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Abstract 

 

The mobility of Cu, Pb and Zn in harbour sediments was investigated using single, sequential and 

kinetic extraction techniques. Each type of extraction provides different information on the mobility of 

these elements in the environment. The single HCl extraction assesses general mobility, the sequential 

extraction assesses geochemical partitioning and kinetic extraction allows quickly and slowly 

mobilized elements to be identified. Kinetic extraction also allows the influence of extraction duration 

to be assessed. The results presented in this paper highlight the complementary information provided 

by different types of mobility study. 

 

1. Introduction 

 

Marine and estuarine harbour sediments are often subject to anthropogenic impact including elevated 

concentrations of potentially toxic metals such as Cu, Pb and Zn. The degree of metal association with 

the distinct geochemical phases in a sediment depends on the binding capacity and physico-chemical 

characteristics of those phases. Lability studies are conducted order to estimate the mobile metal 

fraction. These use various chemical extractions to assess metal mobility which is equated to the 

potential bioavailability of those metals (Da Silva et al., 2002 ; Giancoli Barreto et al., 2004 ; Gismera 

et al., 2004 ; El Azim et El-Moselhy, 2005 ; Singh et al., 2005). Chemical extraction procedures 

follow two approaches: the thermodynamic approach and the kinetic approach. Unlike the 

thermodynamic approach, the kinetic approach uses different extraction times to assess the time frame 

of element mobilisation. 

 

Extraction using a single reagent is a simple and cost-effective way to investigate the labile metals in 

soils and sediments. Numerous reactants may be used for single extractions, these generally fall into 

three categories: acids, unbuffered salts and complexing reagents. Single or mixed dilute acids are 

often used to estimate the mobility of elements (e.g. 0.10 mol.L
-1 

CH3COOH (Lebourg et al., 1996), 

1.00 mol.L
-1

 HCl or a mixture such as 0.05 mol.L
-1

 HCl and 0.0125 mol.L
-1

 H2SO4 (Mulchi et 

al,.1992). HCl is assumed to extract metals due to its acidic properties and the chelatant property of Cl
-

. HCl has been studied extensively in lability studies and is recommended by many authors (Duinker 

et al., 1974, Scouller et al., 2006, Doherty et al., 2000), a concentration of 1.00 mol.L
-1

 is suggested 

for harbour sediments (Szefer et et al., 1995; Burton et al., 2005; Santos et al., 2010; Larner et al., 

2008; Leleyter et al., 2012). 

 

Sequential extractions are widely used to investigate the association between heavy metals and the 

different mineral and organic phases in sediments. Results can be used to predict the mobility and 

potential bioavailability of the metals. The technique uses reagents to carry out successive leaching of 

specific geochemical fractions and several different protocols are proposed in the literature. The first, 

developed by Tessier et al. (1979), proposed a five-step extraction to establish the different fractions 

to which the elements are sorbed. Subsequent authors including Ure et al. (1993, Rauret et al. (1998) 

and Leleyter and Probst (1999) have adapted this protocol by using other reagents or by adding or 
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reducing the number of steps in order to improve the efficiency and selectivity of the protocol. 

However, the sequential extraction protocols are criticized about the lack of selectivity and re-

adsorption phenomena of the elements (Gomez-Ariza, 1999; Gleyzes, 2002). Moreover, the 

element mobility is assed in specific physicochemical conditions imposed by the chemical 

reagents used. 
 

The optimum contact time between sediment and reagent corresponds to the time taken for maximum 

extraction of the elements and is determined using kinetic extraction (Yu and Klarup (1994), Lin and 

Chen (1998), Fangueiro et al. (2002), Gismera et al. (2004), Labanowski et al. (2004). Single and 

sequential extractions assume that the reaction equilibrium is reached by the end of the extraction 

period; however optimum contact times determined by kinetic extraction can be longer than those 

recommended for single and sequential extractions (Abi Ghanem, 2008). Moreover, kinetic extractions 

allow fast and slow metal mobilisation to be distinguished (Bordas and Bourg, 1998; Bermond et al, 

2005). Several kinetic models that differentiate this temporal mobilisation have been proposed in the 

literature, including the Elovich equation, the two-compartment model, the diffusion model and an 

equation with two constants (Abi Ghanem, 2008). Fangueiro et al. (2005) assert that the two-

compartment model has the advantage of separating the elements into three distinct categories; Q1: 

quickly mobilised, Q2: slowly mobilised and Q3: not mobilised. Gismera et al. (2004) and 

Labanowski et al. (2008) use EDTA as an extractant because it is non-specific (only cations) and can 

therefore mobilise a large number of elements, it also capable of extracting metal bound to organic 

matter, carbonate and Fe and Mn oxides providing good long-term prediction of metal bioaccessibility 

from these different sediment phases. Cornu et al. (2004) and Gismera et al. (2004) consider that the 

kinetic approach is complementary to sequential extractions and helps to expand understanding of the 

geochemical speciation of elements. 

 

The objective of this study is to compare different procedures in order to assess the mobility of Cu, Pb 

and Zn in marine harbour sediments collected in the English Channel. These metals are often present 

at elevated levels in harbor sediments due to pre-industrial deposition (Chiffoleau et al, 1999; Pirrie et 

al, 2002; Hamdoun, 2013). The mobility will be studied using thermodynamic and kinetic extraction 

techniques. 

 

2. Materials and methods 

 

2.1 Sample collection 

 

Marine sediment samples were taken from the harbours of Ouistreham, France (S1), Concarneau, 

France (S2) and Pool, UK (S3) harbours between March 2010 and June 2011. Each harbour was 

sampled at one GPS point using a grab or a suction dredger, water depths ranged from 4 to 11 meters. 

On return to the laboratory, samples were homogenised, air-dried for 4 days, sieved at 500 μm using a 

nylon sieve and ground with an agate pestle and a mortar. 

 

2.2 Total concentrations 

 

To determine the pseudo-total metal content present in the samples, a microwave assisted aqua regia 

acid digestion was performed on 0.2 g of dry sediment (3.33 mL of HNO3 NORMAPUR 65% and 

6.66 mL of HCl technical 35% VWR) (Alloway, 1995). Hereafter pseudo-total metal concentrations 

will be referred to as total metal concentrations. Each acid digestion was performed in triplicate. 

Analysis of standard certified material HR-1 (Canada Centre for Inland Waters National Laboratory 

for Environmental) showed satisfactory recovery for the elements of interest, the values obtained are 

shown in Table 1 after microwave-assisted (Berghof Speedwave MWS-2) acid digestion (Table 2). 
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Table 1. 

Element recovery for certified sediment HR-1 after microwave-assisted (Berghof Speedwave MWS-2) 

acid digestion (Cu, Pb and Zn in mg.kg
-1

) 

 Cu Pb Zn 

HR-1 certified values 81.2 134 1136 
Acid digestion (three 

replicates) 
68.4 ± 12.8 113.6 ± 9.2 1003 ± 88 

 
Table 2. 

Program mineralization (Power: 1000w) 

 

2.3 Mobility determination 

 

2.3.1 Single extractions 

 

The single extractions were performed as batch extractions. 1 mol.L
-1

 HCl was used with a ratio of 

10:1 (liquid: solid), shaken for 1h at room temperature. After filtration (0.45 μm HVLP with syringes), 

the solution were stored at 4 °C (acidified with 5 % of HNO3)until chemical analyses. Each extraction 

step was performed in triplicate. 

 

2.3.2 Sequential extraction 

 

The procedure used (Leleyter and Probst, 1999; Leleyter and Baraud, 2005) allows seven 

mineralogical fractions to be distinguished successively. The sum of these seven fractions represents 

the operationally defined “labile fraction” for this technique. Operating conditions for the sequential 

extraction are summarised in Table 3. Each extraction step was performed in triplicate. 
 

Table 3. 

Sequential extractions procedure (order: F1 to F5) 

Fraction reagent pH Time 
F1 : water soluble Water 5.7 30 min 
F2 : exchangeable 1 M Mg(NO3)2 5.0 120 min 
F3 : acid soluble 1 M NaOAc/HOAc 4.5 300 min 

F4 : reducible 

Manganese 

oxides 
0.1 M NH2OH HCl 3.5 30 min 

Amorphous 

iron oxides 
0.2 M (NH4)2C2O4 +  

0.2 M H2C2O4 
3.0 240 min 

Crystalline 

iron oxides 

0.2 M (NH4)2C2O4 +  
0.2 M H2C2O4 +  

0.1M C6H8O6 
2.3 30 min 

F5 : oxidisable 
35% H2O2/0,02 M HNO3 

(8 ml/3 ml), then 3.2 M 

NH4OAc 
2.0 300 min 

M: mol.L-1 ; pH can be adjusted with NaOH or HNO3 solutions (1 M) 

 

2.3.3 Kinetic extraction 

 

Kinetic extraction was achieved using 0.05 mol.L
−1

 EDTA solution at 13 contact times (using 13 

sacrificial batch) ranging from 15 min to 24 h and a solid/liquid ratio of 1:10. After filtration (0.45 μm 

HVLP), the solutions were stored at 4 °C (addition of 5 % of HNO3) until chemical analysis. 

Step Power Temperature Time 
1 80% 175°C 20 min 
2 40% 100°C 20 min 
3 40% 80°C 10 min 
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Experimental kinetic curves resulting from extraction with EDTA were modeled using two first-order 

reaction models as recommended by Cornu et al. (2004) and Gismera et al. (2004). The two first-order 

extraction reactions may take place simultaneously, having rates that are assumed to be independent 

on each other. This allowed three compartments to be defined: quickly mobilised, slowly mobilised 

and not mobilised. Each extraction was performed in triplicate. 

 

3. Chemical analysis 

 

Reagents were used in all experiments. Deionised water with a resistivity of 18.2 MΩ.cm produced by 

a Milli-Q water system (MAXIMA, Millipore) was used throughout. Standard stock solutions of 1000 

mg.L
-1

 for major metallic elements and 100 mg.L
-1

 for trace metallic elements (VARIAN, 

PLASMACAL, ULTRA scientific) were used for calibration. All glassware and plastic materials were 

soaked for 24 h in 10% nitric acid and rinsed with deionised water prior to use. 50 mL polyethylene 

vessels were used for the storage of leachates. All leachate solutions were analysed using ICP-AES 

(inductively coupled clasma-atomic emission Spectrometry, Varian, Vista MPX) 

 

4. Results and discussion 

 

4.1 Total concentrations 

 

Characteristics of the three sediments are presented in Table 4. Metal concentrations are reported as 

mg.kg
-1

 of dry sediment. Inorganic carbon and and TOC (total organic carbon) are reported as 

percentage of dry sediment. Sediments S1 and S2 have similar concentrations of Cu, Pb and Zn. 

Likewise S3 has similar concentrations of Cu and Zn to S1 and S2, however it has a lower 

concentration of Pb. The metal concentrations in all three sediments are within ranges previously 

reported for harbour sediments in the English Channel area (Pirrie et al., 2002; Dubrulle, 2007; 

Hamdoun, 2013). The TOC contents measured in these sediments range from 1.9 to 6.0%; these 

values are within the range of 2 and 10% previously reported in marine sediments (Hamdoun (2013); 

Tack et al, 1999; Isaure, 2001; Schneider, 2008). The CaCO3 values for the three sediments in this 

study range from 11 and 20%, also falling within the previously reported range of 10% to 40% 

(Dubrulle, 2007, Hamdoun, 2013). 

 

Table 4. 

Sediment characteristics 

 S1 S2 S3 
English 

Channel 

sediments* 

French 

harbour 

sediments** 
CaCO3 (%) 15.0 ± 1.3 11.5 ± 1.1 19.2 ± 2.1 11.5 to 25.1  
TOC (%) 3.8 ± 0.3 6.0 ± 0.2 1.9 ± 0.2 1.4 to 6.0  
Cu (mg.kg

-1
) 58.9 ± 8.7 59.7 ± 8.1 62.0 ± 5.9 12 to 393 41.3 

Pb (mg.kg
-1

) 133.5 ± 17.3 135.1 ± 5.6 42.4 ± 9.4 11 to 190 41.0 
Zn (mg.kg

-1
) 285.8 ± 21.1 209.1 ± 18.6 233.2 ± 13.1 53 to 1226 1 500 

*Hamdoun, 2013; **Padox et al., 2010 

 

4.2 Single extraction 

 

The metal mobility expressed as the percentage of the total content of a metal leached by 1 mol.L
-1

 

HCl is displayed for each sediment in Figure 1. The mobilities of Cu, Pb and Zn are very similar in S1 

and S3 and the mobility of Zn is similar in all samples. However, Cu and Pb have a significantly lower 

mobility in S2 than in S1 and S3. The mobility of Cu is only 24% in S2 compared with 48% in S1, 

despite the fact that Cu total contents are virtually identical in all three sediments, ranging from 59 to 

62 mg.kg
-1

. The sediment matrix plays an important role in binding and immobilising contaminants, 

these functions are affected by both the geochemical composition and the local environmental 
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conditions. Extraction using 1M HCl demonstrates that S2 has a greater capacity to bind Cu and Pb 

than S1 and S3 as a lower mobile fraction is reported for S2 for both these elements. 

 

Sediment S2 contains the most organic matter (6%) and has the lowest labilities of Cu, Pb and Zn. 

Results presented here do not show a direct link between CaCO3 content and lability; S1 and S3 

sediment have a similar Pb mobility whilst having different CaCO3 contents (15 and 19% 

respectively).  

This lack of correlation between element mobility and total metal concentration emphasises the 

inadequacy of using total metal concentrations in risk assessment. 
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Figure 1. 

Percentage of Cu, Pb and Zn mobilised by 1 mol L
-1

 HCl for sediment samples S1, S2 and S3 

 

4.3 Sequential extractions 

 

The metal distribution expressed as the percentage of total metal which is present in each of the five 

sequential extraction fractions (F1-F5) is displayed in Figure 2. The geochemical distribution of Cu, 

Pb and Zn in the three samples showed some differences: 

 

 Cu is mainly located in the acid-soluble fraction for S2 and S3 (35 and 49% respectively), 

however in S1 it is mainly associated with the reducible and oxidisable fractions (32 and 10% 

respectively). Thus S1 and S3 both have a large proportion of Cu associated with the reducible 

fraction (32 and 20% respectively). This distribution of Cu is unexpected as Cu is often 

reported to be associated with the oxidisable fraction (Span, 1984; Ramos et al, 1994; Azzawi 

et al, 1998; Algan et al, 2004). 

 

 Pb is mainly associated with the reducible fraction in all three sediments. The oxidisable 

fraction, which is the fraction thought to contain organic matter, does not have a high affinity 

with Pb in these samples (1 to 8%). Similar observations were made by Span (1984), Illou 

(1999) and Morillo et al. (2004) for marine sediments. 

 

 Zn in sediment S1 is distributed in the acid-soluble, reducible and oxidisable fractions (18, 12 

and 15% respectively). Zn in S2, which has the lowest percentage CaCO3, has a similar 

distribution to Cu; i.e. it is mainly located in the acid-soluble fraction (37%), whereas in S3 Zn 

is mainly associated with the reducible fraction (25%). Pempkowiak et al. (1999), Baize and 
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Tercé (2002) have previously also demonstrated the important role of oxidisable and reducible 

fractions, in the retention of zinc in sediments. 

 

The geochemical distribution of Cu, Pb and Zn varies greatly between the samples reflecting the 

heterogeneity of the sediments and the complexity of the various parameters involved. 
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Figure 2. 

Percentages of Cu (a), Pb (b) and Zn (c) mobilised by sequential extractions for the three sediment 

samples 

 

4.4 Kinetic extraction 

 

Kinetic extraction has the advantage of allowing differentiation between the quickly and slowly 

mobilized fraction of an element present in the sediment. Figure 3 presents the metal mobility 

expressed as the percentage of element leached quickly (Q1) or slowly (Q2) by 0.05 mol.L
-1

 EDTA 

relative to its total content. For the three elements in the three sediments: 

 

 The behaviors of Pb and Zn are similar. In S1 and S3 mobile Pb and Zn are evenly divided in 

the “rapid Q1” and “slow Q2” compartments. By contrast in S2, Q1 is more important than Q2 

for both elements. 

 

 The behavior of Cu is different to that of Pb and Zn. The mobile Cu is mainly present in Q1 

for both S1 and S2 with a similar percentage value observed in both sediments. However most 

of the mobile Cu present in S3 is slowly mobilised. 

Previously, Abi Ghanem (2008) found amounts Pb in the Q1 compartment to be systematically higher 

than those mobilised in the Q2 compartment in marine sediments. The amount of element 

associated with the Q1 or Q2 compartment is linked to the interaction of the sedimentary 

matrix with elements. 
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Kinetic fractionation shows the strength binding of the sediment matrix for each of these elements and 

provides information on the time frame of the environmental risk posed by elevated metal 

concentrations. The mobility of Pb and Zn is equivalent for Q1 and Q2 in both S1 and S3. For Cu the 

results of kinetic extraction show differences in the time frame of the potential environmental risk. The 

global mobility of Cu (Q1 + Q2) remains close for S1, S2 and S3: 73, 67 and 79% respectively. 

However, the kinetic mobilisation of Cu in S3 is very different: 28% in Q1 (58 and 53% for S1 and 

S2) and 51% in Q2 (15 and 14% for S1 and S2). This indicates that the short-term risk posed by 

mobile Cu in S3 is much lower than in S1 and S2. This phenomenon is linked to the strength of the 

interaction between the sediment matrix and the elements concerned. 

 

These results show the importance of assessing short (45 min) and long term (1440 min) metal 

mobility. In a scenario where the sample was exposed to elevated concentrations of complexing 

ligands, long contact times will cause maximum dissolution of the elements. However, the Q1 

compartment helps to differentiate samples. Moreover, a feature of the EDTA is an ability to dissolve 

some iron oxides (Sigg et al., 2000). This slow reaction, may explain some the element mobility in the 

Q2 compartment for S3. 

 

0

20

40

60

80

100

S1 S2 S3

%

Cu

Q1 Q2

a)

0

20

40

60

80

100

S1 S2 S3

%
Pb

Q1 Q2

b)

0

20

40

60

80

100

S1 S2 S3

%

Zn

Q1 Q2

c)

 
 

Figure 3. 

Percentage of Cu (a), Pb (b) and Zn (c) mobilised by kinetic extraction for the three samples (3 

replicates were analysed for each extraction) in the two compartments Q1 and Q2 

 

4.5 Comparison 

 

The global mobility (%) estimated by single, sequential (F6: sum of fractions F1 to F5) and kinetic 

(Q1+Q2) extractions is shown in Figure 4. Comparison of the two thermodynamic approaches (HCl 

and F6), indicates that the global mobility of Cu, Pb and Zn is similar for S1 and S2. This is surprising 

as sequential extractions are usually expected to be more aggressive than single reagent extraction 

using HCl (Larner et al., 2006). It is possible that a potentially labile fraction (e.g sulfides) was not 

leached during the sequential extractions (Aranguren, 2008), perhaps due to the relatively short 



8 

 

extraction of the oxidisable phases, but that Cl
-
 and EDTA ligands were able to desorb cations from 

this fraction by complexation. Cu, Pb and Zn are chalcophile (Goldschmidt, 1954) therefore in an 

anoxic environment it is possible that Zn is trapped in sulfide mineral phases (Morin, 2010). In this 

study the oxidation state of the sediments was changed by removing them from the anoxic 

environment on the sea floor to the oxic environment in the laboratory. This may have influenced the 

speciation of the metals with a redistribution into the geochemical fraction.  

 

Aranguren (2008) suggest a modification to the sequential extraction procedure of Leleyter and Probst 

(1999). They use a solution of 8N nitric acid to extract the trace metals bound by the recalcitrant 

sulphide phases in the sediments. Quantification of the fraction of metals bound to the sulphide phase 

may help to explain findings for sediments which have similar Cu total concentration and variable 

mobilities. 

The comparison between the three extractions shows a higher percentage of Cu, Pb and Zn mobilised 

by the kinetic extraction for the three samples studied. This result suggests that the thermodynamic 

approaches do not reach reaction equilibrium: 

 

 It generally accepted that the metals associated with the water-soluble, exchangeable and acid-

soluble fractions are easily mobilised (Sundaray et al., 2011). For Cu, Pb and Zn, there is no 

obvious relationship between Q1 (“rapid” compartment) and the sum the first three fractions 

of the sequential extraction analysis (F1+F2+F3). 

 

 Reaction equilibrium is reached for the sequential and single extraction, but they do not extract 

the entire labile fraction from the sediment. EDTA is a stronger ligand than the chloride ion 

and as such may complex metals hosted in the sulphide phases.  

 

Cornu et al. (2004) and Gismera et al. (2004) show that certain sequential and kinetic extractions are 

consistent and complementary for Cu, Pb and Zn. For example, in river sediments Gismera et al. 

(2004) found correlations between the mobility of Cu, Pb and Zn between the exchangeable and 

carbonate bound fraction and the fraction which was quickly leached by EDTA. 

For improved assessment of the environmental risk associated with the sediment, a kinetic approach 

should be considered. 
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Figure.4 

Percentage of Cu (a), Pb (b) and Zn (c) mobilised by HCl, sequential (F1 to F5) and kinetic (Q1+Q2) 

extraction for the three sediments. 

 

8. Conclusion 

 

The aim of this work was to compare several procedures for the environmental risk assessment. Metal 

mobility was scrutinized using single, sequential and kinetic extractions; each method provided 

different information on the sediment. Key findings of this research are that: 

 

 The mobility of Cu, Pb and Zn varied from sediment sample to another and was dependent on 

the binding nature of phases present in the sediment matrix. 

 

 Of the five sediment fractions distinguished by the sequential extraction, only the acid soluble, 

oxidisable and reducible fractions appeared to be involved in the process of retention and 

release of metals, suggesting that the remobilization of elements in marine sediments will be 

highly dependent on local pH and redox conditions. 

 

 Simplification of the sequential extraction method by starting at step 3 is justified in marine 

sediments since the first two fractions, water soluble and exchangeable, will have already been 

dissolved in-situ. 

 

 A specific step in the sequential extraction procedure to estimate the sulfide fraction would 

provide further information on the labile metals present in the sediments. This would involve a 

modification of the current extraction for the oxidisable fraction. 

 

 The time frame of one hour for single extractions may be too short. Results presented here for 

kinetic extraction using EDTA raise the possibility that risk is underestimated (for a time 

contact exceeding 60 min) if only the quickly mobilised fraction is considered.  
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 Kinetic fractionation provides additional information showing a possible underestimation of 

the quantities of element potentially released and thus of the potentially elevated long-term 

risk. The mobility of Cu, Pb and Zn assessed by kinetic extraction were higher than by 

thermodynamic approaches (single and sequential), although a different extractant was used in 

each case. 

 

Numerous studies conducted on metal mobility from harbour sediments focus on thermodynamic 

aspect of mobility and ignore the kinetic aspect. However, even if results comparing the three 

protocols: single, sequential and kinetics are not always consistent, it is important to consider kinetic 

extraction in addition to methods with a fixed extraction time to ensure that the equilibrium has been 

achieved and long term risk can be effectively predicted. 
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