
1 
 

 

Electrochemical study of 3D graphene 

composites and the creation of ultralight 

3D SiC 

 

 

Submitted by Sakineh Chabi, to the University of Exeter as a thesis for the 

degree of Doctor of Philosophy in Engineering 

August, 2015 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved for 

the award of a degree by this or any other University. 

 

S. Chabi 

 



2 
 

 

Abstract 

This research fabricated and tested various graphene-related 1D, 2D and 3D 

materials. We described how using specifically designed graphene foam (GF) as 

templates can transform its unique structures and excellent properties to new 

materials. Graphene, GF, Polypyrrole (PPY), Polyaniline (PANI), PPY-GF, PANI-GF, 

SiC foam, SiC nanowires and SiC nanoflakes will be described in this thesis. 

The chemical vapour deposition method was used to produce graphene and GFs. 

PPY-GF, PPY, PANI and PANI-GF were prepared by both chemical and 

electrochemical (Chronopotentiometry) methods. SiC foams were produced by a low-

cost carbothermal reduction of SiO with GF, and then the SiC nanoflakes were 

separated from SiC nanowires and purified via a multistep sonication process.   

The synthesised materials were characterised by a variety of techniques such as SEM, 

EDX, XRD, TEM, Raman, AFM and TGA. The electrochemical properties of the 

materials were measured in a three electrode cell using cyclic voltammetry (CV), 

galvanostatic charge-discharge and A.C impedance spectroscopy techniques. The 

mechanical properties of the GF and SiC foams were investigated by conducting 

compression tests under in-situ SEM imaging.  

The as-produced graphene in this research was few layer graphene with layer number 

varies from 2 to 15. The GFs was found to be extremely light weight with an average 

density value of 5 mg cm-3. Using GF as electrode materials for supercapacitors, we 

obtained 100% capacity retention after 10,000 of charge-discharge cycles. The PPY-
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GF composite electrode exhibited an outstanding specific capacitance of 660 Fg-1, 

which is superior to the performance of most of the existing PPY-CNT, PPY-graphite 

and PPY-Graphene electrodes reported to date. In contrast to the PPY which shows 

a big structure degradation and a 30% capacity loss after only hundreds of CV cycles, 

the PPY-GF composite showed nearly 100% capacity retention after 6,000 cycles of 

charge-discharge. Our post-test characterisations showed no structural loss for the 

GF and PPY-GF.  

The excellent pseudocapacitive performance of the electrodes was found to be related 

to three key parameters: the open porosity feature of the GF which provides short 

pathways for ion diffusion and charge transportation, the dual charge storage mode in 

the composite, and the excellent mechanical properties of the GF. Due to its high 

flexibility and void spaces, the GF played successfully the role as a holder and 

stabilizer for the electroactive materials in protecting them from any structural 

degradation during the repeated ion intercalation-de-intercalation processes.  

In the SiC project, we have successfully created extremely light-weighted SiC foams 

with a density range of 9-20 mg cm-3, with various shapes, by using the GF as 

templates. These foams are the lightest reported SiC structures, and they consist of 

hollow trusses made from 2D SiC and long 1D SiC nanowires growing from the 

trusses, edges and defect sites. The 1D SiC nanowires, being confirmed as 3C-

structure, appeared in a variety of shapes and sizes and are highly flexible; the 2D SiC 

is hexagonal, and upon breakup the resulting 2D nanoflakes have an average size of 

2 µm and a thickness value of 2-3 nm which is 5-9 layers of SiC. They, to the best of 

our knowledge, are probably the thinnest and largest reported SiC flakes. 
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Ultimately, in this research we have successfully produced two extremely lightweight 

and simultaneously strong foams: the GF and SiC foam. We have explored the GFs 

by efficiently addressing a key issue in the cycle life of energy storage devices, by 

creating an ideal architecture of such 3D GF-based electrodes. We have developed a 

completely novel 3D SiC structure made from continuously linked 2D layered SiC 

reinforced with 1D SiC nanowires. In-situ compression studies have revealed that both 

the GF and SiC foams can recover significantly, up to 85% in the case of GF, after 

compression strain exceeding 70%. The SiC foam did not experience any dramatic 

failure under the compression loads, as do in conventional ceramics. Compared with 

most existing lightweight foams of similar density, the present 3D SiC exhibited 

superior compression strengths and an significantly enhanced strength-to-weight 

ratio.  
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Chapter 1 : Introduction 

Graphene has lots of superior properties that are important for materials science, 

physics, electronic and chemistry. It has a large theoretical surface area of 2630 m2 g 

1, excellent thermal conductivity (5000 W m-1 k-1) 2, very high intrinsic mobility (200 000 

cm2 v-1 s-1) 3, and a very high Young’s modulus of 0.5 TPa 4. Therefore, extensive 

research worldwide has been invested in the fabrication and modification of graphene, 

to take advantage of these remarkable values to develop high performance graphene-

based devices.  

This wonder material has the potential to replace many materials including silicon, 

indium tin oxide (ITO), titanium oxide, plastic, and glass. It has been used to make 

ultrafast transistors as electrons can travel along the material at extremely high speeds 

5. It could also be used to replace the expensive and brittle ITO to create flexible touch 

screens 6. Further, graphene beats diamond in the thermal conductivity, and is about 

200 times stronger than steel. 

However, despite all these astonishing properties and promises, there are some 

intrinsic issues with graphene that need to be overcome. On top of the zero-band gap 

issue which restricts its full applications in electronic devices, its principle structure or 

single layer one atom thick feature does not suit many applications. Instead, few layer 

graphene can contribute much more efficiently to device performance.  

A 3D network of few layered curved graphene or graphene foam can transform 

efficiently the merits of 2D graphene to the macroscopic level. By increasing the 

number of layers, the thermal, mechanical and electronic properties of graphene 
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changes correspondingly, and it also exhibits many advantages over the bulk graphite 

and other materials in terms of thermal and mechanical properties 7. 

In a 3D network of graphene, one can take advantage of both the strong in-plane 

covalent bond and the π-π stacking between layers. While the covalent bonds are 

interesting by nature as they are responsible for the mechanical strength of the 

materials, the non-covalent π-π interactions are attractive too as they allow fast 

movement between graphene layers. They can be used for both structural 

modifications such as engineering specific 3D architectures, and for generating new 

1D, 2D and 3D materials. Thus it offers more chances for the so-called graphene 

revolution.  

With this in mind, this thesis investigates the use of specifically engineered 3D 

graphene networks to address some concerns with energy storage devices, and to 

develop new structured materials.  

Energy density, power density and cycle life are the three most important parameters 

of electrochemical devices. Despite the astonishing properties of single layer 

graphene such it its high surface area, high flexibility and high electrical conductivity, 

still much in-depth research are needed to allow this truly 2D materials to replace the 

conventional electrode architecture. Between existing concerns and the promising 

future of graphene, we decided to explore the possibilities of few layer graphene for 

further development in the electrode architecture   

Strictly speaking, this PhD research seeks to tackle the problem of cycle life by 

designing new electrode architectures with minimum structural loss after long term 

charge-discharge cycles. The proposed 3D graphene-based architectures are also 
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expected to bridge the gap between capacitor and battery, showing minimum 

compromise between the specific energy density and the specific power density. 

Further exploration of the few layer graphene foams will be focused on using them as 

the starting material for the production of new materials, specifically SiC, as such new 

possibility could emerge for generating 2D and 2D SiC from these graphene networks. 

It is likely that under optimum experimental conditions graphene flakes could transform 

to SiC nanoflakes.  

Thesis format 

The thesis has been structured to include 8 chapters including the Introduction.  

Chapter 2 provides an overview from the literature and research inherent in the 

graphene synthesis and applications, with particular focus on the energy storage. 

Chapter 2 also identifies the structural relations and similarities between graphene and 

SiC, and the possibility of producing novel SiC structures. Chapter 3 describes the 

laboratory techniques that have been used for this project, focussing on sample 

preparation methods and the types and operation of instruments used. 

The main research work is presented in Chapters 4-7. Chapter 4 describes the 

synthesis and general structural characterisation of the as-produced GFs. The 

application of GFs in supercapacitor system and their role as the scaffold in various 

3D electrodes are discussed in Chapter 5, with focus on the GF-Polypyrrole 

composites as the electrode for supercapacitors.  

Chapters 6 and 7 will focus on the SiC study. The newly explored phase of 3D SiC, 

the ultra-thin 2D SiC nanoflakes and the 1D nanowires will be presented in Chapter 6. 
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Chapter 7 investigates the mechanical properties of both the GF and SiC foams, using 

in-situ compression technique.  

Finally, Chapter 8 highlights the new knowledge gained from this thesis and 

recommends potential avenues for future research. 
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Chapter 2 : Literature review   

2.1 Graphene discovery 

It was long believed that nature forbids the growth of large, free-standing 2D 

dimensional crystals, and that it was impossible to thermodynamically stabilize a one 

atomic thick layer. It was postulated that one could grow flat molecules into nm-sized 

particles and crystallites, but as their lateral size increased, the phonon density would 

force the 2D crystallites to morph into a variety of stable 3D structures 5. Stabilising 

through a supporting substrate was the main accepted solution for stabilising a 2D 

material, and the so-called quasi-two dimensional films were believed to relax 

themselves on supporting substrates 8. Despite all earlier theories, and the fact that 

the history was against 2D materials, in 2004, a very simple approach to obtain 

graphene led to a revolution in the 2D materials field.  

Andrew Geim and Konstantin Novoselov, at the University of Manchester, joint 

winners of the Nobel Prize in Physics in 2010, first isolated single layer graphene, from 

3D graphite by using a micromechanical cleavage strategy. By using the top-down 

approach and starting with 3D crystals, the researchers avoided all the issues 

associated with the stability of low-dimensional crystallites 9. The resulting graphene 

sheet was attached to the SiO2/Si substrate by only Van der Waals forces, and hence 

was  presented as free-standing 2D materials after etching away the substrate 10.  
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2.2 Graphene structure 

Graphene is a 2D planner sheet of sp2 hybridized carbon atoms arranged in an 

hexagonal crystal lattice with the C-C bond length around 0.142 nm. Its extended 

honeycomb network is the basic building block of several carbon allotropes. It can be 

assembled and stacked to form 3D graphite, rolled to form 1D nanotubes, and 

wrapped to form 0D fullerenes 11. Recently, a phase transformation from graphene in 

thin diamond film was also reported in the literature 12. Compared with other carbon 

allotropes, graphene has showed a wide range of unusual features and properties 

which can be explained by understanding the crystal structure, its sp2 hybridisation 

and its unique physics laws.  

In a graphene sheet, carbon atom bonds covalently to its neighbour atoms and due to 

the one atom thickness of the material, sp2 hybrid needs to take place to stabilise the 

honeycomb network. The sp2 hybridization between one S orbital and two P orbitals, 

Px and Py, leads to a trigonal planar structure with the formation of a σ bond between 

carbon atoms that are separated by a distance of 0.142 nm, Fig 2.1. The σ band is 

responsible for the robustness of the lattice structure in all carbon allotropes. 
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Fig 2.1 The orbital structures of graphene11 .  

The unaffected P orbital, Pz, which is perpendicular to the planar structure, can bind 

covalently with the neighbouring atoms, which leads to the formation of a π band. The 

π orbitals are half-filled and delocalized throughout the structure, such that all 

conjugated chemical bonds are equivalent 13,14. The long-range π-conjugation in 

graphene yields extraordinary thermal, mechanical, and electrical properties 10. The 

stability of the extended, delocalized π-system and the resonance network provides 

the basal plane of graphene with the required chemical stability 13. 

From a chemist's point of view, graphene can be treated as a surface material without 

a bulk contribution 13, and indeed it is. Being one atom thick, every atom in a graphene 

film is at the surface and contacts directly with the surrounding environment, which 

opens up numerous opportunities for graphene modifications and for new device 

fabrications 15. However, since it is surface materials, this could also result in a fast 

degradation for the devices. 
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Regarding the graphene reactivity, it has been shown that its basal plane is fairly 

stable, and it is the edges and defect sites that are mostly involved in reactions 16. The 

edge structure of a 2D graphene plays a significant role in the reactivity of the material, 

and can be used to tune its electronic behaviour and thus properties 17.  

Generally, graphene grain boundaries are defined as defects (represented with D peak 

in a Raman spectrum), and it is believed that they degrade the electrical, thermal and 

mechanical properties of a graphene film 18. However, the challenge is that the edge 

structures and chemical terminations of graphene synthesized by various methods are 

unknown, and are not easily controllable 19.  

Two types of edge structures have been studied for graphene: the zigzag and the 

armchair. Fig 2.2 shows a schematic of these edges. Both edges have a regular 

hexagonal structure and they are defined by the orientation of the hexagons relative 

to the ribbon length. Thermodynamically, armchair edges are generally more stable 

than zigzag edges due to a less aromatic feature in the latter 20. In the zigzag edges, 

there is a nonbonding edge state which is the origin of electronic, magnetic and 

chemical activities. Compared with armchair edges, zigzag edges also have a higher 

electron density of states near the Fermi level 21. Armchair edges do not have such a 

feature in their structure. 
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Fig 2.2 The edge structures in a 2D graphene nanoribbon 21.  

 

Other edge types with polygonal structures, e.g. pentagon and heptagon, were also 

reported 24. There is a less discussed edge structure, called the ‘reczag’ edge which 

is the reconstructed zigzag edge. Theoretical calculations have shown that zigzag 

edges are metastable and a planar reconstruction into pentagon-heptagon 

configurations spontaneously takes place at room temperature 22.  

It has been shown that the crystallographic orientation in graphene significantly alters 

its overall properties, and further affects the performance of graphene-based devices 

17. Based on these investigations, a good understanding of the graphene edge 

structures is critical, and should be considered during designing any graphene 

modification experiments or device fabrications. An effective way of limiting the 

negative effects of the edge on device performance is to reduce the number of the 

edges in graphene by using large rather than small graphene flakes with lots of 
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uncontrolled grain boundaries 18. Using the D peak in a Raman spectrum is a good 

way of assessing the level of defects in graphene.  

2.3 Graphene synthesis 

Several techniques have been successfully developed in the past years for graphene 

synthesis, of which the mechanical exfoliation 23, chemical vapour deposition (CVD) 

on transition metals 24, GO reduction 25, and the SiC graphitisation 26, are the most 

notable ones. The quality, quantity, morphology and properties of the resulting 

graphene vary significantly from one method to another, and each approach has its 

own advantages and drawbacks.  

2.3.1 Exfoliation approach 

The mechanical cleavage or exfoliation technique was first used by the Manchester 

team to isolate a 2D graphene sheet from the highly oriented pyrolytic graphite. The 

resulting sheets are shown in Fig 2.3 27. Since that time, this method has been widely 

used to produce graphene. To exfoliate a single-layer sheet, the Van der Waal 

attraction between the first and second layers must be overcome without damaging 

any subsequent sheets. The main advantage of this technique is the high quality of 

the produced graphene. Despite huge progresses in alternative methods, this simple 

mechanical exfoliation with tape still produces one of the highest quality graphene 

flakes. However, this method is un-scalable, only capable of producing very limited 

quantities 27. Alternative approaches for the mass production of graphene are thus 

required.  
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Fig 2.3 Optical and AFM images of graphene films prepared by mechanical exfoliation. (A) Optical (in 

normal white light) picture of a relatively large multilayer graphene flake with a thickness of 3 nm on top of 

an oxidized Si wafer. (B) AFM image of a single layer graphene 27. 

                     

2.3.2 CVD method  

Shortly after the first mechanical exfoliation of graphene, CVD method became 

extensively used for the production of graphene 16,28-30.  During the process, the 

nucleation and growth of graphene usually occur through the exposure of a transition 

metal surface to a hydrocarbon gas, under specific gas pressure and temperature 

conditions 26. The first CVD graphene was grown on 25 μm thick Cu foils 26.  It has 

been shown that the growth of graphene on Cu occurs via a surface adsorption 

mechanism, a self-limiting process that mostly yields single layer graphene rather than 

multilayer ones 31. 

A typical growth procedure is: (1) loading the tube with the Cu foil and heating to 1000 

ºC under continuous flow of  H2 and Ar; (2) stabilizing the Cu film at the desired 

temperatures, up to 1000 ºC, and introducing the carbon source; (3) cooling down the 

B 
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furnace  to the room temperature; (4) coating the surface of graphene-Cu with PMMA 

or PMDS to protect the graphene; and finally (5) etching away the Cu foil in an aqueous 

solution of iron nitrate. The etching time was found to be a function of the etchant 

concentration, and the area and the thickness of the Cu foils. After that, the produced 

graphene can be transferred to a suitable substrate, such as SiO2/Si, for 

characterisations and for device fabrications 24,32,33. 

Fig 2.4 presents images of the first synthesised graphene by the CVD method. As 

shown, a large area, 30 inch in length, single layer graphene has been successfully 

prepared by using a flexible copper substrate 33.  

 

Fig 2.4 SEM images of the first CVD-grown graphene film 32. 

The growth of monolayer graphene on single crystalline transition metals such as Co, 

PT, Ir, Ru, and Ni, has been reported in the literature 26. Furthermore, polycrystalline 
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Ni and Cu foams have also been used as templates for the CVD graphene growth. 

With specifically designed features of the Ni foam, such as porosity level, density and 

thickness, together with optimised process parameters including the reaction time and 

concentrations of the carbon source, the graphene products can be engineered to 

exhibit desired features 26. Compared with the Cu substrate which yields single layer 

graphene, the Ni template generally results in the formation of few layer graphene, 

especially at the grain boundaries. 

2.3.3 SiC graphitisation 

High quality graphene sheets were also prepared by a SiC graphitization technique, 

using both ex-situ and vacuum SiC annealing procedures17,28. By controlling the 

crystal orientation of the SiC, one can control the number of graphene layers. The 

growth on the C-face of SiC results in the formation of a few layer graphene with very 

high mobility; whilst the growth on the Si-face of SiC yields single and double layer 

graphene 15.   

One of the main advantages of this method is the avoidance of transferring the formed 

graphene to an insulating substrate for further device development, as SiC is an 

extrinsic semiconductor. However, the high cost of SiC and the relatively small size of 

available SiC wafers, significantly limit the use of this technique for large scale 

applications 15,26. 

Ultimately, it is worth noting that chemical routes, such as CVD and GO reduction 33-

35, are preferred over the micro-cleavage or SiC graphitisation for the large scale 

production of graphene.  
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2.4.  Substrate effects on the measurement of graphene 

Since the discovery of graphene, the search for efficient substrates that improve the 

measurement of monolayer graphene has been the main focus of many researchers, 

as it has been shown that the underlying substrate unavoidably affects the charge 

transport properties of graphene.  

So far, graphene layers have been prepared on a variety of substrates, including 

SiO2/Si, SiC, metal surfaces, and mica 36. The first graphene reported in 2004 was 

deposited on a SiO2/Si substrate. The 300 nm thick SiO2 layer deposited between the 

Si wafer and the graphene layer has two functions. First, its thickness was optimized 

to maximize the optical contrast between the graphene flakes and the substrate, in 

order to allow the flake being observed. Second, the SiO2 layer acted as a gate 

dielectric. However, due to the high thickness of the SiO2 layer, the resulting device 

transconductance was very low, severely degrading the device properties 15. 

In the case of SiO2, the most commonly used substrate for graphene devices, the 

presence of impurities induces charge density fluctuations that lead to a reduction in 

electronic mobility. Suspension of graphene sheets over a hole has been successfully 

attempted to remove the unwanted effects of SiO2 substrates, but these devices are 

difficult to fabricate and to measure using scanning probe techniques 36.  

BN substrates however have been reported to result in extraordinarily flat graphene 

layers that display microscopic Moire patterns arising from the relative orientation of 

the graphene and BN lattices 38,39. Transport experiments have shown that the 

graphene/BN combination generated a higher mobility than that of graphene/SiO2 
37,38. 

The gate-dependent dI/dV plots of graphene on the BN substrate exhibit spectroscopic 
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features that are sharper than those obtained for graphene on SiO2, which was 

attributed to the more homogenised charge density and improved local electronic 

properties 36. Fig 2.5 illustrates the graphene/BN device integrated into an ultrahigh 

vacuum STM. 

 

 

 

Fig 2.5 Optical image of graphene/BN device integrated into STM. The graphene is grounded via a 

gold/titanium electrode 36. 

By carefully controlling the graphene-substrate interface, an optimised substrate can 

be designed, which allows for proper characterisations with a minimum contribution 

from the substrate 15. A comparative investigation between existing substrates 

suggests that preparing suspended graphene on an appropriate hole, is the best 

approach for eliminating substrate inferiors.    
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2.4 Graphene Properties 

Graphene is a truly 2D material with very rich physical and chemical properties. Owing 

to its atomic level thickness, the 2D hexagonal carbon lattice possesses remarkable 

electrical and thermal properties. Graphene also has a robust but flexible structure 

with unusual phonon modes that do not exist in ordinary 3D solids 13,14. Interestingly, 

these properties can be easily tuned by chemical doping, structural modification, the 

application of electric and magnetic fields, and by the addition of extra layers 14.    

2.4.1  Electronic properties of graphene 

The most explored aspect of graphene is its electronic properties, and some of its key 

features make it truly unique and different from any other materials. First, graphene is 

an interesting mix of a semiconductor zero density of states and a metal. Further, the 

electrons in graphene lose their effective mass and almost insensitive to disorder and 

electron-electron interactions, and can be described by a Dirac-like equation instead 

of by the Schrödinger equation used in traditional semiconductors 5,14. This very low 

effective mass is responsible for a very high electron mobility which exceeds 200,000 

cm2/Vs at T = 5 K and 100,000 cm2/Vs at T = 240 K in suspended graphene, the 

highest ever reported for any semiconductor. The electron mobility of graphene is up 

to 150 times greater than its electronic opponent Si. The actual velocity is equivalent 

to about 1/300 of the light velocity 17,19,39. The symmetry of the honeycomb lattice 

structure also confers very unique transport properties to graphene 13. Its sheet 

resistance has been measured by both four probe and two probe systems, and 

resistance values of 125 Ω cm-1 and 30 Ω cm-1 at 97.4% and 90% transparency were 

reported 30,33.   
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Furthermore, the electronic structure of graphene nanoribbons has been predicted to 

depend sensitively on the crystallographic orientation of their edges. Some of the 

reported edge dependant features are: zigzag-edges with 7 – 8 nm average width are 

metallic, owing to the presence of zigzag edge states; nanoribbons with a higher 

fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-

edged ribbon of similar width 17. 

2.4.1.1  Band gap problem in graphene  

One of the very challenging facts about graphene is its zero-bandgap, in which the 

conduction and valence bands touch each other at a point called the Dirac point 15. 

Being only one atom thick, graphene holds big promises for electronic applications, as 

it could be performed perfectly for high frequency applications. However, its bandgap 

structure issue needs to be overcome first. Fig 2.6 illustrates the band structure of 

graphene.  

In usual semiconductors, the electron motion is described by an effective-mass 

approximation, in which the wave function has vanishingly small amplitudes at the 

boundary. In graphene, however the condition that the wave functions vanish at the 

boundary cannot be imposed. As a result, the amplitudes of the wave functions are 

almost the same at the edges as on the inside of a graphene ribbon 39. 
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Fig 2.6 The band structure of graphene. (a) hexagonal lattice of graphene (b) and (c) illustrations of the 

band gap structure 40. 

 

Various attempts to introduce a band gap for the purpose of converting graphene into 

a semiconductor have been documented. Owing to the proven dependency of the 

band gap to the crystal orientation at its edges, one of the efforts was to create an 

effective electronic active edge on graphene ribbons, as it was believed that graphene 

nanoribbons with narrow widths (below 20 nm) can generate such a bandgap 21,39. 

However, the edges of the ribbons fabricated by conventional lithography techniques 

suffered from a disordered structure and were far from the ideally well-defined band 

gap. Similar studies tried to engineer the band gaps by fabricating nanoribbons for 

graphene transistors, but the results were not very successful 15,30. 

An alternative approach to open the band gap was to apply vertical electric fields into 

a bilayer graphene. Although this method has been successful in opening optical 

bandgaps (100 – 200 m eV), the electrical bandgap has been much smaller than 
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expected (< 20 m eV), and more work is needed to understand the full potential of this 

technology 15,30. 

2.4.2 Mechanical properties of graphene 

Graphene has been recognized as the strongest, stiffest, and the most stretchable 

crystal, up to 20% elasticity 10, in the world. It has been extensively investigated as 

reinforcements for many purposes, including making composites, and for energy 

storage materials 41. One interesting technique for evaluating the mechanical property 

of single layer graphene is the AFM-assisted experiments by suspending it over open 

holes, so that substrate influence can be eliminated 42,43. As shown in Fig 2.7, the 

graphene sheet was stretched tightly across the hole opening. Values of 42 N m-1 and 

1.0 T Pa were reported as the intrinsic strength and Young’s modulus, respectively. 

These results confirmed experimentally the excellent mechanical strength of a free 

standing graphene 28.   

 

Fig 2.7 Images of the graphene prepared for mechanical measurements. (a) An SEM image of suspended 

graphene on a SiO2/Si substrate, and (b) schematic of AM nono-indentation experiment on graphene 28. 

a 
b 

3 µm 
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Similar AFM nanoindentation study on few layer graphene (less than 5 layers) reported 

0.5 TPa as the Young’s modulus for sheets with a thickness of 2 - 8 nm, at a high 

stretching rate of 100 nm s-1 42. Fig 2.8 shows the load-displacement curve of the 

measured graphene sheets.  

      

Fig 2.8 Load-displacement curve of the suspended sheet 42. 

These high Young’s modulus and high intrinsic strength of graphene made them a 

strong candidate for use as a reinforcement in many materials, to make advanced 

composites 44,45. The stress transfer in graphene reinforced polymer composite can 

be well-traced and monitored by advanced Raman spectroscopy, by monitoring the 

Raman band shifts which are related to the stress transferring 45. 

A study on graphene/polyvinyl alcohol (PVA) composites reported a 150% 

improvement in the tensile strength and a nearly 10 times increase of Young’s 

modulus (compared with neat PVA) at a graphene loading of 1.8 vol% 46. Other studies 

compared the mechanical properties of 3 epoxy-based composites containing 

graphene platelets, single-walled CNTs and multi-walled CNTs.  Compared with pure 
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epoxy, the epoxy-graphene showed a 31% increase in Young’s Modulus, while in the 

case of CNTs the increase was only 3% 46. This superiority of graphene platelets over 

CNTs in terms of mechanical properties was attributed to the high specific surface 

area, enhanced nanofiller−matrix adhesion/interlocking, and the two-dimensional 

geometry of graphene platelets. 

2.4.3 Optical properties of graphene 

Graphene is the first experimentally available 2D chiral material. However, the origin 

of the optical properties lies in the 2D nature and gapless electronic spectrum of 

graphene, and does not directly relate to the chirality 47.  Despite being only one atom 

thick, graphene is found to absorb a significant amount of incident white light (2.3%), 

Fig 2.9, as a consequence of its unique electronic structure. It has been discussed, 

the opacity increases with the thickness, and each graphene layer adds another 2.3% 

absorption 47.  

 

Fig 2.9 The optical properties of graphene. (a) Photograph of single and bilayer graphene suspended on a 

50 µm device and (b) Light transmittance- distance curve also shown in image 47. 
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2.4.4 Thermal properties of graphene 

Thermal conductivity of any material is a very important feature as it defines the 

structural capability and thus the applications. Carbon allotropes and their derivatives 

occupy a unique place in terms of their ability to conduct heat. The room temperature 

thermal conductivity of carbon materials shows an extraordinary large range from the 

lowest in amorphous carbon to the highest in low dimensional carbon materials 48. 

Thermal conductivity (K) measurements can be divided into two types: the steady state 

49, and the transient state 50. 

 In transient state measurements, the thermal gradient is recorded as a function of 

time, enabling fast measurements of the thermal diffusivity (DT) over large T ranges. 

Cp and mass density (ρm) have to be determined independently to calculate the 

thermal conductivity from the following equation 51: 

𝐾 = 𝐷𝑇𝐶𝑃𝜌𝑚       (2.1) 

where K is the thermal conductivity, T the temperature, Cp specific capacity, D thermal 

diffusivity, and ρ is the density.  

Although many methods rely on electrical means for supplying heating power and 

measuring T, there are other techniques where the power is provided by light. In 

steady-state methods, T is measured by thermocouples. The thermal properties of 

graphene were first measured by an optothermal Raman technique 2. In this method, 

the heating power ΔP was provided by a laser light focused on a suspended graphene 

layer connected to heat sinks at its ends, as shown in Fig 2.10.  
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Fig 2.10 Schematic of the Raman optothermal measurement showing the excitation laser light focused on 

a graphene layer suspended across a trench. The focused laser light creates a local hot spot and generates 

a heat wave inside SLG propagating toward heat sinks 2. 

During the measurements, the suspended graphene layer was heated by increasing 

the laser power. The G peak in the Raman spectrum of graphene exhibits a strong T 

dependence, thus allowing for converting a Raman spectrometer into an ‘optical 

thermometer’. Following equation was used to obtain thermal conductivity, K, of 

graphene: 

𝐾 = 𝜒𝐺(
𝐿

2ℎ𝑊
)(

𝜕𝑤

𝜕𝑃
)-1           (2.2) 

Using this method, a maximum value of 5300 W/mK was obtained as the thermal 

conductivity of the suspended single layer graphene at room temperature 2. This 

extraordinary heat conduction of graphene extends its range of applications, as 
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promising thermal management materials in optoelectronics, photonics, and 

bioengineering devices, or as heating elements for industrial blast furnaces 8. 

The thermal expansion coefficient of graphene was measured to be ca. –6 × 10−6 /K 

which is 5 – 10 times larger than that of ordinary graphite 52. Negative thermal 

expansion is a rare case in which the material contracts upon heating rather than 

expanding as most materials behave. This large negative thermal expansion 

coefficient, which is a direct consequence of the two-dimensionality of graphene 

originating from the abundant out-of-plane phonons, and could play an significant role 

in the management of thermal stress in graphene-based devices 52. 

2.5 Graphene modification 

The modification of graphene with various materials has been considered as the main 

strategy towards tailoring the functionalities and expanding its applications 16. 

Chemical modification can lead to entirely new physical properties for graphene. 

Depending on the nature of chemical dopants and on how they are introduced into the 

graphene lattice, such as adsorption, substitution, or intercalation, the results vary. 

Significant efforts have focused on covalently functionalizing graphene to achieve 

band gap tuning and modulation. In contrast to the non-covalent functionalization, the 

covalent schemes are more robust, imposing strong changes to the electronic 

properties due to the disruption of the crystallographic lattice 13. the exploration of 

applications in catalysis and energy has become a hot research subject 2.  

Simple N-doping is one of the interesting approaches to functionalise graphene, and 

can lead to the n-type transistor behaviour 11,53. N-doping methods include NH3 + H2 

plasma 54, electrochemistry modification 55, chemical N-doping 56, and electrothermal 
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doping 53. High power electrical annealing 57 and e-annealing in NH3 atmosphere have 

also been used successfully to dope graphene and the n-type behaviour has been 

achieved, as expected. It is believed that the annealing process preferably introduced 

the N dopant at the edges and defect sites 53. 

Another very promising application of the functionalised graphene is in the renewable 

energy field. The N-doped graphene has been documented as a successful metal-free 

catalyst for oxygen reduction reaction (ORR) in PEM fuel cell 58. In contrast to the two 

steps two electrons process for pure graphene, the N-doped sample showed a one-

step four electrons mechanism for the ORR, as detailed in Fig 2.11. N-doped graphene 

also showed less sensitivity to the CO than traditional Pt/C electrocatalyst which is 

poisoned quickly under CO effect 58.  

 

 

Fig 2.11 (a) LSV curve of various electrodes in air-saturated 0.1 M KOH electrolyte and (b) 

Chronoamprometry response of the electrodes 58. 
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Co-doping with two or three hetero atoms is becoming another new topic in graphene-

doping research 59,60. It has been shown that co-doping with two elements, one with 

higher and one with lower electronegativity than that of C (c = 2.55), for example, B (c 

= 2.04) and N (c = 3.04), can result in a unique electronic structure with a synergistic 

coupling effect between heteroatoms. It has been discussed that co-doping makes 

such dual-doped graphene much more catalytically active than singly doped graphene 

catalysts. B- and N-co-doped graphene was prepared by a two-step doping method, 

and was tested as catalyst for ORR. The new catalyst showed higher activity in the 

ORR and better selectivity for the four-electron ORR pathway in an alkaline medium, 

than that observed for singly B- or N-doped graphene 59-61. 

Oxygen functionalization has also been discussed in the literature and there are many 

ongoing works on functionalising GO 62. In addition to the effects of the oxygen 

functional group on the property of the base materials, the chemistry and structure of 

GO make it very appropriate templates for creating a wide range of materials and 

composites. It is covalently bonded to oxygen-containing functional groups either on 

the basal plane or at the edges, so that it contains a mixture of sp2- and sp3-hybridized 

carbon atoms 46.  

Compared with graphene, GO showed some advantages over graphene including the 

improved water solubility, whereas after the oxygen functionality groups being 

removed, the resulting graphene sheets cannot be dispersed in water, instead they 

aggregate and eventually precipitate 34.  
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Finally, it is worth noting that the chemistry of graphene remains largely unexplored 

and indeed it is less developed than its physics, thus more works are required in this 

field.  For example,  the functionalization and optimised modifications of graphene 

could lead to solutions for a number of challenging problems associated with 

graphene, such as the solubility and the band gap problems 11.  

2.6 Few layer graphene and graphene foam  

Although single layer graphene has showed extraordinary properties, for specific 

macroscopic applications multilayer graphene is more preferable in some areas 30. A 

bilayer graphene consists of two graphene sheets which bonded together via the weak 

Van der Waals force, and the electronic states become quite different from those in 

monolayer graphene due to strong interlayer interactions 39. It has been shown that by 

increasing the number of layers, the properties of graphene differ significantly from 

those of single layer ones 48.  

Three dimensional graphene or the so-called graphene foam (GF) has also been 

prepared by a temple-assisted CVD method using Ni and CH4 as the template and 

carbon source, respectively 63. The free-standing GF is extremely light and flexible, 

consisting of an interconnected graphene network. To obtain GFs, before etching 

away the Ni skeleton by a hot HCl (or FeCl3) solution, a thin layer of poly-methyl 

methacrylate (PMMA) was deposited on the surface of the GFs, as a support to 

prevent from their collapsing during the etching. After the PMMA layer was carefully 

removed by hot acetone, the GF, a monolith of a continuous and interconnected 

graphene 3D network was obtained, normally accompanied with a small shrinkage in 

overall dimension. The GF copies and inherits the interconnected 3D scaffold structure 
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of the Ni template, and the graphene sheets appear to be in direct contact with each 

other 63. 

 

2.7 Applications of graphene  

The unique and excellent mechanical properties, rich electronic and thermal properties 

of graphene have motivated intense research virtually across all disciplines. Graphene 

has shown very promising uses for high frequency electronics 64, advanced sensors 

65, transparent electronics 23, low-power switches 66, solar cells 67, and energy storage 

applications15,68 . Here we focus on the main applications of graphene in the electronic 

industries and in the energy storage field.  

2.7.1 Graphene in electronic devices 

The high flexibility, atomic thickness, and unusual electronic properties of graphene 

have attracted extensive researches to develop new electronic devices in an effort to 

overcome the difficulties with traditional materials, such as the main limitations of 

traditional radio frequency electronics in terms of maximum frequency, linearity, and 

power dissipation 15. 

The higher mobility of graphene allows higher operating frequencies for frequency 

doubling in high efficiency operations and mixer applications than existing materials 

17,67. Graphene is an ideal material for flexible electronics 23. Furthermore, the 2D 

geometry, in combination with the excellent chemical and thermal stability of graphene 

makes the fabrication of graphene circuits fully compatible with and merged into silicon 

technology, which is the main material of the semiconductor industry. Field effect 
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transistors and transparent conductive films based on graphene have already been 

fabricated 15,68. 

Andre Geim et al. have succeeded in fabricating a field-effect transistor (FET) made 

of graphene on a Si/SiO2 substrate 39. Graphene can be used in touch screens too, as 

it meets the electrical and optical requirements for transparent conductive electrodes. 

It also benefits from the advantage of high flexibility and robustness, which make it 

superior to indium titanium oxide (ITO) in some aspects 39. Spectroelectrochemical 

studies on graphene based electrodes in a comparison between ITO and graphene-

based optically transparent electrodes (G-OTEs), showed that while the ITO 

transmittance drops significantly at about 375 nm, the G-OTEs have a broad optical 

transparency, Fig 2.12, suggesting that the latter is highly suitable for 

spectroelectrochemical purposes over the entire UV–Vis region 69. 

 

Fig 2.12 Transmission spectra of G-OTE and ITO on quarts (24 nm thick, solid black line and 8 nm, solid 

grey line) 69.  



49 
 

 

2.7.2 Graphene in energy storage 

The extraordinary mechanical strength, very high surface areas, high flexibility, and 

excellent conductivity make graphene very promising for energy storage uses. 

Graphene can be used as the electrode materials 70, current collectors 71, scaffold 55, 

and reinforcement in this area 29,72.  In this section, we first discuss in detail the 

mechanism of energy storage in the electrochemical devices, then we will focus on 

the graphene based materials and summarise why they are considered suitable for 

uses as electroactive materials.   

2.7.2.1  Electrochemical energy storage  

Electrochemical energy storage systems (EESSs), e.g. batteries and supercapacitors, 

store electricity electrochemically via a charge-discharge process associated with 

chemical reactions that take place in the anode or cathode. The performance of an 

electrochemical system is evaluated by three parameters: power capability, cycle life 

and energy density. The electrode kinetics and mass transport are the key to the 

performance of electrochemical devices, because an improved kinetics can: (a) 

directly enhance the power capability 72, (b) improve the system’s reversibility and thus 

the cycle life 73, and (c) improve the material utilisation and hence the energy density 

74. Reducing the electron transport length and the ion diffusion distance during charge-

discharge processes is an effective strategy to improve the efficiency of the system 73-

75.  
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2.7.2.2 Conventional architecture of energy storage electrodes 

Energy storage electrodes traditionally have a 2D plane structure with a layer of redox 

active material attached to a planar current collector. This structure suffers from a 

trade-off between the energy and power densities on a given apparent area of the 

current collector. This is because the kinetics of thicker films of the redox active 

material becomes poor, leading to a low power capability.  

Fig 2.14 shows a Ragone plot of various EESSs. As shown, batteries sit in the far right 

of the plot and capacitors stand on the far left. This different is related directly to their 

energy storage modes and electrode architectures. In battery, both the surface and 

the bulk of electroactive materials are involved in the energy storage process, thus the 

thickness does play a big role in the energy density and power density of the system. 

In capacitors, the charge storage process occurs only on the surface via charge 

separations, so naturally they have very high power density, i.e. very quick charge-

discharge cycles.  
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Fig 2.13 Ragone plot of various electrochemical energy storage devices 76. 

 

One of the very interesting EESSs is the ultra-capacitor or supercapacitor which 

stands in the middle of the Ragone plot, expressing the compromise between the two 

edges. Obviously, this plot and performance is not optimum. Nature demands system 

with battery-like energy density and capacitor-like power density. The gap between 

the two systems could be bridged, if we could design a very efficient electrode 

architecture 77. One proposed architecture to achieve this, is 3D design.   

 2.7.2.3 3D design vs. 2D 

In an efficient 3D architecture, electrodes or devices, the materials do not suffer from 

the high trade-off between the power and the energy as they do in a traditional plane 

2D electrode, since the third dimension allows for storing more energy without the 



52 
 

need of increasing the thickness of electroactive materials, thus the specific power is 

less compromised. The next advantage of a 3D design is that it naturally does not 

need a binder. Conventionally, a considerable amount of conductive fillers and binders 

have to be used during electrode preparation. The electrode materials have to be 

sufficiently thin to achieve good electrode kinetics. Therefore, in a 2D electrode, this 

inherited disadvantage limited the energy and power densities on a given footprint 

area. By combining a thin coating of redox active material with self-supported 3D 

current collectors in a 3D design, not only the conductive fillers and organic binders 

are eliminated, but also the energy and power performances are significantly improved 

77-79. 

2.7.3.3 Ideal 3D electrode structures 

3D structures have been extensively reported as the next generation electrodes for 

electrochemical energy storage. 3D electrodes have been reported for battery 78, 

supercapacitor 80, fuel cell 81, and solar cell applications 82, and to date very good 

results have been reported. However, not all of them satisfy the criteria of an ideal 3D 

structure. In the next section two important types of ideal structure will be discussed. 

Fig 2.14 shows a schematic of an ideal core-shell 3D electrode structure, in which the 

red and black double headed arrows are used to depict the electron transport and 

solid-state ion diffusion lengths of different redox sites, respectively. 
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Fig 2.14 Schematic of an ideal 3D electrode structure 83. 

An ideal 3D electrode requires the redox active material to be a thin coating on a 3D 

current collector. Due to the presence of this 3D current collector, the electrons of any 

redox site only need to reach the conducting core. In addition, the nano/microscale 

current collector is beneficial for a uniform current distribution and hence reduces the 

mechanical stresses during repeated charge-discharge processes 79.  

Another important feature of an ideal 3D structure is that the electrode as a whole is 

continuous and porous, so no added binder is needed. Thus, the space within the 

electrode can accommodate the large volume changes during the charge-discharge. 

Therefore, an ideal 3D electrode not only has a high energy capacity per unit footprint 

area, but also offers improved power performance and a longer cycle life. 

Apart from the above vertically aligned core-shell pillars, various other structures can 

be considered ideal as long as they possess these key structural features.  

2.7.3.3.1 Monolithic and self-supported architectural carbon 

Unlike the conventional powdered carbon materials, carbon monoliths are porous, 

self-supported, and do not require any binder or conductive agent (e.g. carbon black) 
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during electrode preparation 84. Elimination of binders could significantly reduce the 

polarization by lowering the electrical and mass transport resistance. Further, handling 

carbon monolith is much easier than conventional porous carbons, such as activated 

carbon, CNTs and ordered mesoporous carbon 84,85. Different methods have been 

used to prepare monolithic carbon 86-89, including selective etching of carbide 90, nano-

casting with silica template 91, and mould conforming 92.  

Low dimensional carbon materials including CNTs and graphene are at the forefront 

of energy storage research due to their unique structures and high surface areas. The 

theoretical maximum surface area is 1315 and 2600 m2 g-1 for CNT and graphene, 

respectively 93. However, in practical applications, their surface areas are largely 

reduced due to agglomeration and the use of polymeric binders. As a result, the double 

layer capacitances of both CNTs and graphene are far below the theoretical maximum 

values. 

Recent researches have shown that self-supported carbon architectures can be 

synthesised with low dimensional nano-carbon as the building block. These spongy-

like structures are continuous and porous, resembling that of a monolithic carbon. 

Furthermore, they preserve the desirable properties of their building blocks. A typical 

example is the GF prepared by CVD method with Ni foam template 94. The as-

prepared GF is highly flexible and mechanically stable. Similar methods have been 

used to prepare self-supported graphene-CNT foam architectures 95,96. These 

electrodes have revealed a mass specific capacitance as high as 387 F g-1
, with a 

capacitance retention of 99.34% after 85000 charge-discharge cycles 54,55. Using 

graphene or CNTs as the building block, other groups have also prepared similar 
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interconnected architectural carbon electrodes with high electrochemical 

performances by freeze-drying and hydrothermal methods 97,98. 

2.7.3.3.2  Composite electrodes prepared by template-assisted methods 

Monolithic and self-supported architectural carbon stores electrical charges by the 

double layer process. Their unique structures provide excellent power and cycle 

performances, but suffer from low energy density performance. To combat this, the 

incorporation of a thin layer of redox-active materials to make a composite electrode 

is a logical solution. The composite possesses the structural merits of the 

interconnected carbon framework, and the thin coating of redox active material 

enhances the energy capacity. Compared with metal foam current collector, porous 

carbons not only have a higher specific surface area, but also offer additional 

advantages such as low density and a wide electrochemical potential window. A 

common method to prepare this type of composite is electrochemical deposition which 

takes place at the interface between the 3D current collector and the electrolyte 99,100. 

This heterogeneous reaction is highly beneficial for preparing thin and uniform 

coatings of redox-active materials. In a typical example, a porous 3D Ni foam was 

prepared with an opal template. The Ni was further used as a 3D current collector for 

the electrodeposition of NiOOH and MnO2, and the performance is shown in Fig 2.15. 

The composite as a whole is self-supported, uniform and porous, featuring an ideal 

3D electrode. Electrochemical tests unveil its high capacity retention at ultrafast 

charge-discharge rates or charge rates (C-rates) up to 1000C and 400C for NiOOH 

and lithiated MnO2 on porous Ni. These ultrafast C-rates suggest a very high power 

and rapid recharge feature 100. These results have demonstrated that both the power 

and energy density can be notably improved in the ideal 3D structured electrodes.  
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Fig 2.15  Charge-discharge performance of bicontinuous NiOOH/Ni electrodes. (a) Discharge curves of 

NiOOH/Ni cathode at various C-rates. (b) Constant potential charge curves (0.45 V) and 6C discharge 

curves after charging at constant potentials for the indicated time 100. 

Other methods to synthesize a thin coating of redox active material on a porous 

template include magnetron sputtering 101, solution casting 102, chemical vapour 

deposition 102, and hydrothermal method 103. 

 

2.7.3.3.3 Composites prepared by template-free methods 

The template-assisted approach yields well-defined 3D structures controlled by the 

template and synthesis conditions. However, the synthesis processes are normally 

tedious and expensive, hence posing difficulties for commercial production. Some 

recent studies have successfully developed temple-free syntheses of ideal 3D 

electrodes.  

Conducting polymers (CPs) such as polyaniline PANI 104, polypyrrole (PPY), 

polythiophene (PTh) and polyethylene dioxythiophene (PEDOT) are a group of 

commonly used redox active materials in the template-free synthesis of 3D electrodes 
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105,106. Their corresponding monomers are dissolved in a solution that also contains 

dispersed anionic CNTs or graphene. By passing a DC current, the monomers are 

oxidized and deposit at the anode as a polymer, while the anionic CNTs or graphene 

move towards the anode under the electric field. This one-step co-deposition method 

combines the electropolymerisation of the redox active materials with the 

electrophoresis of the low dimensional carbon building blocks. After the co-deposition, 

a conducting scaffold is constructed by the CNTs or graphene and the redox active 

materials form a thin coating on the conducting scaffold 107. Another method is the in-

situ chemical polymerization by adding an oxidizing agent to the aforementioned 

mixture solution 108. An electro-deposited PPY-CNT composite electrode presented 

rectangular CV curves at scan rates as high as 500 and 1000 mV/s 108.  

In addition to the research on CPs, attempts have also been made to synthesize 3D 

electrodes with various transition metal oxides or sulphides using the template-free 

techniques. For example, a NiO-graphene hierarchical structure prepared by 

hydrothermal synthesis displayed discharge capacities of 1098 and 615 mA h g-1 at 

current densities of 100 mA g-1 and 4 A g-1 109. In another study, following the 

hydrothermal synthesis, a post freeze drying treatment was used to preserve the 

porous 3D architecture of the graphene network with a coating of MoS2 or FeOx 
110. 

These resulting large scale composites exhibited high capacities of up to 1200 mA h 

g-1 at a discharge rate of 0.5C. The combined hydrothermal and freeze drying method 

has also been used to produce 3D NiOH-graphene and SnO-graphene porous 

interconnected frameworks with high capacity and cycling stability 111.  

The 3D electrode prepared by the template-free methods generally has a less ordered 

structure compared with those prepared by the template technique. However, both the 



58 
 

ion diffusion and electron transport lengths are minimized, and these binder-free 

electrodes satisfy the criteria of an ideal 3D electrode for electrochemical energy 

storage applications. All of the above temple-free methods used a starting solution or 

dispersion containing the redox active materials and discreet CNTs or graphene as 

the building block. These solution based processes do not require a pre-made 

template, and are less tedious and suitable for scale-up production. 

2.7.4 Graphene foam as electrode support 

Different forms of carbon including graphene, graphite, CNTs, and their monolith 

composites have been the main materials for capacitor electrodes. However, pure 

carbon is incapable of providing the desired energies in systems, which is due to a 

variety of reasons, including non-faradic storage mode, low capacity, p–p stacking in 

few layer graphene, large inaccessible surface area of graphene, and the intrinsic 

microstructure of carbon. To counter all the electrochemical limitations of carbon 

materials, it would be highly desirable to introduce electroactive materials into a 3D 

carbon network. 

 Apart from the main advantages of the 3D structures which have been discussed 

earlier, the open porosity feature of a GF scaffold can also help in stabilizing the 

surface morphology of the redox counterpart, as the pores can function as a host to 

the redox elements and accommodate the strains in the entire electrode structure 

during cycling.   

2.8 Other 2D materials 

After the ground-breaking isolation of a free standing graphene, and subsequent 

discoveries of its extraordinary properties, 2D structures stand out as a new class of 
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valuable materials and have promoted extensive studies worldwide. Other layer 

materials such as h-BN 109, MoS2
 111, NbSe2 

111, complex oxides 113, and transition 

metal carbides such as Ti3AlC2 110, have also been successfully attempted for the 

production of 2D graphene analogues by adopting a similar cleavage technique. 2D 

silicene (a graphene analogue of Si) with both α and β phases was also prepared by 

an epitaxial growth of Si on Ag and Ir surfaces 112. Theoretical studies and physical 

calculation predict the discovery of many other new 2D materials including SiC 112-118.  

Due to the importance of SiC and its wide applications in thermal and electronic fields, 

2D SiC could be a very promising material. In this section, first we review the general 

properties of SiC and following that we will discuss the theoretical studies about 2D 

SiC and the main challenge towards preparing 2D SiC.  

2.8.1 SiC: 3D and 2D structures  

2.8.1.1  General properties of SiC 

SiC is a well-known semiconducting material with outstanding properties, e.g. large 

band gap ( Table 2.1), high electric breakdown field 119, and excellent chemical stability 

and chemical resistance 120. The high thermal conductivity along with low thermal 

expansion and high strength give SiC the exceptional thermal shock resistant qualities 

117. As a ceramic with low grain boundary impurities, SiC maintains its strength at very 

high temperatures, even approaching 1600°C with little losses 118. Light emitting 

diodes (LEDs) 121, field effect transistors 122, solar cells 119, engineering ceramics 120, 

memories 121,  and UV detectors 122, are typical examples of SiC-based devices 123-

127.  
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SiC is composed of tetrahedral structure of C and Si atoms with strong bonds in the 

crystal lattice. Each SiC bilayer can be oriented into only three possible positions in 

the lattice in order to maintain the tetrahedral bonding. The binding between Si and C 

atoms in SiC is predominantly covalent, with only 12% being ionic. Hundreds polytypes 

of SiC have been identified according to different stacking arrangements of the Si and 

C atoms. The most common phases are the cubic 3C (β-SiC), hexagonal 2H, 4H, 6H, 

and 15R (α-SiC).  Table 2.1 summarised the atomic parameters of typical SiC 

polytypes 128-132. 

 

Table 2.1 Atomic parameters of different SiC allotropes 

Material  Phase ratio  Lattice 

constants  

Band gap (eV) Stacking  

3C-SiC 100% Cubic a: 0.436 2.4  ABCABC  

2H-SiC 100% hexagonal   3.2   AB 

4H-SiC  Hexagonal/ 

cubic:1/1 

a:308 

c:0.1512 

3.2 ABCB 

6H-SiC 1/3Hexagonal 

2/3cubic 

a:0.308 

c:0.105 

3.0 ABCACB 

15-R 2/5Hexagonal/3/5

cubic 

  ABCACBCAB

ACABCB 
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In addition to bulk SiC, 1D SiC nanostructures such as nanowires 133, nanowhiskers 

134,  and multi-walled SiC nanotube with two interlayer spacing of 0.38 nm and 0.47 

nm 129, have also been documented extensively. 1D nanostructures have been 

prepared by a variety of methods, including sol–gel, carbothermal reduction 135, CVD, 

laser ablation 136, arc-discharge 137, and metal cluster-catalysed processes 138. 

Compared with the bulk SiC, 1D nanostructures have many advantages, such as they 

have much higher elasticity and strengths. Owing to their high Young’s Modulus, they 

have been used as  reinforcements in ceramic- and polymer-matrix composites 125,129.  

2.8.1.2 3D SiC 

Other widely investigated SiC structure is the 3D type. Among many cellular ceramic 

foams, 3D SiC and its composites have attracted much attention and both open and 

closed cell foams have been synthesised 139,140. The morphological and 

microstructural features of a foam, including the cell types and dimensions, strut sizes 

and void configurations can change significantly, depending on the manufacturing 

procedures, and they can be tuned to suit different applications. For example, ordered 

hierarchical structures can be achieved via the template-assisted synthesis 141 

whereas the sol-gel process suits large and scalable template-free industrial level 

manufacturing 142. The porosity level of the foam is yet another key parameter that can 

be modified by varying the synthesis routes 140, e.g. the replica method produces 

foams with a cell size in a millimetre range; whereas the sol-gel method can result in 

nanometre sized pores 143. By developing new synthesis methods and producing new 

structural features to vary the phase ratio, porosity, density, heterojunctions etc., it is 

expected that new properties and thus extended applications could be explored.  
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Today, ultralight and flexible materials demonstrate successful applications in many 

areas. Graphene foams with air-like density and ultra-flyweight aerogel (1 mg cm-3 

density or lower) have been employed successfully for a wide range of applications 

55,144, and most of these foams showed near-zero Poisson’s ratio. Similarly, the 

development of lightweight, recoverable, strong SiC structures will therefore be very 

beneficial for a variety of purposes where weight, size, energy consumption and 

eventually cost are important.  

2.8.2 Possibility of 2D SiC 

SiC shares many structural similarities with graphite and BN: Firstly, all of them have 

both hexagonal and cubic structures, and their 3D structures consist of layer-stacking 

sequences 145. Secondly, their 3D networks are mainly based on in-plane covalent 

bonds and finally, all of them have high chemical and thermal stability for advanced 

applications146. However, there is a key structural dissimilarity between SiC, graphite 

and BN. In the latter two, they have intrinsic sp2 bond in their hexagonal structures, 

whilst in the former sp3 bonds exist in both the hexagonal and cubic crystals 147. This 

difference could eventually define if a truly 2D graphene-like structure can be 

produced.  

So far, several calculations, including the density-functional theory (DFT) framework 

combined with ab-initio studies, particle-swarm optimization (PSO) technique and 

other studies have suggested that single layer SiC is energetically stable and 

reachable 148-153. Structurally, 2D SiC is expected to have a layer layout half way 

between those of hexagonal planner graphene and folded silicene (0.44 Å buckling) 

154,155. Thus, 2D SiC is expected to stabilise itself through slight folding, and will most 



63 
 

likely be layer as a honeycomb structure, in which the C and Si bond through sp2 

hybrid orbitals to form the SiC sheet 149. 

On top of the high bonding strength of the SiC, there are more than 250 polytypes for 

SiC with completely varied structures and features. Although some 2D structures can 

be easily cleaved from their bulk, it would be difficult for SiC. Bare cleavage does not 

work for SiC, and post-etching process is needed 156,157. Further, existing micro pipes 

in the SiC make the mechanical separation rather difficult, as they reinforce the 

adhesion force between SiC layers 149. Thus, even though 2D SiC is theoretically 

predicted, its production faces many challenges158. 

2.9 summary 

This chapter presented an overall review about the synthesis, properties and 

applications of graphene. Specifically, the discussion focused on the following areas;  

We reviewed the existing approach for graphene production. Both bottom-up 

approaches such as CVD method and Top-down techniques e.g. micromechanical 

cleavage were discussed in details. It was found that different methods result in 

different forms of graphene, namely single layer, few layer or graphene foam, with 

various level of quality.  

1- In the properties part, we described some of the discovered properties of 

graphene with particular focus on reporting the most successful measurement 

techniques that achieved these properties. 

2- The application of graphene in energy storage field was mainly discussed. It 

was found that graphene is an ideal template for producing highly efficient 

energy storage electrodes.  
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3-  Finally we switched to other 2D materials with focus on SiC. Apparently, 

separating 2D SiC from its 3D bulk is a very challenging topic and not easy to 

proceed as rather than sp2 hybridised sheet, SiC layers are sp3 hybridised.  

In this research, we are aiming to prepare some 2D and 3D graphene related 

materials with novel properties by adopting specific synthesis procedures. 

Chapter 5 will cover the application of the produced graphene composite in 

energy storage field, and chapter 6 and 7 are dedicated to the SiC project, in 

which we will present our approach towards producing some new SiC 

structures.   
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Chapter 3 : Experimental methodology and synthesis 

3.1 Introduction  

So far extensive research have been reported on graphene-based materials. Despite 

from the similar synthesis routes and measurements, different results and sometimes 

contradict conclusions have been reported, revealing the significant impacts of details 

of the experiments on the quality of the product and finally its performance. Indeed, it 

is not the materials or the general method themselves, but the quality of the materials 

and the accuracy of the measurement that make such big differences.  

With the aim of making this work repeatable by other researchers, this chapter details 

the generic fabrication and measurement techniques used in this thesis. The first 

section shows the synthesis methods for GFs, conductive polymers (CPs), GF 

composites and SiC materials. We will describe in detail the preparation condition of 

the fabricated materials. In the characterization section, both the structural 

characterization and mechanical and electrochemical properties measurement will be 
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presented. Sample preparation procedures for various tests will be presented at the 

end of described techniques. All aqueous solutions were prepared using deionized 

water, unless otherwise specified. 

 

3.2 Sample preparation  

3.2.1 CVD synthesis of GF  

GFs were prepared using the CVD method, using Ni foam (supplied by Inco. Ltd, 1.7 

mm thickness and density value of 380 g m-2) and pure Styrene (Sigma Aldrich >99%) 

as the carbon source. The Ni template (2 × 2 cm2) was first annealed for 10 min at 

1000 °C under a controlled H2 (150 sccm) and Ar (350 sccm) atmosphere. H2 was 

used to catalyse carbon deposition onto the Ni foam template and the main role of Ar 

was to provide an inert atmosphere for the reaction. 

After annealing the Ni foam, the pure Styrene was syringe injected into the quartz 

reaction tube of 100 cm in diameter, at a rate of 0.254 ml/h for 1 h. At the end of the 

reaction, the furnace, H2 and styrene were turned off, and the furnace was cooled 

naturally down to room temperature under a slow flow of Ar (10 sccm). Following the 

cooling step, the Ni substrate was thoroughly etched overnight in 3 M HCl (Fisher 

chemical, 37%) at 80 ºC, to obtain free-standing GFs. 

For synthesizing GFs with higher density (ρ = 6 - 8 mg cm-3), a Ni foam with higher 

density (1100 g m-2, Inco. Ltd) was used for the CVD synthesis. 
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3.2.2 CVD synthesis of 2D graphene 

2D graphene was synthesized using the CVD method on a Cu foil (99.8% pure, 0.025 

mm thick, Alfa Aesar) substrate. Firstly, the Cu foil (4 cm2) was loaded into the furnace 

and heated up to 1000 ºC under Ar (200 sccm) and H2 (100 sccm). After annealing at 

1000 ºC for 10 min, the Ar gas was turned off and Styrene was injected into the system 

with a flow rate of 6.61 ml/h, under continuous flow of H2 (100 sccm). Following 40 min 

deposition, the styrene and the furnace were turned off, and the system was cooled 

under a slow flow of H2 (50 sccm) and Ar (50 sccm). After etching the Cu away by 

80 °C HCl (3 M), the resulting graphene was transferred onto a Si substrate for 

structural characterization. The synthesized graphene film was very thin, and as we 

deliberately eliminated the PMMA coating during the transfer stage to avoid any 

impurity159,160 most of the graphene was wasted in the acid solution and only a small 

amount (ca. 30 - 40%) survived the etching and transferring processes.  

3.2.3 Chemical and electrochemical synthesis of conductive polymer-GF 

composites 

PPY-GF composites were prepared by both chemical and electrochemical deposition. 

For the PPY-GF preparation, GFs were first immersed in a 0.1 M Pyrrole (Alfa Aesar 

98%) solution containing methanol (Fisher Chemical > 99.5%)/water (50:50 vol %), 

and then FeCl3 (Sigma-Aldrich 97%) was added as an oxidant (The volume ratio of 

Pyrrole solution to FeCl3 oxidant was 1 : 2 ). Subsequently, the resulting solution and 

the impregnated GFs were left for 15 h or 3 h for varied polymerization process. The 

resulting PPY-GFs were then taken out and thoroughly washed with deionised water. 

For comparison, both pure PPY films and PPY-GF composites were prepared 

electrochemically from the 0.1 M Pyrrole solution at different deposition times. For the 



68 
 

electrochemical synthesis of PPY-GF, Chronoamprometry technique (potential range 

0 - 0.8 V) was used to deposit PPY films on the GF from 0.1 M Pyrrole/0.5 M KCl 

solution. PANI-GF electrodes were prepared electrochemically from 0.1 M aniline/0.5 

M H2SO4 solution using the same Chronoamprometry technique.   

3.2.4 3D SiC preparation 

SiC foams were  generated by a carbothermal reduction of SiO( 0.3 g), (Aldrich-Sigma, 

UK) with the GF foam templates, at a temperature range of 1380 - 1550 °C , a dwell 

time of 3 h, and in an Ar (100 sccm) atmosphere. To achieve SiC foams with different 

densities, the GFs with different ρ values (3 - 7 mg cm-3) were utilised.  

To eliminate any unreacted SiO or other residuals, most of the SiC were etched in 

concentrated HF (58  -62%) for 3 h.  During etching, the samples were stirred with a 

PTFE rod at hourly intervals to ensure even and thorough etching. Next, the samples 

were washed with 10% HCl to remove any fluorosilicate by-products. The samples 

were then washed several times with deionised water to remove any traces of acid, 

and finally dried in oven at 80 ºC to obtain the 3D SiC foams.  

3.2.5 2D SiC preparation  

2D SiC flakes with various thickness were separated from their 3D SiC paternal foam 

and 1D SiC nanowires, by a multi-step sonication process. Firstly, the SiC foams were 

sonicated in propanol for 10 min, then the upper solution which mainly contained 1D 

SiC nanowires was poured away and the rest of the solution was diluted further with 

propanol and sonicated again. This was repeated for 4-6 times for each sample, to 

obtain a dilute suspension. At the end of the sonication, the resulting 2D SiC flake-
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containing solution was drop-casted onto a substrate (Si wafer or a glass slide), for 

later morphological and spectral characterization 

3.3 Characterisation techniques 

A wide range of characterisation techniques was used to study the structures of the 

produced materials. The morphology of the GFs, GF composites and SiC samples 

was investigated thoroughly by SEM, TEM (attached with an EDX) and µ-CT. Raman 

spectroscopy and XRD were also used for further structural characterisation. The 

electrochemical properties of the GF, PPY-GF, PPY, PANI and PANI-GF were studied 

using a three electrodes cell. The mechanical properties of the GF and SiC foams 

were investigated using in-situ compression tests. The next section describes sample 

preparation and machine specifications for each measurement.  

3.3.1 Scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS)  

The SEM is an instrument that creates a high magnification surface image by using 

electrons to form the image. A beam of electrons is produced at the top of the 

microscope by an electron gun161. Fig 3.1 displays an illustration of the SEM system.  

As shown, the electron beam travels through electromagnetic fields and lenses toward 

the sample and once it hits the sample, electrons and X-rays are ejected from the 

sample. The detector uses these secondary electrons, backscattered electrons, 

characteristics X-rays (emitted from beneath the sample surface) to produces final 

image 162.  

 



70 
 

 

Fig 3.1 Schematic diagram of SEM 161. 

 

To analyse the elemental composition of a material, it is always necessary to obtain 

an EDS spectrum of the sample. The EDS spectrum is obtained by analysing the X-

ray photons produced from the electronic transition of the sample. In this project, SEM-

EDS observations were performed using a Hitachi S3200N SEM-EDS machine. All 

samples were used directly for SEM observation without coating, as the samples are 

conductive or semi-conductive.  

3.3.2 Micro–computed tomography (µ-CT) 

Micro (µ)-CT scan is a non-destructive 3D imaging technique in which a focused X-

ray source illuminates the sample mounted on a rotating stage. This technology is very 

useful for internal structure analysis and also for simulation studies 163. Our µ-CT 

imaging analyses were recorded using an X-Tek Benchtop 160Xi CT machine. No 

sample preparations were needed for this test. The average area of characterised 

samples was 20 mm2.   
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3.3.3 X-ray powder diffraction (XRD) 

XRD is a powerful technique for phase identification of a crystalline material. It 

provides information on unit cell dimensions, crystal perfection, lattice spacing, d, grain 

size and texture. XRD is based on the constructive interference of monochromatic X-

rays with a crystalline sample. These X-rays are generated by a cathode ray tube, 

filtered to produce monochromatic radiation, collimated to concentrate, and directed 

toward the sample. The interaction of the incident beam with the sample produces a 

constructive interference, and thus a diffracted beam when conditions satisfy Bragg's 

Law 164: 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃          3.1 

XRD patterns were recorded by a Bruker D8 Advance diffractometer working with a 

Cu-Kα radiation (λ = 0.154 nm) operated at 40 kV and 40 mA.  Powdered samples 

were prepared by grinding the 3D samples into a fine powder. Approximately 1 cm2 

flat thin films were used for XRD analysis. The sample, was inserted into the 

diffractometer sample holder and scanned from10 - 80° 2θ with a step size of 0.02°, 

and 1 s step time. 

3.3.4 Transmission electron microscopy (TEM) technique  
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Fig 3.2 illustration of TEM system 165.  

 

TEM is a very important microscopy technique that generates very high resolution 

images down to 0.2 nm scale. In contrast to the SEM in which electrons only hit the 

surface, the electron beam in TEM travels through the entire sample and thus can 

provide much more valuable information about the internal structure of the material. 

The crystal structure of samples can also be analysed via electron diffraction. 

Elemental mapping, STEM bright field (BF) and dark field (DF) imaging are all 

achievable with TEM. Fig 3.2 shows an illustration of a TEM system. 

 By using TEM microscopy, some researchers even observed individual adatoms 

(atoms that lie on a crystal surface) such as, hydrogen and carbon on graphene or the 

movement of the hydrocarbon chain, which is a significant development in this field 

166.  

In this research, the TEM investigation was carried out using a JEM 2100 TEM 

(STEM), operated at 200 kV. For the TEM specimen preparation, the samples were 
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ultrasonically dispersed in acetone (Fisher Chemical) for 30 min and then the 

suspension was dropped onto a holey carbon coated copper grid (300 Mesh, Agar). 

3.3.5 Raman Spectroscopy 

Raman scattering is a spectroscopic technique in which vibrational transitions occur 

during the scattering of monochromatic light (i.e. laser source) by molecules. Each 

molecule has a different set of vibrational energy levels, thus when a laser is focused 

on the molecule, the photon off the molecule can be scattered either elastically or 

inelastically. Fig 3.3 shows the energy level changes during a Raman scattering.  

 

 

Fig 3.3 Energy transitions for elastic and inelastic Scattering 167.  

 

The majority of the scattered light is of the same frequency as the excitation source, 

thus does not show any Raman effect (Rayleigh). A very small amount of the scattered 

light (only 1 in every 30 million photons) is inelastically scattered. Stokes and anti-
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stokes scattering occur when the photon emitted have higher and lower energy and 

frequency than those of observed photons, as shown in Fig 3.3. Since the molecule 

prefers to be in the ground state rather than the excited state, the anti-Stokes scatter 

is unlikely at room temperature.  

Apart from its wide application for materials characterisation, Raman spectroscopy 

has become an essential part of graphene characterisation, as it distinguishes single 

layer graphene from bilayer and few layer graphene.   

In this thesis, the Raman spectra were recorded using a Renishaw inVia Raman 

microscope. The excitation laser beam at a wavelength of 532 nm was focused by a 

50 × objective onto a small area of the sample. For 3D material measurements, the 

Raman samples were prepared by grinding their foams into fine powder. The 2D 

samples were prepared by dropping their dilute propanol suspension onto a glass slide 

or SiO2/Si wafer.  

3.3.6 Atomic force microscopy (AFM) technique 

AFM is a type of scanning probe microscopy (SPM) that uses a cantilever with a very 

sharp tip to scan a sample surface, to reveal surface morphologies of a material, such 

as thin film thickness, height etc. Fig 3.4 shows a schematic of an AFM system. The 

most popular and primary AFM imaging modes are contact mode and tapping mode. 

In the contact mode, the tip touches the surface of the sample directly and thus there 

is a possibility of surface damage, but in the tapping mode the tip is only oscillated 

over the surface of the sample. Modern AFMs can now be used in air, liquid or vacuum 

to generate high-resolution topographic images of a surface at atomic resolution. 
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Fig 3.4 A schematic of an AFM 168 . 

In this thesis, AFM images (tapping mode) were collected using a Bruker Innova 

machine. The AFM samples were prepared by dropping the disperse samples, SiC or 

graphene, on a SiO2/Si wafer. 

3.3.7 Thermogravimetric Analysis (TGA) 

TGA is a thermal analytical technique that measures the weight of the sample at 

various temperatures during a defined heating process. In this research, TGA was 

performed using a TA SDT Q600 TGA-DSC instrument, at a ramping rate of 10 ºC/min 

under air environment. We also used TGA to investigate the weight ratio between GF 

and conductive polymer. By identifying the weight loss differences between PPY, GF 

and the composite, one can easily find the PPY content in the composite as PPY burns 

up completely at around 425 °C and the major weigh loss of graphene occurs after 

600 °C.  
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3.4 Mechanical properties measurement  

The mechanical properties of the GF foams and SiC foams were studied by conducting 

a compressive test under in-situ SEM imaging. This tests were carried out at Imperial 

College London, Department of Materials. 

Characterised samples have an average size of 10 x 10 x 2 mm3 (length, width, and 

thickness, respectively).  Compression tests were carried out in-situ inside a HITACHI 

S-3400N SEM using a DEBEN microtest with a 300N single leadscrew tensile module. 

Tests were performed in position controlled mode at 0.001 - 0.6 mm/s to record the 

morphological changes and elastic recovery of the structures. 

The effect of the pressing on the mechanical properties of the GF was also 

investigated by performing compression test. The test samples were prepared by 

placing the GF between two Ni foils, and the entire assembly was pressed under a 

pressure of 5 MPa. The size of the specimens were 5 x 2 mm2, length x width 

respectively, and the average thickness was 1.7 mm. The length of the gauge was 2.3 

mm.  The rate of the extension was 0.1 mm/min. Fig 3.5 shows a photograph of the 

GF during test.  
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Fig 3.5 A photograph of the GF during mechanical test. 

 

3.5 Electrical conductivity measurement 

The resistivity, and therefore the conductivity of a sample can be determined by 

applying a voltage to the sample and subsequently measuring the resulting flow of 

current, then calculating the resistance and finally the resistivity using the length-area 

information. In this research, the electrical conductivity of the graphene foam was 

tested using the two-probe method which involves imbedding copper wires in the GFs 

and then securing them with silver paste. This enabled a strong electrical contact and 

therefore a small contact resistance between the GF and the wires. In this research, 

silver-loaded epoxy was used to secure samples to the copper laminate, as well as to 

provide a conductive contact between the wires and the GF specimens under analysis. 

3.6 Electrochemical characterisations  

The electrochemical properties of the GF foams, conductive polymer and conductive 

polymer-GF composites were investigated by using a variety of electrochemical 

techniques such as cyclic voltammetry, linear sweep voltammetry, A.C impedance, 
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Chronoamprometry, Chronopotentiometry and other tests.  Electrochemical tests were 

carried out using a CHI 660C Electrochemical Workstation and a three electrode cell: 

Pt wire as the auxiliary electrode, Ag/Ag Cl as the reference electrode and gold (and 

glassy carbon) as the working electrode (2 mm diameter), in a 0.5 M KCl (Sigma-

Aldrich 99-100 %) electrolyte. The Impedance measurements were recorded in a 

frequency range of 100 kHz - 0.1 Hz at OCP with a voltage amplitude of 0.005 V. Fig 

3.6 shows a photograph of the electrochemical device used for the electrochemical 

characterisations. 

 

Fig 3.6 A photograph of the electrochemical device.  

 

3.7 Electrode preparation 

All electrodes were used directly as working electrodes without adding a binder or any 

carbon conductive, unless otherwise specified. The GF foams and 3D GF composites 

were mounted on the working electrode using a Teflon holder, and the assembly is 
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shown in Fig 3.7. The working electrode was cleaned by polishing with 1 µm alumina 

paste or diamond paste, before every assembling.  

 

Fig 3.7 Mounting GF on a working electrode by using a Teflon holder.  

 

 

 

 

 

 

 



80 
 

Chapter 4 Graphene synthesis and characterization 

4.1 Introduction 

Large scale CVD synthesis of graphene on Ni and Cu templates has emerged as the 

most promising approach for the industrial use of graphene 32,169. Both mono- and 

multilayer graphene can be produced via the CVD approach by using a Cu or Ni 

template. Apart from the template effect, the synthesis conditions and parameters 

such as carbon sources 170, H2 flow rate171, and the physical properties of the template 

such as the porosity level 172, as well as the cooling rate 23, affect significantly the 

general structure, thus applications, of the produced graphene. 

Single layer 2D graphene shows excellent mechanical and thermal properties, and it 

has been used to reinforce materials for structural engineering applications 44. 

However, being one atom thick with no band gap, graphene is not an ideal choice for 

some areas, unless it can be modified to meet the desired features.  

One of the modified forms of graphene is the few layer GFs. In a GF, the 3D network 

makes its use much easier, since its few layer structure performs as a transit between 

the one atom thick 2D graphene sheet and the macroscopic world of materials in 

electronic devices. The first reported GF63 was grown on Ni substrate by the CVD of 

methane in a hydrogen atmosphere. Before this, the CVD method has been well-

established for the growth of single and few layer graphene on a polycrystalline Ni or 

Cu template.  

Most of these researches reported wrinkles formation on the graphene surface, mainly 

due to the difference of thermal expansion coefficients between Ni and graphene 
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32,173,174. Fig 4.1 shows SEM images of graphene grown on a Cu (Fig 4a) and Ni (Fig 

4b) substrate, respectively. The graphene wrinkles, graphene flakes and the Cu grain 

boundaries are visible.  

 

Fig 4.1 (a) High resolution SEM image 32 of graphene on Cu and (b) FESEM image of graphene on Ni 

substrate 173.  

 In this chapter we aim to synthesise both GF and graphene with minimum level of 

defects. The main focus will be on the 3D graphene foam, as the produced foam is 

the key structure for all presented materials in this thesis.  

 

4.2 GF synthesis and characterisations  

4.2.1 CVD-growth of GF 

GFs were prepared using the CVD method, Ni foam as template and styrene as carbon 

source. The growth mechanism for graphene on Ni has been well-documented, and 

the key is Carbon segregation which occurs during the cooling step and is a non-

equilibrium process 173-175. It is believed that this type of non-equilibrium segregation 

b a 
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is the main reason behind the uncontrolled thickness of graphene and its non-

homogenous growth176,177. 

 Fig 4.2 illustrates the preparation procedure of GF. Firstly, the decomposed carbon 

atoms diffused into the Ni template which also act as the catalyst during the synthesis 

step. Secondly, when the Ni substrate reached the quenching stage, carbon atoms 

diffused out onto the surface of Ni, to form the graphene film. Thirdly, after dissolving 

the Ni substrate in hot HCl, a floating GF was obtained on the top surface of the etching 

solution.  

In contrast to other similar works on graphene33,178,179 and also GF63, we did not use 

PMMA during the etching process as we found that PMMA residues cannot be 

completely removed afterward, thus we carried out direct etching to avoid the PMMA 

impurity . 

Finally, after thorough washing with deionised water, the resulting GFs were then dried 

in an oven at 80 ºC, prior to be characterised.  
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Fig 4.2 Schematic processes for the preparation of the GF. 

 

4.2.2 Structural characterisation  

Fig 4.3 shows µ-CT scan and SEM image of the Ni template and the GF product. Both 

foams look very similar. The fabricated GF had the same dimensions and shape as 

the Ni foams. Obviously, the GF, Fig 4.3b, copies and inherits the 3D structure and 

interconnectivity feature from the Ni foam, Fig 4.3 a.           

  

Fig 4.3. (a) µ-CT scan of Ni template, the inset shows Top volume of the CT scan of the Ni from and (b) SEM 

image of the GF. 

a b 
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Low magnification SEM images shown in Figs 4.4a-b illustrate the high porosity level 

of the GF foams. Fig 4.4a reveals a maximum size of ca. 200 µm for the macro pores. 

The high magnification image, Fig4.4d, shows some wrinkles and ripples on the 

graphene surface, which was expected from the polycrystalline Ni template.  

 

Fig 4.4 (a-c) SEM images of GF and (d) a photograph of a bended GF. 

As shown in Fig 4.4d, the synthesised GFs are highly flexible and lightweight. Using 

the mass-dimension data, we obtained a density range of 3-5 mg cm-3 as the apparent 

density for the GFs. 

b a 

3 µm 

c d 
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EDS spectra of the GF, Fig 4.5a, shows only one carbon peak at 0.4 KeV and there is 

no observable signal for Ni. Fig 4.5b shows the XRD profile of the GF powder sample. 

The sharp peak at 26.512° represents the (002) plane of graphite, and the weak peak 

at ca. 55° belongs to the (004) plane. 

  

Fig 4.5 (a) EDS spectrum of the GF and (b) XRD pattern of the GF. 

The thermal behaviour of the GF was studied by the TGA and the results are presented 

in Fig 4.6a. As shown, there are two weight loss regions:  minor losses occurring 

before 600 °C, which is related to the removal of adsorbed water (at ca. 100 °C) and 

oxygen decomposition at higher temperatures (at ca. 200 ºC);  and a major loss 

appearing in the temperature range of 600-750 °C, due to the complete oxidation of 

carbon. 
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Fig 4.6 TGA profiles. (a) GF and (b) GF-Ni.  

Comparing the TGA results of the GF (Fig 4.6a) with that of the GF-Ni (Fig 4.6b), we 

have found that the GF accounts for less than 1 wt. % of the GF-Ni composite, and 

that the 100% weight loss for the GF over 800 °C further confirms its purity.  

The above EDS, XRD and TGA results have confirmed the complete removal of the 

Ni template during our etching process, and the successful production of pure 3D 

graphene foams.  

Fig 4.7 shows the result of the Raman spectroscopy. The spectrum shows two intense 

peaks at 1574 cm-1 (G) and at 2720 cm-1 (2D) .The position and intensity of the Raman 

peaks give valuable information about the defect level, the number of graphene layers 

or the sp3 hybrid phase 180.  

The G peak is the E2g mode of graphite and is related to the in-plane stretch vibration 

of the C=C pair. The 2D mode is two phonon bonds, activated by double resonance 

at the zone boundary 180. Ignorable effect of the D mode at ≈ 1300 cm-1 indicates a 

perfect crystal structure of the foam, and a carbon monolithic-like structure.  
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As shown, the intensity of the 2D peak is lower than that of the G peak, revealing the 

few layer feature of the GF181. In a single layer graphene, the intensity of the 2D peak 

(I2D) is higher than that of IG, and in a bilayer graphene, IG and I2D are almost equal. 

 

Fig 4.7 Raman spectrum of the GF. 

To directly visualise the graphene flakes and to obtain a better understanding of the 

quality of the GFs, TEM measurement was carried out and the results are presented 

in Fig 4.8.  

Fig 4.8a shows a large size graphene flake with folded areas. The average size of 

observed graphene flakes is about 4 µm. Fig 4.8b shows an HRTEM image of 

graphene flakes, exhibiting  the layer numbers vary from 2-3 in some flakes to 9-15 in 

others. Obviously, the thickness of the graphene flakes is not homogenous. It is know 

that with the Ni-assisted CVD method, it is very challenging to control the numbers of 

the graphene layer23,174,182,183. 

The interlayer spacing was found to be 0.34 nm which is consistent with the d value 

calculated from the XRD data.   
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Fig 4.8 TEM images of the GF: (a) low resolution TEM image and (b) HRTEM of the produced graphene. 

4.2.3 Electrical conductivity of the GF 

The electrical conductivity of the GFs was tested using the two-probe method, which 

involves imbedding copper wires in the GFs and then securing them with silver paste. 

Fig 4.9 shows an image of the GF during electrical conductivity test. The measured 

resistance of the tested GF was 25 Ω.   

 

Fig 4.9 Electrical conductivity measurement of the GF. 

Using the 𝜌 =
𝑅𝐴

𝑙
  equation, and the dimension data of the sample which were 9.8 x 

3.2 x 1.7 mm3, we obtained a value of 0.0139 Ω m as the resistivity of the GF. Further 

3 layers  

d: 0.34 nm 
9 layers 

15 layers 
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based on 𝜎 =  
1

𝜌
, a value of 72.06 S/m (Siemens per metre) was obtained as the 

electrical conductivity (σ) of the GF. This is quite high when compared with other 3D 

carbon forms, such as the carbon aerogels (CNT aerogels) with similar or even higher 

densities  184-186, though it is 2-3 magnitude of orders lower than the electrical 

conductivity of a 2D graphene sheet or the ultrathin graphite foams reported by Ruoff’s 

group 187.  

The good electrical conductivity of the foam could be due to the reduced resistance at 

the junction between graphene sheets which allows for efficient charge transfer 187,188. 

A better electrical conductivity can be achieved by increasing the density of the GF 184. 

4.2.4 Electrochemical study of the GF 

Electrochemical properties of the GF were investigated using a three-electrode cell. 

Fig 4.10 shows the CV results of the GF in 0.5 M KCl, at a scan rate of 0.1 Vs-1. The 

electrode shows a rectangular shape which is a typical behaviour of double layer 

capacitors. However, the recorded currents do not show any improvement over 

reported performance of traditional carbon materials, as they are intrinsically 

capacitive materials and store charge via ion adsorption and the formation of double 

layer at the electrode–electrolyte interface189. Moreover, apart from those intrinsic 

parameters such as the π-π stacking which affects adversely the conductivity of the 

graphene-based materials, the fact that our GFs are extremely lightweight (ρ= 3-5 mg 

cm3) and highly porous, further reduces the current values. 

We believe that by introducing more mesopores (2-50 nm) and nano pores (1-2 nm) 

into the foam, and reducing the amount of macropores, a better specific capacitance 

can be achieved for the pristine graphene foam. It was discussed that a pore size 
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close to the size of the solvated ions, or slightly large are very beneficial for increasing 

the charge storage capacity. Some studies, argued that charge storage can also occur 

in pores smaller than 1 nm, however it is still a controversial debate as the mechanism 

of electrosorption is different in various pores 190-193 . 

The suitability of the GF as electrode matrix was investigated by performing 

electrochemical tests, and Fig 4.10 shows a cyclic voltammetry (CV) curve of the GF. 

The stability of the GF materials was assessed by running the cyclic voltammetry test 

for a long time. As shown in the results, the foam electrode ideally and surprisingly 

kept its initial current values and electrochemical features after thousands of CV 

cycles.  

 

Fig 4.10 cyclic voltammetry of GF (a, b) at scan rate of 0.1 Vs-1 

 

The pure GF electrode does not show any capacity fading after 10,000 of charge-

discharge, as the 1st and the 10,000th cycle overlaps with each other completely. 

From 𝐶 =
𝐼

𝑚𝛾
     (4.1), where I is the current, m is the GF weight and γ is the potential 

scan rate, a value of 3 F g-1 was obtained for the 1st and the 10,000th cycle of charge-
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-discharge. This 100% capacity retention and this superior consistency arise mainly 

from the excellent mechanical properties of the interconnected porous network of the 

synthesized GF. This feature, together with the open pore and mechanical excellency, 

enables the foam to be used as an ideal scaffold for producing 3D graphene-based 

electrochemical composites. The detailed mechanical property assessments of the 

GFs will be presented in chapter 7. 

 

4.3 CVD synthesis of graphene on copper  

Graphene were also synthesised by using the CVD method on a Cu foil substrate, 

based on the carbon atoms surface deposition mechanism 175.  

For this synthesis, we first tried the same experimental parameters used for Ni-

assisted synthesis of GF. We used the same styrene concentration and the same flow 

rates of H2 (200 sccm) and Ar (300 sccm). We did not observe any graphene formation 

at that case and our characterisation tests such as Raman and SEM, did not detect 

any graphene islands.  However, upon increasing the flow rate of H2 to 300 (sccm), 

no change in the mix flow rate, but the flow rate of Ar decreased accordingly to  

maintain the total flow rate, graphene flakes were observed. This difference can be 

related to the different growth mechanism on Ni and Cu.   

 In contrast to the Ni which has high carbon solubility31, Cu has limited carbon solubility   

. Here, however, the graphene growth is surface restricted and carbon atoms are 

directly deposited on the Cu surface, without segregation as did in Ni175 . Thus H2 

plays important role here as catalyst171.  H2 has a catalytic effect on the graphene 
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growth on the Cu. It activates the surface of Cu for carbon bounding.  It was shown 

that hydrogen pressure affects the size and shape of the graphene flake 171.   

Fig 4.11shows an SEM image of the graphene, prior to the Cu template being etched 

away. The grain boundaries are clearly visible in some of these flakes.  Fig 4.12b 

shows their Raman spectra.  

 

Fig 4.11 SEM image of the graphene grown on a Cu foil 

Similar to the Raman spectrum of the 3D GF, the spectra show signals for the G and 

2D peaks. Furthermore, the signal of D peak is very strong for the produced graphene 

on Cu, indicating a high level of defects in the sample. These defects could be due to 

the impurity and non-regular shape of graphene and also could be attributed to the 

edge structures of the sheet, as they are treated as defects by the Raman 

spectroscopy even if the structure is indeed perfect.  

The effect of the H2 flow rate on the grown graphene was also investigated. We 

noticed that increasing the rate of H2 results in the more carbon coverage formation 

20 µm 

Graphene islands 
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on the Cu substrate, regardless of the numbers of layer as we did not investigate it 

thoroughly here.  

This effect can be seen by comparing the Raman spectra shown in Fig 4.12.  When, 

the flow rate of H2 was 300 (sccm), Fig 4.12a, the intensity of the D peak was 

comparable to that of the G peak and the 2D peak is slightly lower than G peak. But 

by further increasing the H2 flow rate (to 400 sccm), more graphene islands were 

detected and the intensity of D peak decreased and obviously G peak becomes 

more pronounced, all indicating the formation of more graphene layer194.  

 

Fig 4.12 Raman spectra of graphene on Cu. (a) synthesised at a flow rat ratio of   
𝑨𝒓

𝑯𝟐
> 𝟏, and (b) at a ratio 

of  
𝑨𝒓

𝑯𝟐
< 𝟏 . 

Furthermore, the position of the peaks is different in the two graphs. The G peak 

upshifted from 1569 cm-1 in Fig 4.12a to 1579 cm-1 in Fig 4.12b. The 2D peak also 

upshifted. The position of the G and 2D peaks and their intensities depend significantly 

on the number of layers195.  
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 In this research, we observed a continuous change, upon modifying our synthesis 

procedures and thus the quality of the product. Generally, by increasing the number 

of graphene layer, both G and D peak upshifted and the intensity of D peak decreased 

significantly. 

4.4 Summary  

In this chapter, 3D GFs and 2D graphene flakes were synthesised and characterised. 

The results showed that the number of graphene layer is highly influenced by the 

synthesis conditions, such as the flow rates of H2, the Styrene concentration, the 

deposition time and also the physical properties of the template. The synthesised GFs 

are 3D interconnected carbon monolithic-like networks, with a density range of 3 - 5 

mg cm-3, thickness of 1.7 mm, and various pore sizes.   The 3D foam, consisting of 

few layer graphene, exhibited very high quality, defect free monolithic carbon network 

with high flexibility  Electrochemical characterisation revealed a specific capacitance 

of ca. 3 F g-1, and an impressive 100% capacity retention after 10,000 of CV cycles, 

for the GFs. These 3D GFs are an ideal matrix for designing new 3D electrodes for 

energy storage and conversion.    

  



95 
 

 

Chapter 5 : GF-Conducting polymers composites as 

electrode materials for supercapacitors 

 

5.1 Introduction 

Supercapacitors are considered as one of the most important EES systems, since they 

hold the hope of achieving battery-like specific energy along with capacitor-like specific 

power. Towards the ultimate goals of harnessing high capacity, high specific energy 

(Whkg-1), high specific power (Wkg-1) and good cycle life (>100,0000 cycles 196) for 

the next generation of supercapacitors, numerous strategies 197-199 and a wide range 

of composite materials191,198,200 have been investigated to date 176,178,179. 

One of the most promising proposed structures is the 3D electrode architecture in 

which its electroactive materials do not suffer from the high trade-off between the 

power and the energy as they do in a traditional plane electrode. In a 3D design, the 

third dimension allows for storing more energy without the need for increasing the 

thickness of the electroactive materials, thus the specific power is less compromised 

187,201-204. This concept, 3D architecture, can be introduced to different materials and 

systems. One interesting approach is to produce 3D CNT-based composites 205,206, 

and graphene-based composites 80,207-209, partnered with conducting polymers 208,210-

212 and transition metal oxides 213,214. 

Conducting polymers (CPs) such as Polypyrrole (PPY) and Polyaniline (PANI) are 

promising pseudocapacitive electrode materials for supercapacitor applications. They 
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are easy to synthesis from both aqueous and non-aqueous solvent, inexpensive, 

environmentally friendly 215, and are highly conductive in doped states 216. These 

features allow for fast doping/un-doping process 200. However, CPs such as PPY, 

which is of special interest in this context, suffer from low mechanical stability and 

pulverization during the repeated charge-discharge process, and they lose more than 

50% of their initial capacitance after only a few hundreds of charge-discharge cycles 

217-220. To counter this poor cycle life issue, the incorporation of CPs into a strong and 

conductive 3D matrix such as GF, to create a robust composite electrode appears to 

be the right way forward, and in fact this approach forms the driving force of our 

research.  

This chapter will describe our attempts to create such composites by combining the 

CPs and GFs, in an effort to develop high performance EES devices. In the first part, 

the synthesis and structure of the composites will be fully characterised, and in the 

second part we will evaluate their electrochemical performance.  

 

5.2. The synthesis of PPY-GF composites  

The PPY films were synthesised both chemically and electrochemically on the GFs, 

through Pyrrole oxidation as illustrated in Fig 5.1.   Table 5.1 summarises the synthesis 

conditions used to fabricate the composite materials. We produced different electrodes 

to investigate how changing the synthesis parameters would affect the structural and 

electrochemical performance of the electrode. However, since the electrochemical 

synthesise routes are not always economically feasible, the main focus will be on the 

chemically prepared electrodes. 
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Fig 5.1 Schematic of Pyrrole polymerisation through monomer oxidation process. 

For in-situ chemical polymerisation, two composites were prepared: PPY-GF1 and 

PPY-GF2. As shown in Table 5.1, both composites were prepared by the chemical 

polymerisation of 0.1 M Pyrrole with the oxidant FeCl3. In PPY-GF1, we adopted a 15 

h overnight process to ensure the completeness of the polymerisation. The 

polymerisation time in PPY-GF2 was 3 h. PPY-GF3 composite was prepared by an 

electrochemical technique and the deposition time was 200 s.  

 

Table 5.1 Preparation conditions of various electrodes.  

Electrode  Preparation method Deposition time 

PPY Electrochemical  500 sec 

PPY-GF1 Chemical  15 h 

PPY-GF2 Chemical  3 h 

PPY-GF3 Electrochemical  200 s 

PANI-GF Electrochemical 400 s 

 

Chemical oxidation by 

FeCl3/HCl   

 Or electrochemical 

polymerization  

n 
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In the PPY-GF composites, the PPY films are bonded non-covalently and mainly 

through π-π stacking to the GF 221,  although the formation of hydrogen bonds 

(between the existing hydrogen in pyrrole and oxygen groups in graphene, if there is 

any) is also likely to happen 222. In the non-covalent bond, the graphene sheets were 

negatively charged and PPY films were positively charged (p-doped), hence the two 

components were attached physically and electronically together through the 

electrostatic interactions 223. The adhesion of the PPY chains to the graphene 

nanosheets was found to be sufficiently strong to resist removal after a few times of 

rinsing with distilled water or even after sonication process.    

Regarding the π-π stacking between graphene sheets, it is notable that whilst such 

stacking may affect adversely the capacity of the electrode by reducing the accessible 

surface area of the GF, π-π interactions between the PPY and GF are the key factor 

to maintain the connection and integrity of the 3D composite electrode.  

5.2.1 Structural characterisations of PPY-GF1 composites 

Weight ratio between PPY and GF in PPY-GF1 composite was calculated from the 

TGA analysis. The TGA profile of the PPY-GF1 composite against GF and PPY is 

shown in Fig 5.2. As it can be seen from the graph, the PPY loses its weight completely 

at about 450 °C, while there is a minimal weight loss for the GF at the same 

temperature. Accordingly, a 65% weight loss in the PPY-GF1 at 450 °C (this position 

is marked in Fig. 5.2) indicates a 35% PPY content in the composite. 
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Fig 5.2 TGA profiles of PPY-GF1, GF and PPY. 

Fig 5.3 shows SEM images of the GF, PPY and chemically polymerized PPY-GF1. 

The GF is highly flexible with an interconnected porous 3D network. The low 

magnification image shows an average value of 200 µm for macro pores. Fig 5.3b is 

an SEM image of the pure PPY in which polymer aggregation is very obvious. Low 

magnification SEM image of the composite, Fig 5.3.c, shows clearly the structural 

similarity between the GF and PPY-GF1 composite.  In fact, the 3D composite mimics 

most of the structural features of the GF scaffold, the only main apparent difference is 

the thin film PPY coating which covers the surface of the GF almost uniformly, Fig 

5.3.d. 
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Fig 5.3 SEM images of GF, PPY and PPY-GF1. (a) GF, (b) PPY and (c-d) PPY-GF1.   

Fig 5.4 shows TEM images of the PPY-GF1 composite. Fig 5.4a is a low magnification 

TEM image showing PPY-coated graphene sheets, and its high magnification image 

(Fig 5.4b) shows both the amorphous PPY and the graphene sheet. Graphene sheets 

are fully covered by the PPY, especially at the edges. This coexistence of the PPY 

films and the crystalline lattice of graphene sheets (with spacing value of 0.34 nm) is 

due to the successful assembly and good interactions between the PPY and GF 224.  

250 µm 

a b 

c d 
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Fig 5.4 TEM images of the PPY-GF. (a)PPY-coated GF, (b) PPY-GF1 at high resolution, and (C) PPY-

GF at low resolution. 
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As verified by the high resolution SEM image (Fig 5.3d) at microscopic level, the PPY 

chains are attached tightly to the GF and formed a full polymer coating rather than 

random deposition. At nano-scale, this type of interactions is also clear in Fig 5.4b. 

Such stable interface connections, via π-π interaction between aromatic ring and 

graphene sheets, and the micro-/nanostructure feature of the composite, play an 

important role in the electrochemical activity of the electrode 225.   

Fig 5.5 displays the Raman spectra of the GF, PPY and PPY-GF1 composites. For 

the GF, two main peaks appeared at about 1572 cm-1 (G) and 2750 cm-1 (2D) 201.  

 

Fig 5.5 Raman spectra of the GF, PPY and PPY-GF1. The inset is an enlarged Raman spectrum of 

the PPY. 
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The Raman spectrum of the PPY-GF1 composite samples showed a combined feature 

of both GF and PPY. The PPY peaks appeared in the range of 800-1000 cm-1, 

representing the N-H and C-H deformation of the Pyrrole ring 226. The intense peak 

appeared at 1577cm-1 represents C=C stretching in the composites. As can be seen 

in the presented graph, the intensity and position of all 3 main peaks of graphene, D, 

G and 2D, are changed in the composite, and we believe that these change are not 

simply due to the PPY itself, rather it reflects impurity (charges) in the GF 227.    

Noticeably, while the D peak was very weak in the GF spectrum, it is well pronounced 

in the composite due to the produced defects during the synthesis 228.  The G peak of 

GF upshifted in the composite and more interestingly the intensity of the 2D peak 

reduced dramatically in the composite. Obviously, these change are related directly to 

the PPY-GF formation. In fact, this Raman shifting and changes are consistent with 

earlier studies which found high dependency between these Raman bands and 

graphene doping. They observed similar upshifting for the G peak, and intensity 

reduction for the 2D peak in n-doped graphene 229. As discussed earlier in the 

synthesis part, in the composite the PPY films are positively charged while graphene 

sheets are negatively charged, because aromatic molecules with electron-donating 

groups imposing n-doping (negatively charged) on graphene 227. In agreement with 

other studies, the observed Raman band changes such as the reduced intensities of 

the 2D peak and the pronounced D peak in the composite are due to the increased 

charge concentration (n-doping) in graphene, via the successful PPY-GF interactions 

227,230,231.   
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5.2.2 Electrochemical study of the PPY-GF1 composite  

The electrochemical characterisation of the PPY-GF1 composite as a supercapacitor 

electrode was investigated by CV, Chronoamprometry, and Impedance spectroscopy 

using a three-electrode cell. For a better comparison, we also present the results of 

the GF and PPY here. 

5.2.2.1 Cyclic voltammetry 

Fig 5.6 shows the CV curves of the GF, PPY and PPY-GF1 at different scan 

rates in 0.5 M KCl electrolyte. Obviously, the electrodes exhibit different current 

values and CV shapes. In the CV plot of the GF (Fig 5.6a), a rectangular shape 

with small current values was recorded. The straight lines at both ends of the 

CV curve represent a fast charge-discharge process at the foam, and are 

indicative of the quick diffusion of the electrolyte ion into the GFs. 

Using 𝐶 =
𝐼

𝑚𝛾
     (5.1), where I is the current, m is the weight and γ is the potential 

scan rate, a value of 3 F g-1 as the specific capacitance and an areal capacitance 

of 4 mF cm-2 were obtained. As described earlier, these values stand in the 

middle of the reported values for carbon electrodes 232-234.  
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Fig 5.6 CV curves of different electrodes in 0.5 M KCl at different scan rates. (a) GF, (b) PPY, and (c) PPY-

GF1. 

The CV graphs of PPY and PPY-GF1 are shown in Fig 5.6b and Fig 5.6c 

respectively. Both the PPY and composite electrode show much higher current 

values than those of GF, as they store charges differently. Carbon materials, 

namely GF here, are double layer capacitance materials and they store charge 

via a reversible ion absorption at the electrode/electrolyte interface; whilst the 

PPY and PPY-GF1 composites are pseudocapacitive materials 235,236. The 

energy stored in double layer capacitors is limited by the finite electrical charge 

separation at the interface of active electrode materials and the electrolyte. In 
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contrast, the process of energy storage in pseudocapacitive materials is beyond 

charge separation, and involves ion intercalation and redox reaction at the 

surface of the electroactive materials 225.  

Compared with PPY (Fig 5.6b), the PPY-GF1 (Fig 5.6c) shows slightly higher 

current values, per the same foot area, though most of the current comes from 

the PPY. This difference could be attributed to the more efficient polymerisation 

process and an enhanced electron delocalisation along the PPY chains in the 

composite 225.   

Similar to GF, the PPY-GF1 electrode also shows rectangular CV curves at 

various scan rates, Fig 5.6c, which indicates that these electrodes have good 

rate capability, and that even at high scan rates the electrolyte ions can still 

diffuse fast into the electrode 237. Both rectangular feature of the CV and also its 

good rate performance is due to the GF scaffold 238. As shown in Fig 5.6b, the 

CV curve of PPY at scan rate of 100 mV s-1 shows significant deviations from 

the rectangular shape, indicating a slow ion diffusion at high rates. 

In fact, the template-assisted synthesis that we carried out, allows for 

transferring the main structural merits of the GF such as the pore distribution to 

the composite 239.  As the PPY-GF1 composites produced upon 3D conductive 

network, they benefit fundamentally from these inherited structural features. Ion 

diffusion occurs mainly through macropores in the composite, thus a much 

better rate performance than the pure PPY was obtained. This result further 

confirmed that the porous structure of the PPY-GF1 composite indeed played 

an important role in the rate performance in 3D composites, as discussed by El-

kedy et.al 240.  
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5.2.2.2  Chronopotentiometry  

The chronopotentiometry technique, also called galvanostatic charge-

discharge, was used to study the change of the electrode potential as a function 

of time. In this research, the specific capacitances of the composite were 

calculated by using the charge-discharge results.  

Fig 5.7 shows the charge-discharge curves of the GF (Fig 5.7a), PPY (Fig 5.7b) 

and PPY-GF1 (Fig 5.7c-e). The GF electrode shows a linear curve and very 

short charge-discharge time (Fig 5.7a), ca. 3 s, indicating a fast charge-

discharge process. The PPY electrode shows a linear curve in a smaller 

potential range than the GF, and there is a significant ohmic drop at a larger 

potential window (Fig 5.7b).  

The results for the PPY-GF1 electrodes are shown in Fig 5.7c-e. Compared with 

the PPY, the composite electrode shows a much smaller ohmic drop at the 

same potential windows and current density, indicating a facilitated charge 

transportation process in the latter electrode. Importantly, as shown in Fig 5.7e, 

even at a high current density of 5.2 A/g, a good linear relation between charge-

discharge potentials and the time was recorded.  
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Fig 5.7  Galvanostatic charge-discharge curves of the electrodes. (a) GF at 1 Ag-1, (b) PPY at 1.5 Ag-1, (c) PPY-GF1 at 

0.33 Ag-1, (d) PPY-GF at 1.1 Ag-1, and (e) PPY-GF1 at 5.2 Ag-1. 
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Using equation 5.2 and the data for discharge and charge time (𝑡𝑑 and 𝑡𝑐), we 

found that all the electrode had very good columbic efficiency (𝜀𝑐). It is 100% for 

GF, and more than 95% for the composites. 

𝜀𝑐 =
𝑡𝑑

𝑡𝑐
× 100    (5.2) 

The specific capacitance of the electrode was calculated by using the results of 

galvanostatic charge-discharge tests and the following equation:  

𝐶𝑚 =
𝐼 × 𝑡

𝑉 × 𝑚
        (5.3) 

where, Cm is the specific capacitance, I is the current, V the potential windows, 

and t is the discharge time.  

Table 5.2 lists the specific discharge capacitances of the three electrodes: GF, 

PPY and PPY-GF1 obtained at different current densities. These values are 

amongst the highest reported capacities, against PPY-graphene 217,241,242, PPY-

graphite 243,244, and PPY-CNT composite electrodes 245.  

Table 5.2 Specific Capacitance of the electrodes at different current densities. 

Electrode  Discharge capacitance 

 (Fg-1) 

Current density  

(Ag-1) 

GF 3.5 1 

PPY 414 1 

PPY-GF1 660 0. 34 

PPY-GF1 570 1.1 
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PPY-GF1 403 5.2 

From Equation (5.3), maximum specific capacitance values of 660 Fg-1
 at 0.34 

Ag-1, 570 Fg-1 at 1.1 Ag-1 and 403 Fg-1 at 5.2 Ag-1 were obtained for the PPY-

GF electrode. At 1.1 Ag-1, the specific capacitance of the composite reached 570 Fg-

1, which is much higher than the mathematical combination of the PPY and GF (0.65 

CGF + 0.35 CPPY = 138 Fg-1).  

The enhanced capacity is believed to arise from three key factors: (1) the intrinsic 

interconnected 3D architecture of the GF and its open porosity feature 205,  (2) The 

core-shell structure of the composite, as evidenced by TEM, and  (3) PPY contribution 

to the charge storage and its high conductivity.  

In an interconnected 3D network, the electrons do not need to travel a long distance 

to reach the current collector, rather they are connected to many individual pathways 

to the current collector and thus benefit from direct electron pathways.  Furthermore, 

the core-shell structure of the composite and literally the porous PPY shell allows for 

much higher charge storage capacity due to the pseudocapacitive nature of CPs, and 

finally the open porosity feature of the electrode provides many effective routes for the 

charge transportation, and hence allows for more energy storage into these composite 

materials 246,247.  

5.2.2.3 Impedance spectroscopy 

The electrochemical kinetics of the electrode at high and low frequencies were 

investigated by conducting impedance spectroscopy measurements. The 

impedance behaviour at high frequencies gives a clear examination on ohmic 

resistance and knee frequency of the electrodes. Knee frequency indicates the 
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transfer between capacitive and diffusive behaviour 248. In this research, the A.C 

impedance tests were performed at the frequency range of 100 kHz - 0.1 Hz 

with an AC signal of 5 mV, and the results are shown in Fig 5.8.  

Starting with GF (Fig 5.8a-b), there is an equivalent series resistance which 

arises mainly from the contact resistance between the GF and the current 

collector, and it can be largely reduced by improving the electrical contact 

between the electrode and current collector. For example, in the case of the 

plane 2D electrode, where the electroactive materials mostly dropped on the 

working electrode, there is generally a better electrical contact between the two 

components 249.  However, as we aimed to investigating the properties of the 

free standing 3D electrodes, we purposely eliminated binder from the synthesis 

process. Further, in the cell, the whole components, including the two electrodes 

and the separator, are pressed together, thus the cell components can benefit 

from a good connectivity. 

The Nyquist plot of the GF, Fig 5.8a-b, shows a vertical line at the high 

frequencies which corresponds to the “angel phase” of 90 degree, and it 

indicates an ideal capacitive behaviour. For the PPY electrode (Fig 5.8c), the 

straight line at about 45° corresponds to the Warburg impedance and it is related 

to the impedance to the diffusion of electrolyte into the pores of the electrode 

(during ion intercalation and de-intercalation).  
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Fig 5.8 Nyquist plots of different electrodes in 0.5 M KCl: (a) GF, (b) magnified Nyquist plot of GF at high 

frequencies, (c) Nyquist plot of the PPY, and (d) Nyquist plot of the PPY-GF1.  

        

For both PPY and PPY-GF1 electrodes, their impedances consist of three parts: 

(1) the equivalent series resistance, RS (or uncompensated ohmic resistance) 

which is the intercept of the real impedance, and (2) the arc or semicircle part 

at medium frequencies which is related to the charge transfer process at 
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electrode/electrolyte interface, Rct, and finally (3) the inclined line at low 

frequencies due to diffusion resistance 224,250. 

At low frequencies, the impedance plot of the composite electrode exhibits 

mainly a high slope straight line, with phase degree of 85, indicating the lower 

internal resistance (compared with the PPY which has a phase of 45°) and the 

improved ion accessibility in the composite. The Warburg impedance results from the 

frequency dependent nature of the ion diffusion process in the materials 224,251. 

5.2.2.4  Cycle life 

The stability of the synthesised electrodes were assessed by running cyclic 

voltammetry and Chronopotentiometry tests for thousands of cycles and the results 

are presented in Fig 5.9. In the GF, Fig 5.9a, the 1st and 10,000th cycles are almost 

completely overlapped with each other, demonstrating no capacity fading after 10,000 

times of charge-discharge. For the PPY, though this electrode shows a near-

rectangular CV curve and good current densities at the first cycle, it cannot maintain 

these current values at the next cycles, gradually degraded in performance. From the 

1st to the 1,000th cycle, a 30% current reduction was recorded, indicating a possible 

structural collapse during the repeated charge-discharge tests. For some of the tests 

with this electrode, PPY, we even recorded a very high capacitance lose and structure 

degradation after only few hundreds of CV cycles, indicating the incapability of the 

polymer to sustain reparative Cl- intercalation and de-intercalation. 

In contrast to the PPY, the composite electrode does not show any current reduction 

and capacity fading up to 6,000 charge-discharge cycles, as shown in Fig 5.9c. Even 

the shapes of the CV curves remain almost identical to the initial one. This 100% 
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capacity retention and superior consistency arises mainly from the excellent 

mechanical properties (both robust and flexible) of the GFs and its efficient ion and 

charge transportation pathways.  

 

Fig 5.9 CV curves of the GF, PPY and PPY-GF1 after thousands of cycles in 0.5M KCl at a scan rate of 100 

mV s-1. 

We further investigated the stability of the electrodes by performing galvanic charge-

discharge tests and the results were consistence with the CV findings. Our results 

show that after few hundreds of charge-discharge cycles the polymer exhibited 
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significant ohmic drops and became resistive. Thus the poor mechanical 

integrity of the PPY makes it unsuitable for long term uses.  

In order to gain a better insight into the electrode structure and its relation to the 

electrochemical performance, the electrode materials were further 

characterised again using SEM after completely being air-dried after the 

electrochemical tests (without rising them with water or cleaning them).   Fig 5.10 

shows SEM images of the GF after 10,000 and the PPY-GF1 after 6,000 cycles of CV 

test. As shown in Fig 5.10, the post-tested GF and PPY-GF1 retained the same 

interconnected 3D structure and good integrity, almost identical to those before going 

through any electrochemical characterisations.  
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Fig 5.10 SEM images of the GF after 10000 cycles of CV test, and (c, d) SEM images of PPY-GF1 after 6000 

cycles of CV test. 

In the case of the composite electrode, Figs 5.10c-d, the PPY chains are still closely 

attached to the GF scaffold after all those cycles, revealing a strong interaction 

between the GF and the PPY. White spots on the image are electrolyte ions as 

evidenced by the EDS during the SEM. The above results indicate clearly the excellent 

mechanical integrity of the produced 3D materials. These results further verified the 

successful role of the GF as a holder and stabilizer for the PPY coating in the high 

performance electrode composites. 
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In fact, the density of the foam plays a fundamental role in the flexibility of the GFs. 

Our experiments showed that a foam with a high bulk density of 10 mg cm-3 had a 

lower cycle life, corresponding to a lower mechanical strength, than the GFs with a 

density value of 3 mg cm-3. At lower density the foam benefits from more pores which 

absorbed the mechanical stresses caused during the ion intercalation-extraction 

process, hence contributing positively to the cycle stability of the electrode. 

5.2.2.5 Electrolyte effect 

The effect of electrolyte on the electrochemical activity of the PPY-GF electrode was 

assessed using the A.C impedance technique. Fig 5.11 shows the Nyquist plot of the 

PPY-GF1 in: (a) 0.5 M H2SO4 and (b) 0.5 M KCl, recorded in the same frequency 

range of 100 kHz to 0.1 Hz.  

 

Fig 5.11 Nyquist plots of the PPY-GF1 electrode: (a) in 0.5 M H2SO4, and (b) in 0.5 M KCl. 

Obviously, the impedance values in Fig 5.11a are lower than those in Fig 5.11b.  The 

value of the Rct in the case of H2SO4 electrolyte is 8 Ω ohm, against 15 Ω in the KCl 

electrolyte. Further, the associated impedance with the onset of the capacitive 

behaviour of the electrode in H2SO4 electrolyte is much lower than that in KCl 
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electrolyte. This improved response is due to the better conductivity of the H2SO4 over 

the KCl.  

In addition to the electrolyte type, the concentration of the electrolyte also plays an 

important role in the kinetic rate of the electrochemical process. Increasing the 

electrolyte concentration enhances the electrolyte accessibility and facilitates diffusion 

process. However one should avoid using high concentration electrolytes as mass 

transfer resistance is likely to happen at high concentrations of the electrolyte 252. 

 

5.3 Structural and electrochemical characterisation of the PPY-GF2 

composite: Effects of the time deposition 

As shown in Table 5.1, PPY-GF2 was synthesised by chemical polymerisation 

of the pyrrole for 3 h (against PPY-GF1 for 15 h). The formed thickness of the 

PPY coating on the GF template was much thinner than that in the PPY-GF1 

and in fact, no noticeable coating was observed. The TGA analysis however 

showed that the composite contained 18% PPY (35% in the PPY-GF1) 

revealing a successful graphene functionalization with the PPY. Fig 5.12 shows 

briefly the results associated with this type of electrode, including the 

morphology of the composite, and the CV curve and the Nyquist plot.  

The SEM images of PPY-GF2 exhibit an interconnected porous 3D structure 

that is similar to the PPY-GF1. However as the PPY content in the former is low, 

PPY coatings are not observable with low magnification SEM image. Compared 

with pure GF (Fig 5.3a), the SEM results do not show big morphological 

difference, however their electrochemical performance (Fig 5.12b vs Fig 5.6a)  
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is quite different, as PPY-GF2 exhibits much higher electrochemical 

performance and specific capacitance than GF as it is pseudocapacitive 

materials.  

Compared with PY-GF1, PPY-GF2 electrode exhibits lower specific 

capacitance, 170 F g-1, as the latter possesses lower PPY content in the 

composite. However, as both electrodes were built on the strong GF backbone, 

the PPY-GF2 electrode also showed excellent cycle stability, Fig 5.12d, and no 

current loss was observed after 500 cycles of CV. 
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Fig 5.12 The morphology and electrochemistry characterisation of the PPY-GF2 electrode; (a) SEM image, 

(b) the CV curve, (c) the Nyquist plot at OCP, and (d) CV curves showing the cycle stability at a scan rate 

of 50 mVs-1. 

 

 The Nyquist plot of the electrode, Fig 5.12d, shows a highly sloped straight line 

at low frequency, and an arc-shaped impedance at high frequency, which is the 

typical behaviour of pseudocapacitive materials. Phase degree of this electrode 

is 80° at low frequencies, revealing a capacitive behaviour at that region.  
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It is worth noting that as both CV results and Impedance showed, PPY-GF2 

exhibits more capacitive behaviour than PPY-GF1. It showed lower specific 

capacitance and faster ion diffusion process. This behaviour is due to the 

different GF/PPY weight ratio in the two electrodes and thus different 

contribution of each storage mode.   

5.3.4  Effects of the synthesis method  

To further investigate the effects of the synthesis method, the electrochemically 

deposited composites, PPY-GF3, were assessed and benchmarked against the 

chemically deposited samples.  The PPY content in PPY-GF3 is ca. 30% after 

200 s deposition, similar to PPY-GF1. The electrochemical results are shown in 

Fig 5.13.  

  

Fig 5.13 (a) Galvanostatic charge-discharge curve of PPY-GF3 at 1 Ag-1, (b) the Nyquist plot at OCP of PPY-

GF3.  

Based on the galvanostatic discharge curve presented in Fig 5.13a and 
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capacitance of the PPY-GF3. This is a very good performance, comparable with 

570 Fg-1 obtained for PPY-GF1. From the Nyquist plot in Fig 5.13b, we obtained 

a value of 3  as the series resistance of the electrode which is even lower than 

that of PPY-GF1 electrode, meaning that this electrode is as efficient as the 

chemically prepared electrodes because it benefits from the same ideal 3D 

architecture discussed earlier.  

The above electrochemical data and findings show clearly that both chemical 

and electrochemical synthesis can be used for preparing 3D PPY-GF 

composite, and the synthesis method itself does not affect the performance of 

the electrode.  

5.4 3D PANI-GF electrode: Effect of the electrode materials   

To demonstrate the applicability of the present approach for other materials, we further 

prepared 3D PANI-GF composite electrodes, by adopting the same strategy. Aniline 

polymerisation and measurement were performed in H2SO4 electrolyte as it is known 

that PANI is electrochemically active in acidic medium 253. The PANI-GF electrodes 

were prepared electrochemically from 0.1 M aniline/0.5 MH2SO4 solution using the 

Chronoamprometry technique. 

The CV results of the PANI-GF electrode is presented in Fig 5.14a. As shown, this 

electrode exhibit much higher current values than those of GF and thus higher specific 

capacitance, revealing the successful interaction between PANI and GF. Fig 5.14b 

shows the Nyquist curve of the electrode. The plot consists of three parts: series 

resistance of about 12 Ω, charge transfer resistance of 20 Ω, and diffusion resistance 
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at low frequencies. At low frequency the phase degree of the electrode reaches to 55 

degree. 

 

Fig 5.14  (a) CV curve of PANI-GF at scan rate of 100 m V s-1, and (b) Nyquist plot of PANI-GF in 0.5 M 

H2SO4 and frequency range of 100 K Hz- 100 m Hz. 

This good performance of the electrode is due to the pseudocapacitive nature of the 

PANI and more importantly the efficient 3D structure of the composite which allows for 

highly efficient charge storage process. During charge-discharge cycles, sulphate ions 

intercalate and de-intercalate repeatedly from the PANI chains. Fig 5.15 shows a 

schematic of the associated reactions.  

 

-0.01

-0.005

0

0.005

0.01

-0.20.20.6

I(
A

)

Potential (V vs  Ag/AgCl)

0

30

60

90

0 20 40 60 80

-Z
"/
Ω

Z'/Ω

a b 



124 
 

 

Fig 5.15 Schematic of the charge-discharge process in PANI 254.  

The stability of the electrode was investigated by performing galvanostatic charge-

discharge and CV tests for a long time. Both tests confirmed the good stability of the 

synthesised PANI-GF electrodes, after thousands of charge-discharge cycles.  

 

5.5 Summary  

Highly flexible, binder-free, and hierarchically regulated GF-based 3D electrode 

structures with excellent cycle life and enhanced pseudocapacitive performance were 

reported in this chapter. The synthesised 3D GF-CPs composites are free standing 

and thus were used directly as working electrode without using any binder or carbon 

additives.  

The unique features of the PPY-GF composites such as 3D GF scaffold and high 

conductivity of p-doped PPY, afforded the PPY-GF electrodes with enhanced 
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pseudocapacitive properties. The PPY-GF composite exhibited a remarkably high 

capacity of 660 Fg-1 with excellent capacity retention of 100% after 6,000 cycles, 

against a ca. 30% initial capacity loss after only 1,000 cycles for the pure PPY. 

Compared with many recent reports on PPY-carbon composite electrodes, this result 

displays one of the highest capacitance values. The significantly improved properties 

are related mainly to the high flexibility, low density, hierarchical structure of the GFs, 

the redox properties of the PPY, and finally the well-connected 3D core-shell structure 

of the PPY-GF electrodes. 

 We have found out that the density of the GF plays important role in the cycle life of 

the electrodes. At a higher density ( e.g. 10 mg cm-3), the foams possesses  a lower 

porosity level and becomes more rigid with less flexibility, thus failing to survive the 

repeated charge-discharge cycle which accompanied constant dimensional (volume) 

changes.  

We improved the stability of the composites significantly by using lightweight 

GFs as scaffold. In the case of PPY, most of the materials dropped into the 

electrolyte or around the working electrode during the test, while no structural 

change was noticed for the PPY-GF electrodes due to the good interface 

connection between the PPY and graphene. In fact, the excellent cycle life of 

the composites further confirmed the good interaction between the PPY and GF.  

Another key parameter which affects positively the stability of the electrode and also 

its high capacitance is the binder free feature of the synthesised electrodes. 

Eliminating binder from the electrodes can effectively assist in reducing mechanical 

stresses of the electroactive materials during ion intercalation and de-intercalation and 

can also help in reducing the electrical resistance of the electrode.  
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The effects of synthesis conditions such preparation method and deposition time were 

also investigated.  Similar to the PPY-GF, the fabricated PANI-GF was free-standing 

3D electrode AND thus used directly as working electrode. The result were further 

emphasised that the GF played a more important role than the polymer (PPY or PANI) 

for the improved performance.  

Indeed, polymer deposition on the 3D GF substrate resulted in a more uniform coating 

of the PPY on the GF (rather than highly agglomerated structure) which affects 

positively the electrode’s conductivity and its electrochemical capacitance.  

Finally, given the binder-free, lack of necessity for additional current collector, as well 

as the versatile shape configuration, this 3D electrode architecture is very promising 

for flexible and lightweight energy storage application.  
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Chapter 6 : From graphene to silicon carbide 

 

6.1 Introduction 

Owing to the unique properties of silicon carbide (SiC) material such as its wide-band 

gap (2.4-3.26 eV)255, high hardness, high thermal conductivity and excellent resistance 

to erosion and corrosion, SiC has always been the material of choice for a wide range 

of applications 256,120. Its capability of being doped both n- and p-type results in the 

intensive development for its use in high power, high frequencies and high 

temperature electronic devices 123-126,257. 

Comparing graphene with graphite, we can now easily ascribe its advantages over 

graphite, in terms of mechanic, electronic and thermal properties, to the lower 

dimensional system, the free π electron and high quality structure of the graphene 258.  

Not only graphene, but all other new 2D materials show excellent properties over their 

3D analogues. Thus, it is expected that by playing with the dimensionality and shifting 

from highly stacked 3D SiC to ultra-thin few layers SiC, and then optimistically to single 

layer SiC could lead us to new SiC structures with amazing and unexplored 

mechanical, electrical and optical properties. This chapter describes a successful 

approach for the simultaneous production of 1D, 2D and 3D SiC structures and their 

characterisations.  
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6.2 The synthesis of the SiC foam 

In this research the SiC foams were fabricated by a carbothermal reduction of SiO with 

graphene foam (GF), as shown in Fig 6.1. All SiC foams were prepared at 1550 °C, 

unless otherwise specified. The heating rate from room temperature to 1000 °C was 

10 °C/min, and that from 1000 °C to 1500 °C was 4.5 °C/min.  

 

 

Fig 6.1 Schematic for the preparation of the SiC. (a) SEM image of GF and (b) micro-ct image of 3D SiC.  

The above schematic depicts the template growth for the SiC fabrication. As shown, 

the 3D versatile-shaped GF was converted to a SiC foam without any change in 

dimensions. Thus, macroscopically the produced SiC foam retained the same shape 

and appearance of the GF. Most of the produced foams have an average length of 15 

mm, width of 15 mm and thickness value of 2 mm, which are identical to the original 

GF template.  

We produced SiC foam with density range of 10 -20 mg cm-3 by using GF templates 

with ρ range of 3-10 mg cm-3. By using GF with different shapes and porosity levels, 

one can precisely engineer the shape and dimensions of the SiC foam. Apart from the 

a 

 

b 
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main mentioned dimensions, we also created cylinder, rectangle, and various irregular 

shapes of SiC foam with volume varying from 50-450 mm3. 

During the synthesis, as shown in Fig 6.1, firstly, the SiO vapour formed at high 

temperature travelled downstream to reach the GF, and then reacted with active 

carbon atoms, to form SiC nucleus. Those nuclei resulted in the formation of different 

SiC structures. Depending on  the reactivity of C atoms on the GF surface, which 

depends on defects such as holes, edges and the fractured C=C bonds 259, or other 

imperfection sites, SiC may grow on-site the GF template surface, or it may grow out 

of the surface along the energetically preferred crystal growth direction 260.  

6.3 Structural characterisation of the SiC foam  

Fig 6.2a shows an SEM image of the SiC foam prepared at 1380 °C. Apparently, the 

as-produced foam has the same dimensions as the GF template. However, it does not 

have the smooth or soft structure as does the GF, rather it exhibits a rough and hard 

structure.  
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Fig 6.2 SEM image and XRD profile of SiC sample prepared at 1380 °C. 

  The structural feature of the synthesised SiC was characterised by XRD technique 

and the results are presented in Fig 6.2b. As verified in the XRD pattern, in addition to 

the SiC, the resulting foam contains residues of graphene and SiO too. The non-

reacted SiO materials give the foam a rough, dull and non-uniform appearance.  

Fig 6.3 shows TEM images of SiC samples prepared at 1380 °C. Under TEM, we 

observed flake-like structures, 1D SiC nanowires and some irregular shapes. The EDS 

analysis of all samples showed a high content of oxygen in most samples. Fig 6.3a 

shows an amorphous SiO shell around the crystallised SiC structures. These results 

show that even though at this low temperature, SiC was formed, as shown in both the 

XRD and TEM results. It is not pure and in order to improve the quality of the product, 

we either need to etch the produced SiC with HF or modify the synthesis parameters 

such as the temperature or reaction time.  
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Fig 6.3 TEM images of SiC samples prepared at 1380 °C. HRTEM of (a) SiC flakes and (b) SiC nanowires.  

Upon the removal of free carbon through burning at 680-700 °C, the SiOx (x = 1 or 2) 

residue and other possible residue can be removed by HF etching, to obtain pure 3D 

SiC materials. Fig 6.4 shows XRD profile of a SiC foam before (a) and after (b) HF 

etching. This sample was prepared at 1400 °C. The SiO peak at about 21 degrees has 

weakened and broadened considerably after the HF etching. As pointed out earlier, 

HF etching is very useful for removing SiOx residues, but it is not efficient for carbon 

removal. The latter should be eliminated via the oxidation process first at 600-700 °C, 

prior to HF etching. 

5nm 
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Fig 6.4 XRD profiles of a characterised SiC sample before (a) and after (b) etching. 

The above structural results from SiC foams prepared at about 1400 °C suggested 

that these temperature are not high enough for a complete carbothermal reaction 

between SiO and GF. After these initial results, the growth temperature was then 

increased to 1550 °C, to yield better quality SiC product. All the following results 

correspond to samples prepared at 1550 °C. 

Fig 6.5 shows the SEM micrographs, µ-CT image, and XRD pattern of the resulting 

SiC foam. Fig 6.5a is an SEM image of the GF template demonstrating clearly the 

interconnected network feature of the GF. As shown in Fig 6.5b-d, the synthesised 

SiC foam mimics the same 3D structures from the carbon source, remained the key 

features of a highly porous interconnected network.  

High magnification SEM images presented in Figs 6.5 d-e show that there are many 

nanowires growing from the internal wall and truss surfaces, with lengths varying from 

a few hundred nanometres to millimetres. The nanowires appear to be highly flexible, 

exhibiting various diameters. We observed that as the content of nanowire increased, 

the entire foam become more flexible due to the high flexibility feature of the 
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nanowires. Fig 6.5d reveals that the SiC nanowires grow from random facets of the 

3D scaffold, indicating that the defect sites in the GF template may be the main starting 

point for the nanowire growth 261. 

 

Fig 6.5 Morphological and structural characterisations of the foam. (a) SEM image of the GF, (b) Micro-

CT image of the SiC foam, (c) SEM image of the SiC foam, (d, e) High magnification SEM images of the 

SiC foam, and (f) XRD profile of the SiC foam. 
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The composition of the entire 3D SiC foams was characterised by EDX during SEM 

observation.. As shown in Fig 6.6, only C and Si were detected, confirming the 

dominant SiC nature of the foam. Some other foams showed a little amount (4-10%) 

of oxygen too, which could be either related to the unreacted SiO or oxidises sites in 

the sample, presumably exists on the surface. 

 

Fig.6.6 EDS spectrum of the 3D SiC foam.  

We further used X-ray diffraction to analyse the crystalline structures of the foam. As 

shown in Fig 6.5f, there is no detectable peak for the GF at 26 and 54 degrees or for 

the SiOx (x = 1 or 2) at about 22 degrees, and all peaks are corresponding to SiC, 

confirming the successful carbothermal conversion from the GF to SiC at 1550 °C. 

The main SiC peaks in the XRD pattern can easily be indexed to the cubic structure 

of the SiC (JCPDS Card No. 29-1129). The weak peak at 33.6, 38.2 and 49.7 degrees 

correspond to α-SiC (JCPDS card No. 29-1126) 262.  

Fig 6.7 shows the Raman spectrum of the 3D SiC. The spectrum showed an intense 

peak at about 791 cm-1, which belongs to a transverse optical (TO) mode of the E1 

phonon. Two other peaks at about 763 and 945 cm-1 are attributed to the TO and LO 

(longitudinal optical) modes of E1 and A1 phonons respectively which are consistent 
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with the standard Raman shifts of SiC 263.  Further, the face that there are 3 active 

Raman bands, instead of 2, reveals that the sample is not pure cubic phase, rather it 

is a mixture of both hexagonal and cubic phases because only α-SiC shows two TO 

modes 264. 

 

Fig.6.7 Raman spectrum of the 3D SiC foam. 

The thermal behaviour of the SiC foam was investigated using a TGA technique, and 

the related graph is shown in Fig 6.8a. First, there is a weight loss at T < 200 °C, due 

to the absorbed water evaporation. After that, there is almost no weight change until 

900 ºC from which the weight increases sharply, due to the passive oxidation of SiC 

and the formation of SiO2 which was verified by the XRD measurement (Fig. 6.8b) of 

the white residuals after the TGA. The relatively flattened profile up to 800 °C in Fig 

6.8a also provides evidence that the SiC foam obtained under this set of parameters 

was of high quality, with little or no GF residues, otherwise weight loss should be 

detected.  
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Fig 6.8 Thermal properties of the SiC foam. (a) TGA profile of the SiC sample in air and (b) XRD profile 

of the sample after TGA experiment.  

To gain more insight into the nanostructures of the produced SiC, the foams were 

further characterised by TEM, and the images are shown in Fig 6.9. The findings 

consistently show that the SiC foam consists mainly of 2D SiC nanoflakes and 1D SiC 

nanowires.  
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Fig 6.9 TEM images of the SiC. (a, b) Low magnification TEM images showing the 2D SiC sheets and 1D 

SiC nanowires (c) TEM image of 2D SiC flakes and (d) HRTEM image of a SiC nanowire.  

The nanoflakes shown in Fig 6.9a-c are a class of completely novel structures, and 

they are the key backbone components in the 3D foams. These 2D structures will be 

discussed in detail in the next part. Fig 6.9d shows a high resolution TEM image of a 

1D nanowire with a diameter value of 25 nm. It is a well-crystallised cubic structure, 

with regular interlayer spacing of 0.252 nm which corresponds to the visible lattice 

fringes of the (111) plane.    

Fig 6.10 shows SEM and TEM images of two SiC nanowires. In Fig 6.10, an high 

resolution SEM image shows clearly the different diameter varying from 20 nm to 100 
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nm. Fig 6.10b shows an HRTEM of a periodically twinned SiC nanowire. Obviously 

the twin boundaries defects, gives zig-zag type appearance to the SiC nanowire. 

Therefore, not only the diameter and the size of the SiC nanowires vary, but also the 

defect level varies significantly from one nanowire to another.  

  

Fig 6.10  High resolution SEM and TEM images. (a) SEM image of SiC nanowires and (b) HRTEM image showing 

mainly twinned nanostructure of an individual SiC nanowire.  

The introduction of stacking faults (SFs) into the system can be explained in terms of 

both the growth kinetic and thermodynamic. It was discussed that the stacking fault 

density increased with increases in the reaction rate (due to parameters such as 

increased heating rate). A relatively slow reaction allows atoms to diffuse a long 

distance to form an equilibrium, defect less structure265.  

From the thermodynamic point of view, the low energy required for the SF formation 

is another important factor that energetically favours the nanowire growth, as the entire 

system becomes more stable when defects such as twins or SFs presented in the 

system 266,267.  
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6.4 Growth mechanism of SiC 

As described in the previous part, the as-produced 3D SiC foam consists of two main 

structures: 1D SiC nanowires with various structural features and SiC flakes. The 

polytype of these nanostructures and also their physical apparent 268, straight or 

curved 269, and dimensions 130, depends directly on the growth mechanism. Here we 

believe that the solid-vapour mechanism controls the SiC growth.  

Chemically, the conversion from GF to SiC foam follows the following reactions: 

𝑆𝑖𝑂 + 2𝐺𝐹 → 𝑆𝑖𝐶 + 𝐶𝑂   (6.1) 

𝑆𝑖𝑂 + 3𝐶𝑂 → 𝑆𝑖𝐶 + 2𝐶𝑂2 (6.2) 

Since the synthesis is a catalyst free process, and the precursors are not mixed, rather 

they are physically separated, thus vapour-liquid-solid (VLS) mechanism is not an 

option here. It is more likely that the SiC growth occurs dominantly via the solid-vapour 

(V-S) mechanism, although vapour-vapour reaction is also likely to occur between 

vapour phases 259,270,271. 

By adopting the catalyst-free synthesis procedure, we avoided the catalyst 

contamination in the final product 272.  In fact, since the process is catalyst-free, the 

reactivity of carbon atoms in the GF and literally the defect sites of the GF such as the 

edges play a critical role in the formation of the SiC nanostructures 273. The resulting 

SiC flakes and nanowires, as well as their structural features, are a direct result of the 

lowest activation energy along the growth direction, thus achieving the preference of 

specific structures over the other at specific temperatures or positions of the foam.  



140 
 

The conversion from the graphene foam to SiC foam, and from graphene flake to SiC 

flakes, looks similar to the reported direct conversion from CNT to SiC nanowires and 

nanorodes 273-276, known as CNT-confined reactions. These earlier studies reported 

the production of SiC nanowires and other semiconductor (such as gallium nitride 277) 

with diameters similar to or larger than the CNT template, by adopting the 

carbothermal reduction technique. In this thesis, we believe that the graphene flakes 

in the GF template are the main reason behind the formation of the SiC flakes. 

Although we do not have enough data to draw a full conclusion, it is likely that during 

the carbothermal reduction graphene flakes converted directly to the SiC flakes, 

because of the dimensional similarities between both flakes. 

 

6.5 Structural characterisations of the 2D SiC 

As earlier TEM images showed, the as-synthesised 3D SiC was built upon two 

components: 1D nanowires and 2D flakes. Thus, it is highly beneficial to develop a 

technique to separate them and then carry out further investigation to understand 

them.    

To achieve 2D SiC nanoflakes, a precisely controlled sonication is a key step. After 

separating SiC nanoflakes from the nanowires, the new SiC nanoflakes were carefully 

characterized by a variety of techniques. Fig 6.11 shows the morphological features 

of the 2D SiC from microscopy observations, after the SiC suspension being dropped 

onto a glass slide or a Si wafer. Although the optical microscopy and low magnification 

SEM images (Fig 6.11a) show the irregular platelets lying almost flat on the substrate, 

higher magnification images (Fig. 6.11c) and TEM observations reveal small folding in 
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most of the SiC flakes. Upon breaking off the 3D SiC foam, the newly separated SiC 

sheets are likely to stabilise themselves inevitably and relax via slight folding at the 

edges. This folding phenomenon has been reported for many thin films and it can be 

a spontaneous behaviour due to the separation from the substrate, or it may be a 

response to a particular stimuli 278. A study on hexagonal nanoribbons proposed that 

this type of curvature could minimize the edge asymmetry and the structural stress 

along the edge 158. 

 

Fig 6.11 Morphological and compositional results of the 2D SiC flakes. (a) Optical microscopy image, (b) 

and (c) SEM images, and (d) EDS result.  
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Further high magnification image analyses (Fig 6.11c) reveal an average size of 2-5 

µm for the flakes. EDS analyses of individual flakes show that they contain dominantly 

Si and C, with a C/Si atomic ratio slightly higher than 1. Earlier studies have showed 

that a higher C/Si atomic ratio makes 2D SiC energetically more stable 279. 

To verify the detailed structural characteristics of the SiC flakes, we carried out TEM 

and nano beam diffraction (NBD) investigation on individual SiC flakes, and the results 

are displayed in Fig 6.12.  
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Fig 6.12 TEM images of the 2D SiC: (a-c) low resolution TEM images of SiC flakes, (d, e) TEM images, and 

(f) NBD pattern of the SiC.  

  

At low magnification, Fig 6.12a, the SiC flakes appear to be flat, very thin and up to a 

few µm in size. Other SiC flakes shown in Figs. 6.12b and c exhibit smaller sizes and 

sometime curled in places, and their corresponding TEM images (Figs. 6.12d and e 
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respectively) show clear and sharp lattice fringes that reveal the well-crystallised 

structural feature. Using TEM information and NBD of different flakes, we have found 

that the as-synthesised 2D flakes have a hexagonal structure, dominantly 2H-SiC 

(Wurtzite). The  flake in Fig 6.12c shows two regular interlayer spacing of 0.18 and 

0.25 nm, which belong to the (012) and (002) planes of Wurtzite SiC. These clearly 

observable and indexed planes are consistent with the XRD analysis of the entire SiC 

foam. It is worth noting that Wurtzite structure is the only SiC polytype that shows an 

interlayer distance of 0.18 nm.    

All observed planes showed a slightly larger (by about 0.003 nm) interlayer distance 

along the related zone axis than those we would have observed for a standard SiC 

Wurtzite crystal. The increase could be due to the existing defects in SiC sheets, the 

curved features, and also different thicknesses of the flakes.   

Further elemental characterisations of the SiC sheets were carried out using a line-

scanning technique during TEM observations, and the results are shown in Fig 6.13. 

Fig 6.13a presents a mixed scan of the three elements, Si, C and O, and Figs 6.13b-

d correspond to the individual elements. It is obvious that both C and Si have high and 

stable density in the images over the selected areas of the sample, confirming the 

uniform composition of the nanoflakes.  
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Fig 6.13 Line elemental scan of the 2D SiC. (a) Mixed scan of Si, C and O. The inset in (a) shows a TEM image of the 

scanned SiC sheets. (b) Individual line scanning of C, (c) individual line scanning of (Si), and (d) individual line scanning 

of O.  

Raman characterisation results of the purified SiC flakes are displayed in Fig 6.14. 

Raman image of the characterised flake is shown in Fig 6.14a and the related 

spectrum is displayed in Fig 6.14b. The sample showed three Raman peaks at 763, 

789, and 945 cm-1 which are well indexed to the SiC peaks and are attributed to the 

two TO modes of E2 and E1 phonons and one LO phonon peaks, respectively. 
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Further, the small shoulder at about 763 cm-1 is the TO mode of the SiC lattice and 

being considered as the characteristic Raman shift for the hexagonal structure 

276,280,281.  

 

Fig 6.14 Raman results of the 2D SiC.  (a) Spectroscopic Raman mapping of SiC flake taken at 10 x 50 objectives, (b) 

Raman spectrum of the flake shown in (a).   

Comparing the active modes in 3D SiC and 2D flake, we have found that the TO mode 

at about 763 cm-1 is more active in the flake than in the 3D SiC, which we believe is 

due to the higher hexagonally percentage of the ultrathin SiC flakes. The 3D SiC foam, 

consists of cubic 1D SiC nanowires and hexagonal SiC flakes. Thus the reported 

Raman spectrum in Fig 6.7, represent the active modes of the entire 3D foam 

containing both the 1D SiC and SiC. However, in the present spectrum from purified 

flakes (without nanowires), we indeed noticed a slightly stronger signal for the E2 (TO) 

mode. Therefore, we believe that the hexagonal SiC is the main constituents of the 

flakes.  

Further, both TO and LO modes shift towards lower frequencies in the SiC flakes. The 

shift is caused by a lattice disorder near the dislocation core and the formed defects 
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282. These Raman results are the most convincing evidence for the hexagonal 

structure of the resulting flakes. By comparing with spectra of other SiC polytypes, it 

is possible to use this to identify the key features of the SiC. As shown in Fig 6.15, the 

Raman spectrum of cubic SiC has two active modes, rather than 3, and it does not 

show the E2 (TO) mode 264,283,284.  

 

Fig 6.15 Raman spectra of 3 polytypes of SiC 264.  

In the 4H-SiC, the intense peak appears at about 761 cm-1 and belongs to the E2 

phonon, which is very weak in our case. Finally, since 6H-SiC grows only at very high 

temperature (> 1600 ºC) and our TEM results revealed Wurtzite structure for the 

flakes, we can rule out the likelihood of growing 6H-SiC in this research. Thus, we 

believe that these spectra further confirm the 2H-SiC structure of the purified ultrathin 

SiC flakes. 
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Fig 6.16 presents the results of the AFM measurement. Fig 6.16a shows the two main 

structures of the SiC foam, the 1D SiC nanowires and the 2D SiC nanoflakes. 

Obviously, the nanowire in the right hand side is on the top of the flake, and the left 

nanowire is underneath the flake. The dimensions of the two nanowires and the flake 

can be extracted from Fig 6.16b. The intense peaks in this graph are due to the 

coexistence of both nanowires and the flake at those positions, and it reflects the 

flexible nature of the flakes. As shown in Fig 6.16b, this SiC flake has an average size 

of 2 µm and a thickness value of 3 nm. Meanwhile, the 1D nanowires have an average 

diameter of 20-100 nm, obtained from the two intense peaks in the line scan profile in 

Fig 6.16b.   
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Fig 6.16 AFM results of the SiC sample. (a) AFM image of the tested SiC sample showing a large SiC flake 

and some SiC nanowires across the horizontal scan line, (b) the height-length profile of the SiC structures 

shown in (a), (c) AFM image of a single SiC flake, and (d) the height-length profile of the flake shown in(c). 

Figs 6.16c-d show the AFM results of a pure SiC flake. The results not only reveal   the 

average size of 1-2 µm for a 2D flake after the sonication treatment (subject to possible 

break down), but also further confirm the ultrathin feature of the SiC sheets, with only 

an average thickness of 2-3 nm. Given that the SiC possesses an interlayer distance 

of ca. 0.25 nm, it is not difficult to estimate that the SiC flakes consist of 7-10 atomic 

layers.  
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Indeed, the size of the SiC flakes and their thickness are affected significantly by the 

dimensions of the carbon template, and the ultrathin 2D SiC flakes were grown as a 

direct result of the few layer structure of the GF template. The TEM results revealed 

varied thickness and size for the SiC flakes, with slightly increased interlayer distance, 

which we believe is a result of various numbers of the graphene layer in the curved 

foam and the level of defects in the graphene flakes.  

In addition to the effect of GF size and structure 280, the experimental conditions can 

favour the growth of specific SiC polytypes. For example, there might be a possible 

structure transformation from 2H-SiC to 3C-SiC and then to 6H-SiC, or even a direct 

transformation from 2H to 6H, at higher temperatures 285,286. Such changes will not 

only alter the crystal structures, the interlayer distance, and the physical appearance 

of the products, e.g. colour and flexibility, but also will affect the electronic and physical 

properties of the 2D-SiC. In this work we only investigated the effects of the synthesis 

temperature briefly, and we noticed that it was very difficult to find large SiC flakes at 

high temperatures (>1550 ºC), instead SiC nanowires were the dominant products. 

Based on our observation, 2D SiC flakes were mostly stable in the temperature range 

of 1380 -1500 ºC. At high temperatures such as 1575 °C, 1D SiC nanowires was the 

pronounced structural phase.  

 

6.6 Summary  

Novel 3D SiC structures have been generated by a carbothermal reduction of SiO with 

GF. They consist of hollow truss structures made from layered SiC layer which breaks 

into flakes, and long 1D SiC nanowires growing from the trusses, edges and defect 
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sites. The nanowires appear to be highly flexible, exhibiting various diameters and 

lengths.  

Our SEM and TEM analyses revealed the average size of 2 µm with an average 

interlayer distance of 0.255 nm for the SiC nanoflakes. Using AFM characterization, 

we have confirmed that the thickness of the nanoflakes was 2-3 nm on average, 

corresponding to ca. 7-10 atomic SiC layers.  

This novel type of semiconducting nanoflakes not only significantly enriches the family 

of 2D structures, but also expects to exhibit many new electronic and optical 

properties, which will open up fresh opportunities for vast interesting applications in 

advanced nano device design and constructions.  
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Chapter 7 : Mechanical properties of the light-weight graphene foam 

and SiC foam 

  

7.1 Introduction: 

Conventionally, the concept of lightweight refers to structures with density (ρ) range of 

0.3 -5 g cm-3. The new generation of lightweight materials however, is three orders of 

magnitude lighter in density than the conventional ones. Graphene foam (GF) 55, CNT-

graphene aerogels 287 ,silica aerogel (ρ > 1.5 mg cm-3), metallic foam (ρ > 10 mg cm-

3) 288, nano-fibrous aerogels (NFAs) (5.3 <ρ<9.6 mg cm-3) 289, boron nitride (BN) foam 

(ρ: 1.6 mg cm-3) 290, Fe2O3/C 291, Co/C 291, Ni/C 291 with ρ < 5 mg cm-3 and other similar 

foams292,293, all can be classified as modern lightweight or ultralight foams with 

extremely low densities.  

Although most of the lightweight foams followed the general law for conventional 

materials and their compressive modulus tend to decrease dramatically with 

decreasing the density, i.e.  
𝐸

𝐸𝑆
 ∝ (

𝜌

𝜌𝑆
)

𝑛=2 𝑜𝑟 3

𝐸𝑞. 7.1 or    
𝜎

𝜎𝑆
 ∝ (

𝜌

𝜌𝑆
)

𝑛=2  𝑜𝑟 3

  𝐸𝑞. 7.2 , 

where E is the Young’s modulus σ is the yield strength and n is the scale power, some 

new ultralight metamaterials such as hexanediol diacrylate (HDDA) polymers showed 

a nearly linear density-strength dependence rather than the quadratic or cubic 

relationship for conventional lightweight materials 293-295, which is very interesting and 

promising as the failure modes in these metamaterials are stretch dominated286.  



153 
 

Other studies on lightweight ceramics reported a scaling of  𝐸~𝜌1.6 for the hollow-tube 

alumina micro-lattice 292, which is a significant response that non-exist in conventional 

brittle ceramics.  

As shown in earlier chapters, we produced two types of lightweight foam: GF and 3D 

SiC by using CVD and carbothermal techniques respectively. Both the GF and SiC 

foam showed good flexibility and more importantly the GF and GF-based composites 

showed excellent capacity retention after thousands of charge-discharge cycle which 

we believe is a direct result of the mechanical properties of the foam. This chapter will 

investigate the mechanical properties of both the GF and SiC foams, and provide 

evidence to support our previous analysis for the excellent capacity retention 

performance of the GFs.   

 

7.2 In-situ compression of the GF  

The mechanical properties of the GFs were studied mainly by conducting compressive 

test under in-situ SEM imaging. Fig 7.1 shows the SEM images of GFa (sample a, ρ: 

3-5 mg cm-3) during the compression test. Fig 7.1a, is an in-situ SEM image of the GF 

before the compression test and during the preparation stage.  

The 3D well-connected network is visible in this image. Fig 7.1b is a low magnification 

SEM image of the GF under maximum load of 1.12 N. Under maximum compression, 

the foam becomes highly compressed and its thickness reduces to ca. 0.4 mm from 

1.6 mm, (a) to (b) in the figure. As shown in the picture, despite the high strains of the 

compression, the foam kept its original shape, even under high loads.   
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Fig 7.1In-situ SEM images of the GFa during compression test. (a) before compression, (b) under 

maximum load, and (c) unloading stage.  

 

Upon unloading, Fig 7.1c, the thickness of the GF increases again and recovers 

significantly. Fig 7.2 shows high magnification SEM images of the foam before the 

compression test and under 0.88 N load or ca. 60% strain.  Ideally, except for a very 

small crush around the junction, there was no significant structural damage occurred 

subject to 60% strain and the foam showed very good stress tolerance. However, 

depending on the local microstructure such as orientations and the initial defects of 

the GF, some its parts might be stronger than other parts.  
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c 

500 µm 
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Fig 7.2 High magnification SEM image of GFa before the compression test (a), and under 0.88 N load (b). 

The effect of density on the mechanical property of this type of open-celled GFs was 

also studied. Fig 7.3 shows SEM images of GFb (ρ: 6 -8 mg cm-3) at different stages 

of compression tests. Generally, this foam showed very similar behaviour to GFa. 

As shown in Fig 7.3, the formed cracks during the initial compression steps remain 

almost local until the end of the test, and there is no sudden structure collapse. This 

slow structure loss could be attributed to the interconnected feature of the foam, and 

the strong in-plane covalent bonds which contribute positively to the foam stability and 

protect it from sudden collapse. 

 

 

50 µm 50 µm 

a 
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Fig 7.3 In-situ SEM images of the GFb under compression cycles. 

Fig 7.4 shows high magnification SEM images of the foam under high compression 

loads. Again, although there are significant crack propagations, there is no 

catastrophic failure. Instead, the damage stays local and spreads slowly rather than a 

quick propagation.   

 

@1.3N @1.23N 

@1.37N @1.3N second plateau 

100 µm 100 µm 
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Fig 7.4 In-situ SEM images of the GFb under compression tests. 

Fig 7.5 shows the compressive strain-stress curves of GFa (ρ: 3-5 mg cm-3) and GFb 

(ρ: 6-8 mg cm-3). Compared with GFa, GFb, with a higher density value, shows slightly 

higher stress values at all strain levels. The increased compressive stress in GFb is 

related to its increased wall thickness. However, both curves follow a similar trend 

which is a typical strain-stress response for open-cell foams: an elastic region at small 

strains, followed by a plateau region, and finished with a densification. 

 

 

Fig 7.5 Stress-strain curves of the GFs. (a) GFa (ρ: 3-5 mg cm-3), (b) GFb (ρ: 8 mg cm-3) 
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The elastic stage (or the so-called Hookean region) is due to the bending of the foam 

cell walls prior to the occurrence of any damage or crushing. The plateau region is a 

result of the brittle failure of the cell walls. When almost all the cells get crushed under 

compression, the opposing cell walls touch each other in compaction, leading to the 

final densification region. Benchmarked against the best existing ultralight foams (ρ < 

10 mg cm -3), we note that our foams possess one of the highest compression 

strengths in the literature144,296. Further, both foams showed very long plateaus, 

indicating their good applicability as an energy absorber. 

7.3 Effect of the pre-pressing on the mechanical properties of the GF 

The effects of the pre-pressing on the mechanical properties of the GF were 

investigated by conducting tensile experiments, on an assembled tensile testing 

machine.  

As shown in Fig 7.6, the pressed GF absorbs much higher loads at all strains. The 

maximum absorbed load of the pressed GF is 0.04 N, while it is only 0.006N in the 

non-pressed foam, indicating a 6-7 times increase in the mechanical properties of the 

foam through pressing. 

 Moreover, pre-pressed GF shows a much more homogenous response than non-

pressed foam. The thick line in Fig 7.6a shows clearly that this is due to the lack of 

uniformity in the foam at different testing points.  
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Fig 7.6 Load-strain curves of (a) non-pressed GF and (b) pressed GF. 

The small but consistent noise in the signals in the pre-pressed foam, Fig 7.6b, is 

believed to arise from the contributions of breaking layers of graphene during 

stretching. In fact, the gradual progression allows for the majority of layers in the 

network to contribute positively to the mechanical strength of the foam, and this effect 

is shown in the sudden increased loads at certain points, as other layers try to maintain 

the integrity of the foam while some damaged layers are broken. 

The improved mechanical properties of the pre-pressed GF, over pristine GF, can be 

related to the reduced thickness of the foam which leads to a more homogenised 

response297.  

7.4 Mechanical properties of SiC foams 

The mechanical properties of the SiC foams were also investigated by conducting 

compressive tests under in-situ SEM imaging. For these tests, two SiC foams, SiCa 

(ρ: 9-10 mg cm-3) and SiCb (ρ: 15-17 mg cm-3), were investigated and compared. SiCb 

was prepared by using a denser GF (ρ = 8-10 mg cm-3) for the carbothermal reduction.  
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Fig 7.7 shows a series of sequential SEM images during the SiCa compression. 

Obviously, there is no sign of structure loss or catastrophic fracture in the images. 

Despite the high strains of compression at 26%, 33% and 76% for a-b, b-c and c-d, 

respectively, the foam kept its original shape and its main apparent features under 

increasingly high loads. Its unit cells, as shown with circles in Figs. 7.7a and 7.7c, are 

almost intact, and even under maximum compression the foam showed a good 

damage tolerance. This behaviour is due to elastic-plastic response of the foam which 

can be better explained by using the corresponding stress-strain curve. 
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Fig 7.7 In-situ SEM images of the SiCa during the compression test. (a) Pre-compression, (b) under 0.8 N 

load, (c) under 1.3 N load, and (d) under 3.9 N load. 

The stress-strain graphs were obtained from the load-displacement data and the 

information of cross-sectional area and thickness of the foam. As shown in Fig. 7.8, 

there are three distinct regions: an elastic region at low strain (ε), a plateau area, and 

a densification region, similar to the GFs.  

a 

c  
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b 
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Fig 7.8 Compressive stress-strain curves of the SiC foams. (a) strain data of the SiCa collected from the 

compression machine; (b) a magnified strain-stress plot of the SiCa showing only the area in the circle in 

Fig. 6(a), and the small triangle represents the elastic trend. 

 

From the elastic region in Fig 7.8b for foam SiCa, marked by a small triangle, a value 

of 0.1 MPa for the Young’s modulus (E0) and a peak stress of 0.023 MPa were 

obtained. In the second region, the plateau step, the stress decreased slightly at first 

followed by a non-linear stress/strain change, which could be attributed to the buckling 

and wrinkling of the cell walls. The foam shows a long plateau step with continuous 

small stress changes. This behaviour is due to the interconnected feature of the 3D 

foam and the nanowires that act as supporting beams which together resisted and 

delayed the foam from sudden breakage.  

Fig 7.9 shows in-situ SEM images of SiCb (ρ = 15-17 mg cm-3) under compression 

tests.  Fig 7.9a is an SEM image of SiCb before the comression tests. It shows a very 

dense 3D network that covers entirly with SiC nanowires. Fig 7.9b shows an image of 

the foam under 1.55 N load. Obviously there is no big structual difference from (a). 
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Despite under strain values of 20% ( from a to b), 62% (from a to c) and 72% (from a 

to d), the foam kept its apparent 3D structure almost intact.   

 

Fig 7.9 In-situ SEM images of the SiCb during the compression test. (a) Pre-compression, (b) under 1.55 N 

load,  (c) under 6 N load, and (d) under 17.5 N load. 

 

Fig 7.10 shows the strain-stress graphs of SiCb. It also consists of the initial elastic 

region, followed by the long plateau step plastic deformation. This implies that the 

sample responded to the applied stresses dominantly via the buckling mode, without 

experiencing a quick crush.  
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Fig 7.10 (a): The recorded stress-strain curve of the SiCb foam and (b): a magnified strain-stress plot of the 

SiCb. 

Compared with SiCa, SiCb absorbed much higher loads at all strains, this phenomenon 

could be attributed to the increased density which originated from the increased 

thickness in the cell walls. We obtained a value of 0.23 MPa as the Young’s modulus 

for SiCb, with a plateau strength of 0.057 MPa at 44%.  

Upon unloading, as shown in Fig 7.11, the foam recovered partially, with a 40% strain 

remaining. This partial recovery is due to the elastic buckling of some parts of the cell 

walls and also arises from the undamaged nodes in the foam which result in foam 

recovery even if some trusses are collapsed or damaged, similar to the GFs. However, 

this recovery feature is very unusual in ceramic materials, and it emphasises that the 

present SiC foams do not follow existing mechanical trend of bulk SiC materials or 

even lightweight SiC materials298,299 , as other ceramics  would be collapsed during 

the compression, subjecting to very little stains. In this context, the damage is likely to 

stay local in most parts, rather than affecting the entire integrity of the foam.    
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Fig 7.11In-situ SEM images of the SiCb under testing. (a) Under maximum load, and (b) unloading stage. 

It is noteworthy that compared with SiCa, SiCb exhibited less structural damage under 

comression tests, possibly because sample SiCb contains a higher content of 

nanowires. As shown in chapter 6, the 1D SiC nanowires are highly flexible, thus they 

must have contributed positively to the foam integrity under stresses. An higher 

magnification SEM image, Fig 7.12, shows clearly that the nanowire is the most 

tolerablabe structure to the damage during compression. They appear to be tangled 

with each other from different angles and surfaces (both internally and externally) and 

provide excellent support, as a reinforcement phase, to hold the framework together 

when part of the SiC layers broke, improving the strength of the SiC foam.  
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Fig 7.12 High magnification SEM image of the SiCb. 

These  results are  in cotrast to the obsereved behaviour of the GFs. In the GF, a foam 

with lower density showed much better tolerance to the applied compressive stress, 

since the higher porosity reduces the required void space for stress release. In other 

words,  higher density in the GF results in less flexiblity. However, higher density 

results in higher contents of flexible nanowires, and leads to  more flexible SiC foams.  

Table 7.1 lists the compression values of various lightweight foams with density values 

of ρ < 50 mg cm-3.  The results have shown that our foams possess one of the highest 

compression strengths in the literature, even stronger than the GFs we have produced 

earlier.  

The extremely lightweight SiCa foam with a density of only 10 mg cm-3 reached a peak 

yield strength of 23 kPa, and the SiCb reached a remarkable plateau strength of ca. 

0.06 MPa which is higher than many lightweight foams, including BN 300, GFs and 

even some of the metallic micro-lattice 288. 

50 µm 

Framework  
Filament  
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The present lightweight SiC foams show some similarities with metamaterials reported 

in the literature 292,293, particularly the mechanical responses follow the same trend to 

the 3D hollow-tube alumina micro-lattice (ultrathin wall) reported by Geer’s group. For 

example, they both showed a partial recovery upon unloading after very high strains. 

In the case of the alumina reported, its compression strength is even higher than 

current SiC foams, and we believe this could arise from the native 3D architecture 

used. 

The hollow-tube alumina lattice was prepared by the laser lithography technique with 

a precise control over nano to micro scales 286, however the template used here is 

commercial random 3D foams and the 3D interconnected feature is not ideally placed 

for achieving maximum strength.   

Further, we believe that, different from other 3D foams in which solid particles were 

stacked together via diffusion across grains to form a network with huge structural 

defects, the current 3D SiC foams were a direct conversion from the GFs during the 

carbothermal process. The continuous layer-by-layer carbothermal reaction resulted 

in covalently bonded 2D SiC sheets. This layered SiC defined the shape and 

properties of the resulting 3D foams. Finally, the strong and highly flexible 1D 

nanowires may have assisted the 2D SiC trusses in holding the integrity of the entire 

3D foam, under extreme loading-unloading process, thus possessing outstanding 

mechanical properties for the ultralight structures.  

 

7.5 Summary  
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The mechanical properties of the GF and SiC foams were investigated by conducting 

in-situ compression tests under SEM observation. Regardless of their low density, the 

GFs are mechanically robust and highly flexible. These foams can be used as 

components for energy absorber. These results also provide evidence for the excellent 

cyclic performance for the GF-based materials as electrode for energy storage 

applications.  

Using highly porous and ultralight GFs as the template and carbon source, we have 

successfully produced the lightest SiC foams in the world. The resulting SiC foams 

have an average thickness of 2 mm, with density ranging from 9-17 mg cm-3. 

The 3D foams showed excellent compression strengths, being one of the strongest 

3D foams against any other ultralight materials. They exhibited a 40 % recovery 

subjecting to compression strains exceeding 70 %. The unique features of the partly 

hollowed trusses, the 2D SiC flakes and the 1D nanowires all contributed to the 

ultralight, strong and flexible features of the foam. These new lightweight structures 

are promising for use as insulating materials and energy absorbers.  
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Chapter 8 : Conclusions and future work 

8.1 introduction  

The main aim of this PhD work was to investigate the synthesis and the properties of 

novel 2D and 3D graphene-related materials. In this thesis, 2D graphene, 3D GF and 

its 3D PPY-GF and PANI-GF composites, 2D SiC nanoflakes and 3D SiC foam 

structures have been generated, characterised and reported. Using GF as the starting 

materials and backbones, we have successfully extended its research to another 

brand new area, first investigated and created other graphene-based 2D and 3D and 

materials. This chapter will first present our main achievements, and then describe the 

potential future research prospects based on my own understandings from the 

research work.  

8.2 The main achievements 

1. The successful creation of large 3D GFs of extreme lightweight, high flexibility, with 

interconnected porous networks. These foams are ideally suitable for use as scaffold 

in the preparation of various free-standing 3D electrodes. This result promotes the 

research in graphene and 3D material synthesis, contributing to materials science. 

2. When used as supercapacitor electrodes, our results confirmed that the GF and 

PPY-GF composite electrode demonstrated a near 100% capacity retention after 

10,000 charge-discharge cycles. This excellent capacity retention refers to the high 

mechanical integrity of the foam, high flexibility of the foam and its porous structure. 

The open porosity feature of the foam is very helpful in stabilizing the surface 

morphology of the PPY redox counterpart, as the pores can function as a host to the 

redox elements and accommodate the strains in the entire electrode structure during 
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repeated charge-discharge cycles. This result has contributed significantly to tackling 

the challenging cyclic issues in EES devices, benefiting energy storage technology 

advances.  

3. We have achieved very impressive 660 F g-1 capacitance for the PPY-GF composite 

electrode, with both the battery-like energy density and capacitor-like power density, 

which is one of the best values reported in open literature. The main reason behind 

this performance is the ideal 3D structure of the electrode which allows for very 

efficient charge storage process.  

4. We have first realised the creation of a class of novel 3D SiC foams, using a 

conventional carbothermal reaction starting with the GF template. The resulting 3D 

SiC are made from continuous, hexagonal layered 2D SiC, reinforced with 1D 3C-SiC 

nanowires that grown simultaneous during the carbothermal formation, depending on 

the experimental parameters. This new 3D SiC thus is completely different from any 

existing 3D ceramics, due to its continuous layered SiC structures. Therefore, this has 

extended the 3D graphene research into a new arena. 

5. After breaking the 3D SiC and purifying from 1D nanowires through a multi-step 

sonication procedure, we have successfully achieved large ultrathin SiC nanoflakes 

for the first time. The resultant 2D SiC are multi-layered (5-9 layers), with an average 

thickness of about 2 nm. The GF template-assisted creation allows for the control of 

the SiC layer numbers by utilising GFs with different layers, as the SiC nanoflakes will 

have very similar thickness to their paternal template. The SiC nanoflakes showed a 

slightly increased interlayer distance, 0.255 nm vs 0.252 nm for 2H SiC, and we 

believe that this enlarged spacing is due to the curvature and defects in the layers. 
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6. Finally, we have investigated the mechanical properties of both the GF and SiC 

foams by conducting in-situ compression tests. We have found that, similar to the GF, 

the SiC foams also exhibited an impressive high recovery after compression. We have 

analysed mechanisms for this unusual behaviour in ceramic foams, and discussed the 

advantageous of our synthesis approach. We have confirmed that the key role of the 

GF template and the layered structures for the SiC and the reinforcement effect of the 

nanowires all played a role in the ultralight, flexible and strong new structures. 

Importantly, we have confirmed that both foams are amongst the lightest and strongest 

structures reported to date. This will contribute to general advanced materials 

research, particularly to the emerging fields for ultralight and ultra-strong 

metamaterials. 

8.3 Future work: 

Based on the results and my observations, I would like to recommend the following 

works for future directions. 

1- For the purpose of graphene foam productions, there is no need for long time 

e.g. 1 h synthesis process. H2 is very dangerous gas. Thus, the best alternative 

would be to reduce the synthesis time to 10 min and to increase the flow rate 

of the carbon source accordingly.  

2- The pre-pressed GF needs further investigation as it showed superiority over 

the GFs in both tensile test and electrochemical test. It can also be used as 

substrate for preparing other materials.  

3- Ni-assisted CVD method can be used for generating other lightweight 3D 

materials, providing that one can practically uses a minimum flow rate for the 

injected reactants.  
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4- Although the produced SiC flakes are indeed a very interesting structures and 

the process itself was successful, further works need to be done in this field.  

Starting with carbon source, we really do not have to start with 3D graphene 

foam, instead graphene flakes can be used as the template.  Further, the 

sonication process needs to be optimised. Thinner and larger flakes can be 

explored by changing the solvent and the exfoliation methods. Both surfactants 

solvents and polymer solvents can be used. 

5- Finally, I do recommend graphene production from the synthesised SiC foam 

via graphitization method. Structural characterisation of the GF before and after 

SiC transformation can provide important structural information about both GF 

and SiC.  
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