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ABSTRACT
We present a method for modelling star-forming clouds that combines two different models
of the thermal evolution of the interstellar medium (ISM). In the combined model, where the
densities are low enough that at least some part of the spectrum is optically thin, a model of
the thermodynamics of the diffuse ISM is more significant in setting the temperatures. Where
the densities are high enough to be optically thick across the spectrum, a model of flux-limited
diffusion is more appropriate. Previous methods either model the low-density ISM and ignore
the thermal behaviour at high densities (e.g. inside collapsing molecular cloud cores), or model
the thermal behaviour near protostars but assume a fixed background temperature (e.g. ≈10 K)
on large scales. Our new method treats both regimes. It also captures the different thermal
evolution of the gas, dust, and radiation separately. We compare our results with those from the
literature, and investigate the dependence of the thermal behaviour of the gas on the various
model parameters. This new method should allow us to model the ISM across a wide range
of densities and, thus, develop a more complete and consistent understanding of the role of
thermodynamics in the star formation process.

Key words: astrochemistry – hydrodynamics – radiative transfer – methods: numerical –
stars: formation – ISM: general.

1 IN T RO D U C T I O N

The thermal behaviour of interstellar gas is of fundamental im-
portance for star formation. To initiate star formation, the thermal
pressure must be insufficient to support the gas against gravitational
collapse (Jeans 1929). Further evolution also depends on the ther-
modynamics and density structure, with a variety of different out-
comes being possible such as the formation of a single polytrope or
fragmentation into many clouds (Hoyle 1953; Hunter 1962; Layzer
1963; Tohline 1980; Rozyczka 1983). Larson (1985, 2005) empha-
sized the importance of the relationship between temperature and
density in the interstellar medium (ISM), and Whitworth, Boffin &
Francis (1998) emphasized the importance of the transition from
molecular cooling to dust cooling. The typical decrease in gas tem-
perature from Tg ∼ 1000 K at number densities of hydrogen nuclei
of nH ∼ 1 cm−3 to Tg ∼ 10 K at densities of nH ∼ 104 cm−3 promotes
fragmentation, while the transition to an isothermal regime or tem-
perature that increases with density above nH ∼ 104 cm−3 may help
to produce a characteristic stellar mass (Larson 1985, 2005; Jappsen
et al. 2005; Bonnell, Clarke & Bate 2006; Elmegreen, Klessen &
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Wilson 2008). Chemical reactions that control the abundances of
gas phase coolants, and therefore radiative equilibrium, may affect
this transition and the formation of molecular cloud cores. At even
higher densities, deep within collapsing molecular cloud cores, dif-
ferent phases of collapse are believed to occur as the gas becomes
optically thick and later as molecular hydrogen dissociates (Larson
1969). The treatment of radiative transfer can be crucial for deter-
mining whether the core fragments into multiple protostars or not
(Boss et al. 2000; Krumholz 2006; Whitehouse & Bate 2006).

Previous radiation hydrodynamical simulations of star cluster
formation demonstrate the importance of radiative feedback from
protostars to correctly capture fragmentation and produce realistic
numbers of brown dwarfs (Bate 2009; Offner et al. 2009). Whereas
barotropic calculations of star cluster formation produce charac-
teristic stellar masses that depend on the initial Jeans mass in the
cloud (Bate & Bonnell 2005), Bate (2009) showed that radiative
feedback reduces this dependence on the initial conditions. This
may help to explain the apparent universality of the stellar initial
mass function (IMF), at least in recent epochs (see also Krumholz
2011). Indeed, some recent radiation hydrodynamical simulations
of star cluster formation have been quite successful in reproduc-
ing the observed IMF and other properties of stellar systems (Bate
2012, 2014; Krumholz, Klein & McKee 2012).

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 by guest on A
pril 4, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

mailto:mbate@astro.ex.ac.uk
http://mnras.oxfordjournals.org/


2644 M. R. Bate and E. R. Keto

However, to date, radiation hydrodynamical simulations of star
formation have been restricted to modelling dense molecular clouds
and assuming that the only significant sources of radiation are the
protostars themselves. In this case, the gas temperature at large
distances from the protostars is assumed to be ≈10 K. However,
this approximation is generally invalid at densities nH � 104 cm−3

with solar metallicities, and is invalid at even higher densities at
lower metallicities, if at all.

Informed by the vast literature on the physics, thermodynamics,
and chemistry of the diffuse ISM (see the thorough review provided
by Tielens 2005) and collapsing clouds with different metallici-
ties (e.g. Omukai 2000; Omukai et al. 2005), interest has grown
in studying the formation and evolution of molecular clouds us-
ing three-dimensional hydrodynamical calculations coupled with
chemistry. Initial calculations treated only the formation of molec-
ular hydrogen (Dobbs, Bonnell & Pringle 2006; Dobbs & Bonnell
2007; Glover & Mac Low 2007a,b; Micic et al. 2012). More recent
work has included more complex chemistry, in particular that in-
volving carbon and oxygen (Glover et al. 2010; Glover & Mac Low
2011; Clark et al. 2012b; Glover & Clark 2012a,b,c). Along with the
formation mechanisms of molecular clouds and their chemical and
temperature distributions, some of these calculations have begun to
investigate star formation, using sink particles to replace collapsing
regions of gas (in particular, the models of Glover & Clark). At
the same time, there have been several studies of the chemical and
thermal evolution of low-metallicity clouds and their star formation
(e.g. Dopcke et al. 2011, 2013; Glover & Clark 2012c).

Therefore, at the present time, the star formation community has
two different classes of hydrodynamical models for star formation.
One class treats the low-density thermochemical evolution in some
detail, but does not treat radiative feedback from protostars. The
other ignores the complicated physics of the diffuse ISM, which
is particularly important at low densities and low metallicities, but
includes the radiative effects of protostars. The goal of this paper
is to make an attempt to bridge this gap, by combining a model for
the physics of the low-density ISM with a method for modelling
radiative transfer. Our main purpose is to develop a model that does
a reasonable job of modelling the thermodynamics at both low and
high densities in star-forming clouds, with metallicities as low as
1/100 solar. The aim is not to produce a detailed chemical model.
Rather, we wish to implement the simplest possible chemical model
that will provide the abundances of the major coolants of the gas
that are necessary to calculate realistic temperatures.

It turns out that a method very similar to that which we present
here has recently been developed by Pavlyuchenkov & Zhilkin
(2013) and Pavlyuchenkov et al. (2015). Although we developed
our method independently, each of the methods is based on extend-
ing a method of radiative transfer that is valid at high densities to
include effects that are important at low densities. Each of the meth-
ods treats gas and dust temperatures separately. Pavlyuchenkov &
Zhilkin (2013) base their method on the diffusion approximation
for radiative transfer and add heating and cooling terms relevant
at lower densities to model the collapse of dense molecular cloud
cores. Pavlyuchenkov et al. (2015) replace the diffusion approxi-
mation with flux-limited diffusion like we use in this paper. They
do not include cooling processes relevant at very low densities that
we include (e.g. electron recombination and fine-structure emis-
sion from atomic oxygen), and they only perform one-dimensional
calculations, but the underlying methods are very similar.

This paper is primarily a method paper where we describe our
implementation and demonstrate its performance in a wide variety
of tests, comparing our results to those of others who have performed

similar calculations (sometimes using much more complete and/or
complex models). However, we also explore the effects of varying
many of the parameters that go into the model in order to better
understand which physical processes may be most important for
affecting star formation. Large-scale star formation calculations are
beyond the scope of this paper, but we hope to use this new method
to perform such calculations in the future.

In Section 2, we provide the fundamental equations and assump-
tions that go into our model. The implementation of these equations
into a smoothed particle hydrodynamics (SPH) code is described
in Section 3. We present the results from our test calculations, and
compare our results with those in the literature in Section 4. Finally,
we draw our conclusions in Section 5.

2 M E T H O D

2.1 The flux-limited diffusion approximation

In a frame comoving with the fluid, and assuming local thermal
equilibrium (LTE), the equations governing the time-evolution of
radiation hydrodynamics (RHD) can be written as

Dρ

Dt
+ ρ∇ · v = 0, (1)

ρ
Dv

Dt
= −∇p + χFρ

c
F, (2)

ρ
D

Dt

(
E

ρ

)
= −∇ · F − ∇v : P + 4πκPρB − cκEρE, (3)

ρ
D

Dt

(
e

ρ

)
= −p∇ · v − 4πκPρB + cκEρE (4)

(Mihalas & Mihalas 1984; Turner & Stone 2001; Whitehouse, Bate
& Monaghan 2005). In these equations, D/Dt ≡ ∂/∂t + v · ∇ is the
convective derivative. The symbols ρ, e, v, and p represent the mate-
rial mass density, energy density, velocity, and scalar isotropic pres-
sure, respectively, and c is the speed of light. The total frequency-
integrated radiation density, momentum density (flux) and pressure
tensor are represented by E, F, and P , respectively. The assump-
tion of LTE allows the rate of emission of radiation from the matter
in equations (3) and (4) to be written as the frequency-integrated
Planck function, B. Equations (2)–(4) have been integrated over
frequency, leading to the flux mean total opacity χF, and the Planck
mean and energy mean absorption opacities, κP and κE. The to-
tal opacity, χ , is the sum of components due to absorption κ and
scattering σ .

Taking an ideal equation of state for the gas pressure p =
(γ − 1)uρ, where u = e/ρ is the specific energy of the gas,
the temperature of the gas is Tg = (γ − 1)μu/R, where μ is the
mean molecular weight of the gas and R is the gas constant. The
frequency-integrated Planck function is given by B = (σB/π)T 4

g ,
where σ B is the Stefan–Boltzmann constant. The radiation energy
density also has an associated temperature Tr from the equation
E = 4σBT 4

r /c.
A common approximation to make in RHD is the so-called flux-

limited diffusion approximation. For an isotropic radiation field
P = E I/3. The Eddington approximation assumes this relation
holds everywhere and implies that, in a steady state,

F = − c

3χρ
∇E. (5)
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This expression gives the correct flux in optically thick regions,
where χρ is large. However, in optically thin regions where χρ → 0,
the flux tends to infinity whereas in reality |F| ≤ cE. Flux-limited
diffusion solves this problem by limiting the flux in optically thin
environments to always obey this inequality. Levermore & Pom-
raning (1981) wrote the radiation flux in the form of Fick’s law of
diffusion as

F = −D∇E, (6)

with a diffusion constant given by

D = cλ

χρ
. (7)

The dimensionless function λ(E) is called the flux limiter. The radi-
ation pressure tensor may then be written in terms of the radiation
energy density as

P = f E, (8)

where the components of the Eddington tensor, f , are given by

f = 1

2
(1 − f )I + 1

2
(3f − 1)n̂n̂, (9)

where n̂ = ∇E/|∇E| is the unit vector in the direction of the radi-
ation energy density gradient and the dimensionless scalar function
f(E) is called the Eddington factor. The flux limiter and the Edding-
ton factor are related by

f = λ + λ2R2, (10)

where R is the dimensionless quantity R = |∇E|/(χρE).
Equations (6)–(10) close the equations of RHD. However, we

must still choose an expression for the flux limiter, λ. In this paper,
we choose the flux limiter of Levermore & Pomraning (1981):

λ(R) = 2 + R

6 + 3R + R2
. (11)

There are a number of problems with using the flux-limited diffu-
sion approximation to model radiative processes in star formation.
Many of these are a direct result of the approximations made in
deriving the method. The diffusion approximation is good at high
optical depths, but the directional behaviour of anisotropic radiation
at low optical depths is modelled poorly. This means, for example,
that shadowing is not reproduced. The flux limiter gives the correct
limiting behaviour for the propagation rate in the optically thin and
thick regimes, but at intermediate optical depths is dependent on the
arbitrary choice of the flux limiter. Finally, most implementations
take the grey approach, ignoring the frequency dependence of the
radiative transfer in favour of mean opacities (as discussed above).
This is likely to be a good approximation when most of the energy is
in long-wavelength radiation, but is a poor approximation near hot
massive stars (Wolfire & Cassinelli 1987; Preibisch, Sonnhalter &
Yorke 1995; Yorke & Sonnhalter 2002; Edgar & Clarke 2003).

Despite these drawbacks, flux-limited diffusion is expected to
do a reasonable job of modelling radiative transfer in dense star-
forming regions that produce low-mass stars (e.g. Bate 2009, 2012;
Offner et al. 2009), and it is computationally efficient.

2.2 The diffuse ISM

However, other problems arise when modelling low-density envi-
ronments. For a start, the above-mentioned equations treat radiation
and matter, but do not distinguish between different types of mat-
ter which may have different temperatures. In particular, at solar

metallicities, dust and gas temperatures are only well coupled (by
collisions) at gas densities above 105 cm−3 (Burke & Hollenbach
1983; Goldsmith 2001; Glover & Clark 2012a). At lower densities,
the gas and dust temperatures can be very different from one another
with the gas temperature typically exceeding that of the dust. There
are also sources of heating that affect the matter other than work
done on the gas and the radiative interaction between the matter and
the radiation field that are included in equation (4). Cosmic rays
heat the gas by direct collision (Goldsmith, Habing & Field 1969;
O’Donnell & Watson 1974; Black & Dalgarno 1977; Goldsmith &
Langer 1978). Ultraviolet (UV) photons heat the gas indirectly
through the photoelectric release of hot electrons from dust grains
(Draine 1978; Bakes & Tielens 1994). Absorption and emission of
radiation that is highly frequency dependent is also problematic in
a grey treatment. In particular, gas cooling occurs by atomic and
molecular line cooling which may be optically thin due to Doppler
shifts even when static clouds would be optically thick. The exter-
nal interstellar radiation (ISR) field (Habing 1968; Witt & Johnson
1973; Draine 1978; Black 1994), attenuated by dust extinction, also
heats the dust.

2.3 Combining a diffuse ISM model with flux-limited diffusion

In this section, we present a method to combine a model of the
radiative equilibrium of the diffuse ISM with flux-limited diffusion
to determine the gas, dust, and radiation temperatures in both low-
density and high-density regions of molecular clouds. We include
treatments for all of the effects mentioned in the previous section.
We also allow for heating due to H2 formation. We do not treat
photoionization or heating from X-rays.

We use equations (2)–(4) to model the continuum radiation field
and the gas, and add extra terms to handle cosmic ray heating,
the photoelectric effect, and radiation that is strongly frequency
dependent. We replace equations (3) and (4) with

ρ
D

Dt

(
E

ρ

)
= −∇ · F − ∇v : P − acκgρ

(
T 4

r − T 4
g

)

− acκdρ
(
T 4

r − T 4
d

)
, (12)

ρ
Du

Dt
= −p∇ · v + acκgρ

(
T 4

r − T 4
g

)
− 	gd − 	line + 
cr + 
pe + 
H2,g, (13)

where equation (13) now describes the evolution of the specific
internal energy of the gas, u, separately from the dust. The extra
terms at the end of equation (13) are 	gd which takes account of
the thermal interaction due to collisions between the gas and the
dust, 	line is the cooling rate per unit volume due to atomic and
molecular line emission, 
cr is the heating rate per unit volume due
to cosmic rays, 
pe is the heating rate per unit volume due to the
photoelectric effect, and 
H2, g is the heating rate per unit volume
due to the formation of molecular hydrogen on dust grains. We also
define the radiation constant a = 4σ B/c and the dust temperature
Td. We define the Rosseland mean gas opacity κg (which is only
important above the dust sublimation temperature) and the mean
dust opacity κd, which may be a Planck mean or Rosseland mean
(see Section 3.3).

We still need to determine the dust temperature. As done in most
studies of the thermal structure of molecular clouds (e.g. Goldsmith
2001), we assume that the dust is in LTE with the total radiation
field (i.e. that its temperature responds quickly to any change). This

MNRAS 449, 2643–2667 (2015)

 by guest on A
pril 4, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2646 M. R. Bate and E. R. Keto

replaces a dust thermal energy equation (which would also require
the thermodynamic properties of the dust). Thus, we take

ρ	ISR + acκdρ
(
T 4

r − T 4
d

) + 	gd = 0, (14)

where 	ISR is the heating of the dust due to the ISR field (which
is taken to be separate from the grey radiation field with temper-
ature Tr). By rearranging equation (14) for 	gd and eliminating
this term from equation (13), it is easy to show that equations
(12) and (13) reduce to equations (3) and (4) when Td = Tg and
	line = 	gd = 
cr = 
pe = 
H2,g = 0, and where κPρ = (κd + κg)ρ
and κP = κE.

We note that the dust cooling rate

	dust = acκdT
4

d = 4σB

(∫
QνBνdν

)
π

σBT 4
d

T 4
d ,

= 4π

∫
QνBνdν, (15)

where ν is the frequency of the radiation, and Qν is the frequency-
dependent dust absorption efficiency. Therefore, when 	gd = 0, and
Tr = 0, and in the absence of extinction, the thermal balance with
the ISR is obtained when

	dust = 	ISR = 4π

∫
QνJ

ISR
ν dν, (16)

where J ISR
ν is the frequency-dependent ISR field.

We note that equations 12 and 13 in Goldsmith (2001) appear to
be incorrect. It is stated that the dust cooling rate is given by

	dust = c

∫
Uν(Td)κ(ν)dν, (17)

where Uν(T) is the Planck energy density and where they took

κ(ν) = 3.3 × 10−26nH2(ν/ν0)2 cm−1, (18)

with ν0 = 3.8 × 1011Hz, and nH2 is the number density of molecular
hydrogen. However, we can write

	dust = c

∫
Uν(Td)κ(ν)dν = 4π

∫
Bν(Td)κ(ν)dν,

= 3.3 × 10−26nH24π

ν0
2

∫
2hν5

c2

1

ehν/(kTd) − 1
dν,

= 3.3 × 10−26nH28πh

ν0
2c2

∫
ν5 1

ehν/(kTd) − 1
dν,

= 3.3 × 10−26nH28π

ν0
2c2

k6T 6
d

h5

∫
s5 1

es − 1
ds, (19)

where h is the Planck constant, k is Boltzmann’s constant, and we
have written s = hν/(kTd). The integral can be performed over all
frequencies, and can be evaluated as∫ ∞

0

s5

es − 1
ds = 
(6)ζ (6) = 5!ζ (6) = 8π6

63
≈ 122.08, (20)

where 
(n) = (n − 1)! is the Gamma function and the Riemann
zeta function, ζ (2n), can be evaluated as

ζ (2n) = (−1)n+1B2n(2π)2n

2(2n)!
(21)

so that

ζ (6) = (−1)4B6(2π)6

2(6)!
= π6

945
, (22)

where B2n is a Bernoulli number and B6 = 1/42. Thus,

	dust = 3.3 × 10−26nH28π

ν0
2c2

k6T 6
d

h5
122.08,

= 4.22 × 10−31nH2T
6

d erg cm−3 s−1. (23)

This is a factor of ≈62 times larger (probably 26 = 64) than
equation 13 in Goldsmith (2001) which states 	dust = 6.8 ×
10−33nH2T

6
d . The effect of the greater dust cooling rate is to lower

the dust temperatures by a factor of 2 for a given ISR field. We
note that Glover & Clark (2012b) use 	dust = 4.68 × 10−31nH2T

6
d ,

which only differs from equation (23) by 10 per cent (presumably
due to the choice of different dust opacities).

2.4 Equations for heating and cooling terms in the ISM

To calculate the extra heating and cooling terms appearing in equa-
tions (12)–(14), we make the same approximations as those made
in the past by many others who have studied the thermal structure
of molecular clouds.

2.4.1 Gas heating equations

Following Goldsmith (2001) and Keto & Field (2005), we set the
rate of energy transfer from cosmic rays into the gas as


cr = 5 × 10−28nH erg cm−3 s−1. (24)

Note that Goldsmith (2001) and Keto & Field (2005) express their
rates as functions of nH2 = nH/2 for molecular gas. We will usually
refer to nH throughout this paper, since when we allow for both
atomic and molecular hydrogen the meaning of nH2 may not be
clear.

The ISR is used to determine both the heating rate of the dust
grains, and the photoelectric heating rate of the gas. In both cases,
the ISR is attenuated due to dust extinction inside a molecular
cloud. To describe the ISR, we use a slight modification to that
described in detail by Zucconi, Walmsley & Galli (2001). They
made approximate fits to the ISR given by Black (1994) using
the sum of a power-law distribution and five modified blackbody
distributions of the form

J ISR
ν = 2hν3

c2

(
λp

λ

)p ∑
i

Wi

ehν/kTi − 1
, (25)

where λ is the wavelength of the radiation, and the parameters λp,
Wi, and Ti are given in their table B.1. Note that the mid-infrared
term in their ISR is a power law with a cut-off longwards of 100 μm
(which is mentioned in the main text of the paper, but not in their
appendix). Although the Zucconi et al. (2001) parametrization does
a good job of fitting Black’s ISR at most wavelengths, it does not
provide a significant UV flux which is necessary for photoelec-
tric heating. To allow us to use one ISR parametrization for both
dust heating and the photoelectric effect, we add the ‘standard’
UV background from equation 11 of Draine (1978) but only in the
range hν = 5–13.6 eV. Note that to transform Draine’s parametriza-
tion into the same units as equation (25), it must be multiplied by
h2ν/eV.

For the photoelectric heating, we follow the prescription of Bakes
& Tielens (1994), which has also been used by Young et al. (2004)
and Keto & Caselli (2008), that


pe = 1.33 × 10−24εG(r)nH erg cm−3 s−1, (26)
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where, as described by Young et al. (2004), we have assumed that
the number density of nucleons nn ≈ nH + 4n(He) and that the gas is
25 per cent helium by mass so that nn = 1.33nH. The quantity G(r)
is the ratio of the attenuated intensity of high-energy (hν > 6 eV)
photons to their unattenuated intensity

G(r) =

∫ 4π

0

∫ ∞

6 eV
J ISR

ν exp[−τν(r, ω)] dνd�∫ 4π

0

∫ ∞

6 eV
J ISR

ν dνd�

, (27)

where τν(r, ω) is the frequency-dependent optical depth from r
to the cloud surface along direction, ω, and � is solid angle. The
efficiency factor ε is a complicated function of the type of dust
grains, radiation intensity, G(r), the temperature, and the electron
number density. We use equation 43 of Bakes & Tielens (1994)

ε = 0.049

1 + 4 × 10−3[G(r)T 1/2
g /(neφPAH)]0.73

+ 0.037(Tg/104)0.7

1 + 2 × 10−4[G(r)T 1/2
g /(neφPAH)]

, (28)

but with the adjustable parameter φPAH that was introduced by
Wolfire et al. (2003). We follow Wolfire et al. (2003) and use
φPAH = 0.55 whereas the original equation of Bakes & Tielens
(1994) had φPAH = 1. For the conditions in cold molecular clouds,
the efficiency factor is nearly constant and can be approximated as
ε = 0.05 (note that in Keto & Caselli 2008, there is a typographical
error giving ε = 0.5, and they also neglect the factor of 1.33 in 
pe).
However, it is important to use the more complicated form at the
lower densities of the warm and cold neutral mediums. Ordinarily,
the electron number density, ne, would come from a chemical model,
but because we do not have such a model we need to parametrize
it. Using the results of Wolfire et al. (2003), in particular those
displayed in their fig. 10, we use the simple parametrization

ne = nH max(1 × 10−4, min(1, 0.008/nH)). (29)

2.4.2 Gas cooling equations

We develop a model for cooling in the diffuse ISM based on the
results of the detailed model developed by Wolfire et al. (2003,
see also Glover & Mac Low 2007a). In the warm neutral medium
(WNM), with a characteristic temperature of T ∼ 8000 K, cool-
ing is dominated by Lyα emission from atomic hydrogen, electron
recombination with small grains and polycyclic aromatic hydro-
carbons (PAHs), and fine-structure emission from atomic oxygen.
At temperatures between those of the WNM and the cold neutral
medium (CNM; T � 300 K), oxygen emission continues to con-
tribute significant cooling but fine-structure emission from ionized
carbon also becomes important and dominates in the colder parts
of the CNM. Unlike Wolfire et al. (2003) and Glover & Mac Low
(2007a), our aim is to achieve realistic temperatures without having
to develop a detailed chemical model. Since we are not interested
in regions of the ISM with temperatures greater than those of the
WNM, we can produce a reasonable fit to the thermal behaviour
by treating only the electron recombination, oxygen, and carbon
emission. Following Wolfire et al. (2003) and Glover & Mac Low
(2007a), we use the modified formula of Bakes & Tielens (1994)

	rec = 4.65 × 10−30φPAHT 0.94
g ϕβnenH erg cm−3 s−1, (30)

where β = 0.74/T 0.068
g , and

ϕ = G(r)T 1/2
g

neφPAH
. (31)

For the atomic oxygen fine-structure cooling, we use equation
C3 of Wolfire et al. (2003)

	OI = 2.5 × 10−27n2
H

(
Tg

100 K

)0.4

exp

(−228

Tg

)
erg cm−3 s−1.

(32)

Keto, Rawlings & Caselli (2014) calculate the cooling taking into
account the abundance of atomic oxygen.

For the atomic carbon fine-structure cooling, we use equation C1
of Wolfire et al. (2003)

	C+ = 3.15 × 10−27n2
H exp

(−92

Tg

)
erg cm−3 s−1, (33)

which assumes a carbon abundance relative to hydrogen of AC =
1.4 × 10−4. This is almost identical to equation of 2.67 of Tielens
(2005), which was also used by Keto & Caselli (2008), except that
in equation (33) the dependence on the degree of ionization, Xi, has
been neglected. Keto & Caselli (2008) assume that the degree of
ionization is equal to the abundance of C+ with respect to H2.

At the low densities of the WNM and CNM, the equations for
cosmic ray and photoelectric heating and cooling due to electron
recombination and oxygen and carbon cooling can be used to cal-
culate the equilibrium temperature as a function of density. This
equilibrium curve resulting from our chosen parametrizations is
shown in Fig. 1 as the solid line and compared to the results ob-
tained by Wolfire et al. (2003) for solar metallicities at a Galactic
radius of 8.5 kpc using a dashed line. Given that our model is much
simpler than that of Wolfire et al. (2003) and that our main interest
is in the star formation occurring in higher density (nH � 100 cm−3)

Figure 1. The equilibrium temperature as a function of the number density
of hydrogen nuclei, nH, in the warm and cold neutral mediums achieved
by considering cosmic ray and photoelectric heating (without extinction)
balanced by cooling due to electron recombination, and fine-structure emis-
sion from carbon and oxygen (solid line; equations 24, 26, 30, 32, and 33).
The dashed line gives the result obtained by Wolfire et al. (2003) for solar
metallicity gas at a Galactic radius of 8.5 kpc. The dotted line gives the
result from the model of Glover & Mac Low (2007a).
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2648 M. R. Bate and E. R. Keto

molecular gas where other processes dominate, the level of agree-
ment is satisfactory. Also plotted in the figure with a dotted line is
the result obtained by Glover & Mac Low (2007a). We note that our
model gives slightly lower temperatures than Wolfire et al. (2003)
at densities nH � 20 cm−3, while the model of Glover & Mac Low
(2007a) gives somewhat higher temperatures.

For the molecular line cooling, we follow Keto & Field (2005)
by using the parametrized cooling functions provided by Goldsmith
(2001) for standard abundances given by

	line = α(Tg/10K)β erg cm−3 s−1, (34)

where the parameters α and β are given in tables in Goldsmith
(2001) as functions of nH2 (we take nH2 = nH/2). We allow the
possibility of performing calculations both with standard abun-
dances and with depleted abundances. In the former case, table 2 of
Goldsmith (2001) gives cooling rates without allowing for depletion
on to grains and covers the range nH2 = 102–107 cm−3. We tried
using linear interpolation of the logarithm of the cooling rates at the
given points to compute the cooling rate at a particular value of nH2,
but found that this tended to give discontinuities in the tempera-
ture gradients in molecular cloud cores. Instead, we use three-point
polynomial interpolation of the logarithm of the cooling rate (taking
one point at the nearest tabulated value of nH2 below the required
density and two points above the required density, except for the
highest densities where the reverse is done). This works well over
the entire range of nH2 except that it gives a ‘bulge’ in the cooling
rate in the range nH2 = 103–104 cm−3. To fix this, in this range, we
calculate two three-point polynomial interpolations (one that has
one point below the required value of nH2 and two points above, and
the other that has two tabulated values below and one above) and
then use linear interpolation of the logarithm of these two values to
obtain the cooling rate. At densities nH2 < 102, cm−3, we extrapo-
late the line cooling rate using the three-point polynomial derived
from the first three points in the table. At densities nH2 > 108 cm−3,
we set the line cooling to zero (since it will be negligible compared
to the other heating and cooling terms anyway).

To allow for depletion, we use table 4 of Goldsmith (2001) which
gives cooling rates as functions of density over the range nH2 = 103–
106 cm−3 and as functions of a depletion factor ranging from 1
to 100. When depletion is allowed, for nH2 < 102 cm−3 we use
the standard cooling rates divided by the depletion factor, and for
nH2 > 107 cm−3 we use the standard cooling rates (since the cooling
rates become less dependent on the depletion factor at high densities,
according to Goldsmith 2001). In the intermediate density range,
we use bilinear interpolation in log-space of the values in table 4
that are given as functions of density and depletion. In the ranges
nH2 = 102–103 cm−3 and nH2 = 106–107 cm−3, we further use linear
interpolation in log-space to achieve smooth transitions between
using the depleted cooling rates (from table 4) and the depleted
standard cooling rates (nH2 = 102–103 cm−3) or the standard cooling
rates (nH2 = 106–107 cm−3).

2.4.3 Dust heating and cooling equations

For the heating rate of dust grains, we follow Zucconi et al. (2001)
and Keto & Field (2005) and calculate the grain heating due to an
incident radiation field whose intensity is attenuated by the optical
depth averaged over 4π steradians upon grains of the absorption
efficiency, Qν . Thus,

	ISR =
∫ 4π

0

∫ ∞

0
QνJ

ISR
ν exp[−τν(r, ω)] dνd�, (35)

where τν(r, ω) is the frequency-dependent optical depth from r to
the cloud surface along direction, ω, and we have deliberately omit-
ted to normalize the integral over solid angle because of equation
(16). Zucconi et al. (2001) defines Qν in units of cm2 H−1

2 , but in the
above-mentioned equation we redefine Qν to be in units of cm2 g−1

by dividing by μmp, where mp is the proton mass. For simplicity,
we use the parametrization of Qν given by Zucconi et al. (2001).
See Section 3.3 for more information regarding the opacities we
use.

The thermal interaction between the gas and the dust depends
sensitively on the distribution of grain sizes (Burke & Hollenbach
1983). We use two different rates in Section 4, depending on which
tests we are performing. For most of the calculations, we use the
rate of Keto & Field (2005)

	gd = 2.5 × 10−34n2
HT 1/2

g (Tg − Td) erg cm−3 s−1, (36)

which is similar to that used by Goldsmith (2001) (our rate is a
factor of

√
10/2 ≈ 1.6 larger). However, this rate is more than an

order of magnitude smaller than the rate given in equation 2.15 of
Hollenbach & McKee (1989)

	gd = 3.8 × 10−33n2
HT 1/2

g (Tg − Td)

×
[

1 − 0.8 exp

(−75

Tg

)]
erg cm−3 s−1, (37)

assuming a minimum grain size of 0.01 μm. The last term in this
equation takes account of the effects of the contributions of gas
species other than protons and the effects of particle and grain
charges. This is the rate used by Glover & Clark (2012b), so we use
this rate for the tests in Section 4.4.

2.4.4 Metallicity

In all of the above-mentioned equations, we have assumed standard
abundances and gas-to-dust mass ratios. To allow the modelling of
molecular gas with different metallicities, we assume that Qν (and
hence κd), 	gd, 	line, and 
pe all scale linearly with the metallicity.
Thus, each of these quantities is multiplied by the factor Z/Z�.
In doing so, we are also assuming that the grain properties are
independent of the metallicity. Note that 
cr does not depend on the
metallicity. Also, the gas opacities, κg, already explicitly include
the metallicity dependence (see Section 3.3).

2.5 Chemistry

As mentioned in the Introduction, our aim with this method is to
develop a relatively simple model that captures the most important
thermodynamic behaviour of the low-density ISM, not to develop
a full chemical model of molecular clouds. The equations in the
previous section almost enable us to do this without modelling any
chemistry at all. However, as we will see in Section 4.4, we do need
to have some model to treat the transformation of C+ into CO. At
low densities (nH ≈ 10–103 cm−3) C+ is the major coolant, while at
higher densities CO is the primary coolant until dust takes over (e.g.
Glover & Clark 2012b). Furthermore, particularly at low metallic-
ities, extra heating of the gas can be provided by the formation of
molecular hydrogen so we need to treat the evolution of atomic and
molecular hydrogen.
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2.5.1 Carbon chemistry

Keto & Caselli (2008) provide a very simple model of the abun-
dances of C+, neutral carbon, and CO, including the depletion of CO
on to dust grains. Glover & Clark (2012b) show that the model sig-
nificantly underestimates the abundance of neutral carbon, but this
is only important in a narrow density range around nH ≈ 103 cm−3

and is unimportant for cooling (Glover & Clark 2012a). Therefore,
we implement the model of Keto & Caselli as stated in their paper,
except as noted by Glover & Clark (2012b) there is a typographical
error in equation 5 of Keto & Caselli (2008) which should read

CO

C+ = 6 × 10−16nH2

1.4 × 10−11G0 exp(−3.2AV)
, (38)

where G0 is the ISR field in units of the Habing flux (Habing 1968)
and we take G0 = 1.

The only significant extra quantity that we need to calculate in
order to implement the chemical model of Keto & Caselli is the
mean visual extinction

〈exp(−AV)〉 = 1

4π

∫
exp(−AV)d�, (39)

where we take AV = �Qν(V), where � is the column density in g
cm−2 (so if the hydrogen is fully molecular the column density of
H2 is NH2 = �/[μmH]) and we take the frequency of visual light
to be that of light with a wavelength of 550 nm. This is calculated
at the same time as the integrals in equations (35) and (27) (see
Section 3.1.2). We use the resulting C+ abundance to scale the
fine-structure carbon cooling in equation (33), and we use the CO
depletion factor that the model provides as the depletion value to
use for the line cooling of Goldsmith (2001).

2.5.2 Hydrogen chemistry

For the hydrogen chemistry, we only consider H2 formation on
grains and dissociation due to cosmic rays and photodissociation.
Omukai (2000) finds that grain formation dominates over gas phase
formation (i.e. via H− or H+

2 ions) for metallicities Z/Z� � 10−4.
Glover (2003) compares gas-phase and grain-catalysed formation
in detail and draws similar conclusions – for temperatures less
than a few hundred kelvin, H2 formation on grains is expected to
dominate for dust-to-gas ratios � 10−3–10−4 of that found in the
local ISM, over wide ranges of densities and levels of ionization.
We neglect collisional dissociation of H2 as at the temperatures
we are dealing with in the low-density ISM it is expected to be
negligible compared to photodissociation and dissociation due to
cosmic rays (cf. the rates in Lepp & Shull 1983).

In the previous sections, when we have used nH2, it has been in
the context of fully molecular gas for which nH2 = nH/2. However,
with the introduction of hydrogen chemistry, we need to distinguish
between atomic and molecular hydrogen. We therefore introduce the
fraction of molecular hydrogen, xH2, which is equal to nH2/nH = 1/2
when the gas is fully molecular, and is equal to zero when the gas
is fully atomic.

For the formation rates of H2 on grains, and the dissociation due
to cosmic rays and photodissociation, we use the same model as
Glover et al. (2010). The formation rate is given by equation 165 in
table B1 of Glover et al. (2010), which is

RH2 = 3.0 × 10−18T 0.5
g fAfB(Z/Z�) cm3 s−1, (40)

where we have assumed that the rate scales linearly with the metal-
licity due to the variation in the grain abundance, and where

fA = [
1.0 + 104 exp(−600/Td)

]−1
, (41)

fB = [1.0 + 0.04(Tg + Td)0.5 + 0.002Tg + 8 × 10−6T 2
g ]−1. (42)

The number density of H2 then evolves as

dnH2

dt

∣∣∣∣
form

= RH2 [nH (1 − 2xH2)]2 . (43)

For the magnitude of the dissociation of molecular hydrogen due
to cosmic rays, we use the rate given in table 2 of Bergin et al.
(2004)

dnH2

dt

∣∣∣∣
cr

= 1.2 × 10−17xH2nH cm−3 s−1. (44)

For photodissociation of molecular hydrogen, we use the same
model as Glover & Mac Low (2007a) and Glover et al. (2010),
which is based on the work of Draine & Bertoldi (1996). We take
the photodissociation rate of H2 in optically thin gas to be

Rpd,0 = 5.6 × 10−11 s−1, (45)

where we have assumed a Draine (1978) UV ISR field. We take
into account attenuation of the radiation due to dust absorption, and
also self-shielding of the H2 by line absorption due to other H2

molecules. For the former, we use

fdust = 〈exp(−AV)〉3.74, (46)

which is simply a power of the mean visual extinction that is al-
ready required for the carbon chemistry (equation 39). For the self-
shielding, we use

fshield = 0.965

(1 + x/b5)2
+ 0.035

(1 + x)1/2
exp

[−8.5 × 10−4(1 + x)1/2
]
,

(47)

where x = NH2/(5 × 1014 cm−2), and b5 = b/(105cm s−1) with
b being the Doppler broadening parameter (which we take to be
unity in the tests below). The magnitude of the fully shielded H2

photodissociation rate is then

dnH2

dt

∣∣∣∣
pd

= Rpd,0fdustfshieldxH2nH. (48)

Once the total rate of change of molecular hydrogen has been
obtained, the rate of change of the H2 fraction is evolved as

dxH2

dt
= 1

nH

dnH2

dt
. (49)

The formation of molecular hydrogen on dust grains releases
approximately 4.5 eV of energy per molecule. A fraction of this
will be radiatively lost while the remainder will heat the gas, with
the relative fractions depending on the collisional de-excitation rate
which depends on density. Following Glover & Mac Low (2007a),
we assume that the heating rate of the gas is


H2,g = 7.2 × 10−12

(1 + ncr/nH)

dnH2

dt

∣∣∣∣
form

erg s−1 cm−3, (50)

where

1

ncr
= 1 − 2xH2

ncr,H
+ 2xH2

ncr,H2
, (51)
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and

log ncr,H = 3.0 − 0.461T4 − 0.327T 2
4 ,

log ncr,H2 = 4.845 − 1.3T4 + 1.62T 2
4 , (52)

with T4 = Tg/104 K and where the first equation, accounting for
H2–H interactions, is an order of magnitude less than the value given
by Lepp & Shull (1983), as recommended by Martin, Schwarz &
Mandy (1996), and for H2–H2 interactions the equation is taken
from Shapiro & Kang (1987).

In addition to heating due to molecular hydrogen formation,
we investigated (using calculations similar to those presented in
Section 4.4) the effect of including gas heating during H2 pho-
todissociation and due to UV pumping of H2 (Glover & Mac Low
2007a). However, we found that it is usually insignificant. The extra
heating only has a significant effect when the gas is initially highly
molecular and has a low metallicity (Z � 0.1 Z�). Such circum-
stances are highly unrealistic because the low extinction favours
prior destruction of the H2. Even then, the heating only affects the
outer, low-density (nH � 103 cm−3) parts of the clouds (because of
H2 self-shielding) which are even less likely to be molecular than
the inner parts of the clouds. Since we find this heating to be in-
significant in realistic situations, and for the sake of simplicity, we
do not include this effect.

3 IM P L E M E N TAT I O N

The calculations presented in this paper were performed using a
three-dimensional SPH code based on the original version of Benz
(1990; Benz et al. 1990), but substantially modified as described in
Bate, Bonnell & Price (1995), Whitehouse et al. (2005), Whitehouse
& Bate (2006), Price & Bate (2007), and parallelized using both
OPENMP and the message passing interface (MPI).

Gravitational forces between particles and a particle’s nearest
neighbours are calculated using a binary tree. The cubic spline
kernel is used and the smoothing lengths of particles are variable in
time and space, set iteratively such that the smoothing length of each
particle h = 1.2(m/ρ)1/3, where m and ρ are the SPH particle’s mass
and density, respectively (see Price & Monaghan 2007, for further
details). The SPH equations are integrated using a second-order
Runge–Kutta–Fehlberg integrator (Fehlberg 1969) with individual
time steps for each particle (Bate et al. 1995). To reduce numerical
shear viscosity, we use the Morris & Monaghan (1997) artificial
viscosity with αv varying between 0.1 and 1 while βv = 2αv (see
also Price & Monaghan 2005).

3.1 Implementation of the new method

In this section, we describe the detailed implementation of the
method described in Section 2. The two main new elements are
the implicit integration of equations (12)–(14), and the calculation
of the dust attenuation which is required to compute the local ISR
that appears in equations (27), (35), and the extinction in equation
(39).

3.1.1 Solving the energy equations

In solving the energy equations (12)–(14), we closely follow the
implementation of the flux-limited diffusion method of Whitehouse
et al. (2005) and Whitehouse & Bate (2006). The energy equations
are very similar to those for the pure flux-limited diffusion method,
except that the dust and gas now have different temperatures and

there are some additional heating and cooling terms. Whitehouse
et al. (2005) developed an implicit method for solving equations (3)
and (4) based on writing the equations in terms of the specific
radiation energy, ξ = E/ρ, and the specific internal energy of the
gas, u. For each SPH particle i, implicit expressions were derived
for these two quantities at time step n + 1. These two equations
were combined so as to solve for ξn+1

i and un+1
i . The values from

the previous time step, ξn
i and un

i , were used as the initial guesses
for ξn+1

i and un+1
i , and Gauss–Seidel iteration was performed over

all particles that were being evolved until the quantities converged
to a given tolerance. The same basic method is used here.

During each Gauss–Seidel iteration, the dust temperature must be
solved for first. Equation (14) is solved directly for Td of each par-
ticle based on its quantities from the previous time step or iteration.
This is a root finding problem, for which Newton–Raphson iteration
converges very quickly. It involves computing the left-hand side of
equation (14) and its derivative with respect to Td, which is straight-
forward except for the fact that κd is a function of Td. However,
since κd is stored in a table as a function of Td (see Section 3.3), we
simply use a numerical derivative to calculate d(κd)/d(Td).

Once the dust temperatures have been found, we solve for ξn+1
i

and un+1
i in a similar manner to Whitehouse et al. (2005), but

including the additional terms. However, we found it necessary to
solve the equations in two different ways in the low-density and
high-density regimes, reflecting the fact that equations (12)–(14)
can be combined in two ways. In the low-density regime, when the
gas and dust are poorly coupled, we solve

ρ
D

Dt

(
E

ρ

)
= −∇ · F − ∇v : P − acκgρ

(
T 4

r − T 4
g

)
+ ρ	ISR + 	gd, (53)

ρ
Du

Dt
= −p∇ · v + acκgρ

(
T 4

r − T 4
g

)
− 	gd − 	line + 
cr + 
pe + 
H2,g, (54)

where we have obtained 53 by rearranging equation (14) to solve
for the term acκdρ

(
T 4

r − T 4
d

)
and replaced this term in equation

(12). This works well in the poorly coupled regime because the 	gd

term is very small. Furthermore, in the low-density regime the gas
temperature is usually Tg � 1000 K and hence κg ≈ 0. Thus, the
two equations are almost uncoupled. However, in the well-coupled
regime, we find it better to solve

ρ
D

Dt

(
E

ρ

)
= −∇ · F − ∇v : P − acκgρ

(
T 4

r − T 4
g

)

− acκdρ
(
T 4

r − T 4
d

)
, (55)

ρ
Du

Dt
= −p∇ · v + acκgρ

(
T 4

r − T 4
g

)
+ acκdρ

(
T 4

r − T 4
d

)
+ ρ	ISR − 	line + 
cr + 
pe + 
H2,g, (56)

where we have obtained equation (56) by rearranging equation (14)
to solve for 	gd and replaced this term in equation (13). These
equations are almost identical to those solved by Whitehouse et al.
(2005), except for the last four terms in equation (56), and these all
tend to be very small when the gas and dust are well coupled. This
form is better in the well-coupled regime because the 	gd term in
equations (53) and (54) can become very large when the gas and
dust are well coupled even if the difference in the gas and dust
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temperatures is very small (|Tg − Td| � 0.1 K). In this case, the
Gauss–Seidel iterations can fail to converge and/or the radiation
energy density can become negative. We use equations (53) and
(54) when nH2(Z/Z�) < 1011 cm−3 and |Tr − Td| > 1 K, otherwise
we use equations (55) and (56).

We solve equations (53) and (54) or equations (55) and (56)
implicitly in a similar manner to Whitehouse et al. (2005). For
equations (55) and (56), we write

ξn+1
i = ξn

i + dt
∑

j

mj

ρiρj

bc
(
ρiξ

n+1
i − ρj ξ

n+1
j

) ∇Wij

rij

− dt (∇vi) fiξ
n+1
i

− dtacκg,i

⎡
⎣ρiξ

n+1
i

a
−

(
un+1

i

cv,i

)4
⎤
⎦

− dtacκd,i

[
ρiξ

n+1
i

a
− T 4

di

]
, (57)

where

b = λi

κiρi

+ λj

κjρj

(58)

for brevity, and

un+1
i = un

i + dt(pdV n
i ) + dtacκg,i

⎡
⎣ρiξ

n+1
i

a
−

(
un+1

i

cv,i

)4
⎤
⎦

− 10−33dt
n2

H2,i

ρi

T
1/2

g,i

(
un+1

i

cv,i

− Td,i

)
Z

Z�

− dt
αi

ρi

(
Tg,i

10 K

)βi Z

Z�

+ dt

cr,i

ρi

+ dt

pe,i

ρi

Z

Z�
+ dt


H2,g,i

ρi

, (59)

in which we have taken equation (36) rather than (37). The equations
obtained when solving equations (53) and (54) are very similar (and
simpler) to the above-mentioned equations so we omit them for the
sake of brevity. Note that for an ideal gas, the temperature of the gas
is given by Tg = u/cv, where cv is the specific heat capacity. In fact,
our equation of state is considerably more complex (see Section 3.2)
and cv is in fact simply the ratio of u/Tg which is obtained from
a pre-calculated table of values that gives this ratio as a function
of u and ρ. Equation (59) includes the quantity pdV n

i which is an
explicit term (i.e. evaluated at time step n) for the work done on
the gas and the thermal contribution from the artificial viscosity. In
Whitehouse et al. (2005), these terms were included implicitly, but
from Bate (2010) onwards we have used the explicit term here rather
than the implicit term because we found empirically that using the
explicit term results in better energy conservation in star formation
calculations. The explicit term for particle i is calculated as

pdVi = Pi

�iρ
2
i

∑
j

mjvij · ∇iWij (hi)

− 1

2

∑
j

mj

ρ̄ij

ᾱij vsig(vij · r̂ ij )vij ·
[∇iWij (hi)

2�i

+ ∇iWij (hj )

2�j

]
,

(60)

where the second term is only applied between approaching parti-
cles (vij · r̂ ij < 0), the viscous signal velocity is vsig = c̄s − 2vij ·
r̂ ij , and the average sound speed and densities of particles i and j are
given by c̄s = 1

2 (cs,i + cs,j ), and ρ̄ij = 1
2 (ρi + ρj ), respectively. The

viscosity parameters evolve for each particle based on the method of
Morris & Monaghan (1997), and their average is ᾱij = 1

2 (αi + αj ).
Within each Gauss–Seidel iteration, for each particle i, equa-

tions (57) and (59) are solved simultaneously for un+1
i and then

ξn+1
i . This could be done exactly for the equations used by White-

house et al. (2005). Note, however, that equation (59) includes the
quantities T

1/2
g,i and (Tg,i)βi in the collisional dust–gas term and the

line cooling term, and the heating rate due to molecular hydrogen
formation, 
H2, g, also involves the gas temperature. For a purely
implicit solution of un+1

i , the terms involving Tg, i should be written
as Tg,i = un+1

i /cv,i , but this would introduce fractional powers of
un+1

i , making direct solution impractical. Instead, in equation (59)
we take Tg,i = un

i /cv,i and rely on the fact that un
i is updated in

every Gauss–Seidel iteration so that if un+1
i converges, so too does

un
i . Empirically, this seems to work well as long as large decreases

in the gas temperature (which would result in a large decrease in the
emission line cooling) are avoided from one iteration to the next –
we limit un+1

i ≥ 0.8ui
i .

Apart from these changes, the simultaneous solution for un+1
i

and then ξn+1
i follows the method of Whitehouse et al. (2005) and

will not be repeated here. Briefly, in general, equations (57) and
(59) are combined to eliminate ξn+1

i and produce a quartic equation
for un+1

i that can be solved analytically. When solving the implicit
version of equation (54) we use Newton-Raphson iteration to obtain
un+1

i . Once un+1
i is obtained, ξn+1

i is found simply by rearranging
equation (57). This is done for all active particles for each iteration,
and the iterations are repeated until a desired tolerance is reached.

3.1.2 Calculating the ISR attenuation

It is necessary to calculate the local intensity of the ISR (attenuated
due to dust extinction) and the mean visual extinction in order to
evaluate the 	ISR and 
pe terms and to model the chemistry (Sec-
tion 2.5). This is potentially very difficult computationally because
it involves integrating over all angles at each point in the simulation.
To make this computationally tractable, we use a similar method to
the TREECOL method of Clark, Glover & Klessen (2012a). They
propose calculating the mass surrounding a particle in angular cones
(and thereby calculating the column density and optical depths) us-
ing the same tree which is frequently used in SPH codes to calculate
gravity and neighbouring particles. The algorithm essentially sums
over the column densities of nearby particles and more distant tree
nodes that intersect the angular cone being considered. To cover the
full 4π steradians uniformly, they used angular cones defined using
the HEALPIX1 library functions (Górski et al. 2005).

We implement a very similar method to that of Clark et al.
(2012a), with the following differences. The SPH code used by
Clark et al. used an oct-tree. An oct-tree is constructed by a purely
spatial decomposition of the particle distribution and the size and
shape of each node in the tree is well defined (in three dimensions,
it is a cube with a size that is purely a function of its level in the tree
hierarchy). This allowed Clark et al. to roughly approximate the
size and shape of each node projected on to the sphere as a square,
thereby allowing them to easily calculate whether or not a node con-
tributed to the mass lying in a particular angular cone. In turn, this

1 http://healpix.jpl.nasa.gov/
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2652 M. R. Bate and E. R. Keto

allowed them to construct a method that conserved the total mass
(i.e. average column density). However, the SPH code we use for
this paper uses a binary tree based on a nearest-neighbour decompo-
sition (Benz et al. 1990). Thus, the nodes do not have well-defined
shapes or sizes. We still implement a method that guarantees the
average column density is exactly preserved, but for simplicity we
assume that the projected shape of each node is a circle. Similarly,
we assume that the projection of the solid angle covered by each
HEALPIX direction is a circle with area 4π/N steradians, where N is
the chosen number of HEALPIX directions. The binary tree defines a
size for the nth node as

sn = max

(
m2

m1 + m2
r12 + s1,

m1

m1 + m2
r12 + s2

)
, (61)

where the subscripts 1 and 2 identify the two subnodes, rij =
|r i − rj |, and mi and r i are the mass and position of the centre
of mass of the subnodes, respectively. If the subnode is an individ-
ual SPH particle, its size is zero in equation (61). As mentioned
above, in general the tree nodes do not have well-defined shapes.
For the purposes of calculating the column density, we assume their
projection is circular, but we are free to scale their effective radius
by an arbitrary factor so that the radius of the circle is rn = fsn, where
f is expected to be of order unity. We explore the effects of choosing
different values of f in Section 4.1 and conclude that f = 0.5 is a
good choice. If the node is an individual SPH particle, we take the
radius to be twice the particle’s smoothing length, rn = 2hn. From a
particular particle, p, at location, rp , the vector between the particle
and the node is rnp = rn − rp . We then define the angular radius
of the node as viewed from the particle by an = arctan(rn/rnp). We
denote the HEALPIX direction as l̂ , which we treat as the centre of
the HEALPIX circle of angular radius apix = √

4/N (the πs cancel).
The angular distance between the centres of these two circles is
d = arccos(rnp · l̂/rnp).

To calculate the contribution of each tree node or particle to the
column density in each HEALPIX area, we calculate the overlapping
area of the two circles. For two circles of radii r and R whose centres
are separated by distance d, this can be computed as

A = r2 arccos

(
d2 + r2 − R2

2 dr

)

+ R2 arccos

(
d2 + R2 − r2

2 dR

)

− 1

2

√
(−d + r + R)(d + r − R)(d − r + R)(d + r + R),

(62)

where we take r = apix and R = an. The contribution of the
node to the average column density of the HEALPIX area is then
mn/(πr2

n )A/(4π/N ), where mn/(πr2
n ) is the column density of the

node and A/(4π/N ) is the fraction that is assigned to that HEALPIX

area. The computational efficiency can be improved by treating
trivial cases separately. If an + apix ≤ d, there is no overlap. If
d + apix ≤ an, then the HEALPIX area is entirely covered by the node
and the contribution is simply mn/(πr2

n ). If d + an ≤ apix, then the
node lies entirely within the HEALPIX area and the contribution is
mn/(4π/N ).

Once we have determined the average column density in a partic-
ular HEALPIX area, we can calculate the visual extinction AV in that
direction. We define QV = Qν(V) at a visual wavelength of 550 nm.
Rather than performing the integrals appearing in equations (27) and
(35) during an SPH calculation, we pre-calculate tables of values.

For equation (35), the attenuated dust heating in a single direction
as a function of log (AV)

λISR(AV) =
∫ ∞

0
QνJ

ISR
ν exp

[
− AV

1.086

Qν(ν)

QV

]
dν, (63)

where the factor of 1.086 = 2.5 log (e) appears because extinction
A is related to optical depth τ by A = −2.5 log (e−τ ). The integral
is actually calculated in d(ln ν) rather than dν. This table can be
interpolated to find the heating rate for any particular value of the
visual extinction AV. The total heating rate at a location is then
provided by averaging the contributions from all directions l̂ i as

	ISR = 1

N

N∑
i

λISR(AVi), (64)

where the directions are chosen using the HEALPIX library functions.
The same is done to compute the quantity G(r) for the photoelectric
heating (equation 27). We pre-calculate a table of values along a
single line of sight containing

g(AV) =

∫ ∞

6eV
J ISR

ν exp

[
− AV

1.086

Qν(ν)

QV

]
dν∫ ∞

6eV
J ISR

ν dν

. (65)

The total value G(r) at a location (equation 27) is then provided by
averaging the contributions from all directions l̂ i as

G(r) = 1

N

N∑
i

g(AVi). (66)

For equations (39) and (46), we simply have

〈exp(−AV)〉 = 1

N

N∑
i

exp(−AVi). (67)

To calculate the average column density of molecular hydrogen
〈NH2〉 which is required to evaluate the self-shielding of molecular
hydrogen (equation 47), we use the same traversal of the tree that is
used to calculate the extinction and G(r), but rather than calculate
the full column density the contribution of each particle or tree node
is multiplied by its molecular fraction xH2.

It should be noted that even using the same tree that is used to cal-
culate gravitational forces to estimate the extinction and other direc-
tional averages, obtaining the averages in many directions can still
require a substantial amount of computation. Furthermore, when
the code is run in parallel using MPI with domain decomposition,
the contributions of each domain to the column densities along each
ray must be added together in order to calculate the quantities in
each direction. This would not be necessary if one simply wanted
the average column density to a particle (since the column den-
sity adds linearly), but because calculating the extinction involves
a non-linear function, exp (−τ ), the column density in each direc-
tion must be computed separately. Thus, when running with MPI
domain decomposition there is also a substantial memory overhead
which depends on the chosen number of directions.

3.2 Equation of state and boundary conditions

As in Bate (2009, 2012), the calculations presented in this paper
were performed using RHD with an ideal gas equation of state
for the gas pressure p = ρTgR/μ. The thermal evolution takes
into account the translational, rotational, and vibrational degrees of
freedom of molecular hydrogen (assuming a 3:1 mix of ortho- and
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para-hydrogen; see Boley et al. 2007). It also includes molecular
hydrogen dissociation, and the ionizations of hydrogen and helium.
The hydrogen and helium mass fractions are X = 0.70 and Y = 0.28,
respectively. For this composition, the mean molecular weight of the
gas is initially μ = 2.38. The contribution of metals to the equation
of state is neglected.

In previous calculations using the flux-limited diffusion method
of Whitehouse et al. (2005), it was necessary to set matter and radi-
ation temperature boundary conditions. For calculations contained
within a particular volume (e.g. the collapse of a molecular cloud
core; Whitehouse & Bate 2006; Bate 2010, 2011; Bate, Tricco &
Price 2014), the matter and radiation temperatures were fixed on
ghost particles outside the boundary at the initial (low) temperature
(e.g. 10 K). For calculations of clouds with free boundaries (e.g.
Bate 2009, 2012, 2014), all particles with densities less than a par-
ticular value (typically 10−21 g cm−3) had their matter and radiation
temperatures set to the initial values (again ≈10 K). This matter was
two orders of magnitude less dense than that in the initial cloud and,
thus, these boundary particles surrounded the region of interest in
which the star cluster formed. In both cases, this essentially meant
that the clouds were embedded in an external radiation field with
this boundary temperature.

The new method presented here eliminates the need for these
arbitrary temperature boundary conditions. Now the temperature of
the gas, dust and radiation are all set consistently at both high and
low densities.

3.3 Opacities and metallicity

Whitehouse & Bate (2006), Bate (2009, 2010, 2011, 2012), and Bate
et al. (2014) assumed solar metallicity gas and used the Rosseland
mean opacity tables of Pollack, McKay & Christofferson (1985)
for interstellar dust and, at higher temperatures when the dust is
destroyed, the gas opacity tables of Alexander (1975, the IVa King
model); see Whitehouse & Bate (2006) for further details. Bate
(2014) performed calculations with varying opacities. He used the
same dust opacities, scaled linearly in proportion to the metallicity,
but replaced the gas opacity tables with the metallicity-dependent
tables of Ferguson et al. (2005) with X = 0.70. It is worth noting
that one of the main conclusions of Bate (2014) was that the results
of star formation calculations are very insensitive to the opacities
that are used.

In this paper, because the equations treating dust heating and pho-
toelectric heating of the gas require integrals over the dust opacity
as a function of frequency, we cannot continue simply to use the
Rosseland mean opacities of Pollack et al. (1985). At low-densities
(i.e. when the optical depth is low and the dust is essentially in
thermal equilibrium with the ISR field), the Planck mean is more
appropriate than the Rosseland mean, and we desire consistency
between the frequency-dependent dust opacity, Qν(ν) and the grey
opacity, κd, appearing in equations (12) and (14). In other words,
equation (15) should be satisfied. Therefore, we calculate Planck
mean opacities directly from Qν(ν) before the code begins to evolve
the SPH calculation and the values are stored in a table as a func-
tion of dust temperature. Any frequency dependent opacities can
be used in principle, but for simplicity, we use the parametrization
provided by Zucconi et al. (2001) of the opacities from Ossenkopf
& Henning (1994). We use these values for κd whenever the dust
temperature is less than 100 K. We assume that higher dust tem-
peratures (Td > 100 K) will only be encountered at high densities
(i.e. near protostars) when the gas and dust are optically thick and
thermally well-coupled. In this case, Rosseland mean opacities are

appropriate, and we use those of Pollack et al. (1985) as we have in
our earlier calculations mentioned above.

For the gas, we continue to use the Rosseland mean opacities of
Ferguson et al. (2005) for κg, since the gas opacity only becomes
important in the highly optically-thick regions inside, or very near
to, a star, for which the Rosseland mean is appropriate.

4 C A L C U L ATI O N S

4.1 Testing the method for calculating ISR attenuation

One of the tests that Clark et al. (2012a) used for the TREECOL
method was to calculate the temperature structure of two uniform-
density spherical clouds when subjected to a Black (1994) ISR field.
They took densities of 10−19 g cm−3 for clouds with masses of 1
and 10 M� and used 2.6 × 105 SPH particles. We perform the
same tests here. For this test, we set the internal radiation to zero
(i.e. E = Tr = 0) and we turn off the coupling between the gas
and the dust (i.e. 	gd = 0) so that equation (14) is only solving
for the equilibrium temperature of the dust subject to the attenuated
external ISR. The ISR is as discussed in Section 2.4.1, except that we
exclude the additional UV flux which is important for photoelectric
heating. We have calculated the exact radial temperature distribution
by analytically calculating the column density along 192 HEALPIX

directions (using 48 provides an almost identical result) and used
these values to calculate the attenuated dust heating (equations 63
and 64) and the equilibrium dust temperature as functions of radius.

In Fig. 2, we give the distribution of the equilibrium dust temper-
ature as a function of radius for each of the two clouds. One point
is plotted for each SPH particle. Different colours give the results
obtained when the code uses 12, 48, or 192 HEALPIX directions to
calculate the mean extinction. The number of HEALPIX directions
used has little impact on the results, except in the very outer part
of the clouds when using only 12 directions. However, using more
directions takes longer to compute, so from this point on we use
48 HEALPIX directions. The equilibrium temperature of dust that is
subject to the full ISR is 17.2 K for our chosen ISR. By consider-
ing equation (23), we expect a dust particle that is subject to one
hemisphere of heating to have an equilibrium temperature that is a
factor of 21/6 lower (i.e. 15.3 K) and, as expected, this is essentially
equal to the temperature at the edge of each of the clouds. However,
within the clouds we find that the dust temperatures are up to ≈1 K
warmer than given by the exact solutions (solid black lines). We
note that the central temperatures in our clouds are in good agree-
ment with those found by Clark et al. (2012a), but they obtained
substantially lower temperatures at the outer edges of their clouds
(13–14 K). The reason for this is not clear since, as just mentioned,
our edge temperatures are what we would expect. Their ISR may
have been different to ours, although both are nominally based on
that of Black (1994).

In Fig. 3, we plot the dust temperatures from five calculations
of the 1-M� cloud that each use 48 HEALPIX directions, but that
have different numbers of SPH particles: 280, 2608, 2.6 × 104,
2.6 × 105, and 2.6 million. It can be seen that the dust temperature
tends to be overestimated when a smaller number of particles is
used, but the dust temperature appears to be slowly converging
towards the exact solution as the number of particles is increased.
The error in the dust temperature is approximately halved each time
the number of SPH particles is increased by an order of magnitude
(i.e. the error decreases at about the same rate that the linear spatial
resolution increases). Comparing the 2.6 × 104 particle calculation
with the exact solution, the maximum difference between the mean
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Figure 2. The dust temperature as a function of radius inside two uniform-
density molecular cloud cores that are subject to an external ISR field.
The clouds have the same densities, but different masses: 1 M� (upper
distributions) and 10 M� (lower distributions). The exact solutions are
plotted using the solid black lines. For the SPH calculations, a point is
plotted for each SPH particle (2.6 × 105 for each cloud). The different
colours give the results obtained when the code uses 12 (red), 48 (green), or
192 (blue) HEALPIX directions to calculate the mean extinction. Dust within
the clouds receives less of the external radiation due to extinction and,
therefore, is colder. The number of HEALPIX directions used has little impact
on the results, except in the very outer part of the clouds. The equilibrium
temperature of dust that is subject to the full ISR is 17.2 K (horizontal
dashed line), and the equilibrium temperature of dust that received exactly
half of this radiation would be 15.3 K, which is lower by a factor of 21/6

(horizontal dotted line). As expected, dust at the edges of the clouds is close
to this temperature.

temperatures at any radius is only 1 K. Clark et al. (2012a) did
not discuss how their method behaves with different numbers of
particles.

We used a cubic lattice SPH particle distribution to generate the
results presented in Figs 2 and 3. We have also tried a random par-
ticle distribution. Using 2.6 × 105 randomly-placed SPH particles
to model the 1-M� cloud, we obtained an almost identical mean
radial temperature distribution to the case that used a cubic lattice,
but with a temperature scatter of up to ±0.2 K. However, given that
this error is similar to the systematic difference between the tem-
perature distributions obtained from the 2.6 × 105 and 2.6 million
particle cubic lattice calculations, we conclude that the accuracy of
the solution depends more on the number of particles used than on
the details of how they are distributed.

In Fig. 4, we investigate the effects on the calculation of the dust
temperature of varying the tree-opening criterion and the effective
radius of the tree nodes, the latter of which is parametrized by the
factor f (see Section 3.1.2). During the walk through the tree to
calculate gravity, nodes are opened if sn/rnp is larger than a critical
value, usually taken to be 0.5. We perform calculations using a tree-
opening parameter of 0.5 and 0.25 (the latter of which means more
nodes are opened during the tree walk). For each case, we perform
five SPH calculations of the 1-M� cloud that each use 48 HEALPIX

directions and 2.6 × 105 SPH particles, but we vary the effective

Figure 3. The dust temperature as a function of radius inside the 1 M�
uniform-density molecular cloud core that is subject to external ISR. The
exact solution is plotted using the solid black line. The results from five SPH
calculations are illustrated, and a point is plotted for each SPH particle. The
calculations each use 48 HEALPIX directions to calculate the mean extinction,
but different numbers of SPH particles are used to model the cloud – from
top to bottom: 280 (black), 2608 (red), 2.6 × 104 (green) 2.6 × 105 (blue),
and 2.6 million (magenta). It can be seen that using fewer particles tends to
result in warmer dust temperatures (i.e. an underestimate of the extinction),
but the dust temperature appears to be slowly converging towards the exact
solution as the number of particles is increased. As long as �3 × 104

particles are used the maximum error in the mean temperature at any radius
is � 1 K. The equilibrium temperature of dust that is subject to the full ISR
is 17.2 K (horizontal dashed line), and the equilibrium temperature of dust
that received exactly half of this radiation would be 15.3 K, which is lower
by a factor of 21/6 (horizontal dotted line). As expected, with sufficient
resolution, the dust at the edges of the clouds is close to this temperature.

radius of the node that is used when calculating the column density.
We take factors of f = 2.0, 1.0, 0.5, 0.1, and 0.01. It can be seen
from Fig. 4 that using very large tree-opening angles and/or effective
node radii results in warmer dust temperatures (i.e. an underestimate
of the extinction). We also note that almost identical results are
obtained when the product of the opening parameter and the factor
f is a constant (e.g. using a tree-opening parameter of 0.5 and f = 1
gives almost identical results to using a tree-opening parameter of
0.25 and f = 2). The calculation of the extinction becomes very
poor when the product of these two quantities exceeds ≈0.5. If the
effective node size is too small, the calculations provide reasonable
mean temperatures at a given radius, but the scatter increases (e.g.
the black points in the left-hand panel that were produced using
f = 0.01). With the typical tree-opening parameter of 0.5, setting the
factor f = 0.5 gives the best trade-off between accurately computing
the mean radial temperature distribution and minimizing the scatter.

The typical resolutions employed in SPH calculations of star
cluster formation vary from ∼103 particles per solar mass (Bonnell,
Bate & Vine 2003; Bonnell et al. 2011) to ∼105 particles per solar
mass (Bate, Bonnell & Bromm 2003; Bate 2012). The results of this
test suggest that the typical errors in the dust temperature due to
finite numbers of SPH particles and HEALPIX directions and variations
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Combining radiative transfer and diffuse ISM 2655

Figure 4. The dust temperature as a function of radius inside the 1 M� uniform-density molecular cloud core that is subject to external ISR. The exact
solution is plotted using the solid black line. The results from 10 SPH calculations are illustrated, and a point is plotted for each SPH particle. The calculations
each use 48 HEALPIX directions to calculate the mean extinction and 2.6 × 105 SPH particles, but the tree-opening parameter and the effective sizes of the tree
nodes are varied. In the left-hand panel, the tree-opening parameter is 0.5, while in the right-hand panel it is 0.25. In each panel, the effective size of the tree
nodes decreases from top to bottom, using scaling factors of f = 2.0 (red), 1.0 (green), 0.5 (blue), 0.1 (magenta), and 0.01 (black). It can be seen that using very
large tree-opening angles and/or effective node sizes results in warmer dust temperatures (i.e. an underestimate of the extinction). If the effective node size is
too small, the scatter increases. With a tree-opening parameter of 0.5, an effective node size of half the actual node size (i.e. f = 0.5) gives the best trade-off
between accurately computing the mean radial temperature distribution and minimizing the scatter. The equilibrium temperature of dust that is subject to the
full ISR is 17.2 K (horizontal dashed line), and the equilibrium temperature of dust that received exactly half of this radiation would be 15.3 K, which is lower
by a factor of 21/6 (horizontal dotted line). As expected the dust right at the edges of the clouds is close to this temperature.

of the tree parameters should be �1 K as long as �3 × 104 particles
per solar mass are used and large effective node radii are avoided.

4.2 Equilibrium dust and gas temperatures

More realistic than using a uniform-density sphere is to use Bonner–
Ebert spheres. To allow comparison with earlier work, we use the
same 5-M� Bonner–Ebert spheres that were used by Keto & Field
(2005) – a (marginally) subcritical case with a central density of
nH2 = 104 cm−3, and a supercritical case with a central density
of nH2 = 106 cm−3. The former case has a ratio of the inner to
outer density of 14, while the ratio of the latter is 3000. Their radii
are 0.223 and 0.265 pc, respectively. In these tests, we assume the
hydrogen is fully molecular. We model both clouds with 3 × 105

SPH particles.
The SPH particles were set up using a cubic lattice which was

then deformed radially to obtain the required cumulative radial
mass profile. In Fig. 5, we provide the SPH density as a function of
radius for of each SPH particle for both cores. The small ‘spikes’ in
the density in the supercritical case are due to the lattice structure
affecting the density calculation of some particles in this case with
a very strong density gradient. They do not appear in the subcritical
case, which has a much shallower density profile. In both cases,
there is also some ‘noise’ in the density near the outer boundary
(which is made of reflected ghost particles).

In this section, we investigate the effects of each of the physical
heating and cooling mechanisms on the temperatures of the gas and
dust. We begin by including only cosmic ray heating and molecular
line cooling for the gas, and the dust is taken to be in thermal

Figure 5. Plots of the SPH molecular hydrogen number density, nH2, as
functions of radius inside the subcritical (blue) and supercritical (red) 5-M�
Bonner–Ebert spheres. A point is plotted for each SPH particle. The ‘spikes’
in the density for the supercritical case are an artefact of the particles being
set up on a radially-deformed cubic lattice.

equilibrium with the ISR. We then add in the effects of gas–dust
collisions, photoelectric heating of the gas and cooling from C+.
For the first two cases, we also investigate the effects of including
and excluding the UV flux.
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2656 M. R. Bate and E. R. Keto

Figure 6. The dust (upper) and gas (lower) temperatures as functions of radius inside the subcritical (left) and supercritical (right) 5-M� Bonner–Ebert
spheres. The ISM physics includes cosmic ray heating and molecular line cooling of the gas, and the dust is in thermal equilibrium with an external ISR that
excludes (green) or includes (red) the UV contribution (see Section 2.4.1). The dust temperature drops as the extinction increases at smaller radii. The gas
temperature rises because the line cooling becomes less effective at higher densities. The UV ISR only affects the dust temperature in the low-extinction outer
parts of the cloud. The small ‘spikes’ in the gas temperature in the right plot at radii r ≈ 0.03–0.16 pc are due to the artefacts in the calculation of the SPH
density due to the particles being set up on a radially-perturbed cubic lattice.

4.2.1 Cosmic ray heating, molecular line cooling, and dust
radiative equilibrium

In Fig. 6, we plot the dust and gas temperatures as functions of radius
inside the two Bonner–Ebert spheres. These calculations include
only cosmic ray heating and undepleted molecular line cooling of
the gas, and the dust is in thermal equilibrium with the external ISR.
There is no gas–dust collisional coupling, photoelectric effect, or
cooling due to C+, oxygen, or recombination lines. There are two
calculations for each case – one that excludes the UV contribution
to the ISR, and one that includes it.

In the outer parts of the cores, the dust temperature exceeds the
gas temperature as the local ISR is only weakly attenuated by the
dust, and the cosmic ray flux and line cooling are such that the low-
density equilibrium gas temperature is ≈10 K. Including the UV
contribution to the ISR boosts the dust temperature by up to 2 K in
the outer parts, but the total energy in the UV flux is small compared
to the total ISR flux and the UV does not penetrate very far into the
cores. In the inner parts of the cores, the gas temperature rises as the
effectiveness of the line cooling decreases (Goldsmith 2001). On
the other hand, the dust temperature decreases, particularly in the
supercritical case, because the dust extinction attenuates the ISR.

4.2.2 The effects of gas–dust collisions

In Fig. 7, we include the same physical processes as in the previous
section, but we now also turn on the transfer of thermal energy
between the gas and the dust due to collisions. The strength of this
interaction depends on the square of the density (equation 36), so
we expect it to have little impact at low densities, but a significant
impact as the density increases. Indeed, this can be clearly seen
in Fig. 7, in which we plot the same calculations as in Fig. 6 for
reference, but we now also include the case with gas–dust coupling

in blue (without the UV ISR) and magenta (with the UV ISR). The
gas–dust thermal coupling has no significant effect on the tempera-
tures in the subcritical core because the densities are too low. In the
supercritical case, the dust temperature is unaffected, but the gas
temperature at r < 0.04 pc (densities nH2 � 2 × 104) is ‘dragged
down’ by the interaction with the cold dust so that at the centre the
gas and dust temperatures are both ≈7.5 K.

Our numerical results are in reasonable agreement with those
presented in figs 4 and 5 of Keto & Field (2005), who use the same
models for the ISM physics as we use here, without the UV ISR
(black solid lines in Fig. 7). The main difference is that the gas
temperatures at low densities are slightly lower in Keto & Field
(2005). The gas temperature at low density is set by the balance
between cosmic ray heating and the line cooling rates. The latter
is dependent on the method used to interpolate from the tables of
Goldsmith (2001). Since the cosmic ray heating and line cooling
rates are both simple functions of nH (equations 24 and 34), it
is easy to solve for the central gas temperature of 12.4 K in the
subcritical case (where the gas–dust coupling is negligible). The
slightly lower gas temperature (≈11.5 K) obtained by Keto & Field
(2005) was found to be due to less accurate interpolation used by
Keto & Field of the line cooling functions of Goldsmith (2001).
Thus, the different interpolation of the line cooling produces the
different gas temperatures.

4.2.3 The effects of photoelectric heating and carbon chemistry

In Fig. 8, in addition to the other physical processes, we turn on
photoelectric heating of the gas due to UV ISR photons liberating
electrons from dust grains (equation 26). The resulting gas and dust
temperatures (green) are compared to those without the photoelec-
tric heating (blue). The dust temperature is essentially unchanged,
but the gas temperature in the outer parts of the cores, at densities
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Figure 7. The dust (upper) and gas (lower) temperatures as functions of radius inside the subcritical (left) and supercritical (right) 5-M� Bonner–Ebert
spheres. Red and green points (mostly obscured) are the same as in Fig. 6. For the blue (without the UV ISR) and magenta (with the UV ISR) points, the ISM
physics is exactly the same, except that it includes thermal collisional coupling between the gas and the dust. The black solid lines give the results obtained by
Keto & Field (2005) without including the UV ISR. The effect is that at high densities, the gas essentially adopts the dust temperature. The small ‘spikes’ in
the gas temperature in the right-hand plot at radii r ≈ 0.03–0.16 pc are due to the artefacts in the calculation of the SPH density due to the particles being set
up on a radially-perturbed cubic lattice.

Figure 8. The effect of photoelectric heating and C+ cooling of the gas on the dust and gas temperatures as functions of radius inside the subcritical (left)
and supercritical (right) 5-M� Bonner–Ebert spheres. The dust temperatures are essentially unaffected by the extra gas heating and cooling processes. The
blue points are the same as in Fig. 7, where the gas is subject to cosmic ray heating, molecular line emission, and collisions with the dust, while the dust is
subject to heating from the ISR (including the UV), thermal emission, and collisions with the gas. The green points include the same physical effects as the
blue points, but with the addition of photoelectric gas heating (equation 26). The photoelectric heating has an enormous effect on the gas temperature in the
outer, low-density parts of the clouds. However, when the C+ cooling is included (red points), the effect of the photoelectric heating on the gas temperature is
greatly reduced.

such that the gas and dust are thermally decoupled (nH2 � 104 cm−3),
is much hotter than without photoelectric heating. In fact the photo-
electric heating is so strong that the cosmic ray heating is irrelevant
in the low-density gas.

Whereas Keto & Field (2005) did not consider photoelectric
heating, as discussed in Section 2.5, Keto & Caselli (2008) included
photoelectric heating and a simple carbon chemistry model which
allowed them to include both cooling from C+ at low densities and
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Figure 9. The effect of CO depletion on the gas on the dust and gas temperatures as functions of radius inside the subcritical (left) and supercritical (right)
5-M� Bonner–Ebert spheres. The red points are the same as in Fig. 8, where the gas is subject to cosmic ray and photoelectric heating, molecular and C+ line
emission, and collisions with the dust, while the dust is subject to heating from the ISR (including the UV), thermal emission, and collisions with the gas. The
black points include the same physical processes as the red points, but also allow for CO depletion. This reduces the molecular line cooling at high densities
which raises the gas temperature slightly at densities nH2 = 104–105 cm−3. At higher densities the depletion has little effect because the cooling is dominated
by dust emission through collisions with the dust.

treat the depletion of CO at high densities. Therefore, in Fig. 8, we
keep the photoelectric heating on, but also add cooling from C+

(red). It can be seen that the C+ cooling dramatically lowers the
temperatures in the outer parts of the cloud; the temperature is still
somewhat higher than it was without either the photoelectric heating
or the C+ cooling, but much less than if C+ cooling is omitted. We
note that recombination and oxygen cooling are both insignificant
at these densities and that the temperatures are essentially identical
whether they are included or not.

Finally, in Fig. 9 we turn on the effects of CO depletion based on
the equilibrium prescription of Keto & Caselli (2008). This results
in only slightly higher gas temperatures at intermediate densities
(nH2 = 104–105 cm−3) where the densities are still too low for dust
cooling to dominate, but the densities are high enough that C+ is
ineffective.

4.2.4 The effects of changing the ISM parameters

The previous sections used the diffuse ISM model parameters de-
scribed in Sections 2.3 and 2.4. In this section, we investigate the
dependence of the gas and dust temperatures on the strengths of
the various external heating sources. We only use the supercriti-
cal Bonner–Ebert sphere in these tests because this has the larger
range of densities. In the left-hand panel of Fig. 10, we explore
the effects of changing the cosmic ray heating rate (equation 24)
by an order of magnitude in each direction. In the right-hand panel
of Fig. 10, we explore the effects of change the gas photoelectric
heating rate (equation 26) by an order of magnitude in each direc-
tion. It can be seen that over particular density ranges, either of these
changes the gas temperature by approximately half an order of mag-
nitude in each direction because the gas line cooling scales roughly

as the square of the gas temperature for the molecular lines (Gold-
smith 2001). The gas temperatures in the outer parts of the cloud are
much more strongly affected by photoelectric heating than cosmic
ray heating. On the other hand, at number densities nH2 � 105 cm−3

strong cosmic ray heating can raise the gas temperature significantly
above the dust temperature whereas the photoelectric heating has
no effect this deep within the core.

In Fig. 11, we probe the effects of changing the ISR field (equa-
tion 25) by an order of magnitude in each direction, excluding the
UV contribution which is held fixed. The calculations include pho-
toelectric heating of the gas and C+ cooling. The increased ISR
primarily affects the dust temperature, but because the dust emis-
sion scales as the sixth power of its temperature (equation 23),
this only has a 50 per cent effect on the dust temperatures. Deep
within the core where the gas becomes thermally coupled to the
dust, the warmer or cooler dust also results in warmer or cooler gas,
respectively.

In Fig. 12, we investigate the effects of changing the metallic-
ity of the core, performing additional calculations with metallic-
ities of 1 per cent, 10 per cent, and 3 times solar. It can be seen
that the highest metallicity results in the coldest temperatures for
both the gas and the dust due to the combination of several ef-
fects. The increased metallicity increases the ISR attenuation, de-
creasing the dust temperature inside the core. Similarly, the UV is
prevented from penetrating as far into the core, reducing the ef-
fects of photoelectric heating of the gas, and the gas line emission
is enhanced. Finally, there is an increase in the effectiveness of
collisional thermal coupling between the gas and the dust. With
the lowest metallicity, the dust almost becomes isothermal since
there is almost no attenuation of the ISR, and the gas is warmer be-
cause the photoelectric heating is strong while emission line cooling
is weak.
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Figure 10. The effects of changing the strengths of the cosmic ray (left) and photoelectric (right) heating of the gas on the dust and gas temperatures as
functions of radius inside the supercritical 5-M� Bonner–Ebert sphere. In both panels, the red points are the same as in the black points in the right-hand panel
of Fig. 9. The other points include the same physical effects as the red points, but with one order of magnitude less (green) or more (blue) cosmic ray (left)
or photoelectric (right) heating. Changing the level of cosmic ray heating has a large effect on the gas temperature at intermediate densities, but not at high
densities (where the gas and dust are well coupled) or low densities (where photoelectric heating dominates). Changing the levels of photoelectric heating has
a large effect on the gas temperature only in the outer regions of the core. The dust temperatures are unaffected in either case.

Figure 11. The effects of changing the strength of the ISR field on the dust
and gas temperatures as functions of radius inside the supercritical 5-M�
Bonner–Ebert sphere. The red points are the same as the black points in
the right-hand panel of Fig. 9. The other points include the same physical
effects as the red points, but with one order of magnitude less (green) or more
(blue) ISR heating. Changing the level of ISR by an order of magnitude has
a 50 per cent effect (101/6) on the dust temperatures. At high densities, the
different dust temperature affects the gas temperature in a similar manner,
but at low densities the gas temperature is unaffected as it is set by the
photoelectric heating and C+ cooling.

Figure 12. The effects of changing the metallicity on the dust and gas tem-
peratures as functions of radius inside the supercritical 5-M� Bonner–Ebert
sphere. Photoelectric heating has been included. From top to bottom, the
calculations have metallicities of 1/100 (magenta points, top curves), 1/10
(blue points), solar metallicity (red points), and 3 times solar metallicity
(green points). The red points are the same as in the black points in the
right-hand panel of Fig. 9. The dust temperatures are greater with lower
metallicities because the ISR is less attenuated by extinction. The gas tem-
peratures are greater with lower metallicities because the UV ISR is less
attenuated by extinction (leading to stronger photoelectric heating) and also
because the gas emission line cooling is reduced.
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4.3 The evolution of a collapsing Bonner–Ebert sphere

In this section, as opposed to the static tests from the previous
sections, we report the results from a hydrodynamical calculation
of the collapse of a Bonner–Ebert sphere and compare them to
the results obtained using the pure flux-limited diffusion method
of Whitehouse et al. (2005) and Whitehouse & Bate (2006). We
begin with a somewhat unstable Bonner–Ebert sphere, similar to
those studied in the previous section. We choose a 5-M� core with
an inner to outer density contrast of 20 and a radius of 0.1 pc.
We model the core with 3 × 105 SPH particles and use spherical
reflective boundary conditions (modelled using ghost particles).

In Fig. 13, we plot the central temperatures as functions of the
central (maximum) density for the two methods. All of the initial
temperatures in the pure flux-limited diffusion calculations are arbi-
trary. As is standard practice in such calculations, we set the matter
and radiation temperatures to be in thermal equilibrium initially.
We perform two separate calculations and with two different initial
temperatures of 10 and 14 K. For the calculation performed using
the method described in this paper, the initial gas and dust temper-
atures are not arbitrary – they are set by our model of the diffuse
ISM. The initial dust temperature increases from 8 K in the centre
to 17 K at the outer edge of the molecular cloud core. The initial
gas temperature is slightly warmer than the dust at the centre (10 K)
and cooler at the outside (≈15 K). The initial central dust and gas
temperatures are quite similar because the central density of the
core is quite high (ρ = 6 × 10−19 g cm−3 or nH2 = 1.5 × 105 cm−3)
so that there is significant thermal coupling between the dust and
the gas (we use equation 36 in these calculations). As the collapse

Figure 13. The evolution of the central gas and radiation temperatures as
functions of the maximum (central) density during a radiation hydrodynami-
cal calculation of the collapse of an unstable spherical 5-M� Bonner–Ebert
sphere. The radiation temperature is always less than or equal to the gas
temperature in this graph. After the central density exceeds 10−17 g cm−3,
the central dust temperature is indistinguishable from that of the gas. The
black solid lines give the results from a calculation using the method de-
scribed in this paper, while the red dashed lines and blue long-dashed lines
give the results using the pure FLD method of Whitehouse & Bate (2006).
The diffuse ISM model used in the former calculation determines the initial
gas and dust temperatures, which vary with radius, and the internal radiation
temperature is arbitrarily set to a low initial value (1 K). In the FLD cal-
culations, the initial temperatures of the matter (gas and dust) and internal
radiation are arbitrary and we set them to 14 K (red dashed) and 10 K (blue
long-dashed). As expected, it is mainly the low-density evolution that is
affected by including the diffuse ISM model.

proceeds, the central dust and gas temperatures quickly converge,
so we do not plot the central dust temperature in Fig. 13. The in-
creases in extinction and density during the collapse mean that both
the dust and gas temperatures drop to a minimum of 6.5 K when the
central density is 10−16 g cm−3 before the compressional heating
starts to increase the central temperature again. The initial radiation
temperature should be set to a low value, because the heating of
the initial conditions is via external radiation rather than internal
radiation. As long as a small value is chosen the exact value is
unimportant, but we wish to avoid setting it to zero so as to avoid
numerical problems. We chose a value of 1 K.

As may be expected, Fig. 13 shows that it is mainly the low-
density phase of evolution of the clouds that differs between the
two methods (densities �10−13 g cm−3). Once the central regions
of the core become optically-thick to infrared radiation (the so-
called opacity limit for fragmentation; Low & Lynden-Bell 1976;
Rees 1976) all of the temperatures converge. The evolution obtained
with the pure flux-limited diffusion calculation with the lower initial
temperature (10 K) is closest to the evolution obtained using the
method presented here, presumably because the central temperature
in this model is closest to that given by the ISM initial conditions.

In Fig. 14, we plot temperature profiles as functions of radius
(left-hand panel) and density (right-hand panel) at various points
during the collapse. Gas is shown with solid lines, dust with dotted
lines, and radiation with dashed lines. At either a given radius or
density the temperatures tend to rise during the collapse as the
protostar emits more radiation. The formation of the stellar core
at late times (initial radius ≈0.01 au and temperature >104 K) is
clearly visible in the left-hand panel. Except in the outer parts of
the core, these profiles are very similar to those obtained using
pure flux-limited diffusion. The main difference in the outer parts
of the core (radii �103 au) is that the gas, dust, and radiation all
have different temperatures with the new method, whereas with
pure flux-limited diffusion all are very close to the initial arbitrary
temperature (e.g. 10 K; see Whitehouse & Bate 2006).

After stellar core formation as radiation works its way outwards
from the centre the gas, dust, and radiation temperatures become in-
verted at intermediate radii in the core (radii 400–3000 au; Fig. 15).
Before this point the gas temperature is the hottest and the radia-
tion temperature the coldest at these radii. However, the radiation
emitted by the protostar quickly dominates that from the external
radiation field at these radii. The dust adopts a new thermodynamic
equilibrium with the combined radiation field, being heated to tem-
peratures of 15–40 K, but the gas which is poorly coupled to either
the radiation or the dust at these low densities remains at tempera-
tures of 8–12 K. Such effects are impossible to capture unless the
thermal evolution of the gas and dust are treated separately.

4.4 The evolution of an isolated turbulent molecular cloud

Glover & Clark (2012a,c) studied the thermodynamics of turbulent
molecular clouds with different metallicities. In particular, they per-
formed calculations of 104 M� clouds, typically modelled using
SPH with 2 million particles. Their initial conditions consisted of a
uniform-density sphere of number density nH = 300 cm−3, giving
a radius of approximately 6 pc. The cloud was given initial ‘tur-
bulent’ motions with a power spectrum P(k) ∝ k−4, where k is the
wavenumber. The energy in the turbulence was initially set equal
to the magnitude of the gravitational potential energy of the cloud,
giving an initial root-mean-square velocity of around 3 km s−1.
The turbulence was allowed to decay freely. The calculations were
performed using a confining pressure of pext = 1.2 × 104 K cm−3
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Figure 14. The evolution of the gas (solid), dust (dotted), and radiation (dashed) temperatures as functions of radius (left-hand panel) and maximum density
(right-hand panel) during a radiation hydrodynamical calculation of the collapse of an unstable spherical 5-M� Bonner–Ebert sphere. Each colour gives the
state of the calculation when the maximum density reaches a different value, with the initial conditions given in black. The radiation temperature is always less
than or equal to the gas temperature in this graph. The thick black long-dashed lines in the right-hand panel give the evolution of the central gas and radiation
temperatures with central density from Fig. 13 for reference (only for ρ > 10−15 g cm−3). It can be seen that for a given density the gas is usually hotter latter
in the collapse than earlier due to radiation from the protostar heating the outer parts of the core. The formation of the stellar core is apparent in the upper-left
of the left-hand panel (initial radius ≈0.01 au).

Figure 15. The gas (solid), dust (dotted), and radiation (dashed) tempera-
tures as functions of radius when the collapsing spherical 5-M� Bonner–
Ebert sphere has reached a maximum density of 0.01 g cm−3 (lower, red
lines), and 1.76 years later at the end of the calculation when the maximum
density is 0.06 g cm−3 (upper, blue lines). Near the end of the calculation,
after the stellar core forms, the radiation and dust temperatures become hot-
ter than the gas temperature at radii of 400–3000 au because of the radiation
emitted by the protostar.

which was implemented in the SPH equations by subtracting the
external pressure from the pressure used in the momentum equation.
We use the same set up as Glover & Clark, although of course we
are unable to use exactly the same initial velocity field. We use our
full diffuse ISM model to obtain the results below, but we begin by
excluding the hydrogen chemistry and heating due to the formation
of molecular hydrogen (Section 2.5.2). In the first set of results, we
have also excluded molecular depletion (because Glover & Clark
did not include depletion), but since we find that switching deple-
tion on or off has little effect on the results it is included in most of
the subsequent calculations. For the dust–gas thermal coupling, we

switch to equation (37) because this is the equation Glover & Clark
used.

4.4.1 Results excluding hydrogen chemistry

In Fig. 16, we plot the gas (upper panel) and dust (lower panel) tem-
peratures as functions of the number density of hydrogen nuclei,
nH, for a calculation performed at solar metallicity. The snapshot
is taken just before the first sink particle is formed. The colours in
the gas temperature plot indicate the average CO abundance of each
point in temperature–density space. This is the equivalent of fig. 2 in
Glover & Clark (2012a) or the upper-right panel of Fig. 4 in Glover
& Clark (2012c). Since Glover & Clark did not include molecular
depletion on to grains, we have turned this off in our calculation. The
distribution of gas temperatures with density shows the same gen-
eral features seen in the papers of Glover & Clark. At low densities
(nH � 103 cm−3), the gas temperature rises towards ∼100 K as the
number density decreases towards nH ∼ 10 cm−3. The temperatures
at densities nH � 100 cm−3 are primarily determined by the models
of photoelectric heating, and cooling due to electron recombination
and emission from ionized oxygen and carbon (equations 26 to 33).
The gas temperatures lie beneath the equilibrium curve (solid black
line from Fig. 1) because the equilibrium curve assumes no extinc-
tion whereas in fact the photoelectric heating is generally attenuated
by the dust extinction (depending on the location of the gas). Our
maximum temperatures in this density regime are somewhat cooler
than those obtained by Glover & Clark due to our slightly different
models in this regime as already demonstrated in Fig. 1. At den-
sities nH ≈ 100–104 cm−3, there is a large dispersion in the gas
temperatures with a range of Tg ≈ 8–50 K obtained at densities
nH ≈ 103–104 cm−3. In this region, although there is still significant
photoelectric heating, the low-density coolants just mentioned be-
come ineffective. Instead, the main cooling is from molecular lines,
in particular CO (e.g. Goldsmith 2001; Glover & Clark 2012a),
which depends strongly both on density and temperature. At the
same time, work from the gas motions becomes important (either
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Figure 16. Phase diagrams showing the gas (top panel) and dust (lower
panel) temperatures as functions of the gas density. The colours in the
gas temperature plot indicate the average CO abundance of each point in
temperature–density space. The black solid line in the gas temperature plot
is the equilibrium curve from Fig. 1.

heating or cooling the gas, depending on whether the gas is being
compressed or expanding, respectively), as does heating in shocks.
Together these effects lead to the wide range in temperatures. Fi-
nally, at densities nH � 105 cm−3 thermal coupling of the gas to the
dust becomes important and the gas temperature converges towards
that of the dust as the density increases.

As mentioned above, Glover & Clark (2012a) do not treat deple-
tion of CO on to dust grains. Turning this on has little effect on the
phase diagram (Fig. 17). As may be expected, the temperatures at
densities of nH ≈ 103–105 cm−3 are slightly higher, but the effect is
hardly noticeable. At lower densities the CO is not depleted and the
dominant coolant is C+ rather than CO anyway. At higher densities
where the CO does become depleted, the dominant coolant is dust.

We now explore the sensitivity of the results to several of the
assumptions in our model. We examine the dependence on changes
of the chemistry, in particular the abundance of C+ and the depletion
of molecules like CO on to grains, as well as the effects of variations
in the molecular line cooling rates and the strength of the coupling
between the gas and the dust.

The main effect of the carbon chemistry model described in
Section 2.5.1 is to provide the abundances of the coolants C+ at low-
densities and CO at high densities. Typically, the transition between
the dominance of the two coolants occurs at nH ∼ 103 cm−3 (e.g.

Figure 17. Phase diagram showing the gas temperature as a function of the
gas density for a calculation that is identical to that portrayed in Fig. 16,
except that molecular depletion is turned on. The black solid line is the
equilibrium curve from Fig. 1.

Figure 18. Phase diagram showing the gas temperature as a function of the
gas density for a calculation that is identical to that portrayed in Fig. 17,
except that all the carbon is assumed to be in the form of C+. The black
solid line is the equilibrium curve from Fig. 1.

Glover & Clark 2012a). The temperature of the gas is quite sensitive
to this transition from C+ to CO. For example, in Fig. 18 we give
the results obtained by assuming that the carbon remains as C+

at all densities and we turn off all molecular cooling. In this case,
essentially all of the gas lies at temperatures below the equilibrium
curve of Fig. 1 and there is little gas with temperatures greater than
20 K with densities nH ≈ 103–105 cm−3. This extreme case shows
that it is important to have at least a simple model that switches the
carbon from C+ to CO.

In Fig. 19, we return to our standard model including molecular
depletion, but we increase the molecular line cooling rates by an
arbitrary factor of 3. As expected, this decreases the temperatures of
the gas with densities nH ≈ 103–105 cm−3. The lowest temperature
(at densities nH ≈ 103 cm−3) decrease from Tg ≈ 8 to ≈5 K,
but the highest temperatures (at densities nH ≈ 103 cm−4) are not
significantly affected.

As mentioned in Section 2.4.3, equations (36) and (37) for the
gas–dust thermal coupling coefficient differ by a factor of 15 (the
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Figure 19. Phase diagram showing the gas temperature as a function of the
gas density for a calculation that is identical to that portrayed in Fig. 17,
except that the molecular line cooling rate has been increased by a factor of
3. The colours in the gas temperature plot indicate the CO abundance of each
point in temperature–density space. The black solid line is the equilibrium
curve from Fig. 1.

Figure 20. Phase diagram showing the gas temperature as a function of the
gas density for a calculation that is identical to that portrayed in Fig. 17,
except that the collisional thermal coupling between the dust and the gas is
15 times smaller (equation 36 has been used rather than 37). Note that there
is a larger dispersion in the gas temperatures at densities nH � 105 cm−3.
The black solid line is the equilibrium curve from Fig. 1.

latter, used by Glover & Clark, gives stronger coupling). Therefore,
in Fig. 20 we examine the effect of using the weaker coupling
provided by equation (36) instead. As expected, this only has an
effect on the temperatures at high densities, nH � 105 cm−3. The
gas shows a somewhat increased spread of temperatures because
the coupling with the dust is not strong enough to force the gas to
adopt the dust temperature.

In summary, the gas temperatures in solar metallicity turbulent
clouds are relatively independent of many of the parameters of our
diffuse ISM model. The most important factors are the low-density
equilibrium model (portrayed in Fig. 1) which essentially sets an
upper limit to the temperatures at densities nH � 103 cm−3, and
the way in which the carbon transitions from C+ to CO. The exact
molecular cooling rates, molecular depletion, and dust–gas thermal
coupling parameters are less important.

Figure 21. We plot the evolution of the total fractional abundance of molec-
ular hydrogen in calculations of turbulent clouds up until the time that stars
begin to form. For each metallicity, we perform two calculations: one with
fully molecular initial conditions (upper lines) and one with fully atomic ini-
tial conditions (lower lines). The metallicities are 3 times solar (black dotted
lines), solar (red solid lines), 1/10 solar (green dashed lines), and 1/100 solar
(blue dot–dashed lines). By the time stars begin to form, clouds with solar
or supersolar metallicity are mostly molecular, regardless of their initial H2

abundance, but little molecular gas has formed in the low-metallicity clouds
that consist of fully atomic hydrogen initially.

4.4.2 The effects of metallicity and hydrogen chemistry

Following Glover & Clark (2012c), we examine the dependence on
metallicity and on hydrogen chemistry. We perform full calculations
(i.e. including the simple carbon chemical model and molecular de-
pletion) for four different metallicities: 3, 1, 1/10, and 1/100 times
the solar value. For each metallicity, we perform calculations that
exclude hydrogen chemistry and its associated heating terms (re-
sults from the solar metallicity case have already been displayed
in Fig. 17). We also perform calculations that include the evolu-
tion of hydrogen (i.e. its molecular fraction xH2) and heating due
to H2 formation on dust grains. Two calculations are performed for
each metallicity: one beginning with fully atomic hydrogen, and
one beginning with fully molecular hydrogen.

In Fig. 21, we plot the evolution of the fractional abundance of
molecular hydrogen in the eight calculations that include hydrogen
chemistry up until the formation of the first sink particle in each cal-
culation. This is the equivalent of fig. 3 in Glover & Clark (2012c).
Beginning with fully molecular hydrogen, the decrease in H2 is
primarily due to photodissociation in the outer parts of the clouds.
The destruction is greater at lower metallicities because the UV
radiation is less attenuated by dust. Beginning with fully atomic
hydrogen, H2 is formed on dust grains and the total abundance
monotonically increases in each calculation. However, the rate of
increase strongly depends on the metallicity. The main reason for
this is that there are more dust grains on which to produce H2 at
higher metallicity (equation 40) so the rate of formation is higher.
In addition, the extra dust attenuates the UV radiation that destroys
H2 so the destruction rate is also lower. By the time stars begin to
form, clouds with solar metallicity or higher are mostly molecular
regardless of whether atomic or molecular initial conditions were
adopted (particularly in the central regions where the stars actually
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form). However, at lower metallicities the initial conditions matter
much more. When stars begin to form in the 1/10Z� calculations,
the H2 abundance is 65 per cent when beginning with molecular
initial conditions, but only 15 per cent beginning with atomic initial
conditions. For 1/100Z�, the disparity is even stronger, with the
two abundances being 60 and 1.7 per cent, respectively.

The behaviour of the molecular hydrogen evolution is qualita-
tively similar to that reported by Glover & Clark (2012c). In par-
ticular, the growth rate of molecular hydrogen in the atomic solar-
metallicity calculation matches theirs to within 10 per cent, and the
decay rates of the abundances in all of the molecular calculations
are very similar. The clouds in Glover & Clark (2012c) take longer
to begin forming stars (2.7–4.0 Myr rather than 1.7–2.6 Myr). This
difference is most likely due to the different initial turbulent veloc-
ity field. With fully molecular initial conditions, because the stars
take longer to form in the calculations of Glover & Clark (2012c),
the H2 abundances when the star formation takes place are lower.
This is most important in the lowest metallicity case, where the total
abundance is only ≈20 per cent when the star formation begins in
the Glover & Clark (2012c) calculation, whereas it is 60 per cent
in our calculation. There are also differences in the abundances
of molecular hydrogen in the lower metallicity calculations with
atomic initial conditions. The total H2 abundances when beginning
with fully atomic hydrogen remain low throughout both our calcu-
lations and those of Glover & Clark. However, at any particular time
our abundance is twice that obtained by Glover & Clark (2012c)
with 1/10Z� and it is about an order of magnitude higher for the
1/100Z� case until shortly before stars begin to form (when the
abundances in both calculations are ≈1 per cent). No doubt some of
this difference is due to the different velocity field and dust opacities
used in the calculations, though it is not clear whether or not this
explains all of the discrepancy.

Turning to the phase diagrams of gas temperature in Fig. 22, the
general trends are again in agreement with those found by Glover &
Clark (2012c). First, we consider the calculations that exclude hy-
drogen chemistry (they assume all hydrogen is in molecular form)
and its associated heating (left-hand column of Fig 22). Increas-
ing the metallicity above solar results in a reduction of the lower
envelope of the gas temperatures at densities nH = 102–104 cm−3

because the additional molecular cooling and increased extinction
produces lower gas temperatures. The upper temperature envelope
is less affected. Lowering the metallicity to 1/10 of solar results in
a smaller range of temperatures because extinction has less of an
effect at low and intermediate densities so the temperatures tend to
lie close to the equilibrium curve of Fig. 1 (which does not depend
significantly on metallicity because the photoelectric heating and
the cooling due to electron recombination and fine-structure emis-
sion are all assumed to be proportional to the metallicity). At higher
densities, the main heating sources (compressional heating and cos-
mic ray heating) are independent of the metallicity and although the
gas is less well coupled to the dust it is still coupled well enough
that the gas temperatures are kept around 10 K. As the metallicity
is reduced still further to 1/100 solar, the temperatures move above
the solar metallicity equilibrium curve of Fig. 1. This is because the
cosmic ray heating (which is taken to be independent of metallicity)
becomes as important as the photoelectric heating at low metallic-
ity. Furthermore, the magnitudes of the electron recombination and
fine-structure cooling rates are proportional to metallicity, so re-
gions that are heated by adiabatic and shock heating take longer to
cool.

At high densities nH � 105 cm−3 where the gas is thermally
coupled to the dust in the solar metallicity case there is not much

change in the supersolar metallicity case. The temperatures are
slightly cooler (about 1–2 K) because the coupling is even stronger
and the dust has slightly cooler temperatures due to the increased
extinction. A larger effect is seen with reduced metallicities because
the thermal coupling to the dust is substantially weaker. At 1/10 solar
metallicity, the gas has a maximum in the temperature distribution
of about 15 K at nH ≈ 3 × 105 cm−3 before the dust cooling takes
over and reduces the temperatures at higher densities. At 1/100 solar
metallicity, the gas temperature rises with increasing density until
nH ≈ 2 × 107 cm−3 when it reaches a maximum of ≈20 K before
it begins to drop again at higher densities.

We now consider the effects of hydrogen chemistry on the gas
temperature due to heating of the gas when molecular hydrogen is
formed on dust grains (equation 50). This has little effect in the
calculations that began with fully molecular hydrogen (right-hand
column of Fig. 22). There are two small differences. First, in the
solar and supersolar calculations the upper envelope of gas tempera-
tures is higher at densities nH ≈ 102–104 cm−3. This is because some
molecular hydrogen is destroyed by photodissociation and when it
reforms on dust grains this adds a source of heating. Second, in
the low-metallicity calculations some regions of mostly atomic gas
become molecular at densities nH ≈ 105–106 cm−3 and the extra
heating makes this gas hotter than the molecular gas at the same
densities. Thus, a bifurcation of the gas temperature is apparent at
these densities.

Beginning with fully atomic gas has a much greater effect on
the gas temperature (centre column of Fig. 22). In these cases,
heating due to H2 formation on dust becomes significant at den-
sities nH � 103 cm−3, and the gas temperature is generally much
greater than in the calculations without hydrogen chemistry or with
fully molecular hydrogen initially. At solar and supersolar metallic-
ities, the main effect is to raise the gas temperatures in the density
range nH ≈ 103–106 cm−3. Above these densities the gas is mostly
molecular and the gas is thermally well-coupled to the dust. At
low metallicities, the gas is significantly hotter from densities of
nH ≈ 103 cm−3 even up to nH ≈ 108 cm−3. This is primarily be-
cause of the reduced dust abundance which has two main effects: the
atomic hydrogen persists to higher densities, and the gas does not
become thermally coupled to the gas until much higher densities.

As mentioned above, the general temperature trends seen here
are in agreement with those found by Glover & Clark (2012c).
However, there are also some differences. At low densities, our
temperatures tend to be lower because of the different equilibrium
models that we have already mentioned (Fig. 1). But there are also
differences at higher densities. In the solar metallicity cases, Glover
& Clark (2012c) obtain slightly lower minimum temperatures at
nH ∼ 103 cm−3. This may be because their molecular cooling is
somewhat stronger (cf. the difference that increasing the molecular
cooling makes in Figs 17 and 19). In the calculations at 1/10 Z�,
the mean temperatures at each density are similar to those obtained
by Glover & Clark (2012c) for both atomic and molecular initial
conditions, but the scatter in the temperatures obtained by Glover
& Clark (2012c) is greater at nH � 105 cm−3. This may be largely
due to the different density structure of the clouds (caused by the
different initial velocity fields). In the lowest metallicity calculations
(1/100 Z�), the temperatures obtained by Glover & Clark (2012c)
are generally higher than ours at nH � 104 cm−3 for the molecular
initial conditions, and above nH � 106 cm−3 for the atomic initial
conditions. This may be related to the higher molecular hydrogen
abundances that were commented on when we discussed Fig. 21.
In our initially atomic calculation, the gas is mostly molecular for
densities nH � 106 cm−3 meaning that there will be little heating
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Figure 22. Phase diagrams of the gas temperature versus the gas density in turbulent clouds with metallicities of 3, 1, 1/10, and 1/100 times solar (top to
bottom, respectively). The calculations in the left-hand column were performed without any H2 chemistry (assuming purely molecular hydrogen) and without
heating from H2 formation. The other two columns included H2 chemistry and heating from H2 formation, but the calculations in the centre column began
with fully atomic hydrogen, and the calculations in the right column began with fully molecular hydrogen. The colour bars indicate the average CO abundance
of each point in temperature–density space (note that the scales differ from those in Figs 16, 17, 19, and 20). The black solid lines give the equilibrium curve
from Fig. 1 for solar metallicity. Beginning with atomic gas results in significantly higher gas temperatures for densities nH ∼ 104–106 cm−3 (or even higher
densities in the low-metallicity cases) due to heating from H2 formation on dust grains.

from H2 formation above these densities. If Glover & Clark (2012c)
have more atomic gas remaining at high densities, this will provide
additional heating. In our initially molecular calculation, because
the stars begin to form at 2.0 Myr instead of 3.6 Myr, more of the
initial molecular hydrogen remains. The total abundance is only
20 per cent in the calculation of Glover & Clark (2012c) when the

temperature diagrams were plotted, whereas the total abundance
in our calculation is 60 per cent and all of the high-density gas
(nH � 105 cm−3) is essentially fully molecular (i.e. there is little
heating from H2 formation). On the other hand, the temperature–
density behaviour we obtain for the low-metallicity fully atomic
initial conditions is in very good agreement with the results given
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in fig. 1 of Omukai et al. (2005). For 1/10 Z� calculations, the
temperature at high densities has a peak at nH ∼ 105 cm−3 at similar
temperatures in both our calculations and those of Omukai et al.
At 1/100 Z�, both our results and those of Omukai et al. display
high-density temperature maxima of Tg ≈ 60 K at nH ≈ 106 cm−3.

5 C O N C L U S I O N S

We have presented a new method for modelling the thermal evo-
lution of star-forming molecular clouds. The method combines a
model for the thermodynamics of the diffuse ISM with radiative
transfer in the flux-limited diffusion approximation. The former
is required to correctly model the thermal behaviour of molecular
clouds at low densities and metallicities, while the latter allows us to
model protostar formation. Unlike most previously published star
formation calculations, our new model evolves the temperatures of
the gas, dust, and radiation separately. The code can also follow
the evolution of atomic and molecular hydrogen. We have com-
pared our method with existing literature on the thermal behaviour
of the ISM and molecular cloud cores and generally obtain good
agreement.

We have also explored the sensitivity of the thermal structure
of molecular cloud cores and turbulent clouds to many of the pa-
rameters that enter our diffuse ISM model. For the gas at solar
metallicities, the most important thermal processes at low densities
(nH � 1–1000 cm−3) are photoelectric heating of electrons from
dust grains and cooling due to electron recombination with small
grains and PAHs and fine-structure emission from C+ and atomic
oxygen. At high densities (nH � 105 cm−3), cosmic ray heating
and the work done by hydrodynamical flows dominate the heat-
ing, while the cooling is dominated by continuum dust emission so
that the gas and dust adopt similar temperatures. At intermediate
densities (nH � 103–105 cm−3), most processes have a significant
effect and there tends to be a large dispersion of temperatures in
turbulent clouds. The abundance of C+ changes rapidly at these
densities and because C+ is such an effective coolant it is impor-
tant to have a model for the C+ abundance. However, the exact
values of the molecular cooling rates, molecular depletion, and
the strength of the thermal coupling between the dust and the gas
are less important. When beginning with low-density molecular
clouds (which may not be purely molecular), the thermal evolution
also depends significantly on relative abundances of atomic and
molecular hydrogen due to heating from the formation of molecu-
lar hydrogen on dust grains. This becomes more important at lower
metallicities.

Our new method should allow more realistic radiation hydrody-
namical calculations of star formation to be performed, particularly
in molecular clouds that have low mean densities (nH � 104 cm−3)
and/or subsolar metallicities. However, we also emphasize that
this model is far from complete. In particular, it relies on various
parametrizations of the thermal effects of many physical processes,
and it does not calculate these processes explicitly. Furthermore,
it contains only extremely simple models of hydrogen and carbon
chemistries and does not explicitly model the chemistry of other
elements at all. However, the basic model developed in this paper
could easily be extended to increase the complexity of the chemical
modelling (at the cost of increased computational expense).

AC K N OW L E D G E M E N T S

We thank Paul Clark for constructive criticism that helped im-
prove the method, and the anonymous referee whose comments

helped us improve the manuscript. This work was supported by the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013 grant ggreement no.
339248). The calculations for this paper were performed on the
University of Exeter Supercomputer, a DiRAC Facility jointly
funded by STFC, the Large Facilities Capital Fund of BIS, and
the University of Exeter, and on the Complexity DiRAC Facility
jointly funded by STFC and the Large Facilities Capital Fund of
BIS.

R E F E R E N C E S

Alexander D. R., 1975, ApJS, 29, 363
Bakes E. L. O., Tielens A. G. G. M., 1994, ApJ, 427, 822
Bate M. R., 2009, MNRAS, 392, 1363
Bate M. R., 2010, MNRAS, 404, L79
Bate M. R., 2011, MNRAS, 417, 2036
Bate M. R., 2012, MNRAS, 419, 3115
Bate M. R., 2014, MNRAS, 442, 285
Bate M. R., Bonnell I. A., 2005, MNRAS, 356, 1201
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
Bate M. R., Bonnell I. A., Bromm V., 2003, MNRAS, 339, 577
Bate M. R., Tricco T. S., Price D. J., 2014, MNRAS, 437, 77
Benz W., 1990, in Buchler J. R., ed., Numerical Modelling of Nonlinear

Stellar Pulsations Problems and Prospects. Kluwer, Dordrecht, p. 269
Benz W., Cameron A. G. W., Press W. H., Bowers R. L., 1990, ApJ, 348,

647
Bergin E. A., Hartmann L. W., Raymond J. C., Ballesteros-Paredes J., 2004,

ApJ, 612, 921
Black J. H., 1994, in Cutri R. M., Latter W. B., eds, ASP Conf. Ser.

Vol. 58, The First Symposium on the Infrared Cirrus and Diffuse In-
terstellar Clouds. Astron. Soc. Pac., San Francisco, p. 355

Black J. H., Dalgarno A., 1977, ApJS, 34, 405
Boley A. C., Hartquist T. W., Durisen R. H., Michael S., 2007, ApJ, 656,

L89
Bonnell I. A., Bate M. R., Vine S. G., 2003, MNRAS, 343, 413
Bonnell I. A., Clarke C. J., Bate M. R., 2006, MNRAS, 368, 1296
Bonnell I. A., Smith R. J., Clark P. C., Bate M. R., 2011, MNRAS, 410,

2339
Boss A. P., Fisher R. T., Klein R. I., McKee C. F., 2000, ApJ, 528, 325
Burke J. R., Hollenbach D. J., 1983, ApJ, 265, 223
Clark P. C., Glover S. C. O., Klessen R. S., 2012a, MNRAS, 420, 745
Clark P. C., Glover S. C. O., Klessen R. S., Bonnell I. A., 2012b, MNRAS,

424, 2599
Dobbs C. L., Bonnell I. A., 2007, MNRAS, 376, 1747
Dobbs C. L., Bonnell I. A., Pringle J. E., 2006, MNRAS, 371, 1663
Dopcke G., Glover S. C. O., Clark P. C., Klessen R. S., 2011, ApJ, 729, L3
Dopcke G., Glover S. C. O., Clark P. C., Klessen R. S., 2013, ApJ, 766, 103
Draine B. T., 1978, ApJS, 36, 595
Draine B. T., Bertoldi F., 1996, ApJ, 468, 269
Edgar R., Clarke C., 2003, MNRAS, 338, 962
Elmegreen B. G., Klessen R. S., Wilson C. D., 2008, ApJ, 681, 365
Fehlberg E., 1969, NASA Technical Report, Low-order classical Runge-

Kutta formula with stepsize control and their application to some heat
transfer problems. NASA, Washington, DC, R-315

Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G.,
Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585

Glover S. C. O., 2003, ApJ, 584, 331
Glover S. C. O., Clark P. C., 2012a, MNRAS, 421, 9
Glover S. C. O., Clark P. C., 2012b, MNRAS, 421, 116
Glover S. C. O., Clark P. C., 2012c, MNRAS, 426, 377
Glover S. C. O., Mac Low M.-M., 2007a, ApJS, 169, 239
Glover S. C. O., Mac Low M.-M., 2007b, ApJ, 659, 1317
Glover S. C. O., Mac Low M.-M., 2011, MNRAS, 412, 337
Glover S. C. O., Federrath C., Mac Low M.-M., Klessen R. S., 2010,

MNRAS, 404, 2
Goldsmith P. F., 2001, ApJ, 557, 736

MNRAS 449, 2643–2667 (2015)

 by guest on A
pril 4, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Combining radiative transfer and diffuse ISM 2667

Goldsmith P. F., Langer W. D., 1978, ApJ, 222, 881
Goldsmith D. W., Habing H. J., Field G. B., 1969, ApJ, 158, 173
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