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Abstract 
Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell 

apoptosis, two causes of islet dysfunction and progression to type 2 diabetes.  Studies have shown that single nucleotide 

polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a 

known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression.  Using 

published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the 

region encoding its pre-miRNA.  Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, 

miRNA expression was measured.  Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to 

beta-cell function (miR-34a and miR-96) were identified.  Transfection of INS-1 and MIN6 cells with plasmids encoding pre-

miR-34a and the minor allele of rs72631823 resulted in significantly (p<0.05) higher miR-34a expression, compared to cells 

transfected with plasmids encoding the corresponding major allele.  Similarly, higher levels were also observed upon transfection 

of HeLa cells.  Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no 

significant differences in miR-96 expression.  A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a.  

Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be 

of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility. 
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Introduction  

 
Recent genome-wide association studies (GWAS) have identified common (minor allele frequency (MAF) >5%) single 

nucleotide polymorphisms (SNPs) associated with risk of type 2 diabetes [1,2]. Most of these SNPs seem to exert their effect by 

affecting beta-cell function, rather than insulin action [3].  However, despite some success, these findings only explain ~10% of 

the heritability of type 2 diabetes [1].  It has been widely postulated that rare genetic variation (MAF<1%) could explain some of 

the “missing heritability” [4,5].   

MicroRNAs (miRNAs) are single stranded, non-protein coding RNAs ~21-23 nucleotides in length that regulate gene 

expression by binding to mRNAs, via complementary base pairing, resulting in mRNA decay and/or translational repression.  

Recent studies are revealing important roles for specific miRNAs in regulating beta-cell functions, particularly glucose-stimulated 

insulin secretion and apoptosis (reviewed in [6]).  In rodent models, during the progression to diabetes, expression of specific 

miRNAs have been shown to change, and manipulating the levels of these miRNAs by silencing or mimicry experiments have 

revealed a causal role in beta-cell dysfunction [7].   

Given the need to tightly control the levels of specific miRNAs for correct beta-cell function, we sought to determine 

whether SNPs present within the precursor-miRNA (pre-miRNA) structure might affect their expression.  Previous studies have 

shown that sequence variation within a pre-miRNA can affect levels of mature miRNA [8,9].  The density of SNPs within a pre-

miRNA has been shown to be lower than the SNP density in the flanking regions [10], and as a result of this constraint SNPs that 

are present would seem to have arisen fairly recently, meaning that the MAF is low, population-specific and not captured well by 

GWAS [11,12].   Any significant associations found in this study, between SNPs with a low MAF and miRNA expression, may 

be of interest to future studies looking at the effect of rare genetic variation on risk of developing type 2 diabetes.   

 

Materials and Methods 

Plasmids (pCMV-MIR series) encoding human pre-miR-34a and pre-miR-96, and their flanking regions (at least 284bp on either 

side), were purchased from Origene (Rockville, MD, USA). Site-directed mutagenesis was conducted using the QuikChange II 

XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA).  The correct sequence for each construct was 

confirmed by Sanger sequencing.   

For all cell lines, transient transfections were performed using Nucleofector technology (Lonza, Basel, Switzerland) at a 

density of 1x106 cells/transfection. After incubating for 16-24 hours cells were washed in PBS three times, and then total RNA, 

including miRNA, extracted using the miRVANA miRNA isolation kit (Life Technologies). 

For miRNA expression analysis, RNA was reverse transcribed using the miRNA reverse transcription kit (Life 

Technologies) and miRNA-specific RT primers.  Subsequently, miRNA expression levels were determined using miRNA-

specific TaqMan assays on the ABI Prism 7900HT real-time PCR platform (Life Technologies).  The GeNorm algorithm [13] in 

RealTime StatMiner software (Integromics, Madrid, Spain) was used to identify the most stable housekeeping genes and thus to 

normalise miRNA expression levels.  The following sets of genes were selected as housekeeping genes: U6, 4.5S and U87 (INS-

1); U6, RNU44 and RNU6B (HeLa); U6, snoRNA412 and snoRNA234 (MIN6).  For green fluorescent protein (GFP) expression 

analysis, RNA was first DNase-treated using the Turbo DNA-free kit (Life Technologies), before being reverse transcribed using 

Superscript III reverse transcriptase (Life Technologies) and random hexamer primers.  All qPCR reactions were run on the ABI 

Prism 7900HT Real-Time PCR platform (Life Technologies).  A custom TaqMan gene expression assay to measure GFP mRNA 

was designed (Life Technologies) and its ability to robustly determine expression levels validated by standard curve.  GFP 

mRNA levels were normalised using the GeNorm algorithm [13] in RealTime StatMiner software (Integromics, Madrid, Spain) 

with the following sets of genes selected as housekeeping genes: 18S, ACTB and GUSB (HeLa); Gusb, B2m and Actb (INS-1); 

B2m, Hmbs and Polr2a (MIN6).  Expression of miR-96 and miR-34a was made relative to the expression of the respective 

miRNA in cells transfected with the major allele of each SNP.  To normalise for differences in transfection efficiency miRNA 

expression was subsequently normalised to the expression of GFP mRNA in that respective sample.   Statistical analysis was 

determined using Student’s T-test with unequal variances assumed. 

 

Results 

 
In dbSNP version 135, we identified three SNPs within the pre-miRNA sequence of miRNAs important to beta-cell function 

(Table 1).  All SNPs had to have been found in at least one HapMap individual to be included.  For a miRNA to be included in 

our study we required there to be evidence in the literature for an effect of over-expression or silencing of that miRNA on beta-

cell apoptosis or glucose-stimulated insulin secretion.  Three SNPs were identified (rs2910164, MAF=0.38; rs72631823, 

MAF=0.001; rs41274239, MAF=0.002), two of which are located within the terminal loop region of the pre-miRNA and one 

within the miR* seed sequence.  We chose not to study the effects of rs2910164 on miR-146a expression as this is a common 

SNP and the effect on miR-146a expression has been previously extensively studied [14-16].   

 In MIN6 cells, transfection of plasmids encoding miR-34a and the A (minor) allele of rs72631823 resulted in 2.1-fold 

higher expression of miR-34a compared to cells transfected with plasmids encoding miR-34a and the G (major) allele of 

rs72631823 (p=0.01) (Fig. 1).  A similarly increased level of miR-34a expression from plasmids bearing the minor (A) allele of 

rs72631823 was seen in INS-1 cells (3.8-fold, p=0.02) and HeLa cells (2.5-fold, p=0.08) (Fig. 1).  Using the Mfold algorithm [17] 

and web server (http://mfold.rna.albany.edu/), RNA secondary structure predictions support these findings. The terminal loop of 

the pre-miRNA bearing the A allele of rs72631823 is in a more relaxed, open form than the G allele (Fig. 2).  This has been 

shown to be associated with more efficient Drosha and Dicer processing and consequently higher levels of mature miRNA [18]. 

In MIN6 cells, transfection of plasmids encoding miR-96 and each allele of rs41274239 resulted in no significant differences in 

miR-96 expression (data not shown).  This was despite a ~eightfold increase in miR-96 expression being measured in cells 

transfected with plasmids encoding miR-96 and the T (major) allele of rs41274239 compared to cells transfected with empty 

vector.  This finding is consistent with a previous study that did not identify any significant differences in miR-96 expression 

upon transfection of HeLa cells with miR-96 expression plasmids encoding each allele of rs41274239 [19]. 

 

Discussion 

 
Two studies have shown that precise control of miR-34a expression in the beta cell is needed to maintain correct beta-cell 

function.  Experiments demonstrated that palmitate and proinflammatory cytokine-induced beta-cell apoptosis result in a 

threefold to fourfold increase in miR-34a expression, and that specifically inhibiting miR-34a activity significantly reduces the 

stimulus-induced apoptosis [20,7]. One may conclude from these experiments that miR-34a plays a causal role in beta-cell 

apoptosis and that small (within one order of magnitude) changes in expression, such as those observed in this study and 

attributable to allelic effects of rs72631823, may have significant consequences.   

Our finding of increased miR-34a expression in all three cell lines transfected with the minor versus major allele of 

rs72631823 suggests that this may not be a tissue-specific phenomenon.  Indeed, small deviations in miR-34a expression may 

have functional consequences in other tissues that play a role in diabetes pathogenesis. Numerous studies have found elevated 

miR-34a expression in fatty livers of dietary-induced and genetic mouse models of obesity [21-23]. Furthermore, higher miR-34a 

levels are seen in livers of human individuals with non-alcoholic fatty liver disease [21,24]. A causal role for miR-34a in 

metabolic dysregulation within the liver, through regulation of the hepatic response to FGF19, has also been reported [25]. This 

suggests that increased hepatic miR-34a expression, which may be found in carriers of the rare allele of rs72631823, could 

promote a more insulin-resistant state and compound the deleterious effects on islet function of higher miR-34a expression.  

Additionally, the seeming lack of tissue specificity for the effect of rs72631823 on miR-34a expression suggests that results from 

any future expression quantitative trait loci (eQTL) analysis in an accessible tissue may be justifiably, and with some confidence, 

extrapolated to more disease-relevant, but inaccessible, tissues.  The very low MAF and identification exclusively in the Yoruba 

in Ibadan (YRI) population make eQTL studies for rs72631823, however, a very difficult avenue to pursue. 

Given recent studies reporting an association of common genetic variation within pre-miRNAs with type 2 diabetes 

susceptibility [26] and an enrichment of T2D GWAS signals in genes predicted to be targeted by islet-expressed miRNAs [27], 

the importance of miRNAs to maintenance of beta-cell function cannot be overstated.  Indeed, the results of this study may justify 

analysing a far larger number of SNPs within miRNA genes (perhaps limited to those expressed in the pancreatic islet) and 

assessing their effects on miRNA expression.  Whilst their rarity impedes the finding of significant associations in single marker 

tests, methods such as the one presented here can be used to functionally annotate variants for grouping in collapsed/multiple 

marker tests, which are more likely to uncover significant associations with complex traits, such as type 2 diabetes. 

 

Acknowledgements      This work was supported by the Wellcome Trust (grant number 089845/Z/09/Z). 

 

Conflict of Interest:     None. 

http://mfold.rna.albany.edu/


 

References 

 
1. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and 

pathophysiology of type 2 diabetes. Nat Genet 44:981-990 

2. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association 

analysis. Nat Genet 42:579-589 

3. Ingelsson E, Langenberg C, Hivert MF et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic 

Loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266-1275 

4. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461 (7265):747-753 

5. McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and 

challenges. Nat Rev Genet 9:356-369 

6. Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. 

Diabetes 60:1825-1831 

7. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic 

effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978-986 

8. Sun G, Yan J, Noltner K et al (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15:1640-1651 

9. Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum 

Mol Genet 16:1124-1131 

10. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104 

:3300-3305 

11. Feng J, Sun J, Wang MZ et al (2010) Compilation of a comprehensive gene panel for systematic assessment of genes that govern an 

individual's drug responses. Pharmacogenomics 11:1403-1425 

 

12. Huang RS, Gamazon ER, Ziliak D et al (2011) Population differences in microRNA expression and biological implications. RNA Biol 8 

:692-701 

13. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric 

averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034 

 

14. Jazdzewski K, Murray EL, Franssila K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to 

papillary thyroid carcinoma. Proc Natl Acad Sci U S A 105:7269-7274 

15. Wang M, Chu H, Li P et al (2012) Genetic variants in microRNAs predict bladder cancer risk and recurrence. Cancer Res 72: 6173-6182 

16. Jazdzewski K, Liyanarachchi S, Swierniak M et al (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a 

contribute to thyroid cancer. Proc Natl Acad Sci U S A 106:1502-1505.  

17. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406-3415 

 

18. Zhang X, Zeng Y (2010) The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 38:7689-7697 

19. Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for 

nonsyndromic progressive hearing loss. Nat Genet 41:609-613 

20. Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell 

dysfunction. Diabetes 57:2728-2736 

21. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474 (7353):649-653 

22. Li S, Chen X, Zhang H et al (2009) Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid 

Res 50:1756-1765 

23. Lee J, Padhye A, Sharma A et al (2010) A pathway involving farnesoid X receptor and small heterodimer partner positively regulates 

hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 285:12604-12611 

24. Cheung O, Puri P, Eicken C et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. 

Hepatology 48:1810-1820 

 

25. Fu T, Choi SE, Kim DH et al (2012) Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a 

membrane coreceptor beta-Klotho. Proc Natl Acad Sci U S A 109:16137-16142 

26. Ciccacci C, Di Fusco D, Cacciotti L et al (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol. 

doi:10.1007/s00592-013-0469-7 

 

27. van de Bunt M, Gaulton KJ, Parts L et al (2013) The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 

diabetes pathogenesis. PLoS One 8 (1):e55272.  

28. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226-230 

29. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells 

by microRNAs. Biol Chem 389:305-312 

 

30. Hennessy E, Clynes M, Jeppesen PB, O'Driscoll L (2010) Identification of microRNAs with a role in glucose stimulated insulin secretion 

by expression profiling of MIN6 cells. Biochem Biophys Res Commun 396:457-462 

31. Plaisance V, Abderrahmani A, Perret-Menoud V et al (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory 

response of insulin-producing cells. J Biol Chem 281:26932-26942 

 

 

  



 

 Pre-miRNA SNP? Location of 

SNP 

Reference 

miR-375 No N/A [28] 

miR-34a Yes - rs72631823 Terminal loop [20] 

miR-146a Yes - rs2910164 miR* [7] 

miR-21 No N/A [7] 

miR-96 Yes - rs41274239 Terminal loop [29] 

miR-410 No N/A [30] 

miR-200a No N/A [30] 

miR-130a No N/A [30] 

miR-9 No N/A [31] 

miR-124 No N/A [29] 

Table 1. miRNAs with a proven role in regulating glucose-stimulated insulin secretion and/or beta-cell apoptosis.  

  



 
 

Fig. 1  miRNA expression in cells transfected with plasmids encoding pre-miR-34a and each allele of rs72631823.  For each cell 

line, expression is relative to cells transfected with the pre-miRNA encoding the major allele of rs72631823.  Data are presented 

as mean ± SEM and the results of three independent transfections.  Statistical analysis performed using Student's t-test with 

unequal variances assumed. *p<0.05 

  

*

*

0

1

2

3

4

5

Empty vector rs72631823 G allele rs72631823 A allele

R
el

a
ti

v
e 

m
iR

-3
4
a
 e

x
p

re
ss

io
n

INS-1

MIN6

HeLa



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2  Secondary structure of pre-miR-34a for each allele of rs72631823, as predicted by Mfold 
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