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Abstract 

Most fatigue loaded structural components are subjected to variable amplitude loads which 

must be processed into a form that is compatible with design life calculations. Rainflow 

counting allows individual stress cycles to be identified where they form a closed stress-strain 

hysteresis loop within a random signal, but inevitably leaves a residue of open data points 

which must be post-processed. Comparison is made between conventional methods of 

processing the residue data points, which may be non-conservative, and a more versatile 

method, presented by Amzallag et al [Amzallag C, Gerey JP, Robert JL, Bahuaud J. 

Standardization of the rainflow counting method for fatigue analysis. Int. J. Fatigue 1994; 

16:287–293], which allows transition cycles to be processed accurately.  

This paper presents an analytical proof of the method presented by Amzallag et al. The 

impact of residue processing on fatigue calculations is demonstrated through the application 

and comparison of the different techniques in two case studies using long term, high 

resolution data sets. The most significance is found when the load process results in a slowly 

varying mean stress which is not fully accounted for by traditional Rainflow counting 

methods.  

Keywords: Cyclic counting methods, Load histories, Rainflow residue, Random loading, 

Variable amplitude fatigue 

1. Introduction 

The calculation of conservative load cycle spectra is a fundamental aspect of fatigue design, 

requiring an estimate to be made of expected operational loading conditions. Complex 

lifecycle loading may be simplified by dividing the process into discrete load cases, such as 

take-off and steady flight conditions for the analysis of aircraft components. Fatigue life can 

then be quantified in terms of time to crack initiation through the concept of linear damage 
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accumulation, or by the application of crack growth models. Both approaches utilise 

information about the range, mean and number of stress cycles that will occur [1].  

The identification of individual fatigue loading cycles within a random stress amplitude time 

series is achieved through the use of a suitable cycle counting algorithm. Typical methods 

include level-crossing counting, range-pair counting, reservoir counting, and Rainflow 

counting. Variations of these algorithms are included in the ASTM cycle counting standard 

[2]. 

 Background to the Rainflow counting algorithm 1.1.

Rainflow (RF) counting has become the most widely accepted method for the processing of 

random signals for fatigue analysis, and testing has demonstrated good agreement with 

measured fatigue lives when compared to other counting algorithms [3]. The concept was 

first developed by Matsuishi and Endo [4], where the identification of cycles was likened to 

the path taken by rain running down a pagoda roof. In the paper, the authors defined a full RF 

cycle as a stress range formed by two points which are bounded within adjacent points of 

higher and lower magnitude; as the stress path returns past the first turning point it can be 

seen to form a cycle as described by a closed stress-strain hysteresis loop (Figure 1a). For the 

case where successive stress points are either converging or diverging, the hysteresis curves 

do not form a closed loop (Figure 1b). For this case the authors assumed that fatigue damage 

could be attributed to each successive range as half-cycles. 
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Figure 1. (a) Stress time series of turning points and the corresponding closed stress-strain hysteresis loop 
formed by points n, n+1 and n’. (b) Diverging stress time series and the corresponding open stress-strain 
hysteresis curves. 

 

The method was further developed by Okamura et al. [5] and Downing & Socie [6] as a 

vector based algorithm which identified full RF cycles and half-cycles based on a three-point 

criteria without the need to rearrange the data series, and enabled efficient utilisation in 

computer software. This greatly reduced the data storage requirements as the stress signal 

could be read into the algorithm in real-time and processed directly into RF cycle spectra. 

This definition of the algorithm has been refined and included in the ASTM cycle counting 

standard [2]. Amzallag et al. [7] conducted a wide ranging industry consultation and defined a 

standardised algorithm which identified RF cycles based on a four-point criterion. The three 

and four point versions of the algorithm were shown to identify the same cycles by McInnes 

& Meehan [8], who presented a series of fundamental properties of RF counting to 

demonstrate the equivalence of the two methods. Although various forms of the RF algorithm 
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exist, the four-point algorithm presents the most unambiguous criterion for the identification 

of closed hysteresis loops, and is defined below. 

 Four-point Rainflow counting criterion 1.2.

RF counting requires the time history to be first processed into a Peak-Valley (PV) series 

consisting of local maxima and minima which define the turning points, or load reversals, of a 

time series. Point 𝑥𝑚 is identified as a local maxima or minima within a time series of length 

M if, 

𝑥𝑚−1 < 𝑥𝑚 > 𝑥𝑚+1 𝑜𝑜 𝑥𝑚−1 > 𝑥𝑚 < 𝑥𝑚+1 

𝑚 = 2, 3, 4, … ,𝑀 − 1 
  (1)

Once the data have been filtered according to the PV criteria, full RF cycles are identified in 

the range formed by points 𝑥𝑛 to 𝑥𝑛+1 if they meet the four-point criterion, 

|𝑥𝑛−1 − 𝑥𝑛| ≥ |𝑥𝑛 − 𝑥𝑛+1| ≤ |𝑥𝑛+1 − 𝑥𝑛+2| 

𝑛 = 2, 3, 4, … ,𝑁 − 2 
  (2)

Where N signifies the length of the PV filtered series. If the range formed by points 𝑥𝑛 to 

𝑥𝑛+1 meets the four-point criterion then the points are recorded before deleting them from the 

PV series, thus enabling further ranges to be formed between the adjacent points 𝑥𝑛−1 and 

𝑥𝑛+2. The process is repeated until all ranges which meet the four-point criterion are recorded 

and deleted from the PV series. 

Storage of the counted ranges is achieved with a two dimensional histogram to record the 

cycle stresses. The form of the histogram may be chosen to preserve detailed cycle hysteresis 

information which may be significant in further statistical analysis, for example with the min-

max or max-min matrices where cycles are binned according to the loading sequence [9]. As 

a minimum, the histogram should record the cycle range and mean stress levels as inputs to 

final damage calculations.  
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 Rainflow residue 1.3.

Once all full RF cycles which meet the four-point criterion have been identified and deleted 

from the PV series, a ‘residue’ of data points will typically remain. The residue consists of a 

series of diverging data points from the start to the maximum and minimum points, followed 

by a converging section of points to the end of the PV data series. Referring to Figure 2, no 

remaining closed hysteresis cycles can be identified within a diverging or converging series 

as no further ranges are bounded by adjacent points of higher and lower value. However, as 

the stress path formed by the residue constitutes some of the largest ranges in the original 

series, they should be accounted for if a conservative estimate of fatigue damage is to be 

made. Two dominant methods exist in the literature to process the RF residue and are 

outlined in Sections 2.1 and 2.2.  

Whenever a subset of a longer time history is RF counted, cycle ranges which are formed 

between points which span beyond the subset have the potential to be cropped. If there is a 

large variation in the mean stress level, which is not fully contained within the subset period, 

then some of the largest cycles will not be accounted for. These cycles are termed “transition 

cycles” or “ground cycles” [10], and a degree of artificiality will be introduced if the residue 

data points are processed as an isolated set, as closed hysteresis cycles cannot be formed. The 

only way to accurately identify all RF cycles within a data set according to the four-point 

criterion is to process the entire time history consecutively. However, the application of RF 

counting algorithms must always utilise a finite length of data, as chosen by the analyst and 

by limitations on computational capacity.  

Glinka & Kam [11] presented an approach which allowed extended time periods to be read 

and processed incrementally, thus limiting the required computational capacity by minimising 

the amount of data required to be handled by the RF algorithm at any one time. A more 

versatile method is included in Amzallag et al. [7, pp. 292-293] which addresses the same 
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issue by concatenating consecutive residue periods which remain after RF processing. 

However, although the method allows transition cycles to be accounted for accurately 

according the four-point criterion, it has not found widespread acknowledgement and no 

generalised proof of the methodology has been presented.  

The three methods of processing the RF residue periods are presented in Section 2 below. An 

analytical proof is presented in Section 3 which demonstrates the equivalence of cycles which 

are identified from the residue concatenation methodology outlined in [7] with those which 

would be identified by RF processing a continuous series. In Section 4, the different 

approaches are applied to two case studies in order to illustrate the potential impact of the 

choice of residue processing method on calculated fatigue damage. Finally, Section 5 outlines 

the suitability of each of the three methods for practical applications. 

 

Figure 2. Residue remaining after application of the four-point criterion (points connected by solid line). Full RF 
cycles would be identified between points C-D, E-F, H-I, K-L, M-N, P-Q, T-U. 

 

2. RF residue processing methodologies 

The three distinct methods available for processing the residue data points are described 

below and presented in the process diagram in Figure 3. 
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Figure 3. RF counting process diagram for long time periods (modified from [12]). Grey boxes identify steps 
which relate to the residue processing methods outlined in Sections 2.1, 2.2, 2.3 below. 

 

 Half-cycle counting methodology 2.1.

This approach is identified in the original definition of RF counting given by Matsuishi & 

Endo [4], where the authors assumed that each successive range will attribute half a cycle of 

fatigue damage in the material. From Figure 2, subsequent half-cycle ranges are identified 

between points A-B, B-G, G-J, J-O, O-R, R-S, S-V, V-W. At least twice as many ranges will 

be identified from the residue data points as would be identified as fully closed cycles. 

Therefore, when the counted residue cycles are stored in the RF histogram the number of 
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cycles added to each bin is reduced by a factor of 0.5. The ASTM RF counting definition  of 

the three-point algorithm [2, pp. 5-6] is capable of identifying half-cycles which occur up to 

the maximum data point in the series; after completion of the algorithm, the residue data 

points following the maximum still remain and must be accounted for as half cycles. Half-

cycle counting may be applied directly to the residue which remains from application of the 

four-point RF criterion, and the resulting cycles can be shown to be identical to those 

produced by the three-point algorithm.  

 Simple Rainflow counting methodology 2.2.

If the stress time history is representative of a repeated loading sequence then all residue data 

points will ultimately form fully closed cycles as they will fall between repeated extremes. 

With the four-point algorithm this can be achieved by joining two repeated residues and then 

reapplying the four-point criterion (Equation 2). Closed cycles can then be identified between 

the repeated maximums, leaving the residue points outside of the maximums which can then 

be discarded. This is expressed as [residue] + [residue] → [residue] + {cycles} [7].  

From Figure 2, the residue series is repeated to give a sequence A-B-G-J-O-R-S-V-W-A-B-G-

J-O-R-S-V-W. Equation (1) is then reapplied and the repeated point A must be deleted to 

ensure that the PV sequence is maintained. Equation (2) is then reapplied to identify closed 

cycles from all points that fall between J and repeated point O; ranges are formed by points 

V-W, R-S, B-G, J-O. The remaining points account for the repeated residue, and are therefore 

discarded. 

The simple RF counting methodology is implemented in the three-point algorithm by 

rearranging the stress time series to start and end with the maximum data point prior to PV 

processing and RF counting, and will identify identical cycles [8]. Therefore, the approaches 

implemented in [2, pp. 6-7], [6, p. 32], [7] and [8] are equivalent. 
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 Residue concatenation methodology 2.3.

The following steps apply the residue concatenation procedure outlined in [7, pp. 292-293] to 

the simple case of two PV periods, with reference to Figure 4 and Figure 5; 

1. Define two series of PV processed data points A1, B1, C1,…, H1 and A2, B2, C2,…, H2.  

2. Apply the four-point criterion (Equation 2) to both series to identify all full RF cycles. 

Full cycles are identified between points D1-E1, and E2-F2 (Figure 4a). 

3. Store the cycles and delete the identified data points D1, E1 and E2, F2 from the 

respective PV series (Figure 4b). No more full RF cycles can be identified according 

to Equation (2). The remaining points form the two RF residues. 

4. Concatenate the two residues in their original chronological order. Apply the PV 

criteria to the concatenated points H1 and A2 to ensure the PV series is maintained. 

Delete point H1 (Figure 4c). 

5. Repeatedly apply the four-point criterion to the concatenated series until all fully 

closed RF cycles have been stored and removed from the concatenated series. (Figure 

5a to Figure 5c). Full RF cycles are identified between points A2-B2, F1-G1, C2-D2 

sequentially. 

6. The remaining residue points are shown in Figure 5d, and must be processed by either 

half-cycle or simple RF counting. In practice, successive residue periods may be 

concatenated to allow additional close hysteresis cycles to be unlocked. 
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Figure 4. (a); two separate PV series. (b); the residue series from which no further fully closed RF cycles can be 
identified. (c); concatenation of the two RF residue series in stress-time and stress-strain space. 
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Figure 5. Identification of fully closed RF cycles within the concatenated residue series (from Figure 4). 

 

3. Equivalence of concatenated series  

The residue concatenation method outlined in section 2.3 can be shown to account accurately 

for transition cycles between consecutive periods by following the fundamental properties of 

the four-point criterion presented by McInnes & Meehan [8].  
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 Identical RF cycles are identified using residue concatenation as would be identified 3.1.

from a continuous series 

McInnes & Meehan defined an ‘end-point bounded sequence’ (EPBS) as any series of data 

points in which the maximum and minimum values lie at the start and end of the series. As all 

points are bounded between these local extremes, all the ranges contained between the end 

points will form fully closed cycles according to the four-point criterion. The authors show 

that the full cycles contained within an EPBS are independent and unaffected by the data 

points which lie outside of the sequence (Property 3.5, [8, p. 552]). Furthermore, as the 

residue remaining from the four-point algorithm consists of a set of EPBSs from the PV series 

(Property 3.8, [8, p. 554]), all the ranges which meet the four-point criterion will do so 

independently of the data points which occur before or after the PV series. Therefore, 

according to these two properties, the specific RF cycles which can be identified from 

separate periods must also form valid cycles within a continuous series.  

McInnes & Meehan also showed that the RF cycles which meet the four-point criterion will 

do so regardless of the order in which the criterion is applied (Property 3.3, [8, p. 551]). 

Therefore, the EPBSs which may be formed between residue periods when they are 

concatenated can release additional RF cycles which would otherwise have been identified 

from a continuous series. 

Referring to Figure 4a, the data point subsets C1, D1, E1, F1 and D2, E2, F2, G2 both form 

EPBSs and therefore, according to Property 3.5 [8, p. 552], the full cycles formed by the 

ranges D1 to E1 and E2 to F2 are independent and unaffected by the concatenation of the two 

residues. Points C1 to G2 then produce an EPBS within the concatenated residues which 

allows additional full cycles to be formed by the ranges A2-B2, F1-G1, and C2-D2 (Figure 5). 

According to Property 3.3 [8, p. 551], the same cycles would be identified from a continuous 

series, although they would have been extracted in a different order. 



14 
 

 Deleted residue end points do not affect the correct identification of RF cycles 3.2.

RF cycles which fall within an EPBS that includes the end point in a residue series are not 

affected if the point must be deleted after concatenation in order to maintain the PV sequence. 

This is true because, although the first or last point in an EPBS might be deleted, the sequence 

would always be extended to a bounding point which is of greater range. Figure 6 

demonstrates the three basic configurations for the connected ends of two concatenated 

residues (additional permutations exist which are essentially mirror images in the horizontal 

and vertical planes). Figure 6a shows the configuration where the PV sequence is maintained 

and no points are required to be deleted. Figure 6b shows the case where one point must be 

deleted to fulfil the PV criteria and the EPBS formed by B1 to C1 is extended to B1 to A2 as 

point C1 is removed. Figure 6c shows the case where both the concatenated end points must 

be deleted and the EPBSs formed by B1 to C1 and A2 to B2 are both extended to the range 

formed by B1 to B2. Therefore, Property 3.5 [8, p. 552] holds true when RF residues are 

concatenated and the PV criteria is reapplied.  

 

Figure 6. Detail of the connected ends of two concatenated residues. Residue end points are shown with a dot, 
deleted points (which do not meet the PV criteria) are indicated by a dotted line, and joined points are indicated 
by a dashed line. 

 

4. Residue processing comparison using experimental data 

The significance of the different residue processing methods can be compared by 

investigating their impact on calculated fatigue damage.  
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 Fatigue damage comparison methods 4.1.

The Palmgren-Miner linear damage hypothesis assumes that the fatigue damage in a loaded 

component can be expressed as the sum of damages contributed by each stress cycle, 

𝐷 = �
𝑛𝑖
𝑁𝑖

𝑘

𝑖=1

   (3)

where D is fatigue damage fraction, and 𝑛𝑖/𝑁𝑖 is the ratio of operational cycles to the 

maximum allowable number of cycles at each stress range. Although fatigue crack 

propagation can be found to be influenced by the load sequence, the linear damage sum is 

commonly used in design cases which require a statistical representation of the loading, such 

as environmental loading where the load sequence is rarely well defined at the design stage. 

Therefore, the linear damage sum has been used for this analysis, although a more detailed 

fracture mechanics approach may also benefit from the ability to correctly identify large 

amplitude hysteresis cycles. 

The maximum allowable number of cycles N is taken from empirical S-N data, as generalised 

by the Basquin relation, 

log𝑁 = log 𝑎� − 𝑚 log Δ𝜎   (4)

where Δ𝜎 is either stress range or amplitude (stress range will be used here in accordance 

with the RF cycle definition), m is the Wöhler exponent, and log 𝑎� is the intercept of the 

curve on the log𝑁 axis. Combining equations (3) and (4), the ratio of fatigue damages can be 

expressed as, 

𝐷𝐴
𝐷𝐵

=
∑ 𝑛𝐴𝑖Δ𝜎𝑖

𝑚𝑘
𝑖=1

∑ 𝑛𝐵𝑖Δ𝜎𝑖
𝑚𝑘

𝑖=1
   (5)

where 𝑛𝐴 and 𝑛𝐵 are the cycle spectra produced by different RF counting methods. It can be 

seen that, by taking the damage ratio, the log 𝑎� intercept term cancels and the impact of the 
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different counting methods is affected only by the Wöhler exponent from the S-N curve. It 

can also be seen that a hypothetical linear increase in stress ranges such as may arise from a 

stress concentration factor, for example, would also cancel with the damage ratio, indicating 

that the difference between the RF counting methods would be affected by the underlying 

load process, but not by the stress magnitude. As a fatigue endurance limit could be exceeded 

by such a linear increase in stresses any results calculated in this analysis would be trivial; i.e. 

the use of a constant gradient S-N curve means that the form of Equation (5) enables the 

general case to be examined. 

S-N data is typically derived from component testing with a zero mean cycle stress. However, 

stress cycles in the tensile range may produce greater levels of fatigue damage, and S-N test 

results are known to be strongly dependent on the mean stress level. Mean stress correction 

models may therefore be used to adjust the stress range prior to damage calculation from S-N 

curves using, 

∆σ𝜎� = ∆σ0 �1 − �
𝜎�

𝜎𝑈𝑈𝑈
�
𝑍
�   (6)

where ∆σ𝜎�  is the stress range or amplitude at non-zero mean stress 𝜎�, ∆σ0 is the equivalent 

stress range or amplitude at zero mean stress, and 𝜎𝑈𝑈𝑈 is the ultimate tensile strength of the 

material. Values of Z=1 and Z=2 give the Goodman and Gerber relations, respectively, while 

the Soderberg relation is given with Z=1 and 𝜎𝑈𝑈𝑈 replaced by the yield stress [1]. Mean 

stress correction models are applicable in the tensile range only, therefore ∆σ𝜎� = ∆σ0 is used 

in compression. 

The impacts of the residue processing methodologies were then assessed against the 

following variables; 

• The underlying load processes  
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• The Wöhler exponent used to calculate fatigue damage 

• The length of the subset period used for the half-cycle and simple RF methods 

outlined in Sections 2.1 and 2.2 

 

 Measured datasets 4.2.

Two datasets representing different load processes were used to investigate the residue 

processing methodologies. The offshore measurement buoy shown in Figure 7a is governed 

by dynamic wave loading, but the mooring system is also effected by a semi-diurnal tidal 

cycle. The offshore wind turbine shown in Figure 7b also experiences hydrodynamic loading, 

but the structural response is dominated by the aerodynamic and operational loads. 

 

Figure 7. (a) Offshore measurement buoy. (b) A multi-megawatt offshore wind turbine. 

 

For the offshore measurement buoy, a load cell was used to measure forces located at the 

connection between the buoy and a catenary mooring line, recorded with a sample rate of 

20 Hz. The force time series was then converted to stresses using the geometry of the 

attachment shackle. Details of the mooring system are outlined in [13]. 
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For the offshore wind turbine support structure, strain gauge measurements were also 

recorded at 20 Hz sample rate and converted to time series stresses using the Elastic Modulus 

of the base material. The gauge was located away from any stress raising features at the base 

of the wind turbine near the mean water level, axially aligned with the cylindrical tower to 

measure the nominal bending stresses. Material constants for the measured components are 

shown in Table 1. 

Table 1, Material constants for the analysed steel components 

 Wind turbine Buoy 

Yield stress 335 MPa 270.7 MPa 

Ultimate tensile stress 490 MPa 505.8 MPa 

Elastic modulus 210 GPa - 

 

 

 Results 4.3.

Figure 8a shows a six month stress history from the offshore measurement buoy. The 

accumulated fatigue damages were calculated according to Equation (5), expressed as the 

ratio of damages produced by RF counting the time series in subsets (using the half-cycle and 

simple residue processing methods outlined in Sections 2.1 and 2.2) to the damages produced 

by RF counting a continuous period (using the residue concatenation method outlined in 

Section 2.3). Figure 8b shows the damage ratios produced using ten minute subsets; a typical 

simulation length for a wind turbine load case due to the level of statistical stationarity of the 

wind loading process found over this time scale [14]. Figure 8c shows the damage ratios that 

result using three hour subsets, a length of time which is typically used to characterise wave 

loading due to assumed sea-state stationarity over this period [15]. Wöhler exponents of 
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m = 3 and m = 5 were used, relating to typical S-N curves for steel components [16]. The data 

were processed using a verified in-house RF counting code which was developed in 

MATLAB [17]. 

Figure 9 displays a one year period of stress data collected from the multi-megawatt offshore 

wind turbine support structure and the corresponding accumulated fatigue damage ratios, 

calculated in the same way. The shapes of the RF cycle spectrums produced by both datasets 

are shown in Figure 10. 
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Figure 8. (a) Stress time history from a catenary mooring attachment point. (b) Ratio of accumulated fatigue 
damages calculated using Equation (5); damage produced by half-cycle and simple RF counting ten minute 
subsets, divided by the damage produced by RF counting the data continuously. (c) Ratio of accumulated 
damages using three hour subsets.  
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Figure 9. (a) Stress time history from a multi-megawatt wind turbine support structure. (b) Ratio of accumulated 
fatigue damages calculated using Equation (5); damage produced by half-cycle and simple RF counting 
ten minute subsets, divided by the damage produced by RF counting the data continuously. (c) Ratio of 
accumulated damages using three hour subsets. 
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Figure 10. Range-Mean cycle histograms for the full (a) measurement buoy and (b) wind turbine datasets, RF 
counted using the continuous algorithm from Section 2.3. The cycle counts are shown on a logarithmic scale 
with the values omitted due to confidentiality requirements. 

 

The final values of the damage fraction ratios, together with the impact of the mean stress 

compensation models (Equation 6), are shown in Table 2. 
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Table 2, Mean stress compensated damage ratios for the complete datasets. The uncompensated values relate to 
the final damage ratios from Figure 8 and Figure 9. 

 Measurement Buoy Wind Turbine 

method: 2.1(10 min) / 
2.3 

2.2(10 min) / 
2.3 

2.1(3 hour) / 
2.3 

2.2(3 hour) / 
2.3 

2.1(10 min) / 
2.3 

2.2(10 min) / 
2.3 

2.2(3 hour) / 
2.3 

2.2(3 hour) / 
2.3 

m = 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 

Uncompensated 0.99 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.92 0.37 0.95 0.43 0.96 0.53 0.98 0.62 

Goodman 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.38 0.96 0.44 0.96 0.54 0.98 0.64 

Gerber 0.99 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.92 0.37 0.95 0.43 0.96 0.53 0.98 0.63 

Soderberg 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.38 0.96 0.45 0.97 0.54 0.99 0.65 

 

5. Discussion  

The results presented in Section 4 show that the significance of transition cycles on calculated 

fatigue damage is dependent upon the underlying load process, the slope of the S-N curve, 

and the subset length chosen to RF process the data.  

The catenary mooring system shown in Figure 8a is representative of the typical scenario 

where the maximum and minimum stresses in the load process occur well within the time 

frame which can be processed by conventional RF methods. Longer term variations in mean 

stress levels do occur over the 12 hour tidal cycle, but are of small amplitude in comparison 

to the stress response from dynamic wave loading. The effect of the varying mean stress is 

noticeable at the start of the dataset when the transition cycles are more significant in 

comparison to the low dynamic wave loading. Larger loading events at 2.5 days and 61 days 

result in closer correlation, with convergence of the calculated damage levels within 97% for 

each of the RF methods. The longer subset length of 3 hours produces a closer correlation 

between the methods, as more of the tidal cycle is included in the subset period.  

The wind turbine data shown in Figure 9, however, includes a large change in the tower mean 

stress level as a result of the quasi-static rotor thrust loading which changes with variations in 
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wind speed and direction. The dynamic structural response, which is overlaid on the varying 

mean stress, is of comparatively low amplitude. The result is that RF counting of the data in 

subsets using the methodologies outlined in Sections 2.1 and 2.2 accounts for only 37% to 

62% of the fatigue damage which results when the data is processed as a continuous series, 

using a Wöhler exponent of m = 5. The difference in damage levels are seen to converge after 

approximately 2 to 6 months, which is indicative of the length scale of the stress cycles which 

arise from changes in the quasi-static wind loading. With a Wöhler exponent of m = 3, 

however, the difference in fatigue damage produced by each of the residue processing 

methods is negligible, due to the fact that a shallower S-N curve gradient will attribute less 

weight to the high amplitude/low frequency stress ranges which characterise transition cycles. 

It should be noted that use of an S-N curve which incorporates a ‘knee’, or a minimum 

fatigue endurance limit (which may justify the use of a filter incorporated into the RF analysis 

to remove stress cycles which are small enough not to effect fatigue life), would increase the 

impact of the transition cycles because greater significance would be attributed to the high 

amplitude cycles. 

The inclusion of mean stress compensation models in the damage fraction ratio results 

presented in Table 2 is seen to have minimal impact on the significance of transition cycles, 

with between 2% and 4% less impact with the Goodman and Soderberg relations for the 

offshore wind turbine dataset with a Wöhler exponent of m = 5. Although the impact is 

relatively low (the damage from the wind turbine maximum tensile stress range of 

approximately 30 MPa would be impacted by the Soderberg relation by a factor of (1 −

30 335⁄ )−5 = 1.6), this is understandable as cycles from both RF residue processing methods 

would be effected, and the majority of cycles in the dataset are in compression. The effect of 

the mean stress compensation models is less than 0.5% in all other cases. 
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The fatigue damage levels calculated by the half-cycle and simple RF residue processing 

methods are of comparable magnitudes due to the fact that the bounding maximum cycle 

range is consistent. Both methods are applicable when the range of stresses produced by the 

load process is included within the RF counting subset. A typical example is the identification 

of load cycles experienced by a power station boiler where the load sequence, including 

maximum and minimum stresses, can be related to long term operational states. The EN 

standard for Water-tube boilers and auxiliary installations [18] specifies a range of methods 

for the processing of RF residue points which are comparable to the half-cycle counting and 

simple processing methods outlined in Sections 2.1 and 2.2.   

Concatenation of residue periods, as outlined in Section 2.3, is capable of addressing two 

main shortfalls of the conventional methods. Firstly, large volumes of data, which may 

prohibit RF processing of the continuous series due to computational limitations, can be dealt 

with correctly. This may be particularly applicable to long term load measurement 

programmes which typically generate large quantities of data. Secondly, transition cycles 

which span RF counted periods can be correctly accounted for according to the four-point 

criterion. Although a factor of two scatter can be expected in S-N test results [19], the 

identification of RF cycles in a long time history can, and therefore should, be performed 

accurately. 

Additionally, the residue processing method outlined in Section 2.3 could be incorporated 

into fatigue design by the load case approach through the utilisation of information regarding 

the long term load history. The design of support structures for multi-megawatt wind turbines, 

for instance, is facilitated by the time domain simulation of structural dynamics under a 

discretised set of environmental and operational loading conditions [20]. An approach to 

account for transition cycles with operational wind turbine measurement programmes is 

outlined in [21], whereby a synthetic time history of maximum and minimum stresses from 
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each load case is constructed corresponding to a long term history of wind speed and 

direction measurements. However, the approach can be found to be overly conservative as it 

involves the double counting of data points as both half-cycles within the ten minute load 

case period and as successive full RF ranges within the synthesised long term stress series. 

Residue concatenation can avoid this double counting as it accounts for transition cycles 

correctly according to the four-point criterion.  

6. Conclusions  

The three main variations of RF counting described above are distinguished by the way in 

which the residue is accounted for, and the most suitable method should be selected according 

to the application. Specific findings include; 

• The concatenation of successive RF residue periods has been shown to enable the 

same closed hysteresis cycles to be identified as would be produced by RF counting 

the data as a continuous series.  

• The conventional methods of half-cycle and simple RF counting the residue periods 

are suitable when the entire stress range seen by a component is contained within the 

analysed period of data. 

• Concatenation of residue periods is suitable when the data to be processed contains a 

slowly varying mean stress which results in transition cycles which would otherwise 

be cropped by half-cycle or simple RF processing the data in subsets. Using this 

method, transition cycles can be accounted for correctly according to the four-point 

criterion. 

• The impact of transition cycles is most significant with the use of higher Wöhler 

exponents. 
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