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Abstract Mesh quality issues can have a substantial

impact on the solution process in Computational Fluid

Dynamics (CFD), leading to poor quality solutions,

hindering convergence and in some cases, causing the

solution to diverge. In many areas of application, there

is an interest in automated generation of finite volume

meshes, where a meshing algorithm controlled by pre-

specified parameters is applied to a pre-existing CAD

geometry. In such cases the user is typically confronted

with a large number of controllable parameters, and ad-

justing these takes time and perserverence. The process

can however be regarded as a multi-input and possi-

bly multi-objective optimisation process which can be

optimised by application of Genetic Algorithm tech-

niques. We have developed a GA optimisation code in

the language Python, including an implementation of
the NGSA-II multi-objective optimisation algorithm,

and applied to control the mesh generation process us-

ing the snappyHexMesh automated mesher in Open-

FOAM. We demonstrate the results on three selected

cases, demonstrating significant improvement in mesh

quality in all cases.
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1 Introduction

Mesh generation is commonly recognised as one of

the main challenges in Computational Fluid Dynamics

(CFD). Mesh quality issues can impact substantially

on the accuracy of the eventual solution, even to the

point where the solver diverges and no solution is

generated; they can also significantly affect the level

of computational work (e.g. number of iterations)

necessary to reach the solution. Modern Finite Volume

(FV) CFD codes tend to use arbitrary unstructured

or polyhedral meshes, allowing for a wide variety of
cell shapes to accommodate complex geometries. This

also allows for a wide variety of mesh problems; non-

orthogonality, face skewness etc, and whilst modern

solution algorithms can typically correct for mild levels

of mesh problems, this is at the cost of additional

numerical error. Pathological levels of mesh problems

can lead to algorithm divergence. The acceptable level

of mesh quality also varies according to the details

of modelling being used, for example the turbulence

modelling in Large Eddy Simulation (LES) ties in very

closely with aspects of the mesh such as cell size, thus

requiring much higher levels of mesh quality than for

RANS methods.[28] Note that our discussion revolves

around issues relating to mesh generation for FV

CFD, which is our area of familiarity. Similar issues

undoubtably arise for Finite Element methods and

other applications of these techniques.

Given its importance, significant effort has been put

into developing metrics to quantify mesh quality, as well

as into methodologies to improve mesh quality. At the
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most basic level, a mesh metric represents an a priori

assessment of the mesh, which can be used as a target

for mesh development or as a test to assess suitability

for progress to the stage of simulation. Numerous in-

dividual metrics have been proposed, particularly with

reference to FE meshes (eg. [35,34,5], see for exam-

ple [9] for a review). Meanwhile, Knupp [20–22] demon-

strated an algebraic framework to derive quality metrics

from the Jacobian matrix for the elements, which con-

tains information on basic element properties such as

size, orientation and shape. His work also identifies the

occurrence of different types of metric, and recognises

that there may be several possible and interchangable

metrics for a metric of a particular type, such as el-

ement shape[23]. In the FV method, commercial and

open source practice has tended to utilise specific met-

rics such as non-orthogonality and cell skewness [38].

Although practitioners utilise and rely on mesh met-

rics as a key indicator of the suitability of a mesh for

computation, a direct link between mesh metrics and

numerical aspects of the subsequent calculation such

as truncation error is difficult to establish [17,19,7]. A

posteriori evaluation of mesh quality can also be im-

portant – in CFD, most notably the checking of near

wall y+ values to assess the validity of wall modelling

– however this is obviously not possible until after a

simulation has actually been run.

Mesh quality metrics also provide input to various

techniques for mesh quality improvement methodolo-

gies. Two main approaches have been investigated

to improve mesh quality; global approaches involving

smoothing, and local approaches involving reworking

groups of cells [11]. The simplest smoothing algo-

rithms are based on Laplacian smoothing [8]; however

this heuristic approach can be unstable and some-

times inverts or otherwise degrades local elements.

Optimisation-based smoothing is based on local gra-

dients of element quality using algebraic minimisation

approaches such as Conjugate Gradient methods [12],

although these can be computationally expensive.

Local mesh improvement methods are topological in

nature, involving deleting elements and replacing with

alternative arrangements of elements, edge and face

removal [33].

Over the years, numerous methods for mesh genera-

tion have been developed and are available either open-

source or in commercial packages, either associated with

particular CFD codes (e.g. Gambit, ANSYS Mesher) or

independently (such as Pointwise, CENTAUR or Har-

poon). Practically we can distinguish between meshers

which provide CAD capabilities integrating geometric

construction with meshing, and those intended as pure

meshers, where the geometry of interest is provided

in the form of a CAD file. The degree of control pro-

vided to the user also varies, with some meshers pro-

viding total control down to individual sub-blocks of

the mesh, whilst others try to provide an automated

pipeline for the process. Exactly what meshing strat-

egy to adopt will depend on the exact problem being

investigated, and it is probable that no one universal

meshing solution is possible. However in many areas

of CFD there is an interest in automated meshing of

pre-existing CAD geometries, for instance in the auto-

motive industry, where CAD files of new vehicle designs

are available from the design process. Meshers can gen-

erate tetrahedral, hexahedral or mixed meshes; or re-

cently there has been an increased interest in polyhe-

dral meshes. Whilst tetrahedral meshes are technically

easier to generate automatically from Delaunay meth-

ods, hexahedral cells provide some important advan-

tages in solution accuracy [36]. Most hexahedral mesh

generators can be classified as either geometry-first or

mesh-first methods [32]; in the first, the CAD represen-

tation of the boundary surfaces is used to grow elements

or cells into the domain, whilst in the second a space-

filling mesh is constructed and then modified to capture

the geometric features of the CAD model. However the

meshing is achieved however, it is a complex process

controlled by significant numbers of user-controllable

parameters.

A typical example of an automated mesher used

for such problems is snappyHexMesh, which is part of

the open source OpenFOAM CFD package [39]. To use

snappyHexMesh the user provides an STL file of the ge-

ometry and a base mesh (typically a simple hexahedral

block mesh). snappyHexMesh then operates a 3 stage

meshing process of castillation, snapping and boundary

layer refinement. In the first step (castillation), cells are

identified which are intersected by edges of the surface

geometry; these cells are then refined by repeated cell

splitting, with maximum and minimum levels of refine-

ment being a definable parameter, and further surface

refinement also being controllable. After this refinement

process, all cells which lie “outside” the desired geo-

metric domain are deleted from the mesh (for a car

this would be cells on the interior of the STL geome-

try, of course). In the second, snapping step, vertices

on the edge of the domain are “snapped” to the STL

surface, using an iterative process of mesh movement,

cell refinement and face merging, again controlled by

user defined parameters such as number of iterations

and specific mesh quality constraints. In a final and op-

tional step, cell layers can be added to the surface to

move the mesh away from the boundary to specifically

refine a boundary layer. The whole process is robust

and automated, but is controlled by a large number of
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user specified parameters provided in advance as an in-

put file. As with any meshing process, the user typically

has to experiment with the different settings in order

to optimise the mesh. Mesh quality may ultimately be

judged by the success of the resulting CFD run, but as a

proxy various mesh quality indicators such as skewness

and non-orthogonality can more easilly be evaluated.

The significant point here is that this process

may be regarded as a multi-parameter and probably

multi-objective optimisation problem. Such optimisa-

tion problems abound in Engineering, and numerous

techniques to solve them have been developed. Opti-

misation problems involving multiple input parameters

and a complex response surface (which is plausibly the

case here) have often been approached using Genetic

or Evolutionary Algorithm techniques (the two terms

are almost interchangeable). In these approaches, the

set of individual parameters necessary to define the so-

lution are regarded as an individual within a randomly

chosen population of N individuals. The “fitness” of

each individual is then evaluated algorithmically, and a

new generation created from the “most fit” individuals

through a combination of genetic recombination and

mutation. Over M generations this process will explore

the parameter space and find the optimum solution

to the problem. Although the process of automated

meshing may be regarded as a suitable multi-parameter

optimisation process, to our knowledge the process has

not actually been approached in this way, and this

paper represents a first attempt at doing this.

The structure of the paper is as follows. In the

next section we provide a more detailed description of

the GA process and our implementation of this in the

pyFoam code, which is a Python wrapper around Open-

FOAM providing run-time control of the parametric

input into the code (essentially a scripting facility for

the OpenFOAM code itself). In section 4 we present

the results of applying this to a number of simple

meshing test cases, and in section 5 we analyse our

results and experiences with this novel approach.

2 GA Optimisation

Genetic Algorithms are based on the principles of nat-

ural selection and descent with modification [14] which

operate on biological organisms and which have gener-

ated the diversity of species seen in nature. A set of

parameters in a GA will generally be coded as a string

of finite length, most commonly a binary string. Each

of these strings (also chromosome or genotype) repre-

sents one possible solution to the optimisation problem.

At the outset a population of these individuals is ini-

tialised at random, representing a diverse set of possi-

ble solutions. The population then undergoes simulated

evolution. Individuals are selected for reproduction de-

pending on their fitness value. This selection process is

stochastically controlled, assigning fitter individuals a

higher probability to get chosen. From those individuals

(parents) selected in this manner, offspring (children)

are generated by applying crossover and mutation op-

erators. The crossover operator uses two parents and

combines elements from one parent with elements from

the other, creating a new individual that now contains

information from both its ancestors. An example of sin-

gle point crossover between two chromosomes (binary

strings) a and b of length n+1:

a = 〈an an−1 . . . a1 a0〉
b = 〈bn bn−1 . . . b1 b0〉

with a randomly selected crossover point X ε [0, n− 2],

creating children:

a′ = 〈an an−1 . . . aX+1 bX bX−1 . . . b1 b0〉
b′ = 〈bn bn−1 . . . bX+1 aX aX−1 . . . a1 a0〉

Mutation is in most cases implemented as bitwise mu-

tation where the value of a single bit in a chromosome

is inverted. The probability of mutation or crossover

occuring is controlled by external variables PM and PC
respectively. Other parameters that influence the per-

formance of the GA are the population size S and the

number of generations G. In the optimisation problem

at hand, the multiple real values are bit-string encoded

and the fitness objectives are measurable properties of

the flow.

Since the problem variables are real values and their

chromosomal representation is a binary string, a map-

ping between the two has to be defined. For a single

coefficient c ε [clo, chi] the length of the bitfield has to

be determined by taking into account the desired reso-

lution ∆c of the interval. The number of bits required

is now

n =

⌈
log2

(
chi − clo
∆c

+ 1

)
− 1

⌉
(1)

Translation from binary to decimal values can now eas-

ily be done as follows:

〈bn bn−1 . . . b1 b0〉2 =

(
n∑
i=0

bi · 2i
)

10

= c′ (2)

c = clo + c′ · chi − clo
2n+1 − 1

(3)

Compared to conventional optimisation methods,

GA’s exhibit several important benefits when used to

optimise multi-parameter systems. In particular, GA’s

are very thorough in exploring the parameter space of

the problem, and will climb many peaks simultaneously
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Fig. 1 Schematic of the workflow of a typical GA

during the evolution process. This reduces the proba-

bility to concentrate on the wrong peak representing

a local optimum, as common gradient based methods

would do. Figure 1 depicts the sequence of operations in

a typical GA. Two opposed strategies are at work here:

Exploitation of a single solution versus exploration of

the solution space. Classical gradient based methods

concentrate on the former, while sole usage of the lat-

ter would correspond to a random search. GAs manage

to reach a surprisingly good balance between those two

extremes [30].

2.1 Multi-objective Optimisation

Complex optimisation problems often seek to find op-

timal solutions with respect to multiple, often concur-

rent, objectives. Many multi-objective evolutionary al-

gorithms (MOEAs) have been developed in the last few

decades [37,41,10]. Since it is generally the case that a

problem has no single solution that is optimal with re-

spect to all objectives simultaneously, normally a num-

ber of equally optimal solutions are generated each of

which is optimal for a specific set of weightings between

the objectives. The set of these non-dominating solu-

tions is described as the Pareto-optimal front. The al-

gorithm that is used in this study is a fast elitist non-

dominated sorting genetic algorithm (NSGA), that was

originally introduced by Srinivas and Deb [37] and im-

proved by Deb et. al. [6]. The second generation ver-

sion NSGA-II removed some of the criticised flaws in

the original algorithm and is able to capture high order

Pareto surfaces. Elitism speeds up the convergence of

the GA and prevents the loss of the best solutions. The

sorting procedure orders solutions by the level of dom-

inance over concurring solutions. That way the most

dominant individuals are considered to be the fitter

ones and therefore have a higher chance to contribute

to the next generation. The algorithm has been suc-

cessfully used in engineering optimisation problems [4,

18].

2.2 Implementation and code design

Available for OpenFOAM is a toolset called pyFoam 1

written in the object-oriented language Python. It of-

fers applications to read, modify and run OpenFOAM

cases as well as analyse the results. Inspired by this,

the framework for the evolutionary computation capa-

bilities was developed in Python. That way the invok-

ing and manipulation functions provided by pyFoam

can be used and execution of the program can easily

be controlled by using scripts. The overall design of

the GA software was based on the guidelines by Gagné

and Parizeau on how to write generic EC (Evolution-

ary Computation) software tools [13]. The aim is that

operators, such as the crossover or selection operator,

should be interchangeable regardless of the objects they

are applied to. In addition the underlying representa-

tion of a solution should not affect the way the GA
works. The user can choose at run-time between a given

set of predefined operators or can add new operators

to meet specific needs. This is usually the case for the

fitness evaluation which is a problem dependent func-

tion. Reusability and independence of the optimisation

problem on top are key features of the selection and

crossover mechanisms. Commonly used realisations of

these are therefore included in the developed frame-

work, but can be altered or new ones implemented.

Equally flexible is the selection of the coding algorithm

that encodes and decodes the chromosome as described

in section 2. In the developed software package control

parameters can be set using external configuration files.

For every variable that is subject to the evolution pro-

cess the user can define lower and upper bounds as well

as the desired precision. This allows running different

test cases with different initial setups without altering

the code. The only element that has to be adapted for

1 http://openfoamwiki.net/index.php/Contrib PyFoam
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each case is the fitness evaluation function since it is

problem dependent.

One of the most important requirements in the de-

velopment of a GA software in the context of CFD is

the capability to parallelise the code to allow for faster

computation spread over several processing units. This

parallelisation is implemented at the population level,

with individual cases in the population being assigned

to individual processing units in a master-slave arrange-

ment. A commonly used library to realise the inter-

processor communication is the MPI (Message Passing

Interface) standard [29]. The Python implementation

mpi4py is used in the current project. While it is not a

full realisation of the MPI standard, it provides all the

required functions for the purpose of this research.

3 Optimisation Objectives

When generating a mesh with snappyHexMesh (or in-

deed any other mesh generator) the user is trying to bal-

ance particular constraints, making this a classic multi-

objective optimisation problem. In this case we have

three main objectives for the mesh optimisation :

1. Total number of mesh cells

2. Mesh quality

3. Accuracy of snapping to STL surface

Objectives 1 and 2 are probably significant for any

meshing algorithm. As one can imagine, with an un-

limited number of cells even the most complex surfaces

could be captured accurately. However we are unlikely

ever to be in a position in which unlimited cell counts

are a realistic possibility, so we might well be interested

in the tradeoff between cell count and other aspects

of the mesh. In fact the structure of snappyHexMesh is

such that the cell count is heavily dependent on the res-

olution of the base hexahedral mesh, and so the mesh

sizes varied little if at all between the different individu-

als for certain settings (such as for the snapping stage),

so for this work we have chosen to concentrate on the

tradeoff between 2 and 3.

Measurement of objective 2 can be accomplished us-

ing a variety of individual metrics. For this preliminary

work we chose to construct a simple fixed measure of

mesh quality based on a fixed combination of skewness,

non-orthogonality and minimum cell size, as described

below. Objective 3 is a feature of snappyHexMesh and

other CAD-based automatic meshers which do not nec-

essarily produce perfect geometric accuracy, but which

trade a degree of geometric inaccuracy for greater ro-

bustness.

Because of the strucure of the algorithm, the fit-

ness evaluation operator had to be defined such that

it would try to minimise the value of each objective

function. Multi-objective optimisation with mixed ob-

jective value interpretation, where for example one ob-

jective value has to minimised while another one has to

be maximised, is not possible in the current implemen-

tation of the NSGA-II algorithm. However this is not a

significant restriction as algebraic manipulation of the

form of the fitness function can always be used to ensure

that all the fitness functions are being minimised.

3.1 Mesh Quality and Geometric Accuracy

P

N

fi

m

S
f

d

Fig. 2 Determining skewness on a face

Two very specific measures of mesh quality are com-

monly used in CFD : skewness and non-orthogonality,

and these deserve further discussion. The skewness er-

ror is a numerical diffusion-type error emerging from

the finite volume discretisation [16]. The standard form

of the transport equation for a scalar property φ is

∂ρφ

∂t
+∇ • (ρUφ)−∇ • (ρΓφOφ) = Sφ(φ) (4)

where ρ is the density of the fluid (which is constant for

incompressible flow), U is the velocity vector, Γ is the

diffusivity, and Sφ an arbitrary source term. In the fi-

nite volume method this equation is integrated over the

volume of each cell and Gauss’ theorem used to convert

integrals of the spatial derivatives (particularly the con-

vection term) into surface integrals over the boundary

of the control volume, i.e. flux terms. The convection

term for example is then handled as:∫
VP

∇ • (ρUφ)dV =
∑
f

F · φf (5)

where F represents the mass flux through the face f :

F = S · (ρU)f (6)
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Figure 2 shows a typical situation causing the skew-

ness error in two adjacent cells P and N connected by

a face with centre f, and face area vector S. The value

of the face integral requires the variable value at point

f.∫
f

dSφ = Sφf (7)

In the finite volume implementation the value φf is

often calculated from a linear interpolation between

points P and N . This yields the value of φ at the point

fi, which is not necessarily equal to f . The error ES of

the convection term in Eqn. 5 is estimated as:

ES =
∑
f

S · [(ρU)fm · (∇φ)f ] . (8)

On meshes of reasonable quality, |m| should be much

smaller than |d|, but when this condition is no longer

met, as in very skewed meshes, the influence of m in

Eqn. (8) becomes more significant. The accuracy will

suffer when the mesh is highly skewed. This results

mainly from the way in which the face–centered pres-

sure gradients are computed using cell–centered pres-

sure values. Usually a second order central-difference

approximation is used and the accuracy might drop to

first order for very high skewness [40]. In other words,

skewness is a measure of how far off the face center be-

tween two adjacent cells does the connecting vector d

of the two cell centers intersect the face.

A similar measure is non–orthogonality, which de-

scribes the angle between the vector d and the face

normal S. In a good quality mesh, these two vectors

should be parallel, i.e. d is orthogonal to the face. Since

the diffusive terms in the finite volume discretisation

of the Navier-Stokes-Equations in OpenFOAM use the

face normal vector to calculate fluxes between cells, it

is desirable to minimise non–orthogonality. For both

measures there is is the question of which is likely to

be more significant; the average value or the maximum

value. The average non-orthogonality (i.e. the average

of the non-orthogonality values for all faces in the mesh)

is a significant index of overall mesh quality, whilst

the max non-orthogonality (the value of the most non-

orthogonal face in the mesh) is also significant as just

one awkward face is sometimes sufficient to destroy con-

vergence.

The last objective considered is the accuracy of

the snapping algorithm, which refers to how close the

resulting mesh coincides with the desired surface. To

quantify this criterion the distance between external

mesh faces and any of the STL surfaces is measured

and the sum of all these distances represents the fitness

value. This is of course limited to the cells that are near

an STL surface in their normal direction. To this end

an application was developed within the OpenFOAM

framework that loops over all exterior faces and calcu-

lates the distance to the nearest STL patch. Exterior

faces in this sense are those that lie on the surface of

the domain.

3.2 Fitness evaluation

To get a measure of the achieved mesh quality,

two sources of information were used. The tool

snappyHexMesh outputs mesh quality information

as it proceeds, information which can be logged and

scanned to extract the necessary data; additionally

the OpenFOAM library includes a utility checkMesh

which can be run to provide additional data.

Table 1 Value constraints for the objective variables in mesh
generation optimisation. Accuracy value of 1 signifies an in-
teger variable.

Parameter min value max value accuracy
resolveFeatureAngle 30 80 1
nSmoothPatch 5 50 1
nRelaxIter 3 15 1
nFeatureSnapIter 10 30 1
maxNonOrtho 30 80 1
maxSkewness 0.5 1 0.01
minVolRatio 0.01 0.1 0.01

The evaluation of a solution’s fitness now depends

on how a quality value needs to be interpreted. In case

of cell volume, for example, good fitness might mean

that the minimum volume is not lower than a given

value, while the average cell volume lies within a cer-

tain range of values. In our case we opted to track three

distinct indices of mesh quality; maximum skewness,

maximum non-orthogonality and minimum cell size. All

these individual fitness measures then have to be ac-

cumulated into one number that represents the mesh

quality, i.e. the second objective in the multi–objective

optimisation. Agreement with the quality constraints

of each parameter calculated by the checkMesh util-

ity was not realised as a different objective function

for each value. Instead the grades of agreement (or dis-

agreement) were combined into a single fitness value.

To account for different orders of magnitude in the ac-

tual calculated numbers, the fractional biased error was

used to limit the fitness value for each entry to a certain

range. Equation 9 shows how such a value is computed

per quality constraint. The symbol ξO represents the

observed value obtained by running checkMesh and ξP
is the prescribed value set in an optimisation objective.

FB(I) = 2× ξO − ξP
ξO + ξP

(9)
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The advantage of the fractional bias is that it limits the

values to the interval [−2, 2]. The sign just represents

the direction of disagreement and a value of zero means

a total agreement of prescription and observation. If

the direction is not of interest, the bias can be squared

to assure positive numbers only. The fractional bias is

a useful method to compare real data with predicted

data, because it equally weights positive and negative

bias estimates.

3.3 Input parameters

snappyHexMesh requires a substantial number of input

parameters. Experimentation reduced this to a set of 7

whose definition is provided below :

resolveFeatureAngle Maximum level of refinement ap-

plied to cells that intersect with edges at angles ex-

ceeding this value.

nSmoothPatch Number of patch smoothing operations

before a corresponding point is searched on the tar-

get surface. Smooth patches are more likely to be

parallel to the target surface, making it more prob-

able to find a matching point.

nRelaxIter Number of iterations to relax the mesh af-

ter moving points. When points are snapped to the

target, the displacement propagates through the un-

derlying layers of points that are not on the surface.

By relaxing this propagation, a smoother displace-

ment can be achieved.

nFeatureSnapIter The total number of iterations tried

to snap points to the target. If insufficient quality

is reached after nFeatureSnapIter iterations, the

snapping is cancelled and the last state is recovered.

maxNonOrtho Non-orthogonality measures the angle

between two faces of the same cell. In a grid with

only rectangular cells the value would be zero. Any

deviation from this counts as non-orthogonal. High

values mean there are very low angles that usually

occur in a prism layer.

maxSkewness Skewness is the ratio between the largest

and the smallest face angles in a cell. A value of 0 is

the perfect cell and 1 is the worst. For tetrahedral

cells the value should not be greater than 0.95 to en-

sure accuracy of the calculation. Within the dictio-

nary different quality constraints can be assigned to

boundary cells and internal cells. Because in a sim-

ple geometry the cells on the boundaries are more

likely to be affected by skewness problems, only this

value was part of the optimisation.

minVolRatio The ratio in cell volume between adja-

cent cells should not be too large. A large aspect

ratio leads to interpolation errors of unacceptable

magnitude.

All these parameters were used as decision variables in

the optimisation and Table 1 lists these variables and

their value constraints used in the optimisation.

The parameters that were subject to the optimisa-

tion can be split into two groups: cell quality and snap-

ping accuracy. For the first group of cell quality the

snappyHexMesh sub-dictionary meshQualityControls

contains the values that were of interest here. From ex-

perience using snappyHexMesh and because the bear-

ing test case was a rather simple geometry without any

sharp angles, the constraints listed in Table 2 were con-

sidered.

Table 2 Mesh quality settings in snappyHexMesh

Parameter Min Max
maxBoundarySkewness 1.1 2.4
maxNonOrtho 40 80
minVolRatio 0.01 0.1

As mentioned above, the mesh creation optimises

towards multiple objectives. Running snappyHexMesh

on a case with a target size of about 250,000 cells is

computationally very expensive in terms of time and

memory. To save disk space the workflow was slightly

modified so that only the Pareto optimal individuals of

each generation are physically stored, while the others

are deleted after their evaluation and before the evolu-

tion proceeds to the next generation. Since the coeffi-

cients of each individual in every generation are logged

anyway, this could be further improved by not storing

any meshes, but reconstructing solutions on demand

using the values stored in the log file.

4 Meshing test cases

Three test cases were investigated selected to illustrate

specific problems in meshing. The first two were a Bear-

ing problem (section 4.1) and a simple Packed Bed,

which illustrate specific issues such as the handling of

contact points between spheres (for the Packed Bed).

The third case under analysis was a fairly simple real-

world example of meshing, that of mesh construction

for the Ahmed body, a commonly-used case in vehicle

aerodynamics, and one where the solution is known to

be sensitive to the mesh details.
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4.1 Bearing

This simple test case is comprised of two pipes of dif-

ferent diameter that are connected by a planar disk.

The inside of this assembly is to be meshed using snap-

pyHexMesh. Figure 3 shows the three parts and how

they are arranged in the structure. A detailed view of

the connector disk (Figure 4) reveals a chamfer at the

inlet to the smaller pipe. From a meshing standpoint

this geometry is relatively easy to describe, but con-

tains a few difficulties that can have severe impacts on

the mesh quality. For example where the base of the

bigger pipe meets the connector disk, a combination of

straight and curved edges in one cell is required. The

curvature should be captured by all cells along the joint

and should be reasonably smooth to represent good cell

quality. On the other hand around the chamfer different

angles between faces have to be created to fully capture

the geometry change in this area. While being a rather

simple geometry, it offers enough difficulties for an au-

tomatic mesh generator to be of interest here.

The initial rectangular mesh outlined on the left of

Figure 3 was created using OpenFOAM’s blockMesh

utility. It consists of 1372 cells, or 28 by 28 by 14 in

three dimensions. The axial direction of the tubes is

the z-axis. The target mesh size was limited to 200,000

cells in the snappyHexDict with refinement along the

tube walls and around the diameter change at the posi-

tion of the connector. The optimisation was run using

30 individuals per generation and terminated after 20

generations.

Fig. 3 Geometry of the snappyHexMesh bearing test case.
The black box on the left is the outline of the original mesh
that will be snapped to the inside of the geometry. The right
image shows the three parts that make up the bearing.

Fig. 4 Detailed view of the connector disk’s top and bottom
side showing the chamfered edges.

The mesh quality objective index as stated above

is a composite of several parameters, and as such is

difficult to interpret. Instead it is informative to look

at how individual quality indicators have changed as

part of the optimisation process. Figure 5 shows graphs

of various mesh and geometric quality indicators evalu-

ated directly from checkMesh. In each case, the squares

represent the first generation values, the triangles the

final generation values, and the filled triangles the

Pareto set for the final generation values. Note that

the quantities max surface displacement and max non-

orthogonality are outputs which are parts of the overall

mesh quality metric (and are raw, rather than being

scaled through the fractional biassed error method)

and are different from the parametersmaxNonOrtho

and maxSkewness, which are input parameters to

snappyHexMesh. Graphs 5.a. and b. examine the re-

lationship between the maximum values of surface

displacement and non-orthogonality and the average

values, showing a reasonable level of correlation for

the displacement but very little correlation for the

non-orthogonality. The other two figures examine the

correlation between the average surface displacement,

which is one of the optimisation objectives, and max

non-orthogonality and max skewness, which factor into

the mesh quality metric. As might be expected, a few

individuals in the initial population are geometrically

faithful, but the majority deviate quite significantly, as

indicated by the surface displacement parameter. For

this case this has significantly improved by the last

generation, although there seems to have been a com-

pensating deterioration in the max non-orthogonality

value.

Table 3 shows the final parameter settings in the

snappyHexMeshDict. The bad quality example was ran-

domly selected from the dominated population of the

last generation and the good example was taken from

the Pareto front. The results of the mesh optimisation

are visualised in Figure 6. These images were chosen

to highlight those parts of the mesh that are clearly of

different quality. The total number of cells was almost

identical in both meshes, with 60,452 in the bad exam-

ple versus 62,195 in the optimal case. Comparing the

parameter settings in all individuals of the Pareto front

showed that for the minVolRatio the value was always

0.01 or very close to it. It can be assumed that this is

actually the optimal setting for this parameter. Table

3 lists the meshing parameters for these two example

meshes as well as the value ranges found in the Pareto

front of the final generation. A significant improvement

in the average mesh non-orthogonality is evident be-

tween the bad and good examples.
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a. b.

c. d.

Fig. 5 Graphs of a. average surface displacement vs. max surface displacement, b. average mesh non-orthogonality vs. max
non-orthogonality, c. average surface displacement vs. max non-orthogonality, d. av. displacement vs. max skewness for the
bearing case. In each case; squares represent the initial population, triangles the final population and filled triangles the Pareto
set.

Table 3 Parameter settings for snappyHexMesh for the bearing test case reffering to the two examples depicted above and
value ranges in the Pareto front.

Parameter bad example good example Pareto range
maxNonOrtho 70 72 60–79
maxSkewness 6.0 10.7 8.0–12.3
minVolRatio 0.07 0.01 0.01–0.03
Average non-orthogonality 19.24 10.40

4.2 Packed Bed

In simulations of granular media on a macroscopic

scale, material particles are often modelled in an

idealised manner as spheres. These spheres are then

stacked or packed together as a regular or irregular

lattice leaving small spaces between individual particles

as the flow domain. In the idealised case the spheres

will touch tangentially at a single point and the cells

around this connection need to be wedge shaped,

resulting in high skewness and non-orthogonality [3].

Finding a good compromise between cell shape and

mesh quality is vital for a reliable numerical treatment

of the flow through a packed bed, and in fact it can

prove necessary to relax geometric accuracy in order

to produce a usable mesh [2]. Thus, automatically

generating a mesh that meets the quality requirements

is a difficult task. Using a genetic algorithm to improve

the mesh generation could therefore be a useful tool.

The case setup for this problem consisted of eight

spheres enclosed by a rectangular box. Each of the

spheres touches its three neighbouring spheres in a
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Fig. 6 Examples for bad (top) and good (bottom) snapping
quality at the intersection of the large tube (red) and the
connector disk in the bearing test case.

very small area. Figure 7 shows an axial and an iso-

metric view of the geometry as well as the background

mesh created with blockMesh, used in snappyHexMesh

to confine the computational domain.

Fig. 7 Geometrical setup for the packed bed. Axial view
(left) and isometric view with background mesh (right).
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a. b.

c. d.

Fig. 8 Graphs of a. average surface displacement vs. max surface displacement, b. average mesh non-orthogonality vs. max
non-orthogonality, c. average surface displacement vs. max non-orthogonality, d. av. displacement vs. max skewness for the
packed bed case. In each case; squares represent the initial population, triangles the final population and filled triangles the
Pareto set.

The initial mesh created with OpenFOAM’s

blockMesh utility consisted of 80,000 cells, or 20

by 20 by 20 in three dimensions, forming a cube with

edge length L = 1.8R not quite enclosing eight spheres

of radius R. The snappyHexMesh parameters that

were subject to optimisation and their allowed value

ranges are listed in Table 4. The size of the solution

space can be calculated from this table as ≈ 1.5× 1010.

Although the same three optimisation targets were

prescribed in this case: total number of cells, overall

cell quality and accuracy of capturing the geometric

features, just changing the quality restrictions in the

snappyHexMeshDict had no influence on the resulting

mesh size. Hence all individuals produced equally

sized meshes, rendering the first optimisation objective

obsolete.

As with the previous example, figure 8 shows rela-

tionships between a number of specific parameters of

Table 4 Optimisation parameter value ranges for the packed
bed test case as defined in the gaDict.

Parameter min value max value accuracy
castellated mesh controls
resolveFeatureAngle 30 60 1.
mesh quality controls
maxNonOrtho 40 80 1.
maxSkewness 2.0 10.0 0.1
snap controls
nSmoothPatch 5 50 1.
tolerance 1. 2.5 0.1
nRelaxIter 3 15 1.
nFeatureSnapIter 10 30 1.

the mesh in detail. A very strong correlation is shown

between average and max surface displacement in this

case, and average non-orthogonality, surface displace-

ment and max skewness are all seen unambiguously to

improve by the final generation.
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When visualising the resulting meshes, it is possible

to discern good from bad quality meshes in terms of

capturing the geometric features. When looking at the

thin volume in between two neighbouring spheres, the

optimal shape would be a perfectly round circle with a

small radius. Comparing a Pareto optimal mesh and a

non-optimal mesh, as shown in Figure 9, one can see the

higher roundness in the good mesh. Unfortunately this

characteristic is not easily measurable automatically,

otherwise it could be used as an additional optimisation

objective.

Fig. 9 Comparison of a Pareto front individual (left) versus
a non-optimal solution (right). Notable is the difference in
roundness and radius of the connecting area.

4.3 Ahmed Body

The characteristics of the Ahmed body were first de-

scribed by Ahmed [1] in an experimental paper. It has

become a well documented benchmark test case for car

aerodynamics and is widely used to test turbulence

models or other modelling techniques. Also many ex-

perimental data sets are available (e.g. [27,26]). To ac-

curately predict lift and drag coefficients, as these are

important quantities in automobile aerodynamics, good

grid quality has to be assured especially in the area of

eddy detachment at the back of the car and also on

the underside of the body. This is even more the case

for Large-Eddy Simulations as performed on this test

geometry by various researchers [15,25,24,31]. The ge-

ometry pictured in Figure 10 was used here as a third,

more realistic test case.

The initial rectangular mesh created with Open-

FOAM’s blockMesh utility consisted of 12,000 cells, or

40 by 30 by 10 in three dimensions. Figure 11 shows

the results of the snappyHexMesh optimisation around

the body’s wheels while Figure 12 highlights the curved

edge of the rear end of the body. In this test case a larger

number of parameters was subject to the optimisation.

A total of six values were modified, this time not only

taken from the mesh quality sub-dictionary, but also

from some controlling the castellation and the snapping

procedure. The respective sub-dictionaries and the pre-

scribed values are listed in Table 5. Again, a population

size of 30 individuals was used and the optimisation was

stopped after 20 generations.

As was the case for the bearing discussed previously,

the Pareto set after the end of the optimisation proce-

dure was rather large. In this case it still contained up to

50 % of the total population which were identified as be-

ing mutually non–dominant. This could mean, that the

parameters modified in the snappyHexMeshDict had

little or no influence on the outcome of the meshing pro-

cess. Or it could be that creating a really ’bad’ mesh for

this geometry was actually difficult. One explanation

for the latter could be that the fitness measurements

were insufficient to identify discrepancies between tar-

get and result. In comparison to the bearing case, bad

mesh quality could be very localised, mainly around

the ’wheels’ at the bottom of the body. If the quality

restrictions were met on the majority of the surface,

maybe small local errors do not influence the fitness

very much.

Figure 13 shows again the correlations between the

same specific mesh quality and accuracy parameters.

Once again there is a strong correlation between aver-

age and max surface displacement, although not quite

as strong as in the previous case; and in this case the

max non-orthogonality has improved quite significantly.

Max skewness has not been affected so strongly by the

optimisation process.

Table 5 Parameter settings for snappyHexMesh for the two
examples of the Ahmed body test case depicted above.

Parameter bad example good example
castellated mesh controls
resolveFeatureAngle 45 32
mesh quality controls
maxNonOrtho 65 80
maxSkewness 20 22
snap controls
nSmoothPatch 3 7
nRelaxIter 3 6
nFeatureSnapIter 10 10

5 Analysis

Figures 5, 8 and 13 plot the same mesh and geome-

try parameters for each of the cases. Of these param-

eters, some are separate targets (e.g. max surface dis-

placement), some are combined as part of the overall

mesh quality index, such as max skewness, and some

are alternative parameters which could have be target-

ted but were not. In this last category; we could have
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Fig. 10 Geometry of the Ahmed body as a simplified car model for aerodynamic investigations.

Fig. 11 Examples for bad (top) and good (bottom) snapping
quality in the wheel region of the Ahmed body.

targetted average values of surface displacement and

non-orthogonality rather than max values, and the cor-

relation between the average and maximum values of

these parameters are explored in the graph series a. and

b. For all the cases there is a correlation between av-

Fig. 12 Examples for bad (top) and good (bottom) snapping
quality in the rear region of the Ahmed body.

erage and maximum surface displacement (figures 5.a,

8.a and 13.a), suggesting that only one of these quanti-

ties need be examined, but this is particularly marked

for the case of the spheres, less so for the other cases.

However there is much less correlation between average

and maximum non-orthogonality. Both of these are im-
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a. b.

c. d.

Fig. 13 Graphs of a. average surface displacement vs. max surface displacement, b. average mesh non-orthogonality vs. max
non-orthogonality, c. average surface displacement vs. max non-orthogonality, d. average displacement vs. max skewness for
the Ahmed Body case. In each case; squares represent the initial population, triangles the final population and filled triangles
the Pareto set.

portant parameters in mesh quality, and so both should

probably be targetted separately.

Indices such as max non-orthogonality, max skewess

are part of the composite mesh quality index; it is in-

structive to break this down into the constituent com-

ponents and look for correlation between these param-

eters and the average surface displacement (series c.

and d. in the figures). Again, the results vary accord-

ing to the case under consideration, and not in an ob-

vious sequence. For the bearing case the surface dis-

placement does not seem to easily correlate with either

of these quantities (figure 5.c and d) although most

of the Pareto set seem to cluster around a max non-

orthogonality value of 70-80. As is accepted with GA

processes, the initial population in each case explores

the full parameter space, generating some individuals in

the initial population which are quite good (low values

of non-othogonality and skewness). By the final gener-

ation more individuals are optimal, although the pop-

ulation still contains less optimal solutions as well, as

can be seen in figure 8.d. (one value of skewness in the

Pareto set with a value of max skewness of nearly 60).

In several cases there seem to be a definite limit to

the values which can be achieved; for example the low-

est value of max non-orthogonality for the Ahmed case

seems to be around 63 (figures 13.b.and c.) There are

evidently certain trade-offs between different parame-

ters being made in these cases, although not perfectly

as they are part of a composite fitness. This could be

improved of course by making each parameter a sepa-

rate optimisation objective. The geometric fidelity (as

indexed by the average surface displacement) has un-

ambiguously improved in all cases.

In addition the meshes have been examined visually

in all cases; figures 6, 9 and 11 illustrate particular ar-

eas of the mesh for the different cases. In all cases the
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mesh has been observed visually to improve in quality.

Humans of course are very good at pattern recognition;

computers considerably less so, and thus it would not

always be possible to quantify aspects of the improve-

ment. It should also be noted that OpenFOAM is a

polyhedral code allowing mesh refinement through edge

and face splitting. paraview, which has been used to

display the meshes, deals with this by further triangu-

lating some of the faces, and thus some of the diagonal

triangulated lines in the images are ficticious.

Also of interest is the runtime for the process. All

simulations were carried out on a twin 6-core AMD

Opteron processor running at 800MHz, which at the

beginning of the project was a fairly high spec desktop

machine, but no more than is typical for CFD simu-

lations in general. Typical runtimes of snappyHexMesh

for final generation individuals on this machine were

4m45s for the bearing case and 16m40s for the more

complex Ahmed case. Based on the evaluation of 600

individuals (30 individuals × 20 generations) gives es-

timates of 47.5 CPU hours processing for the bearing

case and 166.8 CPU hours for the Ahmed case. Run-

ning the optimisation in parallel using 10 individual

cores (i.e. 10 individual fitness evaluations performed

simultaneously) actually took 6.28 hours for the bear-

ing case and 13.5 hours for the Ahmed case, quite close

to these estimates. Discrepancies will be accounted for

by other operations in the fitness evaluation such as

running checkMesh, and whether the ‘typical’ runtimes

are in fact typical of the time taken (the examples

evaluated were selected purely at random). To inves-

tigate the scaling of the calculation with mesh size, a

repeat of the bearing case was undertaken with a 2×
base mesh size; 35 × 35 × 18 = 22050 cells as against

10976 cells for the original base mesh (i.e. created by

blockMesh before snappyHexMesh was run). Running

snappyHexMesh straight off on a typical case with this

new base mesh generated a mesh of 444, 340 cells, a

considerable increase in cell count over the 60, 000 cells

typical of the earlier calculation, and took 16m23s to

execute. We note that this is shorter than a simple cell

count scaling would indicate; snappyHexMesh has taken

3.5 times as long to generate a mesh with 7 times as

many cells. Running 240 individuals (30 indiviuals ×
8 generations) as a test on 8 cores (to reduce memory

usage) took 20.1 CPU hours to execute; again an in-

crease over the expected time due to variations in mesh

and time to evaluate fitness. This would produce an

expected run time of 50 hours to complete the full cal-

culation (20 generations). Such a run time would not

be at all unreasonable in the context of a full CFD cal-

culation, particularly as these are automated processes

which do not require human intervention beyond set-

ting up.

6 Conclusions

Meshing is a highly complicated process which is recog-

nised as having a significant impact on the quality (and

sometimes the existance) of results from CFD. It is also

highly labour-intensive; when combined with problems

of CAD repair and cleanup, the meshing process can be

the single most time-consuming part of the CFD pro-

cess. Automated meshers such as snappyHexMesh were

developed to provide robust if geometrically imprecise

meshing solutions, but rely on significant numbers of

input parameters whose values need to be determined

typically by trial and error. We have shown here the po-

tential of using Genetic Optimisation-based approaches

to improve upon this. Runtimes of the optimisation

took between 6 and 14 hours on a machine of a spec that

might well be used for the CFD simulation, and whilst

a full optimisation analysis might require substantially

more evaluations, even an increase in evaluations of a

factor of 10 would not be an impractical proposition.

Given the importance in CFD of a high quality mesh,

spending say 60 hours computing time to generate a

good mesh should be seen as a worthwhile investment.

The work presented here we believe demonstrates

the potential of this process but there are obviously

significant further improvements to be made. In this

work 3 specific metrics were targetted; the total num-

ber of cells in the mesh, the mesh quality and the geo-

metric fidelity, as measured by the distance to the STL
surface. Unfortunately due to aspects of the behaviour

of snappyHexMesh the input parameters chosen for the

meshing did not fully control the number of cells being

generated. Full control of cell numbers would enable

the investigation in detail of the tradeoff between mesh

size and quality, a very significant aspect of mesh gen-

eration. Similarly, for simplicity we decided to use a

single index of mesh quality, as an even-weighted com-

bination of skewness, non-orthogonality and geometric

fidelity. Other mesh quality indices could be included

in this, and of course the weightings could be changed

to reflect their importance in mesh generation process

for particular cases. In a further analysis these indices

could be regarded as independent objectives, allowing

us to investigate tradeoffs, for example between geo-

metric fidelity, maximum non-orthogonality and mean

non-orthogonality. A final issue to be included would

be constraints on the mesh generation process, for ex-

ample requiring the creation of a boundary layer mesh

which is often of importance in the final CFD analysis.
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