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Abstract: 
Photovoltaic (PV) panels offer significant potential for contributing to the UK’s energy policy 
goals relating to decarbonisation of the energy system, security of supply and affordability. 
The substantive drop in the cost of panels since 2007, coupled with the introduction of the 
Feed-in Tariff (FiT) Scheme in 2010, has resulted in a rapid increase in installation of PV 
panels in the UK, from 26.5MWp in 2009 to over 5GW by the end of 2014. Yet there has 
been no comprehensive analysis of the determinants of PV deployment in the UK. This 
paper addresses this gap by employing spatial econometrics methods to a recently available 
data set at a fine geographical detail. Following a traditional regression analysis, a general to 
specific approach has been adopted where spatial variations in the relationships have been 
examined utilizing the spatial Durbin model using the cross-sectional data relating to the UK 
NUTS level 3 data. Empirical results indicate that demand for electricity, population density, 
pollution levels, education level of households and housing types are among the factors that 
affect PV uptake in a region. Moreover Lagrange Multiplier test results indicate that the 
spatial Durbin model may be properly applied to describe the PV uptake relationship in the 
UK as there are significant regional spillover effects. 
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1. Introduction 

UK climate change and energy policy goals legislate an 80% emissions reduction target from 

1990 levels by 2050 via the Climate Change Act (CCA, 2008) while ensuring security of 

supply and affordability. Additionally, the European directive 2009/28/EC imposes a target 

for the UK to meet 15% of all energy consumption from renewable energy sources by 2020 

(EC, 2009), a commitment reaffirmed in various UK policy documents (e.g., DECC, 2012a). 

Photovoltaic (PV) panels offer a significant opportunity to achieve both these goals. By 

transforming domestic consumers into ‘prosumers’2 PV allows them to self-generate and 

export remaining electricity, consequently reducing their purchases from the grid whilst 

contributing to decarbonising and diversifying UK electricity supply. 

Installed global PV capacity has increased from 1.4GW in 2000 to 70GW in 2011 (IEA/IRENA, 

2013), and on to 177GW by the end of 2014 (IEA, 2015), a rise both linked to and driving 

improved performance and efficiency due to technological progress and economies of scale. 

There is a growing literature focusing on large-scale, commercial PV applications, including 

comparison of their performance (Sueyoshi and Goto, 2014); analysis of their market value 

(Hirth, 2013); optimal size and timing of investments (Massetti and Ricci, 2013) and effect of 

policy framework on investor preferences (Lüthi and Wüstenhagen, 2012). Policy incentives 

such as the Feed-in Tariff (FiT) schemes have played a significant role in promoting domestic 

applications (Zhang et al., 2011). Indeed following the 2010 introduction of the UK Feed-in 

Tariff (FiT) Scheme, annual installation rates for PV panels has increased by a factor of nearly 

two hundred in the UK in under five years (from 26.5MW in 2009 to over 5GW by the end of 

2014, DECC (2015a)). The Government estimates that the FIT will engender 7.5GW of PV 

capacity by 2020, with other mechanisms stimulating a further 1.8-3.2 GW at larger scale 

capacity (DECC, 2013b). A typical domestic PV (at 2.6kWp capacity) costs around £5300 

according to data collected relating to FiT eligible PV installations (DECC, 2014b), a figure 

which has reduced significantly in a relatively short period of time as cell costs and thus 

overall installation costs have reduced sharply. FiT rates have been reduced significantly 

since 2010 to try to match the real world cost reductions. 

                                                      
2
 Prosumers also includes consumers who produce their own power from a range of different onsite 

generators (e.g. diesel generators, combined heat-and-power systems, wind turbines, and PV systems) (IEA-
RETD, 2014). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

However only a small fraction, (2.4%), of the UK’s nearly 26 million households have 

installed a rooftop PV panel as of December 2014. A variety of factors, from social (e.g. 

reserving roofspace for PVs, Wolsink, 2012) to economic (e.g. cost reductions Muhammad-

Sukki et al., 2013) to policy incentives (Faiers and Neame, 2006; Grau, 2014) have been 

highlighted in the literature to explain the drivers and barriers to the uptake of PVs. Thus far 

studies of domestic adoption of PV are characterized by either detailed, qualitative analysis 

based on interviews/surveys (Cherrington et al., 2013; Faiers and Neame, 2006) or 

quantitative analysis via econometric methods (Jenner et al., 2013; Zhang et al., 2011). 

Following the first law of geography, ‘everything is related to everything else, but near things 

are more related than distant things’ (Tobler, 1970, p.236), there is an understanding that 

low carbon technologies like PV or electric vehicles are likely to form local clusters (Balta-

Ozkan et al., 2014a). Yet, by ignoring the spatial proximity and clustering of PVs, we argue 

that these methods do not offer a framework to understand the spatially dependent nature 

of low carbon transitions (Bridge et al., 2013). 

A key characteristic of this study is to analyse the determinants of PV uptake in association 

with neighbouring regions, building on a similar study carried out for Germany (Schaffer and 

Brun, under review). Such a spatial analysis is important for a number of reasons. Firstly, the 

availability of solar energy varies by location as well as time (weather conditions and time of 

day/season). Secondly, distributed PV can create reverse flows on the networks that were 

designed for uni-directional electricity flows from centralised, dispatchable sources to 

demand points. These two factors jointly diminish predictability of load, voltage and 

demand flows, especially on low voltage networks. As a result, domestic PV, which is highly 

distributed, presents a key challenge for network operators in managing the grid such that 

there is enough capacity and voltage headroom available to accommodate these flows. 

Thirdly, an analysis based on large datasets, rather than a limited number of observations, is 

likely to produce more robust findings to understand PV deployment patterns and their 

determinants across the UK. 

Moreover, in a related literature, the theory of social action highlights the importance of 

social associations on an individual’s consumption decisions (among others, Bagozzi, 2000; 

Weber, 1978). Kaplan (1999) applies an adoption theory framework to understand the 

factors that influence electric utility managers’ interest in solar power. He emphasizes the 
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importance of prior knowledge or familiarity with the new technology in diffusion of solar 

panels3. Similarly social influence, attitudes towards the environment and consumer 

lifestyles are key factors for energy consumption decisions (Lutzenhiser, 1992, 1993; Weber 

and Perrels, 2000; Wilson and Dowlatabadi, 2007). Jager (2006) discusses consumer motives 

for adopting photovoltaic systems from a behavioural-theoretical perspective. He identifies 

different types of needs, such as belongingness, the ownership of a PV system by 

friends/neighbours and participating/collaborating with other people in installing a PV 

system which may lead to peer effects. Installation of a PV panel creates a persistent signal 

that peers (neighbours) can observe which may generate externalities affecting the overall 

diffusion process (Bollinger and Gillingham, 2012; Snape and Rynikiewicz, 2012). Given that 

such peer effects will be stronger in spatially adjacent areas than more distant ones, to 

capture such social spatial spillovers a spatial analysis framework is needed in establishing 

the drivers of PV uptake. Spatial econometrics offers a framework to test the influence of 

these externalities using large data sets where the smaller the spatial unit of analysis the 

better capabilities to capture these effects. 

This paper addresses this gap by applying spatial data analysis and spatial econometrics 

methods for the first time, to the best of our knowledge, to analyse the determinants of 

domestic PV uptake at a regional level in Great Britain4. The research highlights that rather 

than income, accumulated capital and financial savings are the key drivers for PV uptake in 

the UK. The consumers with high electricity demands are the early adopters, indicating 

consumers’ understanding of the economics of PV tariffs. 

The paper is organised as follows: section 2 outlines UK PV policy while section 3 offers a 

concise literature review. The methodology is presented in section 4. Model specification 

and the data are summarized in section 5. The results are presented in section 6 whilst the 

last section is devoted to conclusions. 

 

                                                      
3
 On a related point, Hargadon & Douglas (2001) discuss how Edison framed incandescent light around 

contemporaneously familiar gas lighting system and how this impacted its acceptance and diffusion. 
4
 While the study refers to the United Kingdom, the empirical analysis is limited to Great Britain, that is, the UK 

excluding Northern Ireland. 
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2. UK policy on photovoltaics 

After years of slow progress, the UK has had a sudden rapid increase in deployment of solar 

PVs. According to the latest statistics, in 2013, over 2TWh of electricity was generated by 

solar PVs, compared to 20GWh in 2009 (DECC, 2014a). This can be seen as a direct response 

to the 2010 introduction of the ongoing Feed-in Tariff (FiT) scheme and its co-incidence with 

a substantive drop in the cost of PV panels since 2007 (DECC, 2013b). 

The 2009 figure is indicative of the limited UK effort on PV until that point. Support prior to 

2009 was largely limited to grants for small-scale applications, with the technology absent 

from early non-grant financial instruments like the Non-Fossil Fuel Obligation (NFFO) 

(Mitchell, 2000). The Solar Photovoltaics Major Demonstration Programme (2002 – 2006, 

£26m, extended to £31m) provided capital grants of 40-50% of costs, supporting 1,200 

domestic and 180 commercial installations. The Low Carbon Buildings Programme (2006-

2010, £30m, extended by £50m) superseded this and included support for PV. The Energy 

Efficiency Commitment (EC) (2005-2008), Carbon Efficiency Reduction Target (CERT) (2008-

2011) and the Energy Company Obligation (ECO) (2012 onwards) each obligated large UK 

utilities to improve energy efficiency or reduce carbon emissions among domestic 

consumers. Micro-generation technologies, including PV, counted towards the CERT and 

ECO targets but cheaper options meant this did not happen in significant volume. 

The Renewables Obligation (RO) is at time of writing the main source of financial support in 

the UK for renewable energy sources of electricity (RES-E) above 5MW, though it is currently 

being phased out. It is a form of quota mechanism which places an obligation on supply 

companies to source RES-E (Woodman and Mitchell, 2011). The RO included PV from its 

2002 inception though its initial technology blind approach primarily directed financial 

support to more mature – and less costly – technologies. The RO was split into bands in 

2009 and PV awarded two Renewables Obligation Certificates (ROCs) instead of one for 

every MWh generated. PV was then separated into two bands from April 1st 2013, ‘building 

mounted solar PV’ and ‘ground mounted solar PV’, with the latter receiving slightly more 

ROCs per unit energy, as in Table 1. Once a project is online it receives the specified number 

of ROCs per MWh generated for its start date over its eligible lifespan (Woodman and 

Mitchell, 2011). These two bands are expected to be available to new entrants until March 

31st 2017 when the RO will close to new applicants. 
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Table 1. ROCs given per technology under the RO and RO Scotland Banding for Solar PV 
installed in the year to March 2017 (Ofgem, 2013b, 2013c) 

 Pre 2013 2013/14 
capacity 

2014/15 
capacity 

2015/16 
capacity 

2016/17 
capacity 

PV 2     

Building mounted New band 1.7 1.6 1.5 1.4 

Ground Mounted New band 1.6 1.4 1.3 1.2 

 

The low UK PV capacity to 2009 is indicative of the RO’s failure to provide any significant 

stimulus to PV. The few PV plants active by 2010 were under 50kW and at this point became 

eligible for transfer to a new Feed-in Tariff (FiT) scheme introduced for RES-E (only about 

20kW remained within the RO) (Ofgem, 2013c).  

The UK’s FiT is a fairly straightforward example of a tariff mechanism, though it has 

increased in complexity since its introduction. The FiT pays qualifying RES-E technologies a 

fixed sum per unit of electricity generated, varying with the technology and the scale of the 

development. The PV tariffs have ‘degressed’ (that is, reduced according to a formula) on a 

quarterly basis since August 2012 to try to mimic the falling market price of PV technology 

(Ofgem, 2013b). Eligible generators receive the extant price when they begin to generate 

and continue to receive this price for a fixed term (currently 20 years for PV), rising with 

inflation (Retail Price Index). 

PV is, by a large margin, the technology most frequently installed under the FiT. A total of 

634,421 PV installations were registered in the Microgeneration Certificate Scheme (MCS) 

under the FiT by the end of December 31st 2014, 96% of which are under 4kW (DECC, 

2015b). 

The Government is phasing out the RO in favour of the Feed-In Tariff with Contracts for 

Difference (CfD) from 2014, fully replacing it by 2017. Generators in the RO will continue to 

be paid a subsidy through the RO until 2037 at the latest. The CfD will pay contracted RES-E 

generators a price per unit of energy generated (the strike price) minus an assumed 

reference (or market) price which represents the income the generator is assumed to have 

earned for selling their power. Only large PV installations are eligible under the CfD and will 

be able to access the strike prices shown in Table 2 based on the year they initially contract. 

Smaller installations will remain FiT eligible. 
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Table 2. PV Draft Strike Prices, 2014-19 (Ofgem, 2013a) 

 2014/15 2015/16 2016/17 2017/18 2018/19 

£/MWh 125 125 120 115 110 

 

The level of the strike prices and the way that the reference price is calculated and whether 

it will be representative of prices that generators can actually access have been criticised by 

various trade associations and other commentators (Allen & Overy, 2012; Newbery, 2011; 

REA, 2012), however, the CfD is not designed to apply to domestic PV installations. 

To be eligible for the domestic PV FiT, the panels have to be an accredited model and 

installed by an accredited installer under the MCS. The installation requires a meter which 

records all generation from the PV panels (Typically this means at least one additional 

meter, though the UK is at the beginning of a smart meter rollout and it is expected a single 

smart meter will be able to handle a household’s demand and generation without 

interference). This meter records total generation from the panels, independently of the 

household’s demand. The Government then pays 50% of the metered output at the tariff 

rate and the other 50% of the metered output at the tariff rate plus the export rate. This 

creates the possibility that householders who are more likely to use a greater fraction of 

their own generation might be more attracted to tariff-supported PV than those who tend 

to export more of it; the expectation is that domestic generators who are at home or whose 

energy demand which can be made to fit with daytime usage will be advantaged. 

3. Literature Review 

There has been a growing interest in examining the driving factors of PV installations. The 

process of adoption of new technologies is influenced by many factors, including geographic 

characteristics and peer effects (Bollinger and Gillingham, 2012; Snape and Rynikiewicz, 

2012). A recent paper by Balcombe et al. (2013) provides a comprehensive review of drivers 

and barriers of microgeneration technology uptake. We summarize their findings here 

(Table 3) and instead focus on quantitative studies explaining domestic PV adoption. 

Table 3. Summary of motivations and barriers for the uptake of microgeneration 
technologies 

 Motivation Barrier 

Financial - Save or earn money from lower - Costs too much to buy/install 
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fuel bills and government 
incentives 

- Increase value of my home 

- Cannot earn enough/save enough money 
- Lose money if I move home 
- High maintenance costs 

Environmental - Help improve environment - Environmental benefits too small 

Security of 
supply 

- Protects against future high 
energy costs 

- Makes households more self-
sufficient/less dependent on 
utility companies 

- Protects against household 
power cuts 

- Would make more self-
sufficient/independent 

Uncertainty and 
trust 

- Use an innovative/high-tech 
system 

- Home/location not suitable 
- System performance or reliability not 

good enough 
- Energy not available when I need it 
- Hard to find trustworthy information or 

advice 
- Hard to find trustworthy builders to install 

Inconvenience - None identified - Hassle of installation 
- Disruption or hassle of operation 
- Potential requirement for planning 

permission 
- Reserving space on rooftops 

Impact on 
residence 

- Improve the feeling and 
atmosphere within my home 

- Show my environmental 
commitment to others 

- Take up too much space 
- The installation might damage my home 
- Would not look good 
- Neighbour disapproval/annoyance 

Source: Largely based on Balcombe et al. (2013, p.658), incorporating Wolsink (2012) 
 

Using probit regression models Sardianou and Genoudi (2013) analyse the effect of gender, 

age, marital status, financial background and current income on solar PV installation in 

Greece. They conclude that middle-aged and highly educated individuals are much more 

likely to adopt renewable energy sources in their home. Furthermore, income positively 

affects consumers’ acceptance of clean energy projects, while marital status and gender are 

not statistically significant factors. 

Zhang et al. (2011) carry out a sub-national analysis of PV installations in Japan using panel 

data. The explanatory variables included are sunshine duration, installation costs, regional 

promotion policies, regional household income, and environmental awareness. They report 

that government subsidies, housing investment and environmental awareness promote PV 

adoptions whilst installation costs have a significant negative effect. Large initial payments 

have been reported as a barrier affecting consumer’s willingness to pay for PV in other 

studies as well (Claudy et al., 2011). 
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Zhai and Williams (2012) analyse the effect of consumer perceptions on PV adoption using a 

fuzzy logic inference model. They focus on consumer perception of installation time and 

cost and its overall maintenance requirement. The study depicts the immense differences 

between adopters and non-adopters and point to perceived cost and maintenance as the 

most important barriers to solar cell installation. 

More specifically to the UK, despite a large number of studies focusing on social aspects 

(Allen et al., 2008; Faiers and Neame, 2006; Keirstead, 2007) or impacts of FiT changes, 

wider socio-economic analysis has been limited. Cherrington et al. (2013) analysed the 

impact of changes on FiTs on return on investment using two case studies. Their real-life 

economic analysis shows that, given reductions in PV installation costs, a cut in the FiT can 

still result in a healthy return on investment (between 6-8%). However based on a typical 

domestic PV installation of 2.6kWp, Muhammad-Sukki et al. (2013) suggests that the return 

from a solar PV installation for the new tariff rate is significantly lower in the UK, about 2% 

to 3.6%, compared to a number of European countries like Spain or France (between 6-11% 

return). 

Another strand of the literature focuses on the relationship between adoption of solar PV 

and nearby previously installed systems, i.e. social interaction or peer effects of solar panel 

diffusion. Theoretically, Manski (1993) distinguishes three ways to explain the effect of 

group membership on an individual's behavior (‘identification’ problem): endogenous 

effects, contextual effects, and correlated effects. Individual behavior influences the 

average group behavior while at the same time being influenced by group behaviour, 

leading to endogenous effects. Whereas an individual's behavior can be directly influenced 

by the exogenous characteristics of his or her group. Furthermore individuals within a group 

behave in a similar fashion as they tend to have similar characteristics or face similar 

political, institutional, or environmental conditions, resulting in correlated effects. 

Accordingly the knowledge about new technologies spills over within members of spatially 

defined networks, as consumers in local networks tend to face similar environmental and 

credit constraints, information constraints, have more direct interactions with one another 

and can directly observe the costs and benefits of new technologies. 

Empirically, Rode and Weber (2012) investigate the spatio-temporal diffusion of solar panels 

in Germany using an epidemic diffusion model framework. Based on a dataset of 550,000 
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systems installed during 2009, they find that taking the spatial dimension into account has a 

considerable impact on parameter estimates and model performance, even though the 

control variables contribute less information than the spatial component. They also suggest 

that the lowest level of geographical aggregation produces better parameter estimates. 

While proximity and neighbourhood effects are drivers of PV deployment, imitative 

behaviour is highly localized. 

Bollinger and Gillingham (2012) provide further evidence on the importance of peer effects 

on the diffusion of solar panels from California, USA. They report strong evidence for causal 

peer effects, which appear to increase in magnitude over time and are greater for larger 

installations and at the more localized street level. Müller and Rode (2013) analyse spatial 

spillover at the micro scale, focusing on Wiesbaden, Germany, by employing a geocoded 

data set of the grid-connected PV systems set up through 2009. They specifically examine if 

peer effects are influential in the individual decision-making process. Using a binary panel 

logit model, their findings support the findings of Bollinger and Gillingham (2012) and of 

Rode and Weber (2012) in that the propensity to install PV increases with the number of 

previously installed systems in spatial proximity. They further find that the likelihood of 

installing PV is greater in less densely populated areas. Snape and Rynikiewicz (2012) find 

stronger adoption in regions where agents first adopted photovoltaic systems and a 

concentric pattern, with lower adoption in the further areas, in line with the previous 

literature. 

Similarly, Graziano and Gillingham (2014) analyse the spatial patterns of solar panel 

diffusion in Connecticut, USA. Their findings indicate that there is a considerable clustering 

of adoptions and smaller centres contribute to adoption more than larger urban areas, in a 

wave-like centrifugal pattern. They confirm the importance of spatial neighbouring effects 

as well as built environment and policy variables, supporting the findings of Bollinger and 

Gillingham (2012), of Müller and Rode (2013) and of Rode and Weber (2012). Another study 

by Davidson et al. (2014) highlights the importance of home age, heating source, number of 

rooms, mortgage status and household education as key variables affecting PV diffusion in 

California, USA. 

More specifically for the UK, Richter (2013) explores whether the installation rate of solar 

PV is affected by social spillovers from spatially close households. By using the cumulative 
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number of solar PV installations within a neighbourhood at the end of a particular month 

(the installed base) as a measure for social effects, she finds small, but positive and 

significant spillover effects: one more solar PV panel in a postcode district increases the 

number of new adoptions per owner-occupied households in a given month by 7.48e-06. 

Besides, peer effects vary across months and overall diminish over time. 

More recent studies recognise geographical aspects of low carbon transitions (Bridge et al., 

2013) and focus on the spatial characteristics of PV installations. Hofierka et al. (2014) 

analyse the correlation between the solar resource potential and PV installations and how 

this relationship varies by different land uses in Slovakia and Czech Republic. They report 

that Slovakian installations follow solar resource potentials at higher rates than Czech ones. 

Schaffer and Brun (under review) investigate the determinants of geographical PV patterns 

in Germany using spatial econometrics. Their analysis focuses on PV installations of less than 

16kWp. They take financial (disposable per capita income, home ownership), locational 

(annual solar irradiation, installation in the neighbouring regions) and ecological (share of 

green votes) factors into account. They find home ownership and neighbourhood effects as 

key determinants for domestic PV installations, to a less extent for per capita income and 

solar irradiation. 

4. Methodology 

Elhorst (2010) proposes a general-to-specific approach to arrive at the most suitable 

econometric model. Equation (1) offers a family of related spatial econometric models: 

 (1) 

where Y is a (N x 1) vector of observations on a dependent variable and X is an (N x K) matrix 

of observations on exogenous (explanatory) variables with an associated (K x 1) vector of 

regression coefficients β. As for the parameters in the estimated models,  is a spatial 

autoregressive parameter that measures the magnitude of interdependence across regions 

showing the effect of spatial lag in the dependent variable;   stands for the spatial lag in 

the independent variables. WY is the spatially lagged dependent variable and WX denotes 

spatially lagged independent variables. u is independently and identically distributed error 

term with zero mean and constant variance σ2. K denotes number of explanatory variables 

and N denotes number of observations. 

uWXXWYY  
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W is the non-stochastic NxN spatial weights matrix which is employed to reflect the 

structure of potential spatial interaction. W may be constructed using information on 

physical distance between pairwise combinations of regions in the sample, or may be 

defined such that element wij = 1 if i and j are physically neighbours and 0 otherwise. The 

definition of neighbours used in the weights matrix is based on a notion of distance decay or 

contiguity. By convention, the diagonal elements of the weights matrix are set to zero and 

row elements are standardized such that they sum to one. In this study an inverse distance 

weight matrix is used5, where the element wij is equal to     
 with dij being the distance 

between two regions i and j (i≠j). This specification assumes that as the distance between 

regions i and j increases (decreases), Wij decreases (increases), implying less (more) spatial 

weight to the pair (i, j). The additional terms, spatially lagged dependent variable or a spatial 

autoregressive process in the error term, in the above equation introduce the spatial 

aspects into the model. Moreover there may be spatially weighted explanatory variables in 

the model. The transformation of the spatial weight matrix provides for an intuitive 

explanation for the WY and Wu terms. Equation (1) can be estimated with the maximum 

likelihood estimation (MLE) techniques (Elhorst and Freret, 2009). 

The general Spatial Durbin Model (SDM) model can be used to test for spatial interaction 

effects for two main reasons (LeSage and Pace, 2009). If unobserved but relevant variables 

following a first-order spatial autoregressive process are omitted in the model, and these 

variables happen to be correlated with independent variables not omitted from the model, 

the SDM will produce unbiased coefficient estimates, unlike the spatial lag model. Moreover 

the SDM model will still produce unbiased coefficient estimates in cases where the true 

data-generating process is the spatial error model. 

Given this background, special cases can be obtained by restricting parameters in Equation 

(1). The likelihood ratio (LR) tests can be utilized to examine whether the SDM model can be 

simplified into a spatial lag model, spatial error model, or an OLS model. The spatial error 

model (SEM) arises when the restriction       is in effect, resulting in spatial 

                                                      
5
 Baltagi & Rokicki (2014) highlight that the choice of the weight matrix may affect the magnitude but not the 

significance or sign, of the estimated parameters. We have re-estimated the model using the square of the 
inverse distance matrix and found our results are robust for both types of weight matrixes. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12 
 

dependence in the error term alone. The spatial autoregressive (SAR) model is obtained by 

setting θ=0, which exhibits spatial dependence only in the dependent variable. 

The spatial lag model assumes that the value of the dependent variable in one state/region 

affects the dependent variable in a proximate state/region. This paper examines the extent 

to which solar panel uptake in one region depends on the PV uptake in adjacent regions, 

providing an appropriate tool when capturing neighbourhood spillover effects:  

 (2) 

In the spatial lag model, the hypothesis of spatial correlation relates to the parameter ρ. If 

the null hypothesis of         is rejected two possibilities arise. A positive and statistically 

significant parameter estimate of ρ indicates a positive correlation between solar panel 

uptake in neighbouring regions, implying that levels of solar panel uptake tend to spill over 

and have a positive effect on solar panel uptake in neighbouring regions.  

Alternatively, the spatial error model in equation (3), assumes that the spatial dependence 

operates through the error process, where any random shock follows a spatial pattern, so 

that shocks are correlated across adjacent regional economies, such that the error term in 

equation (1) may reveal a significant degree of spatial covariance, which can be represented 

as follows: 

 (3) 

 

where Wu denotes spatially autocorrelated error term,  is the spatial error coefficient,  is 

an independent white noise error component.  

The OLS parameter estimates are unbiased in the spatial error model, but they are no longer 

efficient. Estimation must be based on either maximum likelihood or on a generalized 

moments approach (Kelejian and Prucha, 1999). The inclusion of the spatially lagged 

components in the model leads to an intrinsic endogeneity problem, which induces a two-

way causality in the neighbour relation in space. In addition to the endogeneity in the spatial 

lag term, there is a possibility that explanatory variables other than the spatially lagged 

dependent variable may be endogenous. In that case the ordinary least-squares (OLS) 

estimators are biased and inconsistent for the spatial-lag model. Thus maximum-likelihood 

iuWYXY  

uXY  

  Wuu
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estimation (Anselin, 1988) or instrumental variables estimation (GS-2SLS) needs to be 

employed to obtain consistent estimators (Kelejian and Prucha, 1998; Kelejian and 

Robinson, 1993). In the GS-2SLS approach, the endogeneity of the spatially lagged 

dependent variable WY is accounted for by using the spatially lagged exogenous variables 

WX as instruments. The spatial two-stage least-squares estimates (GS-2SLS) are robust to 

non-normality and consistent, but not necessarily efficient.6. 

The major advantage of employing SDM lies in the fact that SDM nests both the spatial lag 

model given in equation (2) and the spatial error model given in equation (3). Therefore 

SDM produces unbiased coefficient estimates under the data generating processes (1) to 

(3). If unobserved but relevant variables following a first-order spatial autoregressive 

process are omitted in the model, and these variables happen to be correlated with 

independent variables not omitted from the model, the SDM will produce unbiased 

coefficient estimates, unlike the spatial lag model (SAR). Moreover the SDM model will still 

produce unbiased coefficient estimates in cases where the true data-generating process is 

the spatial error model (SEM) (LeSage and Pace, 2009). If the true data generating process is 

the SDM, both the spatial lag model and the spatial error model will suffer from omitted 

variable bias, since these models do not include spatially lagged explanatory variables. As 

the SDM specification contains a spatially lagged dependent variable, it implies that shocks 

to both the error term and the explanatory variables at one location are transmitted to all 

other locations within the spatial system. Equation (1) can be estimated with the maximum 

likelihood estimation (MLE) techniques (Elhorst and Fréret, 2009). Then the likelihood ratio 

(LR) tests can be utilized to examine whether the SDM model can be simplified into spatial 

lag model (SAR), spatial error model (SEM), or an OLS model.  

There have been some concerns expressed regarding the limitations of the various spatial 

econometric models. Gibbons and Overman (2012), reflecting on Manski (1993)’s problem 

of identification, state that for the various spatial econometric models only the overall 

spatial spillover is identified but not whether they work through exogenous or endogenous 

neighbourhood effects. Moreover they raise concerns as to the use of lagged values of the 

regressors as instrument variables (IV) for the spatial lag of the endogenous variable in the 

                                                      
6
 For technical derivations and the selection of optimal instruments, please see Kelejian and Prucha (1998) 

Kelejian and Prucha (1999) and Kelejian and Robinson (1993). 
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SAR-type models. Corrado and Fingleton (2012) further argue that the coefficient estimate 

for the WY variable may be significant because it may be picking up the effects of omitted 

WX variables or nonlinearities in the WX variables if they are erroneously specified as being 

linear. Thus it has been suggested that the applications of spatial models should be guided 

by economic theory and actual empirical questions (Brueckner, 2006; Pinkse and Slade, 

2010; Corrado and Fingleton, 2012). Gibbons and Overman (2012) propose employment of 

experimentalist paradigm approaches such as instrumental variables (IV) and spatial 

differencing. 

5. Data and Model Specification 
5.1. Dependent variable: PV data 

The data on PV deployment comes from the Central FIT Register, published by the Ofgem E-

serve Database and includes FIT installations as of 30 June 2013. The database lists installed 

and declared capacities (kW) for different technology and installation types, along with 

other spatial variables (Table 4). 

 
Table 4. List of variables in Central FIT Register 

Variable Description 

Technology Anaerobic digestion, hydro, wind, micro CHP, Photovoltaic, wind 

Installation 
type 

Picked by the FIT Licensee as the most appropriate ‘type’ for the 
installation – domestic, community, commercial or industrial 

Locational 
variables 

- Post code: the first half of GB post code, i.e. post code district 
- Local authority 
- Government Office Region 
- Supply MPAN No (first 2 digits): Metering Point Administration 

Number, a unique identity reference number for electricity meter 
where the first 2 digits denotes the distributor ID. 

- LSOA code: Lower layer super output areas, based on 2001 
classification. 

 
Some key observations from this dataset are as follows: 

Designation of domestic category: A variety of installation capacities are listed in this 

database. As the mentioned database is used as a reporting tool, there are no definitions as 

to what constitutes ‘domestic’ vs non-domestic, though most domestic installations are 
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associated with lower capacity tariff bands7. This is problematic as sizes of domestic 

installations vary from less than 4kW to 1.3MW, as discussed in the next section. 

The majority of FIT installations are PV: Out of 390,198 FIT entries registered by 30 June 

2013, 99% of them are PV, accounting for 88% of total installed capacity as registered in the 

FIT database (Table 5). 

Table 5. Distribution of FIT installations by technology and type 

 Number of installations Installed Capacity (kW) (%) 

 Distribution by types (%) Total 
numbers 

Distribution by types (%) Total 
capacity  1 2 3 4 1 2 3 4 

Anaerobic 
digestion 1.9 60.4 37.7 0.0 53 0.0 63.6 36.3 0.0 45,879.0 

Hydro 62.8 28.7 3.8 4.6 390 8.4 81.9 8.5 1.2 37,425.6 

Micro CHP 98.9 0.9 0.0 0.2 454 98.8 1.0 0.0 0.2 462.8 

Photovoltaic 96.9 2.5 0.2 0.4 392,470 74.1 22.1 2.7 1.1 1,683,515.5 

Wind 72.8 23.0 1.0 3.1 4,831 23.2 64.4 7.2 5.2 150,804.9 

Total 96.5 2.8 0.2 0.5 398,198 67.0 27.6 4.0 1.4 1,918,087.8 

 1: Domestic; 2: Commercial; 3: Industrial; 4: Community 
Source: Authors own elaboration of Ofgem FiT database, as of 30/06/2013, available at 
https://www.ofgem.gov.uk/environmental-programmes/feed-tariff-fit-scheme/feed-tariff-reports/installation-
reports 

 
Given that there are a number of locational and different PV deployment sizes included in 

the dataset, it was important to identify a spatial unit of analysis8. As discussed extensively 

in Appendix 1, the European regional classification system, NUTS3 (Nomenclature of 

territorial units for statistics) is used as the spatial unit of analysis. There are a total of 134 

NUTS3 regions in the UK based on the 2012 classification. 

All UK domestic PV installations under 10kW are included in this analysis9. As presented in 

Figure 1, there appears to be a concentration of PV uptake in the Southern and Eastern 

England regions which are characterized by higher solar radiation rates. As the analysis is 

restricted to PV installations under 10kW, the spatial patterns of accumulated capacity and 

number of installations are very similar. 

 
Figure 1. Regional distribution of typical domestic PV installations in Great Britain 
(accumulated capacity, GW (left) and number of installations (right)) 

                                                      
7
 DECC confirmed that they do not check which types are selected against which tariffs. (Personal 

Communication, 2014) 
8
 For data handling and processing please see Appendix 1.  

9
 While Cherrington et al. (2013) analyse a typical domestic system under 4kW, Schaffer and Brun (under 

review) focus on installations of less than 16kW. We analysed domestic PV installations of both under 4kW and 
10kW and did not find any significant difference in results between these two types. 
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In order to explore the existence of spatial autocorrelation Global Moran’s I Index was used. 

Moran’s I statistic is a global indicator of spatial association as it summarizes the nature of 

the spatial dependence and illustrates different types of spatial association between a 

region and its neighbours. A positive Moran’s I value indicates a tendency toward clustering 

while a negative Moran’s I value indicates a tendency toward dispersion. Moran’s I statistics 

for accumulated capacity and number of installations are 0.142 (p- value 0.001) and 0.143 

(p- value 0.001), respectively. Both Moran’s I statistics are significantly greater than the 

expected values for this statistic under the null hypothesis of no spatial autocorrelation (or 

spatial causality, or spatial randomness), indicating that there is statistically significant 

positive spatial association for accumulated capacity and number of installations. 

 
Figure 2. Moran's I Scatterplot (accumulated capacity, (left) and number of installations 
(right)) 
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5.2. Explanatory variables 

Among the factors affecting PV installation, income reflects the financial constraints and 

risk-bearing possibilities a consumer may face (Rode and Weber, 2012). Even though Rogers 

(2003) states that in general terms higher income households tend to adopt early and 

observational learning might therefore play a less important role, evidence from other 

studies is inconclusive. Müller and Rode (2013) claim that low-income districts are more 

likely to be later adopters, supporting Rode and Weber (2012) and Sardianou and Genoudi 

(2013) who report a significantly positive impact of income. However, both Zhang et al. 

(2011) and Richter (2013) report a statistically insignificant impact. In analysing early British 

PV adopters, Keirstead (2007) reports that they have higher incomes and are more likely to 

be home owners than the general public. Though, this work predates the adoption of the FiT 

for PV; prior to this date most installations would not be economically viable and are likely 

to have been influenced by other motivations, most likely environmental and perhaps some 

niche applications. From 2010 onwards, the FiT was in place, designed at a level to allow an 

annual return at good sites and providing a considerable change in the incentives for 

installation. In a more recent study, income is argued to be a relatively less important factor 

for the diffusion of PV systems as the decision to invest in a solar PV panel is rather a 

question of accumulated capital than of marginally higher income (Graziano and Gillingham, 

2014). 

Yet, there are other socio-economic variables affecting the PV installation. Müller and Rode 

(2013) take into account the effect of density and income together and argue that 

consumers located in less densely populated areas, characterised by a higher share of single 

and double family homes, are more likely to be early adopters. While Davidson et al. (2014) 

report statistically significant influence of higher education, Jager (2006) and Keirstead 

(2007) interview some early adopters and find that they are better educated and are from 

middle-age groups. Solar irradiation is another factor directly affecting PV electricity 

generation (Šúri et al., 2007) and thus the economics of PV installation. Snape (2013) notes 

the importance of built environment on PV uptake where the ratio of sun facing roof space 

to occupants is lower in urban environments than suburban and rural ones, creating ‘black 

holes’ of PV adoption in cities. 
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In related literature concerning the installation of energy efficiency retrofits, Urban and 

Scasny (2012) report that householders more concerned about the environment are more 

likely to reduce their demand and retrofit their homes, which is positively influenced by age. 

On the other hand more well-off households tend to be less concerned about 

environmental problems, tend to curtail less, but are more likely to invest in energy 

efficiency. The level of formal education is not found to be an estimator of the likelihood to 

save energy. Mills and Schleich (2012) find that while families with young children are more 

likely to undertake energy efficiency and conservation activities, mostly for environmental 

reasons, the families with high share of elderly pay more attention to financial savings with 

lower levels of technology adoption. 

The list of explanatory variables included in the analysis is summarized in Table 6. The data 

on these socio-economic variables come from latest census data, 2011. While the Office for 

National Statistics (ONS) publishes socio-economic data for England and Wales, in Scotland 

this is done by Scottish Neighbourhood Statistics (SNS). Unavoidably the description of 

variables (e.g. household sizes10) and their spatial units vary as a result. In this study, data 

was mostly collected at lower layer super output area (in Scotland Data Zone), LSOA/DZ, and 

then aggregated to NUTS3 level using reference lookup tables produced by ONS and SNS. 

Some other data is available at the local authority level, which are the same as level 1 Local 

Administrative Units (LAU) in England and Wales. As the definition of these geographies 

does not correspond to NUTS3 codes for Scotland11, population shares are used here as a 

proxy. 

 
Table 6. List of explanatory variables used in the analysis and data sources 

Name of variable Data Availability  Year Data Source
1
 Scale of Data 

Data 
processing 

Age of Population 

Scotland 2011 GROS NUTS3 - 

England and Wales 2011 ONS -Census 
LSOA 

Aggregated 
to NUTS3 

Number of 
Households 

Scotland 2011 SNS Data Zone Aggregated 
to NUTS3 England and Wales 2011 ONS -Census LSOA 

Area (hectares) 
to calculate 
density 

Scotland 2011 SNS Data Zone Aggregated 
to NUTS3 England and Wales 2011 ONS -Census 

LSOA 

Household size, 
local authorities 

Scotland 2011 SNS Data Zone Aggregated 
to NUTS3 England and Wales 2011 ONS Local Authority

3
 

                                                      
10 ONS uses ‘All household spaces with at least one usual resident’ while SNS uses ‘All occupied household 

spaces’. 
11

 This mismatch is being discussed in an ongoing consultation (Planning Portal, 2014). 
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in the UK
2
 

Sub-national 
electricity sales 
and numbers of 
customers 

Great Britain 2011 DECC 

Local Authority
3,4

 
Aggregated 
to NUTS3 

Dwelling Type
5
 Scotland 2001 SNS Data Zone Aggregated 

to NUTS3 England and Wales 2011 ONS Local Authority
3
 

Gross Domestic 
Household 
Income 

Great Britain 2011 ONS NUTS3 - 

Yearly global 
irradiation at 90 
deg. (kWh/m

2
)

6
 

Great Britain 2011 Joint Research 
Centre

6
 

NUTS3 - 

Share of 
domestic and 
industrial 
emissions in total 
emissions  

Great Britain 2011 DECC Local authority 
district 

Aggregated 
to NUTS3 

1
 ONS: Office for National Statistics; SNS: Scottish Neighbourhood Statistics, DECC: Department of Energy and Climate 

Change; GROS: General Register Office for Scotland 
2
 UK data is provided, but due to lack of look up tables from LA to NUTS3 level in Scotland, SNS data at DZ is used. Overall 

the sums match up across these two datasets. 
3
 In England and Wales, ONS provides look up tables from LAs to NUTS3 regions. 

4
 In Scotland, the boundaries of local authorities (LAs) do not correspond to NUTS3 codes. Out of 32 LAs, 11 LAs fall into 

more than one NUTS3 region. Hence, based on look up table at DZ level, population share of NUTS3 falling in each LA is 
calculated. These shares are then used to disaggregate LA values to NUTS3 regions. 
5
 ONS data is by household spaces whereas SNS data is for dwellings. 

6
 The solar radiation data are long-term average of yearly totals, calculated without taking into account shadowing from 

terrain (hills/mountains). A straight average is performed over each region at 90 deg. angle. 
 

5.3. Model specification 

In order to investigate the drivers of PV uptake across 134 regions, following on previous 

studies and within constraints on the available data, the following model has been 

employed12: 

    

                                                                     

                                                   (4) 

In equation (4) i denotes regions and u is an independently and identically distributed error 

term with zero mean and variance σ2. Even though time index isn’t shown in this equation, 

we have used cross-section data pertaining to 2011, due to data availability constraints. 

The dependent variable is the logarithm of number of domestic PV installations of under 

10kW at regional level. The explanatory variables include the natural logarithm of gross 

domestic household income “per capita (lnypc), population density (density), share of 

                                                      
12

 Age is not included in the model specification due to a multicollinearity problem. The results are available 
from the authors upon request. 
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owned houses (ownedshare), share of detached houses (detached), natural logarithm of 

electricity demand (lnelectricity), 2 or more A-levels, HNC, HND, SVQ level 4 or equivalent 

qualifications (QL2) as a proxy for education, average household size (avehousehold), solar 

irradiation (irradiation) and a CO2 variable. 

 

6. Estimation Results 
6.1. Results 

An OLS estimation was performed and the estimation results are reported in Table 7 where 

R2 denotes the coefficient of determination and AIC is the Akaike Information Criterion. In 

order to check for the diagnostics of the model, Breusch-Pagan heteroscedasticity test and 

RESET misspecification test are carried out. The results indicate the presence of 

heteroscedasticity problem and misspecification in the model. Estimation results reveal that 

the per capita income, education level, electricity sales, irradiation, and share of detached 

houses have a positive impact on the regional installation of PV systems. Whereas increases 

in share of owned houses, population density and average number of households negatively 

affect the uptake of domestic PV installations. 

 

Table 7. OLS Estimation Results 

Variables  

Lnypc 0.0080 
(0.903) 

Density -0.019 
(0.000)* 

Detached 0.858 
(0.100)*** 

Ownedshare  -0.221 
(0.264) 

Lnelectricity 1.055 
(0.000)*  

QL2 0.0522 
(0.252) 

Avehousehold  -0.491 
(0.208) 

Irradiation 0.0032 
(0.000)** 

CO2 0.025 
(0.290) 
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Constant 0.592 
(0.724) 

R2 0.75 
AIC 203.127 

Breusch-Pagan Heteroscedasticity Test 35.32 
(0.000)* 

RESET test  4.88 
(0.000) 

Number of observations  134 

Note: The values in parentheses are p-values. (*), (**), (***) denote 
significance levels at 1 per cent, 5 per cent and 10 per cent, respectively. 
AIC=Akaike Information Criterion.  
 

Ignoring the possible spatial dependence in disturbances may lead to biased and 

inconsistent estimates, hence loss of efficiency. In order to test for spatial correlation, 

Moran’s I13 (Moran, 1950) and Lagrange multiplier (LM) tests are carried out. 

Table 8 provides three different test statistics to investigate the presence of spatial 

dependence in the error term: the Moran’s I and two different versions of the Lagrange 

Multiplier tests (Anselin, 1988; Florax et al., 2003). Moran’s I statistic is a global indicator of 

spatial association. Although it does not allow for discrimination between the two 

alternative forms of misspecifications, it is very powerful against spatial dependence both in 

the form of error autocorrelation and spatial lag. LM error and LM lag tests, in addition to 

their robust versions, test the null hypothesis of no spatial dependence against alternatives 

of spatial error and spatial lag dependence, respectively. If the results from the two LM tests 

are significant, the larger value is used to indicate which dependence to control for. Residual 

autocorrelation is tested for the models which do not contain a spatial error component and 

it is shown that there exists autocorrelation in the spatial lag model. Hence it is plausible to 

incorporate the spatial component into the disturbance terms, which is also in line with the 

previous test results. 

                                                      

13
 Moran’s I statistic:  and where corresponds to the total number of 

spatial units and and  stand for the variables expressed in mean-deviation form. For a row-standardized 

weights matrix, . Under the null hypothesis, there is no spatial autocorrelation, hence Moran’s I equals 

to zero. 
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Table 8. Tests for Spatial Dependence in the OLS Regression 

Test  

Moran’s I  3.036 
(0.002)** 

LM(error)  25.407 
(0.000)* 

LM(error robust) 23.205 
(0.000)* 

LM(lag) 15.333 
 (0.000)* 

LM(lag robust)   13.243 
(0.000)* 

Note: The values in parentheses are p-values. (*), (**), (***) denote 
significance levels at 10 per cent, 5 per cent and 1 per cent, respectively. 
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Table 9. Spatial Model Estimation Results 

 SDM SAR  SEM GS-2SLS 

Lnypc 0.009 
(0.866) 

0.005 
(0.932) 

0.027 
(0.625) 

0.002 
(0.974) 

Density -0.011 
(0.021)** 

-0.025 
(0.000)* 

-0.020 
(0.000)* 

-0.019 

(0.000)* 

Detached 1.493 
(0.041)** 

1.110 

(0.019)** 
1.179 
(0.015)** 

1.717 

(0.005)* 
Ownedshare -1.152 

(0.023)** 
-3.230 
(0.004)* 

-2.004 
(0.018)** 

-2.972 
(0.007)* 

Lnelectricity 1.152 
(0.000)* 

1.000 
(0.000)* 

1.0665 
(0.000)* 

1.012 
(0.000)* 

QL2 0.048 
(0.082)*** 

0.033 

(0.422) 
0.042 
(0.312) 

0.47 
(0.264) 

Avehousehold -0.875 
(0.058) *** 

-1.276 
(0.002)** 

-0.420 
(0.037)** 

-0.859 
(0.046) 

Irradiation 0.002 
(0.048)** 

0.003 
(0.000)* 

0.003 
(0.000)* 

0.003 
(0.002)** 

CO2 0.045 

(0.025)*** 
0.026 
(0.217) 

0.032 
(0.122) 

0.030 
(0.153) 

constant 0.723 
(0.773) 

4.269 
(0.016)** 

0.103 
(0.473) 

1.961 
(0.339) 

W* lnypc 0.0908 
(0.601) 

   

W*density -0.013 
(0.186) 

   

W* detached 2.928 
(0.070)*** 

   

W*Owned share -1.532 
(0.646) 

   

W*lnelectricity 0.181 

(0.390) 
   

W*QL2 0.034 
(0.735) 

   

W*avehousehold -0.815 

(0.084)*** 
   

W*Irradiation 0.0001 
(0.612) 

   

W* CO2 0.201 
(0.248) 

   

Lambda    0.175 
(0.000)* 

 

Rho 0.122 
(0.084)*** 

0.022 
(0.000)* 

 0.076 
(0.021)** 

LR Test (WX=0)  43.214 
(0.023)** 

   

LR Test (ρ=0)  2.988    
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(0.084)*** 
Sargan overidentification 
test  

   31.115 
(0.000)** 

Hausman Specification 
Test  

   3.259 
(0.071)*** 

Note: The values in parentheses are p-values. (*), (**), (***) denote 
significance levels at 10 per cent, 5 per cent and 1 per cent, respectively. 

 

Table 9 presents the estimation results for spatial models where for the GS-2SLS model the 

Hausman statistic is adapted to test the difference between OLS and spatial errors. 

Compared to OLS estimates, spatial models capture the influence of share owned homes, 

education level, average household size and share of domestic and industrial emissions in 

affecting PV uptake. The fact that per capita income doesn’t have any statistically significant 

effect, in line with Zhang et al. (2011) and Richter (2013), and the share of homeowners has 

negative effect on PV uptake suggest that it is not wealth that determines the decision to 

install PV. This could be due to the fact that wealthy homeowners may have less financial 

constraints that induce them to reduce their net energy use, in line with Urban and Scasny’s 

(2012) findings on more well-off households tending to be less concerned about 

environmental problems and not undertaking energy efficiency measures. 

Empirical results recognise the importance of the education variable, proxied by QL2, which 

has positive impact in all models and is statistically significant in the SDM model. While both 

Davidson et al. (2014) and Jager (2006) report positive influence of university and post-

graduate education on PV uptake, our analysis reveals the effect of vocational and technical 

qualifications which are below university degree (captured by QL2). The findings presented 

here indicate that there is a statistically significant negative impact of population density on 

PV deployment which is in line with the existing literature, implying that residents located in 

less densely populated areas, characterised by a higher share of single and double family 

homes, are more likely to install a PV system (Müller and Rode, 2013). Yet, we find the 

influence of several other variables that have no precedent in the literature. PV uptake is 

positively influenced by detached homes. This could be due to easier access to the rooftops 

and management of construction works, compared to terraced homes. As a little more than 

half of the UK building stock is made up of detached homes (the remaining 19% by flats and 

28% by terraced homes, DECC, 2012b), there could be further potentials to be exploited. 
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Households with higher demands for electricity, linked with higher levels of domestic 

emissions, are more likely to install PVs. However, another key factor that our study reveals 

is the negative relationship between PV installation and average household size that wasn’t 

captured in the OLS estimation with no precedent in the literature: the smaller the average 

household size the higher the PV uptake. Taken together with higher levels of electricity 

consumption and Graziano and Gillingham’s (2014) finding on the importance of 

accumulated capital, the early adopters seem to be post-family householders who are 

capable of raising funds to cover the high initial capital costs. Indeed, informal conversations 

with some PV installers revealed that many of their customers are elderly householders who 

spend most of their time at home with higher electricity demands and some savings to pay 

for the high capital costs. This could be due to a desire to reduce their net electricity use and 

costs (i.e. a substitution effect) or environmental awareness driving them to reduce the 

impacts of their higher demands, or a combination of these. The greater likelihood of their 

being at home during the day can be expected to improve the comparative economics of PV 

installation under the UK’s FiT scheme. However, Mills and Schleich (2012) claim that 

families with a high share of elderly members are more motivated by financial savings in 

investing in energy efficiency activities than environmental reasons. There is insufficient 

evidence as to whether environmental or financial factors are the driving factors for PV 

uptake, or how these influence different potential domestic PV consumers. 

Finally, our analysis suggests a statistically significant positive impact of solar irradiation on 

PV deployment. Since FiT payments for PV systems under 10kW are dependent on the 

actual amount of electricity produced this might be expected, but our data suggests a 

measurable spatial effect which does go to public understanding of this benefit of the 

overall economics implied by the scheme as it is currently applied. The UK tariff system for 

small users dictates that generators are assumed to export half their generation to the grid 

and use the other half. They receive a small additional subsidy for the half which they are 

assumed to have exported, regardless of the actual amount exported. The economics of 

small scale PV are thus predicated on generating X units of energy and getting payment of (i) 

a fixed subsidy per unit, (ii) a small additional export sum per X/2 units and (iii) displacement 

of billed tariffs for every unit of own solar energy use. The third of these means that for 

householders staying at home all day and using own solar power, the economics of PV panel 
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are much better than the householders hardly ever using their own power (especially during 

sunny hours) and who likely export more than 50%. 

We summarise and compare our findings on the factors determining British PV adoption 

with respect to the literature in Table 10. For the variables that have no precedent in the 

literature, their effect is explained in the last column. 

 

Table 10. Summary of factors determining PV adoption 

Variable Findings in existing literature Our findings 

Income Müller and Rode (2013); Rode and 
Weber (2012); Sardianou and 
Genoudi (2013) – higher income 
groups may be more able to afford 
costs of solar PV installation 

Statistically insignificant impact – in line 
with Zhang et al. (2011); Richter (2013) 

Home 
ownership 

Keirstead (2007): home owners 
may be more likely to install than 
tenants as PV systems are fixed 
capital investments 

Negative effect – together with income 
this highlights the importance of 
accumulated capital (Graziano and 
Gillingham, 2014) 

Detached 
homes 

 Positive effect – compared to terraced 
homes, construction work could be easier  

Density Müller and Rode (2013) – less 
dense areas are more likely to 
install PV 

Negative effect – higher uptake in less 
dense areas, characterized by a higher 
share of single and double family homes 

Education 
level 

Davidson et al. (2014); Jager 
(2006), Keirstead (2007) – More 
highly educated are more likely to 
adopt PV 

Positive effect – Householders with 
vocational and technical qualifications are 
more likely to install PV 

Pollution  Negative effect – Households in more 
polluted areas could be more eager to 
contribute to decarbonising energy 
system 

Electricity 
use 

 Positive effect - households with higher 
demands might be more interested in 
becoming self-sufficient 

Household 
size 

 Negative effect – smaller families might 
have higher disposable income to spend 
on PV 

Solar 
irradiation 

Šúri et al. (2007) – higher solar 
irradiation means greater 
electricity generation 

Positive effect – More generation for the 
same investment cost which would be 
expected to enhance the economics of 
adoption of the technology. This remains 
the expectation under the UK PV FIT 
mechanism, which rewards increased 
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generation. 

 

Even though estimation results are quite similar for each specification, model comparison is 

essential to choose the correct specification. In order to investigate whether the SDM can 

be reduced to a spatial lag or error model, a likelihood ratio (LR) test was performed. The LR 

test results for null hypothesis θ = 0 (51.36 with a p-value of 0.000) and LR test results for 

null hypothesis θ = −ρβ (47.80 with a p-value of 0.000) indicate that the Spatial Durbin 

model may be properly applied to describe domestic small scale PV installations. 

In our analysis the coefficient of the spatially lagged dependent variable in the spatial 

Durbin model is statistically significant. Moreover the LR test testing the joint significance of 

all spatially lagged explanatory variables, indicates that they are jointly significant and 

should be included in the model (χ2= 43.214 with a p- value of 0.023). Hence our results 

reveal that PV uptake in one region has been enhanced by network effects. 

In order to check whether the study’s estimates suffer from potential endogeneity bias, a 

generalized spatial two-stage least squares (GS-2SLS) procedure has been employed. 

Kelejian and Prucha (1998, 2010), and Arraiz et al. (2010) suggest a three-step procedure to 

estimate models with spatially lagged dependent variables and spatially autoregressive 

disturbances based on a set of instruments. This strategy generates consistent and 

asymptotically efficient estimates under the assumption that the explanatory variables are 

indeed exogenously related to the dependent variable (Arraiz et al., 2010; Kelejian and 

Prucha, 1998; Kelejian and Robinson 1993). The GS-2SLS Model in Table 9 presents the 

instrumental variable estimates. The spatial two-stage least-squares estimates based on the 

use of the spatially lagged explanatory variables as instruments are robust to non-normality 

and consistent, but not necessarily efficient14. The estimates provided by the spatial Durbin 

and GS-2SLS are similar, suggesting the uptake of PV in one region tends to spillover to 

neighbouring regions. The Hausman specification test indicates that the instruments chosen 

for the GS-2SLS model satisfy the instrument relevance condition based on the first stage F 

test statistics, and the spatially lagged dependent variable is endogenous with a p-value of 7 

                                                      
14

 Please see Kelejian and Prucha (1998, 1999) for technical derivations and the selection of optimal 
instruments. 
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percent. Moreover the Sargan over-identification test suggests that the instruments satisfy 

the exogeneity condition. 

6.2. Reflections on the method 
McCullen et al. (2013) state that the adoption of innovations related to energy behaviours 

and technologies by individual households is generally based on multiple factors, taking into 

account not only individual preferences, but also whether or not an individual’s social circle 

has adopted the innovation. The visibility of the panels can be a further contributing factor 

in addition to peer effects within the group. Indeed, the UK public’s distinction between 

taking visible actions like installation of a solar panel versus non-visible actions such as 

building certificates and ratings has been noted in the literature (Balta-Ozkan et al., 2014b). 

While our method does not lend itself to differentiate the influence of social contacts vs 

visibility of the panels, it is clear that spatial proximity will increase the likelihood of 

visibility. Though the effect of social contacts, i.e. knowledge spillovers, might be argued to 

have a limited spatial reach which might be exhausted within a region; Manski’s (1993) 

contextual factors might be at force. In particular, following the abolition of nine Regional 

Development Agencies (RDA) operating in England in 2010, there are 39 Local Enterprise 

Partnerships (LEPs) tasked on a voluntary basis to support economic growth by bringing 

together local authorities and businesses (BIS, 2015). Moreover, the devolved 

administrations in Scotland and Wales have their own energy policy priorities and targets. 

The Scottish Government for example aims to meet 50% of electricity demand from 

renewable sources by 2015 (Scottish Government, 2011). As the regional classification we 

have used is smaller than the definition of RDAs (nine of which correspond to ninety nine 

NUTS3 regions), it can be argued that even though peer effects might have been lessened, 

coordination or similarities in voluntary activities led by LEPs or other voluntary 

environmental charities15 may reinforce knowledge spillovers that entail consideration of 

spatial effects16. By capturing these contextual factors, spatial econometrics offer richer 

insights into the spatial dynamics of the diffusion of innovations (new technologies) 

regarding PV uptake. This then can inform the development of future policies to enable 

transition to a low carbon economy that is just, efficient and effective. 

                                                      
15

 For example, UKH11 region in our analysis corresponds to Peterborough, home of the Peterborough 
Environment City Trust 
16

 We thank our anonymous reviewer for this suggestion. 
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One variable we have not been able to account for is planning outcomes from the process of 

seeking permission to install PV. The planning regime relating to PV was amended in 2008 to 

make it easier for domestic scale installations to go through on a permitted basis rather 

than needing planning permission, provided they meet certain physical conditions regarding 

the location and so long as the installation is not in a protected area such as a national park. 

Interpretation of the more relaxed guidelines at local level may still have some impacts on 

installations but no data is available at the level required to be considered here. 

Finally, we note that a cross-sectional analysis like this has limitations in the understanding 

of a technology diffusion process. The major disadvantage is that it is not possible to control 

for non-observational time invariant effects. Technology diffusion has a spatio-temporal 

dimension in that network spillovers may be enhanced in time, as new technology adopters 

could be the neighbors of older adopters (Nyblom et al., 2003). Although adoption of 

innovation is gradual and slow at the start, generally a dramatic and rapid growth is 

observed which is followed by a gradual stabilization and finally a decline Rogers (2003). 

Thus, given the importance on intertemporal spillover effects, further reaseach examining 

the factors affecting PV uptake should employ spatio-temporal methods, given that relavant 

data is avaliable. 

7. Conclusions 
Photovoltaic panels offer significant potential for contributing to the UK’s energy policy 

goals of decarbonisation and improved security of supply and affordability. Existing studies 

focus on socio-economic determinants of PV uptake while overlooking spatial aspects. Yet, 

these can have important effects on the distribution network by influencing load, voltage 

and demand flows and thus their consideration represents a potentially significant influence 

for understanding and planning low carbon transitions and the evolution of existing 

networks to meet the needs of more diversified and distributed electricity generation. Our 

study is part of addressing this gap. 

By using a large, spatially explicit dataset concerning PV deployments along with other 

socio-economic data, the determinants of PV uptake using exploratory spatial data analysis 

and spatial econometric methods were analysed. Our study reveals that domestic solar 

panel installation in a region is negatively related to its density, and the share of home 

ownership and positively to the share of detached homes and education level. Additionally 
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an increase in household electricity spending leads to a rise in PV deployment in a region, 

highlighting the substitution effect. Surprisingly though, the average number of households 

in a region is negatively related to PV deployment in a region. This could be due to the fact 

that households residing in large houses are too wealthy to care about energy savings or are 

concerned about the visual impacts on their homes. 

A statistically significant impact of solar irradiation on the PV uptake was apparent. This 

would be expected since this means more generation for the same capital investment. The 

nature of the UK FiT provides a reward on a per unit of energy generated, directly rewarding 

the greater generation in areas with greater irradiation, regardless of whether this is used 

by the generator or exported to the grid. This could be regarded as a positive in terms of 

applied policy in that it implies that consumers are being incentivised to invest in panels to a 

greater degree in areas where the economics of installation make more sense. This might be 

regarded as an equity issue as regards the ability of different householders to access tariffs, 

essentially those in areas with lower irradiation, have less access to public funding but in 

terms of maximising renewable energy generation against cost to the consumer or taxpayer 

than it would appear to be more efficient. An argument could thus be made to focus 

promotion in areas with higher irradiation. Further study of this area may be useful in 

informing future tariff setting since it is in the interests of policy makers to set a level of 

support which minimises costs while driving investment and this may mean a focus on areas 

with higher irradiation. 

Householder’s economic benefit from a PV panel can be expected to be advantaged by 

particular circumstances. Assuming similar costs, households with higher irradiance can 

expect to generate more energy and thus have greater income from both the tariff and 

export rates. This suggests that PV panels would be economically advantaged by being sited 

in the south over the north of the country. 

DECC’s consideration of the economics of PV comparative to other energy sources relies not 

just on income from the tariffs but also on the displaced value of electricity that a household 

would otherwise source from the grid. While the Government assume a 50/50 split it is clear 

that households who use a large amount of their own generation will be significantly 

advantaged since they will they will reduce the bill from their supplier while attracting the 

same tariff income as an identical property where a greater amount of the PV generation is 
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exported. While the use of battery storage would alter the economics it is not thought that 

this has been adopted at significant levels, this may primarily be due to the lack of an 

economically attractive storage option applicable at this level. A domestic PV user who 

exports most or all of their self-generated power will still only attract the additional export 

rate for 50% of their total output. This creates the possibility that representatives of user 

groups more likely to use a greater fraction of their own generation might be more 

attracted to tariff-supported PV than those who see more of it exported, with the 

expectation that domestic generators who are at home or who have energy demand which 

can be made to fit with daytime usage will be advantaged. This might mean groups such as 

the unemployed, retired or stay at home parents might enjoy a cost advantage. Additionally, 

since members of groups who spend a large amount of time at home may have higher bills 

than those who do not, this may incentivise them to consider alternatives to traditional 

supply. The positive relationship between consumption and PV installation shown in our 

data may reflect these characteristics in application of the UK FiT mechanism. This may have 

implications for those considering reform of the FiT or in devising similar instruments in 

other territories. 

The economics of PV in the UK depends on the costs of the installation, the available feed-in 

tariff at the time of connection and the price of grid-sourced electricity for which PV sourced 

electricity substitutes. Installation costs have decreased steadily in the last five years. The 

level of the feed-in tariff have also been subject to steady decreases to try to match real 

world cost reductions, and there is potential for a lag in reductions and a mismatch between 

modelled and real world cost reductions that may not be reflected in the available tariff. 

Meanwhile the price of UK domestic electricity has shown some variation but has trended 

generally upwards over the last decade (DECC, 2014c), implying an increasing benefit to 

substitution by self-generated PV power, and further underlining the economics of 

advantage of those with greater potential for substituting PV for grid electricity. 

This study focuses on spatial aspects while Richter (2013) analysed temporal aspects. Future 

research might usefully consider spatio-temporal diffusion of patterns and how PV uptake 

interacts with other socio-economic factors such as the effects on house prices. Wider 

ranging work might consider how different populations respond in light of local financial 
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incentives perform in driving PV growth in other territories, as well as considering wider 

policy frameworks and their application. 

Our study is the first attempt to explain the patterns of British PV adoption using spatial 

econometrics. The spatial effects we have detected can be related to contextual factors on 

similarities and coordination of environmental and energy policies at sub-regional levels by 

local enterprise partnerships or other third sector organisations like charities, non-

governmental organisations. Further research could adopt a more local level analysis to 

explore the nature of these spatial effects, whether they are peer effects or such contextual 

factors. Yet, there is scope for more representative survey based studies to distinguish the 

effect of such contextual factors from more centralised information providers such as the 

internet which may be used by households to learn about the costs and benefits of PV 

panels. 

Further research questions could include the analysis of spatially differentiated FiT rates on 

PV deployment patterns and the evaluation of total costs and benefits of such differentiated 

tariff schemes. Given the strong neighbourhood effects obtained in our study, an alternative 

approach could be assessing costs and benefits by steering investments (Müller and Rode, 

2013) into areas where there is available headroom capacity. Our analysis can also be used 

to support the development of more stochastic models to investigate optimum network 

reinforcement strategies under different deployment patterns. 

Finally, whilst data availability dictated our selected spatial unit of analysis, the authors 

would expect results to differ at a more refined geographical level, another avenue of future 

research. 
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Appendix 1: Data handling and processing 
The selection of locational variables: Among the locational variables identified, LSOAs are 
small area statistical units based on measures of proximity and social homogeneity, with a 
minimum size of 1,000 residents and 400 households, but average 1,500 residents17. They 
are intended to provide an improved basis for comparison across the country as they are 
similar in size. LSOAs are used for England and Wales by the Office for National Statistics 
(ONS). An equivalent area for Scotland is Data Zones (DZs)18. Following 2011 Census, there 
are 32,844 LSOAs in England, 1909 in Wales and 6505 DZs in Scotland. 
On the other hand, post codes and distributor ID numbers in MPANs don’t correspond to 
any other statistical units for which socio-economic data is available. Given a total of 11 
Government Office Regions in Great Britain, they are not deemed to provide a detailed 
analysis. As a result, the European regional classification system, NUTS3 (Nomenclature of 
territorial units for statistics) has been selected as spatial unit of analysis. There are 134 
NUTS3 regions in Great Britain, based on 2012 classification. Even though the FIT database 
uses 2001 LSOA categories, by using the look up tables provided by the ONS19 these are 
aggregated at NUTS3 level. There are 99 NUTS3 regions in England, 12 in Wales and 23 in 
Scotland, resulting in 134 observations in total. 
Missing observations and cross-checking: Out of 380,158 domestic PV installations, 8.9% of 
the sample either had their LSOA/DZ codes missing or blank entries. By using the post code 
look up tables20, for 72% of data their corresponding LSOA/DZ codes were matched. As only 
the first half of post codes were given, in some instances there were more than one possible 
LSOA/DZ area which were located in different NUTS3 regions. These as well as the 
observations where post codes could not be matched were excluded from the analysis, 
resulting in 374,445 observations to work with. A breakdown of this data cross-checking 
process is summarized in Table 11. 
 
Table 11. Missing observations and cross-checking of data 

Raw data characteristics Number of 
installations 

Installed capacity 
(kW) 

Total domestic PV installations 380,158 1,207,342.7 

Domestic installations missing some locational reference 33,769 130,169.6 

Processing of observations with missing locational reference 

  NUTS3 
matched 

NUTS3 not matched 
–excluded 

Falling in 2 NUTS3 
regions – excluded 

3942 LSOA codes not available but post 
code districts enabling matching 

3397 517 28 

293 First half of post code falling in 
more than one DZ/ LSOA 

229 64  

24430 LSOA codes found based on post 
code look up tables 

24430   

                                                      
17

 For further details, see 
http://neighbourhood.statistics.gov.uk/dissemination/Info.do?page=aboutneighbourhood/geography/supero
utputareas/soa-intro.htm. 
18

 Current boundaries of DZs are based on 2001 Census. The Scottish Government is running a consultation on 
redrawing of boundaries of DZs to address significant population changes in some geographies, to bring them 
alignment with higher or lower level (e.g. Census Output Area) geographies or to reflect local circumstances. 
As this consultation is expected to be concluded in Spring 2014, this analysis is based on 2001 Data Zone 

boundaries and relevant look up tables (Rai and Scott, 2013). 
19

 https://geoportal.statistics.gov.uk/geoportal/catalog/content/filelist.page 
20

 http://www.ons.gov.uk/ons/guide-method/geography/products/census/lookup/other/index.html 

http://www.ons.gov.uk/ons/guide-method/geography/products/census/lookup/other/index.html
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5104 Neither post code nor LSOA codes 
provided 

 5104  

Number of observations 28056 5685 28 

Installed capacity (kW) 88,385.2 41,652.5 131.9 

Final data set with observations matched at NUTS3 level 

Number of installations 374,445 

Installed capacity (kW) 1,205,518.3 
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Regional distribution of photovoltaic deployment in the UK and its determinants: a spatial 
econometric approach 

 
Research Highlights 
Spatial econometrics models applied to UK PV installation for the first time. 
Significant regional spillover effects are apparent. 
Smaller households in highly polluted, less dense areas are the early adopters 
Strong substitution effect as high electricity spending induces PV installations. 
Solar irradiation data are found to be significant. 


