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Abstract 

 

Background There has been recent interest in using the DCE method to derive health 

state utilities for use in QALY calculations but challenges remain. Objectives We set 

out to develop a risk-based DCE approach to derive utility values for health states that 

allowed; a) utility values to be anchored directly to normal health and death and b) 

worse than dead health states to be assessed in the same manner as better than dead 

states.  Further, we set out to estimate alternative models of risky choice within a 

DCE model.  Method A survey was designed that incorporated a risk-based DCE and 

a ‘modified’ SG.  Health state utility values were elicited for three EQ-5D health 

states assuming ‘standard’ EU preferences. The DCE model was then generalised to 

allow for Rank Dependent Expected Utility (RDU) preferences thereby allowing for 

probability weighting.  A convenience sample of 60 students was recruited and data 

collected in small groups.  Results Under the assumption of ‘standard’ EU 

preferences, the utility values derived within the DCE corresponded fairly closely to 

the mean results from the modified SG.  Under the assumption of RDU preferences, 

the utility values estimated are somewhat lower than under the assumption of standard 

EU, suggesting that the latter may be biased upwards. Conclusion  Applying the 

correct model of risky choice is important whether a modified SG or a risk-based 

DCE is deployed.  It is, however, possible to estimate a probability weighting 

function within a DCE and estimate ‘unbiased’ utility values directly which is not 

possible within a modified SG.  We conclude by setting out the relative strengths and 

weaknesses of the two approaches in this context.  
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INTRODUCTION 

 

Discrete choice experiments (DCEs) allow a number of characteristics to be traded off 

against one another and are becoming increasingly popular in health economics. 

Although the origins of the DCE approach lie in marketing, they were later applied to 

the valuation of aspects of health care not easily captured using conventional Quality 

of life measures, such as the type of services received1,2. There has, however, been 

recent interest in using the DCE method to derive health state utilities for use in 

QALY calculations and there remains uncertainty about how that is best done 3. This 

paper adds to the small literature on how utility values for health may be derived 

directly within a DCE. 

 

The motivation for the use of DCEs to elicit utility values has been linked to well- 

known problems that exist with more traditional value elicitation techniques such as 

Standard Gamble (SG) and Time Trade Off (TTO) 3-7. For example, the SG has been 

criticized on the basis that Expected Utility (EU) is not a descriptively valid theory of 

decision making under risk 7. Furthermore techniques (such as SG and TTO) that set 

out to elicit an individual’s point of indifference are regarded as more cognitively 

demanding than those involving pair-wise choices 5,6.  

 

There are a number of methodological challenges, however, to be addressed in 

deriving health state utility values in particular within a DCE. In more traditional 

applications of DCEs attributes can reasonably be assumed to contribute to utility in 

an additive way, albeit with the possibility of interaction effects between attributes.  

The inclusion of attributes such as risk 7 in a DCE, presents different challenges than 

have traditionally arisen in terms of the appropriate functional form of the model. 

Risk has to enter the model in a multiplicative, rather than additive, manner as there is 

no meaningful preference over ‘risk’, independent of what that risk is of.  

 

Estimating utility values for health states within a DCE requires health states to be 

anchored to normal health (generally assigned a value of ‘1’) and dead (generally 

assigned a value of ‘zero’).  There are DCE studies that look at comparison of health 

states, without trying to link them to a normal health/dead scale8, but the results 

cannot then be used as utility values and incorporated into QALY calculations.  Other 
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researchers have tried to link DCE valuations to normal health and death by asking 

one or more SG or TTO questions alongside the DCE 3.  If DCE is being applied in 

order to overcome perceived problems with SG and TTO, then using those methods to 

anchor valuations is clearly problematic.  

 

Recent studies have used a ‘TTO-like’ format and have linked health states to normal 

health and dead within a DCE by either including ‘dead’ as a state or survival 

duration as an attribute9,10. The approach, termed DCETTO, includes health states and 

survival duration (not including zero) as attributes, but does not include immediate 

death as an option. Bansback and colleagues use this approach to value a range of 

EQ-5D states9.  In the DCETTO, normal health is set at one and values worse than dead 

can be inferred indirectly at a sample level, by using the coefficients on attribute 

levels as incremental reductions in quality of life. Thus, setting normal health equal to 

1 and subtracting incremental decreases in quality of life associated with attribute 

levels, there will come a point when the values lie below zero.  Values inferred less 

than zero are then taken to signify that the state is worse than dead. One possible 

drawback with this approach is that respondents are never asked to consider death 

directly. 	

 

Another way in which utility values may be linked directly to death within a DCE is 

to include some risk of immediate death as an option. One advantage of using risky 

choices is that there is a body of research looking at decision making under risk11,12 

and there has been some success in adjusting for biases in risky choices13,14. Whilst 

traditional SG approaches generally involve the certainty of the ‘target’ health state, 

we follow Carthy et al15 in using the term ‘modified’ SG here to denote that risk 

appears in both options (the approach is referred to elsewhere as the ‘lottery 

equivalent’ approach16,17).  

 

If we are to use risk-based DCE, it is important to consider how the theory of random 

utility might be adapted to incorporate recent advances in decision-making under risk. 

The random utility theory of McFadden underpins the analysis of DCEs 18.  It models 

decision making as a stochastic process around expected utility. There are, however, a 

number of other models of decision making under risk. For example, Rank Dependent 

Expected Utility (RDU) assumes that people over- or under-weight probability and so 
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it incorporates a probability weighting function in its specification of decision making 
19,20. Cumulative Prospect Theory subsumes RDU as it incorporates a probability 

weighting function and also allows for people to experience greater changes in utility 

from losses compared to gains21.  

 

It has been argued previously that random utility theory can incorporate a broad range 

of preference models that can be estimated using discrete choice experiments22. One 

important paper considered the use of rank dependent expected utility functions in 

DCE in looking at treatments and side-effects of Crohn’s disease7. The authors found 

evidence of non-linearity in how risks were perceived and derived lower utility values 

under assumptions of RDU than ‘standard’ EU (henceforth we use simply ‘EU’ to 

denote ‘standard EU’). This led them to argue that traditional SG methods assuming 

EU are biased but stressed that it was difficult to do a direct comparison as the nature 

of the risks included in their DCE was very different to those commonly used in SG7.  

 

One criticism of traditional value elicitation techniques, such as SG and TTO is that 

the procedures for valuing states worse than dead involve a fundamental departure 

from those used to value better than dead states. Given the  large body of evidence 

showing that responses can be affected by descriptive and procedural invariance23 we 

argued previously that such evidence must call into question the validity of 

aggregating better than and worse than dead scores generated by two different 

procedures24. It can be shown, however, that a technique which presents respondents 

with choices over two risky treatments allows states worse than dead to be valued in 

the same manner as better than dead states. One such method is the ‘modified’ SG 

which also avoids any ‘certainty effect’ bias uncovered elsewhere 25-27 as it 

incorporates risk on both sides. This approach has been used successfully 

previously15-17,28. 

 

We set out here to develop a method whereby utility values may be derived within a 

DCE that anchors them directly to normal health and death. Further, we set out to 

allow worse than dead health states to be derived in the same manner as better than 

dead states. Whilst the nature of the risk attribute used in a previous risk-based DCE 

study was such that direct comparisons with SG were problematic7, we set out here to 

make the methods as comparable as possible. 
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The aims of this research are therefore: 

 

1) To develop a method for eliciting values for health states, anchored to normal 

health and dead, within a risk-based DCE. 

2) To develop a framework in which values for ‘better than dead’ and ‘worse 

than dead’ health states can be elicited in the same manner.   

3) To compare EU and RDU models of risky choice within a DCE.  

4) To compare the results of the DCE model(s) with the modified SG. 

 

2. METHODS 

 

2.1  Overview of the survey  

There were 60 participants recruited from the population of second and third year 

students studying Economics or Geography at the Universities of London (Queen 

Mary) and Exeter in 2011/12.  Data were collected by means of small groups 

comprising on average between 8 and 9 participants which were convened by two 

authors (AS and AR). Respondents were invited to take part either through e-mail (at 

Queen Mary) or through the experimental laboratory (FEELE at Exeter University) 

and were each paid £10.  The study was granted local ethical approval in both 

institutions. 

  

The groups began with a brief introduction to the aims of the study and the the EQ-5D 

health states (21121, 22222 and 22323). Respondents were first asked to rank the 

health states along with normal health (11111) and ‘immediate death’.  This was 

followed by DCE questions (15) and modified SG questions (3). The order in which 

the DCE and modified SG questions appeared was randomised. Finally respondents 

answered a series of 4 questions designed to elicit risk attitudes using money lotteries.  

 

2.2 The DCE questions  

In the DCE exercise, respondents were presented with two risky treatments, labeled A 

and B.  All risky treatments involved some chance p of an outcome (21121, 22222, 

22323, or immediate death) and an associated chance, 1-p, of normal health (11111). 

A typical question is shown in Figure 1 and used graphical displays to illustrate risk 

information. In this case, Treatment A offers a 10% chance of normal health and a 
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corresponding 90% chance of health state 21121. Treatment B offers a 99% chance of 

normal health and 1% chance of immediate death. We simplify this notation 

henceforth as Treatment A offers a 90% chance of 21121 and Treatment B offers a 

1% chance of death. It is important to remember, however, that there is always an 

associated chance of normal health as normal health appeared in all treatments. In this 

example and at the point of indifference, the calculation (under EU) is: 0.9 (U21121) + 

0.1(U11111) = 0.01 (Udead) + 0.99(U11111) and assigning values of 0 and 1 to dead and 

normal health respectively and rearranging gives: 0.9 (U21121) = 0.89, so U21121 = 

0.988 

 

Respondents were asked to suppose that they had some condition and they were faced 

with two different treatments for that condition. They were asked to tick one of three 

possible responses, namely: prefer A; equally preferable, prefer B.  We elected to 

include the ‘indifference’ option in the choice data as we wanted to maximize the 

similarities across the DCE and modified SG approaches. This avoids ‘forcing’ a 

preference which may not always be appropriate29.    

 

Whilst we have used the EQ-5D descriptive system for convenience, it is important to 

stress here that we are not setting out here to derive a set of weights for that system.  

As developing a methodology is our aim here, we opted for a very simple design 

involving only two attributes- outcome and risk. The DCE questions varied on one or 

more of the two attributes shown below: 

 

 The outcome (health states 21121, 22222, 22323 or immediate death) coloured 

yellow, green, grey and blue respectively. 

 The probability of that outcome (1%, 5%, 10%, 20%, 30%, 40%, 50%, 70%, 

90%).   

 

The attributes and levels set in this study produced a total of 630 different 

combinations (as there are 9×1×4=36 scenarios and the number of ways of choosing 

r=2 scenarios at random from n=36 is (n)!/(n-r)!r!=36.35/2=630). We chose to include 

all non-dominated combinations in this exploratory study. This was due to the 

uncertainty surrounding the optimal design for multiplicative models 30 and to avoid 
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limiting the scope of the analysis unnecessarily by using a fractional factorial 

design29.  

 

There were three types of dominance that arose in the study due to the levels of risk, 

health states or both.  Choices could be ‘risk-dominated’ in that they involved the 

same health state but a different level of risk attached to that state.  We elected to ask 

all participants (a different) one of the 144 ‘risk-dominated’ questions contained in 

the full factorial, as a simple test of consistency, and so included 60 risk-dominated 

choices. As there is a ‘logical’ ordering of health states in that 

21121 22222 22323, choices could be ‘state-dominated’ in that they involved the 

same level of risk but a better/worse health state. The full factorial contained a total of 

27 such choices which we randomly allocated. Finally, choices could be ‘risk/state 

dominated’ in that they involved a lower risk of a less severe state. For example, 

suppose that Treatment A offered a 30% chance of health state 21121 (and associated 

70% chance of normal health) and Treatment B offered a 40% chance of 22222 (and 

associated 60% chance of normal health). Treatment A clearly dominates Treatment 

B, as is offers a lower risk of less severe illness.  The full factorial contained a total of 

108 such comparisons which we retained and which were randomly allocated. In total 

our design included 546 choices (630-144=546): 351 non-dominated and 195 

dominated choices that we elected to retain (60+27+108=195).  

 

Respondents were presented with a set of 15 DCE questions.  The first question was 

one drawn randomly from the 144 ‘risk dominated’ comparisons described above. 

Each respondent was presented with a further 8 questions drawn randomly from the 

full factorial design.  In addition, respondents were presented with a common set of 6 

questions that were interspersed with those randomly allocated. The 6 ‘common’ 

questions were a series that set out to allow the utility value of one health state- 

22222- to be determined at the level of the individual respondent.  These questions are 

not the focus of the current paper.  

 

2.3 The modified SG 

In the modified SG part of the questionnaire, the framing of the question was 

designed to closely resemble the pair-wise choices that appeared in the DCE.  Rather 

than having the risks associated with both treatments fixed in advance and being 
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asked to choose between treatments, only one treatment was fixed in the modified SG. 

Respondents were presented with a fixed risk of the health state under Treatment A, 

and then asked to ‘set’ that risk of death in Treatment B that made them indifferent 

between the two treatments. Participants were asked three modified SG questions.  

For health states 21121 and 22222, Treatment A involved a 90% risk of that state. For 

health state 22323, Treatment A involved a 20% risk of that health state, to allow for 

potentially lower values. The modified SG questions were asked in a fixed order 

21121, 22222 and then 22323. Groups were randomized to see DCE or modified SG 

first.  

 

Utility values are then estimated directly from the modified SG in exactly the same 

way as set out above. Considering the choice set out in Figure 2, suppose the 

respondent sets the indifference probability of dead at 0.20, then under EU : 

0.90 (U22222) + 0.10(U11111) = 0.20 (Udead) + 0.80(U11111) and assigning values of 1 and 

0 to full health and dead respectively gives: (U22222) = 0.78.   

     

The format of both the modified SG and DCE questions allow worse than dead states 

to be valued in exactly the same manner as better than dead states. For example, 

suppose the modified SG question involved a 20% risk of EQ-5D health state 22323 

under Treatment A, and the respondent set the risk of death under Treatment B at 

40%.  Then 0.2 (U22323) + 0.8(U11111) = 0.40 (Udead) + 0.60(U11111) and assigning value 

of 1 and 0 to normal health and dead respectively gives: (U22323)= -1. In effect, health 

state 22323 is worse than dead, provided that respondents prefer to take a higher risk 

of death to avoid the risk of health state 22323. 

 

In the final part of the questionnaire, four questions were used to elicit participants’ 

risk attitudes for monetary lotteries, using the mid-weight method proposed by Kuilen 

and Wakker31. These questions are not the focus of the current paper, but details are 

available from the authors on request. 

 

2.4 Modelling the DCE Choices  

The estimation strategy is discussed in detail in the appendix: we provide a non-

technical summary here. Recall that respondents were presented with two risky 

treatments, labeled A and B.  All risky treatments involved some chance p of an 
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outcome (21121, 22222, 22323, or immediate death) and an associated chance, 1-p, of 

normal health (11111). They were asked to tick one of three possible responses, 

namely: prefer A; equally preferable, prefer B.  Briefly, we used an ordered probit 

model to assess the likelihood of each response based on the difference in the 

expected utility of treatments A and B (the EU model).  We consider both EU and 

RDU preferences, the latter allowing for non-linear weighting of probabilities.  In the 

RDU model, rather than calculate the expected utility of treatments A and B, we first 

apply a transformation mechanism to the probabilities in the form of a power 

weighting function  r r    where r is the probability of the good outcome (in this 

particular case equal to 1-p).  This weighting function implies that the probability of 

the good outcome, when strictly between 0 and 1, is either always over-weighted (if 

<1) or always underweighted (if >1).  A strictly convex weighting function has been 

estimated previously 32.   

 

The parameters of central interest are the utilities of the three health states 21121, 

22222 and 22323, denoted by u1, u2  and u3 respectively.  

 

The parameter  is known as the “cut-point”, and indicates the distance from perfect 

indifference a subject must be to indicate a clear preference between the two 

alternatives (closer to indifference, ‘equally preferable’ is reported).  

 

There is a further way in which we generalize the econometric model. The model 

contains a parameter  which represents computational error by the respondent in 

computing the valuation difference for a given problem.   We first estimate the models 

assuming that this parameter takes the same value for all problems.  We then relax 

this assumption by allowing  to differ between different problem types as it seems 

plausible that errors are more likely with some problem types than others. The 

inclusion of ‘dominated’ options may influence this as may the inclusion of choices 

involving ‘immediate death’ which may well be perceived very differently than those 

involving two health states. Therefore, we allowed three different error variance 

parameters: dominance for “dominance” problems; death for problems involving 

‘immediate death’ as one of the outcomes and standard for “standard” problems (i.e. 

non dominance problems not involving immediate death).		
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3. RESULTS 

 

3.1 Estimation of utility values from the modified SG questions 

Recall that in the modified  SG questions respondents were presented with a fixed risk 

of a health state under Treatment A, but then asked to ‘set’ that risk of death in 

Treatment B that made them indifferent between the two treatments.  Using the EU 

calculations set out in the methods section above, the utility value of the health states 

can be calculated for each individual.  Table 1 presents mean and median utility 

values for the 3 health states from the modified SG assuming standard EU preferences 

as is traditional. Of course, if the EU model is not correct and respondents were 

under-weighting probabilities, then the modified SG results will over-estimate the 

utility values.  We return to this in the discussion.  

 

 

3.2 Estimation of utility values within the DCE model 

The results of the DCE models are presented in Table 2 which shows the results under 

both EU and RDU, with both the fixed error and varying error specifications.   

 

The parameter estimates of primary interest are the three utilities. Firstly note that the 

utility estimates obtained under the assumption of EU ( fixed) are fairly close to the 

corresponding mean utility values from the modified SG presented in Table 1, 

indicating a degree of consistency across methods. Note also that utility values 

estimated under the assumption of RDU are somewhat lower than under the 

assumption of standard EU, indicating that the latter may be biased upwards. Recall 

that the power weighting function implies that the probability of the good outcome, 

when strictly between 0 and 1, is either always over-weighted (if <1) or always 

underweighted (if >1).  The latter turns out to be the case for this data set, a situation 

sometimes referred to as strictly convex weighting.  The estimate the power-

weighting parameter  (taken from the final column of results) is 3.747 and the 

implied weighting function is shown in Figure 3, together with the 450-line which is 

implied under EU.  It is clear that the probability of normal health is seriously under-

weighted, particularly when the true probability is small.  
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It must be recognised that the weighting function depicted in Figure 3 does not 

capture the “inverse-S” shape that has become standard in the modelling of choices 

over money gambles.  However, when the inverse-S function of Tversky and 

Kahneman	21 is applied to this problem, the fixed point (where the weighting function 

crosses the 450-line) is found to be very close to the origin, and consequently the 

function is not dissimilar to the power function with >1.  Systematic under-weighting	

of	probabilities	has	been	found	in	different	contexts	previously	32,33. It is 

important to note that, if utilities derived under standard EU assumptions are biased 

upwards, that will hold for the modified SG results also.  

 

The third and fourth columns of Table 2 present the results of the models in which the 

variance parameter is assumed to vary between problem types.  Firstly, note that on 

the evidence of Akaike’s Information Criterion (AIC) which is reported in the final 

row, this assumption results in a considerable improvement in statistical fit even 

allowing for the presence of additional parameters. Unsurprisingly perhaps, 

dominance problems have the smallest estimated variance. Problems involving death 

have the highest estimated variance and we return to this in the discussion.  

 

We conclude by reporting that only 2 (of 60) respondents failed any of the dominance 

tests, although it is not too surprising that a sample of students (many of whom had 

studied economics) would pass such tests.  

 

 

4. DISCUSSION 

 

We report the results of an exploratory study that set out to develop a risk-based DCE 

to derive utility values for health states and to compare the results with those from a 

modified SG. Both methods allow health states to be anchored to normal health and 

death, allowing utility values to be derived directly using either method. Further, both 

the modified SG and risk-based DCE deployed here allowed worse than dead states to 

be valued in the same manner as better than dead states. Our results show a broad 

correspondence between the results from DCE model and the mean modified SG 

results, particularly under the assumption of EU preferences.  The results are very 
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similar indeed for two of the health states (21121 and 22222) whilst the DCE model 

results are higher than modified SG for 22323. Of course, demonstrating 

correspondence between the results does not, in itself, allow anything to be concluded 

about the relative merits of the different approaches.   

 

It is widely considered that SG values ought to be corrected for probability-weighting 

if utilities are not to be biased upwards14. It is clear from our results that the same is 

true for utilities derived within a DCE and we have demonstrated how utility values 

may be adjusted for probability weighting directly in a DCE. Our findings are 

consistent with those of other studies that have shown consistent underweighting of 

probability both in the area of health33 and	other	risky	choices31.		

	

Whilst it is possible to adjust modified SG values to allow for probability weighting, 

this would rely on using a probability-weighting function derived elsewhere. This 

obviously begs the question of where such a probability-weighting function would 

come from. Although not a prominent part of this paper, we did explore the use of 

risk attitude money lottery questions that would potentially allow a within-sample 

probability weighting factor to be derived and used to adjust SG valuations31. An 

obvious methodological issue there would be whether risk attitudes in the domain of 

money lotteries would necessarily be the same as those in health34.  In addition, the 

feasibility of asking the required number of money lottery questions alongside the SG 

method would have to be established. It does appear, therefore, that a DCE 

incorporating an appropriately specified model of risky choice offers the more 

promising means of deriving ‘unbiased’ utility values in this context.  

 

We found an improvement in statistical fit of the DCE model in allowing the error 

variance to differ between different problem types.  Problems involving death were 

found to have the highest estimated error variance, which may indicate that those 

questions were more difficult for respondents. The conceptual problems of including 

‘dead’ as a health state in a DCE have been outlined previously30, but utility values 

have to be anchored to 1 and 0 somehow.  Whilst we have demonstrated a framework 

for anchoring utility values directly to normal health and dead – and of valuing better 
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and worse than dead states using exactly the same procedure – it is clear that there 

remain challenges in incorporating death directly into a DCE.  

 

We conclude by making some more general points about the assessment of the 

relative merits of DCE and more traditional methods such as SG and TTO.  Methods 

such as SG and TTO are traditionally thought of as ‘matching’ techniques – whereby 

the task is to ‘set’ the level of risk/duration that makes the respondent indifferent 

between two options.  There is a literature on the fact that ‘matching’ and ‘choice’ 

tasks maybe tapping into different cognitive processes and, hence, the results are 

likely to differ across methods.  One criticism of ‘matching’ tasks is that, in asking 

respondents to ‘match’ on any single dimension encourages respondents to attach 

undue weight to that specific dimension while neglecting other factors that they 

would otherwise wish to be taken into consideration23.   

 

Whilst the modified SG that respondents completed here was an actual  ‘matching’ 

task (in that we asked respondents to directly ‘set’ the probability of death in 

Treatment B to make them indifferent between A and B), it is important to 

acknowledge that most SG and TTO elicitation techniques actually present 

respondents with a series of pair-wise choices.  Holding the format of the questions 

the same, the only difference between SG (or TTO) and a DCE is that in the former 

the choices are generally generated by an interactive process that tries to ‘hone in’ on 

that respondents point of indifference. When considered in this way, the SG (and 

TTO) could be seen as more ‘efficient’ techniques at arriving at utility values than 

DCE.  On the other hand, a possible drawback of any interactive approach is that 

‘starting point’ biases and anchoring effects may be introduced that are avoided in the 

DCE.   

 

It is not possible to choose between the methods on the basis of the current study.  As 

there was a logical ordering of the three EQ 5D states used here, the ranking data 

offers little by way of ‘validating’ the findings-although this could offer a useful 

check in future studies. We cannot offer an assessment of whether the modified SG or 

DCE incorporating risky choices is ‘superior’, but we can go some way towards 

setting out the potential strengths and weaknesses in this context. Setting out valid 

arguments is a small, but important, step as we believe certain arguments that have 
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been put forward previously are not valid.  For example, arguing that methods such as 

SG (and TTO) that set out to ‘hone in’ on a point of indifference- i.e. where it is 

hardest to choose between options -are ‘harder’ for respondents to do than DCE 6 is 

somewhat spurious.  After valid arguments have been set out, the choice between 

methods may ultimately depend on the relative weights attached to the various criteria 

and how they are traded-off against one another.  For example, if it is of primary 

importance to investigate utility values at the level of the individual, then SG may be 

favoured over DCE.  On the other hand, having a relatively simple means of adjusting 

aggregate values to allow for probability may be considered of more importance, in 

which case the DCE will be favoured. We present a summary of the main strengths 

and weaknesses of the two methods of deriving utility values in Table 3 below.  

Additional considerations would be the ability to value ‘process’ factors alongside 

health outcomes (which would favour DCE 35) and resource efficiency in terms of the 

sample size requirements, but these issues are beyond the scope of this paper.  

 

An obvious limitation of the study is that we used a convenience sample of students 

and it remains to be seen how members of the public would cope with the exercises. 

We only derived valuations for three EQ 5D health states, but the method could be 

expanded in order to allow	for	the	valuation	of	attribute	levels	and	a	‘tariff’	to	be	

estimated.			

	

We believe the body of work currently being undertaken to estimate utility values 

within a DCE is important and that the method does have the potential to replace 

traditional methods such as SG and TTO.  We believe we have gone some way 

towards setting out the methodological issues that remain and in clarifying the 

strengths and weaknesses of DCE compared to more traditional methods.  
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Table 1 Mean, median and standard deviation of utility values from modified SG 

 EQ -5D 

state 

 

Mean 

 

 

Median 

 

SD  

 

21121 0.899 0.944 0.130 

22222 0.816 0.899 0.168 

22323 0.214 0.500 0.716 
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Table 2  Estimates of coefficients (asy. st. errors) from DCE models  

 

 EU ( fixed) RD( fixed) EU ( varying) RD( varying) 

u1 (21121)  0.907(0.030) 0.817(0.041) 0.882(0.018) 0.799(0.031) 

u2 (22222) 0.789(0.015) 0.592(0.043) 0.786(0.015) 0.621(0.038) 

u3 (22323) 0.284(0.050) 0.169(0.049) 0.336(0.052) 0.245(0.051) 

     

 0.154(0.010) 0.276(0.022)   

standard   0.106(0.019) 0.193(0.036) 

dominance   0.042(0.008) 0.107(0.021) 

death   0.163(0.011) 0.289(0.025) 

     

     

  4.253(0.829)  3.747(0.689) 

 0.031(0.003) 0.059(0.007) 0.025(0.003) 0.052(0.007) 

     

N 900 900 900 900 

K 5 6 7 8 

LogL -613.53 -582.88 -595.07 -568.20 

AIC (2k-2LogL) 1237.06 1177.76 1204.14 1152.4 
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Table 3 Summary of the relative strengths and weaknesses of DCE and modified SG   

Advantage Modified SG Risk-based DCE 

Allows health states to be anchored directly to 

normal health and death 

  

Allows WTD and BTD states to be assessed on 

the same scale 

  

Individual-level utility values generally derived*   

Relatively few questions need be asked   

Weighting function internal to model   

Less susceptible to starting-point bias   

*We recognize that it is possible to derive individual-level valuations within a DCE by asking 
respondents to answer a large number of questions-but that is not what DCEs typically do.  
 
 

 

 



 
Figure 1 An example of a DCE pair-wise comparison 
 
.  
 

Treatment A   Treatment B  

 

   

10 in 100 (10%) chance of pink state   99 in 100 (99%) chance of pink state  
 No problems walking about    No problems walking about   
 No problems with self-care    No problems with self-care  
 No problems with performing usual activities    No problems with performing usual activities  
 No pain or discomfort    No pain or discomfort  
 Not anxious or depressed    Not anxious or depressed  

And   and  
90 in 100 (90%) chance of yellow state   1 in 100 (1%) chance of death  
 Some problems walking about     
 No problems with self-care     
 No problems with performing usual activities     
 Moderate pain or discomfort     
 Not anxious or depressed     
 
 

    

Choose to have   Both options are equally preferred   Choose to have 
 
	



Figure 2 Modified SG question 
 

Treatment A   Treatment B  

	

	 	 	 	

10 in 100 (10%) chance of pink state 	 	 chance of pink state 	
 No problems walking about 	 	  No problems walking about 	
 No problems with self-care 	 	  No problems with self-care 	
 No problems with performing usual activities 	 	  No problems with performing usual activities 	
 No pain or discomfort 	 	  No pain or discomfort 	
 Not anxious or depressed 	 	  Not anxious or depressed 	

and 	 	 and 	
90 in 100 (90%) chance of green state 	 	 chance of death 	
 Some problems walking about 	 	  	
 Some problems washing and dressing self 	 	  	
 Some problems with performing usual activities 	 	  	
 Moderate pain or discomfort 	 	  	
 Moderately anxious or depressed 	 	  	
	
	 	 chance of death 	

	 	  
Both options are equally preferred  

	

 



Figure 3: the probability weighting function 
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Appendix: Modelling the DCE Choices  

For this section, we introduce more formal notation. Let Xj denote health-state j.  The 

models developed in this section make the standard, simplifying assumption that all 

individuals have the same utility value for a given health state.  Recall that we are 

commencing from the ‘anchors’ of the utilities of normal health (X0) and dead (X4) 

being 1 and 0 respectively.  There are three other health-states, X1, X2 and X3, with 

utilities u1, u2 and u3 respectively.  The notation is provided in Table 4.  The principal 

objective of the modeling is to obtain estimates of u1, u2 and u3 i.e. to estimate utility 

values for health states anchored to normal health and death. 

 

Consider choice problem i of the DCE.  The choice is between two risky treatments 

Ai and Bi, defined as follows: 

 

Ai:  Probability pa,i of health state Xa,i; probability (1- pa,i) of health state X0. 

Bi:  Probability pb,i of health state Xb,i; probability (1- pb,i) of health state X0. 

 

Under the assumption of EU, the individual computes valuations of Ai and Bi as 

follows: 

 

       
       

   

, , , 0

, , , 0

1

1

i a i a i a i

i b i b i b i

i i i

EU A p U X p U X

EU B p U X p U X

EU B EU A

  

  

  

  (1) 

 

Note that the symbol i is used to represent the difference in expected utilities.  Let yi 

denote the decision.  Recall that there are three possible outcomes: prefer A (yi = 1); 

A and B equally preferable (yi = 2); prefer B (yi = 3).  We model this decision using a 

version of the ordered probit model developed by Aitchison and Silvey36 defined as 

follows: 

 

1

2

3

i i i

i i i

i i i

y if

y if

y if

 
  

 

   

     

   

 

 



	 2

where  2~ 0,i N     (2) 

 

The parameter  is known as the “cut-point”, and indicates the distance from perfect 

indifference (i=0) within which “equally preferable” is reported.  i is a normally 

distributed random error term with standard deviation .  As explained in the main 

text, we also consider a generalization of model (2) which allows sigma to take on a 

different value between three task types.  

 

From (2), the probabilities of the three outcomes are derived as follows: 

 

 

 

 

1

2

3 1

i
i

i i
i

i
i

P y

P y

P y




 
 



      
 

              
   

      
 

  (3) 

 

where (.) is the standard normal cumulative distribution function.  From (3), the log-

likelihood is constructed as follows: 

 

   

 

1 ln 2 ln

3 ln 1

i i i
i i

i i
i

I y I y

LogL

I y

  
  




                         
                      

   (4) 

The log-likelihood function (3) is programmed using the ML routine in STATA. The 

code is available from the authors on request.  The parameters that are estimated are 

the utilities of the three health states other than normal health and death, i.e. u1, u2 and 

u3, and also  and . 

 

As mentioned previously, we also consider a non-EU theory, in the form of RDU, 

which allows for non-linear weighting of probabilities.  Here, we assume the 

straightforward power weighting function.  If r  is the probability of the good outcome 

(i.e. normal health in this case), then r is transformed according to: 
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 r r     (5) 

 

Note that the power weighting function (5) implies that the probability of the good 

outcome, when strictly between 0 and 1, is either always over-weighted (if <1) or 

always underweighted (if >1).  Applying the weighting function (5), we derive the 

valuations of the two treatments:	

 

         
         

   

, , , 0

, , , 0

1 1 1

1 1 1

i a i a i a i

i b i b i b i

RD
i i i

V A p U X p U X

V B p U X p U X

V B V A

 

 

      
      

  

     (6) 

 

RD
i  is then used in place of i in the log-likelihood function (4), and of course there 

will be one additional parameter, , to be estimated. 
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