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Abstract 

 

This thesis examines how early warning signals perform when tested on climate 

systems thought to exhibit future tipping point behaviour. A tipping point in a 

dynamical system is a large and sudden change to the state of the system, 

usually caused by changes in external forcing. This is due to the state the 

system occupies becoming unstable, causing the system to settle to a new 

stable state. In many cases, there is a degree of irreversibility once the tipping 

point has been passed, preventing the system from reverting back to its original 

state without a large reversal in forcing. Passing tipping points in climate 

systems, such as the Amazon rainforest or the Atlantic Meridional Overturning 

Circulation, is particularly dangerous as the effects of this will be globally felt. 

Fortunately there is potential for early warning signals, designed to warn that 

the system is approaching a tipping point. Generally, these early warning 

signals are based on analysis of the time series of the system, such as 

searching for ‘critical slowing down’, usually estimated by an increasing lag-1 

autocorrelation (AR(1)). The idea here is that as a system’s state becomes less 

stable, it will start to react more sluggishly to short term perturbations. While 

early warning signals have been tested extensively in simple models and on 

palaeoclimate data, there has been very little research into how these behave in 

complex models and observed data. Here, early warning signals are tested on 

climate systems that show tipping point behaviour in general circulation models. 

Furthermore, it examines why early warning signals might fail in certain cases 

and provides prospect for more ‘system specific indicators’ based on properties 

of individual tipping elements. The thesis also examines how slowing down in a 

system might affect ecosystems that are being driven by it.   
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Although a relatively new concept in climate and environmental systems, tipping 

points in dynamical systems have a long research history. These occur when a 

system is forced such that the stable equilibrium it occupies becomes unstable 

and the system settles to equilibrium in a different stable state. This can cause 

drastic changes that occur seemingly randomly and without warning, and so are 

of huge interest to society, especially from a climate perspective where their 

impacts could be globally felt. Early warning of these transitions could be useful 

in prevention or at the very least adaptation to the changes that will occur. 

Methods for predicting the approach towards tipping points in dynamical 

systems are based on analysis of their time series. Systems will begin to 

respond more sluggishly to perturbations as the state it occupies loses stability 

and will also sample more of the surrounding state space, quantified by an 

increase in autocorrelation (Dakos et al., 2008, Held &  Kleinen, 2004) and 

variance (Carpenter &  Brock, 2006) respectively over time. These are 

examples of ‘generic early warning signals’, others of which are detailed later. 
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Figure 1.1: A map of climate systems that may potentially exhibit tipping points 

(adapted from Lenton et al. (2008)). Systems coloured green are concerned 

with changes to vegetation, blue, changes in ocean circulations and the 

cryosphere and red, changes to atmosphere. The two systems circled in black 

are explored with the thesis and the system circled in grey (‘Reddening of North 

Pacific SSTs’), although not considered a tipping point, exhibits signals similar 

to a system approaching a tipping point and is also explored in this thesis.  

 

Tipping points are thought to occur in a number of climate systems (Fig. 1.1), all 

of which will have impacts which would be at least nationally felt, with the 

majority having global implications should the tipping points be passed (Lenton 

et al., 2008). Candidate tipping points include changes in ocean circulation, 

such as Atlantic Meridional Ocean Circulation (AMOC) collapse, to loss of large-

scale vegetation like the Amazon rainforest, among others. The potential for 

these systems to pass their tipping points depends on how they are forced in 
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the future, and there is a large uncertainty in future anthropogenic forcing of the 

climate system. 

The central aim of this thesis is to determine the performance of generic early 

warning indicators of tipping point behaviour in climate systems that could 

potentially tip in the future, with the use of general circulation models (GCMs). 

This provides an increase in the complexity of systems these indicators have 

been tested on, and involves plausible forcing scenarios that could be seen 

over the 21st century. Furthermore the statistical significance of any indication of 

an approach towards a tipping point is tested throughout. A method for testing 

how soon before a tipping point a significant warning (usually an increase in an 

indicator) and therefore a prediction of an approach can be made is also 

suggested. In cases where generic early warning signals fail, alternative 

methods of indication are provided and the reasons for the indicator failing are 

determined. Lastly, there is an exploration into how the approach towards a 

tipping point in a climate system might affect ecosystems that are influenced by 

it. This provides a basis to begin to determine if this change in ecosystem 

behaviour could be an indicator of tipping point approach itself. 
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A Generic Tipping Point  

 

Figure 1.2: An example of a tipping point being passed. Forcing of the system 

governed by Eqn. 1.1 is provided by increasing parameter  to a critical value, 

crit (dotted line in (a)), causing time series x to abruptly shift (a). The potential 

of the system for (b) =0, (c) 0<<crit and (d) >crit shows how the left hand 

stable equilibrium loses stability as  is increased, causing the system to shift to 

the right hand equilibrium.  

 

To begin to understand what causes tipping (Fig. 1.2a), we imagine a typical 

system with two stable states. These two states are separated by an unstable 

steady state. It is easy to visualise this by plotting the potential of the system 

(Fig. 1.2b-d). The two ‘wells’ of the system represent the stable states whereas 

the ‘hump’ in between them is the unstable steady state. The longer time scale 
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dynamics of the system are deterministic, whereas the system will be moved 

around by shorter time scale stochastic noise, which from a climate perspective 

could be viewed as ‘weather’. The steepness of the sides of the wells are 

related to the strength of their stability and how strong the restoring feedback, 

which keeps the system in that state, is. The system in Fig. 1.2 is represented 

by Eqn. 1.1, with the bifurcation parameter  determining the distance away 

from the bifurcation or tipping point. 

 

𝑥̇ = −𝑥3 + 𝑥 + 𝜇         (1.1) 

 

Tipping generally occurs in one of two ways. The first of these, via a bifurcation, 

is when the state the system occupies loses its stability, causing the system to 

move to the other stable attractor. This bifurcation is approached due to a 

change in one (or more) of the parameters in the system known generally or 

collectively as the bifurcation parameter ( in Eqn 1.1). In this case there is a 

sense of irreversibility as the system would have to be forced in the opposite 

direction to obtain the stability of the original state once again. The system 

could also move to a different state due to being forced purely by the short term 

stochastic noise/weather without the stability of the states changing. The most 

likely way for tipping to occur is a combination of these two. As a system is 

approaching a bifurcation, it becomes easier for noise to induce a shift to 

another state as the basin of attraction of the current state gets smaller and thus 

perturbations to the system are more likely to push the system outside of this 

basin (Fig. 1.2b-d). Tipping points can also occur when rate of change in a 

parameter is too fast for the system to keep up and so moves away from stable 
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attractors. This ‘rate dependent’ tipping is not discussed here but information 

can be found in Ashwin et al. (2012). 

As the system approaches a bifurcation, the leading eigenvalue of the Jacobian 

matrix of the system approaches zero from below (Wissel, 1984). As this 

happens, the basin of attraction of the state decreases and the potential well 

widens (Fig 1.2b-d). Because of this, the system will begin to respond more 

sluggishly to noise. This phenomenon is known as ‘critical slowing down’ (CSD) 

and invokes the idea that in a time series of the system, points will begin to 

become similar to the previous point in the series. For daily data, this could be 

simply thought of as ‘today is becoming more like yesterday’. 

The changes in the potential well and behaviour of the system can be seen in 

Figure 1.2, where three examples of the potential well of a system at different 

distances from the tipping point are shown. The potential well of the state 

occupied by the system is steep when it is far away from bifurcating (Fig. 1.2b) 

and shallower near the threshold (Fig. 1.2c). Once the critical value of , crit 

has been passed, the potential well the system originally occupied has lost all 

stability and only the well/state on the right hand side remains (Fig 1.2d). The 

time series in Fig. 1.2a is created by slowly increasing the bifurcation parameter 

as well as perturbing the system by white noise of constant variance. The time 

series of the system when  is near 0 acts similarly to white noise (Fig. 1.2a) 

seemingly random much like the perturbations. When the system is closer to 

tipping, the time series exhibits increased memory with successive points more 

similar to the previous point. This critical slowing down causes the time series to 

meander away from the equilibrium for longer times (observed in Fig 1.2a), 

rather than appearing like white noise.  
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As well as this slowing down, the basin of attraction of the equilibrium reduces 

(due to the leading eigenvalue approaching 0) causing the system to sample 

more of the surrounding area. Close to the tipping point, the variance of the time 

series is larger than far away from it (Fig. 1.2a). In the typical ‘fold bifurcation’ 

example, where there are two states with one losing stability, the time series 

also becomes more skewed closer to the tipping point due to the landscape of 

the potential well not being symmetric. In other examples such as a ‘pitchfork 

bifurcation’ where there is one state that symmetrically separates into two, 

skewness is not expected to change as the basin of attraction of the state will 

remain symmetric. These characteristics will be discussed in more detail below. 
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Tipping Points in the Climate System 

 

Potential tipping points in the climate system are detailed by Lenton et al. 

(2008) and some examples can be seen in Fig 1.1. Expert elicitation carried out 

by Kriegler et al. (2009) asks for the opinions of experts on various systems’ 

likelihood of passing a tipping point under 3 different warning scenarios. Across 

all the experts, there is a range of likelihoods found for the various tipping points 

with increases in the probability of the tipping point occurring under the higher 

warming corridors. This range in responses suggests that there is high 

uncertainty in the future of these systems. The expert’s opinions also suggest 

that a tipping point passing in one system will change the potential for another 

system to tip with the majority of these interactions promoting further tipping. 

However in some cases, the experts were unsure on the sign of the influence of 

tipping in one system on another and in other cases, collectively disagreed on 

the sign of the influence.  This again shows the uncertainty associated with 

these tipping points. Lenton (2011) suggests that overall, there is a range of 

likelihoods and impacts of these tipping points occurring. For example, the loss 

of summer sea ice has a relatively high likelihood with low impact, whereas 

abrupt changes in ENSO are relatively unlikely to happen, but will have a large 

impact if they occur. There are three climate systems explored within this thesis, 

collapse of the Atlantic Meridional Overturning Circulation (AMOC), dieback of 

the Amazon rainforest and shifts in the Pacific Decadal Oscillation (PDO). The 

first two are generally considered systems that could exhibit tipping point 

behaviour, whereas there is debate about whether shifts in the PDO occurred 

due to some nonlinear dynamics, or a red noise process that takes larger 
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excursions from a mean state (see below). While the chapters concerning these 

systems contains detailed background information, an overview, specifically 

from a tipping point prospect is provided below: 

 

Atlantic Meridional Overturning Circulation (AMOC) collapse 

The idea of AMOC exhibiting two stable states, an ‘on’ and an ‘off’ mode, is 

supported by theory (Stommel, 1961) and model studies (Hawkins et al., 2011, 

Lenton et al., 2009, Manabe &  Stouffer, 1988, Rahmstorf et al., 2005). Original 

theoretical arguments came from Stommel’s box model (Stommel, 1961), which 

consisted of 2 well-mixed boxes, representing the high and low latitudes, 

connected by pipes representing surface flow and deep water flow. Each box 

has a temperature and a salinity and the flow strength between boxes is 

regulated by the gradient of temperature and salinity between the boxes. The 

‘on’ state (the current state of AMOC in the real world) is regulated by the 

temperature gradient, where surface flow is poleward, from the low to high 

latitudes due to the high latitude box being denser (having a higher salinity). 

However a salinity gradient driven ‘off’ state exists, where the flow is reversed, 

which exists under different initial conditions of temperature and salinity. 

Both equilibria can be found in coupled atmosphere-ocean models (Manabe &  

Stouffer, 1988), as well as hysteresis exhibited in a number of models (Hawkins 

et al., 2011, Rahmstorf et al., 2005), with the tipping point between states 

induced by increasing a freshwater forcing in the high latitudes to alter the 

salinity in the region. 
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In its current state, the AMOC is responsible for a large poleward heat transport 

(Johns et al., 2011). Without this, the North Atlantic region could cool by 1-3°C 

with local cooling due to large sea-ice changes of up to 8°C (Jacob et al., 2005, 

Vellinga &  Wood, 2002). A southward shift in inter-tropical convergence zone 

would also be expected, causing drought in the Sahel  (Brayshaw et al., 2009, 

Vellinga &  Wood, 2002), and sea level changes of up to 80cm along the coasts 

of North America and Europe (Levermann et al., 2005, Vellinga &  Wood, 2008). 

There is large uncertainty associated with the possibility of future AMOC 

collapse, largely due to differences in the ways it is modelled in GCMs which 

produce different streamfunctions (Boulton et al., 2014). Freshwater forcing 

similar to rates observed currently (Lenton et al., 2008) was applied to a GCM 

(Hawkins et al., 2011) and the AMOC collapsed after 800 years, suggesting that 

it is far away from tipping in that model, but any early warning would be useful 

due to the significance consequences if this were to occur. However it is 

important to note that the initial state used in the model could be very different 

from the real world and in reality, the tipping point could be closer or further 

away. (Hawkins et al., 2011) suggest that the FAMOUS run is closer to the 

tipping point by assessing the ‘FOV’ indicator in their system, a measure of the 

net freshwater import into the Atlantic. This determines how strong the negative 

feedback restoring the AMOC is and is detailed below. 

 

Dieback of the Amazon rainforest 

Sudden dieback of the Amazon rainforest was first simulated in an offline 

vegetation model forced by changes in climate from the GCM HadCM2 (White 

et al., 1999). Since then it has also been found in coupled GCMs such as 
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HadCM3LC (Cox et al., 2000), with an even stronger non-linear response to 

temperature found when the same model is run to equilibrium (Jones et al., 

2009). However there is high uncertainty concerning the future of the rainforest, 

with other GCMs showing less dieback and a transition to a seasonally dry 

forest in the East Amazon appears a more realistic prospect (Malhi et al., 2009). 

Experts during an elicitation gave a 20% chance of dieback (in this case over 

half of area of the Amazon loses year-round forest) by 2200 if global 

temperature increases between 2-4°C and a 70% of dieback if it increases by 

more than 4°C. 

For tipping point behaviour to be observed, a positive feedback inducing forest 

loss needs to exist in the system. The rainforest is partially self-sustaining, in 

that water is recycled to the atmosphere via transpiration and becomes 

precipitation (Betts, 1999, Salati &  Vose, 1984). Winds inland ensure rainforest 

far from the Atlantic receives this recycled precipitation. If forest were to die 

back, a positive feedback would be caused by the reduced rainfall and thus 

further dieback (Betts et al., 2004). 

The importance of the Amazon rainforest in future climate change is due to it 

being a large carbon store and generally a carbon sink, except in recent drought 

years when it has become a temporarily carbon source (Lewis et al., 2011, 

Phillips et al., 2009). Dieback of the Amazon rainforest on a regional scale could 

cause the area to become a permanent carbon source, having a large effect on 

the global carbon cycle and thus future climate change (an estimated increase 

of 280ppmv of atmospheric CO2 when including climate effects on the carbon 

cycle, resulting in a further contribution of 1.5°C to global warming in HadCM3) 

(Cox et al., 2004, Cox et al., 2000). Loss of the Amazon rainforest also results 
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in a loss of habitat for the biodiversity native to the Amazon region (Dirzo &  

Raven, 2003). 

Analyses carried out within this thesis concerns changes to the Amazon 

rainforest due to changes in climate only, rather than through deforestation or 

fire effects as these are not implemented in the GCMs used. 

 

Changes in the Pacific Decadal Oscillation (PDO) 

The Pacific Decadal Oscillation (PDO) is the time series of the first empirical 

orthogonal function (EOF1) of North Pacific (20-60°N) sea surface temperatures 

once the annual cycle and warming trend have been removed (Mantua et al., 

1997). It represents the polarity between surface temperatures in the eastern 

and northern sections of the domain, compared to the western and central 

sections. An example of the PDO (although using a different dataset to Mantua 

et al. (1997)) can be seen in Figure 1.3. 

The PDO index switches sign on a multidecadal time scale and abrupt shifts 

between the positive and negative phases (Hare &  Mantua, 2000) have been 

linked to changes in salmon productivity (Mantua et al., 1997), drought regimes 

in the US (McCabe et al., 2004), and Indian summer monsoon rainfall (Krishnan 

&  Sugi, 2003) amongst other biological and ecological time series (Hare &  

Mantua, 2000). 
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Figure 1.3: A map of the first empirical orthogonal function (EOF1) of HadISST 

North Pacific SSTs. SSTs of grid points have had their annual cycle and 

quadratic warming trend removed. Principal component analysis is conducted 

on the residual time series.  

 

Sea surface temperatures are influenced by the white noise like forcing from the 

atmosphere which is integrated over time, resulting in red noise type behaviour 

(Hasselmann, 1976). This has led to debate about whether or not the PDO 

exhibits true tipping point behaviour with separate attractors, or if it is a red 

noise process which over time, will meander above or below a mean value 

(Rudnick &  Davis, 2003). 

The marine ecosystems driven by indices such as the PDO are thought to 

integrate them over time, ‘double- integrating’ the original white noise 

atmospheric forcing (Di Lorenzo &  Ohman, 2013). Whether these systems  

have more than one stable attractor and could exhibit nonlinear, tipping point 

behaviour (Hsieh et al., 2005), or will respond linearly to the index (Hsieh &  

Ohman, 2006), a redder forcing will be more easily tracked by the marine 
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ecosystems (Steele et al., 1994). While the PDO index is not considered a 

tipping point in this thesis, it appears to be getting redder over time (producing 

signals similar to early warning signals) and the potential effect of this on other 

ecosystems is explored. 
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Early Warning 

 

The methods used within this thesis generally use the idea of testing early 

warning indicators on time series of a system, considering a section or ‘window’ 

of it at a time. This window then moves along the time series one point at a time 

to build up a time series of the indicator. A change (usually an increase) in the 

indicator over time is considered an early warning of the approach towards a 

tipping point. The default choice of window length in existing literature (e.g. 

Dakos et al. (2008)) appears to be half the length of the time series, noting that 

only data up to but not including the tipping point should be used. A window 

length needs to be long enough to provide a reliable estimate of the indicator 

within that window. It also needs to be short enough to provide a time series of 

the indicator sufficiently long to determine if there is any trend that would give 

rise to early warning. In cases where drift occurs (the equilibrium of the system 

moves), the time series should first be detrended, usually with a smoothing 

function. Kernal smoothing functions are used for this within this thesis. 

The time series of these indicators are tested using Kendall’s  rank correlation 

coefficient to determine how strong they are. 

𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

1
2 𝑛(𝑛 + 1)

 

Where n is the length of the time series and a pair (xi,yi) and (xi+1,yi+1) is 

concordant if 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 or 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 and discordant 

otherwise. With one variable as time which will always be increasing, Kendall’s 
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 gives the indicator’s tendency with a value of 1 being always increasing and -1 

always decreasing. 

Figure 1.4 shows an example of calculating an indicator from the system shown 

previously (Eqn. 1.1). In this case, the bifurcation parameter starts at -0.235 and 

goes to 0.5. Indicator values are plotted at the end of the window length used to 

calculate them as shown by the different colours in Fig. 1.4. The indicator time 

series, when detrending with a bandwidth of 100 and using a window length of 

200 shown in Fig. 1.4 has a  value of 0.9, suggesting it is a strong indication of 

approaching a tipping point. However this is only one example using a chosen 

window length and detrending bandwidth. The robustness of this signal can be 

tested by measuring the strength of the indicator whilst varying detrending 

bandwidth and window length. The  values from each calculated indicator can 

be viewed in a contour plot as is shown in Fig. 1.4. In this instance, the AR(1) 

signal tested is robust to varying detrending bandwidth and window length. The 

AR(1) indicator is described in full detail later in this chapter. 
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Figure 1.4: An example of an early warning indicator (AR(1); see below) and its 

tests of robustness and significance. The time series (a) is cut prior to the 

tipping point (vertical line) and using a Kernal smoother (red line), detrended 

(b). The early warning indicator is calculated on a moving window and plotted at 

the end of the window used (c). Examples of the windows and the resulting 

indicator are shown as different colours in (b) and (c). To test robustness, 

Kendall’s  values are calculated for the indicator when varying window length 

and detrending bandwidth and are plotted as a contour plot (d), with a cross 

denoting the window length (200) and bandwidth (100) chosen as an example 

in (c). A null model ensemble (created by bootstrapping, see main text) is used 

to determine the significance of the result by calculating a P-value, the 

probability an early warning signal or equal or greater  value is found. In this 

case all 1000  values are lower than the  found in the indicator (0.9), thus 

P<0.001.  
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The significance of the strength of these indicators is measured using a null 

model. This null model can be created a number of ways. In a created example, 

the indicators could be tested on the system when there is no approach to the 

tipping point (i.e. keeping the bifurcation parameter at a constant value). In 

reality, not enough will be known about the system in question to be able to run 

a simulated null model. In this case, the time series created for the null model 

can be created by sampling values from the original time series, creating a 

number of time series of the same length (Dakos et al., 2008). This is known as 

bootstrapping. The time series created from this will have similar properties 

such as mean and variance whilst the memory in the time series will be 

destroyed. With this memory lost, the signals are not expected to be present 

and the probability of strong signals being found by chance can be explored. 

From null models, a P-value can be calculated. This is the probability of finding 

a stronger signal by chance. An example of a null model ensemble calculated 

for the example system (using the bootstrapping technique) is shown in Fig. 1.4, 

showing that the signal found is highly significant with P-value < 0.001. 
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Examples of Generic Early Warning Signals 

 

Critical slowing down 

As mentioned in the introduction, on the approach to a tipping point, critical 

slowing down (CSD) occurs in the system. The increase in memory as this 

occurs can be seen in the time series in Fig. 1.2a and in the detrended time 

series of Fig. 1.4. As previously stated, CSD is caused by the leading 

eigenvalue of the Jacobian matrix of the system approaching 0 (Wissel, 1984). 

However it is impossible to calculate the exact value of this eigenvalue without 

knowing the governing equations of the system. In reality, only a time series is 

likely to be available. There are many ways to estimate that the eigenvalue is 

changing however, and it could be possible to directly estimate the eigenvalue 

itself with more information than just a time series (Lade &  Gross, 2012). 

 

Lag-1 autocorrelation (AR(1) coefficient estimation) 

Critical slowing down can be estimated by an increasing lag-1 autocorrelation: 

𝑥𝑡+1 = 𝛼𝑥𝑡 + 𝜀         (1.2) 

Where x is the time series,  is the lag-1 autocorrelation (AR(1)) coefficient and 

 is random white noise that perturbs the system. As the system approaches the 

tipping point,  is expected to approach 1. Clearly the increase in  causes 

each xt+1 to become more like xt. Usually  is estimated by fitting a model of the 

form of Eqn. 1.2 to the data. 
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The indication of an increasing AR(1) coefficient on approach to a tipping point 

was first used in climate data by Held and  Kleinen (2004). They used a climate 

model of intermediate complexity (CLIMBER2) to simulate a shutdown of the 

Atlantic Thermohaline Circulation (THC). To do this they aggregate their data 

into fast, medium and slow time scales, the fast representing the noise, the 

medium the response to those perturbations, and the slow in which the 

approach to the bifurcation is happening. This time scale separation is also 

described by Thompson and  Sieber (2011). 

Dakos et al. (2008) test this same method, with the use of different detrending 

bandwidths and window lengths for robustness (in their supplementary 

information), on 8 climate proxy time series from palaeo-records. Positive 

results were found by both Held and  Kleinen (2004) and Dakos et al. (2008) 

although some results by Dakos et al. (2008) were not as convincing as others, 

mainly due to lack of data points. These results showed only general increases 

in AR(1) coefficient estimation under a lot of noise and so had low but positive 

Kendall's , compared to time series containing more data points which had 

higher  values. Dakos et al. (2008) also simulate 3 tipping points occurring and 

these suggest an increasing AR(1) coefficient. In the supplementary 

information, Dakos et al. (2008) use null models as previously described to 

determine how significant the Kendall’s  of the AR(1) coefficient time series 

are. 

An approach of the AR(1) estimate to 1 suggests the tipping point has been 

reached. Held and  Kleinen (2004) find that they are able to predict when the 

tipping point would occur by fitting a linear regression through their AR(1) time 

series, although their 95% confidence interval of this reaching 1 is around 
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10000 years wide (about 1/5 the length of the time series). Generally only 

increases in the value of the AR(1) estimate are considered early warning 

signals as frequency of data points and detrending bandwidth can affect its 

value.  

 

Increasing DFA exponent 

Another method for observing critical slowing down comes in the form of an 

increasing detrended fluctuation analysis (DFA) exponent. This tests for the 

decay in correlations over time and is related to estimating the AR(1) coefficient, 

although the latter only compares correlations to the previous time point rather 

than over longer time distances. The DFA exponent is calculated by integrating 

the time series (creating the profile), dividing it into windows of a chosen size, 

fitting a polynomial of chosen order to each window and assessing the squared 

difference between this polynomial fit and the profile.  

𝐹2(𝑣, 𝑠) =
1

𝑠
∑[𝑌((𝑣 − 1)𝑠 + 𝑖) − 𝑦𝑣(𝑖)]2

𝑠

𝑖=1

 

Y is the integrated time series (profile function), yv(i) is the best fit polynomial of 

chosen order for segment v and s denotes the size of the windows. These 

differences are averaged over the all the windows and repeated for different 

window sizes. The fluctuation function increases by a power law as 𝐹 ∝ 𝑠𝛼 with 

 being the DFA exponent.   

The DFA exponent theoretically approaches 1.5 as the tipping point is reached 

(but is usually rescaled so it approaches 1), although as with the AR(1) 

estimate, its value can be altered by frequency of data points and detrending 
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method so any increase is deemed an early warning signal. DFA calculations 

could be considered more robust than AR(1) estimates as only a choice of 

window length has to be made since detrending is part of the method. However 

this does depend on the type of detrending as different orders of polynomials 

can be fitted through the data to detrend it (similar to using different Kernal 

smoothing bandwidths). Generally polynomials of order 1 (straight lines) are 

fitted through the data. 

The first application of this method on climate data was on a model shutdown of 

the THC and palaeoclimate data over the last deglaciation by Livina and  

Lenton (2007), which was successful in that increases in the DFA exponent 

were observed, despite the poor resolution in the palaeo record. It was also 

used in a test of robustness against other methods by Lenton et al. (2012) for 6 

tipping systems, including model data and palaeo records. In some cases 

stronger trends were found compared to the AR(1) estimate and in others the 

trend was not as strong but was always positive except in 1 instance where it 

failed, although in all of these instances, it is not certain that there was an 

approach towards a tipping point and the abrupt shifts may have been noise 

induced (see beginning of Chapter 1). The AR(1) estimates which could give 

either sign for the same series depending on the choice of bandwidth and 

window length sometimes showed values of  closer to 1 than the DFA analysis. 

However the 2 methods complement each other as testing both can provide 

some measure of robustness (if both suggest a tipping point is approaching 

then it is less likely to be a false alarm). 
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Spectral 'Reddening' 

Spectral reddening although more difficult to estimate numerically, can 

potentially show graphically that there is an approach to a tipping point with 

higher power found at lower frequencies nearer the tipping point (Fig 1.5a). A 

shift in power from high to low frequencies occurs as perturbations tend to have 

a longer lasting effect on the system. This is analogous to the AR(1) coefficient 

estimation as a loss of power at higher frequencies (contains less high 

frequency noise) suggests that the system is becoming more sluggish and 

slowing down. Kleinen et al. (2003) show this for a simple 2-box model of the 

THC by plotting the spectrum of the time series at different distances away from 

the tipping point.  

There is potential for spectral reddening to be used in a time series analysis 

method (using a sliding window). The power law exponent can be estimated by 

fitting a regression line through the log power spectrum of a segment of the time 

series (Fig 1.5b). An exponent of approximately 0 implies white noise whilst 

lower (negative) values equate to a reddening. The redder a time series is, the 

more negative the exponent becomes so recording its negative value may make 

it easier to understand (so increases suggest reddening). The power law 

exponent is related to both the AR(1) coefficient and the DFA exponent by the 

equations 𝛽 = 2𝛼 − 1 and 𝛼 = 1 −
𝛾

2
, where  is the power exponent,  is the 

DFA exponent and  is the AR(1) coefficient (Livina &  Lenton, 2007). 
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Figure 1.5: Power spectrum of two time series (created using Eqn. 1.1) where 

system is far (grey/black) and close (orange/red) to the tipping point showing (a) 

power and (b) log(power) as a function of frequency. A Kernal smoothing 

function has been applied to the spectrum for power (a) and a linear regression 

line fitted to the log(power) (b). 

 

Increasing Return Time 

In an idealised situation, the resilience of the system could be measured by 

artificially perturbing and recording how long the recovery or return time is to 

settle to equilibrium again. Wissel (1984) noted that the return time after a 

perturbation to the system will be longer if closer to the bifurcation. Using this as 

an early warning signal in the real world would be difficult, especially on the 

large scales of climate systems where large scale perturbations would be 

difficult to perform and may also have adverse effects. Also the recovery time 

might be difficult to determine under short term noise that appears in real 
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systems. However it has shown potential in small ecological systems where 

perturbations can be more easily implemented, as well as in modelled systems. 

The method was used by van Nes and  Scheffer (2007) when looking at 6 

different ecological models with the increase in return time being observed a 

long time before the transition. Measuring the return time has been adopted 

more recently in a laboratory experiment by Veraart et al. (2012) where 2 

populations of cyanobacteria are shown increasing levels of light until they pass 

a threshold (due to being unable to shade one another) and the tipping point is 

passed. 

 

Eigenvalue estimation and higher dimension systems 

Early warning signals which use extra information could potentially diagnose the 

eigenvalue and its approach to 0 directly rather than trying to estimate this from 

the AR(1) coefficient. One example of this uses information such as the 

functional form of the equations governing the system. From this, the system is 

linearised i.e. the Jacobian matrix is found and calculated at each time step 

based on multiple time series of known information to find an estimate for the 

eigenvalue (or eigenvalues for a system with two or more dimensions). In 

dynamical systems analysis, eigenvalues with negative real parts imply the 

state is stable and an increase towards 0 means the system is approaching a 

bifurcation or tipping point. The AR(1) estimate acts as a proxy for the 

eigenvalue whereas this method attempts to directly calculate it. The 

eigenvalue's absolute value is unaffected by any data frequency or user choices 

and so can potentially be more useful, especially in cases where the sampling 

of a system can be a sparse or inconsistent. 
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Lade and  Gross (2012) first use this method on models of increasing 

complexity, the simplest of these being an Allee effect, 1-dimensional model 

similar to that of Takimoto (2009) (who looks for increases in variance, see 

later). The method successfully predicts the tipping point with only 15 time 

points prior to tipping, knowing only the population and the birth rate of the 

species at each time point. They do however assume the death rate is linearly 

increasing with the population. 

Lade & Gross also test their method on the fisheries model from Biggs et al. 

(2009) and a tri-trophic food chain model both of which are higher dimension 

systems than the Allee effect model. More information is needed but the method 

still shows promise for a climate system. There is also the ability to track more 

than one eigenvalue (for systems of greater dimension than one) rather than 

just one in case there is a sudden switch of which one is closest to 0. For 

example, one eigenvalue could stay constant but be close to 0, and another 

could be largely negative but quickly increasing towards 0. An approach to the 

tipping point would be diagnosed earlier, compared to a method such as AR(1) 

coefficient estimation which would only register the constant eigenvalue until the 

switch occurred. Furthermore, the type of bifurcation being approached can be 

determined. By observing both the real and imaginary parts of the eigenvalues 

in the fisheries model, it was determined that a Hopf bifurcation was crossed 

(Lade &  Gross, 2012). 

Although this method shows promise, it is unclear if this type of method could 

be transferred to the real world or even to more complex, higher dimension 

climate models due to the extra information on the function forms that would be 

needed. The estimation of the eigenvalue can also be heavily influenced by 
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strong noise (Lade &  Gross, 2012). There is however prospect for it to continue 

to work in simple systems.  

The concept of extending early warning signals to systems of higher dimensions 

has been explored by Williamson and  Lenton (2015), who show that other 

phenomena such as a decrease in the frequency of oscillations could provide 

early warning in more complex systems.   

 

Increasing Variance 

Another indication of the approach to a tipping point is an increase in the 

variance of the system (also measured as an increasing standard deviation). As 

previously mentioned, when the state of the system loses stability, the basin of 

attraction increases and the system is able to sample more of the surrounding 

space. Ditlevsen and  Johnsen (2010) show that variance should increase as 

AR(1) increases and an increase in one but not the other should not be viewed 

as an early warning signal. The fluctuation-dissipation theorem shows that 

〈𝑥2〉/𝑇 = 𝜎2/2, where x is the time series, 𝑇 = 1/𝛼𝜇 with the AR(1) coefficient 

𝑐 = 𝑒−𝛼𝜇|𝑡|, such that is the dominant eigenvalue for bifurcation parameter . 

 tends to 0 as  approached the critical value for tipping crit. Hence variance 

will also increase according to the ratio above. 

Visually an increase in variance near the tipping point can be seen in Figure 

1.6. The example system is shown at two distances away from the tipping point 

(far away and near, as in Fig. 1.5) and the histograms show the changes in 

variance of the time series because of the differences in the bifurcation 
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parameter. The difference in variance is also noticeable in the time series 

themselves. 

 

 

Figure 1.6: Differences in the variance of the system when it is far from (a-c, left 

column) and close to (d-f, right column) a tipping point. Black points in the 

potential well plots (a,c) correspond to the ranges in the time series (c,e) with 

this spread including the mean shown above. Histograms show the distribution 

of the system when it is far (b) and close (d) to the tipping point. The mean of 

the distribution/time series has been removed in b-c and e-f. 
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Variance is calculated temporally in the same way the AR(1) coefficient 

estimation, by first detrending the time series and calculating it on a moving 

window of a specified length. The trend of the resulting time series of variance 

is again calculated using Kendall’s  correlation coefficient. Unlike the AR(1) 

coefficient which approaches 1 towards a tipping point, variance could take any 

positive value and thus just an increase in variance can be viewed as an early 

warning signal. Variance can also be used as an indicator on the time series 

without detrending and the results will be less affected by inconsistent sampling 

of the time series compared to AR(1) coefficient estimation. 

Measuring the variance was used as part of the robustness test carried out by 

Lenton et al. (2012) previously described. For the 6 time series, 3 were mainly 

negative, 1 of these robustly negative. The other 3 were robustly positive 

suggesting that in climate test so far results are mixed, although being real 

world systems, it is not certain that the time series are approaching a 

bifurcation. For a true test of variance as an indicator for early warning, a 

system where it is known for sure that a tipping point is being approached would 

have to be tested.  

The method has been previously used in ecological systems, which are better 

understood in terms of knowing they are approaching tipping points, all with 

increases of the variance. The first of these by Carpenter and  Brock (2006), 

uses a lake eutrophication model. Biggs et al. (2009) use a fisheries model and 

Takimoto (2009) measures variance as well as other methods to test for an 

early warning in an Allee effect model.  

In some cases variance could decrease on the approach to a bifurcation. Dakos 

et al. (2012) show that in some cases, factors in the environment can fluctuate 
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stochastically and the system becomes less responsive to these fluctuations 

near a tipping point. However it will always increase at the tipping point. 

Variance can also be seen to decrease if the Kernal smoothing function leaves 

only high frequency data due to a low bandwidth. An approach to a tipping point 

would result in less high frequency movement (and so a slowing down as seen 

already) meaning the variance at high frequencies would decrease. 

 

Temporal Skewness 

Changes in the skewness of the distribution of a system can also be an 

indicator of approaching a tipping point of the kind shown in Fig. 1.2, commonly 

known as a fold or ‘saddle-node’ bifurcation. Skewness is not expected to 

change for a pitchfork bifurcation, where a stable state splits symmetrically into 

two stable states separated by an unstable steady state (although other 

indicators are expected to work for these as shown by Kuehn (2011)). However 

these bifurcations do not exist in the systems analysed in this thesis. As the 

stability of the state decreases and the potential well shallows, it will also ‘lean’ 

towards another stable state, becoming asymmetric. Also in certain cases, 

when the amplitude of the noise driving the system is high, the system will begin 

to sample the other state before coming back to the state losing stability (known 

as ‘flickering’, see below). These two characteristics cause the system to 

become skewed towards the new state. The direction of the skewness is 

dependent on the position of the other state, thus a change in skewness 

regardless of sign is considered early warning rather than indicators based on 

critical slowing down or variance where strictly an increase is searched for. 
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Skewness, the third moment of the distribution, is defined as: 

𝛾 =
𝜇3

𝜇2

3
2

 

With: 

𝜇𝑘 =
1

𝑁
∑(𝑥𝑖 − 𝑥̅)𝑘

𝑁

𝑖=1

 

Where N is the total number of points and 𝑥̅ the mean of the data. As with 

variance and AR(1) coefficient estimation, skewness is measured again on a 

moving time window (which would be equal to N). Note that detrending can 

affect the result of this method and can be tested with the residuals or the 

original data. As the calculation of skewness involves residuals from the mean 

on a moving window, any drift in the original time series does not interfere with 

a signal. An example of skewness changes in the simple model used previously 

can be seen in Fig. 1.7, where it can also be seen graphically as the window is 

moved along the time series as an evolving histogram. To ensure skewness 

can be seen more clearly in the histograms (Fig. 1.7 c,d)  is increased more 

slower than previously. Skewness is first seen in use by Guttal and  

Jayaprakash (2008). They test the indicator on model data from a vegetation 

collapse simulation which shows a clear increase in indicator from the beginning 

of the time series and a lake euthrophication model which gives an early 

warning signal which could be observed around 5 years before the tipping point 

occurs (from 45 years of data). However when skewness is used as an indicator 

on palaeo records of sediment data showing the desertification of the Sahara, 

there is no trend suggesting a tipping point is being reached, although the small 

length of time series prior to desertification makes it difficult to test the 
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robustness of this result. It is also unclear if this system approached a tipping 

point, or if it was a noise induced transition (see beginning of Chapter 1). 

 

Figure 1.7: Changes in skewness as the system approaches the tipping point. 

Time series (a) is cut prior to tipping point and skewness (b) is measured on a 

moving window of 800 points. Histograms (c,d) of the sections of time series 

with the mean subtracted shown in (a) show an increasing positive skewness. 

 

Flickering 

Connected to changes in skewness, flickering of a system occurs in time series 

which start to sample another state for a short amount of time before returning 

back to state that is losing stability. It requires a large enough amplitude of 

noise to move between states and for the state the system is eventually moving 

to not be too stable such that hysteresis occurs (i.e. the noise can move the 
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system away from that state and back to the other). While it is difficult to be 

used as a quantitative early warning signal, the phenomenon can provide 

important information about the other state such as how far away it is. Dakos et 

al. (2013) show flickering in a number of modelled systems which is 

accompanied with increases in skewness and variance when the flickering 

occurs. 

 

Other early warning indicators 

The indicators mentioned above are generally deemed ‘time series early 

warning signals’ and are tested on a single time series representing the system. 

However other indicators exist in the literature. These include spatial indicators 

which use different locationally connected time series of a system (such as time 

series of vegetation changes) and more ‘system-specific’ indicators that are 

specialised to suit the system they are tested on. 

 

Spatial early warning indicators 

The indicators described above have also been tested in a spatial context. 

While the temporal methods need a relatively long time series to be able to use 

a window length of the data to create a time series of an indicator, spatial 

indicators can be calculated in one time step (although multiple time steps are 

needed to create a time series as before), thus the extra spatial data can 

supplement the lack of temporal knowledge. Indicators include spatial 

correlation (akin to CSD), variance and skewness. 
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Dakos et al. (2010) use spatial correlation on a lake eutrophication model, a 

resource-overharvesting and a vegetation-turbidity model. They use Moran's 

coefficient to express the spatial correlation which needs a binary matrix 

describing which grid points are neighbouring and test the models under 

different levels of heterogeneity and connectivity (how much exchange occurs 

between neighbouring cells). Then measuring Kendall's  for each instance, 

they find that generally the spatial correlation is a better indicator than the AR(1) 

estimate for the systems which have high connectivity. 

Spatial correlation as suggested above can be thought of as 'spatial critical 

slowing down'. As a tipping point is approached, diffusion will start to dominate 

the reaction-diffusion dynamics of the system which in turn suggests that 

neighbouring grid boxes will start to become more like each other and 

correlated. 

Rietkerk et al. (2004) show that self-organised patchiness suggests the system 

is becoming more vulnerable and these early warning signals stem from this 

idea. Bailey (2010) suggests that single ‘snapshots’ of a system may be 

unreliable in determining how far away from a threshold the system is and that 

observing changes in the patterns over time could be more beneficial. 

Spatial variance measures the variance using the spatial data points from one 

time point. In theory, increases should be seen due to the shallowing of the 

potential well as is the case with temporal variance. Spatial variance is yet to 

appear in the literature as an indicator within climate science, possibly due to 

the difficulty in accounting for different weather occurring in different regions of 

a climate system due to its size, which will alter the variance signals observed. 

This could also be true of spatial correlation indicators. 



50 
 

Litzow et al. (2008) use spatial variance on data from fish stock levels around 

the North Pacific and Atlantic. Although no quantification is made (such as 

calculating Kendall’s ), they argue that an increase in variance can be seen 

prior to the regime shifts of fish population. 

Guttal and  Jayaprakash (2009) use the method on a model of vegetation 

collapse. Increases are seen but not until near the tipping point (within 10 years) 

when compared to the whole length of the data set prior to the transition 

(around 50 years). 

Bathiany et al. (2013) use a spatial method to detect ‘hot spots’ in spatial 

systems that maximise an early warning signal of vegetation collapse in a 

general circulation model (GCM). These subsets of the system are thought of 

as governing the tipping on a larger scale. 

Network analysis can also be used as an early warning signal, which assesses 

the connectivity of spatial points (van der Mheen et al., 2013). Points are 

connected if, over time, their time series are correlated (above a threshold 

correlation coefficient). An increase in connectivity over time indicates an 

approach to a tipping point. This has been tested on AMOC collapse by Feng et 

al. (2014) on the same data used in this thesis (Chapter 2). 

Spatial skewness is measured the same way as temporal skewness, except 

rather than measure skewness on a moving window, a single temporal point 

can be used by collapsing the spatial information to 1-dimension, 

supplementing a potential lack of temporal data with spatial. Like temporal 

skewness, increases or decreases in spatial skewness can be considered 

indicators. 
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Guttal and  Jayaprakash (2009) use this method along with the spatial variance 

(described above) on a vegetation collapse model, similar to their 2008 paper 

when testing temporal skewness as an indicator. They find, as with the spatial 

variance, increases in spatial skewness occur near the tipping point (around 10 

years before) with 50 years of data before tipping occurs. Whether this is 

enough time to provide a useful early warning signal is dependent on the 

system as the system has to have time to respond the prevention measures 

before the tipping point is reached.  

 

System specific stability indicators 

There is also the prospect that early warning signals that are more specific to a 

subset of systems could exist. The methods above work generally for time 

series. However for some systems it can be hard to obtain a time series where 

these methods work well, for example, most readily available data on the 

Amazon rainforest is its area coverage which remains fairly constant and so 

indicators may not change. The methods described below show prospect for 

conversion to early warning signals but at this time are closer to stability 

indicators or tests of vulnerability rather than tracking a movement towards a 

tipping point. 

Good et al. (2011) have created an index from model data (HadGEM2-ES) 

which expresses the vulnerability of an area of the tropical forest based on the 

temperature and the dry-season length (number of months with precipitation 

below a given threshold, DSL). With information from all tropical grid points 

combined including the forest coverage of each point, the combinations of 

temperature and DSL suitable for sustainable forest growth can be determined. 
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From this, areas of forest that are vulnerable (i.e. near temperature/DSLs 

unsuitable for forest) can be found and with future projections of changes to 

temperature and DSL, predictions can be made on the future of the forest in 

these areas. Converting this to the real world makes assumptions on unknown 

real world parameters which are set to values in the model, along with 

assumptions that the world behaves the same way. However potentially, 

changes in external parameters such as temperature and DSL could be 

monitored as an indicator of approaching a tipping point. 

Also concerning the Amazon rainforest, Hirota et al. (2011) use real world 

observations of forest coverage and annual precipitation to reconstruct the 

potential wells of the system (as in Livina et al. (2010)) using the precipitation as 

an axis rather than time. From this, forest vulnerability can be determined by 

observing how close it is to crossing the threshold in the potential well based on 

how much precipitation there is. Although this shows promise and appears to 

work well, it uses only annual precipitation as a proxy for the climate of the area 

ignoring important factors such as seasonality and temperature. Adaptations 

however could be made to account for this to create an early warning signal 

which would include monitoring changes in precipitation to see if areas are 

becoming too dry or even if the potential well itself is changing over time. 

To measure the stability of the AMOC when it is in its ‘on’ state, the net 

freshwater import into the Atlantic (Fov) has been proposed (de Vries &  Weber, 

2005, Hawkins et al., 2011, Rahmstorf, 1996). 

𝐹𝑜𝑣(Φ) = −
1

𝑆0
∫ 𝜐 ∗̅̅ ̅̅ (𝑧, Φ)〈𝑆(𝑧, Φ)〉𝑑𝑧

0

−𝐷
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Where S0 is a reference salinity (35 psu), z is depth,Φ is the latitude,  𝜐 ∗̅̅ ̅̅  is the 

zonal integral of northward baroclinic ocean velocity, 〈𝑆(𝑧, Φ)〉 is the zonal mean 

salinity and D is the total depth of the ocean. The Fov is measured at 34°S with 

a positive value meaning the AMOC is exporting salt out of the Atlantic, 

promoting a negative feedback and thus a strengthening of the AMOC should it 

weaken. A negative value means salt is being imported and suggests that any 

weakening of the AMOC would cause a positive feedback and so the AMOC is 

unstable. The Fov indicator has been measured in the model used in this thesis 

(Chapter 2) where it becomes negative when bistability is present (Hawkins et 

al., 2011). 
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Potential problems with early warning signals 

 

Although the methods described above have sound theory explaining why they 

should work, in practice this is not always the case, particularly if the system 

does not fit the requirements of the theory. These requirements include the 

ability to separate the time scales of the system (as done by Held and  Kleinen 

(2004)) and that the noise driving the system on small time scales is white and 

of a constant variance across the time series. Caution needs to be taken if any 

signal is found. Both 'false alarms' (an indication of a tipping point when there is 

no change to the system, such as those found in null models by Dakos et al. 

(2008)) and 'missed alarms' (no indication of a tipping point when there is one 

approaching, for example the desertification of the Sahara tested by Guttal and  

Jayaprakash (2008), assuming a bifurcation occurs in this system) have been 

observed in the literature listed above. Generally only a few time series exist for 

a given system each of which can be viewed as a single realisation meaning it 

is difficult to determine if any results found are a false alarm or missed alarm. 

More research is needed to show how effective these methods are, using both 

model systems (not climate specific) and climate records. The use of models 

allows more realisations to be made to see how an indicator behaves generally, 

but at the loss of simplifying the system. 

Work by Ditlevsen and  Johnsen (2010) involves the use of a simple double 

potential well system which is linearly transformed towards a bifurcation and a 1 

state system, thus creating a tipping point. Alongside this, a control simulation is 

run where there is no change in the bifurcation parameter which would cause 

the approach to the tipping point. With these runs, both the AR(1) coefficient 
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and the variance are estimated using the methods above for each of the time 

series. Once these indicators are calculated, they are plotted on top of each 

other and the error bars (a 2  confidence band) on the control run and the 

bifurcating run AR(1) time series overlap up to the tipping point, although the 

Kendall's  rank statistic is not tested here with error bars attached to it, 

something which may provide extra information. The error bars on the variance 

of the bifurcating run and the control separate before the transition suggesting 

that in this instance it is a better indication for using as an early warning signal 

in this system. 

Ditlevsen and  Johnsen (2010) also ran the same system but create a noise 

induced transition whilst keeping the bifurcation parameter constant. Using the 

same methods as the bifurcation and control runs, they find that neither of the 

indicators increase as expected. Then using high resolution NGRIP data, they 

overlay 25 Dansgaard-Oeschger (DO) events so the transition takes place at 

the same point and test the same indicators as above and find no robust 

increase overall, suggesting that these are noise induced transitions. However 

(Cimatoribus et al., 2013) suggest from their results that the switches in states 

are due to changes in some external forcing when they test indicators on the 

ensemble mean of the DO events (similar to the method of Kuehn (2011) 

detailed below).  

The method in Ditlevsen and  Johnsen (2010) can be considered as testing the 

DO events against a null hypothesis. They are aware of how the indicators 

behave when a tipping point is not being approached, and compare the results 

from time series of which they are unsure if there is an approach and test how 

significantly different these indicators are. 
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Kuehn (2011) tests variance and AR(1) indicators using Monte Carlo 

ensembles. With a sample size of 1000 mathematical models of approaches to 

different bifurcations (fold, transcritical and pitchfork) each ensemble member is 

different due to the added noise. From each ensemble, the overall trend in the 

indicator can be calculated. Indeed all indicators show an increase as expected. 

However taking randomly selected individual members implies that sometimes 

the indicator can show negative tendency, again reiterating that real world time 

series are just one realisation and that missed and false alarms could easily be 

found within them. 

Boettiger and  Hastings (2012) test indicators observed in an ensemble of runs 

of a system simulating the Allee effect where the bifurcation parameter, and so 

the distance to the tipping point, is not changing. However in some cases the 

tipping occurs by chance. The indicators for these ensemble members give 

stronger signals than those which remain in the same state. They conclude that 

the stochastic process driving the system, increase the autocorrelation prior to 

the system tipping and that these chance transitions create a false positive for 

early warning signals, which are supposed to indicate the bifurcation parameter 

is changing, and so potentially a false positive for past tipping points which 

exhibit early warning. This suggests that there is a bias towards finding a 

positive early warning signal when looking for one in time series that have 

experienced tipping points and care should be taken when assuming a positive 

result means a tipping point was approached, rather than noise induced. 
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Unanswered questions 

 

Although these methods have been tested on abrupt changes in palaeoclimate 

(Dakos et al., 2008, Livina &  Lenton, 2007) and modelled experiments (Held &  

Kleinen, 2004), little effort has been placed in researching if these indicators 

could help determine if climate tipping points are being approached now, or 

could be in the future. One of the main problems preventing this is that 

monitoring of these climate systems has yet to produce time series that are long 

enough to observe significant signals from. One counterexample of this is by 

Livina and  Lenton (2013), where the signals are tested on daily sea ice extents 

to determine if the ice free summers are being approached in the Arctic. 

This lack of data naturally leads to testing these methods in climate models. As 

well as giving longer time series for systems in the present and towards the 

future, the indicators can also be tested under different levels or types of forcing 

and with repeats, allowing a test of robustness of the signals that could not be 

obtained from one realisation. Signals can also be tested in many spatial 

locations compared to in the real world where monitoring of a system could be 

sparse. This could even inform potential locations to monitor real world 

systems. Furthermore, general circulation models (GCMs) are more complex 

than simple systems that theory states these early warning signals will work on. 

Hence testing generic early warning signals on data from these would begin to 

determine how useful they are in systems that might not necessarily be 

reducible to 1-dimenstion and so begin to determine how useful they would be 

when testing for early warning in even more complex, real world data. 
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Another aspect of generic early warning signals that needs more research is 

determining the significance of an observed signal. There have been some 

attempts at using null models to determine significance (Dakos et al., 2008) but 

these were not emphasised as a main result in the paper. It is vital to 

understand how significant any early warning signal observed is, preventing 

signals which appear insignificant from being dismissed. It is also important to 

determine how long a time series would be needed until significant signals are 

observed. Of course in the real world, the distance from the tipping point is 

unknown but an estimate of how close to the tipping point significant signals 

could be found could be tested for in GCMs for example. 

In the instances when these generic indicators fail, understanding why they do 

not work is important. One of the main causes for this is that the forcing could 

be too fast for the systems and it lags behind. The methods could be tested on 

the system when it looks to be near equilibrium but actually the stability of the 

state is lost and it is yet to tip. This fast forcing problem is likely to occur when 

testing for early warning under anthropogenic forcing over the next century. 

Another example of why early warning signals may fail is if the noise level 

driving the system on the short timescales is too high. This prevents the 

separation of timescales needed for generic early warning signals from working. 

If the strength of this noise also changes over the time series, it could also 

cause problems. For example, an increasing noise level will increase the 

variance over time, regardless of whether or not the tipping point is being 

approached. 

With these problems with generic early warning signals, ‘system specific 

indicators’ could be a better prospect. Generic early warning signals work for 
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tipping points that are approached slowly and linearly. However with these 

conditions being unlikely for real world climate systems, it could be that early 

warning systems specifically created for the system in question could give 

better warning. 

Finally, with slowing down occurring in systems approaching tipping points, little 

research has been conducted into the effect this will have on other systems. For 

example, Di Lorenzo and  Ohman (2013) show that indices created by 

atmospheric white noise forcing integrated over time (Hasselmann, 1976) drive 

systems that themselves integrate this now red noise forcing over time. If this 

forcing system were to get redder over time, then this will have an effect on the 

systems it is driving. 

 

 

 

 

 

 

 

 

 

 

 



60 
 

Outline 

 

In the next four chapters of this thesis there are various attempts to answer the 

problems detailed above, specifically determining if early warning signals could 

be used on climate systems approaching tipping points over the next century 

and beyond. This is done through the use of GCMs which are forced with 

plausible 21st century emission scenarios. The significance of any signals are 

also tested with the use of null models, and the length of data needed to 

produce a significant signal is also tested in one case study. In another case 

study, where the generic early warning signals fail, a system specific indicator is 

suggested. Finally the effect of slowing down in a system, on ecosystems that 

are driven by it is explored. While the explored driving system in this thesis is 

not approaching a tipping point itself, the results could be extended to a system 

that is, showing that even the approach towards a tipping point could have 

adverse effects on other systems. 

In Chapter 2 ‘Early Warning Signals of Atlantic Meridional Overturning 

Circulation Collapse in a Fully Coupled Climate Model’, these generic early 

warning signals are tested on output from a GCM of a climate system that could 

potentially collapse in the future. While this model was slowly and linearly 

forced, the model itself is complex. However significant generic early warning 

signals are still found. Furthermore, a novel technique is developed to calculate 

how far in advance the tipping point can be predicted and how many years of 

data are needed to do that. 

In Chapter 3 ‘Early Warning Signals of Simulated Amazon Rainforest Dieback’, 

the generic early warning signals are further tested when an ensemble of GCMs 
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are run with realistic emissions scenarios. An attempt to predict an approach to 

simulated Amazon rainforest dieback fails. However there is potential in using 

the increasing sensitivity of the forest to temperature as it approaches dieback. 

This has formed the basis of a system specific indicator as mentioned 

previously. 

Chapter 4 ‘Exploring the Uncertainty of Modelled Amazon Dieback’ continues to 

look at the Amazon rainforest by observing measures other than generic early 

warning signals. In Chapter 3, it is revealed that part of the reason generic early 

warning signals fail is because the system lags behind the forcing. This 

suggests that potentially, the tipping point may have already been passed 

without realising it. Exploration in Chapter 4 concerns how much the system 

lags the forcing and how much loss the forest could be committed to, based on 

forcing up to the end of the 21st century. These methods also have potential to 

become a system specific early warning signal as they examine the vulnerability 

of the system and its predicted distance from the tipping point. 

In Chapter 5 ‘Slowing Down of North Pacific Climate Variability and Implications 

for Marine Ecosystems’, explores the idea that slowing down of systems (both 

critical and non critical) could affect other systems. Finding that increasing 

AR(1) and variance are found in the Pacific Decadeal Oscillation (PDO) and 

associated sea surface temperatures, the impact of this on marine ecosystems 

is explored. In this instance, it is not believed that the PDO is approaching a 

tipping point, the indicator rises can be at least partially explained by other 

processes. Simple example systems (representing the marine ecosystems) are 

shown to react differently when the forcing upon it starts to ‘redden’, i.e. show 

signs of slowing down, by tracking the forcing system more closely and 
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increasing itself in variance. This change in behaviour of the dependent system 

could potentially be used as an early warning signal, especially if it is monitored 

better than the system driving it. 

Chapter 6 is a discussion of the main messages of the previous four chapters 

and how the results within them collectively contribute to the field of research. 

Challenges for the future of early warning signals are also discussed. Finally the 

findings of this thesis are concluded. 
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Chapter 2 

Early Warning Signals of Atlantic Meridional 

Overturning Circulation Collapse in a Fully 

Coupled Climate Model 

 

 

 

 

 

This chapter is based on Boulton, C. A., Allison, L., C., and Lenton, T. M., ‘Early 

warning signals of Atlantic Meridional Overturning Circulation collapse in a fully 

coupled climate model’, 2014, Nature Communications, 5, 5752 
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Abstract 

 

The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable 

states in models of varying complexity. Shifts between alternative AMOC states 

are thought to have played a role in past abrupt climate changes, but the 

proximity of the climate system to a threshold for future AMOC collapse is 

unknown. Generic early warning signals of critical slowing down before AMOC 

collapse have been found in climate models of low and intermediate complexity. 

Here we show that early warning signals of AMOC collapse are present in a 

fully coupled atmosphere-ocean general circulation model, subject to a 

freshwater hosing experiment. The statistical significance of signals of 

increasing lag-1 autocorrelation and variance vary with latitude. They give up to 

250 years warning before AMOC collapse, after ~550 years of monitoring. 

Future work is needed to clarify suggested dynamical mechanisms driving 

critical slowing down as the AMOC collapse is approached. 
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Introduction 

 

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of 

the global climate system, responsible for a large fraction of the 1.3 PW 

northward heat transport in the Atlantic basin (Johns et al., 2011). Numerical 

modelling experiments suggest that without a vigorous AMOC, surface air 

temperature in the North Atlantic region would cool by around 1–3 °C, with 

enhanced local cooling of up to 8 °C in regions with large sea-ice changes 

(Jacob et al., 2005, Vellinga &  Wood, 2002). Substantial weakening of the 

AMOC would also cause a southward shift of the inter-tropical convergence 

zone, encouraging Sahelian drought (Brayshaw et al., 2009, Vellinga &  Wood, 

2002), and dynamic changes in sea level of up to 80 cm along the coasts of 

North America and Europe (Levermann et al., 2005, Vellinga &  Wood, 2008). 

Theoretical arguments (Stommel, 1961), numerical models of varying 

complexity (Hawkins et al., 2011, Lenton et al., 2009, Manabe &  Stouffer, 1988, 

Rahmstorf et al., 2005) and evidence from palaeoclimate proxy records 

(Broecker et al., 1985, Clark et al., 2002) support the existence of two stable 

AMOC states—‘on’ and ‘off’. A reduction in density of the surface waters of the 

North Atlantic (through an increase in freshwater input or surface warming) can 

inhibit the formation of deep water and weaken the AMOC. In some model 

states, a weakening of the AMOC can result in an increase of freshwater 

transport into the Atlantic, resulting in a positive feedback. Numerical model 

projections suggest that the AMOC is likely to weaken over the 21st century 

(Cheng et al., 2013), but the likelihood of an abrupt collapse is very uncertain 

(Kriegler et al., 2009, Zickfeld et al., 2007), partly because most state-of-the-art 

climate models used for future projections cannot yet correctly simulate past 
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abrupt climate changes (Drijfhout et al., 2013, Valdes, 2011). This has 

generated interest in the possibility that generic early warning signals could 

exist before abrupt AMOC transitions (Held &  Kleinen, 2004, Kleinen et al., 

2003, Lenton et al., 2009), which might be diagnosed directly from data. 

However, existing studies of this issue have been restricted to models of low or 

intermediate (Held &  Kleinen, 2004, Lenton et al., 2009, Livina &  Lenton, 

2007) complexity. 

For a low-order dynamical system approaching a threshold where its current 

state becomes unstable and it transitions to some other state, one can expect to 

see it become more sluggish in its response to small perturbations (Held &  

Kleinen, 2004). This phenomenon of ‘critical slowing down’ (CSD) can be 

detected in time series as increasing autocorrelation over time, measured by 

estimating the AR(1) coefficient (see Methods). Variance is also expected to 

increase (Carpenter &  Brock, 2006) (noting that this is not independent of lag-1 

autocorrelation). Here we analyse data from simulations of the fully coupled 

climate model FAMOUS (Smith et al., 2008a). This is a lower resolution version 

of HadCM3, one of the models used in the IPCC Fourth Assessment Report. 

We look for early warning indicators in both the annual and decadal mean time 

series at 33.75°S–58.75°N (at every 2.5°). The time series of AMOC strength 

are cutoff at 800 years, before AMOC collapse, and are detrended using a 

Kernal smoothing function with a bandwidth of 400 years, before calculating the 

CSD indicators using a window length of 400 years (as described in Chapter 1). 

Throughout our analysis, Kendall’s rank correlation coefficient is used as a 

measure of tendency of the indicators. A value of =1 implies an indicator is 

always rising, =−1, always decreasing and =0 having no trend. 
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Results 

 

The AMOC in FAMOUS 

The representation of the AMOC in FAMOUS is comparable to a variety of other 

fully coupled climate models (Figs 2.1, 2.2), all of which are of a higher spatial 

resolution, and several of which feature in the CMIP3 and CMIP5 data sets 

used in the IPCC assessments. The AMOC in FAMOUS is broadly similar to 

that in HadCM3 in terms of mean strength and decadal variability (Smith et al., 

2008a). Higher frequency and interannual variability in FAMOUS behaves 

similarly to other models when compared with observations (Balan Sarojini et 

al., 2011). For variability on time scales longer than interannual, a comparison 

with observations is difficult due to the short observational record (currently 

around 10 years). Figure 2.1 shows the mean AMOC streamfunction averaged 

over multi-centennial control simulations of FAMOUS and five other coupled 

AOGCMs. Figure 2.2 shows that, although there is some inter-model variation, 

the magnitude of AMOC variability in FAMOUS on multi-decadal timescales is 

in the range of other models, both in terms of magnitude and pattern of 

variance. Furthermore, the mean transport at 26°N in FAMOUS compares well 

with the mean transport estimated from the RAPID/MOCHA/WBTS array 

(Rayner et al., 2011) over the years 2004–2012, where the AMOC is currently 

being monitored (both are ~17.5 Sv) (Smeed et al., 2014). 
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Figure 2.1: Mean AMOC streamfunction in FAMOUS and five other coupled 

AOGCMs. The streamfunction fields obtained from multicentennial control 

simulations are shown for (a) FAMOUS, (b) HadCM3, (c) GFDL_CM21, (d) 

IPSL_CM4, (e) EC_EARTH and (f) MPI. 
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Figure 2.2: Local standard deviation in AMOC streamfunction on time scales 

longer than 50 years. The standard deviation in streamfunction is shown for (a) 

FAMOUS, (b) HadCM3, (c) GFDL_CM21, (d) IPSL_CM4, (e) EC_EARTH and 

(f) MPI. 

 

FAMOUS has been subjected to a hosing experiment (Hawkins et al., 2011), 

where freshwater forcing is applied in the North Atlantic between 20°N and 

50°N (and compensated with a spatially uniform salt flux to conserve global 

mean salinity). This acts to reduce the density of the surface waters, inhibiting 

the formation of North Atlantic Deep Water, and weakens the AMOC. This 

forcing is gradually increased at a rate of 5 × 10−4 Sv yr−1, eventually causing 

the AMOC to transition into the ‘off’ state after about 800 years of simulation, at 

a freshwater input of 0.4 Sv. The freshwater forcing is then removed at the 

same rate, allowing the AMOC to recover, with associated hysteresis (Fig. 2.3). 

Data from the simulation is saved at annual resolution, and we analyse just the 
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upper branch of forcing towards AMOC collapse. We also make use of 

equilibrium simulations in our analysis (Fig. 2.3, black points and Results). 

These are initialized at particular values of forcing before the collapse occurs 

and run to equilibrium, either remaining in the ‘on’ state or eventually 

transitioning to the ‘off’ state. 
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Figure 2.3: Hysteresis of AMOC in the FAMOUS model. AMOC transport (Sv) at 

26.25°N and ~1,000 m depth is plotted as a function of imposed freshwater 

input. The solid black line shows the decadal mean AMOC during a transient 

experiment with freshwater input increasing from 0–1 Sv over 2,000 years. The 

solid grey line shows the same for freshwater input decreasing from 1 to 

−0.4 Sv at the same rate. The filled circles show the equilibrium AMOC 

transport reached during a series of constant-forcing simulations that are 

initialized from the corresponding point of the transient (increasing forcing) 

simulation. Adapted from Fig. 2 of Hawkins et al. (2011). 

 

Early warning signals of AMOC collapse at annual resolution 

We began our search for early warning signals of AMOC collapse at 26.25°N 

(Fig. 2.4a), near where an estimated reconstruction of the AMOC is currently 

monitored by the RAPID-WATCH/MOCHA/WBTS array in the real ocean 
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(Rayner et al., 2011). Slowing down can be seen by eye in the detrended 

fluctuations of AMOC strength at this latitude (Fig. 2.4b). With a sliding window 

length of 400 years (black lines in Fig. 2.4c,d), AR(1) is found to be rising (with 

=0.79), with a less strong rise in variance (=0.39). These increasing trends in 

the indicators are generally robust to varying window length and detrending 

bandwidth (Fig. 2.4c–f). A decrease in variance seen when detrending using a 

low bandwidths (Fig. 2.4f) indicates a shift in power from high to lower 

frequencies that is consistent with CSD. 
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Figure 2.4: Early warning signals of AMOC collapse in the transient hosing 

experiment. Time series shown is from 26.25°N and ~1,000 m depth. (a) Annual 

time series up to red vertical line is detrended by a Kernal smoothing function 

(shown by smooth red line). The early warning signal analysis is carried out on 

(b) the residuals from this. Indicators of (c) AR(1) coefficient estimation and (d) 

variance are calculated as described in main text and Chapter 1 and plotted at 

the end of the window used to estimate them. Examples in (c) and (d) are 

shown for window lengths of 400, 300, 250, 200 and 150 years while using a 

detrending bandwidth of 100 years. Sensitivity analysis to determine how robust 

the indicators are to varying window length and detrending bandwidth is shown 

as contour plots of tendency, measured by Kendall’s  (see Methods), in the 

window length-bandwidth plane for (e) AR(1) coefficient estimation and (f) 

variance. 
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We next looked for early warning signals of AMOC collapse at a wide range of 

latitudes in the model Atlantic basin (33.75°S–58.75°N), which show varying 

AMOC strength (Fig. 2.5a,b, where 26.25°N is indicated by the black line). At all 

latitudes we find increasing AR(1) and variance (Fig. 2.5c,e), with Kendall’s  

values of 0.40–0.92 and 0.39–0.85, respectively (Fig. 2.6a,b). The absolute 

values of the indicators vary with latitude, hence their increase can be seen 

more clearly when we look at their percentage change over time (Fig. 2.5d,f). 

There appears to be a degree of meridional coherence to the indicators based 

on the annual data; the most robust upward trends in AR(1) are found towards 

the southern boundary of the Atlantic and in the high northern latitudes (Fig. 

2.6a), whereas the most robust upward trends in variance are found just north 

of the equator (Fig. 2.6b). 
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Figure 2.5: AMOC collapse and candidate early warning signals at each 

latitude. (a) Annual time series of AMOC (Sv) at each latitude are cut before 

collapse begins at 800 years (solid vertical line). (b) Time series are also shown 

as a contour plot in the time-latitude plane. They are then detrended and the 

analysis carried out on the residuals (see Methods, example in Fig. 2.4). A 

sliding window length of 400 years is used (dotted vertical line in (a) marks the 

end of the first window) to estimate candidate early warning signals (see 

Methods): (c,d) AR(1) coefficient, and (e,f) variance. Time series are coloured 

according to their latitude and 26.25°N (as in Fig. 2.4) is shown in black and 

contour plots of the percentage change are also shown. 

 



76 
 

 

Figure 2.6: Tendency and significance of early warning indicators as a function 

of latitude. Kendall’s  values are calculated to determine the tendency of 

estimated (a) AR(1) coefficient and (b) variance indicators (see main text and 

Chapter 1). Significance of results, using bootstrapped null model ensembles to 

determine P-values (see main text and Methods), are plotted for (c) AR(1) and 

(d) variance. Any P-values below the dotted horizontal line are significant at the 

95% level (P<0.05). Black filled-in points correspond to 26.25°N (where the time 

series analysed in Fig. 2.3 is obtained). Approximate locations of the OSNAP 

and SAMOC monitoring arrays are shown in red and blue, respectively. 

 

We test the significance of the early warning signals found by comparing them 

to a null model. A null model ensemble of 1,000 members was created using a 
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bootstrapping method to create time series at each latitude that have similar 

characteristics—such as mean and variance—to the original time series (see 

Methods). Comparing the transient run to the null model, a hypothetical early 

warning system located at 26.25°N, near the latitude of the 

RAPID/MOCHA/WBTS array, provides an AR(1)-based early warning signal 

that is significant at the 97% level (P=0.029 at 26.25°N, Fig. 2.6c). Variance 

provides a less reliable early warning signal at this latitude (P=0.296 at 26.25°N, 

Fig. 2.6d). Looking across latitudes the most reliable early warning signals from 

AR(1) (Fig. 2.6c) are found in the mid-high northern latitudes (P<0.05 at 38.75–

58.75°N with P<0.01 at 41.25–53.75°N) and at the southern boundary of the 

Atlantic (P<0.05 at 11.25–33.75°S with P<0.01 at 28.75–33.75°S), consistent 

with the locations where the largest values of  are found. In the sub-polar North 

Atlantic, the AR(1) early warning signal is significant at the 99.9% level 

(P<0.001 at 51.25°N). The most reliable early warning signals from variance 

(Fig. 2.6d) are found in the equatorial North Atlantic (P<0.05 at 1.25–13.75°N), 

and in parts of the sub-polar gyre (P<0.05 at 46.25–48.75°N), again where the 

largest  values were found. Overall, rising variance is a less reliable early 

warning indicator than increasing AR(1). 

 

Early warning signals of AMOC collapse using decadal means 

When we test for early warning signals of AMOC collapse using the decadal 

means of the overturning circulation (Fig. 2.7), the statistics are expected to be 

poorer than from annual data due to using a time series with fewer points 

(Dakos et al., 2008). Nevertheless we still observe significant signals for both 

AR(1) and variance. Values of  for variance are better than those of AR(1) with 



78 
 

a range of 0.58–0.94 (Fig. 2.7b) compared with 0.28–0.84 (Fig. 2.7a). However, 

the latitudinal pattern of significance is different to that of the annual resolution 

indicators. Reasonably significant AR(1) signals are found in the tropics 

(generally P<0.05 for 33.75°S–36.25°N; Fig. 2.7c) but not in the North Atlantic 

(41.25°N and northward), whereas significant variance signals are found in the 

southern tropics and North Atlantic (P<0.05 for 33.75°S–21.25°N and 41.25–

58.75°N and P<0.01 for 33.75–16.25°S, 43.75–53.75°N and 58.75°N; Fig. 

2.7d). 
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Figure 2.7: Tendency and significance of indicators for decadal resolution time 

series. As in Fig.2.6, Kendall’s  values are calculated to determine the 

tendency of estimated (a) AR(1) coefficient and (b) variance indicators (see 

main text and Chapter 1). Significance of results, using bootstrapped null model 

ensembles to determine P-values (see main text and Methods), are plotted for 

(c) AR(1) and (d) variance. Any P-values below the dotted horizontal line are 

significant at the 95% level (P<0.05). 

 

Comparison with signals from constant forcing simulations 

As a further test of the significance of early warning indicators, the results from 

the transient run (at annual resolution) are contrasted with results from 

accompanying equilibrium simulations. The equilibrium simulations are 

initialized from specific points of the pre-collapse phase of the transient 
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simulation, with the freshwater hosing maintained at a constant level (Hawkins 

et al., 2011) until the system reaches equilibrium (black points in Fig. 2.3). In 

five of these equilibrium runs (at freshwater hosing values of 0.1, 0.12, 0.15, 0.2 

and 0.22 Sv) the AMOC remains in the ‘on’ state for the full duration of the 

simulation (several thousand years in some cases). In another three equilibrium 

runs (freshwater hosing values of 0.25, 0.3 and 0.4 Sv) the AMOC eventually 

collapses (after hundreds of years). As none of these equilibrium runs is subject 

to a change in freshwater forcing, we do not expect them to show early warning 

signals due to there being no change in the stability of the underlying state. 

For each of these equilibrium runs, trends in the estimated AR(1) coefficient and 

variance are obtained at each latitude (see Methods), with the results shown in 

Fig. 2.8. As expected from the null models (Fig. 2.6a,b) the indicators from the 

equilibrium runs span a range of upward and downward trends (black and grey 

points in Fig. 2.8a,c). However, the trends in both AR(1) and variance are 

higher in the transient run than those from the equilibrium runs (red points in 

Fig. 2.8a,c) with a mean =0.71 for AR(1) in the transient run compared with 

=−0.17 across the equilibrium runs and =0.62 for variance in the transient run 

compared with =−0.16 for the equilibrium simulations. The distribution of  

values found in the transient runs for both AR(1) and variance (Fig. 2.8b,d) is 

significantly different from the distribution of  values from the equilibrium runs 

when using a Mann–Whitney U-test (in both cases P<2.2 × 10−16). These 

results provide further evidence that the early warning signals in the transient 

run are real and have not occurred by chance. 
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Figure 2.8: Comparing trends in early warning indicators from forced and 

equilibrium runs. Histograms comparing Kendall’s  values from the annual 

resolution transient run with those from the equilibrium runs, combining the 

results across all latitudes (see main text and Methods) for (a,b) AR(1) 

coefficient estimation and (c,d) variance indicators. (a,c) Results from the 

transient run are shown in red, from equilibrium runs where time series equal to 

transient run length (n=800 years) could be obtained are shown in black and 

from equilibrium runs where a tipping point occurred preventing a long enough 

time series are shown in grey. Results are summarized in vertical histograms 

(b,d) respectively. In both cases, the lighter histogram is composed of  values 

from the equilibrium runs and the darker  values from the transient run with the 

intermediate shading implying the histograms overlap. 
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Length of time for indicators to become significant 

To determine the length of time series needed to observe a significant signal 

and thus how far in advance the approach towards the tipping point might be 

predicted, we extend our use of the null models by testing against them on an 

increasing amount of data (Fig. 2.9; see Methods). We find that the signals 

begin to become significant (P<0.05, red in Fig. 2.9) after ~550 years of 

simulated data, 250 years before the tipping point occurs. Using two different 

window lengths (50 and 400 years), we find that for both AR(1) (Fig. 2.9a,c) and 

variance (Fig. 2.9b,d), the indicators become significant after using very similar 

lengths of data and in the same latitudinal regions (those seen in Fig. 2.6c,d). 
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Figure 2.9: Time to significance of early warning indicators. Contour plots of 

significance as a function of latitude and the length of time series used are 

calculated as described in main text and Methods for window lengths of (a,b) 

400 years and (c,d) 50 years (both shown by dotted line), using the annual 

resolution time series. Significance for each window length is tested after 50 

and 25 years, respectively, to allow the indicators to be long enough to test 

significance on. Areas not shaded are where significance is not calculated due 

to either the length of time series at that point being less than the window length 

used (to the left of the dotted line), or the length of the indicator time series is 

less than 50 or 25 years depending on the window length used. Red shading 

suggests results are significant at 95% confidence (P<0.05) with blue shading 

not significant at this level. 
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Discussion 

 

Our results reveal generic early warning signals for a collapse of the AMOC in a 

fully coupled atmosphere-ocean general circulation model: the most realistic 

simulation of the climate system in which this type of signal has been tested. 

The hosing experiment carried out in FAMOUS involved a relatively slow, linear 

forcing. Nevertheless, comparison of the transient simulation with the 

equilibrium runs (Fig. 2.3) shows that the AMOC was forced fast enough to shift 

it away from equilibrium, such that it lagged the forcing (that is, collapse is 

delayed in the transient simulation). The theory of CSD is derived for systems 

close to equilibrium, yet it still seems to work in this case where the timescales 

of the forcing and the internal dynamics of the AMOC are comparable. In reality, 

anthropogenic forcing of the AMOC may be faster and more non-linear than 

simulated here. It is believed that recent freshwater forcing, over approximately 

the last 50 years, has increased by 0.026 Sv (Lenton et al., 2008), which is 

comparable to the 0.05 Sv per century increase used to force FAMOUS here. 

However, anthropogenic forcing may increase faster in the future. It needs to be 

examined whether a more realistic forcing scenario can still produce early 

warning signals, or whether it eliminates them, as it does for another climate 

tipping element (Boulton et al., 2013). If anthropogenic forcing is faster than the 

intrinsic timescale of the ocean, then the early warning signals should not work 

as well as the system will not be near to equilibrium. 

Our calculation of the length of time it takes for the early warning signals to 

become significant uses time series at annual resolution. In reality, 

palaeoclimate reconstruction of the AMOC would be required to gain enough 
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data to begin to determine if early warning signals are significant with enough 

time before collapse to be useful. Although existing palaeo reconstructions of 

the AMOC are at coarser temporal resolution than annual, our results also show 

that significant signals can be observed at a decadal resolution and thus 

potentially could also appear in these reconstructions (Dakos et al., 2008). Also 

the AMOC will not have been subjected to anthropogenic forcing for most of the 

palaeo reconstruction era, which could be beneficial for observing a signal once 

the forcing begins. It has also been shown that the warm phase of the Atlantic 

multidecadel oscillation (AMO) coincides with a strengthening of AMOC and the 

cool phase, a weakening (Wang &  Zhang, 2013) and multidecadal sea surface 

temperature (SST) variations are closely related to the AMOC in GCMs. The 

AMO has been reconstructed using SST records (including in-filling) since 1856 

at a monthly resolution (Kaplan et al., 1998) and using tree-ring palaeo data, it 

has been reconstructed at an annual resolution from 1567 (Gray et al., 2004). 

These reconstructions could act as a proxy for AMOC to test these early 

warning signals on, although caution should be used when comparing mean 

data at annual resolution from the model and annual SST reconstructions. 

Dynamical systems theory suggests that CSD occurs due to the weakening of a 

restoring (negative) feedback as a tipping point is approached, causing an 

increase in the time taken for the system to recover from perturbations. In the 

case of the AMOC collapse in FAMOUS, the existence of CSD signals suggests 

that the gradual freshwater forcing is causing a negative feedback to weaken. 

An important stabilizing feedback on the AMOC involves changes in meridional 

heat transport (Rahmstorf &  Willebrand, 1995). A weakening of the AMOC 

leads to a reduction in northward ocean heat transport, causing a cooling of the 

high latitude North Atlantic and associated increase in density, which promotes 
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a recovery of the circulation through increased deep water formation. However, 

as the freshwater forcing is applied in the transient experiments analysed here, 

the AMOC undergoes a gradual weakening (as can be seen in Fig. 2.3) before 

the collapse. In contrast to salinity anomalies, surface ocean temperature 

anomalies are strongly damped by atmosphere-ocean heat fluxes. This means 

that when the AMOC is weaker, with slower northward advection of surface 

water masses, the increased transit time allows increased damping of the 

temperature anomalies, weakening the negative feedback from the AMOC 

itself. This theoretical explanation for the CSD has perhaps the broadest 

applicability, but many previous studies have provided evidence for other, more 

detailed, restoring feedback mechanisms that are responsible for controlling the 

time scale of decadal-centennial variability in coupled AOGCMs. These include 

an ocean-only mode excited by atmospheric variability, in which heat and 

salinity transport both play a role and the overturning and gyre circulations 

interact (Delworth et al., 1993, Dong &  Sutton, 2005); a coupled ocean-

atmosphere mode, in which AMOC variations trigger dynamical feedbacks in 

the atmosphere that act to oppose the AMOC anomaly (Timmermann et al., 

1998); feedbacks that involve shifts in the inter-tropical convergence zone, 

leading to salinity anomalies in the tropical Atlantic, which feed back onto the 

AMOC strength as they are advected northwards (Vellinga &  Wu, 2004); and 

feedbacks that involve links with the Arctic (Hawkins &  Sutton, 2008, Jungclaus 

et al., 2005). To properly understand the precise dynamical reason for CSD in 

FAMOUS, further work will be required to identify the dominant negative 

feedback that controls the time scale of AMOC variability in this model, and 

identify how it is influenced by freshwater forcing. As there is still debate about 

the key feedbacks that stabilize the AMOC in different AOGCMs, generalization 
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of these results to other models and the real world remains an important 

challenge. 

The early warning signals in the annual resolution data are most reliable in the 

high northern latitudes and towards the southern boundary of the Atlantic. 

Current monitoring of the AMOC occurs at 26.5°N, where in this model, early 

warning signals are somewhat less reliable. However, there are already plans to 

monitor the AMOC in the sub-polar North Atlantic with the OSNAP (Overturning 

in the Subpolar North Atlantic Program) monitoring array (~55–60°N, red in Fig. 

2.6). There are also proposals for a SAMOC (South Atlantic Meridional 

Overturning Circulation) array located in southern boundary of the basin 

(~34.5°S, blue in Fig. 2.6). Our results based on annual resolution data suggest 

that these could be the best locations to try to diagnose trends in the dynamical 

stability of the AMOC. However, the latitudinal results are rather different with 

decadal averaged data (Fig. 2.7) and may well vary from model to model. Thus, 

at this stage we can only conclude that early warning signals are likely to be 

latitude dependent and therefore monitoring at more than one location may 

increase the likelihood of observing a robust early warning signal. 

Latitudinal variation in the reliability of early warning indicators might potentially 

be understood in terms of the latitudinal characteristics of natural AMOC 

variability. There are several dynamical components to the AMOC (Hirschi et 

al., 2007, Lee &  Marotzke, 1998), whose relative contributions differ with 

latitude and have been diagnosed in a (100-year) control simulation of HadCM3 

(Sime et al., 2006) (from which the FAMOUS model we use is derived). To 

leading order, the meridional velocity across a zonal section can be dynamically 

split into Ekman and geostrophic components. By definition, the Ekman 
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component is surface-intensified and directly driven by the zonal mean wind 

stress. The geostrophic component can be further decomposed into baroclinic 

(vertical shear) and barotropic (depth-independent) contributions. The 

barotropic component arises due to an interaction between sloping topography 

and the component of the flow that is constant with depth. In an idealized basin 

with vertical sidewalls, the barotropic component of the overturning circulation 

would be zero. In reality, variations in ocean depth across the zonal section 

cause vertically constant flow to project onto the meridional overturning 

circulation. For example, a northward depth-independent flow in a shallow part 

of the section (for example, near the boundaries) and a southward depth-

independent flow at longitudes where the ocean is deeper, when zonally and 

vertically integrated, would produce a net positive contribution to the meridional 

overturning transport. The remaining, baroclinic, component arises through 

thermal wind balance associated with zonal density gradients across the basin. 

There are several physical mechanisms that control basin-wide density 

gradients, including coastal wind-driven upwelling and downwelling (Köhl, 

2005), local buoyancy forcing (Hirschi et al., 2007) and changes in the formation 

rate and transport of remote water masses. The latter is of particular relevance 

to the present study, as a change in the density and transport of North Atlantic 

Deep Water (NADW) as it spreads southwards along the western part of the 

basin will be reflected in a change in the zonal density gradient and therefore 

the vertical shear and the baroclinic component of the AMOC (Hodson &  

Sutton, 2012, Johnson &  Marshall, 2002, Kawase, 1987, Zhang, 2010). 

CSD occurs because a restoring feedback is weakening as a bifurcation-type 

tipping point is approached. This negative feedback involves the component of 

the AMOC that is thermohaline-driven and acting on multi-decadal to centennial 
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time scales. It is likely that this will be reflected in the baroclinic (vertical shear) 

component associated with zonal density gradients, as this is the component in 

which changes in the density and extent of NADW are likely to be most strongly 

visible. Within the South Atlantic and at some latitudes in the northern North 

Atlantic, this baroclinic component dominates the AMOC (Sime et al., 2006), 

and we speculate that this could be consistent with the enhanced significance of 

the early warning signal based on annual data from these locations. In the low-

latitude North Atlantic, in contrast, there is a large influence from other 

components of AMOC variability, particularly that associated with strong, depth 

independent flow over sloping topography (Sime et al., 2006), which may help 

to explain the reduced significance of the early warning signal there. However, a 

clear distinction between the dynamical drivers of the AMOC components 

remains elusive, and several studies suggest that the baroclinic and barotropic 

components can be closely linked. For example, the barotropic component can 

also be influenced by zonal density gradients, and it is clear that wind forcing 

plays a crucial role in sustaining the AMOC (Timmermann &  Goosse, 2004). 

In addition, it remains to be established whether the latitudinal variation in 

relative dominance of the dynamical components in HadCM3 (Sime et al., 2006) 

holds on longer (centennial) time scales, and in other models. Further work will 

be required to establish whether the latitudinal variation in early warning signal 

reliability exists in other models and to fully understand the dynamical reasons 

behind this. 

While preparing this manuscript, another study was published that explores a 

different method for detecting early warning of AMOC collapse in the same 

model (Feng et al., 2014). In that study, the indicators of CSD theory appear to 
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fail to provide early warning of AMOC collapse. However, their analysis was 

unusual in looking for temporal spikes in the indicators and averaging the data 

over latitudes. 

Generic early warning indicators can complement system-specific stability 

indicators, such as the sign of the freshwater transport by the AMOC at the 

southern boundary of the Atlantic (de Vries &  Weber, 2005, Hawkins et al., 

2011, Huisman et al., 2010, Rahmstorf, 1996). This ‘Fov’ indicator may reveal 

whether the AMOC is in a bistable regime and thus give some indication of 

whether a sudden collapse is possible. The early warning signals discussed in 

the present study may complement such a bistability indicator by providing 

information about the approach of the system towards the tipping point. 

Historical reconstruction of variations in AMOC strength (Balmaseda et al., 

2007, Wanamaker et al., 2012), for example, based on fluctuations in North 

Atlantic SSTs (Delworth &  Mann, 2000), will also be needed to establish natural 

variability and any trends up to the time of monitoring. Nevertheless, our results 

suggest that plans for new AMOC monitoring arrays could have a previously 

unrecognized value in helping establish whether the climate system is being 

pushed towards AMOC collapse. 
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Methods 

 

Data 

Data for the overturning are taken from the coupled climate model FAMOUS, 

which has been subjected to a hosing experiment, causing the AMOC to 

collapse. The time series consist of the annual mean meridional overturning 

transport at ~1,000 m depth at each latitude. We determine that (at all latitudes) 

the AMOC begins to collapse after 800 years and so only use data up to this 

point in our analysis. For the majority of our analysis, we detrend using a Kernal 

smoother with a bandwidth of 100 years with the early warning signals tested on 

the residuals. To test the robustness of the indicators at 26.25°N, we vary the 

window length and detrending bandwidth used (Fig. 2.4e,f). 

 

Null models and significance 

We use null models to determine the significance of the early warning signals. A 

null model is created for each latitude, consisting of 1,000 members. Each 

ensemble member is the same length as the original time series pre-collapse 

(800 years) and is created by a bootstrapping method, sampling from the 

residuals of the time series (with replacement) once it has been detrended as 

described above. This ensures that each ensemble member has the same 

statistical properties as the original time series (that is, mean and variance), but 

the memory of the system is destroyed. Because of this, signals are not 

expected to be observed in the null model allowing us to explore the probability 

of the signal occurring by chance. 
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To determine a P-value, we observe the proportion of the null model members 

that exhibit a higher Kendall’s  value when AR(1) and variance are tested using 

the same window length (400 years). The P-value is the probability of observing 

a signal as strong as that which we observe in the model by chance and any 

signal that has a P-value <0.05 is considered significant. 

 

Time to significance 

To determine the length of data needed to observe a significant signal, we use 

the null models as described above on a smaller section of the indicator’s time 

series. This section is then increased, 1 year at a time while testing the 

significance of the indicator each time. When using a window length of 400 

years to obtain the indicators, we begin to test the time it takes for them to 

become significant after 50 years of indicator time series, and, for a window 

length of 50 years, we use 25 years. The time to significance is the number of 

years of indicator time series needed for the P-value to be <0.05, plus the 

window length, giving the total number of years of data needed. 

 

Equilibrium runs 

For the equilibrium runs (see main text) that have no AMOC collapse, indicators 

are tested on the last 800 years of simulated data, again using a window length 

of 400 years and a detrending bandwidth of 100 years. This is to ensure that the 

influence of the previously increasing forcing is as small as possible. For 

equilibrium runs with AMOC collapse before the end of the run, the time series 

between the initialization from the transient simulation and the point of collapse 
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are used (600, 250 and 150 years for the three runs in which this occurs) using 

window lengths equal to half the length of the time series but the detrending 

bandwidth maintained at 100 years. 
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Chapter 3 

Early Warning Signals of Simulated Amazon 

Rainforest Dieback 

 

 

 

 

 

 

 

This chapter is based on Boulton, C. A., Good. P., and Lenton, T., M., ‘Early 

warning signals of simulated Amazon rainforest dieback’, 2013, Theoretical 

Ecology, 6, 3, 373-384 
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Abstract 

 

We test proposed generic tipping point early warning signals in a complex 

climate model (HadCM3) which simulates future dieback of the Amazon 

rainforest. The equation governing tree cover in the model suggests that zero 

and non-zero stable states of tree cover co-exist, and a transcritical bifurcation 

is approached as productivity declines. Forest dieback is a non-linear change in 

the non-zero tree cover state, as productivity declines, which should exhibit 

critical slowing down. We use an ensemble of versions of HadCM3 to test for 

the corresponding early warning signals. However, on approaching simulated 

Amazon dieback, expected early warning signals of critical slowing down are 

not seen in tree cover, vegetation carbon or net primary productivity. The lack of 

a convincing trend in autocorrelation appears to be a result of the system being 

forced rapidly and non-linearly. There is a robust rise in variance with time, but 

this can be explained by increases in inter-annual temperature and precipitation 

variability that force the forest. This failure of generic early warning indicators 

led us to seek more system-specific, observable indicators of changing forest 

stability in the model. The sensitivity of net ecosystem productivity to 

temperature anomalies (a negative correlation) generally increases as dieback 

approaches, which is attributable to a non-linear sensitivity of ecosystem 

respiration to temperature. As a result, the sensitivity of atmospheric CO2 

anomalies to temperature anomalies (a positive correlation) increases as 

dieback approaches. This stability indicator has the benefit of being readily 

observable in the real world. 

 



97 
 

Introduction 

 

In recent years, research into the field of tipping points and their predictability 

has yielded several suggestions for generic early warning signals of an 

approaching bifurcation-type tipping point (Lenton, 2011, Scheffer et al., 2009). 

The most general behaviour of a dynamical system approaching a bifurcation 

(where an attractor loses its stability) is that it becomes more sluggish in its 

recovery from short-term fluctuations (Wissel, 1984). This is termed ‘critical 

slowing down’, and occurs because negative feedback in the system (which 

keeps it in a given attractor) begins to be overwhelmed by positive feedback 

(which can propel a transition between attractors)—or more mathematically 

speaking, the leading eigenvalue governing the decay rate of fluctuations tends 

toward zero (from a negative value). This critical slowing down behaviour 

should manifest itself as increasing autocorrelation in time (and possibly space), 

which can be readily measured. It is also generally expected to cause a rise in 

variance (Carpenter &  Brock, 2006), which requires less data to detect a signal. 

However, there are special conditions under which rising variance does not 

occur, or cannot be detected (Dakos et al., 2012). 

To date, these proposed generic tipping point early warning indicators have 

been tested in palaeo-data approaching past abrupt climate changes (Dakos et 

al., 2008, Livina &  Lenton, 2007), and in simple and intermediate complexity 

climate models approaching forced tipping points (Lenton, 2011), but not in the 

full-complexity models used for climate projections, e.g. by the 

Intergovernmental Panel on Climate Change. Furthermore, existing model tests 

of early warning indicators have generally concentrated on the case study of a 
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collapse of the thermohaline circulation of the Atlantic, and they have used very 

slow forcing relative to the rate at which humans are interfering with the climate 

system (Held &  Kleinen, 2004). 

Here, we set about to test generic early warning indicators of an approaching 

tipping point in a complex climate model, forced in a realistic way, which 

exhibits an iconic example of a potential tipping point response to climate 

change; dieback of the Amazon rainforest. The model we use is the Hadley 

Centre climate model version 3, known as ‘HadCM3’. Amazon dieback was first 

predicted when an offline vegetation model was forced with climate change 

from HadCM3 (and its predecessor HadCM2) (White et al., 1999). Then dieback 

was found in the fully coupled but lower resolution HadCM3LC model under 

future forcing (Cox et al., 2000). The equilibrium behaviour of HadCM3LC was 

later found to have an even stronger non-linear response of Amazon forest 

cover to temperature (Jones et al. 2009). Unlike reality, 57 different versions of 

HadCM3 now exist with different settings of key physical model parameters and 

therefore different climates (Lambert et al., 2013). We show an example of 

Amazon dieback under future forcing (with the SRES A1B emissions scenario) 

in one of these model versions in Fig. 3.1. First, there is a decline in net primary 

productivity (NPP) (Fig. 3.1a), then vegetation carbon (Fig. 3.1b), then broadleaf 

tree fraction (Fig. 3.1c), the latter beginning around 2060. Below, we make use 

of all 57 model versions to study multiple realisations of approaching Amazon 

dieback, and thus begin to examine the statistical reliability of proposed early 

warning indicators. 
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Figure 3.1: An example of Amazon dieback simulated in one of the 57 versions 

of HadCM3 showing the full time series (1860–2100) of (a) net primary 

productivity (NPP), (b) vegetation carbon and (c) broadleaf fraction, averaged 

annually over the region. 

 

Amazon dieback presents an important case study for several reasons. The 

Amazon rainforest is a critical component of the global carbon cycle, acting as a 

large store of carbon and typically a significant carbon sink, with the notable 

exception of recent drought years when it switched to become a carbon source 

(Lewis et al., 2011, Phillips et al., 2009). The Amazon has been identified as a 

potential tipping element in the Earth’s climate system (Lenton et al., 2008), 
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partly because alternative attractors for the vegetation–climate system of the 

region are thought to exist (Oyama &  Nobre, 2003, Salati &  Vose, 1984), and 

partly because in some future simulations, a large fraction of the Amazon dies 

back fairly abruptly (within decades) (Cook &  Vizy, 2008, Cox et al., 2004, 

White et al., 1999). Experts gave an average 20% chance of tipping the 

Amazon (at least half of its current area is converted from year-round forest due 

to climate change) if global warming is between 2 and 4 °C by 2200, and a 70% 

chance if warming exceeds 4 °C (Kriegler et al., 2009). However, the future of 

the Amazon rainforest is highly uncertain. The observational record shows a 

lengthening of the dry season, attributed to anthropogenic forcing altering the 

Walker circulation of the atmosphere in the tropics (Vecchi et al., 2006). In 

HadCM3, this drying trend continues into the future, and together with warming, 

this overwhelms the tendency of rising atmospheric CO2 to protect the forest by 

increasing the efficiency of photosynthesis (Cox et al., 2004). However, future 

projections with other general circulation models of the climate (GCMs) give 

very different precipitation trends over the region in the future (Li et al., 2006). 

Hence, the change in climate and vegetation of the Amazon in HadCM3 is an 

extreme result among existing models, with a transition to seasonally dry forest 

in the Eastern Amazon region considered more realistic (Malhi et al., 2009). 

Whilst testing generic early warning signals on the Amazon rainforest is new, 

there have been previous attempts to better understand the Amazon’s 

vulnerability in terms of observable variables, such as sea surface temperatures 

(SSTs) in the tropical Pacific (Cox et al., 2004) or the North Atlantic (Cox et al., 

2008). The vulnerability of modelled tropical forest cover has been assessed 

with respect to temperature and dry-season length (DSL) (Good et al., 2011). 

An approximately linear boundary in the temperature–DSL plane separates 
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forested from un-forested tropical (20°N–20°S) grid cells. This boundary exists 

in both the HadCM3LC (Good et al., 2011) and HadGEM2-ES (Good et al., 

2013) climate models, which both include the Top-down Representation of 

Interactive Foliage and Flora Including Dynamics (TRIFFID) vegetation model. 

Looking across a wider range of models, inter-annual anomalies in atmospheric 

CO2 due to anomalies in tropical land carbon storage can be related to 

anomalies in tropical temperature, due to, e.g. drought or El Niño events (Cox et 

al., 2013). 

For dieback of the Amazon to display tipping point behaviour and corresponding 

early warning signals, there must be positive feedback in the dynamics of forest 

loss. Furthermore, for early warning signals to show up in a model study, these 

positive feedbacks must be captured in the model. A key positive feedback that 

is (to varying degrees) captured in existing climate models, including HadCM3, 

is between vegetation and rainfall. Essentially, the forest recycles water to the 

atmosphere through transpiration and this promotes further precipitation, which 

supports the forest (Betts, 1999, Salati &  Vose, 1984). With the prevailing wind 

travelling inland, this promotes the existence of forest in parts of the Amazon 

basin farthest from the Atlantic coast. This positive feedback may be strong 

enough to produce alternative stable states of vegetation cover in parts of the 

Amazon (Oyama &  Nobre, 2003). However, such bi-stability is not a necessary 

condition for the existence of early warning signals (Kéfi et al., 2013, Lenton et 

al., 2008). 

It has not been previously established whether the HadCM3 model exhibits bi-

stability of vegetation cover in parts of the Amazon region. We examine the 

governing equation for tree cover below, which suggests there are two 
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equilibrium solutions even without coupling to the climate. Consistent with this, 

we find evidence of bi-modality of tree coverage in the full climate model, when 

looking across different Amazon grid cells (Fig. 3.2). The state without trees is 

typically dominated by C3 grasses. The two states could arise purely from the 

competition dynamics in the vegetation model, but they may be reinforced by 

vegetation-rainfall feedback. Regardless of this, even if there was only one 

equilibrium solution for tree cover in the model, it is already known that Amazon 

tree cover (averaged across the region) shows a strong non-linear response to 

temperature (Jones et al., 2009). Furthermore, such a strong non-linear 

response should mean that generic early warning signals of approaching 

dieback are present, as long as the model is forced slowly and subject to low 

amplitude stochastic variability (such that it remains close to its equilibrium 

behaviour) (Kéfi et al., 2013). A potential caveat here is that the model Amazon 

system exhibits inertia such that it lags the climate forcing by several decades. 

This raises the question of whether proposed early warning indicators might 

reveal the equilibrium (committed) behaviour of the forest rather than the 

transient (observed) change, or whether they may fail altogether. 
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Figure 3.2: Bi-modality of tree cover looking across Amazon grid cells in the 

same version of HadCM3 as in Fig. 3.1: (a) broadleaf fraction as a function of 

mean annual precipitation for all Amazon grid cells over the first century of the 

run (61 points each with 100 years), (b) a histogram of the distribution of tree 

cover at the grid cell scale when averaging over variations in precipitation. 
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Data and methods 

 

HadCM3 Earth system ensemble 

Our data was obtained from a ‘perturbed physics’ ensemble of versions of the 

HadCM3 model called HadCM3-ESE (Earth system ensemble). The ensemble 

contains 57 members (i.e. model versions) where key parameters have been 

perturbed within boundaries suggested by experts (Lambert et al. 2013). These 

parameters are grouped according to their role in the Earth system, whether 

they are within the atmosphere (n = 32 parameters) (Collins et al., 2011), ocean 

(n = 15) (Collins et al., 2007), sulphur cycle (n = 8) (Lambert et al., 2013) or 

carbon cycle (n = 8) (Booth et al., 2012). Each of the 57 ensemble members 

contains a combination of changes to these four subsystems, determined by a 

Latin hypercube sampling process to maximise the spread of atmosphere and 

carbon cycles used. We are restricted to the data that has already been saved 

from these existing model runs as it is extremely computationally expensive to 

rerun the model. 

The different ensemble members (i.e. model versions) are all subject to the 

same forcing scenario spanning 1860–2100, with historical forcing up to 2000 

and the Special Report on Emissions Scenarios A1B scenario thereafter 

(Nakicenovic et al., 2000). The forcing comprises emissions of carbon dioxide, 

other greenhouse gases and aerosols, with the model determining their 

concentrations and the resulting climate effects interactively. A1B can be 

viewed as a ‘middle of the road’ scenario with an economic rather than an 

environment focus and a balanced energy usage, as opposed to being fossil 
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fuel intensive for example. The resulting 57 different model runs behave 

differently thanks to the perturbations to the physics between model versions. 

We define the Amazon region in the model as 40–70°W and 15°S–5°N, which 

comprises 61 land grid cells. In a particular ensemble member, some of these 

grid cells may not be forested in 1860, but that allows us to capture forest 

growth in these regions should it occur later on in the time series. Within a 

single chosen ensemble member (shown in Figs. 3.1 and 3.2), we examined the 

behaviour of key variables in each of the 61 individual grid cells. When looking 

across the whole ensemble of model versions, we averaged over this spatial 

information, on an annually averaged timescale, to produce a single time series 

for each variable of interest in each of the 57 ensemble members. Comparing 

the two approaches allowed us to check whether averaging over the whole 

region affected our results, compared to using grid points individually, noting 

that the conditions that destabilise the Amazon rainforest are unlikely to be 

uniform across the region. 

Three key output variables from the land surface scheme and the TRIFFID 

dynamic global vegetation model (Cox, 2001) are the focus of our time series 

analysis: broadleaf fraction (BL), vegetation carbon (VC) and NPP. Two ‘driver’ 

time series over the Amazon region, temperature and precipitation, are also 

analysed. In our search for more process-based indicators, we also consider 

net ecosystem productivity (NEP), by subtracting the soil (heterotrophic) 

respiration flux from NPP, and atmospheric CO2 (over the Amazon region), 

which contains both a long-term, global forcing trend and short-term (inter-

annual) variability that reflects changes in NEP of the region. 
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For each ensemble member, we examined the time series of BL to see if there 

was a decline (often following a steady rise). If this was seen, we considered 

the inflection point at which BL starts to decline as the beginning of dieback in 

the model and only use data up to that point in our main analysis. Across the 57 

ensemble members, 31 show dieback starting before 2100. We cannot rule out 

that dieback will occur later in the other 26 ensemble members, particularly 

given that committed change of the forest is much greater than transient change 

in this model. All 57 members are used despite the fact that some models only 

have small forest coverage, since any amount of forest could exhibit dieback. 

Models that do not exhibit dieback give time series which are 240 points long, 

whereas those that exhibit dieback have an average time series of 204 points 

on which to test for early warning signals. 

For the single ensemble member where we consider spatial information, we first 

determine if there is enough forest in each grid point in the Amazon region to be 

considered for analysis. If there is a broadleaf fraction less than 0.1 at the start 

of the time series which does not show any growth, then we ignore this grid 

point. This leaves 49 (of 61) grid points that contain sufficient forest, and in 43 

of these 49 grid points, there is dieback under future forcing. In this case, the 

average time series length for analysis is approximately 215 points. 

 

Early warning indicators 

We use a kernel smoothing function with a bandwidth of 10 years or points 

(Dakos et al., 2008) to detrend the time series of BL, VC and NPP. Then we use 

a sliding window length of half the time series (prior to dieback, if it starts) in 

which we derive AR(1) and variance as potential early warning indicators. We 
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also derive skewness in the same sliding window but from the original rather 

than the detrended data (Guttal &  Jayaprakash, 2008). Increasingly positive or 

increasingly negative skewness can be considered early warning signals 

because the sign of skewness depends on the position of the attractor being 

approached. In the analysis of these three time series, we expect to observe 

skewness becoming more negative over time. 

To express trends in the indicators, we use Kendall’s  rank correlation 

coefficient (Dakos et al., 2008), which ranges between 1, for an indicator that is 

always increasing, to −1 for an indicator that is always decreasing. A  of 0 

implies there is no net trend in the indicator and that it increases as much as it 

decreases. 

To provide a null model of the behaviour of these generic indicators under 

stable boundary conditions, we make use of the control runs of each ensemble 

member. There were ∼70 years of control run available for each member where 

the forest was stable and no emissions were imposed. 

We calculate AR(1), variance and skewness on these samples using the 

methods described above. Then we compare these to the indicator trends 

observed from a comparable length time series prior to dieback in each model 

(or the last ∼70 years if no dieback occurs). 

We also test two process-based, system-specific stability indicators. The first of 

these assesses how the sensitivity of NEP to temperature anomalies changes 

over time. The second looks for changes in the sensitivity of atmospheric CO2 

variations of the Amazon region to temperature anomalies. These indicators are 

motivated by the idea that variations in tropical land carbon storage are caused 

by tropical temperature anomalies. Respiration is prescribed as an exponential 
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function of temperature whereas photosynthesis is a peaked function of 

temperature (which allows the possibility that an increase in temperature could 

cause decreases in photosynthesis if the optimum temperature has been 

passed). Therefore at higher temperatures, a given increase in temperature 

should give rise to a greater decrease in NEP and a correspondingly larger 

addition of CO2 to the atmosphere. 

To calculate these indicators, we detrend the time series of NEP or CO2 and 

temperature again using a kernel smoothing function with a bandwidth of 10 

years. Then within a sliding window length of 25 years, we estimate the gradient 

of the best fit (linear regression) line of NEP or CO2 as a function of 

temperature, and use the result as an indicator. We use a smaller window 

length than in other analyses to better capture the effect of events such as El 

Niño. 

 

Broadleaf fraction model 

We use a simplified version of the TRIFFID model (Cox 2001) to better 

understand the dynamics: 

 

𝑑𝑉

𝑑𝑡
= 𝑃𝑉̂(1 − 𝑉) − 𝐺𝑉        (3.1) 

 

Where V is equal to the broadleaf fraction, G is a disturbance coefficient 

(0.004/year) and 𝑉̂ is either the value of V or 0.1 if V falls below 0.1. P is the 

productivity, in dimensionless area fraction units. There is a non-linear response 
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of the broadleaf fraction (V) to changing productivity (P), with one equilibrium at 

V = 0 and another equilibrium solution: 

 

𝑉∗ = 1 − 𝐺𝑃         (3.2) 

 

The equilibrium V * has an eigenvalue of G-P, which is negative for typical 

values of P found in the ensemble members. As P is reduced, the movement of 

the equilibrium is non-linear as the eigenvalue approaches zero. Eqn. 3.1 can 

be rearranged to the normal form of a transcritical bifurcation and it has been 

confirmed elsewhere that such bifurcations exhibit generic early warning signals 

(Kuehn, 2011). The two stable states observed here should translate into the 

full GCM version used in the ensemble although complicated due to the 

calculation of P. The 𝑉̂parameter in Eqn. 3.1 prevents the vegetation from 

becoming negative. However at values of productivity P we use to test the 

model, this does not alter the fact we are approaching the bifurcation and so 

should observe early warning signals. 

To explore how this model behaves in conditions observed in the full climate 

model, we ran three 500-member ensembles of the simplified model of tree 

cover (Eqn. 3.1): (1) a ‘null’ model ensemble where there is no forcing on P 

(P = 0.9) and a constant noise level (σ = 0.003), (2) a ‘linearly forced’ ensemble 

where P is reduced linearly from 0.9 to 0.004 (the value of G and hence the 

transcritical bifurcation point) whilst keeping the same noise level, and (3) a 

‘non-linearly forced’ ensemble where P is kept constant for the first 180 years at 

0.9 and then reduced linearly from 0.9 to 0.004 over the final 60 years and 
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noise level is increased from σ = 0.001 to σ = 0.006 linearly across the time 

series to mimic the increase in variance in temperature and precipitation 

observed in the full model. This third ensemble is an attempt to recreate the 

conditions seen in the full climate model. In all cases, we analysed the first 200 

years of each run, because in cases (2) and (3), dieback never begins before 

this and generally just after. 
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Results 

 

HadCM3 Earth system ensemble 

In the example model run, dieback starts to occur in the second half of this 

century around 2060 (Fig. 3.1). Prior to this, when looking across spatial 

locations over the first 100 years of the model run, we see evidence of two 

states for broadleaf tree cover, with one mode around 0.8 and another at 0–0.2 

(Fig. 3.2). When analysing the results from individual spatial locations within this 

model run, the majority show dieback, but they do not consistently show the 

signal of critical slowing down (i.e. rising AR(1) and rising variance) prior to 

dieback. Typically, there are decreases in AR(1) for broadleaf fraction and 

vegetation carbon (Fig. 3.3a, d) and a tendency toward increases in AR(1) for 

NPP (Fig. 3.3g). All three variables typically show increases in variance (Fig. 

3.3b,e,h). There are predominantly negative skewness trends observed for 

broadleaf fraction and vegetation carbon (Fig. 3.3c,f), but no clear skewness 

trends for NPP (Fig. 3.3i). 
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Figure 3.3: Trends in generic early warning signals across different grid cells of 

the version of HadCM3 in Figs. 3.1 and 3.2. Annually averaged time series for 

broadleaf fraction (a–c), vegetation carbon (d–f) and NPP (g–i) are used for 

each spatial grid point where there is sufficient forest (grid points which have a 

broadleaf fraction less than 0.1 at the start of the time series without showing 

growth are ignored). Note that in (h), the y-axis has been extended due to the 

majority of the tau values being in the last bin. In each histogram, the darker 

bars refer to those grid cells which show dieback starting prior to 2100 whereas 

the (stacked) lighter bars are the cells without dieback before 2100. 

 

We analyse the spatially averaged behaviour of this example model run (as in 

Fig. 3.1) in Fig. 3.4. One reason why early warning signals might fail in this and 

other cases, based on Eqn. 3.1, is that NPP does not start to decline until 

shortly before dieback begins (where the data is cut off for most of the 
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analyses). Hence in this instance, we analyse the full time series of broadleaf 

fraction (Fig. 3.4a,b), vegetation carbon (Fig. 3.4f,g) and NPP (Fig. 3.4k,l), 

showing where NPP begins to decline around 2020 (vertical line in the time 

series of Fig. 3.4). Once NPP starts to decline, critical slowing down in tree 

cover would be expected according to Eqn. 3.1. Consistent with this, broadleaf 

fraction shows a rise in AR(1) and variance and a negative trend in skewness 

(Fig. 3.4c,d,e). Vegetation carbon shows an overall decline in AR(1), rise in 

variance and negative trend in skewness (Fig. 3.4h,i,j). NPP shows no clear 

trend in AR(1), rising variance and a trend to negative skewness (Fig. 

3.4m,n,o). However, the encouraging results for broadleaf fraction should be 

treated with caution as the data set is only one sample of a wide range of 

signals that the different versions of HadCM3 can produce. Furthermore, in the 

real world, we are interested in warning signals before dieback begins. 
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Figure 3.4: Early warning signals observed for the three key output variables 

from the example time series shown in Figs. 3.1–3.3. Spatial averages of 

broadleaf fraction (a–e), vegetation carbon (f–j) and NPP (k–o) are analysed for 

the full-time series rather than up to observed dieback, in order to examine the 

full effect of NPP decline that begins around 2020. The start of this decline in 

productivity is shown in all the time series with a vertical line. The smoothing 

time series used to derive the residuals (the detrended time series) are shown 

in the top row (a, f and k) over the original time series. 
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Looking across the ensemble of model versions using spatially averaged data, 

generic early warning indicators do not show the signal of critical slowing down 

(i.e. rising AR(1) and rising variance) prior to the start of Amazon dieback. Fig. 

3.5 shows histograms of Kendall  results for all the ensemble members when 

testing the AR(1) coefficient, variance and skewness as indicators on the 

broadleaf fraction, vegetation carbon and NPP time series. AR(1) of broadleaf 

fraction, vegetation carbon and NPP typically decline, but results with no trend 

or some increase are also found (Fig. 3.5a,d,g). The strongest result is rising 

variance in all three variables (broadleaf fraction, vegetation carbon, NPP) (Fig. 

3.5b,e,h), although occasional downward trends are seen. Broadleaf fraction 

and vegetation carbon are typically increasingly negatively skewed over time 

(Fig. 3.5c,f), whereas there is a hint of NPP becoming increasingly positively 

skewed over time (Fig. 3.5i). In all individual cases examined, there is a switch 

of sign of skewness of NPP over time. Differences between the results for 

ensemble members that show Amazon dieback starting before 2100 (dark 

histograms in Fig. 3.5) and those that do not (lighter stacked histograms) are 

modest. There is a slightly stronger tendency of decreasing AR(1) in models 

with no dieback (Fig. 3.5a,d,g) and arguably trends in skewness are slightly 

stronger (Fig. 3.5c,f,i). 
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Figure 3.5: Trends in proposed generic early warning indicators across the 

ensemble of 57 models, from analysis of: (a–c) broadleaf fraction, (d–f) 

vegetation carbon and (g–i) NPP time series averaged over the Amazon region. 

Trends in AR(1), variance and skewness are expressed as Kendall  values. 

The resulting histograms give an indication of range of indicator trends across 

the ensemble and their robustness. In each histogram, the darker bars refer to 

those models which show dieback starting prior to 2100 whereas the (stacked) 

lighter bars are the runs without dieback before 2100. 

 

When compared to the control runs where no forcing is imposed on the system, 

which we are treating as a null model (Fig. 3.6), the most prominent change in 

the indicators are an increase in variance in broadleaf fraction, vegetation 

carbon and NPP (Fig. 3.6b,e,h). The distribution of trends in AR(1) (Fig. 

3.6a,d,g) and skewness (Fig. 3.6c,f,i) do not appear significantly different under 
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climate forcing to the control runs of the models. However, we stress here that 

the time series are short and longer time series would be needed to attempt a 

statistical test on the significance of the results. 

 

 

Figure 3.6: Trends in generic early warning signals for time series found in 

control versions of each ensemble member (without forced under an emissions 

scenario) (dotted histograms) compared to the early warning signals found in 

the original ensemble members using the same length time series as in the 

control run time series (∼70 years). Broadleaf fraction (a–c), vegetation carbon 

(d–f) and NPP (g–i) time series were averaged over the Amazon region each 

year. 

 

The indicator trend of increasing variance that we do consistently observe could 

be due to corresponding trends in the environmental variables forcing the forest 



118 
 

(Fig. 3.7). Indeed, we find that temperature generally shows strongly rising 

variance (Fig. 3.7b), together with a tendency toward declining AR(1) (Fig. 

3.7a), and perhaps a slight shift to negative skewness (Fig. 3.7c). Precipitation 

also tends to show increasing variance or in a smaller number of cases 

decreasing variance (Fig. 3.7e), but no clear trend in AR(1) (Fig. 3.7d) or 

skewness (Fig. 3.7f). The increases in variance of temperature and precipitation 

can be mostly attributed to the model producing more frequent or extreme El 

Niño events under climate forcing, although we should note that temperature 

and precipitation are not pure external forcing variables—they are also affected 

by feedback from the forest. We also note that a strong enough increase in 

variance (as seen for temperature) can cause a decrease in AR(1) because it 

makes neighbouring points in a time series less alike. 
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Figure 3.7: Trends in the environmental variables of (a–c) temperature and (d–f) 

precipitation averaged over the Amazon region, across the ensemble of 57 

models. Again trends in AR(1) estimation, variance and skewness are 

measured as Kendall tau values with the darker bars of each histogram 

referring to ensemble members in which Amazon dieback starts before 2100 

and the (stacked) lighter bars those in which it does not. 

 

Considering more process-based indicators of forest stability, we find an 

expected negative correlation between (inter-annual) changes in temperature 

and (inter-annual) changes in NEP—in other words, warming suppresses NEP 

(Fig. 3.8a)—and this explains why CO2 anomalies are positively correlated with 

temperature (Fig. 3.8b)—as carbon is then released from the forest to the 

atmosphere. These sensitivities generally become stronger with time across the 

ensemble—which means a negative trend in dNEP/dT (Fig. 3.8h) and a positive 

trend in dCO2/dT (Fig. 3.8i). In an example run (Fig. 3.8c–e), the trends in these 

indicators are present at least a century before dieback begins (Fig. 3.8f,g). 

These results are seen regardless of whether a model shows dieback before 
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2100 (stacked bars in Fig. 3.8h,i). Whilst it appears the dCO2/dT sensitivity 

shows a slightly more robust increasing tendency in the models that do not 

exhibit dieback by 2100, a Mann–Whitney U test reveals that the two 

distributions are not statistically significantly different at 5% significance 

(p = 0.066). 
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Figure 3.8: Changes in the sensitivity of NEP and CO2 to temperature 

anomalies over time as early warning indicators: (a–g) shows results for an 

individual ensemble member, (h,i) summarises results across the ensemble. In 

(a) and (b), temperature anomalies (dT) are plotted against a NEP (dNEP) and 

b CO2 (dCO2) anomalies, after detrending the time series with bandwidth = 10. 

Using a window length of 25 years, the first window’s points are shown as dark 

circles and the last using triangles with the corresponding linear regression lines 

plotted using a solid line and dotted line respectively. The original time series of 

temperature (in °C) (c), NEP (in kilograms of carbon per square metre per year) 

(d) and atmospheric CO2 (in ppm) (e) are shown along with the detrended time 

series (lighter colour). Only using data prior to the start of dieback in broadleaf 

fraction (shown by the vertical line in c–e), the gradient of the regression lines 

for both (f) dNEP/dT and (g) dCO2/dT in sliding windows of 25 years are plotted. 

Observing the whole ensemble, histograms show the Kendall’s  of the resulting 
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trends in sensitivity of (h) dNEP/dT and (i) dCO2/dT. In both cases, the darker 

bars of each histogram refer to ensemble members that show dieback starting 

by 2100 whereas the (stacked) lighter bars to not. 

 

Broadleaf fraction model 

On examining the behaviour of the simplified model of broadleaf fraction, the 

null model ensemble produces no significant early warning signals as expected 

(Fig. 3.9a–c). In the linearly forced model ensemble, we do find the expected 

early warning signal of increasing AR(1), together with a slight tendency toward 

increasing variance, and a tendency toward negative skewness (Fig. 3.9d–f). 

However, in the non-linearly forced ensemble, the early warning signal from 

AR(1) is eliminated (with no clear trends in this indicator), whereas variance is 

strongly increasing reflecting increasing amplitude of the forcing noise, and 

there are no clear trends in skewness (Fig. 3.9g–i). These results suggest that 

the fairly rapid and non-linear forcing of the full climate model may be 

responsible for eliminating the expected early warning signal of rising 

autocorrelation. 
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Figure 3.9: Results using a simplified version of the governing TRIFFID 

equation used in HadCM3 to determine broadleaf fraction (Eqn. 3.1). Kendall’s  

values from early warning signals for the three 500 member ensembles with no 

forcing (a–c), linear forcing (d–f) and non-linear forcing (g–i) are shown as 

histograms. Full details on each of the three ensembles are given in the main 

text. 
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Discussion 

 

We have analysed time series of the Amazon rainforest in an ensemble of 

versions of the HadCM3 model, to test both generic and system-specific 

indicators of an approaching tipping point. Despite Amazon dieback beginning 

in over half of the ensemble members before 2100, the expected generic early 

warning signals of an approaching bifurcation-type tipping point are not 

consistently present. In particular, the expected signal of increasing 

autocorrelation is missing. There is a robust increase in variance in the models 

but this may be attributed to increasing variance in key forcing factors for the 

forest, notably increasing temperature variability driven by El Niño. 

The failure to observe generic early warning signals could occur for several 

reasons. The simplest would be if there was no ‘critical transition’ in the model 

world. However, we have several reasons to believe that the model is capable 

of displaying critical slowing down. As already noted, the equilibrium response 

of Amazon forest cover to temperature is strongly non-linear (Jones et al., 

2009), and such responses should show early warnings signals even if there is 

no bifurcation (Kéfi et al., 2013). Furthermore, the underlying equations suggest 

that as NPP declines, and with it forest cover, a transcritical bifurcation is 

approached. Although the system is a long way from the bifurcation when NPP 

starts to decline and then dieback begins, it is moving towards the bifurcation 

and therefore the corresponding leading eigenvalue is increasing toward zero, 

which should produce critical slowing down. Hence, the explanation for the lack 

of early warning signals could be that the conditions for observing them—

namely that the model is forced slowly and subject to low amplitude, additive 
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stochastic variability (such that it remains close to its equilibrium behaviour)—

are violated. Indeed, the full climate model is subject to fairly rapid and non-

linear forcing, and when we impose such a forcing in a simplified model of 

broadleaf fraction, the expected early warning signal of rising autocorrelation is 

eliminated. 

It is also worth noting that we are able to measure generic early warning 

indicators in our ensemble with relative ease compared to the real world. 

Observations of time series would be hard to obtain, especially to the degree of 

accuracy we would need to test, for example, increases in variance in broadleaf 

fraction. In this case, observational error would be larger than the measures of 

variance we generally observe in the time series derived from the models runs. 

One critical feedback that is missing from the models analysed here and could 

contribute to the presence of early warning signals in reality is a positive 

feedback between vegetation state and fire. Essentially, the presence of trees 

suppresses fire encouraging their dominance over grasses, whereas the 

presence of grasses promotes fire, preventing the establishment of trees. This 

local scale feedback could be responsible for creating alternative attractor 

states (forest or savannah) across large parts of the Amazon today (Hirota et 

al., 2011, Staver et al., 2011). Analysis of satellite vegetation cover data 

suggests a range of precipitation for which forest and savannah states are both 

stable in the Amazon region, with the forest becoming less ‘resilient’ (i.e. the 

basin of attraction becomes shallower) as precipitation declines toward a critical 

threshold around 1,800 mm/year (or 5 mm/day) (Hirota et al., 2011, Staver et 

al., 2011). Corresponding spatial locations where there is predicted to be forest-

savannah bi-stability are in the southern or south-eastern Amazon, particularly 
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in Bolivia (Hirota et al., 2011). There are also areas of currently low tree cover in 

south Brazil that are predicted to be bi-stable (Staver et al., 2011). In recent 

drought years, a critical transition to a ‘mega fire’ regime has been observed in 

a part of the Amazon (Pueyo et al., 2010). 

Failures of the generic early warning indicators caused us to seek more 

process-based indicators of changing forest stability in the model. The 

sensitivity of NEP to temperature anomalies (a negative correlation) generally 

increases over time (as dieback approaches). This is readily understood 

because respiration is prescribed as an exponential function of temperature 

whereas photosynthesis is a peaked function of temperature (and may even 

switch regime from rising to declining with temperature). Thus, at higher 

temperatures a given increase in temperature gives rise to a larger decrease in 

NEP. Furthermore, the sensitivity of atmospheric CO2 anomalies over the 

Amazon region to temperature anomalies (a positive correlation) increases 

robustly, and both of these quantities are readily observable in the real world. 

The GOSAT satellite record of regional atmospheric CO2 measurements 

(including the Amazon region) only began around 2009. However, global CO2 

anomalies are dominated by variability in tropical land carbon stores and they 

have been measured for longer. 

Although these process-based stability indicators are potentially observable, 

they can only indicate a tendency of changing resilience of the forest (in this 

case decreasing). There is no particular, universal threshold value which signals 

Amazon dieback in the model, perhaps because the physics of each model 

version is different. For example, the forest of one model version may be 

resilient to dNEP/dT sensitivity (gradient) of −3, whereas another may show 
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dieback before this sensitivity is reached. This lack of an absolute indicator of a 

dieback threshold is also true for generic indicators such as rising variance. 

As yet we have not tested any spatial early warning indicators on the data, for 

example, rising spatial correlation (Bathiany et al., 2013, Dakos et al., 2011). 

However, the ensemble members in HadCM3-ESE generally show dieback 

which begins in the north-east of the region and moves towards the centre. In 

other words, dieback does not occur coherently and simultaneously across the 

whole region in the model. Hence spatial indicators may fail. Also, we have not 

performed a grid point by grid point analysis for all the ensemble members, 

because this would involve individually examining ∼3,500 time series. We 

believe such analysis would be redundant because it is already clear from our 

analysis of the broadleaf fraction model that due to fast, non-linear forcing of the 

system, including increasing variance in the driving time series, generic early 

warning signals—notably rising autocorrelation—tend to fail. 

The absence of generic early warning signals of Amazon dieback in the 

HadCM3 model does not imply they would be absent in the real world. In 

particular, observational data suggests that there is bi-stability of tree cover at a 

much finer spatial scale than the model resolves, and this may be due to 

positive feedbacks between vegetation cover and fire that are not included in 

HadCM3 (Hirota et al., 2011, Staver et al., 2011). Therefore further research 

should consider if this can give rise to early warning signals at a finer spatial 

scale. 
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Chapter 4 

Exploring the Uncertainty of Modelled 

Amazon Dieback  

 

 

 

 

 

 

This chapter is based on Boulton, C. A., Booth, B. B. B., and Good, P. G., 

‘Exploring uncertainty of Amazon dieback in a perturbed parameter Earth 

system ensemble’ (in prep, previously reviewed at Global Change Biology) 
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Abstract 

 

The future of the Amazon rainforest is unknown due to uncertainties in 

projected climate change and the response of the forest to this change (forest 

resiliency). Here we explore the effect of the uncertainties in climate and land 

surface processes on the future of the forest, using a perturbed physics 

ensemble of HadCM3. This is the first time Amazon forest changes are 

presented using an ensemble exploring both land vegetation processes and 

physical climate feedbacks in a fully coupled modelling framework. Under three 

different emissions scenarios, we measure the change in the forest coverage by 

the end of the 21st century (the transient response), and adapt a concept of ‘dry-

season resilience’, to predict the long term committed response of the forest, 

should the state of the climate remain constant past 2100. Our analysis of this 

ensemble suggests that there will be a high chance of greater forest loss on 

longer timescales than is realised by 2100, especially for mid-range and low 

emissions scenarios. In both the transient and predicted committed responses, 

there is an increasing uncertainty in the outcome for the forest as the strength of 

the emissions scenarios increase. We then decompose the uncertainty into that 

associated with future climate change and that associated with forest resiliency, 

finding that it is important to reduce the uncertainty in both of these if we are to 

better determine the Amazon’s fate. 
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Introduction 

 

There is currently a lot of focus on the future stability of the Amazon rainforest. 

This is largely due to its role as an important carbon store and current carbon 

sink in the climate system (Malhi et al., 2008). Significant loss, or dieback, of the 

rainforest could result in this carbon sink becoming a source, releasing carbon 

from the forest to the atmosphere and contributing to climate change. The 

Amazon rainforest is also important for other reasons such as sustaining high 

biodiversity (Dirzo &  Raven, 2003). 

General circulation models (GCMs) give some insight into the future responses 

of the rainforest, projecting climate change forced by emissions scenarios, and 

(if they include a vegetation model - DGVM) the response of the forest to this. 

Amazon forest dieback was first simulated in an offline vegetation model forced 

by climate change occurring in HadCM2 (White et al., 1999). Since then, it has 

also been found in some coupled GCMs such as HadCM3LC (Cox et al., 2000). 

Results from the standard version of HadCM3 show much larger dieback 

compared to simulations from most other GCMs. This is due to strong regional 

drying and warming that overwhelm the rising atmospheric CO2 that contributes 

to increased photosynthesis and thus productivity of the Amazon rainforest (Cox 

et al., 2004, Good et al., 2011, Good et al., 2013, Huntingford et al., 2013, Malhi 

et al., 2009). This does not mean the response in HadCM3 is implausible: 

Shiogama et al. (2011) used observational constraints to suggest that the 

CMIP3 ensemble mean underestimates the most likely level of drying over the 

central/eastern Amazon. Nevertheless, the differences between current 

projections suggest that the forest’s future is uncertain. 
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There has been much research into the varied responses of the forest under 

different GCM projections and dynamic global vegetation models (DGVMs). For 

example Sitch et al. (2008) use a single GCM to test a variety of DGVMs under 

different emissions scenarios. More recently, Huntingford et al. (2013) test the 

effect of climate change patterns from 22 GCMs which explore changes in land 

vegetation processes (Booth et al., 2012), whilst using a single DGVM 

(TRIFFID) (Cox, 2001). These changes are then compared to those from Sitch 

et al. (2008) suggesting that there is a larger uncertainty associated with future 

emissions scenarios than climate model uncertainty. These works explore 

uncertainty in the future of the Amazon rainforest by focusing on specific 

modelled components (e.g. forest resiliency and climate change respectively). 

Poulter et al. (2010) perturb parameter values within the LPJmL DGVM and 

combine this with an ensemble of 8 GCMs to determine which parameters are 

most important in reducing uncertainty of future Amazon rainforest response. 

Galbraith et al. (2010) use factorial simulations to determine the effect that 

certain factors, such as temperature or precipitation changes, have on 

vegetation carbon in the Amazon region for three DGVMs.  

The modelled vegetation in the rainforest (as well as vegetation elsewhere) 

exhibits inertia, meaning there is a delay in the response of the forest to the 

climate change that has occurred. The eventual response based on the climate 

change that has happened up to a certain time is known as the ‘committed 

response’ and can take many years to be realised (Jones et al., 2009). The 

committed response may be calculated using ‘equilibrium vegetation’ 

simulations where the climate is held at a constant level and the vegetation is 

allowed to settle to equilibrium (Cox, 2001, Jones et al., 2009).  In a transient 

scenario (where radiative forcing was steadily increasing), Jones et al. (2009) 
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found that Amazon dieback lagged the committed forest change by around 50 

years.  In this case, the transient forest response could be considered a lower 

bound to the potential long term forest loss that would occur in this model 

without reversing climate change.  Understanding this committed response is 

important in determining the longer term outcome of the forest to emissions 

over the 21st century as, for example, the area of sustainable forest coverage 

may be significantly reduced well before transient loss is observed. Huntingford 

et al. (2013) calculate the committed response for the 22 models they test and 

find that rainforests that are growing in the transient experiment continue to 

grow slightly whereas rainforests which have ‘peaked’ and are on a decline 

show more dieback in their committed response.  

The primary controls on the large-scale distribution of committed vegetation 

under present-day through future conditions are rainfall, temperature and 

atmospheric CO2 concentration. Good et al. (2011) showed that for HadCM3LC 

and HadGEM2-ES (Good et al., 2013), while considering tropical land, certain 

combinations of temperature and dry-season length (the number of months a 

year that precipitation falls below a certain threshold) promote sustainable 

forest, whereas there is no forest found in areas which are too warm or dry (i.e. 

have a long dry-season length). The dry-season length used here is the number 

of months that produce a water deficit according to maximum cumulative water 

deficit (MCWD) calculations (Malhi et al., 2009). In these simulations at least, 

the boundary between sustainable forest and no forest is fairly distinct. 

In turn, Amazon rainfall anomalies have been linked to sea surface temperature 

indices in both the tropical Pacific (Cox et al., 2004, Harris et al., 2008) and 

Atlantic (Cox et al., 2008, Good et al., 2008, Harris et al., 2008). Both of these 
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indices are observable in the real world. Furthermore, increased rainfall comes 

from air that has passed over extensive vegetation suggesting that precipitation 

changes are also linked to deforestation (Spracklen et al., 2012). Using 

observed precipitation values in tropical rainforest areas, potential analysis 

(Livina et al., 2010) has been used to determine how vulnerable certain areas of 

the forest are (Hirota et al., 2011) which is related to how far away they are from 

the boundary of not having enough precipitation to sustain themselves. 

Dieback of the Amazon rainforest has been considered a tipping point in the 

Earth system (Lenton et al., 2008) and generic early warning signals based on 

time-series analysis of variance, autocorrelation and skewness (Lenton, 2011) 

have also been tested on output of the ensemble of HadCM3 used here 

(Boulton et al., 2013). However due to the slower dynamics of the system (the 

committed response of the forest) compared to fast, anthropogenic forcing, the 

generic early warning signals do not show much promise. Instead, indicators 

based on the physical processes of the Amazon rainforest appear to be more 

promising.  

Here we explore uncertainty in Amazon forest projections using output from a 

57-member perturbed-physics ensemble of HadCM3 (Booth et al., 2013), a 

GCM whose Amazon dieback in its standard configuration is at the upper end of 

current projections. Our uncertainties in future climate change and forest 

resiliency are represented by the physical parameters that are perturbed in the 

ensemble, allowing the opportunity to determine how sensitive future Amazon 

forest change is to these. This ensemble explores both land vegetation 

processes and physical climate feedbacks and represents the first time future 

Amazon rainforest changes have been analysed with this uncertainty. This is 
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carried out within a fully-coupled framework meaning there is no mismatch 

between atmospheric drivers and changes in surface conditions, and allowing 

the vegetation to feedback on the atmosphere, both locally and globally. As well 

as analysing the response of the Amazon rainforest by 2100 under 3 emissions 

scenarios for each ensemble member, we also predict the long term committed 

change of the forest, which would not be realised for many decades beyond 

2100. To do this, we present a novel use of the dry-season resilience method 

described earlier (Good et al., 2011). Our use of this method determines a lower 

bound of potential long term forest loss.  
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Materials and methods 

 

HadCM3-ESE 

Our data is obtained from the HadCM3 Earth System Ensemble (HadCM3-ESE) 

(Lambert et al., 2013), using the TRIFFID DGVM (Cox, 2001) to simulate 

vegetation. There are 57 model configurations within the ensemble, each 

containing a different combination of perturbed parameters. The parameters are 

perturbed within boundaries suggested by experts and grouped according to 

their role within the Earth system, whether they are part of the carbon cycle 

(n=8 parameters) (Booth et al., 2012), atmosphere (n=32) (Collins et al., 2011), 

sulphur cycle (n=8) (Lambert et al., 2013) or ocean (n=15) (Collins et al., 2007). 

A Latin hypercube sampling method was used to sample a range of 

combinations of carbon cycle and atmosphere parameters (Lambert et al., 

2013). There were originally 68 members, however 11 were removed from the 

ensemble for failing to simulate reasonable top of the atmosphere (TOA) 

radiative fluxes during the spin up (outside the bounds in Collins et al. (2011)). 

Ensemble members that failed to simulate the presence of Amazon or boreal 

forests were also removed (Lambert et al., 2013). The ensemble is driven by 

emissions profiles expected to give the trajectories explained below (much like 

Meinshausen et al. (2008)). This means that atmospheric greenhouse gas 

concentrations are prognostic values and vary due to different emergent model 

sensitivities resulting from the underlying perturbed parameters sampled in 

these experiments, even under the same emissions scenario. If the direct 

forcings or concentrations were applied to the ensemble members, it would 
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prevent the opportunity to explore global feedbacks in the carbon cycle and thus 

by using emissions profiles, greater uncertainty is explored. 

HadCM3-ESE has been run under 3 scenarios, a mitigation scenario RCP 2.6 

(van Vuuren et al., 2006, van Vuuren et al., 2007) , a balanced scenario, A1B 

(Nakicenovic et al., 2000) and a business as usual scenario, RCP 8.5 (Riahi et 

al., 2007) , as detailed by Booth et al. (2013). General comparisons between 

each scenario’s model outputs such as global mean temperature have been 

shown elsewhere (Booth et al., 2013). Each of the scenarios share a common 

historical driving dataset from 1860-1950 based on SRES data, after which 

parallel SRES and RCP historical simulations were run. These form the basis 

from which SRES A1B (from 1990) and the 2 RCPs (from 2005) were extended. 

Further details about the experimental setup are described by Booth et al. 

(2013). 

HadCM3-ESE was originally created to explore the spread of results possible 

under HadCM3 dynamics, rather than to determine the effects of individual 

parameters on changes in vegetation. For this, single parameters would have to 

be perturbed whilst keeping other constant. However we explored the 

relationship between the transient responses and land surface parameters 

perturbed in the ensemble, noting that full inference on the true effect of each 

parameter is difficult to determine. The parameters concerned with the carbon 

cycle (Booth et al., 2012) are shown in Table 4.1 with a short description and 

the ranges they are sampled from. Parameters from the other groups (detailed 

above) are less influential on forest response and are not included in Table 4.1. 

Note that some perturbed parameter values are assigned to each plant 

functional type (PFT) in the ensemble, however Table 4.1 only shows the 
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ranges for the broadleaf fraction PFT. Full details of the other PFTs can be 

found in Booth et al. (2012).  

 

Parameter Range (for broadleaf 

FPT) 

Description 

f0 0.72-0.95 Stomatal resistance 

minLAI 1-4 Minimum Leaf Area Index 

needed before a PFT 

competes for space 

NLO 0.018-0.1 kgN/kgC Top leaf nitrogen 

concentration 

Q10 1.5-3.5 Soil respiration 

TOPT 27-37 (°C) Optimum temperature for 

photosynthesis 

Θ𝐶𝑅𝐼𝑇 0.01-0.99 Volumetric soil moisture 

 

Table 4.1: Ranges and descriptions of perturbed parameters in the carbon cycle 

component of HadCM3-ESE, as detailed in Booth et al. (2012) 
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Estimating the committed forest response: modified dry-season resilience 

method 

The basis of our analysis is to determine climate conditions that sustain forest 

and to explore the long term committed response of the forest (Jones et al., 

2009), due to the changes in these climate conditions over time. Our method is 

based on that of Good et al. (2011).  

The method of Good et al. as tested on the standard version of HadCM3LC 

(Good et al., 2011) and HadGEM2-ES (Good et al., 2013), uses annual mean 

temperature and annual dry-season length (DSL, the number of months in a 

year that monthly precipitation is below 100mm) from land grid points in the 

tropics (20°S-20°N), as well as global atmospheric CO2 concentration as 

climate drivers that affect the sustainability of the forest. 

To determine climate conditions that are suitable for sustaining forest, 

equilibrium broadleaf tree fraction (BL) is plotted in the temperature-DSL plane 

for a given model configuration (see Fig. 4.1a for an example using our 

method). The points are coloured depending on whether there is forest (green, 

BL > 0.4), no forest (red, BL < 0.05). An intermediate amount of forest (blue, 

0.05 < BL < 0.4) is savannah type land that are dominated by grasses. We have 

also circled points contained within a region we define as the Amazon rainforest 

(40°-70°W, 15°S-5°N) as the climate changes in these points are what we are 

most interested in. Fig. 4.1a shows two distinct regions: one where climate 

promotes sustainable forest growth and a region which does not contain forest. 

The boundary between the two regions is approximately linear, so is quantified 

with a linear fit of the form shown in Eqn. 4.1. 
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DSR = DSL + T + CO2 + c       (4.1) 

DSR (in units of months) is dry season resilience, a measure of the resiliency of 

a grid point to changes in climate. Visually, DSR refers to the distance away 

from the boundary between forest and no forest a grid point is with DSR=0 on 

the boundary itself, suggesting points on the boundary have no resilience to an 

increase in temperature or dry season length. DSL and T refer to the dry-

season length and temperature of a given grid point whereas CO2 is the global 

mean value of atmospheric CO2. The coefficients  and , the temperature 

sensitivity and CO2 fertilisation coefficient respectively are to be determined 

along with the constant c. With this formulation, we are able to make statements 

such as ‘if DSL were to increase by a month, then temperature would have to 

decrease by  for the grid point to have the same resilience’. The parameters , 

 and c in Eqn. 4.1 are dependent on the parameters perturbed within the 

ensemble and as such there is uncertainty associated with them, which we will 

later decompose. 
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Figure 4.1: Estimating dry-season resilience (DSR) for a typical ensemble 

member. (a) The historical (1860-1950) mean temperature and dry-season 

length (DSL) is observed for all tropical grid boxes (20°S -20°N) which are then 

plotted in the temperature-DSL plane. The colour of each grid boxes’ point is 

green for ‘Forest’ (BL > 0.4), blue for ‘Intermediate’ (0.4 < BL < 0.05) or red for 

‘No Forest’ (BL < 0.05). The DSR=0 line (as described in main text) is shown by 

a black line. Circled points are those contained with the region 40°-70°W, 15°S-

5°N (the Amazon region) and the black square is the mean state of the Amazon 

forest (green circled points). Dotted lines refer to the region used to calculate 

parameters in Eqn. 4.1. (b) Future changes in atmospheric CO2, temperature 

and DSL move both the DSR=0 line and the position of the points (represented 

here by the mean Amazon forest state, black square) are tracked in 20 year 

averages over the 21st century. 

 

Good et al. originally estimated these parameters on equilibrium runs, where 

the vegetation has settled to equilibrium under a constant climate. The 
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parameters are calculated through the use of an algorithm that minimises the 

number of grid points that are on the wrong side of the boundary.  

To fit the parameters for this ensemble, we adapt the above method. Initial 

equilibrium vegetation simulations were not available, due to computational 

expense associated with the large ensemble size (this would involve carrying 

out 57 additional full GCM experiments for each of the 3 future scenarios 

explored in this study).  Using the fact that the 3 scenarios used the same 

historical simulation from 1860-1950, as well the climate staying relatively stable 

during this time, we treat this as a ‘quasi-equilibrium’ early industrial state to 

begin our analysis from. For each land grid point in the tropics (20°N-20°S) 

within each configuration, we calculate the average temperature, dry season 

length and the average broadleaf (BL) fraction over these 90 years. We also 

extract the 1860-1950 mean global CO2 (ppm) value for each ensemble 

member.  

Our modification of the original DSR method is to use a logistic regression fit to 

estimate the parameters in Eqn. 4.1, focusing around the transition from forest 

to no forest by using only grid points with temperature, T > 10°C and 4 < DSL < 

10 (Fig. 4.1a – dotted line) and fitting the line to where BL=0.025, the midpoint 

of the blue, intermediate values of forest in Fig. 4.1a. This standardised method 

of computing  and c is much more efficient than using the original method to 

determine them for all 57 ensemble members. 

An important caveat here is that by using equilibrium runs in their analysis, 

Good et al. (2011) were able to infer the value of , the CO2 fertilisation 

coefficient (equal to 0.0043) from HadCM3LC, the standard model with the 

original parameter values by running a parallel model with double the 
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atmospheric CO2 concentration. We use their value in our analysis as we do not 

have the simulations required to estimate this fertilisation coefficient for each 

individual configuration. These extra runs would have allowed us to have two 

values for atmospheric CO2 from which we would be able to infer the fertilisation 

coefficient through the use of our logistic regression fit each time. Instead we 

are making the simplification that the CO2 fertilisation effect does not vary 

between simulations, although it is important to note that the true value of  in 

each instance is dependent on the parameters perturbed for each configuration. 

We note that only the fertilisation coefficient  is kept constant across all 

configurations and that the fertilisation effect itself will differ depending on the 

global atmospheric CO2 concentration. 

After determining  and c for each configuration, Eqn. 4.1 allows a prediction of 

whether broadleaf forest is sustainable or not at each location for each year 

based on its DSR value (Eqn. 4.1), given the prevailing climate.  First we 

calculate the number of points in the Amazon region that are below the DSR=0 

line in our quasi-equilibrium (1860-1950) state in each of our configurations. We 

then calculate the number of points that are below the line using the 2080-2100 

average from each simulation. In other words, we are using DSR as a method 

of extrapolation to estimate the state of the committed Amazon rainforest 

without running a corresponding equilibrium run for each ensemble member. A 

prediction on the post-2100 equilibrium state of a grid point is based on the 

equilibrium state of a grid point with similar climate in the quasi-equilibrium 

state.  Due to the CO2 fertilisation effect, increases in atmospheric CO2 cause 

the boundary line (DSR=0) to move upwards. Consequently moderately 

increased temperatures and DSLs can sustain forest under the higher 

atmospheric CO2 values. An example of these changes over the 21st century is 
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shown in Fig. 4.1b. We use the 20 year averages to eliminate year-to-year 

variability. The difference between the 1860-1950 and 2080-2100 values gives 

us our prediction of committed change. The combined result of configurations 

from each emissions scenario gives us a measure of uncertainty of the future 

behaviour of the Amazon rainforest and its committed response to 21st century 

climate change. 
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Results 

 

Transient responses 

Time series of the transient responses of the Amazon rainforest up to 2100 in 

HadCM3-ESE are shown in Fig. 4.2a as the number of grid boxes with exhibit 

forest (BL > 0.4) in each ensemble member. Proportional changes shown in 

Fig. 4.2b. These responses are calculated as the proportional change in the 

number of Amazon region (40°-70°W, 15°S-5°N) grid points that exhibit forest 

(i.e. BL > 0.4) between 2000 and 2100. 

 

Figure 4.2: Transient changes in number of grid boxes containing Amazon 

forest (BL fraction > 0.4 within the region 40°-70°W, 15°S-5°N) in HadCM3-ESE 

compared to historical (1860-1950) Amazon forest coverage. (a) Time series of 

forest coverage (number of grid boxes) for each individual member of HadCM3-

ESE. (b) Time series of these transient proportional changes for each individual 

member of HadCM3-ESE. (c) Box and whisker plots for each scenario showing 

the median, inter-quartile range and minimum and maximum values (ignoring 

outliers, black circles). 
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Unlike the standard configuration of HadCM3 (Cox et al., 2000), the majority of 

the simulations show little change by the end of the 21st century (Fig. 4.2a,b). 

However there are simulations which show dieback at similar levels to that of 

the forest in the standard model and even greater. This shows that the large 

dieback in the standard model is not the mean result for the HadCM3 model.  

However, it is still within the envelope of uncertainty provided by this ensemble.  

When partitioning the transient responses by scenario (Fig. 4.2c), there is an 

increasing uncertainty in the forest state at 2100 with increasing strength of 

emission scenarios. With the RCP 2.6 mitigation scenario, we see that the 

mean transient response is no change to the forest cover with a few simulations 

showing dieback, giving a negatively skewed distribution. For A1B simulations, 

while the mean response still suggests no change, it is clear there is more of a 

tendency for forest loss to be exhibited than occurs under mitigation. With RCP 

8.5, the mean response decreases slightly to a loss of around 5%. The 

uncertainty however is a lot greater. As well as having more members which 

show loss and dieback, there are also more simulations that have forest growth 

than the other two scenarios. 

The simulation with the largest dieback that occurs in RCP 2.6 shows signs of 

forest loss by 2040 and does so in all three scenarios. For the forest to dieback 

so soon in the century suggests that in some cases, the configuration of 

perturbed parameters can cause forests that are already very near the 

threshold of dieback under present day conditions. 

When determining if any of the perturbed parameters were linked to forest loss, 

we found the strongest relationships were found between forest change and 

TOPT (the optimum temperature for photosynthesis) and minLAI (a competition 
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parameter specifying the minimum leaf area index a plant functional type  needs 

before it begins to compete for space). Using results from RCP 8.5, which have 

the largest spread of transient responses, analysis on the combination of TOPT 

and minLAI on forest change (Fig. 4.3) shows low values of TOPT and high 

minLAI for broadleaf preconditions dieback. Members with a TOPT of greater 

than 32°C show no extreme dieback (although less extreme loss is still 

observed, Fig. 4.3a). Likewise, members with a minLAI less than 2.5 show no 

extreme dieback (Fig. 4.3b), whereas members with stronger dieback have a 

TOPT less than 32°C and a minLAI greater than 2.5 (Fig. 4.3a,b). However other 

factors such as changes in climate that would stress the forest, as well as the 

values of other parameters not explored, will determine if dieback does occur. 

Although there are less members which show dieback under the A1B scenario, 

the boundaries for TOPT and minLAI seem consistent (Fig. 4.3c,d). This further 

strengthens the argument that although other factors such as climate change, 

which is not as strong in the A1B scenarios, drive dieback, low TOPT combined 

with high minLAI is a precondition. The values of  minLAI and TOPT in the 

standard configuration, 3 and 32°C respectively (Cox, 2001), are near the 

thresholds that precondition dieback (Fig. 4.3). This could explain, at least 

partially, why dieback is observed in the standard model, but not in the majority 

of the ensemble. 
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Figure 4.3: The effect of perturbing parameters on transient forest change by 

2100. Proportional forest change observed in ensemble members under 

scenarios (a,b) RCP 8.5 and (c,d) A1B scenarios are plotted against the (a,c) 

TOPT and (b,d) minLAI values of each member. The colours of points show the 

value of the parameter not plotted. 
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Committed response predictions 

To compare the transient responses (those in Fig. 4.2) to our predictions of the 

committed responses (calculated using our modified DSR method), we present 

the results in the form of cumulative density functions (CDFs, Fig. 4.4). 

 

Figure 4.4: Summary CDFs of the Amazon rainforest fractional changes in grid 

boxes deemed forest for ensemble members of HadCM3-ESE. Transient 

responses observed by 2100 for scenarios (a) RCP 2.6, (b) A1B and (c) RCP 

8.5 are shown above predicted committed responses using the DSR method for 

(d) RCP 2.6, (e) A1B and (f) RCP 8.5. Coloured regions show proportion of 

models which show changes we class as ‘Dieback’ (red, < -25%), ‘Loss’ 

(orange, >-25%,<-5%), ‘No Change’ (white, >-5%, <5%) and ‘Growth’ (green, 

>5%). 

In all three scenarios, our prediction of committed change suggests there is 

more uncertainty in the eventual outcome of the forest with a higher chance of 
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further forest loss than is realised by 2100 (the transient response). For 

example under RCP 2.6, the mitigation scenario, there is fairly robust response 

of ‘No change’ (forest remains within 5% of its original size) by 2100 and 12.2% 

of ensemble members show some degree of ‘Loss’ (>5% decrease) (Fig. 4.4a). 

However 45.6% of models predict a committed ‘Loss’ (>5% decrease) or 

‘Dieback’ (>25% decrease) (Fig. 4.4d). Similar results are observed for the other 

two scenarios (A1B, 28.1% and 57.9%; Fig 4.4b,e, and RCP 8.5, 52.6% and 

70.1%; Fig. 4.4c,f). However fewer models predicting large committed forest 

loss are found under the mitigation scenario. 

In both the transient and predicted committed responses of the forest, stronger 

emissions scenarios (increased CO2 emissions for example), lead to an 

increasing uncertainty in the resulting forest change with more of a tendency 

towards forest loss. However like the transient response, there is also more 

forest ‘Growth’ (>5% increase) predicted as a committed response under the 

stronger RCP 8.5 scenario than the predicted committed response of the other 

scenarios. This suggests more spread and thus more uncertainty in future 

outcome of the forest under stronger emissions scenarios. This uncertainty is 

also noted by the gradient of the CDFs as steeper gradients suggest less 

uncertainty. 
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Decomposing uncertainty 

To begin to determine causes in the spread of committed responses predicted, 

we decompose the uncertainty into that associated with climate change, and 

that associated with forest resiliency (the coefficient , the temperature 

sensitivity, and c in Eqn. 4.1, previously calculated individually for each of the 

57 configurations). This analysis is carried out on the RCP 8.5 scenario 

members as out of the three scenarios, this had the largest predicted committed 

spread (Fig. 4.4). 

 

Figure 4.5: Graphical representations of how (a) forest resiliency, (b) climate 

and (c) climate (including observations) are constrained. In all cases black lines 

represent values from individual ensemble members, red lines represent the 

values used when the variable is constrained and grey lines represent how the 

other variable is constrained. Points shown in the background are from (a,b) a 

typical ensemble member or (c) observations. The same point (in the Amazon 

region) is used when demonstrating constraining climate and climate (including 

observations).  
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Decomposing the uncertainty is achieved by keeping one set of parameters 

(either climate change or forest resiliency parameters), constant whilst allowing 

the other to vary and repeating the analysis used to predict the committed 

response. The uncertainty associated with the climate change component is 

explored by fixing the values of  and c in Eqn. 4.1 for each model to the 

ensemble mean values. This holds the forest resiliency constant. Fig. 4.5a 

shows the average forest resiliency (red DSR=0 line). As the climate is still 

allowed to change, movement of the grid points over the 21st century as well as 

movement of the DSR=0 due to increasing atmospheric CO2 will occur. 

Similarly, uncertainty associated with forest resiliency is explored by fixing the 

climate at each location in each model to the ensemble mean (Fig. 4.5b shows 

the average climate change for an example grid point – see red line). 
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Figure 4.6: CDFs showing predicted committed Amazon forest change for the 

RCP 8.5 scenario. Committed change is predicted using (a) the 1860-1950 

modelled state (temperature and DSL) and (b) real world observations (see 

main text). Committed change is also predicted whilst keeping resilience 

parameters constant (dashed lines) and climate change constant (dotted lines). 

Constraining one variable allows the uncertainty in the other to be explored (as 

described in text).  

 

Compared to our overall prediction uncertainty (Fig. 4.6a – solid line), we find 

that our uncertainty due to climate change, under the A1B emissions scenario is 

similar (Fig. 4.6a – dashed line). This suggests the largest proportion of overall 

uncertainty is explained by uncertainties in the climate, compared to uncertainty 

in forest resiliency (Fig. 4.6a – dotted line), which has less of a spread of results 

(but still shows some uncertainty). 

We further constrain our uncertainty in climate change by using real world 

observations of temperature from the CRUTEM3 dataset (Brohan et al., 2006) 

and DSL from the GPCC precipitation dataset (Schneider et al., 2014) to use as 
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starting positions for each grid point. Due to observational constraints, rather 

than using 1860-1950 as our quasi-equilibrium state, we instead use a 1950-

1980 average. Using real world observations eliminates the uncertainty 

associated with the starting position of each grid point in the temperature-DSL 

plane. Then the equivalent of the 2080-2100 mean state of a grid point is 

achieved by adding the climate change in the model between 1860-1950 and 

2080-2100 onto the real world observations (Fig. 4.5c). Using these real world 

observations, we decompose the uncertainty again as we have described 

above. By doing this, we are able to compare how our uncertainty in forest 

resiliency compares to our uncertainty in future climate change, eliminating 

uncertainty in what we already know about recent past climate. 

When initialising our analysis using the real world observations as the starting 

climate (Fig. 4.6b – solid line) we again find that our uncertainties associated 

with future climate change are still large (Fig. 4.6b – dashed line). Indeed, fixing 

the starting climate has a rather small effect on the range of projections in this 

ensemble.  However there is more spread in forest outcome while exploring the 

uncertainty in forest resilience (Fig. 4.6b – dotted line) than previously (Fig. 

4.6a). This suggests that forest resiliency is important to understand as well as 

future climate change. 
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Discussion 

 

We explore the future Amazon forest response to uncertainties in both land 

vegetation processes and physical climate feedbacks. These suggest a range 

of transient forest responses consistent with uncertainties in current climate 

model parameters. This shows that the result of ~60% dieback from the 

standard HadCM3 model (Cox et al., 2000) is not the most typical result for this 

model structure. The values of minLAI (3) and TOPT (32°C) in the standard 

configuration (Cox, 2001) are near the thresholds that precondition dieback (Fig 

4.3). This combination of parameters could partially explain the dieback 

observed in the standard model (Cox et al., 2000).    

In the majority of cases, perturbing parameters describing the physics and 

vegetation processes of the model, leads to forests that are much more resilient 

to future climate change over the next century than in the standard version. 

However large changes can still occur, especially under strong emissions 

scenarios. The spread in results we find compared to the standard configuration 

highlights the importance of fully exploring both parameter and future emission 

scenario uncertainty, as well as trying to reduce it.  

Our modified use of Good et al.’s DSR framework allows us to make predictions 

of committed change of the forest based on the emissions scenarios up to 

2100. Aside from making this prediction, we also hope the methods described in 

this paper could progress future work towards a more ‘system-specific’ indicator 

or framework rather than the more generic early warning signals which have 

been shown to fail in this instance. 
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We note here that these predictions of committed change are ‘lower bounds’, 

meaning that more loss is likely to occur than we predict. Our assumption of the 

regression model we fit being linear breaks down at higher temperatures since 

this becomes a limiting factor in forest sustainability when we run a subset of 

the ensemble members to equilibrium (Fig. 4.7). We note in this case that the 

emissions are held at constant 2100 levels but the temperature and DSL 

change from their 2100 values as they lag the emissions. The threshold for 

when this change in  begins to become significant is dependent on the 

optimum temperature (TOPT) for photosynthesis in the model configuration (one 

of the major uncertainties in future tropical forest response (Booth et al., 2012, 

Matthews et al., 2007). Nevertheless, the technique presented here represents 

a computationally efficient method of estimating the lower bound to simulated 

forest loss on the basis of the historical and future GCM climate and forest 

coverage. Future work could involve adding a non-linear temperature term into 

Eqn. 4.1 whilst exploring higher temperatures in true 2100 equilibrium runs for 

example. 
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Figure 4.7: The effect of the parameter TOPT, the optimum temperature for 

photosynthesis on the DSR=0 line for the 10 equilibrium runs (see main text). 

Plots are ordered in increasing value of TOPT. Hollow points are data from the 

transient historical (1860-1950) and filled points are from the equilibrium run. 

The DSR=0 line is shown when fitted only with the transient data (grey) and 

with all the data (black). 

 

The DSR framework provides a simple metric that can quantify why different 

models show markedly different responses. For example, there is a huge range 

of DSLs found within the ensemble, when using both the member mean forest 

(Fig. 4.8a) and all the forest grid points across all members (Fig. 4.8b). 

Furthermore, these DSL values are highly correlated with their corresponding 

MCWD values (Malhi et al., 2009) (r=0.898 for the 1860-1950 state and r=0.963 

for the 2080-2100 state when using the ensemble forest mean values, Fig. 

4.8a), suggesting that using this more simple measure of using the number of 

months the forest is under water stress, rather than the amount it is stressed by, 

in our calculations is beneficial. Given the uncertainty in current DGVM 
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estimates, the DSR framework gives insight into moisture and temperatures 

constraints are, and thus could do for other models. Furthermore, the DSR 

framework could allow the relative contributions of temperature and DSL 

changes to forest loss, to be calculated. 

 

 

Figure 4.8: A comparison of DSL and MCWD in the HadCM3-ESE under the 

A1B scenario. (a) Ensemble member forest means and (b) all forest grid point 

across all ensemble members’ DSL values are plotted against their MCWD 

values for the 1860-1950 mean state (black) and the 2080-2100 mean state 

(red). In (a), ensemble members’ states are connected by a dark grey line. The 

light grey background shows the envelope of possible values for DSL and 

MCWD. 

 

As mentioned in our results, as emissions scenarios get stronger, there are a 

larger proportion of ensemble members which show loss and dieback (both 
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during the 21st century and in the committed response), suggesting that the 

increased temperatures and DSLs caused by the increased atmospheric CO2 

overwhelm the CO2 fertilisation effect. Visually, the movement of the individual 

grid points in the Amazon region moves towards the boundary between 

conditions promoting sustainable forest and that unsuitable for forest, faster 

than the boundary line itself moves. The increases in CO2 compared to the 

consequent increases in temperature and dry-season length could be 

considered as a balance of expansion and risk of collapse and is important to 

consider when planning mitigation strategy. 

As well as an increasing risk of dieback as emissions scenarios get stronger, 

there is also an increasing uncertainty. Interestingly this could mean that for 

ensemble members with parameter combinations which lead to slower 

increases in temperature and DSLs than others, under larger CO2 increases, 

forest growth may be observed (green section of the CDF, Fig. 4.4f). This 

further suggests that reducing uncertainty in forest resiliency (which contributes 

to these changes in temperatures and DSLs) is important in determining the 

future response of the forest. 

When decomposing the uncertainty in our framework, the climate change 

component appears to be more important than forest resiliency. However both 

contribute to the total uncertainty.  This is more evident when we use 

observations as starting climate (comparing Fig. 4.6a and b). It is worth noting 

that we are assuming that the differences in 1950-1980 and 1860-1950 climates 

are small relative to future changes, and that the forest stability has not 

markedly changed as a result. A caveat here, is that we use the CO2 fertilisation 

coefficient  quantified from the standard HadCM3LC model by Good et al. 
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(2011). We are, therefore, only exploring the non-CO2 fertilisation component of 

forest resiliency, and subsequently expect this framework to underestimate the 

importance of the total forest resilience uncertainty, where the impact on CO2 

fertilisation (via changes to parameter  would also be accounted for.  

To determine how well our ensemble simulates the observations used for the 

starting climate in our decomposition of uncertainty, we compare them to real-

world climate of the Amazon rainforest from the CRUTEM3 (Brohan et al., 

2006) and GPCC (Schneider et al., 2014)  datasets used previously. By 

comparing the average Amazon climate state in the temperature-DSL plane and 

to that of the real-world (Fig. 4.9a), we find that the observations lie within a 

reasonable range of our simulations as we find models which have Amazon 

regions state ranges that encompass the observations (Fig. 4.9b,c). Previous 

work comparing the Amazon region observations to those of members of a 

multi-model ensemble suggests that models are generally too dry and that 

accounting for this produces less dieback (Malhi et al., 2009). Our findings 

suggest that this would have little effect on the predicted committed change of 

the forest in this ensemble (Fig. 4.6). 
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Figure 4.9: A comparison of the starting temperatures and dry-season lengths 

(DSLs) for members of HadCM3-ESE and the observed climate using the mean 

Amazon rainforest states. (a) The position of the starting state for the average 

Amazon rainforest for each ensemble member (black circles) shown alongside 

the observed average Amazon rainforest state (red square). Cumulative 

probability distributions are shown for both (b) temperature and (c) DSL for the 

ensembles with the observed climate shown by dotted lines in each case.  

 

The analysis and consequent results of this work are dependent on the validity 

of the inertia found by Jones et al. (2009) in the standard HadCM3 

configuration. Whilst the response time of the forest to natural drought in the 

real world (such as in 2005) appears to be within months (Phillips et al., 2009), 

longer term responses to less extreme but more sustained decreases in 

precipitation or increases in temperature are yet to be determined. Drought 

experiments (Costa et al., 2010) have shown a slower decrease in tree 

mortality. This highlights the importance of improving DGVMs such that they are 

able to create the short term responses to extreme drought, as well as the 

longer term responses to slow increases in temperature and water stress, 



162 
 

allowing us to reduce our uncertainty in both the forest’s transient and 

committed responses. 

Our analysis compliments the work of both Sitch et al. (2008) and Huntingford 

et al. (2013). Sitch et al. explore uncertainties associated with a number of 

DGVMs, when used with different emissions scenarios, whereas Huntingford et 

al. explore the uncertainty associated with components of the climate response 

from a multi-model ensemble which are then used to drive a common DGVM 

(based on MOSES/TRIFFID). Huntingford et al. compare their results with the 

spread arising from parameter uncertainty in only the land surface response 

within a fully coupled GCM (HadCM3C, described by Booth et al. (2012)). Here 

we present results from new simulations (Booth et al., 2013) that explore 

uncertainties in both the land surface/vegetation response and the physical 

climate simultaneously.  This provides the first GCM ensemble where 

uncertainties in both physical climate and land processes interact within a 

common experimental framework. Furthermore our approach to determining 

uncertainty is very different from both of the previous works using our novel dry-

season resilience method. This allows us also to begin to determine where the 

uncertainties lie. Our work also compliments that of Poulter et al. (2010), who 

perturb parameters within a different DGVM (LPJmL) more extensively, and 

combine this with 8 different GCMs. We provide some uncertainty associated 

with TRIFFID, as well as having a fully coupled framework where forest 

changes both locally and globally feedback on the climate response, exploring 

more uncertainty within this. While Galbraith et al. (2010) suggests that 

TRIFFID is insensitive to a drying climate in regards to changes in vegetation 

carbon compared to an increasing temperature, Good et al. (2011) suggest that 

both are equally important. Both of these analyses are carried out on the 
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standard configuration of HadCM3, leaving open questions regarding the 

importance of these factors in a perturbed physics ensemble. 

In conclusion, we have highlighted the uncertainty in projections of the Amazon 

rainforest due to uncertainties in climate change and land based processes (in 

an experiment that explores a broad range of vegetation and climate 

responses) and thus the importance of reducing these to better determine the 

forest’s outcome. We find that 12.2%, 28.1% and 52.6% of ensemble members 

show some degree of loss (>5% forest coverage loss) under RCP 2.6, A1B and 

RCP 8.5 emissions scenarios by 2100 but predict that 45.6%, 57.9% and 70.1% 

respectively are committed to this amount of loss due to 21st century climate 

change. Our predictions of committed rainforest change show that even under 

the most intense mitigation, the forest may not be sustainable, despite 

appearing to be at the end of the 21st century, suggesting that planning beyond 

2100 is essential.  
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Chapter 5 

Slowing down of North Pacific climate 

variability and its implications for abrupt 

ecosystem change 

 

 

 

 

 

 

This chapter is based on Boulton, C. A. & Lenton T. M., ‘Slowing down of North 

Pacific climate variability and its implications for ecosystem regime shifts’, 2015, 

PNAS, 112, 37, 11496-11501 
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Abstract 

 

Marine ecosystems are sensitive to stochastic environmental variability, with 

higher-amplitude, lower-frequency – i.e. ‘redder’ – variability posing a greater 

threat of triggering large ecosystem changes.  Here we show that fluctuations in 

the Pacific Decadal Oscillation (PDO) index have slowed down markedly over 

the observational record, as indicated by a robust increase in autocorrelation. 

This ‘reddening’ of the spectrum of climate variability is also found in regionally 

averaged North Pacific sea surface temperatures (SSTs), and can be at least 

partly explained by observed deepening of the ocean mixed layer. The 

progressive reddening of North Pacific climate variability has important 

implications for marine ecosystems. Ecosystem variables that respond linearly 

to climate forcing will have become prone to much larger variations over the 

observational record, whereas ecosystem variables that respond non-linearly to 

climate forcing will have become prone to more frequent ‘regime shifts’. Thus, 

slowing down of North Pacific climate variability can help explain the large 

magnitude and potentially the quick succession of well-known abrupt changes 

in North Pacific ecosystems in 1977 and 1989. 

 

 

 

 

 

 



167 
 

Introduction 

 

Sea surface temperature (SST) fluctuations are well known to exhibit ‘red’ 

spectra – with increased power at lower frequencies – even when forced by 

purely ‘white’ noise from the atmosphere (Frankignoul &  Hasselmann, 1977, 

Hasselmann, 1976). Individual realizations of a stationary red noise process will 

typically drift one side of the mean and later switch over, resembling an irregular 

oscillation. The ‘Pacific Decadal Oscillation’ (PDO) index (Hare &  Mantua, 

2000, Mantua et al., 1997) describes one such ‘oscillation’ – it is the time 

variation of the dominant spatial pattern of sea surface temperatures (SSTs) 

>20°N in the Pacific, having removed the seasonal cycle and an overall 

warming trend. Shifts in the PDO between its positive and negative phases – 

especially around 1977 and 1989 – have been linked to abrupt changes in 

salmon productivity (Litzow et al., 2014, Mantua et al., 1997), drought regimes 

in the U.S. (McCabe et al., 2004), changes in Indian summer monsoon rainfall 

(Krishnan &  Sugi, 2003), and a host of other ecological and climatic time series 

(Hare &  Mantua, 2000). Whilst some early work described the PDO itself as 

exhibiting ‘regime shifts’ (Hare &  Mantua, 2000, Scheffer et al., 2001), implying 

the existence of alternative climate attractors, subsequent work has found no 

evidence for nonlinearity in the PDO or other North Pacific climate indices 

(Hsieh et al., 2005). Instead North Pacific climate variability can be 

characterized as a linear, stochastic, red noise process (Rudnick &  Davis, 

2003). North Pacific marine ecosystems have also been widely described as 

exhibiting ‘regime shifts’ between alternative attractors in response to stochastic 

fluctuations in the physical climate system (Hsieh et al., 2005). Whilst there is 

evidence for non-linearity in some North Pacific ecosystem time series (Hsieh et 
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al., 2005, Hsieh &  Ohman, 2006), other populations appear to linearly track the 

climate forcing, especially if their generation time matches the damping 

timescale of the forcing (Hsieh &  Ohman, 2006). Thus, one “double integration” 

model for the overall behavior is that SSTs (and indices derived from them such 

as the PDO) integrate white noise forcing from the atmosphere to produce red 

noise (Hasselmann, 1976), and ecosystems further integrate this red noise to 

create time series that are even redder (Di Lorenzo &  Ohman, 2013). The 

redder the ocean climate variability, the more closely a marine ecosystem will 

track it (Steele et al., 1994), making the ecosystem more prone to large 

changes driven by the climate variability (Steele et al., 1994). 

Here we consider whether North Pacific climate variability has changed over the 

observational record. A simple generic model for SST fluctuations (Rudnick &  

Davis, 2003) is the first-order linear autoregressive process:  

xt = xt-1 + t         (5.1) 

 

where the subscript t denotes time, x is the time series,  is the lag-1 

autocorrelation (AR(1)) coefficient (0 < < 1, for red noise) and t is Gaussian 

white noise of amplitude . Existing work has used a constant value of = 0.95 

(corresponding to a de-correlation timescale of 20 months) to mimic the PDO 

index (Rudnick &  Davis, 2003). If, however, there has been a change in the 

spectrum of SST variability we expect this to manifest as a change in , with an 

accompanying change in variance (Carpenter &  Brock, 2006, Ditlevsen &  

Johnsen, 2010). Hence, for each of a series of North Pacific datasets, we 

estimated the AR(1) coefficient () and calculated the variance, in a sliding 

window moved through the dataset, to look for any trends (see Methods). In 
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each case, the results were tested against a null model for North Pacific SST 

fluctuations, with fixed = 0.95 (Rudnick &  Davis, 2003), which was used to 

generate 10,000 realizations of a series of the same length as the time series 

being tested (see Methods) – the idea being that a relatively short realization of 

such a stationary red noise process can display a wide range in trends of lag-1 

autocorrelation and variance. 
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Results 

 

Slowing down of fluctuations is visible in the original PDO index (Fig. 5.1a), with 

a strongly increasing trend in the AR(1) coefficient (Kendall  = 0.941, see 

Methods), from an estimated  = 0.57 to  = 0.95 over the 112.5 year record 

(Fig. 5.1b, see Methods). Variance also generally increases (Fig. 5.1c), but not 

as strongly across the whole record ( = 0.599), due to a downturn in recent 

decades. The observed trend in AR(1) in the PDO index lies outside the 

distribution resulting from 10,000 realizations of the null model (Fig. 5.1d). 

Hence we can reject with high confidence (p < 0.0001) the null hypothesis that 

the observed trend in autocorrelation in the PDO index is the result of a red 

noise process with fixed . The increasing trend in variance in the PDO index ( 

= 0.599) is less significant and could occur by chance with p = 0.144 (Fig. 5.2a). 

However, other aspects of North Pacific climate are showing increases in 

variance (Sydeman et al., 2013), and if we just consider the data up to 1989 it 

shows a strong increase in variance ( = 0.909). 

  



171 
 

 

Figure 5.1: Slowing down observed in the Pacific Decadal Oscillation index 

1900-2012. (a) The original PDO index. (b) Estimated increase in AR(1) 

coefficient, using a window length of 675 points (half the series), without 

detrending (see Methods), results plotted in the middle of the sliding window. (c) 

Estimated increase in variance. Trends in the indicators are expressed as 

Kendall values. (d) Range in values expected from ensembles of 10000 

realisations of a null model with fixed  = 0.95.  Red vertical line denotes the 

value found in the PDO index (a) (p < 0.0001). (e) and (f) are sensitivity 

analyses of the AR(1) coefficient estimate and variance respectively by testing 

the value of for a variety of window lengths and bandwidths.  

 

 

Non-stationary behavior can cause autocorrelation to increase hence we 

examined the effect of further detrending the data before analysis. As the 
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bandwidth is decreased, the lowest frequencies, including the (multi) decadal 

‘oscillation’ itself, are the first to be removed and the results are limited to ever 

shorter timescale fluctuations. As a further sensitivity analysis, we also varied 

the sliding window length in which the indicators are calculated. The positive 

trend in AR(1) is robust to varying sliding window length and filtering bandwidth 

(Kendall   = 0.77–0.98, Fig. 5.1e). The positive trend in variance is also fairly 

robust (Fig. 5.1f), except when using a very short filtering bandwidth for 

detrending. This leaves only the highest frequency variability in the index and its 

variance decreases (e.g.  = -0.903 with the shortest filtering bandwidth). This is 

consistent with a shift in power from high to low frequencies, which can also be 

seen in the changing power spectrum of the data (Fig. 5.3a). Comparing to the 

null model (also filtered with the shortest bandwidth prior to analysis) the decline 

in variance at high frequencies has P = 0.002 and we can reject the null model 

at 5% significance (Fig. 5.2b).  
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Figure 5.2: Assessing the significance of trends observed in (a,c,e) variance 

and (b,d,f) variance at high frequencies (having used a low bandwidth for 

detrending the original data), for: (a,b) Mantua PDO index, (c,d) HadISST 

average North Pacific index, and (e,f) HadSST3 average North Pacific index. 

The histogram in each case represents 10000 runs of a null model (described in 

the main text), the red line is the result from analysis of the corresponding 

index, and P-values for each hypothesis test are shown above each plot. 
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Figure 5.3: Power spectra of SST variability (log-log plots) for: (a) Mantua PDO 

index, (b) HadISST average North Pacific index, and (c) HadSST3 average 

North Pacific index. In each case, power spectra for the first half of the data are 

shown in grey and the second half in orange. A regression line has been fitted 

through each of these (black and red respectively), showing a shift in power 

from high to low frequencies in all three time series. There is no overlap 

between the 95% confidence intervals on the gradient of the regression lines 

when using the PDO index (a), an overlap of ~4% the width of the 95% 

confidence intervals for HadISST (b) and an overlap of ~75% the width of the 

confidence intervals for HadSST3 (c).  

 

 

To establish whether slowing down has anything to do with the spatial pattern of 

the PDO we examined the HadISST (Rayner et al., 2003) dataset. Removing 

seasonal and overall warming trends and then simply averaging HadISST over 

the North Pacific domain 20-60°N (see Methods), slowing down is again visible 

by eye (Fig. 5.4a) and confirmed by a strongly increasing trend in the AR(1) 

coefficient ( = 0.938; Fig. 5.4b) with estimated change in  from 0.68 to 0.92 
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(the 95% confidence interval on the change in  hardly alters these results 

given to 2 significant figures). There is a weaker increasing trend in variance ( 

= 0.275; Fig. 5.4c). For the trend in AR(1), a null model of fixed = 0.95 can be 

rejected at P < 0.0001 (Fig. 5.4d), whereas the positive trend in variance is not 

significant (P = 0.352; Fig. 5.2c) again due to a decline in variance in recent 

decades. The positive trend in the AR(1) coefficient is robust to varying 

detrending bandwidth and sliding window length ( = 0.70-0.95; Fig. 5.4e). 

Variance again decreases at the highest frequencies ( = -0.892 for the shortest 

filtering bandwidth, Fig. 5.4f), with P = 0.0007 against the null model (Fig. 5.2d), 

consistent with a shift in power from high to low frequencies that is seen in the 

power spectrum (Fig. 5.3b). Thus, slowing down of North Pacific SST 

fluctuations is not particularly associated with the spatial pattern of PDO 

variability. 
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Figure 5.4: Slowing down in average North Pacific reconstructed sea surface 

temperatures 1870-2011. (a) HadISST data detrended and averaged over the 

North Pacific (see Methods). (b) Estimated increase in AR(1) coefficient, using a 

window length of 850 points (half the series), without detrending (see Methods), 

results plotted in the middle of the sliding window. (c) Estimated increase in 

variance. (d) Range in Kendall values expected from ensembles of 10000 

realisations of a null model with fixed  = 0.95, with red vertical line denoting  = 

0.938 found in (a) (P < 0.0001). Sensitivity analyses of (e) the AR(1) coefficient 

estimate and (f) variance by testing the value of for a variety of window lengths 

and bandwidths.  

 

 

We also analyzed the ERSST v3 dataset (Smith et al., 2008b) and the results 

for average North Pacific SSTs also show a positive trend in AR(1) over time, 
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but there are considerable differences in the early part of the two datasets and 

hence the corresponding AR(1) estimates (Fig. 5.5). Data sampling was 

generally sparser in the past hence datasets are subject to more infilling further 

back in time, which in turn could affect measures of autocorrelation. Hence we 

analyzed the original HadSST3 dataset (Kennedy et al., 2011) without infilling. 

We focus on the interval 1950 onwards (Fig. 5.6a) because data collection in 

the North Pacific was sparse before that. Despite the much shorter time interval, 

we find increasing AR(1) (0.832; Fig. 5.6b) with  increasing from 0.72 to 

0.93, accompanied by an increase in variance (0.816; Fig. 5.6c). The 

increase in AR(1) has P = 0.0042 against the null model (Fig. 5.6d) and the 

trend in variance has P = 0.028 (Fig. 5.2e). Increasing trends in AR(1) and 

variance are robust to changes in sliding window length and detrending 

bandwidth (Fig. 5.6e,f). A slight decrease in variance at high frequencies ( = -

0.171 for the shortest filtering bandwidth, Fig. 5.6f), is not significant (P = 0.430, 

Fig. 5.2f), commensurate with only a slight shift of power to lower frequencies 

(Fig. 5.3c). Nevertheless, slowing down of North Pacific SST fluctuations has 

occurred just since 1950. 
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Figure 5.5: Time series of average North Pacific sea surface temperatures from 

(a) HadISST and (b) ERSST v3 (1900 onwards, with the average annual cycle 

and quadratic warming trend removed). (c) Estimates of the AR(1) coefficient 

for each time series using a window length of 675 points (approximately half the 

time series), plotted at the middle of the time window it is calculated on. A 

regression line is fitted through each of these AR(1) estimates (dotted line), and 

Kendall  values for the trends in AR(1) are given. 
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Figure 5.6: Slowing down in average North Pacific sea surface temperature raw 

data 1950-2006. (a) HadSST3 data detrended and averaged over the North 

Pacific (see Methods). (b) Estimated increase in AR(1) coefficient, using a 

window length of 350 points (half the series), without detrending (see Methods), 

results plotted in the middle of the sliding window. (c) Estimated increase in 

variance. (d) Range in Kendall values expected from ensembles of 10000 

realisations of a null model with fixed  = 0.95, with red vertical line denoting  = 

0.832 found in (a) (P=0.0042). Sensitivity analyses of (e) the AR(1) coefficient 

estimate and (f) variance by testing the value of for a variety of window lengths 

and bandwidths. 

 

  

A grid point by grid point analysis of HadSST3 data was conducted to determine 

where the slowing down of SST fluctuations is occurring, revealing that it is 



180 
 

widespread but not universal across the North Pacific domain (Fig. 5.7a,b). 

Strong slowing down occurs around the basin edge, e.g. off the West Coast of 

North America. To try and explain this slowing down we consider a simple 

physical mechanism consistent with known climatic trends, namely deepening 

of the mixed layer (Carton et al., 2008). In the original model of Frankignoul &  

Hasselmann (1977) the key environmental variables affecting  are mixed layer 

depth (h) and average wind speed (U):  

 

 = kU/h         (5.2) 

 

We estimate the constant, k (s month-1), for each grid point using the mean 

values of U (from NCEP/NCAR reanalysis (Kalnay et al., 1996)), h (from 

observations (Carton et al., 2008)) and  (from the midpoint of the fitted trend, 

Fig. 5.7b) (see Methods). Trends in reanalysis (Kalnay et al., 1996) wind speed 

(U) across the domain are mixed and generally small so for simplicity we hold U 

constant, and consider the change in h required in Eqn. 5.2 to explain observed 

trends in . We compare this to observed changes in mixed layer depth (MLD). 

Due to limited availability of MLD data we start the analysis in 1960. 
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Figure 5.7: Spatial analysis of slowing down in SSTs 1960-2006 and whether it 

can be explained by increasing mixed later depth. Using individual grid points 

from HadSST3 (1960-2006) along with mixed-layer depth (MLD) and wind 

speed data in Eqn. 5.2 (see Methods). Analysis of SST time series at individual 

grid points: (a) Kendall’s  values for the trend in AR(1) coefficient, and (b) the 

estimated change in AR(1) coefficient () from 1960 to 2006 based on fitting a 

linear trend. For grid points that exhibit slowing down (increasing ): (c) the 

observed MLD change (1960-2005), and (d) required MLD change to explain 

the slowing down signal following Eqn. 5.2. Observed (e) 1960 and (f) 2006 

MLD are shown for each grid point. Observed versus estimated (required) MLD 

in; (g) 1960, and (h) 2006. In (h), outliers that are more than 2 standard 

deviations (dash-dotted lines) away from fitting the observed value are shown 

as red points, and the corresponding spatial locations are outlined in (d). 
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In areas where slowing down (increasing ) is observed, the mixed layer has 

generally deepened since 1960, typically by 0-20 m (Fig. 5.7c). However, the 

changes in MLD required to explain the slowing down (Fig. 5.7d) typically 

exceed those observed (Fig. 5.7c), with a few striking regions where very large 

increases in MLD would be required (outlined in Fig. 5.7d). A caveat here is that 

the simple model (Frankignoul &  Hasselmann, 1977) chosen cannot explain 

the power spectrum of SST anomalies in regions strongly influenced by oceanic 

processes (Reynolds, 1978), including near Japan in the Kuroshio Current. 

However, the model (Frankignoul &  Hasselmann, 1977) is valid (Reynolds, 

1978) in areas of strong slowing down in the central and northeast North Pacific 

(Fig. 5.7d). A further caveat is that MLD is closely related (Kaplan et al., 2000) 

to the PDO via changes in the strength of the Aleutian Low pressure system, 

questioning the model assumption that MLD is an independent forcing 

parameter. Thus, we can partly explain observed slowing down of North Pacific 

SST fluctuations as due to deepening of the mixed layer (effectively giving the 

surface ocean a greater heat capacity), but we leave it to future work to fully 

explain the signal. 

To examine how slowing down of North Pacific SST fluctuations might affect the 

variability in marine ecosystems, we tested how two simple models behave 

when forced by different levels of red noise, encompassing the range of values 

of  found from analysis of the PDO index (see Methods). The first is a bi-stable 

model with two alternative attractors (Eqn. 5.3, see Methods), which represents 

the concept that some ecosystem time series react nonlinearly to climate 

forcing and can exhibit true ‘regime shifts’ between attractors (Hsieh et al., 

2005). The specific model chosen is generic and not based on a specific real 

world system. It is set up to have no bias towards either state and to allow shifts 
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between states to occur when = 0.55 in the forcing time series (the lowest 

value considered). The second model is a ‘double integration’ model which 

represents the concept that some ecosystem variables have only one state and 

linearly track climate forcing, integrating it with their own characteristic time 

scale (Hsieh &  Ohman, 2006). The model is based on one used elsewhere to 

simulate Nyctiphanes simplex (a species of krill) which has a damping timescale 

of approximately 20 months (Di Lorenzo &  Ohman, 2013) (Eqn. 5.4, see 

Methods). For forcing these ecosystem models, we note that although there is 

an increase in variance in the climate indices we have analyzed, the increase in 

amplitude of variability is very modest compared to that generated by increasing 

 in our AR(1) model. Hence we normalize (dividing by standard deviation) the 

amplitude of the different levels of red noise (generated by different ) used to 

force the two idealized ecosystem models. This means that the resulting 

changes in the ecosystem models are due to the changing memory in climate 

forcing alone. The range of values of  we explore correspond to damping 

timescales from ~2.2 months when =0.55, to 20 months when =0.95, there 

being an exponential relationship between  and the timescale, and noting that 

=0.95 is often used to mimic PDO variability (Rudnick &  Davis, 2003). 
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Figure 5.8: The effect of reddening climate forcing on two simple models 

representing marine ecosystems (see Methods). Correlation between the (a) 

nonlinear and (b) linear model time series and the forcing time series for 

different values of  are shown with the 5th and 95th percentiles from 1000 

simulations at each value of . The mean standard deviation of the ensemble 

for the (c) nonlinear and (d) linear model time series are shown with the 5th and 

95th percentiles. In all four plots, the red lines show the same analysis when the 

original PDO index is used to force the simple models and plotting the  value 

from this against the other statistics when using a moving window (see 

Methods).   
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Increasing the autocorrelation in the climate forcing causes both the nonlinear 

and linear ecosystem models to become more correlated with the forcing (Fig. 

5.8a,b). When forcing the models with the PDO index, the correlation also 

increases as  increases (red lines). This is expected as the timescale of the 

ocean is increasing toward the assumed timescale of the ecosystems. As 

autocorrelation in driving SSTs increases, the standard deviation of variations in 

both the nonlinear and linear ecosystem models generally increases (Fig. 

5.8c,d) and this is much more pronounced in the linear model (Fig. 5.8d). When 

using the PDO index to force the simple models, we again find that increases in 

 are generally linked to increases in standard deviation in both ecosystem 

models (red lines). Examining some specific instances (Fig. 5.9), as 

autocorrelation in driving SSTs increases (Fig. 5.9a-c), regime shifts in the 

nonlinear system become more frequent (Fig. 5.9d-f), and the linear system 

shows increasing deviations from its single equilibrium (Fig. 5.9g-i). Thus, larger 

ecosystem changes are associated with increasing memory in the climate 

forcing, especially in the linear ecosystem model, and if the ecosystem 

response is non-linear, then shifts between different regimes become more 

frequent. 
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Figure 5.9: Example ensemble members from the forcing of two simple model 

ecosystems with different levels of climatic red noise by altering the value of 

(see Methods). Forcing series (a-c), generated from  values of 0.65, 0.85 

and 0.95 respectively, are applied to the nonlinear model, creating time series 

(d-f), and the linear model, creating time series (g-i).  
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Discussion 

 

In summary, we detect strong slowing down (‘reddening’) of North Pacific SST 

fluctuations, and of the PDO index constructed from them, over the 

observational record. Slowing down since 1960 can be at least partly explained 

by observed deepening of the ocean mixed layer. It represents a systematic 

change toward lower frequency, somewhat higher amplitude North Pacific 

climate variability. Two of the resulting transitions in the PDO index, around 

1977 and 1989 are well-known to have had significant impacts on a diverse 

range of ecological and climate systems (Hare &  Mantua, 2000, Mantua et al., 

1997). Marine ecosystems, both those that have nonlinear dynamics (Hsieh et 

al., 2005) and those that linearly track climate forcing (Di Lorenzo &  Ohman, 

2013, Hsieh &  Ohman, 2006) are vulnerable to large and sometimes abrupt 

changes in response to the low-frequency variability in the physical ocean 

(Steele et al., 1994). Our results suggest that ecosystem variables that respond 

linearly to climate variability became prone to larger changes over the 

observational record, as fluctuations in North Pacific SSTs slowed down. 

Furthermore, those ecosystem variables that respond non-linearly to climate 

variability became prone to more frequent abrupt ‘regime shifts’. These results 

may help explain the well-known abrupt changes that occurred in North Pacific 

ecosystems in 1977 and 1989 (Hare &  Mantua, 2000, Mantua et al., 1997). The 

large size, especially of the 1977 shift, could be seen as a linear response to 

slowing down in climate variability, whilst the two events in relatively quick 

succession could be interpreted as a non-linear response to slowing down in 

climate variability that was less likely to have occurred earlier in the twentieth 

century. 
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It is tempting to extrapolate forwards and infer that if the trend towards 

increasing autocorrelation in the North Pacific ocean were to continue, the 

propensity for large ecosystem changes would increase. Models are generally 

poor at simulating observed MLD in the North Pacific (Huang et al., 2014).  

However, global warming is robustly expected to drive ocean stratification and a 

decrease in MLD over the North Pacific (Jang et al., 2011), which would tend to 

reverse the historical trend of slowing down.   
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Methods 

 

 

The PDO index (Mantua et al., 1997) is the time variation of the first empirical 

orthogonal function (EOF) of Pacific SSTs >20°N, derived from the UKMO 

Historical SST dataset (Parker et al., 1995) (MOHSST) and Reynolds’ OI SST 

datasets (Reynolds et al., 2002, Reynolds &  Smith, 1994) (V1 and V2) (Jan 

1900–May 2012). We created further indices from the HadISST (Rayner et al., 

2003) (Jan 1870–July 2011), HadSST3 (Kennedy et al., 2011) (Jan 1950–Dec 

2006) and ERSST v3 (Smith et al., 2008b) (Jan 1900–Dec 2011) datasets using 

North Pacific grid points (20-60oN) that are complete over the corresponding 

time spans. The average annual cycle of each grid point was removed, along 

with a quadratic warming trend (calculated by a regression model fit). Any 

further detrending used a Kernal smoother of fixed bandwidth, with the 

bandwidth varied as a sensitivity analysis. 

For each resulting series, within a sliding window of half the series, the variance 

was calculated and the AR(1) coefficient () estimated by fitting an auto-

regressive model (Eqn. 5.1). The sliding window length was also varied as a 

sensitivity analysis. The tendency of an indicator to increase or decrease was 

measured with Kendall's  rank correlation coefficient (ranging from 1 to -1). A 

positive value indicates an increasing trend in an indicator, the larger the value, 

the more robust is that trend. Sensitivity analysis results are given as contour 

plots of Kendall's  values. 
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To determine the significance of our results, we ran bootstrap ensembles of 

10000 runs of a null model, using Eqn. 5.1 with fixed =0.95, to produce series 

of identical length to each index. Resulting trends in the null model of AR(1) 

coefficient were calculated using the same window length (half the length of 

each series) used to generate example indicators from the real PDO index (e.g. 

Fig. 5.1b,c). 

We estimated trends in  for each grid point of HadSST3 (Kennedy et al., 2011) 

in the North Pacific (20-60oN) that is complete from 1950-2006. The midpoint 

value of between 1960 and 2006 (based on linear regression), the mean wind 

speed from reanalysis, and mean mixed layer depth from points which are 95% 

complete from 1960-2006, were used to estimate k in Eqn. 5.2. 

To determine how marine ecosystems could be affected by slowing down in the 

PDO or SST fluctuations, we forced two alternative simple models with time 

series of varying red noise.  

The first model represents a system with two stable states that will react 

nonlinearly to forcing (f):  

𝑦̇ =  −𝑦3 +
1

3
𝑦 + 0.1𝑓        (5.3) 

This model was chosen to allow the system to sample both states under 

realistic forcing f, but not too frequently. 

The second model, which reacts linearly to the forcing, is given by: 

𝑦̇ = −
𝑦

20
+ 0.1𝑓         (5.4) 
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The −
𝑦

20
term (a damping timescale of 20 months) equates to  ≈ 0.95, similar to 

the dampening timescale of 24 months used elsewhere to simulate Nyctiphanes 

simplex (Di Lorenzo &  Ohman, 2013). 

The forcing time series are created using Eqn. 5.1 in the main text, setting 

=0.5, with  taking one of 6 different values (0.55, 0.65, 0.75, 0.85, 0.9 or 0.95, 

spanning those found in the PDO index), and x is the length of the original PDO 

index (1350 points). There is a strong relationship between the variance of the 

resulting time series and the  value used to create them, whereas the increase 

in amplitude of the climate indices we analyse is more modest. Hence we 

normalised each forcing series by its standard deviation to ensure results found 

in the ecosystem time series were independent of this. For each value of , 

1000 forcing time series were created. These were then applied to our two 

simple example models. We also forced each model with the PDO index.  

The models were solved using the Euler method. Correlations between f and y 

were calculated using the Pearson product-moment correlation coefficient. 

When using the PDO to force the models, correlation and standard deviation 

were calculated in a moving window of 675 months (as in the preceding 

analysis). In these cases, the ecosystem time series are only 675 points long 

and each is associated with an  value of the PDO index (Fig. 5.8). 
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Discussion 
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The performance of generic early warning signals 

 

In the previous chapters, the idea of using critical slowing down as an early 

warning signal of an approach to a tipping point (Wissel, 1984) has been 

examined in three climate systems, two of which are thought to exhibit tipping 

point behaviour (Lenton et al., 2008) and could potentially reach thresholds that 

would cause the tipping point to be passed within this century or the next 

(Kriegler et al., 2009). 

In Chapter 2, generic early warning signals were found in a general circulation 

model (GCM) when approaching the collapse of Atlantic meridional overturning 

circulation (AMOC) for which two states can be shown to exist theoretically 

(Stommel, 1961). For this specific climate system, this builds on previous work 

that tested for early warning signals of modelled AMOC collapse in low (Kleinen 

et al., 2003) and intermediate (Held &  Kleinen, 2004, Lenton et al., 2009, Livina 

&  Lenton, 2007) complexity models. The searching of critical slowing down and 

generic early warning systems work best when the tested system can be 

reduced to 1-dimension and the approach towards the tipping point is governed 

by the slow change in one parameter. For the AMOC, although in a complex 

system, the slowly increasing freshwater forcing is a single parameter that is 

causing the system to approach the collapse. That early warning signals of an 

approach towards a tipping point are found in a complex model shows some 

promise for using these methods on real world data. 

The majority of literature on Amazon rainforest dieback is focused on the 

vulnerability and resilience to changes in the climate in GCMs due to modelling 

differences (Huntingford et al., 2013, Sitch et al., 2008) and differences in 
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parameter choices (Poulter et al., 2010). However there is little research into the 

early warning of an approach towards a tipping point of Amazon rainforest 

dieback. In Chapter 3, generic early warning signals are tested on output from 

an ensemble of GCMs. Using observable variables that could be observed in 

the real world from remote sensing on a regional scale (broadleaf fraction) as 

well as variables that would be measured at a more local level, these indicators 

generally fail, with no robust suggestion of an approach towards a tipping point. 

This is due to the nature of the forcing, which is a more realistic 21st century 

forcing (A1B - Nakicenovic et al. (2000)) compared to the slow, linear forcing 

from the previous chapter. Of course the possibility that the Amazon rainforest 

model system is too complex for generic early warning signals to work cannot 

be fully ruled out. There is also not a single parameter that can be attributed to 

dieback, the closest being NPP which is dependent on other factors (such as 

temperature and precipitation). Indicators do work on a reduced version of the 

system when it is forced slowly and linearly, but are not found in this same 

reduced version when using a simplified version of the forcing used in the full 

model. 

Results from chapters 2 and 3 combined suggest that the one main problem for 

generic early warning signals when predicting the approach of climate tipping 

points now and in the future is the nature of the forcing towards them, mainly 

the speed of the forcing compared to the speed of the internal dynamics of the 

system. Generic early warning signals based on critical slowing down are 

expected to fail when the timescales of the forcing and dynamics of the system 

cannot be clearly separated (Held &  Kleinen, 2004). Over the 21st century, 

systems will be forced with a scenario similar to that used when testing the 

indicators on Amazon dieback rather than the slow linear forcing towards the 
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AMOC collapse. The complexity of the system being tested could also be a 

factor in the performance of the indicators. The collapse of the AMOC was 

dependent on a single parameter (the increasing rate of freshwater forcing), 

compared to the Amazon rainforest which was driven by both temperature and 

rainfall. Only by testing the generic early warning indicators on more systems, 

described by complex dynamics and under more realistic forcing scenarios will 

their limits begin to be understood. 

The use of the system specific indicator for Amazon dieback gave better results 

than the generic early warning signals. However due to the nature of the 

experiment, which contained an ensemble of general circulation models where 

parameters were perturbed to sample a large range of possible responses 

(Lambert et al., 2013), a threshold in the indicator could not be determined for 

the real world. An increase of the indicator was as much an early warning of the 

Amazon rainforest losing stability as could be found. However if the uncertainty 

in the perturbed parameters was reduced, a threshold may be determined. The 

basis of another system specific indicator is explored in Chapter 4, although the 

main message of this chapter concerns how a system can be slow to react to 

forcing (i.e. lag) and that the system may appear safe when the tipping point 

has already been passed (Jones et al., 2009). As previously stated, this is 

related to the lag in the system due to the fast nature of the forcing compared to 

the time scale of the internal dynamics (Held &  Kleinen, 2004). The 

combination of generic indicators as well as these more system specific 

indicators could provide the best prospect for early warning of tipping points. 
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The significance of early warning signals 

 

Another aspect of early warning signals explored in the thesis was their 

significance, tested with the use of null models. This is something that has not 

had a large focus in literature (shown by Dakos et al. (2008) in supplementary 

information) but is important when determining if a strong early warning signal is 

being given. In the null models used in the chapters of this thesis (see Chapter 

1 for an explanation), even when systems are not approaching a bifurcation, 

strong signals still appear by chance (i.e. false alarms). This means that it is 

hard to determine if a strong indicator found from a time series is due to the 

system actually approaching a bifurcation, or if this has occurred due to chance. 

The use of null models show that generally false alarms have what appear to be 

strong signals, but those indicators from time series approaching tipping points 

are stronger and thus more significant. It is important to note that the choice of 

window length and bandwidth whilst using early warning signals can affect the 

signals observed. Using the example system from Chapter 1, using a window 

length equal to half the time series gives an almost bimodal distribution in the 

Kendall’s  values in the null model, with modes at approximately -0.5 and 0.5 

(Fig. 6.1a). Using a smaller window length, these modes begin to converge to a 

near normal distribution with a mean of 0 (Fig. 6.1b). This means that signals 

found using a smaller window length do not have to be as strong to be 

significant, as Fig. 6.1 shows. The increase in the AR(1) whilst using a window 

length of 100 (~10% of the time series length) is highly significant (P < 0.001) 

with a null model created using the same window length (solid line Fig. 6.1b). 

However, if the same signal was observed when using the larger window length 
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of 450 (50% of the length of the time series), then this would not be as 

significant (P = 0.053). 

 

Figure 6.1: The effect of window length on null models used to test the 

significance of early warning signals. Null models (1000 members) calculated 

for the example system in Chapter 1 with window length set to (a) 450 (50% of 

the length of the time series) and (b) 100 (~10% of the length of the time series) 

and detrending bandwidth set to 100 in both cases (see Chapter 1). Black lines 

refer to the  values of the signals observed in the time series approaching a 

tipping point in Chapter 1, with solid lines showing the signals found when using 

the same window length as the null model and dotted lines, when using the 

other. The time to significance (see Chapter 2) is calculated for the 

corresponding window lengths (c) 450 and (d) 100 (black) with the window 

lengths denoted by vertical dotted lines. Horizontal dotted lines refer to P-values 

of 0.05 and 0.01. AR(1) coefficient estimation is shown (red) alongside. 
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By including the value of the AR(1) coefficient estimation with the analysis on 

the time to significance (seen in Chapter 2) carried out on the example time 

series (Fig. 6.1 c,d), it is clearer that signals do not have to be as strong to be 

as significant when using a smaller window length. There is also some 

evidence, as in Chapter 2, that the indicator becomes significant at a similar 

time (after roughly 550-600) regardless of window length chosen. However this 

is difficult to determine in this case as the significance of the indictor when using 

the longer window length (Fig. 6.1c) is already high.   

The difference in the distribution of null model  values based on the choice of 

window length is something which warrants further investigation, allowing users 

to make more informed decisions on their choices of window length. During the 

testing of robust testing of early warning signals in Chapter 2 and Chapter 5, 

decreases in variance were observed whilst using a filtered bandwidth that 

filtered out everything but the highest frequency noise. When null models were 

used to assess the significance of these decreases (Chapter 5), there was no 

obvious change in the null model’s distribution regarding the change in 

bandwidth. However, the effects of filtering bandwidth on significance could also 

be investigated.  

In Chapter 2, this method of calculating significance (Dakos et al., 2008) was 

used to calculate the length of time series needed to produce a significant 

result. This important step, which has not appeared in literature before, gives 

some indication of how far in advance tipping points can be predicted. This type 

of analysis is important when there is no prior knowledge that the system will tip 

(i.e. in the real world). Of course, how soon a significant signal is observed 

compared to the actual occurrence of the tipping point will vary for simulated 
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systems and their real world counterparts. However using this on the simulated 

systems gives some indication of how useful the early warning indicators could 

be. The forcing of the AMOC was slow and linear so testing the time to 

significance on systems that could potentially reach tipping points in the next 

century would give more insight into how useful this metric is. 

Significance testing in Chapter 2 also examined signals from AMOC time series 

at different latitudes. As well as providing a more robust result by testing 

multiple time series of the same collapse, a locational dependence on the early 

warning signals was also discovered. Although these results were inconclusive 

(AR(1) and variance were most significant at different latitudes and results 

varied between the annual and decadal time series), it does suggest that 

monitoring systems in more than one location would be beneficial to minimise 

the chance of missing an early warning signal that could be location specific. 

With new arrays being set up to monitor the AMOC at different latitudes 

(SAMOC and OSNAP, see Chapter 2), this idea of testing early warning signals 

in more than one location can be even be done eventually for this specific 

system. 
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Why generic early warning signals might fail 

 

In Chapters 2 and 3, lags in both systems are found. In the case of the AMOC, 

according to the equilibrium runs where the forcing is kept at constant values, 

the equilibrium loses stability before this would be realised in the transient run 

under the same forcing. The Amazon rainforest appears to be safe at the end of 

most of the simulated runs (at the end of the 21st century). However a prediction 

of its committed change (Jones et al., 2009) shows that the tipping point may 

have already been passed in a lot of cases. This raises questions about how far 

away the ‘political time horizon’ of the systems, could be (Lenton et al., 2008), 

especially as planning to sustain a system until 2100 does not necessarily mean 

it will remain 50 years later. Even under the heavy mitigation scenario RCP 2.6 

(van Vuuren et al., 2006, van Vuuren et al., 2007) used in the analysis, a lot of 

simulated forests would still be predicted to dieback. 

An important caveat concerning the lags in systems, particularly in the Amazon 

rainforest, is that they may not be simulated well in GCMs. As mentioned in 

Chapter 4, the response to recent droughts in the Amazon (such as in 2010) 

have been very quick, with loss observed within months (Phillips et al., 2009). 

However drought experiments (Costa et al., 2010) suggest that responses to 

slower, less harsh increases in temperature and water stress are more likely to 

happen on longer timescales. However determining if the lag timescales found 

by Jones et al. (2009) for example, are realistic, or to improve the modelling of 

these lags would be beneficial when testing how useful early warning signals 

could be in more realistic forcing scenarios. 
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Another reason generic early warning signals might fail is due to the rate at 

which the system is sampled, with a lower sampling rate potentially causing 

missed alarms. The sampling rate of the system has to be small enough to 

capture the fast time dynamics of the system caused by short term 

perturbations to the system (Held &  Kleinen, 2004). Using the time series from 

Fig. 1.7 as an example, AR(1) and variance indicators are tested under different 

sampling rates (Fig. 6.2). The original time series cut prior to the tipping point 

(1600 points), is first detrended and then sampled at a rate of every 1, 2, 4, 5, 8, 

10, 16 and 20 points (i.e. a sampling rate of 2 samples every other point for 

example). The indicators are then tested on the resulting time series using a 

window length equal to half the time series each time. This is the same method 

used in Thomas et al. (2015). 

 

Figure 6.2: The effect of sampling rate (as described above) on (a) AR(1) and 

(b) variance early warning indicators. Kendall’s  is calculated on the time series 

of the indicators created when a window length equal to half the length of the 

time series is used. 
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It is clear that changing the sampling rate of a system alters the effectiveness of 

the indicators, especially AR(1) coefficient estimation (Fig. 6.2a). 

Comparatively, the variance indicator is less affected by less frequent sampling 

(Fig. 6.2b), but is still reduced. While some of the decline in  could be attributed 

to the smaller length of time series used (similar to what is observed in the 

window length and significance testing above), a negative  value is found when 

using the AR(1) indicator (Fig. 6.2a). 

The decrease in effectiveness of AR(1) coefficient estimation as an early 

warning indicator as the sampling rate is decreased is intuitively understandable 

since the memory of the system is not properly represented in the system. 

Variance as an indicator however is not dependent on the memory of the 

system (such as the previous time point) which is why it is arguably unaffected 

by the sampling rate. A suggestion for future work could be to determine 

situations where variance becomes a more robust indicator due to sampling 

rate issues. This topic is especially important when analysing palaeoclimate 

time series, where the sampling rates are small and irregular, such as in 

Thomas et al. (2015). The effect of the amplitude of noise (strength of short 

term perturbations on the system), in combination with analysis on the sampling 

rate, could also be explored, as larger perturbations with an decreased 

sampling rate are likely to further affect the AR(1) indicator (Thomas et al., 

2015).       
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The potential effect of slowing down on ecosystems 

 

These generic early warning signals show that systems approaching a 

bifurcation will slow down and become more sluggish in their response to 

perturbations. However there is little literature on what effect this will have on 

other systems that they drive. In Chapter 5, the Pacific Decadal Oscillation 

(PDO) (Mantua et al., 1997) as well as sea surface temperatures in the North 

Pacific, are shown to be slowing down. Rather than being treated as a system 

that exhibits different stable states with this slowing down suggesting a regime 

shift is being approached, it was thought of as a red noise process (Rudnick &  

Davis, 2003). It is thought that ecosystems which are driven by red noise 

processes, created by integrating white noise (e.g. atmospheric forcing) such as 

the PDO, are themselves processes which integrate the red noise forcing (i.e. 

they are double integrated white noise) (Di Lorenzo &  Ohman, 2013). However 

the effect of an increasing memory in the red noise process (an increasing 

AR(1) coefficient in the index) driving the ecosystem has not been explored 

elsewhere. In Chapter 5, observations of the PDO index are used to drive a 

simple approximation of ecosystems that have previously been linked to the 

phase of the PDO (Hare &  Mantua, 2000, Litzow et al., 2014, Mantua et al., 

1997), showing that there is the possibility for these ecosystem to undergo more 

pronounced and large amplitude regime shifts under a forcing with increased 

memory. Chapter 5 also shows that this is true of ecosystems that behave non-

linearly with respect to the forcing (Hsieh et al., 2005). 

While the shifts the PDO appears to undergo are thought of as being part of a 

red noise process in this thesis, rather than true tipping point behaviour, there is 
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benefit in understanding how the ecosystems driven by a system with an 

increasing memory react i.e. this type of behaviour could also happen if the 

driving system is approaching a tipping point. In this case, the changes in 

behaviour of these dependent ecosystems (more pronounced shifts and higher 

variance over time) could act as another early warning system, especially when 

it is difficult to obtain data on the system approaching a tipping point due to 

problems for example sparse sampling such that the dynamics of the system 

are not fully captured at that time scale (Held &  Kleinen, 2004). The idea that 

certain behaviour could be searched for in time series thought to be driven by 

the system in question has not been implemented as an early warning indicator 

before. However there is potential for the behaviour change in the affected 

system(s) to be used as part of an early warning signal for the system that is 

approaching the tipping point, either by providing information when there is not 

enough available for the system itself, or by complimenting generic early 

warning signals tested on it. 

Preliminary analysis of global sea surface temperatures shows that slowing 

down of sea surface temperatures is not limited to just the North Pacific region 

(Fig. 6.3). Increases in AR(1) coefficient estimation are found on a grid point 

scale in the majority of the sea, especially in the Southern Hemisphere.   
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Figure 6.3: Grid point slowing down signals observed in HadISST. Kendall  

values are calculated for the time series of AR(1) estimation coefficient at each 

grid point which is complete over the dataset. The time series of SSTs have 

their annual cycle removed and a quadratic warming trend (as in Chapter 5). A 

window length of 850 months is used to calculate the indicator. 

 

Figure 6.3 only shows the trend of the indicator rather than its change in value 

over time. Results from Chapter 5 show that the actual value of  is important in 

determining the effect reddening can have on ecosystems. In the North Atlantic 

for example, there is a mixture of slowing down and speeding up signals. 

However the decrease in  of those grid points which do not show slowing 

down may be small in comparison to the increases in  found in the rest of the 

region. 
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The Atlantic Multidecadal Oscillation (AMO; Kerr (2000)), calculated from North 

Atlantic SSTs, is the dominant mode of variability in the Atlantic, similar to the 

PDO in the North Pacific. The AMO is linked to changes in temperatures and 

rainfall over most of the Northern Hemisphere, especially in North America and 

Europe, with research suggesting that the warm phase of the AMO is linked to 

more frequent droughts in the US, whereas the cool phase is thought to bring 

more rainfall (Enfield et al., 2001). The frequency of intense Atlantic hurricanes, 

as well as rainfall patterns in North East Brazilian and the Sahel are related to 

the phase of the AMO in modelling studies (Knight et al., 2006, Zhang &  

Delworth, 2007). 

Analysis of the AMO index derived from the Kaplan SST dataset (Enfield et al., 

2001) (Fig. 6.4a-c), as well as the raw SSTs in the North Atlantic (0°-60°N, 

80°W-0°) from HadISST (Fig. 6.4d-f) show similar (although not as strong) 

slowing down signals (=0.709 and 0.815 respectively, Fig. 6.4b,e) to those 

observed in the PDO index (=0.941) and corresponding Pacific SSTs 

(=0.938). The change in  over the time series is also less than in the Pacific 

but the AR(1) values found suggest a change in the damping timescale of 

approximately 7 to 11 months in the Atlantic (using the HadISST SST time 

series, Fig 6.3).   

 There is also an increase in variance observed in the raw SSTs (=0.839, Fig. 

6.4f), although not as strong a signal in found in the AMO index (=0.241, Fig. 

6.4c). However the increasing AR(1) suggests that the slowing down observed 

in SSTs and their indices is not limited to the North Pacific and more research 

should be conducted into the reddening spectra of the oceans overall, as well 

as the impacts this might have on ecosystems. Unlike the PDO, the AMO is 
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more closely linked to changes in weather patterns rather than marine 

ecosystems. However, biological impacts related to the AMO are still observed  

(Drinkwater et al., 2014), and so the reddening signal observed would still have 

an effect on Atlantic marine ecosystems according to the double integration 

hypothesis (Di Lorenzo &  Ohman, 2013), which could lead to more abrupt and 

intense shifts in biological time series. 
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Figure 6.4: Changes in AR(1) coefficient estimation and variance for the AMO 

index and associated SSTs (0°-60°N, 80°W-0°) from HadISST. Signals from the 

Kaplan AMO index (a) are calculated on a moving window of 950 months (half 

the time series) for (b) AR(1) and (c) variance. The time series from HadISST 

uses the mean value of SSTs in the North Atlantic (0°-60°N, 80°W-0°), with an 

annual cycle and quadratic warning trend removed (d). A window length of 850 

months (half the time series) was used to calculate (e) AR(1) and (f) variance. 
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Conclusion 

 

The research in this thesis has shown that future tipping points of climate 

systems have the potential to be predicted in some cases, either with generic 

early warning signals, or system specific indicators. This is shown in complex 

GCMs that are forced with realistic 21st century emissions scenarios. However 

there are some obstacles preventing generic early warning signals from giving 

strong signals on the approach to a tipping point. These include the nature of 

the forcing of the system towards the tipping point, which if too fast and/or 

nonlinear could prevent strong signals from being found. The system could also 

be too complex for early warning signals to work. In some cases, combining 

results from generic early warning signals and more system specific indicators 

could provide a better prospect. 

Something that should be considered is lags that occur in the system. In the 

systems tested in this thesis, there is a considerable time lag between where 

the tipping point is according to the equilibrium response and when it is actually 

realised in transient response (on which the early warning signals are tested 

on). This lag raises questions of the early warning signals, about whether they 

could still give significant early warning before the tipping point has been 

reached since they would no longer be near equilibrium, a condition that theory 

states is needed for these indicators to work effectively. Early warning may be 

given for a tipping point when it has already been passed but not yet realised. 

Finally the critical slowing down observed in systems approaching tipping points 

could have adverse effects on other dependent systems, with changes in the 

redness of the forcing causing these systems to behave differently. There 
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should be considerations for both the health of the dependent system as well as 

the possibility that the changes in this system could also provide early warning 

of the tipping point in the forcing system.   
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