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Introduction 

 

Type 1 diabetes is a multifactorial disease resulting from a complex interplay between 

host genetics, the immune system and the environment, that culminates in the 

destruction of insulin-producing beta cells. The incidence of type 1 diabetes is 

increasing at an alarming rate, especially in children under the age of 5 [1-3]. Genetic 

predisposition, although clearly important, cannot explain this rise and so it has been 

proposed that changes in the ‘environment’ and/or changes in ‘how we respond to our 

environment’ must contribute to this rising incidence. In order to gain an improved 

understanding of the factors influencing the disease process, it is important, firstly, to 

focus on the organ at the centre of the illness; the pancreas. This review summarises 

our knowledge of the pathology of the endocrine pancreas in human type 1 diabetes 

and, in particular, explores the progression of this understanding over the past 25 

years. 

 

What was known 25 years ago? 

 

While there had been numerous studies of the autopsy pancreas in young persons with 

diabetes before, the foundations of this subject were laid by the seminal article of 

Willy Gepts in 1965 [4]. Gepts noted the presence of insulitis (a predominantly 

lymphocytic inflammatory infiltrate of islets) in 15 of 22 (68%) autopsies of persons, 

under the age of 30, dying within 6 months of a diagnosis of diabetes [4]. These 

findings were later confirmed in a larger collection of UK samples, where 47 out of 

60 (78%) young patients (<20 years) with recent-onset type 1 diabetes were found to 

have evidence of insulitis [5]. Prior to the development of immunohistochemistry 

Gepts also noted that the pancreas in persons who had had the disease for many years 

was characterized by an almost complete lack of insulin secreting beta cells. From 

these observations he raised two hypotheses: the islet inflammation could be 

secondary to a viral infection of beta cells or it could represent an immunologically 

driven process, akin to autoimmune thyroiditis. 

 

Support for both these theories followed. Gamble, Taylor and Cumming [6] found 

that patients with recently diagnosed type 1 diabetes were more likely than controls to 

have antibodies to Coxsackie viruses, and Coxsackie B4 virus was cultured from the 
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pancreas of a 10 year old boy who had died at clinical presentation of type 1 diabetes 

[7]. This case may have been exceptional in that the virus was also cultured from the 

brain of the child, raising the possibility of an incidental viraemia. Many attempts 

have since been made to culture viruses from the pancreas of recent onset diabetic 

patients, largely without success.  

 

In 1974 two separate groups reported the presence of islet cell autoantibodies in 

patients with type 1 diabetes [8-10], leading to the disease being later classified as an 

organ specific autoimmune disease with the insulin secreting beta cells as the target. 

 

Following the advent of immunohistochemistry being applied to paraffin embedded 

tissue, it was shown that within the pancreas of children dying at clinical presentation 

of their disease that the majority of islets (70%) were small and had no beta cells [11]. 

They had a normal complement of glucagon secreting alpha cells, somatostatin 

secreting delta cells and pancreatic polypeptide secreting PP cells and were termed 

insulin deficient islets (IDI). The remainder of the islets had residual beta cells and 

were called insulin containing islets (ICI). Insulitis affected 18% of ICI but only 1% 

of IDI. This was the first evidence that insulitis affected ICI primarily and lent support 

to the idea that it represented an immunologically driven destruction of beta cells [11]. 

Importantly the lobular distribution of the disease was also noted (Figure 1), where a 

seemingly unaffected lobe, or one where ICIs with insulitis could be observed, were 

frequently surrounded by lobes containing only IDIs. 

 

It also became clear that the pancreas at clinical presentation could be studied to look 

at the time course of events within the organ. Insulin deficient islets were islets where 

beta cells had been destroyed in the past; ICI with insulitis were islets where beta cells 

were being destroyed at the time of the death of the patient, and ICI with no insulitis 

were islets where the beta cells were yet to be attacked and destroyed. Gepts [4] had 

suggested that the destruction of beta cells must happen over years and support for 

this was the finding of insulitis affecting ICI up to 6 years after clinical onset of 

diabetes [5]. 

 

Prior to the development of antigen retrieval, many antigens could only be studied by 

immunohistochemistry on tissues that had not been fixed in formalin. 
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Characterization of the inflammatory cell infiltrate in insulitis for many years relied 

on one report where fresh frozen pancreas had been collected at the time of death 

from a child with recent onset diabetes [12]. The majority of the inflammatory cells 

were T lymphocytes and the majority of them expressed CD8, suggesting that they 

were likely to be cytotoxic T cells. Macrophages were not abundant.  

 

Cytotoxic CD8 T cells can recognize an antigen when it is presented to them bound to 

cellular class I major histocompatability complex (MHC) molecules. This 

presentation is enhanced if there is increased expression of class I MHC. Bottazzo et 

al [12] noticed that endocrine cells in some islets in the single pancreas that they 

studied hyperexpressed class I MHC but they did not fully characterize this 

phenomenon and did not describe which cells were affected. This feature was later 

elucidated in a study of 23 pancreases from persons dying of recent onset type 1 

diabetes [13]. Hyper expression of class I MHC was found in all pancreases where 

there were residual beta cells (an example is shown in Fig. 2). It affected 92% of ICI 

but only 1% of IDI. The phenomenon was not seen in 95 control pancreases, which 

included normal and diseased pancreases (graft versus host disease, Coxsackie viral 

infection, type 2 diabetes, chronic pancreatitis, cystic fibrosis). It was thus as much a 

characteristic of type 1 diabetes as insulitis and insulin deficient islets. 

 

Within affected islets all endocrine cells (alpha, beta, delta and PP) hyperexpressed 

class I MHC. Whilst islets complicated by insulitis uniformly hyperexpressed class I 

MHC if they had residual beta cells, many otherwise normal ICI, with no evidence of 

insulitis even on serial sectioning, also displayed this phenomenon [13]. This 

suggested that hyper-expression of class I MHC must precede insulitis in the disease 

process. 

 

It was hypothesized that if alpha, delta and PP cells hyperexpressed class I MHC 

when they were adjacent to beta cells in ICI, but ceased to do this when they were 

physically divorced from beta cells in IDI, following the destruction of beta cells in 

the insulitis process, then perhaps the islet beta cells were releasing some paracrine 

substance capable of causing hyper expression of class I MHC on adjacent islet 

endocrine cells. Candidates for this role included type 1 interferons (interferon-alpha 

(IFNα) and beta) and interferon-gamma, as they had been shown to cause hyper 
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expression of class I MHC on islet endocrine cells in vitro) [14]. Interferon-gamma is 

released only by T lymphocytes so attention was focused on type 1 interferons. 

 

The possibility that the secretion of IFNα by islet beta cells plays a role in the 

induction of class I MHC hyper expression in ICI was then assessed [15]. In a study 

of 34 patients with type 1 diabetes, insulin containing beta cells were shown to exhibit 

IFNα in 93% of islets which hyperexpressed class I MHC but in only 0.4% of islets 

which did not show this phenomenon. Among 80 control pancreases with a variety of 

diseases, only in 4 neonates affected by Coxsackie B viral infection were beta cells 

found to express IFNα [15]. 

 

The following sequence of events leading to diabetes was then hypothesized. In a 

given individual, pancreatic beta cells might harbour a non-cytopathic chronic viral 

infection to which the body could react in a number of ways, perhaps partly 

determined by their genetic susceptibility to diabetes. If there was no immune 

response then no disease might result. By contrast if the infected cells expressed 

interferon-alpha (as part of an innate immune response to the double stranded RNA of 

the virus) this would result in hyper expression of class I MHC by the endocrine cells 

of the islet. Such expression might provoke loss of immune tolerance and infiltration 

of affected islets by inflammatory cells. Even a very weak autoimmune response to 

beta cell antigens in the context of class I MHC hyper expression would eventually 

(over years) lead to their destruction and the development of clinical diabetes (Figure 

1; Foulis Oakley Lecture 1987 [16])   

 

Insulitis: 25 years on…. 

 

Since the seminal contributions of Gepts, the concept that type 1 diabetes arises from 

a process of immune-mediated destruction of pancreatic beta-cells has continued to 

develop and expand. However, an important question still remains – how strong is the 

evidence that insulitis is a characteristic feature of human type 1 diabetes? Certainly, 

Gepts was persuaded of the concept when he noted in 1981 that insulitis is “a 

common finding in the pancreas of recent onset juvenile diabetic subjects”. 

Unfortunately, however, firm corroboration has been achieved only slowly, to the 

extent that In’t Veld, in reviewing the weight of evidence, has recently defined 
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insulitis in the human pancreas as an “elusive lesion” [17]. In particular, he noted that 

the number of recorded cases of insulitis worldwide has hardly increased over the last 

25 years such that the total currently stands at only about 200. As a result, the 

essential features of the lesion are still debated.  

 

An important issue arising from the study of insulitis is that the number of infiltrating 

cells in any given islet is relatively few [18]. This stands in marked contrast to the 

situation in the NOD mouse (a model of spontaneous autoimmune diabetes) where, 

typically, inflamed islets are surrounded by an army of infiltrating cells which initially 

adopt a peripheral configuration before migrating deep within the islet structure to 

achieve close-contact with the endocrine cells [19]. In our experience, the equivalent 

situation is rare in human tissue. Rather, in the case of human islets, the inflammatory 

infiltrate often numbers only a few cells in any given islet cross-section and the 

majority of these reside around the islet perimeter (Figure 3: Peri-insulitis and/or focal 

insulitis). Very few immune cells actually cross the threshold to enter the margins of 

the islet structure and come into close contact with the endocrine cells. Thus, the 

process of beta-cell destruction appears rather inefficient and this may account for the 

relatively protracted time course preceding the onset of clinical symptoms in many 

patients.  

 

This, in turn, prompts a further critical issue in that it becomes extremely important to 

establish a firm definition of “insulitis” in human pancreas since it is probable that 

small numbers of immune cells are likely to be present within even “normal” (non-

inflamed) islets. Distinguishing the “normal” from the “inflamed” situation then 

becomes a key priority. To help address this issue, a meeting was held in Florida in 

early 2013, at which a number of investigators who have studied human insulitis, 

were present. Collectively, these workers developed a consensus statement to define 

insulitis: In a pancreas containing insulin deficient islets the lesion should only be 

confirmed if at least 3 individual islet sections contain a minimum of 15 lymphocytes 

(located either at the islet periphery and/or within the islet structure) [20]. This figure 

was chosen as it represents at least double the number of such cells found in the islets 

of control tissue (after extensive analysis of several thousand islets across multiple 

pancreases). This consensus definition represents the state-of-the-art in 2013 and 

provides an important context in which the process can be studied [20].  
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Definition of the numbers of infiltrating immune cells within islets represents an 

important step forward in the study of insulitis but it is not, itself, a fully informative 

statistic. This is because the nature of the infiltrate will determine the cytokine profile 

within the islet milieu and therefore, a second important objective is to establish the 

phenotypes of the various immune cells that may be present. We undertook a 

comprehensive analysis of the immune cell phenotypes present within insulitic lesions 

in 29 separate individuals who had died shortly after being diagnosed with type 1 

diabetes[18]. This revealed that both the absolute number and the profile of immune 

cells present in inflamed islets is variable. Indeed, immune cells appear to enter and 

leave islets as the process progresses, such that the profile of immune cell subsets 

differs according to the extent of beta-cell loss. Despite this, some clear trends 

emerged; notably that CD8+ T-cells comprise the majority of the population at all 

stages of insulitis. By contrast, CD4+ T-cells are relatively under-represented in the 

immune cell population [18].  

 

It is self-evident that the dynamics of immune cell infiltration cannot be fully assessed 

in fixed tissue preparations taken at a single time point but, nevertheless, it is still 

possible to make reasonable inferences by studying islets at varying stages of beta cell 

destruction. When the data were processed in this way, a dynamic model emerged in 

which CD8+ T-cells featured as the most prominent cells leading the islet attack and 

they were accompanied by reduced proportions of CD4+ T-cells and CD68+ 

macrophages. Importantly, the CD8+ cells increased in number as beta-cell 

destruction proceeded, implying that they play a primary role in mediating this 

demise. By contrast, CD4+ and CD68+ cell numbers remained much more constant. 

More surprisingly, a further lymphocyte subset was found to mirror the profile of 

CD8+ T-cells, in that CD20+ B-cells also increased in numbers markedly, to achieve 

a status as the second most prevalent cell type in many of the patients[18]. The 

functional activity of these cells remains to be determined but they do not appear to be 

antibody-secreting plasma cells. By analogy with the situation in NOD mouse (which, 

as indicated above, provides an exaggerated representation of human insulitis) it is 

possible that these B-cells are somehow trophic for the CD8+ T-cells, allowing them 

to reach their full cytotoxic potential [21]. However, it has also become clear that 

CD20+ cells are not absolutely required for CD8+ cells to promote beta-cell loss 
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since, in a more recent study reported in abstract form, a subset of patients was 

identified whose islets are not infiltrated by significant numbers of CD20+ cells but 

who, nevertheless, progressed to clinical type 1 diabetes [22].  Conceivably, then, the 

CD20+ cells may play a facilitating rather than a primary role in beta-cell 

cytotoxicity. 

 

In an earlier study using samples recovered from a different (and much smaller) group 

of patients, Dotta and colleagues had identified the presence of NK cells within some 

insulitic lesions[23]. This suggests that such cells might also play a role in mediating 

beta-cell loss under some circumstances, although in our series of patients we were 

unable to detect significant infiltration of NK cells [18].  

 

Taken together, the weight of recent evidence supports the view that CD8+ T-cells are 

likely to be primarily responsible for driving beta-cell loss and this conclusion is 

supported by a more a recent development which represents an important step 

forward. In particular, work by Coppieters and colleagues has attempted to define 

whether the CD8+ T-cells present in inflamed human islets are antigen specific [24]. 

This critical goal has been achieved by exploiting the power of peptide-loaded, 

engineered, tetrameric antibodies (“tetramers”) which allow the selective 

identification of T-cells recognising the specific peptide in question. Using this 

approach, it was demonstrated that a proportion (currently undetermined) of the T-

cells present in inflamed islets in humans are directed against specific beta-cell 

antigens [24]. Thus, these T-cells may be homing directly to the islets, guided by the 

presentation of antigens within the islet milieu. As such, these cells may be 

responding to highly specific cues rather than simply to a generalised chemokine 

gradient existing within the vicinity of the islet.  

 

In this context, chemokines are well known to play an important role in guiding 

immune cells to sites of injury or infection and it has been surmised that the 

generation of chemokine gradients may underlie the homing of immune cells to 

inflamed islets. In support of this, a number of workers have shown that chemokines 

can be elaborated from islet cells, including molecules such as CXCL10 which may 

be important for T-cell recruitment [25,26]. However, the evidence base supporting a 

chemokine-driven recruitment mechanism in inflamed islets in human type 1 diabetes 
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remains relatively weak. Indeed, the morphology of inflamed islets in humans seems 

oddly inconsistent with such a mechanism. Thus, as discussed previously, the absolute 

numbers of immune cells that reach inflamed islets is relatively small, and it is 

difficult to understand why most immune cells appear to simply pass by if there are 

strongly chemotactic influences available to recruit them. While such observations do 

not exclude a role of chemokines, it must be acknowledged that important questions 

remain to be answered about immune cell targeting. The possibility of antigen-

specific homing certainly represents a key step in this quest. 

 

The peri-islet capsule – a brake on beta cell destruction? 

Questions surrounding the localisation and homing mechanisms employed by 

infiltrating immune cells in human islets are important and it remains unclear why the 

majority are localised around the islet periphery. A reasonable hypothesis would be to 

suggest that immune cells enter the islet vasculature from the wider circulation and 

are then subjected to homing signals (be they chemokines or other factors) which 

encourage the typical rolling adhesion as the cells transit the islet. Ultimately, strong 

adhesion and subsequent extravasation probably occur in post-capillary venules where 

shear forces are minimised. The post-capillary venules of the islet are located outside 

the peri-islet capsule [27] suggesting that extravasated immune cells may exit the 

vasculature at a point outside the islet and may then need to negotiate the capsule 

before they can gain direct access to the beta cells themselves. Important new 

advances have been made recently in understanding the components of the peri-islet 

capsule, which consists of an islet basement membrane (BM) and subjacent interstitial 

matrix (IM). The islet BM and IM enclose the islet, separating the endocrine cells 

from the surrounding exocrine acinar cells. The function of the BM is to act as a 

barrier to soluble molecules and to cells and the IM confers flexibility and elasticity 

[27-29]. The peri-islet capsule is made up of a complex mixture of extracellular 

matrix components [27-29]. Interestingly, it has been argued that immune cells cannot 

normally infiltrate the islet unless the structure of the capsule is destabilised. This may 

explain why the peri-insulitis observed frequently in the islets of type 1 diabetes 

patients (Figure 3A, Figure 5) tends to occur in those with a near normal complement 

of beta cells [18].  
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The islet BM can be digested by a variety of enzymes, such as heparanases [28] and 

cathepsins [29], which are probably released by peri-islet immune cells [28,29]. One 

could therefore hypothesise, that as the number and type of recruited immune cells 

increases around the islets, the damage inflicted on the capsule is enhanced (Figure 3: 

Focal and progressive insulitis, Figure 5) [20]. Once the peri-islet capsule has been 

sufficiently degraded, the immune cells can infiltrate and destroy the beta cells 

(Figure 3: Invasive insulitis, Figure 5). Typically islets with heavy infiltration are 

those in which the beta cells are most reduced in number. The need to penetrate the 

peri-islet BM could therefore be one reason why the destructive process takes a 

protracted period of time. Interestingly, following the complete destruction of the beta 

cells, some islets are able to reform the BM (Figure 5) suggesting that it is not the beta 

cells themselves that facilitate the production of this protective layer [29]. This may 

have importance as a clinical target in the future. If the destruction of the islet BM can 

be inhibited, the natural barrier to immune cell infiltration may prolong the survival of 

the beta cells. 

 

A role for enteroviruses in Type 1 diabetes 

As noted previously, early studies on the human type 1 diabetic pancreas provided 

indirect evidence that viral infection may play a role in disease pathogenesis. This, 

coupled with mounting epidemiological evidence, has led investigators to consider 

that direct infection of the beta cells could be driving the development of type 1 

diabetes, at least in some patients. Many different viruses, including cytomegalovirus 

(CMV), rubella, Epstein barr virus (EBV), rotavirus and in particular enteroviruses 

have been nominated as candidates [30]. Among these, the most convincing evidence 

implicates enteroviruses (single stranded, positive sense RNA viruses that belong to 

the Picornaviridae family) [31].  Over the last 25 years, a plethora of epidemiological 

studies have considered whether enteroviral infections are associated with the 

development of islet autoimmunity or the onset of clinical type 1 diabetes. A recent 

meta-analysis of 26 such studies concluded that there is a statistically significant 

association between enteroviral infection and diabetes related autoimmunity/clinical 

type 1 diabetes [31]. It was noted that the odds of having a detectable enterovirus 

infection in people with type 1 diabetes are almost 10 times greater than in unaffected 

individuals and 4 times greater in non-diabetic individuals with diabetes related 

autoantibodies [31]. Many of these studies were however, performed on peripheral 
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whole blood, preparations of PBMCs or serum samples, such that the authors also 

remarked that firm evidence of viral infection within the pancreas is still lacking [31]. 

This is in part due to the limited amount of material available for analysis. Despite, 

this the search for direct evidence of an infection within the pancreas (of those few 

cases available) began over 34 years ago…. 

 

Arguably the most convincing early evidence that enteroviruses can specifically target 

cells within the pancreas and may play a role in the development of the diabetes, came 

in the 1970s [32,7]. In these case reports, viral infection was associated with islet 

inflammation and islet cell necrosis, indicative of an acute, lytic, infection [32,7]. 

Since then a range of studies have confirmed the tropism of enteroviruses for beta 

cells both in vitro [33-35] and in vivo (particularly in fulminant type 1 diabetes, 

described in more detail below and in Tanaka et al, [36]). Importantly, this is not 

restricted to just one or two of the enterovirus family members, since Coxsackie virus 

B (CVB), Coxsackie virus A (CVA) and several of the Echoviruses are capable of 

infecting isolated human islets [33-35].  The tropism of enteroviruses for the pancreas 

was further demonstrated in vivo in a series of neonates who had died from culture 

proven Coxsackie viral myocarditis. In situ hybridisation (ISH), using a CVB-specific 

probe [37,38] confirmed the presence of CVB RNA in the heart of all cases, but 

interestingly also in the pancreas of five of the nine cases examined. The islets in 

particular were targeted while only occasional acinar cell positivity was observed 

[39,37]. 

 

These studies suggested that detection of viral RNA in the pancreas might be a viable 

means to verify whether enteroviral infection is associated with type 1 diabetes. 

However, there are a number of important issues relating to the detection of viral 

RNA in the pancreas which must be considered. Firstly, the pancreas is a particularly 

noxious environment for RNA; it is rich in RNAses, meaning that free RNA is 

susceptible to rapid degradation. Secondly, the majority of tissue studied to date have 

undergone fixation with formalin, a process which has a dramatic impact on RNA 

stability and integrity. Thirdly, the majority of samples tested so far are from 

autopsies meaning that the pancreas may have been recovered many hours after death. 

Therefore, despite the initial optimism arising from the demonstration of positive ISH 

signals in Coxsackie-proven infections, the subsequent relative failure to reproduce 
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this [37,40] in the pancreases of type 1 diabetes patients should be interpreted with 

caution.  

 

As RNA stability is an issue when examining pancreatic tissue, researchers have also 

taken an alternative approach by attempting to detect viral proteins in this tissue, since 

these are likely to be better preserved in autopsy pancreas. In the first such study [39], 

two rabbit polyclonal antibodies raised either against a fusion protein containing 

sequences from CVB3 capsid proteins (VP4, VP2 and VP3) or against the CVB3 VP1 

structural protein, were employed [41]. Both detected the presence of enterovirus in 

the heart and pancreas of confirmed Coxsackie-infected neonates, suggesting that they 

were suitable for detection of widespread, systemic, enteroviral infection in formalin-

fixed autopsy tissues [39]. In addition, these antibodies were shown to identify 

various CVBs (CVB2, CVB4 and CVB5) despite being raised against CVB3 [39].  

However, when applied to sections of autopsy pancreases from 88 patients who had 

died at, or shortly after, clinical presentation of type 1 diabetes, no positive signals 

were obtained [39]. This might be because viruses were not present in the tissue or 

alternatively it might also be because these antisera failed to bind to proteins 

expressed by the serotype of virus present. A third possibility is that the sensitivity of 

the antisera was insufficient to detect the very modest levels of protein expression 

achieved during a sub-lytic infection. Fourthly, because antigen retrieval was not in 

use at the time of this work, other technical issues might also have militated against 

virus detection.  

 

Why is it easier to find the culprit in Coxsackie-infected neonates & fulminant type 1 

diabetes? 

As hinted above, direct evidence of an enteroviral infection has been relatively easy to 

find in the pancreases of individuals presenting with an acute Coxsackie infection or 

with fulminant type 1diabetes. The latter is characterised by the acute-onset of clinical 

symptoms and differs pathologically from “classical” type 1 diabetes in that there is 

evidence of lysis of both beta and alpha cells [42,43]. Fulminant diabetes accounts for 

approximately 25% of type 1 diabetes cases in Japan, but is much rarer in European 

populations. By contrast with fulminant diabetes, in typical autoimmune type 1 

diabetes there is no evidence of cell lysis and the cell loss is selective for beta cells.  

Islet inflammation is present in both forms of diabetes, but the complement of 
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immune cells in fulminant disease differs from that observed in typical type 1 diabetes 

(reviewed in [44]). This has led some to suggest that fulminant type 1 diabetes 

represents a non-autoimmune form of the disease [45], characterised by the absence 

of diabetes-related autoantibodies, normal expression of class I MHC, lymphocytic 

infiltration of the exocrine and endocrine tissue, elevated serum pancreatic enzyme 

levels and a remarkably aggressive disease progression [45].  It appears therefore that 

the ease of identification of enterovirus in these pancreas samples may be due, in part, 

to the development of an acute lytic infection where abundant amounts of viral 

protein are present in multiple cell types.  In contrast, evidence of viral protein 

production has been much harder to find in the pancreases of patients with 

autoimmune type 1 diabetes. Why is this? 

 

In autoimmune type 1 diabetes, diabetes-related autoantibodies appear in most 

individuals years before clinical onset of the disease and the appearance of these islet 

specific autoantibodies is believed to be an indicator of a beta cell stress. 

Accumulating evidence from birth cohort studies has shown that the appearance of the 

first autoantibody correlates with evidence of an enteroviral infection in the preceding 

6 months [46,47]. This had led some to hypothesise that the initial insult to the beta 

cell is a viral infection. This might lead to secretion of interferon-alpha by beta cells 

and hyperexpression of class I MHC in infected islets, leading to the activation of 

auto-reactive cells in genetically susceptible individuals [16].  

 

Increasing the sensitivity of detection of viral proteins in the pancreas 

The development of antigen retrieval techniques (often termed “Heat Induced Epitope 

Retrieval” (HIER)) in the 1990s was game changing in the field of pathology. This 

technique allowed certain antigens that had previously been inaccessible to antibodies 

in formalin-fixed paraffin-embedded tissues, to be unmasked. HIER also allows the 

use of reduced primary antibody incubation times (and lower dilutions) such that 

staining is revealed in formalin-fixed tissues that fail to stain by conventional methods 

[48]. In summary, the application of this technique increases the sensitivity of antigen 

detection by individual antisera. A second major development in the enterovirus field 

was the production of more sensitive, broad spectrum antisera directed against 

enteroviral capsid proteins. One such antibody (clone 5D8/1) is marketed 

commercially by Dako. The antibody is monoclonal in origin, was raised against the 
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VP1 protein of Coxsackievirus B5 and has provided particularly sensitive and specific 

detection opportunities such that it has now been used extensively to detect 

enterovirus in formalin fixed tissues [49-55]. In combination, therefore, the use of 

HIER and the availability of new antisera have enabled an increase in both the 

spectrum of enteroviral serotypes which can be detected in fixed tissues and an 

improvement in the sensitivity of their detection [49-57] (and unpublished results 

Richardson et al). 

 

These important methodological advances have provided better tools for use in the 

search for enteroviral proteins in tissue from recent-onset type 1 diabetes patients. 

Accordingly, in a landmark paper published in 2007, Dotta et al reported that 

enteroviral VP1 protein was present in the islets of 2 of 5 recent-onset type 1 diabetes 

cases and in a whole pancreas graft recovered from a 26 year old recipient [23]. 

Importantly, this work revealed the presence of small numbers of intensely-stained 

endocrine cells, shown to be beta cells, within the islets. We now term these “Dotta” 

cells to recognise the importance of this contribution. The immunohistochemical 

evidence was supported by electron microscopic studies revealing the presence of 

virus particles within islet cells and by the isolation of a serotype of CVB4 (now 

referred to as the “Tuscany” isolate) from one of the cases [23]. Subsequent to this, 

we conducted a more comprehensive analysis of a cohort of recent-onset type 1 

diabetes cases collected within the UK and were able to demonstrate the presence of 

VP1+ “Dotta” cells, again proven to be beta cells,  in 44 of the 72 (61%) cases 

examined. In contrast, only 4 “Dotta” cells were identified in 3 islets from the 50 

(7.7%) neonatal and paediatric control cases examined [58]. We further demonstrated 

that HIER allowed the antiserum used in the original study that had failed to detect 

viral proteins [39], to now reveal staining in specific islets. Strikingly, these islets 

were also stained positively by clone 5D8/1 in serial sections. A further pan-

enterovirus antibody (Clone 9D5; Millipore) was also found to label individual 

endocrine cells in the islets of patients with type 1 diabetes [58]. A comparison of the 

staining patterns achieved with these three antisera in heart tissue from CVB-infected 

neonates revealed that the Dako 5D8/1 clone was both more sensitive and produced 

more consistent staining in the face of a variety of different fixatives when compared 

to the other two [58,57] (and unpublished results Richardson et al). Hence, when 

considered together, these studies provided the first firm evidence that enteroviral 
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infection, confined to beta cells, can be detected in the islet cells of a significant 

number of people with a recent diagnosis of type 1 diabetes.  

 

The UK cohort used in our work represents the largest single collection of recent-

onset type 1 diabetes pancreases in the world and has proved invaluable as a means to 

study the underlying pathology of this illness. However, despite this there are several 

limitations (notably the historical nature of the collection; its specific geographical 

location and the non-uniform fixation methods employed). To address these, we have 

recently had the opportunity to examine a second cohort of pancreases from patients 

with type 1 diabetes, collected under the auspices of the Juvenile Diabetes Research 

Foundation’s network of Pancreatic Organ Donors (nPOD) with Diabetes programme 

(http://www.jdrfnpod.org/index.php) [59]. This important and growing resource 

promises much, since it should facilitate future collaborative studies to better 

understand the pathogenesis of type 1 diabetes. However, the number of recent-onset 

cases (<1 year) in this collection is still very small. Indeed, initially we were only able 

to access 1 case of short clinical duration among 10 cases which retained insulin-

containing islets[60]. We also examined a further 7 cases in which only insulin-

deficient islets were present. Importantly, the mean time since diagnosis in the 17 type 

1 diabetes cases studied was 11.9±2.3 years; which compared to only 8.2±4.1 months 

(i.e. 0.68 years) in the UK cohort. However, despite this, we noted that many of the 

pathological features highlighted in the UK cohort could still be observed in the 

American cases. We were therefore intrigued to investigate whether islet enteroviral 

infection could be detected in this cohort.  

 

In short, the firm answer to this question is “yes”. In 8 of the 10 cases where residual 

beta cells were present, intensely stained VP1+ (“Dotta”) cells were seen [60]. By 

contrast, no evidence of staining was observed in the 7 cases with only insulin-

deficient islets. Serial sections of a representative islet from an nPOD case are shown 

in Fig2 demonstrating VP1 expression in an insulin-containing islet with hyper 

expression of class I MHC.  Importantly, VP1+ cells were seen in only 1 of 12 age-

matched non-diabetic controls [60].  Within this (and the UK) cohort, it is important 

to emphasise the absolute numbers of VP1+ cells within any given patient is 

vanishingly small.  Indeed, even in those cases with the highest proportion of “Dotta” 

cells, we calculate that less than 0.005-0.01% of the cells within the entire pancreas 
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section stain positively for VP1 suggesting that viral infection of beta-cells does not 

proceed with a typical, acute, lytic course.  

 

One further consideration is important since it has been proposed that clone 5D8/1 

can, under certain conditions, cross-react with two additional proteins in the pancreas, 

creatine kinase B (CKB) and ATP5B [61]. To address this issue, we have examined 

this cross-reactivity in greater detail and show that, under optimised conditions, the 

immunostaining achieved with clone 5D8/1 in formalin-fixed paraffin embedded 

tissue or cells, retains its specificity for VP1 [62].  

 

Additional support for the hypothesis that the VP1 staining of the beta cells in the 

islets of type 1 diabetes patients represents a bona fide infection is the finding that the 

pathogen recognition receptor, protein kinase R (PKR) is selectively up-regulated in 

VP1+ islet cells. This has been confirmed in both the UK and nPOD cohorts [60]. It 

has been shown by others that PKR is both induced and activated following an 

enteroviral infection and that this leads to phosphorylation of an elongation factor, 

eIF2alpha, involved in protein synthesis [63,64]. This causes translational arrest and, 

as such, will result in the selective depletion of the more labile proteins. Therefore, we 

took advantage of this situation to study the expression of a labile, anti-apoptotic 

protein, Mcl-1, in VP1+ (PKR+) islet cells. Mcl-1 is constitutively expressed at high 

levels in most beta cells [60] and from in vitro studies, the protein is understood to be 

a critical determinant of beta cell fate in response to stressors (such as pro-

inflammatory cytokines and viral infection) [65]. Importantly, we observed that Mcl-1 

was selectively depleted from beta-cells expressing VP1 and PKR suggesting that 

these individual cells might then be rendered more sensitive to the detrimental effects 

of the pro-inflammatory mileu existing within inflamed islets [60].  

 

Is islet VP1 immunopositivity the tip of an iceberg? 

The presence of interferon-alpha within most residual beta cells patients at clinical 

onset of type 1 diabetes contrasts with the relative scarcity of “Dotta” cells expressing 

enteroviral VP1 protein. How can this be explained? In an acute lytic enteroviral 

infection the positive strand RNA of the virus is transcribed within the infected cell to 

produce a negative strand RNA template. This in turn is transcribed to produce 

hundreds of copies of positive strand RNA viral molecules which are then translated, 
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with synthesis of complete viral particles. Upon reaching a critical mass of these 

particles the cells bursts and releases virus.  By contrast, in a chronic non-lytic 

enteroviral infection there are equal numbers of positive and negative viral RNA 

molecules and there is little synthesis of complete viral particles expressing viral 

capsid proteins [66-68]. Thus the “Dotta” cells seen in type 1 diabetes may represent 

the ‘tip of the iceberg’ of viral infection within the islet. The beta cells synthesizing 

interferon-alpha may well be chronically infected by enterovirus existing, not as 

complete viral particles, but as double stranded RNA, a well-recognised stimulant of 

interferon synthesis (reviewed in [69]). In our study [58], we found that among young 

children, enteroviral infection of beta cells was much more frequent in patients with 

type 1 diabetes than those without. However, we suspect that it is not just the presence 

or absence of virus per se within a beta cell which is of most significance for the onset 

of diabetes. Rather, it may be the response of the cell to an on-going viral infection 

that matters. Conceivably, it is those children who respond most vigorously to an 

early beta-cell enteroviral infection, by mounting a strong interferon response, who 

are at greatest risk of triggering islet autoimmunity. Interferon secretion will cause 

hyper expression of class I MHC within the islet endocrine cells, which in turn 

probably initiates insulitis. Those children who respond minimally (or not at all) to an 

enteroviral infection of beta cells may be relatively protected from developing islet 

autoimmunity. 

 

Are the beta cells trying to fight back? 

Studies in the UK recent-onset paediatric cohort of type 1 diabetes patients have 

provided evidence that endocrine cells (both beta and alpha) display a 10-fold 

increase in proliferation when compared to controls [70]. This was strongly associated 

with the presence of insulitis suggesting that factors released from the immune cells 

could be driving an attempt by the beta cells to increase their numbers in the face of 

the attack [70]. The presence of proliferating endocrine cells was also frequently 

observed in islets with VP1 staining, implying that a viral infection could be inducing 

the recruitment of the immune cells, which in turn release factors that promote 

endocrine cell proliferation [71]. The finding that endocrine cell proliferation was 

increased in some islet autoantibody positive organ donors with evidence of insulitis 

[72] and that proliferation was not observed in adult, longer duration type 1 diabetes 

patients [73] who rarely have evidence of insulitis, lends support to this hypothesis. 
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Proposed sequence of events - 2014 

In individuals at-risk of developing type 1 diabetes, a non-cytopathic chronic viral 

infection of pancreatic beta cells is sensed by host pathogen recognition receptors. 

Activation of these receptors induces the expression of interferon-alpha (as part of an 

innate immune response to the double stranded RNA of the virus) which results in 

hyper-expression of class I MHC by the endocrine cells of the islet and release of 

factors that promote the recruitment of immune cells. However the islet has a 

protective basement membrane that can prevent direct contact between the immune 

cells and the beta cells. As the recruitment of more immune cells to the affected islets 

occurs a slow progression of insulitic destruction may occur (demonstrated by peri-

insulitis, focal insulitis, progressive insulitis and finally invasive insulitis), invasive 

insulitis occurring once the basement membrane has been sufficiently degraded by 

enzymes released by the infiltrating cells. At this point the invasive immune cells 

actively target and kill the beta cells leading to the formation of insulin-deficient 

islets, where under certain circumstances the basement membrane can reform. This 

progressive destruction of islets (over years) leads to the development of clinical 

diabetes (Fig5). 

 

Summary 

We have come a long way in 25 years - but we still have a very long way to go. Many 

questions remain unanswered and the limited amount and type of material available in 

which to address these questions restricts the speed at which they can be answered. 

However, the establishment of large international collaborative networks such as 

nPOD and EU Framework 7 funded PEVNET (Persistent virus infection as a cause of 

pathogenic inflammation in type 1 diabetes – an innovative research program of 

biobanks and expertise) are enabling expert researchers to combine their skills, 

question hypothesises and push forward our knowledge in this area. In particular the 

nPOD (organ donor pancreases) and the Norwegian DiViD (distal pancreatectomy 

specimens in patients with recent onset type 1 diabetes)  collections are likely to prove 

critical to finally answering the virus question as these tissues are optimally 

preserved, can be used to perform islet dissection and are suitable for next-generation 

sequencing analysis. We are sure that the next 25 years will prove to be even more 
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fruitful than the last, as this collective effort really starts to help us understand the 

changes that beset the pancreas of type 1 diabetes patients.  

 

Twenty-five years ago findings in the diabetic pancreas suggested that both 

hypotheses raised by Gepts might be right:  viral infection of islet beta cells might 

lead to a destructive autoimmune response directed against them. Twenty-five years 

further on we still think he is right! 
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FIGURE LEGENDS 

 

Fig1: The lobular nature of type 1 diabetes. A photomicrograph of a pancreas from a 

type 1 diabetes patient (from the nPOD collection) stained via immunohistochemistry 

for the presence of glucagon (A) and a serial section stained for insulin (B). The lobe 

containing ICIs can be seen on the right (hashed line), whereas the neighbouring lobe 

contains only IDIs. 

 

Fig2: A photomicrograph of a non-diabetic control (A-C) and a type 1 diabetes patient 

(D-F) immunostained for insulin (red) and glucagon (brown – A and D), class I MHC 

(B and E) and enteroviral VP1 (C and F). 

 

Fig3: The proposed sequence of events in islets in type 1 diabetes 25 years ago (Alan 

Foulis, Pathology Society 1987 Oakley Lecture). 

 

Fig4: Insulitic lesions in type 1 diabetes. Representative islets from nPOD cases 

immunostained for insulin (blue), the Pan lymphotcyte marker CD45 (green) and 

TOPRO (Red) demonstrating the proposed progression of the insulitic lesion. A. Peri-

insulitis, B. Focal insulitis, C. Progressive insulitis and D. Invasive insulitis.  

 

Fig 5: Proposed sequence of events in type 1 diabetes – 2014.  
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Fig1: Lobular loss of insulin-containing islets 
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Fig2: Hyper expression of Class I MHC in type 1 diabetes 
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Fig3: Possible sequence of events in islets in type 1 diabetes (1987 Oakley Lecture) 

 



Fig4: Heterogeneity of insulitis; is it related to the stage of destruction (peri-islet, polar, progressive and invasive)? 

 
A. nPOD 6070 – Peri-islet insulitis B. nPOD 6070 – Polar insulitis 

C. nPOD 6052 – Progressive insulitis D. nPOD 6052 – Invasive insulitis 
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Fig5: Progression in type 1 diabetes  
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