   1.49 ± 0.37 <0.001 0.94 

Mean 𝑉̇O2 (% 𝑉̇O2 max)        51 ± 8 63 ± 7 <0.001 1.60 

RER  0.91 ± 0.05   1.03 ± 0.06 <0.001 2.17 

RPE  4 ± 2   7 ± 1 <0.001 1.90 

PACES        57 ± 9 65 ± 7  <0.001 0.99 

Work performed (kJ)      117 ± 18 117 ± 18  - - 

Energy Expenditure (kJ)  770 ± 182 -  - - 

 525 

HR, heart rate; 𝑉̇O2, oxygen uptake; MIE, moderate-intensity exercise trial; HIIE, high-526 
intensity exercise trial; ES = effect size. Data presented as mean ± SD and pooled for sex. n = 527 

20 apart from * where n = 18 due to loss of telemetry  528 
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FIGURES 546 

 547 

Figure 1 Mean differences in macro-vascular function pre and post moderate-intensity 548 

exercise (▲) and high-intensity interval exercise (■). FMD, flow mediated dilation; SRAUC, 549 

area under the curve for shear. Error bars represent the standard deviation. Significant 550 

difference from pre exercise is denoted by 
#
 for moderate-intensity exercise and * for high-551 

intensity interval exercise. 
‡
 denotes significant difference between exercise trials. Refer to 552 

text for specific P values. 553 

 554 



 555 

Figure 2 Mean differences in micro-vascular function pre and post moderate-intensity 556 

exercise (▲) and high-intensity interval exercise (■). PRH, peak reactive hyperaemia; AU, 557 

arbitrary units. Error bars represent the standard deviation. Significant difference from pre 558 

exercise is denoted by 
#
 for moderate-intensity exercise and * for high-intensity interval 559 

exercise. 
‡
 denotes significant difference between exercise trials. Refer to text for specific P 560 

values. 561 

 562 


